Merge tag 'mmc-v6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[platform/kernel/linux-rpi.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55
56 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
57                                  BTRFS_HEADER_FLAG_RELOC |\
58                                  BTRFS_SUPER_FLAG_ERROR |\
59                                  BTRFS_SUPER_FLAG_SEEDING |\
60                                  BTRFS_SUPER_FLAG_METADUMP |\
61                                  BTRFS_SUPER_FLAG_METADUMP_V2)
62
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68         if (fs_info->csum_shash)
69                 crypto_free_shash(fs_info->csum_shash);
70 }
71
72 /*
73  * Compute the csum of a btree block and store the result to provided buffer.
74  */
75 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 {
77         struct btrfs_fs_info *fs_info = buf->fs_info;
78         const int num_pages = num_extent_pages(buf);
79         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81         char *kaddr;
82         int i;
83
84         shash->tfm = fs_info->csum_shash;
85         crypto_shash_init(shash);
86         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88                             first_page_part - BTRFS_CSUM_SIZE);
89
90         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91                 kaddr = page_address(buf->pages[i]);
92                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
93         }
94         memset(result, 0, BTRFS_CSUM_SIZE);
95         crypto_shash_final(shash, result);
96 }
97
98 /*
99  * we can't consider a given block up to date unless the transid of the
100  * block matches the transid in the parent node's pointer.  This is how we
101  * detect blocks that either didn't get written at all or got written
102  * in the wrong place.
103  */
104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 {
106         if (!extent_buffer_uptodate(eb))
107                 return 0;
108
109         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110                 return 1;
111
112         if (atomic)
113                 return -EAGAIN;
114
115         if (!extent_buffer_uptodate(eb) ||
116             btrfs_header_generation(eb) != parent_transid) {
117                 btrfs_err_rl(eb->fs_info,
118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119                         eb->start, eb->read_mirror,
120                         parent_transid, btrfs_header_generation(eb));
121                 clear_extent_buffer_uptodate(eb);
122                 return 0;
123         }
124         return 1;
125 }
126
127 static bool btrfs_supported_super_csum(u16 csum_type)
128 {
129         switch (csum_type) {
130         case BTRFS_CSUM_TYPE_CRC32:
131         case BTRFS_CSUM_TYPE_XXHASH:
132         case BTRFS_CSUM_TYPE_SHA256:
133         case BTRFS_CSUM_TYPE_BLAKE2:
134                 return true;
135         default:
136                 return false;
137         }
138 }
139
140 /*
141  * Return 0 if the superblock checksum type matches the checksum value of that
142  * algorithm. Pass the raw disk superblock data.
143  */
144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145                            const struct btrfs_super_block *disk_sb)
146 {
147         char result[BTRFS_CSUM_SIZE];
148         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150         shash->tfm = fs_info->csum_shash;
151
152         /*
153          * The super_block structure does not span the whole
154          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155          * filled with zeros and is included in the checksum.
156          */
157         crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159
160         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161                 return 1;
162
163         return 0;
164 }
165
166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167                                       int mirror_num)
168 {
169         struct btrfs_fs_info *fs_info = eb->fs_info;
170         int i, num_pages = num_extent_pages(eb);
171         int ret = 0;
172
173         if (sb_rdonly(fs_info->sb))
174                 return -EROFS;
175
176         for (i = 0; i < num_pages; i++) {
177                 struct page *p = eb->pages[i];
178                 u64 start = max_t(u64, eb->start, page_offset(p));
179                 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180                 u32 len = end - start;
181
182                 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183                                 start, p, offset_in_page(start), mirror_num);
184                 if (ret)
185                         break;
186         }
187
188         return ret;
189 }
190
191 /*
192  * helper to read a given tree block, doing retries as required when
193  * the checksums don't match and we have alternate mirrors to try.
194  *
195  * @check:              expected tree parentness check, see the comments of the
196  *                      structure for details.
197  */
198 int btrfs_read_extent_buffer(struct extent_buffer *eb,
199                              struct btrfs_tree_parent_check *check)
200 {
201         struct btrfs_fs_info *fs_info = eb->fs_info;
202         int failed = 0;
203         int ret;
204         int num_copies = 0;
205         int mirror_num = 0;
206         int failed_mirror = 0;
207
208         ASSERT(check);
209
210         while (1) {
211                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213                 if (!ret)
214                         break;
215
216                 num_copies = btrfs_num_copies(fs_info,
217                                               eb->start, eb->len);
218                 if (num_copies == 1)
219                         break;
220
221                 if (!failed_mirror) {
222                         failed = 1;
223                         failed_mirror = eb->read_mirror;
224                 }
225
226                 mirror_num++;
227                 if (mirror_num == failed_mirror)
228                         mirror_num++;
229
230                 if (mirror_num > num_copies)
231                         break;
232         }
233
234         if (failed && !ret && failed_mirror)
235                 btrfs_repair_eb_io_failure(eb, failed_mirror);
236
237         return ret;
238 }
239
240 /*
241  * Checksum a dirty tree block before IO.
242  */
243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 {
245         struct extent_buffer *eb = bbio->private;
246         struct btrfs_fs_info *fs_info = eb->fs_info;
247         u64 found_start = btrfs_header_bytenr(eb);
248         u8 result[BTRFS_CSUM_SIZE];
249         int ret;
250
251         /* Btree blocks are always contiguous on disk. */
252         if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253                 return BLK_STS_IOERR;
254         if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255                 return BLK_STS_IOERR;
256
257         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258                 WARN_ON_ONCE(found_start != 0);
259                 return BLK_STS_OK;
260         }
261
262         if (WARN_ON_ONCE(found_start != eb->start))
263                 return BLK_STS_IOERR;
264         if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265                                               eb->len)))
266                 return BLK_STS_IOERR;
267
268         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269                                     offsetof(struct btrfs_header, fsid),
270                                     BTRFS_FSID_SIZE) == 0);
271         csum_tree_block(eb, result);
272
273         if (btrfs_header_level(eb))
274                 ret = btrfs_check_node(eb);
275         else
276                 ret = btrfs_check_leaf(eb);
277
278         if (ret < 0)
279                 goto error;
280
281         /*
282          * Also check the generation, the eb reached here must be newer than
283          * last committed. Or something seriously wrong happened.
284          */
285         if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286                 ret = -EUCLEAN;
287                 btrfs_err(fs_info,
288                         "block=%llu bad generation, have %llu expect > %llu",
289                           eb->start, btrfs_header_generation(eb),
290                           fs_info->last_trans_committed);
291                 goto error;
292         }
293         write_extent_buffer(eb, result, 0, fs_info->csum_size);
294         return BLK_STS_OK;
295
296 error:
297         btrfs_print_tree(eb, 0);
298         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299                   eb->start);
300         /*
301          * Be noisy if this is an extent buffer from a log tree. We don't abort
302          * a transaction in case there's a bad log tree extent buffer, we just
303          * fallback to a transaction commit. Still we want to know when there is
304          * a bad log tree extent buffer, as that may signal a bug somewhere.
305          */
306         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307                 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308         return errno_to_blk_status(ret);
309 }
310
311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313         struct btrfs_fs_info *fs_info = eb->fs_info;
314         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315         u8 fsid[BTRFS_FSID_SIZE];
316
317         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318                            BTRFS_FSID_SIZE);
319
320         /*
321          * alloc_fs_devices() copies the fsid into metadata_uuid if the
322          * metadata_uuid is unset in the superblock, including for a seed device.
323          * So, we can use fs_devices->metadata_uuid.
324          */
325         if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
326                 return false;
327
328         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
330                         return false;
331
332         return true;
333 }
334
335 /* Do basic extent buffer checks at read time */
336 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337                                  struct btrfs_tree_parent_check *check)
338 {
339         struct btrfs_fs_info *fs_info = eb->fs_info;
340         u64 found_start;
341         const u32 csum_size = fs_info->csum_size;
342         u8 found_level;
343         u8 result[BTRFS_CSUM_SIZE];
344         const u8 *header_csum;
345         int ret = 0;
346
347         ASSERT(check);
348
349         found_start = btrfs_header_bytenr(eb);
350         if (found_start != eb->start) {
351                 btrfs_err_rl(fs_info,
352                         "bad tree block start, mirror %u want %llu have %llu",
353                              eb->read_mirror, eb->start, found_start);
354                 ret = -EIO;
355                 goto out;
356         }
357         if (check_tree_block_fsid(eb)) {
358                 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359                              eb->start, eb->read_mirror);
360                 ret = -EIO;
361                 goto out;
362         }
363         found_level = btrfs_header_level(eb);
364         if (found_level >= BTRFS_MAX_LEVEL) {
365                 btrfs_err(fs_info,
366                         "bad tree block level, mirror %u level %d on logical %llu",
367                         eb->read_mirror, btrfs_header_level(eb), eb->start);
368                 ret = -EIO;
369                 goto out;
370         }
371
372         csum_tree_block(eb, result);
373         header_csum = page_address(eb->pages[0]) +
374                 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
375
376         if (memcmp(result, header_csum, csum_size) != 0) {
377                 btrfs_warn_rl(fs_info,
378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379                               eb->start, eb->read_mirror,
380                               CSUM_FMT_VALUE(csum_size, header_csum),
381                               CSUM_FMT_VALUE(csum_size, result),
382                               btrfs_header_level(eb));
383                 ret = -EUCLEAN;
384                 goto out;
385         }
386
387         if (found_level != check->level) {
388                 btrfs_err(fs_info,
389                 "level verify failed on logical %llu mirror %u wanted %u found %u",
390                           eb->start, eb->read_mirror, check->level, found_level);
391                 ret = -EIO;
392                 goto out;
393         }
394         if (unlikely(check->transid &&
395                      btrfs_header_generation(eb) != check->transid)) {
396                 btrfs_err_rl(eb->fs_info,
397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398                                 eb->start, eb->read_mirror, check->transid,
399                                 btrfs_header_generation(eb));
400                 ret = -EIO;
401                 goto out;
402         }
403         if (check->has_first_key) {
404                 struct btrfs_key *expect_key = &check->first_key;
405                 struct btrfs_key found_key;
406
407                 if (found_level)
408                         btrfs_node_key_to_cpu(eb, &found_key, 0);
409                 else
410                         btrfs_item_key_to_cpu(eb, &found_key, 0);
411                 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412                         btrfs_err(fs_info,
413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414                                   eb->start, check->transid,
415                                   expect_key->objectid,
416                                   expect_key->type, expect_key->offset,
417                                   found_key.objectid, found_key.type,
418                                   found_key.offset);
419                         ret = -EUCLEAN;
420                         goto out;
421                 }
422         }
423         if (check->owner_root) {
424                 ret = btrfs_check_eb_owner(eb, check->owner_root);
425                 if (ret < 0)
426                         goto out;
427         }
428
429         /*
430          * If this is a leaf block and it is corrupt, set the corrupt bit so
431          * that we don't try and read the other copies of this block, just
432          * return -EIO.
433          */
434         if (found_level == 0 && btrfs_check_leaf(eb)) {
435                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436                 ret = -EIO;
437         }
438
439         if (found_level > 0 && btrfs_check_node(eb))
440                 ret = -EIO;
441
442         if (ret)
443                 btrfs_err(fs_info,
444                 "read time tree block corruption detected on logical %llu mirror %u",
445                           eb->start, eb->read_mirror);
446 out:
447         return ret;
448 }
449
450 #ifdef CONFIG_MIGRATION
451 static int btree_migrate_folio(struct address_space *mapping,
452                 struct folio *dst, struct folio *src, enum migrate_mode mode)
453 {
454         /*
455          * we can't safely write a btree page from here,
456          * we haven't done the locking hook
457          */
458         if (folio_test_dirty(src))
459                 return -EAGAIN;
460         /*
461          * Buffers may be managed in a filesystem specific way.
462          * We must have no buffers or drop them.
463          */
464         if (folio_get_private(src) &&
465             !filemap_release_folio(src, GFP_KERNEL))
466                 return -EAGAIN;
467         return migrate_folio(mapping, dst, src, mode);
468 }
469 #else
470 #define btree_migrate_folio NULL
471 #endif
472
473 static int btree_writepages(struct address_space *mapping,
474                             struct writeback_control *wbc)
475 {
476         struct btrfs_fs_info *fs_info;
477         int ret;
478
479         if (wbc->sync_mode == WB_SYNC_NONE) {
480
481                 if (wbc->for_kupdate)
482                         return 0;
483
484                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
485                 /* this is a bit racy, but that's ok */
486                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487                                              BTRFS_DIRTY_METADATA_THRESH,
488                                              fs_info->dirty_metadata_batch);
489                 if (ret < 0)
490                         return 0;
491         }
492         return btree_write_cache_pages(mapping, wbc);
493 }
494
495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
496 {
497         if (folio_test_writeback(folio) || folio_test_dirty(folio))
498                 return false;
499
500         return try_release_extent_buffer(&folio->page);
501 }
502
503 static void btree_invalidate_folio(struct folio *folio, size_t offset,
504                                  size_t length)
505 {
506         struct extent_io_tree *tree;
507         tree = &BTRFS_I(folio->mapping->host)->io_tree;
508         extent_invalidate_folio(tree, folio, offset);
509         btree_release_folio(folio, GFP_NOFS);
510         if (folio_get_private(folio)) {
511                 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512                            "folio private not zero on folio %llu",
513                            (unsigned long long)folio_pos(folio));
514                 folio_detach_private(folio);
515         }
516 }
517
518 #ifdef DEBUG
519 static bool btree_dirty_folio(struct address_space *mapping,
520                 struct folio *folio)
521 {
522         struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
523         struct btrfs_subpage_info *spi = fs_info->subpage_info;
524         struct btrfs_subpage *subpage;
525         struct extent_buffer *eb;
526         int cur_bit = 0;
527         u64 page_start = folio_pos(folio);
528
529         if (fs_info->sectorsize == PAGE_SIZE) {
530                 eb = folio_get_private(folio);
531                 BUG_ON(!eb);
532                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
533                 BUG_ON(!atomic_read(&eb->refs));
534                 btrfs_assert_tree_write_locked(eb);
535                 return filemap_dirty_folio(mapping, folio);
536         }
537
538         ASSERT(spi);
539         subpage = folio_get_private(folio);
540
541         for (cur_bit = spi->dirty_offset;
542              cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
543              cur_bit++) {
544                 unsigned long flags;
545                 u64 cur;
546
547                 spin_lock_irqsave(&subpage->lock, flags);
548                 if (!test_bit(cur_bit, subpage->bitmaps)) {
549                         spin_unlock_irqrestore(&subpage->lock, flags);
550                         continue;
551                 }
552                 spin_unlock_irqrestore(&subpage->lock, flags);
553                 cur = page_start + cur_bit * fs_info->sectorsize;
554
555                 eb = find_extent_buffer(fs_info, cur);
556                 ASSERT(eb);
557                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558                 ASSERT(atomic_read(&eb->refs));
559                 btrfs_assert_tree_write_locked(eb);
560                 free_extent_buffer(eb);
561
562                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
563         }
564         return filemap_dirty_folio(mapping, folio);
565 }
566 #else
567 #define btree_dirty_folio filemap_dirty_folio
568 #endif
569
570 static const struct address_space_operations btree_aops = {
571         .writepages     = btree_writepages,
572         .release_folio  = btree_release_folio,
573         .invalidate_folio = btree_invalidate_folio,
574         .migrate_folio  = btree_migrate_folio,
575         .dirty_folio    = btree_dirty_folio,
576 };
577
578 struct extent_buffer *btrfs_find_create_tree_block(
579                                                 struct btrfs_fs_info *fs_info,
580                                                 u64 bytenr, u64 owner_root,
581                                                 int level)
582 {
583         if (btrfs_is_testing(fs_info))
584                 return alloc_test_extent_buffer(fs_info, bytenr);
585         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
586 }
587
588 /*
589  * Read tree block at logical address @bytenr and do variant basic but critical
590  * verification.
591  *
592  * @check:              expected tree parentness check, see comments of the
593  *                      structure for details.
594  */
595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
596                                       struct btrfs_tree_parent_check *check)
597 {
598         struct extent_buffer *buf = NULL;
599         int ret;
600
601         ASSERT(check);
602
603         buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
604                                            check->level);
605         if (IS_ERR(buf))
606                 return buf;
607
608         ret = btrfs_read_extent_buffer(buf, check);
609         if (ret) {
610                 free_extent_buffer_stale(buf);
611                 return ERR_PTR(ret);
612         }
613         if (btrfs_check_eb_owner(buf, check->owner_root)) {
614                 free_extent_buffer_stale(buf);
615                 return ERR_PTR(-EUCLEAN);
616         }
617         return buf;
618
619 }
620
621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
622                          u64 objectid)
623 {
624         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
625
626         memset(&root->root_key, 0, sizeof(root->root_key));
627         memset(&root->root_item, 0, sizeof(root->root_item));
628         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
629         root->fs_info = fs_info;
630         root->root_key.objectid = objectid;
631         root->node = NULL;
632         root->commit_root = NULL;
633         root->state = 0;
634         RB_CLEAR_NODE(&root->rb_node);
635
636         root->last_trans = 0;
637         root->free_objectid = 0;
638         root->nr_delalloc_inodes = 0;
639         root->nr_ordered_extents = 0;
640         root->inode_tree = RB_ROOT;
641         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
642
643         btrfs_init_root_block_rsv(root);
644
645         INIT_LIST_HEAD(&root->dirty_list);
646         INIT_LIST_HEAD(&root->root_list);
647         INIT_LIST_HEAD(&root->delalloc_inodes);
648         INIT_LIST_HEAD(&root->delalloc_root);
649         INIT_LIST_HEAD(&root->ordered_extents);
650         INIT_LIST_HEAD(&root->ordered_root);
651         INIT_LIST_HEAD(&root->reloc_dirty_list);
652         INIT_LIST_HEAD(&root->logged_list[0]);
653         INIT_LIST_HEAD(&root->logged_list[1]);
654         spin_lock_init(&root->inode_lock);
655         spin_lock_init(&root->delalloc_lock);
656         spin_lock_init(&root->ordered_extent_lock);
657         spin_lock_init(&root->accounting_lock);
658         spin_lock_init(&root->log_extents_lock[0]);
659         spin_lock_init(&root->log_extents_lock[1]);
660         spin_lock_init(&root->qgroup_meta_rsv_lock);
661         mutex_init(&root->objectid_mutex);
662         mutex_init(&root->log_mutex);
663         mutex_init(&root->ordered_extent_mutex);
664         mutex_init(&root->delalloc_mutex);
665         init_waitqueue_head(&root->qgroup_flush_wait);
666         init_waitqueue_head(&root->log_writer_wait);
667         init_waitqueue_head(&root->log_commit_wait[0]);
668         init_waitqueue_head(&root->log_commit_wait[1]);
669         INIT_LIST_HEAD(&root->log_ctxs[0]);
670         INIT_LIST_HEAD(&root->log_ctxs[1]);
671         atomic_set(&root->log_commit[0], 0);
672         atomic_set(&root->log_commit[1], 0);
673         atomic_set(&root->log_writers, 0);
674         atomic_set(&root->log_batch, 0);
675         refcount_set(&root->refs, 1);
676         atomic_set(&root->snapshot_force_cow, 0);
677         atomic_set(&root->nr_swapfiles, 0);
678         root->log_transid = 0;
679         root->log_transid_committed = -1;
680         root->last_log_commit = 0;
681         root->anon_dev = 0;
682         if (!dummy) {
683                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
684                                     IO_TREE_ROOT_DIRTY_LOG_PAGES);
685                 extent_io_tree_init(fs_info, &root->log_csum_range,
686                                     IO_TREE_LOG_CSUM_RANGE);
687         }
688
689         spin_lock_init(&root->root_item_lock);
690         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
691 #ifdef CONFIG_BTRFS_DEBUG
692         INIT_LIST_HEAD(&root->leak_list);
693         spin_lock(&fs_info->fs_roots_radix_lock);
694         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
695         spin_unlock(&fs_info->fs_roots_radix_lock);
696 #endif
697 }
698
699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
700                                            u64 objectid, gfp_t flags)
701 {
702         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
703         if (root)
704                 __setup_root(root, fs_info, objectid);
705         return root;
706 }
707
708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
709 /* Should only be used by the testing infrastructure */
710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
711 {
712         struct btrfs_root *root;
713
714         if (!fs_info)
715                 return ERR_PTR(-EINVAL);
716
717         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
718         if (!root)
719                 return ERR_PTR(-ENOMEM);
720
721         /* We don't use the stripesize in selftest, set it as sectorsize */
722         root->alloc_bytenr = 0;
723
724         return root;
725 }
726 #endif
727
728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
729 {
730         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
731         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
732
733         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
734 }
735
736 static int global_root_key_cmp(const void *k, const struct rb_node *node)
737 {
738         const struct btrfs_key *key = k;
739         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
740
741         return btrfs_comp_cpu_keys(key, &root->root_key);
742 }
743
744 int btrfs_global_root_insert(struct btrfs_root *root)
745 {
746         struct btrfs_fs_info *fs_info = root->fs_info;
747         struct rb_node *tmp;
748         int ret = 0;
749
750         write_lock(&fs_info->global_root_lock);
751         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
752         write_unlock(&fs_info->global_root_lock);
753
754         if (tmp) {
755                 ret = -EEXIST;
756                 btrfs_warn(fs_info, "global root %llu %llu already exists",
757                                 root->root_key.objectid, root->root_key.offset);
758         }
759         return ret;
760 }
761
762 void btrfs_global_root_delete(struct btrfs_root *root)
763 {
764         struct btrfs_fs_info *fs_info = root->fs_info;
765
766         write_lock(&fs_info->global_root_lock);
767         rb_erase(&root->rb_node, &fs_info->global_root_tree);
768         write_unlock(&fs_info->global_root_lock);
769 }
770
771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
772                                      struct btrfs_key *key)
773 {
774         struct rb_node *node;
775         struct btrfs_root *root = NULL;
776
777         read_lock(&fs_info->global_root_lock);
778         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
779         if (node)
780                 root = container_of(node, struct btrfs_root, rb_node);
781         read_unlock(&fs_info->global_root_lock);
782
783         return root;
784 }
785
786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
787 {
788         struct btrfs_block_group *block_group;
789         u64 ret;
790
791         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
792                 return 0;
793
794         if (bytenr)
795                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
796         else
797                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
798         ASSERT(block_group);
799         if (!block_group)
800                 return 0;
801         ret = block_group->global_root_id;
802         btrfs_put_block_group(block_group);
803
804         return ret;
805 }
806
807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809         struct btrfs_key key = {
810                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
811                 .type = BTRFS_ROOT_ITEM_KEY,
812                 .offset = btrfs_global_root_id(fs_info, bytenr),
813         };
814
815         return btrfs_global_root(fs_info, &key);
816 }
817
818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
819 {
820         struct btrfs_key key = {
821                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
822                 .type = BTRFS_ROOT_ITEM_KEY,
823                 .offset = btrfs_global_root_id(fs_info, bytenr),
824         };
825
826         return btrfs_global_root(fs_info, &key);
827 }
828
829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
830 {
831         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
832                 return fs_info->block_group_root;
833         return btrfs_extent_root(fs_info, 0);
834 }
835
836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
837                                      u64 objectid)
838 {
839         struct btrfs_fs_info *fs_info = trans->fs_info;
840         struct extent_buffer *leaf;
841         struct btrfs_root *tree_root = fs_info->tree_root;
842         struct btrfs_root *root;
843         struct btrfs_key key;
844         unsigned int nofs_flag;
845         int ret = 0;
846
847         /*
848          * We're holding a transaction handle, so use a NOFS memory allocation
849          * context to avoid deadlock if reclaim happens.
850          */
851         nofs_flag = memalloc_nofs_save();
852         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
853         memalloc_nofs_restore(nofs_flag);
854         if (!root)
855                 return ERR_PTR(-ENOMEM);
856
857         root->root_key.objectid = objectid;
858         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
859         root->root_key.offset = 0;
860
861         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
862                                       BTRFS_NESTING_NORMAL);
863         if (IS_ERR(leaf)) {
864                 ret = PTR_ERR(leaf);
865                 leaf = NULL;
866                 goto fail;
867         }
868
869         root->node = leaf;
870         btrfs_mark_buffer_dirty(leaf);
871
872         root->commit_root = btrfs_root_node(root);
873         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
874
875         btrfs_set_root_flags(&root->root_item, 0);
876         btrfs_set_root_limit(&root->root_item, 0);
877         btrfs_set_root_bytenr(&root->root_item, leaf->start);
878         btrfs_set_root_generation(&root->root_item, trans->transid);
879         btrfs_set_root_level(&root->root_item, 0);
880         btrfs_set_root_refs(&root->root_item, 1);
881         btrfs_set_root_used(&root->root_item, leaf->len);
882         btrfs_set_root_last_snapshot(&root->root_item, 0);
883         btrfs_set_root_dirid(&root->root_item, 0);
884         if (is_fstree(objectid))
885                 generate_random_guid(root->root_item.uuid);
886         else
887                 export_guid(root->root_item.uuid, &guid_null);
888         btrfs_set_root_drop_level(&root->root_item, 0);
889
890         btrfs_tree_unlock(leaf);
891
892         key.objectid = objectid;
893         key.type = BTRFS_ROOT_ITEM_KEY;
894         key.offset = 0;
895         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
896         if (ret)
897                 goto fail;
898
899         return root;
900
901 fail:
902         btrfs_put_root(root);
903
904         return ERR_PTR(ret);
905 }
906
907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
908                                          struct btrfs_fs_info *fs_info)
909 {
910         struct btrfs_root *root;
911
912         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
913         if (!root)
914                 return ERR_PTR(-ENOMEM);
915
916         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
917         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
918         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
919
920         return root;
921 }
922
923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
924                               struct btrfs_root *root)
925 {
926         struct extent_buffer *leaf;
927
928         /*
929          * DON'T set SHAREABLE bit for log trees.
930          *
931          * Log trees are not exposed to user space thus can't be snapshotted,
932          * and they go away before a real commit is actually done.
933          *
934          * They do store pointers to file data extents, and those reference
935          * counts still get updated (along with back refs to the log tree).
936          */
937
938         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
939                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
940         if (IS_ERR(leaf))
941                 return PTR_ERR(leaf);
942
943         root->node = leaf;
944
945         btrfs_mark_buffer_dirty(root->node);
946         btrfs_tree_unlock(root->node);
947
948         return 0;
949 }
950
951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
952                              struct btrfs_fs_info *fs_info)
953 {
954         struct btrfs_root *log_root;
955
956         log_root = alloc_log_tree(trans, fs_info);
957         if (IS_ERR(log_root))
958                 return PTR_ERR(log_root);
959
960         if (!btrfs_is_zoned(fs_info)) {
961                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
962
963                 if (ret) {
964                         btrfs_put_root(log_root);
965                         return ret;
966                 }
967         }
968
969         WARN_ON(fs_info->log_root_tree);
970         fs_info->log_root_tree = log_root;
971         return 0;
972 }
973
974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
975                        struct btrfs_root *root)
976 {
977         struct btrfs_fs_info *fs_info = root->fs_info;
978         struct btrfs_root *log_root;
979         struct btrfs_inode_item *inode_item;
980         int ret;
981
982         log_root = alloc_log_tree(trans, fs_info);
983         if (IS_ERR(log_root))
984                 return PTR_ERR(log_root);
985
986         ret = btrfs_alloc_log_tree_node(trans, log_root);
987         if (ret) {
988                 btrfs_put_root(log_root);
989                 return ret;
990         }
991
992         log_root->last_trans = trans->transid;
993         log_root->root_key.offset = root->root_key.objectid;
994
995         inode_item = &log_root->root_item.inode;
996         btrfs_set_stack_inode_generation(inode_item, 1);
997         btrfs_set_stack_inode_size(inode_item, 3);
998         btrfs_set_stack_inode_nlink(inode_item, 1);
999         btrfs_set_stack_inode_nbytes(inode_item,
1000                                      fs_info->nodesize);
1001         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1002
1003         btrfs_set_root_node(&log_root->root_item, log_root->node);
1004
1005         WARN_ON(root->log_root);
1006         root->log_root = log_root;
1007         root->log_transid = 0;
1008         root->log_transid_committed = -1;
1009         root->last_log_commit = 0;
1010         return 0;
1011 }
1012
1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1014                                               struct btrfs_path *path,
1015                                               struct btrfs_key *key)
1016 {
1017         struct btrfs_root *root;
1018         struct btrfs_tree_parent_check check = { 0 };
1019         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1020         u64 generation;
1021         int ret;
1022         int level;
1023
1024         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1025         if (!root)
1026                 return ERR_PTR(-ENOMEM);
1027
1028         ret = btrfs_find_root(tree_root, key, path,
1029                               &root->root_item, &root->root_key);
1030         if (ret) {
1031                 if (ret > 0)
1032                         ret = -ENOENT;
1033                 goto fail;
1034         }
1035
1036         generation = btrfs_root_generation(&root->root_item);
1037         level = btrfs_root_level(&root->root_item);
1038         check.level = level;
1039         check.transid = generation;
1040         check.owner_root = key->objectid;
1041         root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1042                                      &check);
1043         if (IS_ERR(root->node)) {
1044                 ret = PTR_ERR(root->node);
1045                 root->node = NULL;
1046                 goto fail;
1047         }
1048         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1049                 ret = -EIO;
1050                 goto fail;
1051         }
1052
1053         /*
1054          * For real fs, and not log/reloc trees, root owner must
1055          * match its root node owner
1056          */
1057         if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1058             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1059             root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1060             root->root_key.objectid != btrfs_header_owner(root->node)) {
1061                 btrfs_crit(fs_info,
1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1063                            root->root_key.objectid, root->node->start,
1064                            btrfs_header_owner(root->node),
1065                            root->root_key.objectid);
1066                 ret = -EUCLEAN;
1067                 goto fail;
1068         }
1069         root->commit_root = btrfs_root_node(root);
1070         return root;
1071 fail:
1072         btrfs_put_root(root);
1073         return ERR_PTR(ret);
1074 }
1075
1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1077                                         struct btrfs_key *key)
1078 {
1079         struct btrfs_root *root;
1080         struct btrfs_path *path;
1081
1082         path = btrfs_alloc_path();
1083         if (!path)
1084                 return ERR_PTR(-ENOMEM);
1085         root = read_tree_root_path(tree_root, path, key);
1086         btrfs_free_path(path);
1087
1088         return root;
1089 }
1090
1091 /*
1092  * Initialize subvolume root in-memory structure
1093  *
1094  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1095  */
1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1097 {
1098         int ret;
1099
1100         btrfs_drew_lock_init(&root->snapshot_lock);
1101
1102         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1103             !btrfs_is_data_reloc_root(root) &&
1104             is_fstree(root->root_key.objectid)) {
1105                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1106                 btrfs_check_and_init_root_item(&root->root_item);
1107         }
1108
1109         /*
1110          * Don't assign anonymous block device to roots that are not exposed to
1111          * userspace, the id pool is limited to 1M
1112          */
1113         if (is_fstree(root->root_key.objectid) &&
1114             btrfs_root_refs(&root->root_item) > 0) {
1115                 if (!anon_dev) {
1116                         ret = get_anon_bdev(&root->anon_dev);
1117                         if (ret)
1118                                 goto fail;
1119                 } else {
1120                         root->anon_dev = anon_dev;
1121                 }
1122         }
1123
1124         mutex_lock(&root->objectid_mutex);
1125         ret = btrfs_init_root_free_objectid(root);
1126         if (ret) {
1127                 mutex_unlock(&root->objectid_mutex);
1128                 goto fail;
1129         }
1130
1131         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1132
1133         mutex_unlock(&root->objectid_mutex);
1134
1135         return 0;
1136 fail:
1137         /* The caller is responsible to call btrfs_free_fs_root */
1138         return ret;
1139 }
1140
1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142                                                u64 root_id)
1143 {
1144         struct btrfs_root *root;
1145
1146         spin_lock(&fs_info->fs_roots_radix_lock);
1147         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148                                  (unsigned long)root_id);
1149         root = btrfs_grab_root(root);
1150         spin_unlock(&fs_info->fs_roots_radix_lock);
1151         return root;
1152 }
1153
1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155                                                 u64 objectid)
1156 {
1157         struct btrfs_key key = {
1158                 .objectid = objectid,
1159                 .type = BTRFS_ROOT_ITEM_KEY,
1160                 .offset = 0,
1161         };
1162
1163         switch (objectid) {
1164         case BTRFS_ROOT_TREE_OBJECTID:
1165                 return btrfs_grab_root(fs_info->tree_root);
1166         case BTRFS_EXTENT_TREE_OBJECTID:
1167                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168         case BTRFS_CHUNK_TREE_OBJECTID:
1169                 return btrfs_grab_root(fs_info->chunk_root);
1170         case BTRFS_DEV_TREE_OBJECTID:
1171                 return btrfs_grab_root(fs_info->dev_root);
1172         case BTRFS_CSUM_TREE_OBJECTID:
1173                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174         case BTRFS_QUOTA_TREE_OBJECTID:
1175                 return btrfs_grab_root(fs_info->quota_root);
1176         case BTRFS_UUID_TREE_OBJECTID:
1177                 return btrfs_grab_root(fs_info->uuid_root);
1178         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179                 return btrfs_grab_root(fs_info->block_group_root);
1180         case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182         default:
1183                 return NULL;
1184         }
1185 }
1186
1187 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1188                          struct btrfs_root *root)
1189 {
1190         int ret;
1191
1192         ret = radix_tree_preload(GFP_NOFS);
1193         if (ret)
1194                 return ret;
1195
1196         spin_lock(&fs_info->fs_roots_radix_lock);
1197         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1198                                 (unsigned long)root->root_key.objectid,
1199                                 root);
1200         if (ret == 0) {
1201                 btrfs_grab_root(root);
1202                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1203         }
1204         spin_unlock(&fs_info->fs_roots_radix_lock);
1205         radix_tree_preload_end();
1206
1207         return ret;
1208 }
1209
1210 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1211 {
1212 #ifdef CONFIG_BTRFS_DEBUG
1213         struct btrfs_root *root;
1214
1215         while (!list_empty(&fs_info->allocated_roots)) {
1216                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1217
1218                 root = list_first_entry(&fs_info->allocated_roots,
1219                                         struct btrfs_root, leak_list);
1220                 btrfs_err(fs_info, "leaked root %s refcount %d",
1221                           btrfs_root_name(&root->root_key, buf),
1222                           refcount_read(&root->refs));
1223                 while (refcount_read(&root->refs) > 1)
1224                         btrfs_put_root(root);
1225                 btrfs_put_root(root);
1226         }
1227 #endif
1228 }
1229
1230 static void free_global_roots(struct btrfs_fs_info *fs_info)
1231 {
1232         struct btrfs_root *root;
1233         struct rb_node *node;
1234
1235         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1236                 root = rb_entry(node, struct btrfs_root, rb_node);
1237                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1238                 btrfs_put_root(root);
1239         }
1240 }
1241
1242 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1243 {
1244         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1245         percpu_counter_destroy(&fs_info->delalloc_bytes);
1246         percpu_counter_destroy(&fs_info->ordered_bytes);
1247         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1248         btrfs_free_csum_hash(fs_info);
1249         btrfs_free_stripe_hash_table(fs_info);
1250         btrfs_free_ref_cache(fs_info);
1251         kfree(fs_info->balance_ctl);
1252         kfree(fs_info->delayed_root);
1253         free_global_roots(fs_info);
1254         btrfs_put_root(fs_info->tree_root);
1255         btrfs_put_root(fs_info->chunk_root);
1256         btrfs_put_root(fs_info->dev_root);
1257         btrfs_put_root(fs_info->quota_root);
1258         btrfs_put_root(fs_info->uuid_root);
1259         btrfs_put_root(fs_info->fs_root);
1260         btrfs_put_root(fs_info->data_reloc_root);
1261         btrfs_put_root(fs_info->block_group_root);
1262         btrfs_check_leaked_roots(fs_info);
1263         btrfs_extent_buffer_leak_debug_check(fs_info);
1264         kfree(fs_info->super_copy);
1265         kfree(fs_info->super_for_commit);
1266         kfree(fs_info->subpage_info);
1267         kvfree(fs_info);
1268 }
1269
1270
1271 /*
1272  * Get an in-memory reference of a root structure.
1273  *
1274  * For essential trees like root/extent tree, we grab it from fs_info directly.
1275  * For subvolume trees, we check the cached filesystem roots first. If not
1276  * found, then read it from disk and add it to cached fs roots.
1277  *
1278  * Caller should release the root by calling btrfs_put_root() after the usage.
1279  *
1280  * NOTE: Reloc and log trees can't be read by this function as they share the
1281  *       same root objectid.
1282  *
1283  * @objectid:   root id
1284  * @anon_dev:   preallocated anonymous block device number for new roots,
1285  *              pass 0 for new allocation.
1286  * @check_ref:  whether to check root item references, If true, return -ENOENT
1287  *              for orphan roots
1288  */
1289 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1290                                              u64 objectid, dev_t anon_dev,
1291                                              bool check_ref)
1292 {
1293         struct btrfs_root *root;
1294         struct btrfs_path *path;
1295         struct btrfs_key key;
1296         int ret;
1297
1298         root = btrfs_get_global_root(fs_info, objectid);
1299         if (root)
1300                 return root;
1301
1302         /*
1303          * If we're called for non-subvolume trees, and above function didn't
1304          * find one, do not try to read it from disk.
1305          *
1306          * This is namely for free-space-tree and quota tree, which can change
1307          * at runtime and should only be grabbed from fs_info.
1308          */
1309         if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1310                 return ERR_PTR(-ENOENT);
1311 again:
1312         root = btrfs_lookup_fs_root(fs_info, objectid);
1313         if (root) {
1314                 /* Shouldn't get preallocated anon_dev for cached roots */
1315                 ASSERT(!anon_dev);
1316                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1317                         btrfs_put_root(root);
1318                         return ERR_PTR(-ENOENT);
1319                 }
1320                 return root;
1321         }
1322
1323         key.objectid = objectid;
1324         key.type = BTRFS_ROOT_ITEM_KEY;
1325         key.offset = (u64)-1;
1326         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1327         if (IS_ERR(root))
1328                 return root;
1329
1330         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1331                 ret = -ENOENT;
1332                 goto fail;
1333         }
1334
1335         ret = btrfs_init_fs_root(root, anon_dev);
1336         if (ret)
1337                 goto fail;
1338
1339         path = btrfs_alloc_path();
1340         if (!path) {
1341                 ret = -ENOMEM;
1342                 goto fail;
1343         }
1344         key.objectid = BTRFS_ORPHAN_OBJECTID;
1345         key.type = BTRFS_ORPHAN_ITEM_KEY;
1346         key.offset = objectid;
1347
1348         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1349         btrfs_free_path(path);
1350         if (ret < 0)
1351                 goto fail;
1352         if (ret == 0)
1353                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1354
1355         ret = btrfs_insert_fs_root(fs_info, root);
1356         if (ret) {
1357                 if (ret == -EEXIST) {
1358                         btrfs_put_root(root);
1359                         goto again;
1360                 }
1361                 goto fail;
1362         }
1363         return root;
1364 fail:
1365         /*
1366          * If our caller provided us an anonymous device, then it's his
1367          * responsibility to free it in case we fail. So we have to set our
1368          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1369          * and once again by our caller.
1370          */
1371         if (anon_dev)
1372                 root->anon_dev = 0;
1373         btrfs_put_root(root);
1374         return ERR_PTR(ret);
1375 }
1376
1377 /*
1378  * Get in-memory reference of a root structure
1379  *
1380  * @objectid:   tree objectid
1381  * @check_ref:  if set, verify that the tree exists and the item has at least
1382  *              one reference
1383  */
1384 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1385                                      u64 objectid, bool check_ref)
1386 {
1387         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1388 }
1389
1390 /*
1391  * Get in-memory reference of a root structure, created as new, optionally pass
1392  * the anonymous block device id
1393  *
1394  * @objectid:   tree objectid
1395  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1396  *              parameter value
1397  */
1398 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1399                                          u64 objectid, dev_t anon_dev)
1400 {
1401         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1402 }
1403
1404 /*
1405  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1406  * @fs_info:    the fs_info
1407  * @objectid:   the objectid we need to lookup
1408  *
1409  * This is exclusively used for backref walking, and exists specifically because
1410  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1411  * creation time, which means we may have to read the tree_root in order to look
1412  * up a fs root that is not in memory.  If the root is not in memory we will
1413  * read the tree root commit root and look up the fs root from there.  This is a
1414  * temporary root, it will not be inserted into the radix tree as it doesn't
1415  * have the most uptodate information, it'll simply be discarded once the
1416  * backref code is finished using the root.
1417  */
1418 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1419                                                  struct btrfs_path *path,
1420                                                  u64 objectid)
1421 {
1422         struct btrfs_root *root;
1423         struct btrfs_key key;
1424
1425         ASSERT(path->search_commit_root && path->skip_locking);
1426
1427         /*
1428          * This can return -ENOENT if we ask for a root that doesn't exist, but
1429          * since this is called via the backref walking code we won't be looking
1430          * up a root that doesn't exist, unless there's corruption.  So if root
1431          * != NULL just return it.
1432          */
1433         root = btrfs_get_global_root(fs_info, objectid);
1434         if (root)
1435                 return root;
1436
1437         root = btrfs_lookup_fs_root(fs_info, objectid);
1438         if (root)
1439                 return root;
1440
1441         key.objectid = objectid;
1442         key.type = BTRFS_ROOT_ITEM_KEY;
1443         key.offset = (u64)-1;
1444         root = read_tree_root_path(fs_info->tree_root, path, &key);
1445         btrfs_release_path(path);
1446
1447         return root;
1448 }
1449
1450 static int cleaner_kthread(void *arg)
1451 {
1452         struct btrfs_fs_info *fs_info = arg;
1453         int again;
1454
1455         while (1) {
1456                 again = 0;
1457
1458                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1459
1460                 /* Make the cleaner go to sleep early. */
1461                 if (btrfs_need_cleaner_sleep(fs_info))
1462                         goto sleep;
1463
1464                 /*
1465                  * Do not do anything if we might cause open_ctree() to block
1466                  * before we have finished mounting the filesystem.
1467                  */
1468                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1469                         goto sleep;
1470
1471                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1472                         goto sleep;
1473
1474                 /*
1475                  * Avoid the problem that we change the status of the fs
1476                  * during the above check and trylock.
1477                  */
1478                 if (btrfs_need_cleaner_sleep(fs_info)) {
1479                         mutex_unlock(&fs_info->cleaner_mutex);
1480                         goto sleep;
1481                 }
1482
1483                 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1484                         btrfs_sysfs_feature_update(fs_info);
1485
1486                 btrfs_run_delayed_iputs(fs_info);
1487
1488                 again = btrfs_clean_one_deleted_snapshot(fs_info);
1489                 mutex_unlock(&fs_info->cleaner_mutex);
1490
1491                 /*
1492                  * The defragger has dealt with the R/O remount and umount,
1493                  * needn't do anything special here.
1494                  */
1495                 btrfs_run_defrag_inodes(fs_info);
1496
1497                 /*
1498                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1499                  * with relocation (btrfs_relocate_chunk) and relocation
1500                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1501                  * after acquiring fs_info->reclaim_bgs_lock. So we
1502                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1503                  * unused block groups.
1504                  */
1505                 btrfs_delete_unused_bgs(fs_info);
1506
1507                 /*
1508                  * Reclaim block groups in the reclaim_bgs list after we deleted
1509                  * all unused block_groups. This possibly gives us some more free
1510                  * space.
1511                  */
1512                 btrfs_reclaim_bgs(fs_info);
1513 sleep:
1514                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1515                 if (kthread_should_park())
1516                         kthread_parkme();
1517                 if (kthread_should_stop())
1518                         return 0;
1519                 if (!again) {
1520                         set_current_state(TASK_INTERRUPTIBLE);
1521                         schedule();
1522                         __set_current_state(TASK_RUNNING);
1523                 }
1524         }
1525 }
1526
1527 static int transaction_kthread(void *arg)
1528 {
1529         struct btrfs_root *root = arg;
1530         struct btrfs_fs_info *fs_info = root->fs_info;
1531         struct btrfs_trans_handle *trans;
1532         struct btrfs_transaction *cur;
1533         u64 transid;
1534         time64_t delta;
1535         unsigned long delay;
1536         bool cannot_commit;
1537
1538         do {
1539                 cannot_commit = false;
1540                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1541                 mutex_lock(&fs_info->transaction_kthread_mutex);
1542
1543                 spin_lock(&fs_info->trans_lock);
1544                 cur = fs_info->running_transaction;
1545                 if (!cur) {
1546                         spin_unlock(&fs_info->trans_lock);
1547                         goto sleep;
1548                 }
1549
1550                 delta = ktime_get_seconds() - cur->start_time;
1551                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1552                     cur->state < TRANS_STATE_COMMIT_PREP &&
1553                     delta < fs_info->commit_interval) {
1554                         spin_unlock(&fs_info->trans_lock);
1555                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1556                         delay = min(delay,
1557                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1558                         goto sleep;
1559                 }
1560                 transid = cur->transid;
1561                 spin_unlock(&fs_info->trans_lock);
1562
1563                 /* If the file system is aborted, this will always fail. */
1564                 trans = btrfs_attach_transaction(root);
1565                 if (IS_ERR(trans)) {
1566                         if (PTR_ERR(trans) != -ENOENT)
1567                                 cannot_commit = true;
1568                         goto sleep;
1569                 }
1570                 if (transid == trans->transid) {
1571                         btrfs_commit_transaction(trans);
1572                 } else {
1573                         btrfs_end_transaction(trans);
1574                 }
1575 sleep:
1576                 wake_up_process(fs_info->cleaner_kthread);
1577                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1578
1579                 if (BTRFS_FS_ERROR(fs_info))
1580                         btrfs_cleanup_transaction(fs_info);
1581                 if (!kthread_should_stop() &&
1582                                 (!btrfs_transaction_blocked(fs_info) ||
1583                                  cannot_commit))
1584                         schedule_timeout_interruptible(delay);
1585         } while (!kthread_should_stop());
1586         return 0;
1587 }
1588
1589 /*
1590  * This will find the highest generation in the array of root backups.  The
1591  * index of the highest array is returned, or -EINVAL if we can't find
1592  * anything.
1593  *
1594  * We check to make sure the array is valid by comparing the
1595  * generation of the latest  root in the array with the generation
1596  * in the super block.  If they don't match we pitch it.
1597  */
1598 static int find_newest_super_backup(struct btrfs_fs_info *info)
1599 {
1600         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1601         u64 cur;
1602         struct btrfs_root_backup *root_backup;
1603         int i;
1604
1605         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1606                 root_backup = info->super_copy->super_roots + i;
1607                 cur = btrfs_backup_tree_root_gen(root_backup);
1608                 if (cur == newest_gen)
1609                         return i;
1610         }
1611
1612         return -EINVAL;
1613 }
1614
1615 /*
1616  * copy all the root pointers into the super backup array.
1617  * this will bump the backup pointer by one when it is
1618  * done
1619  */
1620 static void backup_super_roots(struct btrfs_fs_info *info)
1621 {
1622         const int next_backup = info->backup_root_index;
1623         struct btrfs_root_backup *root_backup;
1624
1625         root_backup = info->super_for_commit->super_roots + next_backup;
1626
1627         /*
1628          * make sure all of our padding and empty slots get zero filled
1629          * regardless of which ones we use today
1630          */
1631         memset(root_backup, 0, sizeof(*root_backup));
1632
1633         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1634
1635         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1636         btrfs_set_backup_tree_root_gen(root_backup,
1637                                btrfs_header_generation(info->tree_root->node));
1638
1639         btrfs_set_backup_tree_root_level(root_backup,
1640                                btrfs_header_level(info->tree_root->node));
1641
1642         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1643         btrfs_set_backup_chunk_root_gen(root_backup,
1644                                btrfs_header_generation(info->chunk_root->node));
1645         btrfs_set_backup_chunk_root_level(root_backup,
1646                                btrfs_header_level(info->chunk_root->node));
1647
1648         if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1649                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1650                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1651
1652                 btrfs_set_backup_extent_root(root_backup,
1653                                              extent_root->node->start);
1654                 btrfs_set_backup_extent_root_gen(root_backup,
1655                                 btrfs_header_generation(extent_root->node));
1656                 btrfs_set_backup_extent_root_level(root_backup,
1657                                         btrfs_header_level(extent_root->node));
1658
1659                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1660                 btrfs_set_backup_csum_root_gen(root_backup,
1661                                                btrfs_header_generation(csum_root->node));
1662                 btrfs_set_backup_csum_root_level(root_backup,
1663                                                  btrfs_header_level(csum_root->node));
1664         }
1665
1666         /*
1667          * we might commit during log recovery, which happens before we set
1668          * the fs_root.  Make sure it is valid before we fill it in.
1669          */
1670         if (info->fs_root && info->fs_root->node) {
1671                 btrfs_set_backup_fs_root(root_backup,
1672                                          info->fs_root->node->start);
1673                 btrfs_set_backup_fs_root_gen(root_backup,
1674                                btrfs_header_generation(info->fs_root->node));
1675                 btrfs_set_backup_fs_root_level(root_backup,
1676                                btrfs_header_level(info->fs_root->node));
1677         }
1678
1679         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1680         btrfs_set_backup_dev_root_gen(root_backup,
1681                                btrfs_header_generation(info->dev_root->node));
1682         btrfs_set_backup_dev_root_level(root_backup,
1683                                        btrfs_header_level(info->dev_root->node));
1684
1685         btrfs_set_backup_total_bytes(root_backup,
1686                              btrfs_super_total_bytes(info->super_copy));
1687         btrfs_set_backup_bytes_used(root_backup,
1688                              btrfs_super_bytes_used(info->super_copy));
1689         btrfs_set_backup_num_devices(root_backup,
1690                              btrfs_super_num_devices(info->super_copy));
1691
1692         /*
1693          * if we don't copy this out to the super_copy, it won't get remembered
1694          * for the next commit
1695          */
1696         memcpy(&info->super_copy->super_roots,
1697                &info->super_for_commit->super_roots,
1698                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1699 }
1700
1701 /*
1702  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1703  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1704  *
1705  * fs_info - filesystem whose backup roots need to be read
1706  * priority - priority of backup root required
1707  *
1708  * Returns backup root index on success and -EINVAL otherwise.
1709  */
1710 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1711 {
1712         int backup_index = find_newest_super_backup(fs_info);
1713         struct btrfs_super_block *super = fs_info->super_copy;
1714         struct btrfs_root_backup *root_backup;
1715
1716         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1717                 if (priority == 0)
1718                         return backup_index;
1719
1720                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1721                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1722         } else {
1723                 return -EINVAL;
1724         }
1725
1726         root_backup = super->super_roots + backup_index;
1727
1728         btrfs_set_super_generation(super,
1729                                    btrfs_backup_tree_root_gen(root_backup));
1730         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1731         btrfs_set_super_root_level(super,
1732                                    btrfs_backup_tree_root_level(root_backup));
1733         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1734
1735         /*
1736          * Fixme: the total bytes and num_devices need to match or we should
1737          * need a fsck
1738          */
1739         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1740         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1741
1742         return backup_index;
1743 }
1744
1745 /* helper to cleanup workers */
1746 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1747 {
1748         btrfs_destroy_workqueue(fs_info->fixup_workers);
1749         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1750         btrfs_destroy_workqueue(fs_info->workers);
1751         if (fs_info->endio_workers)
1752                 destroy_workqueue(fs_info->endio_workers);
1753         if (fs_info->rmw_workers)
1754                 destroy_workqueue(fs_info->rmw_workers);
1755         if (fs_info->compressed_write_workers)
1756                 destroy_workqueue(fs_info->compressed_write_workers);
1757         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1758         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1759         btrfs_destroy_workqueue(fs_info->delayed_workers);
1760         btrfs_destroy_workqueue(fs_info->caching_workers);
1761         btrfs_destroy_workqueue(fs_info->flush_workers);
1762         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1763         if (fs_info->discard_ctl.discard_workers)
1764                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1765         /*
1766          * Now that all other work queues are destroyed, we can safely destroy
1767          * the queues used for metadata I/O, since tasks from those other work
1768          * queues can do metadata I/O operations.
1769          */
1770         if (fs_info->endio_meta_workers)
1771                 destroy_workqueue(fs_info->endio_meta_workers);
1772 }
1773
1774 static void free_root_extent_buffers(struct btrfs_root *root)
1775 {
1776         if (root) {
1777                 free_extent_buffer(root->node);
1778                 free_extent_buffer(root->commit_root);
1779                 root->node = NULL;
1780                 root->commit_root = NULL;
1781         }
1782 }
1783
1784 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1785 {
1786         struct btrfs_root *root, *tmp;
1787
1788         rbtree_postorder_for_each_entry_safe(root, tmp,
1789                                              &fs_info->global_root_tree,
1790                                              rb_node)
1791                 free_root_extent_buffers(root);
1792 }
1793
1794 /* helper to cleanup tree roots */
1795 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1796 {
1797         free_root_extent_buffers(info->tree_root);
1798
1799         free_global_root_pointers(info);
1800         free_root_extent_buffers(info->dev_root);
1801         free_root_extent_buffers(info->quota_root);
1802         free_root_extent_buffers(info->uuid_root);
1803         free_root_extent_buffers(info->fs_root);
1804         free_root_extent_buffers(info->data_reloc_root);
1805         free_root_extent_buffers(info->block_group_root);
1806         if (free_chunk_root)
1807                 free_root_extent_buffers(info->chunk_root);
1808 }
1809
1810 void btrfs_put_root(struct btrfs_root *root)
1811 {
1812         if (!root)
1813                 return;
1814
1815         if (refcount_dec_and_test(&root->refs)) {
1816                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1817                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1818                 if (root->anon_dev)
1819                         free_anon_bdev(root->anon_dev);
1820                 free_root_extent_buffers(root);
1821 #ifdef CONFIG_BTRFS_DEBUG
1822                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1823                 list_del_init(&root->leak_list);
1824                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1825 #endif
1826                 kfree(root);
1827         }
1828 }
1829
1830 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1831 {
1832         int ret;
1833         struct btrfs_root *gang[8];
1834         int i;
1835
1836         while (!list_empty(&fs_info->dead_roots)) {
1837                 gang[0] = list_entry(fs_info->dead_roots.next,
1838                                      struct btrfs_root, root_list);
1839                 list_del(&gang[0]->root_list);
1840
1841                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1842                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1843                 btrfs_put_root(gang[0]);
1844         }
1845
1846         while (1) {
1847                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1848                                              (void **)gang, 0,
1849                                              ARRAY_SIZE(gang));
1850                 if (!ret)
1851                         break;
1852                 for (i = 0; i < ret; i++)
1853                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1854         }
1855 }
1856
1857 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1858 {
1859         mutex_init(&fs_info->scrub_lock);
1860         atomic_set(&fs_info->scrubs_running, 0);
1861         atomic_set(&fs_info->scrub_pause_req, 0);
1862         atomic_set(&fs_info->scrubs_paused, 0);
1863         atomic_set(&fs_info->scrub_cancel_req, 0);
1864         init_waitqueue_head(&fs_info->scrub_pause_wait);
1865         refcount_set(&fs_info->scrub_workers_refcnt, 0);
1866 }
1867
1868 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1869 {
1870         spin_lock_init(&fs_info->balance_lock);
1871         mutex_init(&fs_info->balance_mutex);
1872         atomic_set(&fs_info->balance_pause_req, 0);
1873         atomic_set(&fs_info->balance_cancel_req, 0);
1874         fs_info->balance_ctl = NULL;
1875         init_waitqueue_head(&fs_info->balance_wait_q);
1876         atomic_set(&fs_info->reloc_cancel_req, 0);
1877 }
1878
1879 static int btrfs_init_btree_inode(struct super_block *sb)
1880 {
1881         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1882         unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1883                                               fs_info->tree_root);
1884         struct inode *inode;
1885
1886         inode = new_inode(sb);
1887         if (!inode)
1888                 return -ENOMEM;
1889
1890         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1891         set_nlink(inode, 1);
1892         /*
1893          * we set the i_size on the btree inode to the max possible int.
1894          * the real end of the address space is determined by all of
1895          * the devices in the system
1896          */
1897         inode->i_size = OFFSET_MAX;
1898         inode->i_mapping->a_ops = &btree_aops;
1899         mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1900
1901         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1902         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1903                             IO_TREE_BTREE_INODE_IO);
1904         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1905
1906         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1907         BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1908         BTRFS_I(inode)->location.type = 0;
1909         BTRFS_I(inode)->location.offset = 0;
1910         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1911         __insert_inode_hash(inode, hash);
1912         fs_info->btree_inode = inode;
1913
1914         return 0;
1915 }
1916
1917 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1918 {
1919         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1920         init_rwsem(&fs_info->dev_replace.rwsem);
1921         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1922 }
1923
1924 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1925 {
1926         spin_lock_init(&fs_info->qgroup_lock);
1927         mutex_init(&fs_info->qgroup_ioctl_lock);
1928         fs_info->qgroup_tree = RB_ROOT;
1929         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1930         fs_info->qgroup_seq = 1;
1931         fs_info->qgroup_ulist = NULL;
1932         fs_info->qgroup_rescan_running = false;
1933         fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1934         mutex_init(&fs_info->qgroup_rescan_lock);
1935 }
1936
1937 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1938 {
1939         u32 max_active = fs_info->thread_pool_size;
1940         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1941         unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1942
1943         fs_info->workers =
1944                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1945
1946         fs_info->delalloc_workers =
1947                 btrfs_alloc_workqueue(fs_info, "delalloc",
1948                                       flags, max_active, 2);
1949
1950         fs_info->flush_workers =
1951                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1952                                       flags, max_active, 0);
1953
1954         fs_info->caching_workers =
1955                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1956
1957         fs_info->fixup_workers =
1958                 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1959
1960         fs_info->endio_workers =
1961                 alloc_workqueue("btrfs-endio", flags, max_active);
1962         fs_info->endio_meta_workers =
1963                 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1964         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1965         fs_info->endio_write_workers =
1966                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1967                                       max_active, 2);
1968         fs_info->compressed_write_workers =
1969                 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1970         fs_info->endio_freespace_worker =
1971                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1972                                       max_active, 0);
1973         fs_info->delayed_workers =
1974                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1975                                       max_active, 0);
1976         fs_info->qgroup_rescan_workers =
1977                 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1978                                               ordered_flags);
1979         fs_info->discard_ctl.discard_workers =
1980                 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1981
1982         if (!(fs_info->workers &&
1983               fs_info->delalloc_workers && fs_info->flush_workers &&
1984               fs_info->endio_workers && fs_info->endio_meta_workers &&
1985               fs_info->compressed_write_workers &&
1986               fs_info->endio_write_workers &&
1987               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1988               fs_info->caching_workers && fs_info->fixup_workers &&
1989               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1990               fs_info->discard_ctl.discard_workers)) {
1991                 return -ENOMEM;
1992         }
1993
1994         return 0;
1995 }
1996
1997 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
1998 {
1999         struct crypto_shash *csum_shash;
2000         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2001
2002         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2003
2004         if (IS_ERR(csum_shash)) {
2005                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2006                           csum_driver);
2007                 return PTR_ERR(csum_shash);
2008         }
2009
2010         fs_info->csum_shash = csum_shash;
2011
2012         /*
2013          * Check if the checksum implementation is a fast accelerated one.
2014          * As-is this is a bit of a hack and should be replaced once the csum
2015          * implementations provide that information themselves.
2016          */
2017         switch (csum_type) {
2018         case BTRFS_CSUM_TYPE_CRC32:
2019                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2020                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2021                 break;
2022         case BTRFS_CSUM_TYPE_XXHASH:
2023                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2024                 break;
2025         default:
2026                 break;
2027         }
2028
2029         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2030                         btrfs_super_csum_name(csum_type),
2031                         crypto_shash_driver_name(csum_shash));
2032         return 0;
2033 }
2034
2035 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2036                             struct btrfs_fs_devices *fs_devices)
2037 {
2038         int ret;
2039         struct btrfs_tree_parent_check check = { 0 };
2040         struct btrfs_root *log_tree_root;
2041         struct btrfs_super_block *disk_super = fs_info->super_copy;
2042         u64 bytenr = btrfs_super_log_root(disk_super);
2043         int level = btrfs_super_log_root_level(disk_super);
2044
2045         if (fs_devices->rw_devices == 0) {
2046                 btrfs_warn(fs_info, "log replay required on RO media");
2047                 return -EIO;
2048         }
2049
2050         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2051                                          GFP_KERNEL);
2052         if (!log_tree_root)
2053                 return -ENOMEM;
2054
2055         check.level = level;
2056         check.transid = fs_info->generation + 1;
2057         check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2058         log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2059         if (IS_ERR(log_tree_root->node)) {
2060                 btrfs_warn(fs_info, "failed to read log tree");
2061                 ret = PTR_ERR(log_tree_root->node);
2062                 log_tree_root->node = NULL;
2063                 btrfs_put_root(log_tree_root);
2064                 return ret;
2065         }
2066         if (!extent_buffer_uptodate(log_tree_root->node)) {
2067                 btrfs_err(fs_info, "failed to read log tree");
2068                 btrfs_put_root(log_tree_root);
2069                 return -EIO;
2070         }
2071
2072         /* returns with log_tree_root freed on success */
2073         ret = btrfs_recover_log_trees(log_tree_root);
2074         if (ret) {
2075                 btrfs_handle_fs_error(fs_info, ret,
2076                                       "Failed to recover log tree");
2077                 btrfs_put_root(log_tree_root);
2078                 return ret;
2079         }
2080
2081         if (sb_rdonly(fs_info->sb)) {
2082                 ret = btrfs_commit_super(fs_info);
2083                 if (ret)
2084                         return ret;
2085         }
2086
2087         return 0;
2088 }
2089
2090 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2091                                       struct btrfs_path *path, u64 objectid,
2092                                       const char *name)
2093 {
2094         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2095         struct btrfs_root *root;
2096         u64 max_global_id = 0;
2097         int ret;
2098         struct btrfs_key key = {
2099                 .objectid = objectid,
2100                 .type = BTRFS_ROOT_ITEM_KEY,
2101                 .offset = 0,
2102         };
2103         bool found = false;
2104
2105         /* If we have IGNOREDATACSUMS skip loading these roots. */
2106         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2107             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2108                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2109                 return 0;
2110         }
2111
2112         while (1) {
2113                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2114                 if (ret < 0)
2115                         break;
2116
2117                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2118                         ret = btrfs_next_leaf(tree_root, path);
2119                         if (ret) {
2120                                 if (ret > 0)
2121                                         ret = 0;
2122                                 break;
2123                         }
2124                 }
2125                 ret = 0;
2126
2127                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2128                 if (key.objectid != objectid)
2129                         break;
2130                 btrfs_release_path(path);
2131
2132                 /*
2133                  * Just worry about this for extent tree, it'll be the same for
2134                  * everybody.
2135                  */
2136                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2137                         max_global_id = max(max_global_id, key.offset);
2138
2139                 found = true;
2140                 root = read_tree_root_path(tree_root, path, &key);
2141                 if (IS_ERR(root)) {
2142                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2143                                 ret = PTR_ERR(root);
2144                         break;
2145                 }
2146                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2147                 ret = btrfs_global_root_insert(root);
2148                 if (ret) {
2149                         btrfs_put_root(root);
2150                         break;
2151                 }
2152                 key.offset++;
2153         }
2154         btrfs_release_path(path);
2155
2156         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2157                 fs_info->nr_global_roots = max_global_id + 1;
2158
2159         if (!found || ret) {
2160                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2161                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2162
2163                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2164                         ret = ret ? ret : -ENOENT;
2165                 else
2166                         ret = 0;
2167                 btrfs_err(fs_info, "failed to load root %s", name);
2168         }
2169         return ret;
2170 }
2171
2172 static int load_global_roots(struct btrfs_root *tree_root)
2173 {
2174         struct btrfs_path *path;
2175         int ret = 0;
2176
2177         path = btrfs_alloc_path();
2178         if (!path)
2179                 return -ENOMEM;
2180
2181         ret = load_global_roots_objectid(tree_root, path,
2182                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2183         if (ret)
2184                 goto out;
2185         ret = load_global_roots_objectid(tree_root, path,
2186                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2187         if (ret)
2188                 goto out;
2189         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2190                 goto out;
2191         ret = load_global_roots_objectid(tree_root, path,
2192                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2193                                          "free space");
2194 out:
2195         btrfs_free_path(path);
2196         return ret;
2197 }
2198
2199 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2200 {
2201         struct btrfs_root *tree_root = fs_info->tree_root;
2202         struct btrfs_root *root;
2203         struct btrfs_key location;
2204         int ret;
2205
2206         BUG_ON(!fs_info->tree_root);
2207
2208         ret = load_global_roots(tree_root);
2209         if (ret)
2210                 return ret;
2211
2212         location.type = BTRFS_ROOT_ITEM_KEY;
2213         location.offset = 0;
2214
2215         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2216                 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2217                 root = btrfs_read_tree_root(tree_root, &location);
2218                 if (IS_ERR(root)) {
2219                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2220                                 ret = PTR_ERR(root);
2221                                 goto out;
2222                         }
2223                 } else {
2224                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2225                         fs_info->block_group_root = root;
2226                 }
2227         }
2228
2229         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2230         root = btrfs_read_tree_root(tree_root, &location);
2231         if (IS_ERR(root)) {
2232                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2233                         ret = PTR_ERR(root);
2234                         goto out;
2235                 }
2236         } else {
2237                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2238                 fs_info->dev_root = root;
2239         }
2240         /* Initialize fs_info for all devices in any case */
2241         ret = btrfs_init_devices_late(fs_info);
2242         if (ret)
2243                 goto out;
2244
2245         /*
2246          * This tree can share blocks with some other fs tree during relocation
2247          * and we need a proper setup by btrfs_get_fs_root
2248          */
2249         root = btrfs_get_fs_root(tree_root->fs_info,
2250                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2251         if (IS_ERR(root)) {
2252                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2253                         ret = PTR_ERR(root);
2254                         goto out;
2255                 }
2256         } else {
2257                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2258                 fs_info->data_reloc_root = root;
2259         }
2260
2261         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2262         root = btrfs_read_tree_root(tree_root, &location);
2263         if (!IS_ERR(root)) {
2264                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2265                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2266                 fs_info->quota_root = root;
2267         }
2268
2269         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2270         root = btrfs_read_tree_root(tree_root, &location);
2271         if (IS_ERR(root)) {
2272                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2273                         ret = PTR_ERR(root);
2274                         if (ret != -ENOENT)
2275                                 goto out;
2276                 }
2277         } else {
2278                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279                 fs_info->uuid_root = root;
2280         }
2281
2282         return 0;
2283 out:
2284         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2285                    location.objectid, ret);
2286         return ret;
2287 }
2288
2289 /*
2290  * Real super block validation
2291  * NOTE: super csum type and incompat features will not be checked here.
2292  *
2293  * @sb:         super block to check
2294  * @mirror_num: the super block number to check its bytenr:
2295  *              0       the primary (1st) sb
2296  *              1, 2    2nd and 3rd backup copy
2297  *             -1       skip bytenr check
2298  */
2299 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2300                          struct btrfs_super_block *sb, int mirror_num)
2301 {
2302         u64 nodesize = btrfs_super_nodesize(sb);
2303         u64 sectorsize = btrfs_super_sectorsize(sb);
2304         int ret = 0;
2305
2306         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2307                 btrfs_err(fs_info, "no valid FS found");
2308                 ret = -EINVAL;
2309         }
2310         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2311                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2312                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2313                 ret = -EINVAL;
2314         }
2315         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2316                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2317                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2318                 ret = -EINVAL;
2319         }
2320         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2321                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2322                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2323                 ret = -EINVAL;
2324         }
2325         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2326                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2327                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2328                 ret = -EINVAL;
2329         }
2330
2331         /*
2332          * Check sectorsize and nodesize first, other check will need it.
2333          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2334          */
2335         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2336             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2337                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2338                 ret = -EINVAL;
2339         }
2340
2341         /*
2342          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2343          *
2344          * We can support 16K sectorsize with 64K page size without problem,
2345          * but such sectorsize/pagesize combination doesn't make much sense.
2346          * 4K will be our future standard, PAGE_SIZE is supported from the very
2347          * beginning.
2348          */
2349         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2350                 btrfs_err(fs_info,
2351                         "sectorsize %llu not yet supported for page size %lu",
2352                         sectorsize, PAGE_SIZE);
2353                 ret = -EINVAL;
2354         }
2355
2356         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2357             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2358                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2359                 ret = -EINVAL;
2360         }
2361         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2362                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2363                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2364                 ret = -EINVAL;
2365         }
2366
2367         /* Root alignment check */
2368         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2369                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2370                            btrfs_super_root(sb));
2371                 ret = -EINVAL;
2372         }
2373         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2374                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2375                            btrfs_super_chunk_root(sb));
2376                 ret = -EINVAL;
2377         }
2378         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2379                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2380                            btrfs_super_log_root(sb));
2381                 ret = -EINVAL;
2382         }
2383
2384         if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2385                 btrfs_err(fs_info,
2386                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2387                           sb->fsid, fs_info->fs_devices->fsid);
2388                 ret = -EINVAL;
2389         }
2390
2391         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2392                    BTRFS_FSID_SIZE) != 0) {
2393                 btrfs_err(fs_info,
2394 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2395                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2396                 ret = -EINVAL;
2397         }
2398
2399         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2400                    BTRFS_FSID_SIZE) != 0) {
2401                 btrfs_err(fs_info,
2402                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2403                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2404                 ret = -EINVAL;
2405         }
2406
2407         /*
2408          * Artificial requirement for block-group-tree to force newer features
2409          * (free-space-tree, no-holes) so the test matrix is smaller.
2410          */
2411         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2412             (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2413              !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2414                 btrfs_err(fs_info,
2415                 "block-group-tree feature requires fres-space-tree and no-holes");
2416                 ret = -EINVAL;
2417         }
2418
2419         /*
2420          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2421          * done later
2422          */
2423         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2424                 btrfs_err(fs_info, "bytes_used is too small %llu",
2425                           btrfs_super_bytes_used(sb));
2426                 ret = -EINVAL;
2427         }
2428         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2429                 btrfs_err(fs_info, "invalid stripesize %u",
2430                           btrfs_super_stripesize(sb));
2431                 ret = -EINVAL;
2432         }
2433         if (btrfs_super_num_devices(sb) > (1UL << 31))
2434                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2435                            btrfs_super_num_devices(sb));
2436         if (btrfs_super_num_devices(sb) == 0) {
2437                 btrfs_err(fs_info, "number of devices is 0");
2438                 ret = -EINVAL;
2439         }
2440
2441         if (mirror_num >= 0 &&
2442             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2443                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2444                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2445                 ret = -EINVAL;
2446         }
2447
2448         /*
2449          * Obvious sys_chunk_array corruptions, it must hold at least one key
2450          * and one chunk
2451          */
2452         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2453                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2454                           btrfs_super_sys_array_size(sb),
2455                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2456                 ret = -EINVAL;
2457         }
2458         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2459                         + sizeof(struct btrfs_chunk)) {
2460                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2461                           btrfs_super_sys_array_size(sb),
2462                           sizeof(struct btrfs_disk_key)
2463                           + sizeof(struct btrfs_chunk));
2464                 ret = -EINVAL;
2465         }
2466
2467         /*
2468          * The generation is a global counter, we'll trust it more than the others
2469          * but it's still possible that it's the one that's wrong.
2470          */
2471         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2472                 btrfs_warn(fs_info,
2473                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2474                         btrfs_super_generation(sb),
2475                         btrfs_super_chunk_root_generation(sb));
2476         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2477             && btrfs_super_cache_generation(sb) != (u64)-1)
2478                 btrfs_warn(fs_info,
2479                         "suspicious: generation < cache_generation: %llu < %llu",
2480                         btrfs_super_generation(sb),
2481                         btrfs_super_cache_generation(sb));
2482
2483         return ret;
2484 }
2485
2486 /*
2487  * Validation of super block at mount time.
2488  * Some checks already done early at mount time, like csum type and incompat
2489  * flags will be skipped.
2490  */
2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2492 {
2493         return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2494 }
2495
2496 /*
2497  * Validation of super block at write time.
2498  * Some checks like bytenr check will be skipped as their values will be
2499  * overwritten soon.
2500  * Extra checks like csum type and incompat flags will be done here.
2501  */
2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2503                                       struct btrfs_super_block *sb)
2504 {
2505         int ret;
2506
2507         ret = btrfs_validate_super(fs_info, sb, -1);
2508         if (ret < 0)
2509                 goto out;
2510         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2511                 ret = -EUCLEAN;
2512                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2513                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2514                 goto out;
2515         }
2516         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2517                 ret = -EUCLEAN;
2518                 btrfs_err(fs_info,
2519                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2520                           btrfs_super_incompat_flags(sb),
2521                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2522                 goto out;
2523         }
2524 out:
2525         if (ret < 0)
2526                 btrfs_err(fs_info,
2527                 "super block corruption detected before writing it to disk");
2528         return ret;
2529 }
2530
2531 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2532 {
2533         struct btrfs_tree_parent_check check = {
2534                 .level = level,
2535                 .transid = gen,
2536                 .owner_root = root->root_key.objectid
2537         };
2538         int ret = 0;
2539
2540         root->node = read_tree_block(root->fs_info, bytenr, &check);
2541         if (IS_ERR(root->node)) {
2542                 ret = PTR_ERR(root->node);
2543                 root->node = NULL;
2544                 return ret;
2545         }
2546         if (!extent_buffer_uptodate(root->node)) {
2547                 free_extent_buffer(root->node);
2548                 root->node = NULL;
2549                 return -EIO;
2550         }
2551
2552         btrfs_set_root_node(&root->root_item, root->node);
2553         root->commit_root = btrfs_root_node(root);
2554         btrfs_set_root_refs(&root->root_item, 1);
2555         return ret;
2556 }
2557
2558 static int load_important_roots(struct btrfs_fs_info *fs_info)
2559 {
2560         struct btrfs_super_block *sb = fs_info->super_copy;
2561         u64 gen, bytenr;
2562         int level, ret;
2563
2564         bytenr = btrfs_super_root(sb);
2565         gen = btrfs_super_generation(sb);
2566         level = btrfs_super_root_level(sb);
2567         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2568         if (ret) {
2569                 btrfs_warn(fs_info, "couldn't read tree root");
2570                 return ret;
2571         }
2572         return 0;
2573 }
2574
2575 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2576 {
2577         int backup_index = find_newest_super_backup(fs_info);
2578         struct btrfs_super_block *sb = fs_info->super_copy;
2579         struct btrfs_root *tree_root = fs_info->tree_root;
2580         bool handle_error = false;
2581         int ret = 0;
2582         int i;
2583
2584         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2585                 if (handle_error) {
2586                         if (!IS_ERR(tree_root->node))
2587                                 free_extent_buffer(tree_root->node);
2588                         tree_root->node = NULL;
2589
2590                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2591                                 break;
2592
2593                         free_root_pointers(fs_info, 0);
2594
2595                         /*
2596                          * Don't use the log in recovery mode, it won't be
2597                          * valid
2598                          */
2599                         btrfs_set_super_log_root(sb, 0);
2600
2601                         /* We can't trust the free space cache either */
2602                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2603
2604                         btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2605                         ret = read_backup_root(fs_info, i);
2606                         backup_index = ret;
2607                         if (ret < 0)
2608                                 return ret;
2609                 }
2610
2611                 ret = load_important_roots(fs_info);
2612                 if (ret) {
2613                         handle_error = true;
2614                         continue;
2615                 }
2616
2617                 /*
2618                  * No need to hold btrfs_root::objectid_mutex since the fs
2619                  * hasn't been fully initialised and we are the only user
2620                  */
2621                 ret = btrfs_init_root_free_objectid(tree_root);
2622                 if (ret < 0) {
2623                         handle_error = true;
2624                         continue;
2625                 }
2626
2627                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2628
2629                 ret = btrfs_read_roots(fs_info);
2630                 if (ret < 0) {
2631                         handle_error = true;
2632                         continue;
2633                 }
2634
2635                 /* All successful */
2636                 fs_info->generation = btrfs_header_generation(tree_root->node);
2637                 fs_info->last_trans_committed = fs_info->generation;
2638                 fs_info->last_reloc_trans = 0;
2639
2640                 /* Always begin writing backup roots after the one being used */
2641                 if (backup_index < 0) {
2642                         fs_info->backup_root_index = 0;
2643                 } else {
2644                         fs_info->backup_root_index = backup_index + 1;
2645                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2646                 }
2647                 break;
2648         }
2649
2650         return ret;
2651 }
2652
2653 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2654 {
2655         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657         INIT_LIST_HEAD(&fs_info->trans_list);
2658         INIT_LIST_HEAD(&fs_info->dead_roots);
2659         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662         spin_lock_init(&fs_info->delalloc_root_lock);
2663         spin_lock_init(&fs_info->trans_lock);
2664         spin_lock_init(&fs_info->fs_roots_radix_lock);
2665         spin_lock_init(&fs_info->delayed_iput_lock);
2666         spin_lock_init(&fs_info->defrag_inodes_lock);
2667         spin_lock_init(&fs_info->super_lock);
2668         spin_lock_init(&fs_info->buffer_lock);
2669         spin_lock_init(&fs_info->unused_bgs_lock);
2670         spin_lock_init(&fs_info->treelog_bg_lock);
2671         spin_lock_init(&fs_info->zone_active_bgs_lock);
2672         spin_lock_init(&fs_info->relocation_bg_lock);
2673         rwlock_init(&fs_info->tree_mod_log_lock);
2674         rwlock_init(&fs_info->global_root_lock);
2675         mutex_init(&fs_info->unused_bg_unpin_mutex);
2676         mutex_init(&fs_info->reclaim_bgs_lock);
2677         mutex_init(&fs_info->reloc_mutex);
2678         mutex_init(&fs_info->delalloc_root_mutex);
2679         mutex_init(&fs_info->zoned_meta_io_lock);
2680         mutex_init(&fs_info->zoned_data_reloc_io_lock);
2681         seqlock_init(&fs_info->profiles_lock);
2682
2683         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2684         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2685         btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2686         btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2687         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2688                                      BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2689         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2690                                      BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2691         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2692                                      BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2693         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2694                                      BTRFS_LOCKDEP_TRANS_COMPLETED);
2695
2696         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2697         INIT_LIST_HEAD(&fs_info->space_info);
2698         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2699         INIT_LIST_HEAD(&fs_info->unused_bgs);
2700         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2701         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2702 #ifdef CONFIG_BTRFS_DEBUG
2703         INIT_LIST_HEAD(&fs_info->allocated_roots);
2704         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2705         spin_lock_init(&fs_info->eb_leak_lock);
2706 #endif
2707         extent_map_tree_init(&fs_info->mapping_tree);
2708         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2709                              BTRFS_BLOCK_RSV_GLOBAL);
2710         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2711         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2712         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2713         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2714                              BTRFS_BLOCK_RSV_DELOPS);
2715         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2716                              BTRFS_BLOCK_RSV_DELREFS);
2717
2718         atomic_set(&fs_info->async_delalloc_pages, 0);
2719         atomic_set(&fs_info->defrag_running, 0);
2720         atomic_set(&fs_info->nr_delayed_iputs, 0);
2721         atomic64_set(&fs_info->tree_mod_seq, 0);
2722         fs_info->global_root_tree = RB_ROOT;
2723         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2724         fs_info->metadata_ratio = 0;
2725         fs_info->defrag_inodes = RB_ROOT;
2726         atomic64_set(&fs_info->free_chunk_space, 0);
2727         fs_info->tree_mod_log = RB_ROOT;
2728         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2729         btrfs_init_ref_verify(fs_info);
2730
2731         fs_info->thread_pool_size = min_t(unsigned long,
2732                                           num_online_cpus() + 2, 8);
2733
2734         INIT_LIST_HEAD(&fs_info->ordered_roots);
2735         spin_lock_init(&fs_info->ordered_root_lock);
2736
2737         btrfs_init_scrub(fs_info);
2738 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2739         fs_info->check_integrity_print_mask = 0;
2740 #endif
2741         btrfs_init_balance(fs_info);
2742         btrfs_init_async_reclaim_work(fs_info);
2743
2744         rwlock_init(&fs_info->block_group_cache_lock);
2745         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2746
2747         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2748                             IO_TREE_FS_EXCLUDED_EXTENTS);
2749
2750         mutex_init(&fs_info->ordered_operations_mutex);
2751         mutex_init(&fs_info->tree_log_mutex);
2752         mutex_init(&fs_info->chunk_mutex);
2753         mutex_init(&fs_info->transaction_kthread_mutex);
2754         mutex_init(&fs_info->cleaner_mutex);
2755         mutex_init(&fs_info->ro_block_group_mutex);
2756         init_rwsem(&fs_info->commit_root_sem);
2757         init_rwsem(&fs_info->cleanup_work_sem);
2758         init_rwsem(&fs_info->subvol_sem);
2759         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2760
2761         btrfs_init_dev_replace_locks(fs_info);
2762         btrfs_init_qgroup(fs_info);
2763         btrfs_discard_init(fs_info);
2764
2765         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2766         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2767
2768         init_waitqueue_head(&fs_info->transaction_throttle);
2769         init_waitqueue_head(&fs_info->transaction_wait);
2770         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2771         init_waitqueue_head(&fs_info->async_submit_wait);
2772         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2773
2774         /* Usable values until the real ones are cached from the superblock */
2775         fs_info->nodesize = 4096;
2776         fs_info->sectorsize = 4096;
2777         fs_info->sectorsize_bits = ilog2(4096);
2778         fs_info->stripesize = 4096;
2779
2780         fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2781
2782         spin_lock_init(&fs_info->swapfile_pins_lock);
2783         fs_info->swapfile_pins = RB_ROOT;
2784
2785         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2786         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2787 }
2788
2789 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2790 {
2791         int ret;
2792
2793         fs_info->sb = sb;
2794         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2795         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2796
2797         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2798         if (ret)
2799                 return ret;
2800
2801         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2802         if (ret)
2803                 return ret;
2804
2805         fs_info->dirty_metadata_batch = PAGE_SIZE *
2806                                         (1 + ilog2(nr_cpu_ids));
2807
2808         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2809         if (ret)
2810                 return ret;
2811
2812         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2813                         GFP_KERNEL);
2814         if (ret)
2815                 return ret;
2816
2817         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2818                                         GFP_KERNEL);
2819         if (!fs_info->delayed_root)
2820                 return -ENOMEM;
2821         btrfs_init_delayed_root(fs_info->delayed_root);
2822
2823         if (sb_rdonly(sb))
2824                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2825
2826         return btrfs_alloc_stripe_hash_table(fs_info);
2827 }
2828
2829 static int btrfs_uuid_rescan_kthread(void *data)
2830 {
2831         struct btrfs_fs_info *fs_info = data;
2832         int ret;
2833
2834         /*
2835          * 1st step is to iterate through the existing UUID tree and
2836          * to delete all entries that contain outdated data.
2837          * 2nd step is to add all missing entries to the UUID tree.
2838          */
2839         ret = btrfs_uuid_tree_iterate(fs_info);
2840         if (ret < 0) {
2841                 if (ret != -EINTR)
2842                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2843                                    ret);
2844                 up(&fs_info->uuid_tree_rescan_sem);
2845                 return ret;
2846         }
2847         return btrfs_uuid_scan_kthread(data);
2848 }
2849
2850 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2851 {
2852         struct task_struct *task;
2853
2854         down(&fs_info->uuid_tree_rescan_sem);
2855         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2856         if (IS_ERR(task)) {
2857                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2858                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2859                 up(&fs_info->uuid_tree_rescan_sem);
2860                 return PTR_ERR(task);
2861         }
2862
2863         return 0;
2864 }
2865
2866 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2867 {
2868         u64 root_objectid = 0;
2869         struct btrfs_root *gang[8];
2870         int i = 0;
2871         int err = 0;
2872         unsigned int ret = 0;
2873
2874         while (1) {
2875                 spin_lock(&fs_info->fs_roots_radix_lock);
2876                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2877                                              (void **)gang, root_objectid,
2878                                              ARRAY_SIZE(gang));
2879                 if (!ret) {
2880                         spin_unlock(&fs_info->fs_roots_radix_lock);
2881                         break;
2882                 }
2883                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2884
2885                 for (i = 0; i < ret; i++) {
2886                         /* Avoid to grab roots in dead_roots. */
2887                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2888                                 gang[i] = NULL;
2889                                 continue;
2890                         }
2891                         /* Grab all the search result for later use. */
2892                         gang[i] = btrfs_grab_root(gang[i]);
2893                 }
2894                 spin_unlock(&fs_info->fs_roots_radix_lock);
2895
2896                 for (i = 0; i < ret; i++) {
2897                         if (!gang[i])
2898                                 continue;
2899                         root_objectid = gang[i]->root_key.objectid;
2900                         err = btrfs_orphan_cleanup(gang[i]);
2901                         if (err)
2902                                 goto out;
2903                         btrfs_put_root(gang[i]);
2904                 }
2905                 root_objectid++;
2906         }
2907 out:
2908         /* Release the uncleaned roots due to error. */
2909         for (; i < ret; i++) {
2910                 if (gang[i])
2911                         btrfs_put_root(gang[i]);
2912         }
2913         return err;
2914 }
2915
2916 /*
2917  * Some options only have meaning at mount time and shouldn't persist across
2918  * remounts, or be displayed. Clear these at the end of mount and remount
2919  * code paths.
2920  */
2921 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2922 {
2923         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2924         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2925 }
2926
2927 /*
2928  * Mounting logic specific to read-write file systems. Shared by open_ctree
2929  * and btrfs_remount when remounting from read-only to read-write.
2930  */
2931 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2932 {
2933         int ret;
2934         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2935         bool rebuild_free_space_tree = false;
2936
2937         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2938             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2939                 rebuild_free_space_tree = true;
2940         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2941                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2942                 btrfs_warn(fs_info, "free space tree is invalid");
2943                 rebuild_free_space_tree = true;
2944         }
2945
2946         if (rebuild_free_space_tree) {
2947                 btrfs_info(fs_info, "rebuilding free space tree");
2948                 ret = btrfs_rebuild_free_space_tree(fs_info);
2949                 if (ret) {
2950                         btrfs_warn(fs_info,
2951                                    "failed to rebuild free space tree: %d", ret);
2952                         goto out;
2953                 }
2954         }
2955
2956         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2957             !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2958                 btrfs_info(fs_info, "disabling free space tree");
2959                 ret = btrfs_delete_free_space_tree(fs_info);
2960                 if (ret) {
2961                         btrfs_warn(fs_info,
2962                                    "failed to disable free space tree: %d", ret);
2963                         goto out;
2964                 }
2965         }
2966
2967         /*
2968          * btrfs_find_orphan_roots() is responsible for finding all the dead
2969          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2970          * them into the fs_info->fs_roots_radix tree. This must be done before
2971          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2972          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2973          * item before the root's tree is deleted - this means that if we unmount
2974          * or crash before the deletion completes, on the next mount we will not
2975          * delete what remains of the tree because the orphan item does not
2976          * exists anymore, which is what tells us we have a pending deletion.
2977          */
2978         ret = btrfs_find_orphan_roots(fs_info);
2979         if (ret)
2980                 goto out;
2981
2982         ret = btrfs_cleanup_fs_roots(fs_info);
2983         if (ret)
2984                 goto out;
2985
2986         down_read(&fs_info->cleanup_work_sem);
2987         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2988             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2989                 up_read(&fs_info->cleanup_work_sem);
2990                 goto out;
2991         }
2992         up_read(&fs_info->cleanup_work_sem);
2993
2994         mutex_lock(&fs_info->cleaner_mutex);
2995         ret = btrfs_recover_relocation(fs_info);
2996         mutex_unlock(&fs_info->cleaner_mutex);
2997         if (ret < 0) {
2998                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2999                 goto out;
3000         }
3001
3002         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3003             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3004                 btrfs_info(fs_info, "creating free space tree");
3005                 ret = btrfs_create_free_space_tree(fs_info);
3006                 if (ret) {
3007                         btrfs_warn(fs_info,
3008                                 "failed to create free space tree: %d", ret);
3009                         goto out;
3010                 }
3011         }
3012
3013         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3014                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3015                 if (ret)
3016                         goto out;
3017         }
3018
3019         ret = btrfs_resume_balance_async(fs_info);
3020         if (ret)
3021                 goto out;
3022
3023         ret = btrfs_resume_dev_replace_async(fs_info);
3024         if (ret) {
3025                 btrfs_warn(fs_info, "failed to resume dev_replace");
3026                 goto out;
3027         }
3028
3029         btrfs_qgroup_rescan_resume(fs_info);
3030
3031         if (!fs_info->uuid_root) {
3032                 btrfs_info(fs_info, "creating UUID tree");
3033                 ret = btrfs_create_uuid_tree(fs_info);
3034                 if (ret) {
3035                         btrfs_warn(fs_info,
3036                                    "failed to create the UUID tree %d", ret);
3037                         goto out;
3038                 }
3039         }
3040
3041 out:
3042         return ret;
3043 }
3044
3045 /*
3046  * Do various sanity and dependency checks of different features.
3047  *
3048  * @is_rw_mount:        If the mount is read-write.
3049  *
3050  * This is the place for less strict checks (like for subpage or artificial
3051  * feature dependencies).
3052  *
3053  * For strict checks or possible corruption detection, see
3054  * btrfs_validate_super().
3055  *
3056  * This should be called after btrfs_parse_options(), as some mount options
3057  * (space cache related) can modify on-disk format like free space tree and
3058  * screw up certain feature dependencies.
3059  */
3060 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3061 {
3062         struct btrfs_super_block *disk_super = fs_info->super_copy;
3063         u64 incompat = btrfs_super_incompat_flags(disk_super);
3064         const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3065         const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3066
3067         if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3068                 btrfs_err(fs_info,
3069                 "cannot mount because of unknown incompat features (0x%llx)",
3070                     incompat);
3071                 return -EINVAL;
3072         }
3073
3074         /* Runtime limitation for mixed block groups. */
3075         if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3076             (fs_info->sectorsize != fs_info->nodesize)) {
3077                 btrfs_err(fs_info,
3078 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3079                         fs_info->nodesize, fs_info->sectorsize);
3080                 return -EINVAL;
3081         }
3082
3083         /* Mixed backref is an always-enabled feature. */
3084         incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3085
3086         /* Set compression related flags just in case. */
3087         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3088                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3089         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3090                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3091
3092         /*
3093          * An ancient flag, which should really be marked deprecated.
3094          * Such runtime limitation doesn't really need a incompat flag.
3095          */
3096         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3097                 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3098
3099         if (compat_ro_unsupp && is_rw_mount) {
3100                 btrfs_err(fs_info,
3101         "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3102                        compat_ro);
3103                 return -EINVAL;
3104         }
3105
3106         /*
3107          * We have unsupported RO compat features, although RO mounted, we
3108          * should not cause any metadata writes, including log replay.
3109          * Or we could screw up whatever the new feature requires.
3110          */
3111         if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3112             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3113                 btrfs_err(fs_info,
3114 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3115                           compat_ro);
3116                 return -EINVAL;
3117         }
3118
3119         /*
3120          * Artificial limitations for block group tree, to force
3121          * block-group-tree to rely on no-holes and free-space-tree.
3122          */
3123         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3124             (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3125              !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3126                 btrfs_err(fs_info,
3127 "block-group-tree feature requires no-holes and free-space-tree features");
3128                 return -EINVAL;
3129         }
3130
3131         /*
3132          * Subpage runtime limitation on v1 cache.
3133          *
3134          * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3135          * we're already defaulting to v2 cache, no need to bother v1 as it's
3136          * going to be deprecated anyway.
3137          */
3138         if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3139                 btrfs_warn(fs_info,
3140         "v1 space cache is not supported for page size %lu with sectorsize %u",
3141                            PAGE_SIZE, fs_info->sectorsize);
3142                 return -EINVAL;
3143         }
3144
3145         /* This can be called by remount, we need to protect the super block. */
3146         spin_lock(&fs_info->super_lock);
3147         btrfs_set_super_incompat_flags(disk_super, incompat);
3148         spin_unlock(&fs_info->super_lock);
3149
3150         return 0;
3151 }
3152
3153 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3154                       char *options)
3155 {
3156         u32 sectorsize;
3157         u32 nodesize;
3158         u32 stripesize;
3159         u64 generation;
3160         u64 features;
3161         u16 csum_type;
3162         struct btrfs_super_block *disk_super;
3163         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3164         struct btrfs_root *tree_root;
3165         struct btrfs_root *chunk_root;
3166         int ret;
3167         int level;
3168
3169         ret = init_mount_fs_info(fs_info, sb);
3170         if (ret)
3171                 goto fail;
3172
3173         /* These need to be init'ed before we start creating inodes and such. */
3174         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3175                                      GFP_KERNEL);
3176         fs_info->tree_root = tree_root;
3177         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3178                                       GFP_KERNEL);
3179         fs_info->chunk_root = chunk_root;
3180         if (!tree_root || !chunk_root) {
3181                 ret = -ENOMEM;
3182                 goto fail;
3183         }
3184
3185         ret = btrfs_init_btree_inode(sb);
3186         if (ret)
3187                 goto fail;
3188
3189         invalidate_bdev(fs_devices->latest_dev->bdev);
3190
3191         /*
3192          * Read super block and check the signature bytes only
3193          */
3194         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3195         if (IS_ERR(disk_super)) {
3196                 ret = PTR_ERR(disk_super);
3197                 goto fail_alloc;
3198         }
3199
3200         /*
3201          * Verify the type first, if that or the checksum value are
3202          * corrupted, we'll find out
3203          */
3204         csum_type = btrfs_super_csum_type(disk_super);
3205         if (!btrfs_supported_super_csum(csum_type)) {
3206                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3207                           csum_type);
3208                 ret = -EINVAL;
3209                 btrfs_release_disk_super(disk_super);
3210                 goto fail_alloc;
3211         }
3212
3213         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3214
3215         ret = btrfs_init_csum_hash(fs_info, csum_type);
3216         if (ret) {
3217                 btrfs_release_disk_super(disk_super);
3218                 goto fail_alloc;
3219         }
3220
3221         /*
3222          * We want to check superblock checksum, the type is stored inside.
3223          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3224          */
3225         if (btrfs_check_super_csum(fs_info, disk_super)) {
3226                 btrfs_err(fs_info, "superblock checksum mismatch");
3227                 ret = -EINVAL;
3228                 btrfs_release_disk_super(disk_super);
3229                 goto fail_alloc;
3230         }
3231
3232         /*
3233          * super_copy is zeroed at allocation time and we never touch the
3234          * following bytes up to INFO_SIZE, the checksum is calculated from
3235          * the whole block of INFO_SIZE
3236          */
3237         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3238         btrfs_release_disk_super(disk_super);
3239
3240         disk_super = fs_info->super_copy;
3241
3242
3243         features = btrfs_super_flags(disk_super);
3244         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3245                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3246                 btrfs_set_super_flags(disk_super, features);
3247                 btrfs_info(fs_info,
3248                         "found metadata UUID change in progress flag, clearing");
3249         }
3250
3251         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3252                sizeof(*fs_info->super_for_commit));
3253
3254         ret = btrfs_validate_mount_super(fs_info);
3255         if (ret) {
3256                 btrfs_err(fs_info, "superblock contains fatal errors");
3257                 ret = -EINVAL;
3258                 goto fail_alloc;
3259         }
3260
3261         if (!btrfs_super_root(disk_super)) {
3262                 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3263                 ret = -EINVAL;
3264                 goto fail_alloc;
3265         }
3266
3267         /* check FS state, whether FS is broken. */
3268         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3269                 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3270
3271         /*
3272          * In the long term, we'll store the compression type in the super
3273          * block, and it'll be used for per file compression control.
3274          */
3275         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3276
3277
3278         /* Set up fs_info before parsing mount options */
3279         nodesize = btrfs_super_nodesize(disk_super);
3280         sectorsize = btrfs_super_sectorsize(disk_super);
3281         stripesize = sectorsize;
3282         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3283         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3284
3285         fs_info->nodesize = nodesize;
3286         fs_info->sectorsize = sectorsize;
3287         fs_info->sectorsize_bits = ilog2(sectorsize);
3288         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3289         fs_info->stripesize = stripesize;
3290
3291         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3292         if (ret)
3293                 goto fail_alloc;
3294
3295         ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3296         if (ret < 0)
3297                 goto fail_alloc;
3298
3299         if (sectorsize < PAGE_SIZE) {
3300                 struct btrfs_subpage_info *subpage_info;
3301
3302                 /*
3303                  * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3304                  * going to be deprecated.
3305                  *
3306                  * Force to use v2 cache for subpage case.
3307                  */
3308                 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3309                 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3310                         "forcing free space tree for sector size %u with page size %lu",
3311                         sectorsize, PAGE_SIZE);
3312
3313                 btrfs_warn(fs_info,
3314                 "read-write for sector size %u with page size %lu is experimental",
3315                            sectorsize, PAGE_SIZE);
3316                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3317                 if (!subpage_info) {
3318                         ret = -ENOMEM;
3319                         goto fail_alloc;
3320                 }
3321                 btrfs_init_subpage_info(subpage_info, sectorsize);
3322                 fs_info->subpage_info = subpage_info;
3323         }
3324
3325         ret = btrfs_init_workqueues(fs_info);
3326         if (ret)
3327                 goto fail_sb_buffer;
3328
3329         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3330         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3331
3332         sb->s_blocksize = sectorsize;
3333         sb->s_blocksize_bits = blksize_bits(sectorsize);
3334         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3335
3336         mutex_lock(&fs_info->chunk_mutex);
3337         ret = btrfs_read_sys_array(fs_info);
3338         mutex_unlock(&fs_info->chunk_mutex);
3339         if (ret) {
3340                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3341                 goto fail_sb_buffer;
3342         }
3343
3344         generation = btrfs_super_chunk_root_generation(disk_super);
3345         level = btrfs_super_chunk_root_level(disk_super);
3346         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3347                               generation, level);
3348         if (ret) {
3349                 btrfs_err(fs_info, "failed to read chunk root");
3350                 goto fail_tree_roots;
3351         }
3352
3353         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3354                            offsetof(struct btrfs_header, chunk_tree_uuid),
3355                            BTRFS_UUID_SIZE);
3356
3357         ret = btrfs_read_chunk_tree(fs_info);
3358         if (ret) {
3359                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3360                 goto fail_tree_roots;
3361         }
3362
3363         /*
3364          * At this point we know all the devices that make this filesystem,
3365          * including the seed devices but we don't know yet if the replace
3366          * target is required. So free devices that are not part of this
3367          * filesystem but skip the replace target device which is checked
3368          * below in btrfs_init_dev_replace().
3369          */
3370         btrfs_free_extra_devids(fs_devices);
3371         if (!fs_devices->latest_dev->bdev) {
3372                 btrfs_err(fs_info, "failed to read devices");
3373                 ret = -EIO;
3374                 goto fail_tree_roots;
3375         }
3376
3377         ret = init_tree_roots(fs_info);
3378         if (ret)
3379                 goto fail_tree_roots;
3380
3381         /*
3382          * Get zone type information of zoned block devices. This will also
3383          * handle emulation of a zoned filesystem if a regular device has the
3384          * zoned incompat feature flag set.
3385          */
3386         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3387         if (ret) {
3388                 btrfs_err(fs_info,
3389                           "zoned: failed to read device zone info: %d", ret);
3390                 goto fail_block_groups;
3391         }
3392
3393         /*
3394          * If we have a uuid root and we're not being told to rescan we need to
3395          * check the generation here so we can set the
3396          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3397          * transaction during a balance or the log replay without updating the
3398          * uuid generation, and then if we crash we would rescan the uuid tree,
3399          * even though it was perfectly fine.
3400          */
3401         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3402             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3403                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3404
3405         ret = btrfs_verify_dev_extents(fs_info);
3406         if (ret) {
3407                 btrfs_err(fs_info,
3408                           "failed to verify dev extents against chunks: %d",
3409                           ret);
3410                 goto fail_block_groups;
3411         }
3412         ret = btrfs_recover_balance(fs_info);
3413         if (ret) {
3414                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3415                 goto fail_block_groups;
3416         }
3417
3418         ret = btrfs_init_dev_stats(fs_info);
3419         if (ret) {
3420                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3421                 goto fail_block_groups;
3422         }
3423
3424         ret = btrfs_init_dev_replace(fs_info);
3425         if (ret) {
3426                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3427                 goto fail_block_groups;
3428         }
3429
3430         ret = btrfs_check_zoned_mode(fs_info);
3431         if (ret) {
3432                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3433                           ret);
3434                 goto fail_block_groups;
3435         }
3436
3437         ret = btrfs_sysfs_add_fsid(fs_devices);
3438         if (ret) {
3439                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3440                                 ret);
3441                 goto fail_block_groups;
3442         }
3443
3444         ret = btrfs_sysfs_add_mounted(fs_info);
3445         if (ret) {
3446                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3447                 goto fail_fsdev_sysfs;
3448         }
3449
3450         ret = btrfs_init_space_info(fs_info);
3451         if (ret) {
3452                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3453                 goto fail_sysfs;
3454         }
3455
3456         ret = btrfs_read_block_groups(fs_info);
3457         if (ret) {
3458                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3459                 goto fail_sysfs;
3460         }
3461
3462         btrfs_free_zone_cache(fs_info);
3463
3464         btrfs_check_active_zone_reservation(fs_info);
3465
3466         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3467             !btrfs_check_rw_degradable(fs_info, NULL)) {
3468                 btrfs_warn(fs_info,
3469                 "writable mount is not allowed due to too many missing devices");
3470                 ret = -EINVAL;
3471                 goto fail_sysfs;
3472         }
3473
3474         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3475                                                "btrfs-cleaner");
3476         if (IS_ERR(fs_info->cleaner_kthread)) {
3477                 ret = PTR_ERR(fs_info->cleaner_kthread);
3478                 goto fail_sysfs;
3479         }
3480
3481         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3482                                                    tree_root,
3483                                                    "btrfs-transaction");
3484         if (IS_ERR(fs_info->transaction_kthread)) {
3485                 ret = PTR_ERR(fs_info->transaction_kthread);
3486                 goto fail_cleaner;
3487         }
3488
3489         if (!btrfs_test_opt(fs_info, NOSSD) &&
3490             !fs_info->fs_devices->rotating) {
3491                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3492         }
3493
3494         /*
3495          * For devices supporting discard turn on discard=async automatically,
3496          * unless it's already set or disabled. This could be turned off by
3497          * nodiscard for the same mount.
3498          *
3499          * The zoned mode piggy backs on the discard functionality for
3500          * resetting a zone. There is no reason to delay the zone reset as it is
3501          * fast enough. So, do not enable async discard for zoned mode.
3502          */
3503         if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3504               btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3505               btrfs_test_opt(fs_info, NODISCARD)) &&
3506             fs_info->fs_devices->discardable &&
3507             !btrfs_is_zoned(fs_info)) {
3508                 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3509                                    "auto enabling async discard");
3510         }
3511
3512 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3513         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3514                 ret = btrfsic_mount(fs_info, fs_devices,
3515                                     btrfs_test_opt(fs_info,
3516                                         CHECK_INTEGRITY_DATA) ? 1 : 0,
3517                                     fs_info->check_integrity_print_mask);
3518                 if (ret)
3519                         btrfs_warn(fs_info,
3520                                 "failed to initialize integrity check module: %d",
3521                                 ret);
3522         }
3523 #endif
3524         ret = btrfs_read_qgroup_config(fs_info);
3525         if (ret)
3526                 goto fail_trans_kthread;
3527
3528         if (btrfs_build_ref_tree(fs_info))
3529                 btrfs_err(fs_info, "couldn't build ref tree");
3530
3531         /* do not make disk changes in broken FS or nologreplay is given */
3532         if (btrfs_super_log_root(disk_super) != 0 &&
3533             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3534                 btrfs_info(fs_info, "start tree-log replay");
3535                 ret = btrfs_replay_log(fs_info, fs_devices);
3536                 if (ret)
3537                         goto fail_qgroup;
3538         }
3539
3540         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3541         if (IS_ERR(fs_info->fs_root)) {
3542                 ret = PTR_ERR(fs_info->fs_root);
3543                 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3544                 fs_info->fs_root = NULL;
3545                 goto fail_qgroup;
3546         }
3547
3548         if (sb_rdonly(sb))
3549                 goto clear_oneshot;
3550
3551         ret = btrfs_start_pre_rw_mount(fs_info);
3552         if (ret) {
3553                 close_ctree(fs_info);
3554                 return ret;
3555         }
3556         btrfs_discard_resume(fs_info);
3557
3558         if (fs_info->uuid_root &&
3559             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3560              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3561                 btrfs_info(fs_info, "checking UUID tree");
3562                 ret = btrfs_check_uuid_tree(fs_info);
3563                 if (ret) {
3564                         btrfs_warn(fs_info,
3565                                 "failed to check the UUID tree: %d", ret);
3566                         close_ctree(fs_info);
3567                         return ret;
3568                 }
3569         }
3570
3571         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3572
3573         /* Kick the cleaner thread so it'll start deleting snapshots. */
3574         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3575                 wake_up_process(fs_info->cleaner_kthread);
3576
3577 clear_oneshot:
3578         btrfs_clear_oneshot_options(fs_info);
3579         return 0;
3580
3581 fail_qgroup:
3582         btrfs_free_qgroup_config(fs_info);
3583 fail_trans_kthread:
3584         kthread_stop(fs_info->transaction_kthread);
3585         btrfs_cleanup_transaction(fs_info);
3586         btrfs_free_fs_roots(fs_info);
3587 fail_cleaner:
3588         kthread_stop(fs_info->cleaner_kthread);
3589
3590         /*
3591          * make sure we're done with the btree inode before we stop our
3592          * kthreads
3593          */
3594         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3595
3596 fail_sysfs:
3597         btrfs_sysfs_remove_mounted(fs_info);
3598
3599 fail_fsdev_sysfs:
3600         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3601
3602 fail_block_groups:
3603         btrfs_put_block_group_cache(fs_info);
3604
3605 fail_tree_roots:
3606         if (fs_info->data_reloc_root)
3607                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3608         free_root_pointers(fs_info, true);
3609         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3610
3611 fail_sb_buffer:
3612         btrfs_stop_all_workers(fs_info);
3613         btrfs_free_block_groups(fs_info);
3614 fail_alloc:
3615         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3616
3617         iput(fs_info->btree_inode);
3618 fail:
3619         btrfs_close_devices(fs_info->fs_devices);
3620         ASSERT(ret < 0);
3621         return ret;
3622 }
3623 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3624
3625 static void btrfs_end_super_write(struct bio *bio)
3626 {
3627         struct btrfs_device *device = bio->bi_private;
3628         struct bio_vec *bvec;
3629         struct bvec_iter_all iter_all;
3630         struct page *page;
3631
3632         bio_for_each_segment_all(bvec, bio, iter_all) {
3633                 page = bvec->bv_page;
3634
3635                 if (bio->bi_status) {
3636                         btrfs_warn_rl_in_rcu(device->fs_info,
3637                                 "lost page write due to IO error on %s (%d)",
3638                                 btrfs_dev_name(device),
3639                                 blk_status_to_errno(bio->bi_status));
3640                         ClearPageUptodate(page);
3641                         SetPageError(page);
3642                         btrfs_dev_stat_inc_and_print(device,
3643                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3644                 } else {
3645                         SetPageUptodate(page);
3646                 }
3647
3648                 put_page(page);
3649                 unlock_page(page);
3650         }
3651
3652         bio_put(bio);
3653 }
3654
3655 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3656                                                    int copy_num, bool drop_cache)
3657 {
3658         struct btrfs_super_block *super;
3659         struct page *page;
3660         u64 bytenr, bytenr_orig;
3661         struct address_space *mapping = bdev->bd_inode->i_mapping;
3662         int ret;
3663
3664         bytenr_orig = btrfs_sb_offset(copy_num);
3665         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3666         if (ret == -ENOENT)
3667                 return ERR_PTR(-EINVAL);
3668         else if (ret)
3669                 return ERR_PTR(ret);
3670
3671         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3672                 return ERR_PTR(-EINVAL);
3673
3674         if (drop_cache) {
3675                 /* This should only be called with the primary sb. */
3676                 ASSERT(copy_num == 0);
3677
3678                 /*
3679                  * Drop the page of the primary superblock, so later read will
3680                  * always read from the device.
3681                  */
3682                 invalidate_inode_pages2_range(mapping,
3683                                 bytenr >> PAGE_SHIFT,
3684                                 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3685         }
3686
3687         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3688         if (IS_ERR(page))
3689                 return ERR_CAST(page);
3690
3691         super = page_address(page);
3692         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3693                 btrfs_release_disk_super(super);
3694                 return ERR_PTR(-ENODATA);
3695         }
3696
3697         if (btrfs_super_bytenr(super) != bytenr_orig) {
3698                 btrfs_release_disk_super(super);
3699                 return ERR_PTR(-EINVAL);
3700         }
3701
3702         return super;
3703 }
3704
3705
3706 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3707 {
3708         struct btrfs_super_block *super, *latest = NULL;
3709         int i;
3710         u64 transid = 0;
3711
3712         /* we would like to check all the supers, but that would make
3713          * a btrfs mount succeed after a mkfs from a different FS.
3714          * So, we need to add a special mount option to scan for
3715          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3716          */
3717         for (i = 0; i < 1; i++) {
3718                 super = btrfs_read_dev_one_super(bdev, i, false);
3719                 if (IS_ERR(super))
3720                         continue;
3721
3722                 if (!latest || btrfs_super_generation(super) > transid) {
3723                         if (latest)
3724                                 btrfs_release_disk_super(super);
3725
3726                         latest = super;
3727                         transid = btrfs_super_generation(super);
3728                 }
3729         }
3730
3731         return super;
3732 }
3733
3734 /*
3735  * Write superblock @sb to the @device. Do not wait for completion, all the
3736  * pages we use for writing are locked.
3737  *
3738  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3739  * the expected device size at commit time. Note that max_mirrors must be
3740  * same for write and wait phases.
3741  *
3742  * Return number of errors when page is not found or submission fails.
3743  */
3744 static int write_dev_supers(struct btrfs_device *device,
3745                             struct btrfs_super_block *sb, int max_mirrors)
3746 {
3747         struct btrfs_fs_info *fs_info = device->fs_info;
3748         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3749         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3750         int i;
3751         int errors = 0;
3752         int ret;
3753         u64 bytenr, bytenr_orig;
3754
3755         if (max_mirrors == 0)
3756                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3757
3758         shash->tfm = fs_info->csum_shash;
3759
3760         for (i = 0; i < max_mirrors; i++) {
3761                 struct page *page;
3762                 struct bio *bio;
3763                 struct btrfs_super_block *disk_super;
3764
3765                 bytenr_orig = btrfs_sb_offset(i);
3766                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3767                 if (ret == -ENOENT) {
3768                         continue;
3769                 } else if (ret < 0) {
3770                         btrfs_err(device->fs_info,
3771                                 "couldn't get super block location for mirror %d",
3772                                 i);
3773                         errors++;
3774                         continue;
3775                 }
3776                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3777                     device->commit_total_bytes)
3778                         break;
3779
3780                 btrfs_set_super_bytenr(sb, bytenr_orig);
3781
3782                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3783                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3784                                     sb->csum);
3785
3786                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3787                                            GFP_NOFS);
3788                 if (!page) {
3789                         btrfs_err(device->fs_info,
3790                             "couldn't get super block page for bytenr %llu",
3791                             bytenr);
3792                         errors++;
3793                         continue;
3794                 }
3795
3796                 /* Bump the refcount for wait_dev_supers() */
3797                 get_page(page);
3798
3799                 disk_super = page_address(page);
3800                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3801
3802                 /*
3803                  * Directly use bios here instead of relying on the page cache
3804                  * to do I/O, so we don't lose the ability to do integrity
3805                  * checking.
3806                  */
3807                 bio = bio_alloc(device->bdev, 1,
3808                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3809                                 GFP_NOFS);
3810                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811                 bio->bi_private = device;
3812                 bio->bi_end_io = btrfs_end_super_write;
3813                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3814                                offset_in_page(bytenr));
3815
3816                 /*
3817                  * We FUA only the first super block.  The others we allow to
3818                  * go down lazy and there's a short window where the on-disk
3819                  * copies might still contain the older version.
3820                  */
3821                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3822                         bio->bi_opf |= REQ_FUA;
3823
3824                 btrfsic_check_bio(bio);
3825                 submit_bio(bio);
3826
3827                 if (btrfs_advance_sb_log(device, i))
3828                         errors++;
3829         }
3830         return errors < i ? 0 : -1;
3831 }
3832
3833 /*
3834  * Wait for write completion of superblocks done by write_dev_supers,
3835  * @max_mirrors same for write and wait phases.
3836  *
3837  * Return number of errors when page is not found or not marked up to
3838  * date.
3839  */
3840 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3841 {
3842         int i;
3843         int errors = 0;
3844         bool primary_failed = false;
3845         int ret;
3846         u64 bytenr;
3847
3848         if (max_mirrors == 0)
3849                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3850
3851         for (i = 0; i < max_mirrors; i++) {
3852                 struct page *page;
3853
3854                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3855                 if (ret == -ENOENT) {
3856                         break;
3857                 } else if (ret < 0) {
3858                         errors++;
3859                         if (i == 0)
3860                                 primary_failed = true;
3861                         continue;
3862                 }
3863                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3864                     device->commit_total_bytes)
3865                         break;
3866
3867                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3868                                      bytenr >> PAGE_SHIFT);
3869                 if (!page) {
3870                         errors++;
3871                         if (i == 0)
3872                                 primary_failed = true;
3873                         continue;
3874                 }
3875                 /* Page is submitted locked and unlocked once the IO completes */
3876                 wait_on_page_locked(page);
3877                 if (PageError(page)) {
3878                         errors++;
3879                         if (i == 0)
3880                                 primary_failed = true;
3881                 }
3882
3883                 /* Drop our reference */
3884                 put_page(page);
3885
3886                 /* Drop the reference from the writing run */
3887                 put_page(page);
3888         }
3889
3890         /* log error, force error return */
3891         if (primary_failed) {
3892                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3893                           device->devid);
3894                 return -1;
3895         }
3896
3897         return errors < i ? 0 : -1;
3898 }
3899
3900 /*
3901  * endio for the write_dev_flush, this will wake anyone waiting
3902  * for the barrier when it is done
3903  */
3904 static void btrfs_end_empty_barrier(struct bio *bio)
3905 {
3906         bio_uninit(bio);
3907         complete(bio->bi_private);
3908 }
3909
3910 /*
3911  * Submit a flush request to the device if it supports it. Error handling is
3912  * done in the waiting counterpart.
3913  */
3914 static void write_dev_flush(struct btrfs_device *device)
3915 {
3916         struct bio *bio = &device->flush_bio;
3917
3918         device->last_flush_error = BLK_STS_OK;
3919
3920 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3921         /*
3922          * When a disk has write caching disabled, we skip submission of a bio
3923          * with flush and sync requests before writing the superblock, since
3924          * it's not needed. However when the integrity checker is enabled, this
3925          * results in reports that there are metadata blocks referred by a
3926          * superblock that were not properly flushed. So don't skip the bio
3927          * submission only when the integrity checker is enabled for the sake
3928          * of simplicity, since this is a debug tool and not meant for use in
3929          * non-debug builds.
3930          */
3931         if (!bdev_write_cache(device->bdev))
3932                 return;
3933 #endif
3934
3935         bio_init(bio, device->bdev, NULL, 0,
3936                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3937         bio->bi_end_io = btrfs_end_empty_barrier;
3938         init_completion(&device->flush_wait);
3939         bio->bi_private = &device->flush_wait;
3940
3941         btrfsic_check_bio(bio);
3942         submit_bio(bio);
3943         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3944 }
3945
3946 /*
3947  * If the flush bio has been submitted by write_dev_flush, wait for it.
3948  * Return true for any error, and false otherwise.
3949  */
3950 static bool wait_dev_flush(struct btrfs_device *device)
3951 {
3952         struct bio *bio = &device->flush_bio;
3953
3954         if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3955                 return false;
3956
3957         wait_for_completion_io(&device->flush_wait);
3958
3959         if (bio->bi_status) {
3960                 device->last_flush_error = bio->bi_status;
3961                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3962                 return true;
3963         }
3964
3965         return false;
3966 }
3967
3968 /*
3969  * send an empty flush down to each device in parallel,
3970  * then wait for them
3971  */
3972 static int barrier_all_devices(struct btrfs_fs_info *info)
3973 {
3974         struct list_head *head;
3975         struct btrfs_device *dev;
3976         int errors_wait = 0;
3977
3978         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3979         /* send down all the barriers */
3980         head = &info->fs_devices->devices;
3981         list_for_each_entry(dev, head, dev_list) {
3982                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3983                         continue;
3984                 if (!dev->bdev)
3985                         continue;
3986                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3987                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3988                         continue;
3989
3990                 write_dev_flush(dev);
3991         }
3992
3993         /* wait for all the barriers */
3994         list_for_each_entry(dev, head, dev_list) {
3995                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3996                         continue;
3997                 if (!dev->bdev) {
3998                         errors_wait++;
3999                         continue;
4000                 }
4001                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4002                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4003                         continue;
4004
4005                 if (wait_dev_flush(dev))
4006                         errors_wait++;
4007         }
4008
4009         /*
4010          * Checks last_flush_error of disks in order to determine the device
4011          * state.
4012          */
4013         if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4014                 return -EIO;
4015
4016         return 0;
4017 }
4018
4019 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4020 {
4021         int raid_type;
4022         int min_tolerated = INT_MAX;
4023
4024         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4025             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4026                 min_tolerated = min_t(int, min_tolerated,
4027                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4028                                     tolerated_failures);
4029
4030         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4031                 if (raid_type == BTRFS_RAID_SINGLE)
4032                         continue;
4033                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4034                         continue;
4035                 min_tolerated = min_t(int, min_tolerated,
4036                                     btrfs_raid_array[raid_type].
4037                                     tolerated_failures);
4038         }
4039
4040         if (min_tolerated == INT_MAX) {
4041                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4042                 min_tolerated = 0;
4043         }
4044
4045         return min_tolerated;
4046 }
4047
4048 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4049 {
4050         struct list_head *head;
4051         struct btrfs_device *dev;
4052         struct btrfs_super_block *sb;
4053         struct btrfs_dev_item *dev_item;
4054         int ret;
4055         int do_barriers;
4056         int max_errors;
4057         int total_errors = 0;
4058         u64 flags;
4059
4060         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4061
4062         /*
4063          * max_mirrors == 0 indicates we're from commit_transaction,
4064          * not from fsync where the tree roots in fs_info have not
4065          * been consistent on disk.
4066          */
4067         if (max_mirrors == 0)
4068                 backup_super_roots(fs_info);
4069
4070         sb = fs_info->super_for_commit;
4071         dev_item = &sb->dev_item;
4072
4073         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4074         head = &fs_info->fs_devices->devices;
4075         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4076
4077         if (do_barriers) {
4078                 ret = barrier_all_devices(fs_info);
4079                 if (ret) {
4080                         mutex_unlock(
4081                                 &fs_info->fs_devices->device_list_mutex);
4082                         btrfs_handle_fs_error(fs_info, ret,
4083                                               "errors while submitting device barriers.");
4084                         return ret;
4085                 }
4086         }
4087
4088         list_for_each_entry(dev, head, dev_list) {
4089                 if (!dev->bdev) {
4090                         total_errors++;
4091                         continue;
4092                 }
4093                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4094                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4095                         continue;
4096
4097                 btrfs_set_stack_device_generation(dev_item, 0);
4098                 btrfs_set_stack_device_type(dev_item, dev->type);
4099                 btrfs_set_stack_device_id(dev_item, dev->devid);
4100                 btrfs_set_stack_device_total_bytes(dev_item,
4101                                                    dev->commit_total_bytes);
4102                 btrfs_set_stack_device_bytes_used(dev_item,
4103                                                   dev->commit_bytes_used);
4104                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4105                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4106                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4107                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4108                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4109                        BTRFS_FSID_SIZE);
4110
4111                 flags = btrfs_super_flags(sb);
4112                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4113
4114                 ret = btrfs_validate_write_super(fs_info, sb);
4115                 if (ret < 0) {
4116                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4117                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4118                                 "unexpected superblock corruption detected");
4119                         return -EUCLEAN;
4120                 }
4121
4122                 ret = write_dev_supers(dev, sb, max_mirrors);
4123                 if (ret)
4124                         total_errors++;
4125         }
4126         if (total_errors > max_errors) {
4127                 btrfs_err(fs_info, "%d errors while writing supers",
4128                           total_errors);
4129                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4130
4131                 /* FUA is masked off if unsupported and can't be the reason */
4132                 btrfs_handle_fs_error(fs_info, -EIO,
4133                                       "%d errors while writing supers",
4134                                       total_errors);
4135                 return -EIO;
4136         }
4137
4138         total_errors = 0;
4139         list_for_each_entry(dev, head, dev_list) {
4140                 if (!dev->bdev)
4141                         continue;
4142                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4143                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4144                         continue;
4145
4146                 ret = wait_dev_supers(dev, max_mirrors);
4147                 if (ret)
4148                         total_errors++;
4149         }
4150         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4151         if (total_errors > max_errors) {
4152                 btrfs_handle_fs_error(fs_info, -EIO,
4153                                       "%d errors while writing supers",
4154                                       total_errors);
4155                 return -EIO;
4156         }
4157         return 0;
4158 }
4159
4160 /* Drop a fs root from the radix tree and free it. */
4161 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4162                                   struct btrfs_root *root)
4163 {
4164         bool drop_ref = false;
4165
4166         spin_lock(&fs_info->fs_roots_radix_lock);
4167         radix_tree_delete(&fs_info->fs_roots_radix,
4168                           (unsigned long)root->root_key.objectid);
4169         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4170                 drop_ref = true;
4171         spin_unlock(&fs_info->fs_roots_radix_lock);
4172
4173         if (BTRFS_FS_ERROR(fs_info)) {
4174                 ASSERT(root->log_root == NULL);
4175                 if (root->reloc_root) {
4176                         btrfs_put_root(root->reloc_root);
4177                         root->reloc_root = NULL;
4178                 }
4179         }
4180
4181         if (drop_ref)
4182                 btrfs_put_root(root);
4183 }
4184
4185 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4186 {
4187         struct btrfs_root *root = fs_info->tree_root;
4188         struct btrfs_trans_handle *trans;
4189
4190         mutex_lock(&fs_info->cleaner_mutex);
4191         btrfs_run_delayed_iputs(fs_info);
4192         mutex_unlock(&fs_info->cleaner_mutex);
4193         wake_up_process(fs_info->cleaner_kthread);
4194
4195         /* wait until ongoing cleanup work done */
4196         down_write(&fs_info->cleanup_work_sem);
4197         up_write(&fs_info->cleanup_work_sem);
4198
4199         trans = btrfs_join_transaction(root);
4200         if (IS_ERR(trans))
4201                 return PTR_ERR(trans);
4202         return btrfs_commit_transaction(trans);
4203 }
4204
4205 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4206 {
4207         struct btrfs_transaction *trans;
4208         struct btrfs_transaction *tmp;
4209         bool found = false;
4210
4211         if (list_empty(&fs_info->trans_list))
4212                 return;
4213
4214         /*
4215          * This function is only called at the very end of close_ctree(),
4216          * thus no other running transaction, no need to take trans_lock.
4217          */
4218         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4219         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4220                 struct extent_state *cached = NULL;
4221                 u64 dirty_bytes = 0;
4222                 u64 cur = 0;
4223                 u64 found_start;
4224                 u64 found_end;
4225
4226                 found = true;
4227                 while (find_first_extent_bit(&trans->dirty_pages, cur,
4228                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4229                         dirty_bytes += found_end + 1 - found_start;
4230                         cur = found_end + 1;
4231                 }
4232                 btrfs_warn(fs_info,
4233         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4234                            trans->transid, dirty_bytes);
4235                 btrfs_cleanup_one_transaction(trans, fs_info);
4236
4237                 if (trans == fs_info->running_transaction)
4238                         fs_info->running_transaction = NULL;
4239                 list_del_init(&trans->list);
4240
4241                 btrfs_put_transaction(trans);
4242                 trace_btrfs_transaction_commit(fs_info);
4243         }
4244         ASSERT(!found);
4245 }
4246
4247 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4248 {
4249         int ret;
4250
4251         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4252
4253         /*
4254          * If we had UNFINISHED_DROPS we could still be processing them, so
4255          * clear that bit and wake up relocation so it can stop.
4256          * We must do this before stopping the block group reclaim task, because
4257          * at btrfs_relocate_block_group() we wait for this bit, and after the
4258          * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4259          * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4260          * return 1.
4261          */
4262         btrfs_wake_unfinished_drop(fs_info);
4263
4264         /*
4265          * We may have the reclaim task running and relocating a data block group,
4266          * in which case it may create delayed iputs. So stop it before we park
4267          * the cleaner kthread otherwise we can get new delayed iputs after
4268          * parking the cleaner, and that can make the async reclaim task to hang
4269          * if it's waiting for delayed iputs to complete, since the cleaner is
4270          * parked and can not run delayed iputs - this will make us hang when
4271          * trying to stop the async reclaim task.
4272          */
4273         cancel_work_sync(&fs_info->reclaim_bgs_work);
4274         /*
4275          * We don't want the cleaner to start new transactions, add more delayed
4276          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4277          * because that frees the task_struct, and the transaction kthread might
4278          * still try to wake up the cleaner.
4279          */
4280         kthread_park(fs_info->cleaner_kthread);
4281
4282         /* wait for the qgroup rescan worker to stop */
4283         btrfs_qgroup_wait_for_completion(fs_info, false);
4284
4285         /* wait for the uuid_scan task to finish */
4286         down(&fs_info->uuid_tree_rescan_sem);
4287         /* avoid complains from lockdep et al., set sem back to initial state */
4288         up(&fs_info->uuid_tree_rescan_sem);
4289
4290         /* pause restriper - we want to resume on mount */
4291         btrfs_pause_balance(fs_info);
4292
4293         btrfs_dev_replace_suspend_for_unmount(fs_info);
4294
4295         btrfs_scrub_cancel(fs_info);
4296
4297         /* wait for any defraggers to finish */
4298         wait_event(fs_info->transaction_wait,
4299                    (atomic_read(&fs_info->defrag_running) == 0));
4300
4301         /* clear out the rbtree of defraggable inodes */
4302         btrfs_cleanup_defrag_inodes(fs_info);
4303
4304         /*
4305          * After we parked the cleaner kthread, ordered extents may have
4306          * completed and created new delayed iputs. If one of the async reclaim
4307          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4308          * can hang forever trying to stop it, because if a delayed iput is
4309          * added after it ran btrfs_run_delayed_iputs() and before it called
4310          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4311          * no one else to run iputs.
4312          *
4313          * So wait for all ongoing ordered extents to complete and then run
4314          * delayed iputs. This works because once we reach this point no one
4315          * can either create new ordered extents nor create delayed iputs
4316          * through some other means.
4317          *
4318          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4319          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4320          * but the delayed iput for the respective inode is made only when doing
4321          * the final btrfs_put_ordered_extent() (which must happen at
4322          * btrfs_finish_ordered_io() when we are unmounting).
4323          */
4324         btrfs_flush_workqueue(fs_info->endio_write_workers);
4325         /* Ordered extents for free space inodes. */
4326         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4327         btrfs_run_delayed_iputs(fs_info);
4328
4329         cancel_work_sync(&fs_info->async_reclaim_work);
4330         cancel_work_sync(&fs_info->async_data_reclaim_work);
4331         cancel_work_sync(&fs_info->preempt_reclaim_work);
4332
4333         /* Cancel or finish ongoing discard work */
4334         btrfs_discard_cleanup(fs_info);
4335
4336         if (!sb_rdonly(fs_info->sb)) {
4337                 /*
4338                  * The cleaner kthread is stopped, so do one final pass over
4339                  * unused block groups.
4340                  */
4341                 btrfs_delete_unused_bgs(fs_info);
4342
4343                 /*
4344                  * There might be existing delayed inode workers still running
4345                  * and holding an empty delayed inode item. We must wait for
4346                  * them to complete first because they can create a transaction.
4347                  * This happens when someone calls btrfs_balance_delayed_items()
4348                  * and then a transaction commit runs the same delayed nodes
4349                  * before any delayed worker has done something with the nodes.
4350                  * We must wait for any worker here and not at transaction
4351                  * commit time since that could cause a deadlock.
4352                  * This is a very rare case.
4353                  */
4354                 btrfs_flush_workqueue(fs_info->delayed_workers);
4355
4356                 ret = btrfs_commit_super(fs_info);
4357                 if (ret)
4358                         btrfs_err(fs_info, "commit super ret %d", ret);
4359         }
4360
4361         if (BTRFS_FS_ERROR(fs_info))
4362                 btrfs_error_commit_super(fs_info);
4363
4364         kthread_stop(fs_info->transaction_kthread);
4365         kthread_stop(fs_info->cleaner_kthread);
4366
4367         ASSERT(list_empty(&fs_info->delayed_iputs));
4368         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4369
4370         if (btrfs_check_quota_leak(fs_info)) {
4371                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4372                 btrfs_err(fs_info, "qgroup reserved space leaked");
4373         }
4374
4375         btrfs_free_qgroup_config(fs_info);
4376         ASSERT(list_empty(&fs_info->delalloc_roots));
4377
4378         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4379                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4380                        percpu_counter_sum(&fs_info->delalloc_bytes));
4381         }
4382
4383         if (percpu_counter_sum(&fs_info->ordered_bytes))
4384                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4385                            percpu_counter_sum(&fs_info->ordered_bytes));
4386
4387         btrfs_sysfs_remove_mounted(fs_info);
4388         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4389
4390         btrfs_put_block_group_cache(fs_info);
4391
4392         /*
4393          * we must make sure there is not any read request to
4394          * submit after we stopping all workers.
4395          */
4396         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4397         btrfs_stop_all_workers(fs_info);
4398
4399         /* We shouldn't have any transaction open at this point */
4400         warn_about_uncommitted_trans(fs_info);
4401
4402         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4403         free_root_pointers(fs_info, true);
4404         btrfs_free_fs_roots(fs_info);
4405
4406         /*
4407          * We must free the block groups after dropping the fs_roots as we could
4408          * have had an IO error and have left over tree log blocks that aren't
4409          * cleaned up until the fs roots are freed.  This makes the block group
4410          * accounting appear to be wrong because there's pending reserved bytes,
4411          * so make sure we do the block group cleanup afterwards.
4412          */
4413         btrfs_free_block_groups(fs_info);
4414
4415         iput(fs_info->btree_inode);
4416
4417 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4418         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4419                 btrfsic_unmount(fs_info->fs_devices);
4420 #endif
4421
4422         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4423         btrfs_close_devices(fs_info->fs_devices);
4424 }
4425
4426 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4427 {
4428         struct btrfs_fs_info *fs_info = buf->fs_info;
4429         u64 transid = btrfs_header_generation(buf);
4430
4431 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4432         /*
4433          * This is a fast path so only do this check if we have sanity tests
4434          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4435          * outside of the sanity tests.
4436          */
4437         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4438                 return;
4439 #endif
4440         btrfs_assert_tree_write_locked(buf);
4441         if (transid != fs_info->generation)
4442                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4443                         buf->start, transid, fs_info->generation);
4444         set_extent_buffer_dirty(buf);
4445 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4446         /*
4447          * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4448          * set, so this will only validate the basic structure of the items.
4449          */
4450         if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4451                 btrfs_print_leaf(buf);
4452                 ASSERT(0);
4453         }
4454 #endif
4455 }
4456
4457 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4458                                         int flush_delayed)
4459 {
4460         /*
4461          * looks as though older kernels can get into trouble with
4462          * this code, they end up stuck in balance_dirty_pages forever
4463          */
4464         int ret;
4465
4466         if (current->flags & PF_MEMALLOC)
4467                 return;
4468
4469         if (flush_delayed)
4470                 btrfs_balance_delayed_items(fs_info);
4471
4472         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4473                                      BTRFS_DIRTY_METADATA_THRESH,
4474                                      fs_info->dirty_metadata_batch);
4475         if (ret > 0) {
4476                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4477         }
4478 }
4479
4480 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4481 {
4482         __btrfs_btree_balance_dirty(fs_info, 1);
4483 }
4484
4485 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4486 {
4487         __btrfs_btree_balance_dirty(fs_info, 0);
4488 }
4489
4490 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4491 {
4492         /* cleanup FS via transaction */
4493         btrfs_cleanup_transaction(fs_info);
4494
4495         mutex_lock(&fs_info->cleaner_mutex);
4496         btrfs_run_delayed_iputs(fs_info);
4497         mutex_unlock(&fs_info->cleaner_mutex);
4498
4499         down_write(&fs_info->cleanup_work_sem);
4500         up_write(&fs_info->cleanup_work_sem);
4501 }
4502
4503 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4504 {
4505         struct btrfs_root *gang[8];
4506         u64 root_objectid = 0;
4507         int ret;
4508
4509         spin_lock(&fs_info->fs_roots_radix_lock);
4510         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4511                                              (void **)gang, root_objectid,
4512                                              ARRAY_SIZE(gang))) != 0) {
4513                 int i;
4514
4515                 for (i = 0; i < ret; i++)
4516                         gang[i] = btrfs_grab_root(gang[i]);
4517                 spin_unlock(&fs_info->fs_roots_radix_lock);
4518
4519                 for (i = 0; i < ret; i++) {
4520                         if (!gang[i])
4521                                 continue;
4522                         root_objectid = gang[i]->root_key.objectid;
4523                         btrfs_free_log(NULL, gang[i]);
4524                         btrfs_put_root(gang[i]);
4525                 }
4526                 root_objectid++;
4527                 spin_lock(&fs_info->fs_roots_radix_lock);
4528         }
4529         spin_unlock(&fs_info->fs_roots_radix_lock);
4530         btrfs_free_log_root_tree(NULL, fs_info);
4531 }
4532
4533 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4534 {
4535         struct btrfs_ordered_extent *ordered;
4536
4537         spin_lock(&root->ordered_extent_lock);
4538         /*
4539          * This will just short circuit the ordered completion stuff which will
4540          * make sure the ordered extent gets properly cleaned up.
4541          */
4542         list_for_each_entry(ordered, &root->ordered_extents,
4543                             root_extent_list)
4544                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4545         spin_unlock(&root->ordered_extent_lock);
4546 }
4547
4548 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4549 {
4550         struct btrfs_root *root;
4551         LIST_HEAD(splice);
4552
4553         spin_lock(&fs_info->ordered_root_lock);
4554         list_splice_init(&fs_info->ordered_roots, &splice);
4555         while (!list_empty(&splice)) {
4556                 root = list_first_entry(&splice, struct btrfs_root,
4557                                         ordered_root);
4558                 list_move_tail(&root->ordered_root,
4559                                &fs_info->ordered_roots);
4560
4561                 spin_unlock(&fs_info->ordered_root_lock);
4562                 btrfs_destroy_ordered_extents(root);
4563
4564                 cond_resched();
4565                 spin_lock(&fs_info->ordered_root_lock);
4566         }
4567         spin_unlock(&fs_info->ordered_root_lock);
4568
4569         /*
4570          * We need this here because if we've been flipped read-only we won't
4571          * get sync() from the umount, so we need to make sure any ordered
4572          * extents that haven't had their dirty pages IO start writeout yet
4573          * actually get run and error out properly.
4574          */
4575         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4576 }
4577
4578 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4579                                        struct btrfs_fs_info *fs_info)
4580 {
4581         struct rb_node *node;
4582         struct btrfs_delayed_ref_root *delayed_refs;
4583         struct btrfs_delayed_ref_node *ref;
4584
4585         delayed_refs = &trans->delayed_refs;
4586
4587         spin_lock(&delayed_refs->lock);
4588         if (atomic_read(&delayed_refs->num_entries) == 0) {
4589                 spin_unlock(&delayed_refs->lock);
4590                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4591                 return;
4592         }
4593
4594         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4595                 struct btrfs_delayed_ref_head *head;
4596                 struct rb_node *n;
4597                 bool pin_bytes = false;
4598
4599                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4600                                 href_node);
4601                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4602                         continue;
4603
4604                 spin_lock(&head->lock);
4605                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4606                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4607                                        ref_node);
4608                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4609                         RB_CLEAR_NODE(&ref->ref_node);
4610                         if (!list_empty(&ref->add_list))
4611                                 list_del(&ref->add_list);
4612                         atomic_dec(&delayed_refs->num_entries);
4613                         btrfs_put_delayed_ref(ref);
4614                 }
4615                 if (head->must_insert_reserved)
4616                         pin_bytes = true;
4617                 btrfs_free_delayed_extent_op(head->extent_op);
4618                 btrfs_delete_ref_head(delayed_refs, head);
4619                 spin_unlock(&head->lock);
4620                 spin_unlock(&delayed_refs->lock);
4621                 mutex_unlock(&head->mutex);
4622
4623                 if (pin_bytes) {
4624                         struct btrfs_block_group *cache;
4625
4626                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4627                         BUG_ON(!cache);
4628
4629                         spin_lock(&cache->space_info->lock);
4630                         spin_lock(&cache->lock);
4631                         cache->pinned += head->num_bytes;
4632                         btrfs_space_info_update_bytes_pinned(fs_info,
4633                                 cache->space_info, head->num_bytes);
4634                         cache->reserved -= head->num_bytes;
4635                         cache->space_info->bytes_reserved -= head->num_bytes;
4636                         spin_unlock(&cache->lock);
4637                         spin_unlock(&cache->space_info->lock);
4638
4639                         btrfs_put_block_group(cache);
4640
4641                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4642                                 head->bytenr + head->num_bytes - 1);
4643                 }
4644                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4645                 btrfs_put_delayed_ref_head(head);
4646                 cond_resched();
4647                 spin_lock(&delayed_refs->lock);
4648         }
4649         btrfs_qgroup_destroy_extent_records(trans);
4650
4651         spin_unlock(&delayed_refs->lock);
4652 }
4653
4654 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4655 {
4656         struct btrfs_inode *btrfs_inode;
4657         LIST_HEAD(splice);
4658
4659         spin_lock(&root->delalloc_lock);
4660         list_splice_init(&root->delalloc_inodes, &splice);
4661
4662         while (!list_empty(&splice)) {
4663                 struct inode *inode = NULL;
4664                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4665                                                delalloc_inodes);
4666                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4667                 spin_unlock(&root->delalloc_lock);
4668
4669                 /*
4670                  * Make sure we get a live inode and that it'll not disappear
4671                  * meanwhile.
4672                  */
4673                 inode = igrab(&btrfs_inode->vfs_inode);
4674                 if (inode) {
4675                         unsigned int nofs_flag;
4676
4677                         nofs_flag = memalloc_nofs_save();
4678                         invalidate_inode_pages2(inode->i_mapping);
4679                         memalloc_nofs_restore(nofs_flag);
4680                         iput(inode);
4681                 }
4682                 spin_lock(&root->delalloc_lock);
4683         }
4684         spin_unlock(&root->delalloc_lock);
4685 }
4686
4687 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4688 {
4689         struct btrfs_root *root;
4690         LIST_HEAD(splice);
4691
4692         spin_lock(&fs_info->delalloc_root_lock);
4693         list_splice_init(&fs_info->delalloc_roots, &splice);
4694         while (!list_empty(&splice)) {
4695                 root = list_first_entry(&splice, struct btrfs_root,
4696                                          delalloc_root);
4697                 root = btrfs_grab_root(root);
4698                 BUG_ON(!root);
4699                 spin_unlock(&fs_info->delalloc_root_lock);
4700
4701                 btrfs_destroy_delalloc_inodes(root);
4702                 btrfs_put_root(root);
4703
4704                 spin_lock(&fs_info->delalloc_root_lock);
4705         }
4706         spin_unlock(&fs_info->delalloc_root_lock);
4707 }
4708
4709 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4710                                          struct extent_io_tree *dirty_pages,
4711                                          int mark)
4712 {
4713         struct extent_buffer *eb;
4714         u64 start = 0;
4715         u64 end;
4716
4717         while (find_first_extent_bit(dirty_pages, start, &start, &end,
4718                                      mark, NULL)) {
4719                 clear_extent_bits(dirty_pages, start, end, mark);
4720                 while (start <= end) {
4721                         eb = find_extent_buffer(fs_info, start);
4722                         start += fs_info->nodesize;
4723                         if (!eb)
4724                                 continue;
4725
4726                         btrfs_tree_lock(eb);
4727                         wait_on_extent_buffer_writeback(eb);
4728                         btrfs_clear_buffer_dirty(NULL, eb);
4729                         btrfs_tree_unlock(eb);
4730
4731                         free_extent_buffer_stale(eb);
4732                 }
4733         }
4734 }
4735
4736 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4737                                         struct extent_io_tree *unpin)
4738 {
4739         u64 start;
4740         u64 end;
4741
4742         while (1) {
4743                 struct extent_state *cached_state = NULL;
4744
4745                 /*
4746                  * The btrfs_finish_extent_commit() may get the same range as
4747                  * ours between find_first_extent_bit and clear_extent_dirty.
4748                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4749                  * the same extent range.
4750                  */
4751                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4752                 if (!find_first_extent_bit(unpin, 0, &start, &end,
4753                                            EXTENT_DIRTY, &cached_state)) {
4754                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4755                         break;
4756                 }
4757
4758                 clear_extent_dirty(unpin, start, end, &cached_state);
4759                 free_extent_state(cached_state);
4760                 btrfs_error_unpin_extent_range(fs_info, start, end);
4761                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4762                 cond_resched();
4763         }
4764 }
4765
4766 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4767 {
4768         struct inode *inode;
4769
4770         inode = cache->io_ctl.inode;
4771         if (inode) {
4772                 unsigned int nofs_flag;
4773
4774                 nofs_flag = memalloc_nofs_save();
4775                 invalidate_inode_pages2(inode->i_mapping);
4776                 memalloc_nofs_restore(nofs_flag);
4777
4778                 BTRFS_I(inode)->generation = 0;
4779                 cache->io_ctl.inode = NULL;
4780                 iput(inode);
4781         }
4782         ASSERT(cache->io_ctl.pages == NULL);
4783         btrfs_put_block_group(cache);
4784 }
4785
4786 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4787                              struct btrfs_fs_info *fs_info)
4788 {
4789         struct btrfs_block_group *cache;
4790
4791         spin_lock(&cur_trans->dirty_bgs_lock);
4792         while (!list_empty(&cur_trans->dirty_bgs)) {
4793                 cache = list_first_entry(&cur_trans->dirty_bgs,
4794                                          struct btrfs_block_group,
4795                                          dirty_list);
4796
4797                 if (!list_empty(&cache->io_list)) {
4798                         spin_unlock(&cur_trans->dirty_bgs_lock);
4799                         list_del_init(&cache->io_list);
4800                         btrfs_cleanup_bg_io(cache);
4801                         spin_lock(&cur_trans->dirty_bgs_lock);
4802                 }
4803
4804                 list_del_init(&cache->dirty_list);
4805                 spin_lock(&cache->lock);
4806                 cache->disk_cache_state = BTRFS_DC_ERROR;
4807                 spin_unlock(&cache->lock);
4808
4809                 spin_unlock(&cur_trans->dirty_bgs_lock);
4810                 btrfs_put_block_group(cache);
4811                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4812                 spin_lock(&cur_trans->dirty_bgs_lock);
4813         }
4814         spin_unlock(&cur_trans->dirty_bgs_lock);
4815
4816         /*
4817          * Refer to the definition of io_bgs member for details why it's safe
4818          * to use it without any locking
4819          */
4820         while (!list_empty(&cur_trans->io_bgs)) {
4821                 cache = list_first_entry(&cur_trans->io_bgs,
4822                                          struct btrfs_block_group,
4823                                          io_list);
4824
4825                 list_del_init(&cache->io_list);
4826                 spin_lock(&cache->lock);
4827                 cache->disk_cache_state = BTRFS_DC_ERROR;
4828                 spin_unlock(&cache->lock);
4829                 btrfs_cleanup_bg_io(cache);
4830         }
4831 }
4832
4833 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4834                                    struct btrfs_fs_info *fs_info)
4835 {
4836         struct btrfs_device *dev, *tmp;
4837
4838         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4839         ASSERT(list_empty(&cur_trans->dirty_bgs));
4840         ASSERT(list_empty(&cur_trans->io_bgs));
4841
4842         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4843                                  post_commit_list) {
4844                 list_del_init(&dev->post_commit_list);
4845         }
4846
4847         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4848
4849         cur_trans->state = TRANS_STATE_COMMIT_START;
4850         wake_up(&fs_info->transaction_blocked_wait);
4851
4852         cur_trans->state = TRANS_STATE_UNBLOCKED;
4853         wake_up(&fs_info->transaction_wait);
4854
4855         btrfs_destroy_delayed_inodes(fs_info);
4856
4857         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4858                                      EXTENT_DIRTY);
4859         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4860
4861         cur_trans->state =TRANS_STATE_COMPLETED;
4862         wake_up(&cur_trans->commit_wait);
4863 }
4864
4865 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4866 {
4867         struct btrfs_transaction *t;
4868
4869         mutex_lock(&fs_info->transaction_kthread_mutex);
4870
4871         spin_lock(&fs_info->trans_lock);
4872         while (!list_empty(&fs_info->trans_list)) {
4873                 t = list_first_entry(&fs_info->trans_list,
4874                                      struct btrfs_transaction, list);
4875                 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4876                         refcount_inc(&t->use_count);
4877                         spin_unlock(&fs_info->trans_lock);
4878                         btrfs_wait_for_commit(fs_info, t->transid);
4879                         btrfs_put_transaction(t);
4880                         spin_lock(&fs_info->trans_lock);
4881                         continue;
4882                 }
4883                 if (t == fs_info->running_transaction) {
4884                         t->state = TRANS_STATE_COMMIT_DOING;
4885                         spin_unlock(&fs_info->trans_lock);
4886                         /*
4887                          * We wait for 0 num_writers since we don't hold a trans
4888                          * handle open currently for this transaction.
4889                          */
4890                         wait_event(t->writer_wait,
4891                                    atomic_read(&t->num_writers) == 0);
4892                 } else {
4893                         spin_unlock(&fs_info->trans_lock);
4894                 }
4895                 btrfs_cleanup_one_transaction(t, fs_info);
4896
4897                 spin_lock(&fs_info->trans_lock);
4898                 if (t == fs_info->running_transaction)
4899                         fs_info->running_transaction = NULL;
4900                 list_del_init(&t->list);
4901                 spin_unlock(&fs_info->trans_lock);
4902
4903                 btrfs_put_transaction(t);
4904                 trace_btrfs_transaction_commit(fs_info);
4905                 spin_lock(&fs_info->trans_lock);
4906         }
4907         spin_unlock(&fs_info->trans_lock);
4908         btrfs_destroy_all_ordered_extents(fs_info);
4909         btrfs_destroy_delayed_inodes(fs_info);
4910         btrfs_assert_delayed_root_empty(fs_info);
4911         btrfs_destroy_all_delalloc_inodes(fs_info);
4912         btrfs_drop_all_logs(fs_info);
4913         mutex_unlock(&fs_info->transaction_kthread_mutex);
4914
4915         return 0;
4916 }
4917
4918 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4919 {
4920         struct btrfs_path *path;
4921         int ret;
4922         struct extent_buffer *l;
4923         struct btrfs_key search_key;
4924         struct btrfs_key found_key;
4925         int slot;
4926
4927         path = btrfs_alloc_path();
4928         if (!path)
4929                 return -ENOMEM;
4930
4931         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4932         search_key.type = -1;
4933         search_key.offset = (u64)-1;
4934         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4935         if (ret < 0)
4936                 goto error;
4937         BUG_ON(ret == 0); /* Corruption */
4938         if (path->slots[0] > 0) {
4939                 slot = path->slots[0] - 1;
4940                 l = path->nodes[0];
4941                 btrfs_item_key_to_cpu(l, &found_key, slot);
4942                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4943                                             BTRFS_FIRST_FREE_OBJECTID);
4944         } else {
4945                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4946         }
4947         ret = 0;
4948 error:
4949         btrfs_free_path(path);
4950         return ret;
4951 }
4952
4953 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4954 {
4955         int ret;
4956         mutex_lock(&root->objectid_mutex);
4957
4958         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4959                 btrfs_warn(root->fs_info,
4960                            "the objectid of root %llu reaches its highest value",
4961                            root->root_key.objectid);
4962                 ret = -ENOSPC;
4963                 goto out;
4964         }
4965
4966         *objectid = root->free_objectid++;
4967         ret = 0;
4968 out:
4969         mutex_unlock(&root->objectid_mutex);
4970         return ret;
4971 }