Merge tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-rpi.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102         if (fs_info->csum_shash)
103                 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112         struct inode *inode;
113         struct bio *bio;
114         extent_submit_bio_start_t *submit_bio_start;
115         int mirror_num;
116
117         /* Optional parameter for submit_bio_start used by direct io */
118         u64 dio_file_offset;
119         struct btrfs_work work;
120         blk_status_t status;
121 };
122
123 /*
124  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
125  * eb, the lockdep key is determined by the btrfs_root it belongs to and
126  * the level the eb occupies in the tree.
127  *
128  * Different roots are used for different purposes and may nest inside each
129  * other and they require separate keysets.  As lockdep keys should be
130  * static, assign keysets according to the purpose of the root as indicated
131  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
132  * roots have separate keysets.
133  *
134  * Lock-nesting across peer nodes is always done with the immediate parent
135  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
136  * subclass to avoid triggering lockdep warning in such cases.
137  *
138  * The key is set by the readpage_end_io_hook after the buffer has passed
139  * csum validation but before the pages are unlocked.  It is also set by
140  * btrfs_init_new_buffer on freshly allocated blocks.
141  *
142  * We also add a check to make sure the highest level of the tree is the
143  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
144  * needs update as well.
145  */
146 #ifdef CONFIG_DEBUG_LOCK_ALLOC
147 # if BTRFS_MAX_LEVEL != 8
148 #  error
149 # endif
150
151 #define DEFINE_LEVEL(stem, level)                                       \
152         .names[level] = "btrfs-" stem "-0" #level,
153
154 #define DEFINE_NAME(stem)                                               \
155         DEFINE_LEVEL(stem, 0)                                           \
156         DEFINE_LEVEL(stem, 1)                                           \
157         DEFINE_LEVEL(stem, 2)                                           \
158         DEFINE_LEVEL(stem, 3)                                           \
159         DEFINE_LEVEL(stem, 4)                                           \
160         DEFINE_LEVEL(stem, 5)                                           \
161         DEFINE_LEVEL(stem, 6)                                           \
162         DEFINE_LEVEL(stem, 7)
163
164 static struct btrfs_lockdep_keyset {
165         u64                     id;             /* root objectid */
166         /* Longest entry: btrfs-free-space-00 */
167         char                    names[BTRFS_MAX_LEVEL][20];
168         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
169 } btrfs_lockdep_keysets[] = {
170         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
171         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
172         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
173         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
174         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
175         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
176         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
177         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
178         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
179         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
180         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
181         { .id = 0,                              DEFINE_NAME("tree")     },
182 };
183
184 #undef DEFINE_LEVEL
185 #undef DEFINE_NAME
186
187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188                                     int level)
189 {
190         struct btrfs_lockdep_keyset *ks;
191
192         BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194         /* find the matching keyset, id 0 is the default entry */
195         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196                 if (ks->id == objectid)
197                         break;
198
199         lockdep_set_class_and_name(&eb->lock,
200                                    &ks->keys[level], ks->names[level]);
201 }
202
203 #endif
204
205 /*
206  * Compute the csum of a btree block and store the result to provided buffer.
207  */
208 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
209 {
210         struct btrfs_fs_info *fs_info = buf->fs_info;
211         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
212         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
213         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214         char *kaddr;
215         int i;
216
217         shash->tfm = fs_info->csum_shash;
218         crypto_shash_init(shash);
219         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
220         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221                             first_page_part - BTRFS_CSUM_SIZE);
222
223         for (i = 1; i < num_pages; i++) {
224                 kaddr = page_address(buf->pages[i]);
225                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226         }
227         memset(result, 0, BTRFS_CSUM_SIZE);
228         crypto_shash_final(shash, result);
229 }
230
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238                                  struct extent_buffer *eb, u64 parent_transid,
239                                  int atomic)
240 {
241         struct extent_state *cached_state = NULL;
242         int ret;
243         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         if (need_lock)
252                 btrfs_tree_read_lock(eb);
253
254         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
255                          &cached_state);
256         if (extent_buffer_uptodate(eb) &&
257             btrfs_header_generation(eb) == parent_transid) {
258                 ret = 0;
259                 goto out;
260         }
261         btrfs_err_rl(eb->fs_info,
262                 "parent transid verify failed on %llu wanted %llu found %llu",
263                         eb->start,
264                         parent_transid, btrfs_header_generation(eb));
265         ret = 1;
266
267         /*
268          * Things reading via commit roots that don't have normal protection,
269          * like send, can have a really old block in cache that may point at a
270          * block that has been freed and re-allocated.  So don't clear uptodate
271          * if we find an eb that is under IO (dirty/writeback) because we could
272          * end up reading in the stale data and then writing it back out and
273          * making everybody very sad.
274          */
275         if (!extent_buffer_under_io(eb))
276                 clear_extent_buffer_uptodate(eb);
277 out:
278         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
279                              &cached_state);
280         if (need_lock)
281                 btrfs_tree_read_unlock(eb);
282         return ret;
283 }
284
285 static bool btrfs_supported_super_csum(u16 csum_type)
286 {
287         switch (csum_type) {
288         case BTRFS_CSUM_TYPE_CRC32:
289         case BTRFS_CSUM_TYPE_XXHASH:
290         case BTRFS_CSUM_TYPE_SHA256:
291         case BTRFS_CSUM_TYPE_BLAKE2:
292                 return true;
293         default:
294                 return false;
295         }
296 }
297
298 /*
299  * Return 0 if the superblock checksum type matches the checksum value of that
300  * algorithm. Pass the raw disk superblock data.
301  */
302 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303                                   char *raw_disk_sb)
304 {
305         struct btrfs_super_block *disk_sb =
306                 (struct btrfs_super_block *)raw_disk_sb;
307         char result[BTRFS_CSUM_SIZE];
308         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309
310         shash->tfm = fs_info->csum_shash;
311
312         /*
313          * The super_block structure does not span the whole
314          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315          * filled with zeros and is included in the checksum.
316          */
317         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
319
320         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
321                 return 1;
322
323         return 0;
324 }
325
326 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
327                            struct btrfs_key *first_key, u64 parent_transid)
328 {
329         struct btrfs_fs_info *fs_info = eb->fs_info;
330         int found_level;
331         struct btrfs_key found_key;
332         int ret;
333
334         found_level = btrfs_header_level(eb);
335         if (found_level != level) {
336                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337                      KERN_ERR "BTRFS: tree level check failed\n");
338                 btrfs_err(fs_info,
339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340                           eb->start, level, found_level);
341                 return -EIO;
342         }
343
344         if (!first_key)
345                 return 0;
346
347         /*
348          * For live tree block (new tree blocks in current transaction),
349          * we need proper lock context to avoid race, which is impossible here.
350          * So we only checks tree blocks which is read from disk, whose
351          * generation <= fs_info->last_trans_committed.
352          */
353         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354                 return 0;
355
356         /* We have @first_key, so this @eb must have at least one item */
357         if (btrfs_header_nritems(eb) == 0) {
358                 btrfs_err(fs_info,
359                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360                           eb->start);
361                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362                 return -EUCLEAN;
363         }
364
365         if (found_level)
366                 btrfs_node_key_to_cpu(eb, &found_key, 0);
367         else
368                 btrfs_item_key_to_cpu(eb, &found_key, 0);
369         ret = btrfs_comp_cpu_keys(first_key, &found_key);
370
371         if (ret) {
372                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373                      KERN_ERR "BTRFS: tree first key check failed\n");
374                 btrfs_err(fs_info,
375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376                           eb->start, parent_transid, first_key->objectid,
377                           first_key->type, first_key->offset,
378                           found_key.objectid, found_key.type,
379                           found_key.offset);
380         }
381         return ret;
382 }
383
384 /*
385  * helper to read a given tree block, doing retries as required when
386  * the checksums don't match and we have alternate mirrors to try.
387  *
388  * @parent_transid:     expected transid, skip check if 0
389  * @level:              expected level, mandatory check
390  * @first_key:          expected key of first slot, skip check if NULL
391  */
392 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
393                                           u64 parent_transid, int level,
394                                           struct btrfs_key *first_key)
395 {
396         struct btrfs_fs_info *fs_info = eb->fs_info;
397         struct extent_io_tree *io_tree;
398         int failed = 0;
399         int ret;
400         int num_copies = 0;
401         int mirror_num = 0;
402         int failed_mirror = 0;
403
404         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
405         while (1) {
406                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
407                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
408                 if (!ret) {
409                         if (verify_parent_transid(io_tree, eb,
410                                                    parent_transid, 0))
411                                 ret = -EIO;
412                         else if (btrfs_verify_level_key(eb, level,
413                                                 first_key, parent_transid))
414                                 ret = -EUCLEAN;
415                         else
416                                 break;
417                 }
418
419                 num_copies = btrfs_num_copies(fs_info,
420                                               eb->start, eb->len);
421                 if (num_copies == 1)
422                         break;
423
424                 if (!failed_mirror) {
425                         failed = 1;
426                         failed_mirror = eb->read_mirror;
427                 }
428
429                 mirror_num++;
430                 if (mirror_num == failed_mirror)
431                         mirror_num++;
432
433                 if (mirror_num > num_copies)
434                         break;
435         }
436
437         if (failed && !ret && failed_mirror)
438                 btrfs_repair_eb_io_failure(eb, failed_mirror);
439
440         return ret;
441 }
442
443 /*
444  * Checksum a dirty tree block before IO.  This has extra checks to make sure
445  * we only fill in the checksum field in the first page of a multi-page block.
446  * For subpage extent buffers we need bvec to also read the offset in the page.
447  */
448 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
449 {
450         struct page *page = bvec->bv_page;
451         u64 start = page_offset(page);
452         u64 found_start;
453         u8 result[BTRFS_CSUM_SIZE];
454         struct extent_buffer *eb;
455         int ret;
456
457         eb = (struct extent_buffer *)page->private;
458         if (page != eb->pages[0])
459                 return 0;
460
461         found_start = btrfs_header_bytenr(eb);
462
463         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
464                 WARN_ON(found_start != 0);
465                 return 0;
466         }
467
468         /*
469          * Please do not consolidate these warnings into a single if.
470          * It is useful to know what went wrong.
471          */
472         if (WARN_ON(found_start != start))
473                 return -EUCLEAN;
474         if (WARN_ON(!PageUptodate(page)))
475                 return -EUCLEAN;
476
477         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
478                                     offsetof(struct btrfs_header, fsid),
479                                     BTRFS_FSID_SIZE) == 0);
480
481         csum_tree_block(eb, result);
482
483         if (btrfs_header_level(eb))
484                 ret = btrfs_check_node(eb);
485         else
486                 ret = btrfs_check_leaf_full(eb);
487
488         if (ret < 0) {
489                 btrfs_print_tree(eb, 0);
490                 btrfs_err(fs_info,
491                 "block=%llu write time tree block corruption detected",
492                           eb->start);
493                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
494                 return ret;
495         }
496         write_extent_buffer(eb, result, 0, fs_info->csum_size);
497
498         return 0;
499 }
500
501 static int check_tree_block_fsid(struct extent_buffer *eb)
502 {
503         struct btrfs_fs_info *fs_info = eb->fs_info;
504         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
505         u8 fsid[BTRFS_FSID_SIZE];
506         u8 *metadata_uuid;
507
508         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
509                            BTRFS_FSID_SIZE);
510         /*
511          * Checking the incompat flag is only valid for the current fs. For
512          * seed devices it's forbidden to have their uuid changed so reading
513          * ->fsid in this case is fine
514          */
515         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
516                 metadata_uuid = fs_devices->metadata_uuid;
517         else
518                 metadata_uuid = fs_devices->fsid;
519
520         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
521                 return 0;
522
523         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
524                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
525                         return 0;
526
527         return 1;
528 }
529
530 /* Do basic extent buffer checks at read time */
531 static int validate_extent_buffer(struct extent_buffer *eb)
532 {
533         struct btrfs_fs_info *fs_info = eb->fs_info;
534         u64 found_start;
535         const u32 csum_size = fs_info->csum_size;
536         u8 found_level;
537         u8 result[BTRFS_CSUM_SIZE];
538         int ret = 0;
539
540         found_start = btrfs_header_bytenr(eb);
541         if (found_start != eb->start) {
542                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
543                              eb->start, found_start);
544                 ret = -EIO;
545                 goto out;
546         }
547         if (check_tree_block_fsid(eb)) {
548                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
549                              eb->start);
550                 ret = -EIO;
551                 goto out;
552         }
553         found_level = btrfs_header_level(eb);
554         if (found_level >= BTRFS_MAX_LEVEL) {
555                 btrfs_err(fs_info, "bad tree block level %d on %llu",
556                           (int)btrfs_header_level(eb), eb->start);
557                 ret = -EIO;
558                 goto out;
559         }
560
561         csum_tree_block(eb, result);
562
563         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
564                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
565
566                 read_extent_buffer(eb, &val, 0, csum_size);
567                 btrfs_warn_rl(fs_info,
568         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
569                               fs_info->sb->s_id, eb->start,
570                               CSUM_FMT_VALUE(csum_size, val),
571                               CSUM_FMT_VALUE(csum_size, result),
572                               btrfs_header_level(eb));
573                 ret = -EUCLEAN;
574                 goto out;
575         }
576
577         /*
578          * If this is a leaf block and it is corrupt, set the corrupt bit so
579          * that we don't try and read the other copies of this block, just
580          * return -EIO.
581          */
582         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
583                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
584                 ret = -EIO;
585         }
586
587         if (found_level > 0 && btrfs_check_node(eb))
588                 ret = -EIO;
589
590         if (!ret)
591                 set_extent_buffer_uptodate(eb);
592         else
593                 btrfs_err(fs_info,
594                           "block=%llu read time tree block corruption detected",
595                           eb->start);
596 out:
597         return ret;
598 }
599
600 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
601                                    int mirror)
602 {
603         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
604         struct extent_buffer *eb;
605         bool reads_done;
606         int ret = 0;
607
608         /*
609          * We don't allow bio merge for subpage metadata read, so we should
610          * only get one eb for each endio hook.
611          */
612         ASSERT(end == start + fs_info->nodesize - 1);
613         ASSERT(PagePrivate(page));
614
615         eb = find_extent_buffer(fs_info, start);
616         /*
617          * When we are reading one tree block, eb must have been inserted into
618          * the radix tree. If not, something is wrong.
619          */
620         ASSERT(eb);
621
622         reads_done = atomic_dec_and_test(&eb->io_pages);
623         /* Subpage read must finish in page read */
624         ASSERT(reads_done);
625
626         eb->read_mirror = mirror;
627         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
628                 ret = -EIO;
629                 goto err;
630         }
631         ret = validate_extent_buffer(eb);
632         if (ret < 0)
633                 goto err;
634
635         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
636                 btree_readahead_hook(eb, ret);
637
638         set_extent_buffer_uptodate(eb);
639
640         free_extent_buffer(eb);
641         return ret;
642 err:
643         /*
644          * end_bio_extent_readpage decrements io_pages in case of error,
645          * make sure it has something to decrement.
646          */
647         atomic_inc(&eb->io_pages);
648         clear_extent_buffer_uptodate(eb);
649         free_extent_buffer(eb);
650         return ret;
651 }
652
653 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
654                                    struct page *page, u64 start, u64 end,
655                                    int mirror)
656 {
657         struct extent_buffer *eb;
658         int ret = 0;
659         int reads_done;
660
661         ASSERT(page->private);
662
663         if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
664                 return validate_subpage_buffer(page, start, end, mirror);
665
666         eb = (struct extent_buffer *)page->private;
667
668         /*
669          * The pending IO might have been the only thing that kept this buffer
670          * in memory.  Make sure we have a ref for all this other checks
671          */
672         atomic_inc(&eb->refs);
673
674         reads_done = atomic_dec_and_test(&eb->io_pages);
675         if (!reads_done)
676                 goto err;
677
678         eb->read_mirror = mirror;
679         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
680                 ret = -EIO;
681                 goto err;
682         }
683         ret = validate_extent_buffer(eb);
684 err:
685         if (reads_done &&
686             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(eb, ret);
688
689         if (ret) {
690                 /*
691                  * our io error hook is going to dec the io pages
692                  * again, we have to make sure it has something
693                  * to decrement
694                  */
695                 atomic_inc(&eb->io_pages);
696                 clear_extent_buffer_uptodate(eb);
697         }
698         free_extent_buffer(eb);
699
700         return ret;
701 }
702
703 static void end_workqueue_bio(struct bio *bio)
704 {
705         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706         struct btrfs_fs_info *fs_info;
707         struct btrfs_workqueue *wq;
708
709         fs_info = end_io_wq->info;
710         end_io_wq->status = bio->bi_status;
711
712         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
713                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
714                         wq = fs_info->endio_meta_write_workers;
715                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
716                         wq = fs_info->endio_freespace_worker;
717                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
718                         wq = fs_info->endio_raid56_workers;
719                 else
720                         wq = fs_info->endio_write_workers;
721         } else {
722                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
723                         wq = fs_info->endio_raid56_workers;
724                 else if (end_io_wq->metadata)
725                         wq = fs_info->endio_meta_workers;
726                 else
727                         wq = fs_info->endio_workers;
728         }
729
730         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
731         btrfs_queue_work(wq, &end_io_wq->work);
732 }
733
734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735                         enum btrfs_wq_endio_type metadata)
736 {
737         struct btrfs_end_io_wq *end_io_wq;
738
739         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
740         if (!end_io_wq)
741                 return BLK_STS_RESOURCE;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->status = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757         struct async_submit_bio *async;
758         blk_status_t ret;
759
760         async = container_of(work, struct  async_submit_bio, work);
761         ret = async->submit_bio_start(async->inode, async->bio,
762                                       async->dio_file_offset);
763         if (ret)
764                 async->status = ret;
765 }
766
767 /*
768  * In order to insert checksums into the metadata in large chunks, we wait
769  * until bio submission time.   All the pages in the bio are checksummed and
770  * sums are attached onto the ordered extent record.
771  *
772  * At IO completion time the csums attached on the ordered extent record are
773  * inserted into the tree.
774  */
775 static void run_one_async_done(struct btrfs_work *work)
776 {
777         struct async_submit_bio *async;
778         struct inode *inode;
779         blk_status_t ret;
780
781         async = container_of(work, struct  async_submit_bio, work);
782         inode = async->inode;
783
784         /* If an error occurred we just want to clean up the bio and move on */
785         if (async->status) {
786                 async->bio->bi_status = async->status;
787                 bio_endio(async->bio);
788                 return;
789         }
790
791         /*
792          * All of the bios that pass through here are from async helpers.
793          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
794          * This changes nothing when cgroups aren't in use.
795          */
796         async->bio->bi_opf |= REQ_CGROUP_PUNT;
797         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
798         if (ret) {
799                 async->bio->bi_status = ret;
800                 bio_endio(async->bio);
801         }
802 }
803
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806         struct async_submit_bio *async;
807
808         async = container_of(work, struct  async_submit_bio, work);
809         kfree(async);
810 }
811
812 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
813                                  int mirror_num, unsigned long bio_flags,
814                                  u64 dio_file_offset,
815                                  extent_submit_bio_start_t *submit_bio_start)
816 {
817         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
818         struct async_submit_bio *async;
819
820         async = kmalloc(sizeof(*async), GFP_NOFS);
821         if (!async)
822                 return BLK_STS_RESOURCE;
823
824         async->inode = inode;
825         async->bio = bio;
826         async->mirror_num = mirror_num;
827         async->submit_bio_start = submit_bio_start;
828
829         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
830                         run_one_async_free);
831
832         async->dio_file_offset = dio_file_offset;
833
834         async->status = 0;
835
836         if (op_is_sync(bio->bi_opf))
837                 btrfs_set_work_high_priority(&async->work);
838
839         btrfs_queue_work(fs_info->workers, &async->work);
840         return 0;
841 }
842
843 static blk_status_t btree_csum_one_bio(struct bio *bio)
844 {
845         struct bio_vec *bvec;
846         struct btrfs_root *root;
847         int ret = 0;
848         struct bvec_iter_all iter_all;
849
850         ASSERT(!bio_flagged(bio, BIO_CLONED));
851         bio_for_each_segment_all(bvec, bio, iter_all) {
852                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853                 ret = csum_dirty_buffer(root->fs_info, bvec);
854                 if (ret)
855                         break;
856         }
857
858         return errno_to_blk_status(ret);
859 }
860
861 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
862                                            u64 dio_file_offset)
863 {
864         /*
865          * when we're called for a write, we're already in the async
866          * submission context.  Just jump into btrfs_map_bio
867          */
868         return btree_csum_one_bio(bio);
869 }
870
871 static int check_async_write(struct btrfs_fs_info *fs_info,
872                              struct btrfs_inode *bi)
873 {
874         if (btrfs_is_zoned(fs_info))
875                 return 0;
876         if (atomic_read(&bi->sync_writers))
877                 return 0;
878         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
879                 return 0;
880         return 1;
881 }
882
883 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
884                                        int mirror_num, unsigned long bio_flags)
885 {
886         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
887         int async = check_async_write(fs_info, BTRFS_I(inode));
888         blk_status_t ret;
889
890         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
891                 /*
892                  * called for a read, do the setup so that checksum validation
893                  * can happen in the async kernel threads
894                  */
895                 ret = btrfs_bio_wq_end_io(fs_info, bio,
896                                           BTRFS_WQ_ENDIO_METADATA);
897                 if (ret)
898                         goto out_w_error;
899                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
900         } else if (!async) {
901                 ret = btree_csum_one_bio(bio);
902                 if (ret)
903                         goto out_w_error;
904                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
905         } else {
906                 /*
907                  * kthread helpers are used to submit writes so that
908                  * checksumming can happen in parallel across all CPUs
909                  */
910                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
911                                           0, btree_submit_bio_start);
912         }
913
914         if (ret)
915                 goto out_w_error;
916         return 0;
917
918 out_w_error:
919         bio->bi_status = ret;
920         bio_endio(bio);
921         return ret;
922 }
923
924 #ifdef CONFIG_MIGRATION
925 static int btree_migratepage(struct address_space *mapping,
926                         struct page *newpage, struct page *page,
927                         enum migrate_mode mode)
928 {
929         /*
930          * we can't safely write a btree page from here,
931          * we haven't done the locking hook
932          */
933         if (PageDirty(page))
934                 return -EAGAIN;
935         /*
936          * Buffers may be managed in a filesystem specific way.
937          * We must have no buffers or drop them.
938          */
939         if (page_has_private(page) &&
940             !try_to_release_page(page, GFP_KERNEL))
941                 return -EAGAIN;
942         return migrate_page(mapping, newpage, page, mode);
943 }
944 #endif
945
946
947 static int btree_writepages(struct address_space *mapping,
948                             struct writeback_control *wbc)
949 {
950         struct btrfs_fs_info *fs_info;
951         int ret;
952
953         if (wbc->sync_mode == WB_SYNC_NONE) {
954
955                 if (wbc->for_kupdate)
956                         return 0;
957
958                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
959                 /* this is a bit racy, but that's ok */
960                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961                                              BTRFS_DIRTY_METADATA_THRESH,
962                                              fs_info->dirty_metadata_batch);
963                 if (ret < 0)
964                         return 0;
965         }
966         return btree_write_cache_pages(mapping, wbc);
967 }
968
969 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
970 {
971         if (PageWriteback(page) || PageDirty(page))
972                 return 0;
973
974         return try_release_extent_buffer(page);
975 }
976
977 static void btree_invalidatepage(struct page *page, unsigned int offset,
978                                  unsigned int length)
979 {
980         struct extent_io_tree *tree;
981         tree = &BTRFS_I(page->mapping->host)->io_tree;
982         extent_invalidatepage(tree, page, offset);
983         btree_releasepage(page, GFP_NOFS);
984         if (PagePrivate(page)) {
985                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986                            "page private not zero on page %llu",
987                            (unsigned long long)page_offset(page));
988                 detach_page_private(page);
989         }
990 }
991
992 static int btree_set_page_dirty(struct page *page)
993 {
994 #ifdef DEBUG
995         struct extent_buffer *eb;
996
997         BUG_ON(!PagePrivate(page));
998         eb = (struct extent_buffer *)page->private;
999         BUG_ON(!eb);
1000         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1001         BUG_ON(!atomic_read(&eb->refs));
1002         btrfs_assert_tree_locked(eb);
1003 #endif
1004         return __set_page_dirty_nobuffers(page);
1005 }
1006
1007 static const struct address_space_operations btree_aops = {
1008         .writepages     = btree_writepages,
1009         .releasepage    = btree_releasepage,
1010         .invalidatepage = btree_invalidatepage,
1011 #ifdef CONFIG_MIGRATION
1012         .migratepage    = btree_migratepage,
1013 #endif
1014         .set_page_dirty = btree_set_page_dirty,
1015 };
1016
1017 struct extent_buffer *btrfs_find_create_tree_block(
1018                                                 struct btrfs_fs_info *fs_info,
1019                                                 u64 bytenr, u64 owner_root,
1020                                                 int level)
1021 {
1022         if (btrfs_is_testing(fs_info))
1023                 return alloc_test_extent_buffer(fs_info, bytenr);
1024         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1025 }
1026
1027 /*
1028  * Read tree block at logical address @bytenr and do variant basic but critical
1029  * verification.
1030  *
1031  * @owner_root:         the objectid of the root owner for this block.
1032  * @parent_transid:     expected transid of this tree block, skip check if 0
1033  * @level:              expected level, mandatory check
1034  * @first_key:          expected key in slot 0, skip check if NULL
1035  */
1036 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1037                                       u64 owner_root, u64 parent_transid,
1038                                       int level, struct btrfs_key *first_key)
1039 {
1040         struct extent_buffer *buf = NULL;
1041         int ret;
1042
1043         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1044         if (IS_ERR(buf))
1045                 return buf;
1046
1047         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1048                                              level, first_key);
1049         if (ret) {
1050                 free_extent_buffer_stale(buf);
1051                 return ERR_PTR(ret);
1052         }
1053         return buf;
1054
1055 }
1056
1057 void btrfs_clean_tree_block(struct extent_buffer *buf)
1058 {
1059         struct btrfs_fs_info *fs_info = buf->fs_info;
1060         if (btrfs_header_generation(buf) ==
1061             fs_info->running_transaction->transid) {
1062                 btrfs_assert_tree_locked(buf);
1063
1064                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1065                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1066                                                  -buf->len,
1067                                                  fs_info->dirty_metadata_batch);
1068                         clear_extent_buffer_dirty(buf);
1069                 }
1070         }
1071 }
1072
1073 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1074                          u64 objectid)
1075 {
1076         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1077         root->fs_info = fs_info;
1078         root->node = NULL;
1079         root->commit_root = NULL;
1080         root->state = 0;
1081         root->orphan_cleanup_state = 0;
1082
1083         root->last_trans = 0;
1084         root->free_objectid = 0;
1085         root->nr_delalloc_inodes = 0;
1086         root->nr_ordered_extents = 0;
1087         root->inode_tree = RB_ROOT;
1088         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1089         root->block_rsv = NULL;
1090
1091         INIT_LIST_HEAD(&root->dirty_list);
1092         INIT_LIST_HEAD(&root->root_list);
1093         INIT_LIST_HEAD(&root->delalloc_inodes);
1094         INIT_LIST_HEAD(&root->delalloc_root);
1095         INIT_LIST_HEAD(&root->ordered_extents);
1096         INIT_LIST_HEAD(&root->ordered_root);
1097         INIT_LIST_HEAD(&root->reloc_dirty_list);
1098         INIT_LIST_HEAD(&root->logged_list[0]);
1099         INIT_LIST_HEAD(&root->logged_list[1]);
1100         spin_lock_init(&root->inode_lock);
1101         spin_lock_init(&root->delalloc_lock);
1102         spin_lock_init(&root->ordered_extent_lock);
1103         spin_lock_init(&root->accounting_lock);
1104         spin_lock_init(&root->log_extents_lock[0]);
1105         spin_lock_init(&root->log_extents_lock[1]);
1106         spin_lock_init(&root->qgroup_meta_rsv_lock);
1107         mutex_init(&root->objectid_mutex);
1108         mutex_init(&root->log_mutex);
1109         mutex_init(&root->ordered_extent_mutex);
1110         mutex_init(&root->delalloc_mutex);
1111         init_waitqueue_head(&root->qgroup_flush_wait);
1112         init_waitqueue_head(&root->log_writer_wait);
1113         init_waitqueue_head(&root->log_commit_wait[0]);
1114         init_waitqueue_head(&root->log_commit_wait[1]);
1115         INIT_LIST_HEAD(&root->log_ctxs[0]);
1116         INIT_LIST_HEAD(&root->log_ctxs[1]);
1117         atomic_set(&root->log_commit[0], 0);
1118         atomic_set(&root->log_commit[1], 0);
1119         atomic_set(&root->log_writers, 0);
1120         atomic_set(&root->log_batch, 0);
1121         refcount_set(&root->refs, 1);
1122         atomic_set(&root->snapshot_force_cow, 0);
1123         atomic_set(&root->nr_swapfiles, 0);
1124         root->log_transid = 0;
1125         root->log_transid_committed = -1;
1126         root->last_log_commit = 0;
1127         if (!dummy) {
1128                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1129                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1130                 extent_io_tree_init(fs_info, &root->log_csum_range,
1131                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1132         }
1133
1134         memset(&root->root_key, 0, sizeof(root->root_key));
1135         memset(&root->root_item, 0, sizeof(root->root_item));
1136         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1137         root->root_key.objectid = objectid;
1138         root->anon_dev = 0;
1139
1140         spin_lock_init(&root->root_item_lock);
1141         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1142 #ifdef CONFIG_BTRFS_DEBUG
1143         INIT_LIST_HEAD(&root->leak_list);
1144         spin_lock(&fs_info->fs_roots_radix_lock);
1145         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1146         spin_unlock(&fs_info->fs_roots_radix_lock);
1147 #endif
1148 }
1149
1150 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1151                                            u64 objectid, gfp_t flags)
1152 {
1153         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1154         if (root)
1155                 __setup_root(root, fs_info, objectid);
1156         return root;
1157 }
1158
1159 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1160 /* Should only be used by the testing infrastructure */
1161 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1162 {
1163         struct btrfs_root *root;
1164
1165         if (!fs_info)
1166                 return ERR_PTR(-EINVAL);
1167
1168         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1169         if (!root)
1170                 return ERR_PTR(-ENOMEM);
1171
1172         /* We don't use the stripesize in selftest, set it as sectorsize */
1173         root->alloc_bytenr = 0;
1174
1175         return root;
1176 }
1177 #endif
1178
1179 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1180                                      u64 objectid)
1181 {
1182         struct btrfs_fs_info *fs_info = trans->fs_info;
1183         struct extent_buffer *leaf;
1184         struct btrfs_root *tree_root = fs_info->tree_root;
1185         struct btrfs_root *root;
1186         struct btrfs_key key;
1187         unsigned int nofs_flag;
1188         int ret = 0;
1189
1190         /*
1191          * We're holding a transaction handle, so use a NOFS memory allocation
1192          * context to avoid deadlock if reclaim happens.
1193          */
1194         nofs_flag = memalloc_nofs_save();
1195         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1196         memalloc_nofs_restore(nofs_flag);
1197         if (!root)
1198                 return ERR_PTR(-ENOMEM);
1199
1200         root->root_key.objectid = objectid;
1201         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1202         root->root_key.offset = 0;
1203
1204         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1205                                       BTRFS_NESTING_NORMAL);
1206         if (IS_ERR(leaf)) {
1207                 ret = PTR_ERR(leaf);
1208                 leaf = NULL;
1209                 goto fail_unlock;
1210         }
1211
1212         root->node = leaf;
1213         btrfs_mark_buffer_dirty(leaf);
1214
1215         root->commit_root = btrfs_root_node(root);
1216         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1217
1218         btrfs_set_root_flags(&root->root_item, 0);
1219         btrfs_set_root_limit(&root->root_item, 0);
1220         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1221         btrfs_set_root_generation(&root->root_item, trans->transid);
1222         btrfs_set_root_level(&root->root_item, 0);
1223         btrfs_set_root_refs(&root->root_item, 1);
1224         btrfs_set_root_used(&root->root_item, leaf->len);
1225         btrfs_set_root_last_snapshot(&root->root_item, 0);
1226         btrfs_set_root_dirid(&root->root_item, 0);
1227         if (is_fstree(objectid))
1228                 generate_random_guid(root->root_item.uuid);
1229         else
1230                 export_guid(root->root_item.uuid, &guid_null);
1231         btrfs_set_root_drop_level(&root->root_item, 0);
1232
1233         btrfs_tree_unlock(leaf);
1234
1235         key.objectid = objectid;
1236         key.type = BTRFS_ROOT_ITEM_KEY;
1237         key.offset = 0;
1238         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1239         if (ret)
1240                 goto fail;
1241
1242         return root;
1243
1244 fail_unlock:
1245         if (leaf)
1246                 btrfs_tree_unlock(leaf);
1247 fail:
1248         btrfs_put_root(root);
1249
1250         return ERR_PTR(ret);
1251 }
1252
1253 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1254                                          struct btrfs_fs_info *fs_info)
1255 {
1256         struct btrfs_root *root;
1257
1258         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1259         if (!root)
1260                 return ERR_PTR(-ENOMEM);
1261
1262         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1263         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1265
1266         return root;
1267 }
1268
1269 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1270                               struct btrfs_root *root)
1271 {
1272         struct extent_buffer *leaf;
1273
1274         /*
1275          * DON'T set SHAREABLE bit for log trees.
1276          *
1277          * Log trees are not exposed to user space thus can't be snapshotted,
1278          * and they go away before a real commit is actually done.
1279          *
1280          * They do store pointers to file data extents, and those reference
1281          * counts still get updated (along with back refs to the log tree).
1282          */
1283
1284         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1285                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1286         if (IS_ERR(leaf))
1287                 return PTR_ERR(leaf);
1288
1289         root->node = leaf;
1290
1291         btrfs_mark_buffer_dirty(root->node);
1292         btrfs_tree_unlock(root->node);
1293
1294         return 0;
1295 }
1296
1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298                              struct btrfs_fs_info *fs_info)
1299 {
1300         struct btrfs_root *log_root;
1301
1302         log_root = alloc_log_tree(trans, fs_info);
1303         if (IS_ERR(log_root))
1304                 return PTR_ERR(log_root);
1305
1306         if (!btrfs_is_zoned(fs_info)) {
1307                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1308
1309                 if (ret) {
1310                         btrfs_put_root(log_root);
1311                         return ret;
1312                 }
1313         }
1314
1315         WARN_ON(fs_info->log_root_tree);
1316         fs_info->log_root_tree = log_root;
1317         return 0;
1318 }
1319
1320 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1321                        struct btrfs_root *root)
1322 {
1323         struct btrfs_fs_info *fs_info = root->fs_info;
1324         struct btrfs_root *log_root;
1325         struct btrfs_inode_item *inode_item;
1326         int ret;
1327
1328         log_root = alloc_log_tree(trans, fs_info);
1329         if (IS_ERR(log_root))
1330                 return PTR_ERR(log_root);
1331
1332         ret = btrfs_alloc_log_tree_node(trans, log_root);
1333         if (ret) {
1334                 btrfs_put_root(log_root);
1335                 return ret;
1336         }
1337
1338         log_root->last_trans = trans->transid;
1339         log_root->root_key.offset = root->root_key.objectid;
1340
1341         inode_item = &log_root->root_item.inode;
1342         btrfs_set_stack_inode_generation(inode_item, 1);
1343         btrfs_set_stack_inode_size(inode_item, 3);
1344         btrfs_set_stack_inode_nlink(inode_item, 1);
1345         btrfs_set_stack_inode_nbytes(inode_item,
1346                                      fs_info->nodesize);
1347         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1348
1349         btrfs_set_root_node(&log_root->root_item, log_root->node);
1350
1351         WARN_ON(root->log_root);
1352         root->log_root = log_root;
1353         root->log_transid = 0;
1354         root->log_transid_committed = -1;
1355         root->last_log_commit = 0;
1356         return 0;
1357 }
1358
1359 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1360                                               struct btrfs_path *path,
1361                                               struct btrfs_key *key)
1362 {
1363         struct btrfs_root *root;
1364         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1365         u64 generation;
1366         int ret;
1367         int level;
1368
1369         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1370         if (!root)
1371                 return ERR_PTR(-ENOMEM);
1372
1373         ret = btrfs_find_root(tree_root, key, path,
1374                               &root->root_item, &root->root_key);
1375         if (ret) {
1376                 if (ret > 0)
1377                         ret = -ENOENT;
1378                 goto fail;
1379         }
1380
1381         generation = btrfs_root_generation(&root->root_item);
1382         level = btrfs_root_level(&root->root_item);
1383         root->node = read_tree_block(fs_info,
1384                                      btrfs_root_bytenr(&root->root_item),
1385                                      key->objectid, generation, level, NULL);
1386         if (IS_ERR(root->node)) {
1387                 ret = PTR_ERR(root->node);
1388                 root->node = NULL;
1389                 goto fail;
1390         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1391                 ret = -EIO;
1392                 goto fail;
1393         }
1394         root->commit_root = btrfs_root_node(root);
1395         return root;
1396 fail:
1397         btrfs_put_root(root);
1398         return ERR_PTR(ret);
1399 }
1400
1401 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1402                                         struct btrfs_key *key)
1403 {
1404         struct btrfs_root *root;
1405         struct btrfs_path *path;
1406
1407         path = btrfs_alloc_path();
1408         if (!path)
1409                 return ERR_PTR(-ENOMEM);
1410         root = read_tree_root_path(tree_root, path, key);
1411         btrfs_free_path(path);
1412
1413         return root;
1414 }
1415
1416 /*
1417  * Initialize subvolume root in-memory structure
1418  *
1419  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1420  */
1421 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1422 {
1423         int ret;
1424         unsigned int nofs_flag;
1425
1426         /*
1427          * We might be called under a transaction (e.g. indirect backref
1428          * resolution) which could deadlock if it triggers memory reclaim
1429          */
1430         nofs_flag = memalloc_nofs_save();
1431         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1432         memalloc_nofs_restore(nofs_flag);
1433         if (ret)
1434                 goto fail;
1435
1436         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1437             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1439                 btrfs_check_and_init_root_item(&root->root_item);
1440         }
1441
1442         /*
1443          * Don't assign anonymous block device to roots that are not exposed to
1444          * userspace, the id pool is limited to 1M
1445          */
1446         if (is_fstree(root->root_key.objectid) &&
1447             btrfs_root_refs(&root->root_item) > 0) {
1448                 if (!anon_dev) {
1449                         ret = get_anon_bdev(&root->anon_dev);
1450                         if (ret)
1451                                 goto fail;
1452                 } else {
1453                         root->anon_dev = anon_dev;
1454                 }
1455         }
1456
1457         mutex_lock(&root->objectid_mutex);
1458         ret = btrfs_init_root_free_objectid(root);
1459         if (ret) {
1460                 mutex_unlock(&root->objectid_mutex);
1461                 goto fail;
1462         }
1463
1464         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1465
1466         mutex_unlock(&root->objectid_mutex);
1467
1468         return 0;
1469 fail:
1470         /* The caller is responsible to call btrfs_free_fs_root */
1471         return ret;
1472 }
1473
1474 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1475                                                u64 root_id)
1476 {
1477         struct btrfs_root *root;
1478
1479         spin_lock(&fs_info->fs_roots_radix_lock);
1480         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481                                  (unsigned long)root_id);
1482         if (root)
1483                 root = btrfs_grab_root(root);
1484         spin_unlock(&fs_info->fs_roots_radix_lock);
1485         return root;
1486 }
1487
1488 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1489                                                 u64 objectid)
1490 {
1491         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1492                 return btrfs_grab_root(fs_info->tree_root);
1493         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1494                 return btrfs_grab_root(fs_info->extent_root);
1495         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1496                 return btrfs_grab_root(fs_info->chunk_root);
1497         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1498                 return btrfs_grab_root(fs_info->dev_root);
1499         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1500                 return btrfs_grab_root(fs_info->csum_root);
1501         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1502                 return btrfs_grab_root(fs_info->quota_root) ?
1503                         fs_info->quota_root : ERR_PTR(-ENOENT);
1504         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1505                 return btrfs_grab_root(fs_info->uuid_root) ?
1506                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1507         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1508                 return btrfs_grab_root(fs_info->free_space_root) ?
1509                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1510         return NULL;
1511 }
1512
1513 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1514                          struct btrfs_root *root)
1515 {
1516         int ret;
1517
1518         ret = radix_tree_preload(GFP_NOFS);
1519         if (ret)
1520                 return ret;
1521
1522         spin_lock(&fs_info->fs_roots_radix_lock);
1523         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524                                 (unsigned long)root->root_key.objectid,
1525                                 root);
1526         if (ret == 0) {
1527                 btrfs_grab_root(root);
1528                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1529         }
1530         spin_unlock(&fs_info->fs_roots_radix_lock);
1531         radix_tree_preload_end();
1532
1533         return ret;
1534 }
1535
1536 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1537 {
1538 #ifdef CONFIG_BTRFS_DEBUG
1539         struct btrfs_root *root;
1540
1541         while (!list_empty(&fs_info->allocated_roots)) {
1542                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1543
1544                 root = list_first_entry(&fs_info->allocated_roots,
1545                                         struct btrfs_root, leak_list);
1546                 btrfs_err(fs_info, "leaked root %s refcount %d",
1547                           btrfs_root_name(&root->root_key, buf),
1548                           refcount_read(&root->refs));
1549                 while (refcount_read(&root->refs) > 1)
1550                         btrfs_put_root(root);
1551                 btrfs_put_root(root);
1552         }
1553 #endif
1554 }
1555
1556 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1557 {
1558         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1559         percpu_counter_destroy(&fs_info->delalloc_bytes);
1560         percpu_counter_destroy(&fs_info->ordered_bytes);
1561         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1562         btrfs_free_csum_hash(fs_info);
1563         btrfs_free_stripe_hash_table(fs_info);
1564         btrfs_free_ref_cache(fs_info);
1565         kfree(fs_info->balance_ctl);
1566         kfree(fs_info->delayed_root);
1567         btrfs_put_root(fs_info->extent_root);
1568         btrfs_put_root(fs_info->tree_root);
1569         btrfs_put_root(fs_info->chunk_root);
1570         btrfs_put_root(fs_info->dev_root);
1571         btrfs_put_root(fs_info->csum_root);
1572         btrfs_put_root(fs_info->quota_root);
1573         btrfs_put_root(fs_info->uuid_root);
1574         btrfs_put_root(fs_info->free_space_root);
1575         btrfs_put_root(fs_info->fs_root);
1576         btrfs_put_root(fs_info->data_reloc_root);
1577         btrfs_check_leaked_roots(fs_info);
1578         btrfs_extent_buffer_leak_debug_check(fs_info);
1579         kfree(fs_info->super_copy);
1580         kfree(fs_info->super_for_commit);
1581         kvfree(fs_info);
1582 }
1583
1584
1585 /*
1586  * Get an in-memory reference of a root structure.
1587  *
1588  * For essential trees like root/extent tree, we grab it from fs_info directly.
1589  * For subvolume trees, we check the cached filesystem roots first. If not
1590  * found, then read it from disk and add it to cached fs roots.
1591  *
1592  * Caller should release the root by calling btrfs_put_root() after the usage.
1593  *
1594  * NOTE: Reloc and log trees can't be read by this function as they share the
1595  *       same root objectid.
1596  *
1597  * @objectid:   root id
1598  * @anon_dev:   preallocated anonymous block device number for new roots,
1599  *              pass 0 for new allocation.
1600  * @check_ref:  whether to check root item references, If true, return -ENOENT
1601  *              for orphan roots
1602  */
1603 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1604                                              u64 objectid, dev_t anon_dev,
1605                                              bool check_ref)
1606 {
1607         struct btrfs_root *root;
1608         struct btrfs_path *path;
1609         struct btrfs_key key;
1610         int ret;
1611
1612         root = btrfs_get_global_root(fs_info, objectid);
1613         if (root)
1614                 return root;
1615 again:
1616         root = btrfs_lookup_fs_root(fs_info, objectid);
1617         if (root) {
1618                 /* Shouldn't get preallocated anon_dev for cached roots */
1619                 ASSERT(!anon_dev);
1620                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1621                         btrfs_put_root(root);
1622                         return ERR_PTR(-ENOENT);
1623                 }
1624                 return root;
1625         }
1626
1627         key.objectid = objectid;
1628         key.type = BTRFS_ROOT_ITEM_KEY;
1629         key.offset = (u64)-1;
1630         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1631         if (IS_ERR(root))
1632                 return root;
1633
1634         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1635                 ret = -ENOENT;
1636                 goto fail;
1637         }
1638
1639         ret = btrfs_init_fs_root(root, anon_dev);
1640         if (ret)
1641                 goto fail;
1642
1643         path = btrfs_alloc_path();
1644         if (!path) {
1645                 ret = -ENOMEM;
1646                 goto fail;
1647         }
1648         key.objectid = BTRFS_ORPHAN_OBJECTID;
1649         key.type = BTRFS_ORPHAN_ITEM_KEY;
1650         key.offset = objectid;
1651
1652         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1653         btrfs_free_path(path);
1654         if (ret < 0)
1655                 goto fail;
1656         if (ret == 0)
1657                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1658
1659         ret = btrfs_insert_fs_root(fs_info, root);
1660         if (ret) {
1661                 btrfs_put_root(root);
1662                 if (ret == -EEXIST)
1663                         goto again;
1664                 goto fail;
1665         }
1666         return root;
1667 fail:
1668         btrfs_put_root(root);
1669         return ERR_PTR(ret);
1670 }
1671
1672 /*
1673  * Get in-memory reference of a root structure
1674  *
1675  * @objectid:   tree objectid
1676  * @check_ref:  if set, verify that the tree exists and the item has at least
1677  *              one reference
1678  */
1679 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1680                                      u64 objectid, bool check_ref)
1681 {
1682         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1683 }
1684
1685 /*
1686  * Get in-memory reference of a root structure, created as new, optionally pass
1687  * the anonymous block device id
1688  *
1689  * @objectid:   tree objectid
1690  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1691  *              parameter value
1692  */
1693 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1694                                          u64 objectid, dev_t anon_dev)
1695 {
1696         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1697 }
1698
1699 /*
1700  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1701  * @fs_info:    the fs_info
1702  * @objectid:   the objectid we need to lookup
1703  *
1704  * This is exclusively used for backref walking, and exists specifically because
1705  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1706  * creation time, which means we may have to read the tree_root in order to look
1707  * up a fs root that is not in memory.  If the root is not in memory we will
1708  * read the tree root commit root and look up the fs root from there.  This is a
1709  * temporary root, it will not be inserted into the radix tree as it doesn't
1710  * have the most uptodate information, it'll simply be discarded once the
1711  * backref code is finished using the root.
1712  */
1713 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1714                                                  struct btrfs_path *path,
1715                                                  u64 objectid)
1716 {
1717         struct btrfs_root *root;
1718         struct btrfs_key key;
1719
1720         ASSERT(path->search_commit_root && path->skip_locking);
1721
1722         /*
1723          * This can return -ENOENT if we ask for a root that doesn't exist, but
1724          * since this is called via the backref walking code we won't be looking
1725          * up a root that doesn't exist, unless there's corruption.  So if root
1726          * != NULL just return it.
1727          */
1728         root = btrfs_get_global_root(fs_info, objectid);
1729         if (root)
1730                 return root;
1731
1732         root = btrfs_lookup_fs_root(fs_info, objectid);
1733         if (root)
1734                 return root;
1735
1736         key.objectid = objectid;
1737         key.type = BTRFS_ROOT_ITEM_KEY;
1738         key.offset = (u64)-1;
1739         root = read_tree_root_path(fs_info->tree_root, path, &key);
1740         btrfs_release_path(path);
1741
1742         return root;
1743 }
1744
1745 /*
1746  * called by the kthread helper functions to finally call the bio end_io
1747  * functions.  This is where read checksum verification actually happens
1748  */
1749 static void end_workqueue_fn(struct btrfs_work *work)
1750 {
1751         struct bio *bio;
1752         struct btrfs_end_io_wq *end_io_wq;
1753
1754         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1755         bio = end_io_wq->bio;
1756
1757         bio->bi_status = end_io_wq->status;
1758         bio->bi_private = end_io_wq->private;
1759         bio->bi_end_io = end_io_wq->end_io;
1760         bio_endio(bio);
1761         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1762 }
1763
1764 static int cleaner_kthread(void *arg)
1765 {
1766         struct btrfs_root *root = arg;
1767         struct btrfs_fs_info *fs_info = root->fs_info;
1768         int again;
1769
1770         while (1) {
1771                 again = 0;
1772
1773                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1774
1775                 /* Make the cleaner go to sleep early. */
1776                 if (btrfs_need_cleaner_sleep(fs_info))
1777                         goto sleep;
1778
1779                 /*
1780                  * Do not do anything if we might cause open_ctree() to block
1781                  * before we have finished mounting the filesystem.
1782                  */
1783                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1784                         goto sleep;
1785
1786                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1787                         goto sleep;
1788
1789                 /*
1790                  * Avoid the problem that we change the status of the fs
1791                  * during the above check and trylock.
1792                  */
1793                 if (btrfs_need_cleaner_sleep(fs_info)) {
1794                         mutex_unlock(&fs_info->cleaner_mutex);
1795                         goto sleep;
1796                 }
1797
1798                 btrfs_run_delayed_iputs(fs_info);
1799
1800                 again = btrfs_clean_one_deleted_snapshot(root);
1801                 mutex_unlock(&fs_info->cleaner_mutex);
1802
1803                 /*
1804                  * The defragger has dealt with the R/O remount and umount,
1805                  * needn't do anything special here.
1806                  */
1807                 btrfs_run_defrag_inodes(fs_info);
1808
1809                 /*
1810                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1811                  * with relocation (btrfs_relocate_chunk) and relocation
1812                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1813                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1814                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1815                  * unused block groups.
1816                  */
1817                 btrfs_delete_unused_bgs(fs_info);
1818 sleep:
1819                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1820                 if (kthread_should_park())
1821                         kthread_parkme();
1822                 if (kthread_should_stop())
1823                         return 0;
1824                 if (!again) {
1825                         set_current_state(TASK_INTERRUPTIBLE);
1826                         schedule();
1827                         __set_current_state(TASK_RUNNING);
1828                 }
1829         }
1830 }
1831
1832 static int transaction_kthread(void *arg)
1833 {
1834         struct btrfs_root *root = arg;
1835         struct btrfs_fs_info *fs_info = root->fs_info;
1836         struct btrfs_trans_handle *trans;
1837         struct btrfs_transaction *cur;
1838         u64 transid;
1839         time64_t delta;
1840         unsigned long delay;
1841         bool cannot_commit;
1842
1843         do {
1844                 cannot_commit = false;
1845                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1846                 mutex_lock(&fs_info->transaction_kthread_mutex);
1847
1848                 spin_lock(&fs_info->trans_lock);
1849                 cur = fs_info->running_transaction;
1850                 if (!cur) {
1851                         spin_unlock(&fs_info->trans_lock);
1852                         goto sleep;
1853                 }
1854
1855                 delta = ktime_get_seconds() - cur->start_time;
1856                 if (cur->state < TRANS_STATE_COMMIT_START &&
1857                     delta < fs_info->commit_interval) {
1858                         spin_unlock(&fs_info->trans_lock);
1859                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1860                         delay = min(delay,
1861                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1862                         goto sleep;
1863                 }
1864                 transid = cur->transid;
1865                 spin_unlock(&fs_info->trans_lock);
1866
1867                 /* If the file system is aborted, this will always fail. */
1868                 trans = btrfs_attach_transaction(root);
1869                 if (IS_ERR(trans)) {
1870                         if (PTR_ERR(trans) != -ENOENT)
1871                                 cannot_commit = true;
1872                         goto sleep;
1873                 }
1874                 if (transid == trans->transid) {
1875                         btrfs_commit_transaction(trans);
1876                 } else {
1877                         btrfs_end_transaction(trans);
1878                 }
1879 sleep:
1880                 wake_up_process(fs_info->cleaner_kthread);
1881                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1882
1883                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1884                                       &fs_info->fs_state)))
1885                         btrfs_cleanup_transaction(fs_info);
1886                 if (!kthread_should_stop() &&
1887                                 (!btrfs_transaction_blocked(fs_info) ||
1888                                  cannot_commit))
1889                         schedule_timeout_interruptible(delay);
1890         } while (!kthread_should_stop());
1891         return 0;
1892 }
1893
1894 /*
1895  * This will find the highest generation in the array of root backups.  The
1896  * index of the highest array is returned, or -EINVAL if we can't find
1897  * anything.
1898  *
1899  * We check to make sure the array is valid by comparing the
1900  * generation of the latest  root in the array with the generation
1901  * in the super block.  If they don't match we pitch it.
1902  */
1903 static int find_newest_super_backup(struct btrfs_fs_info *info)
1904 {
1905         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1906         u64 cur;
1907         struct btrfs_root_backup *root_backup;
1908         int i;
1909
1910         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1911                 root_backup = info->super_copy->super_roots + i;
1912                 cur = btrfs_backup_tree_root_gen(root_backup);
1913                 if (cur == newest_gen)
1914                         return i;
1915         }
1916
1917         return -EINVAL;
1918 }
1919
1920 /*
1921  * copy all the root pointers into the super backup array.
1922  * this will bump the backup pointer by one when it is
1923  * done
1924  */
1925 static void backup_super_roots(struct btrfs_fs_info *info)
1926 {
1927         const int next_backup = info->backup_root_index;
1928         struct btrfs_root_backup *root_backup;
1929
1930         root_backup = info->super_for_commit->super_roots + next_backup;
1931
1932         /*
1933          * make sure all of our padding and empty slots get zero filled
1934          * regardless of which ones we use today
1935          */
1936         memset(root_backup, 0, sizeof(*root_backup));
1937
1938         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1939
1940         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1941         btrfs_set_backup_tree_root_gen(root_backup,
1942                                btrfs_header_generation(info->tree_root->node));
1943
1944         btrfs_set_backup_tree_root_level(root_backup,
1945                                btrfs_header_level(info->tree_root->node));
1946
1947         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1948         btrfs_set_backup_chunk_root_gen(root_backup,
1949                                btrfs_header_generation(info->chunk_root->node));
1950         btrfs_set_backup_chunk_root_level(root_backup,
1951                                btrfs_header_level(info->chunk_root->node));
1952
1953         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1954         btrfs_set_backup_extent_root_gen(root_backup,
1955                                btrfs_header_generation(info->extent_root->node));
1956         btrfs_set_backup_extent_root_level(root_backup,
1957                                btrfs_header_level(info->extent_root->node));
1958
1959         /*
1960          * we might commit during log recovery, which happens before we set
1961          * the fs_root.  Make sure it is valid before we fill it in.
1962          */
1963         if (info->fs_root && info->fs_root->node) {
1964                 btrfs_set_backup_fs_root(root_backup,
1965                                          info->fs_root->node->start);
1966                 btrfs_set_backup_fs_root_gen(root_backup,
1967                                btrfs_header_generation(info->fs_root->node));
1968                 btrfs_set_backup_fs_root_level(root_backup,
1969                                btrfs_header_level(info->fs_root->node));
1970         }
1971
1972         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1973         btrfs_set_backup_dev_root_gen(root_backup,
1974                                btrfs_header_generation(info->dev_root->node));
1975         btrfs_set_backup_dev_root_level(root_backup,
1976                                        btrfs_header_level(info->dev_root->node));
1977
1978         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1979         btrfs_set_backup_csum_root_gen(root_backup,
1980                                btrfs_header_generation(info->csum_root->node));
1981         btrfs_set_backup_csum_root_level(root_backup,
1982                                btrfs_header_level(info->csum_root->node));
1983
1984         btrfs_set_backup_total_bytes(root_backup,
1985                              btrfs_super_total_bytes(info->super_copy));
1986         btrfs_set_backup_bytes_used(root_backup,
1987                              btrfs_super_bytes_used(info->super_copy));
1988         btrfs_set_backup_num_devices(root_backup,
1989                              btrfs_super_num_devices(info->super_copy));
1990
1991         /*
1992          * if we don't copy this out to the super_copy, it won't get remembered
1993          * for the next commit
1994          */
1995         memcpy(&info->super_copy->super_roots,
1996                &info->super_for_commit->super_roots,
1997                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1998 }
1999
2000 /*
2001  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2002  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2003  *
2004  * fs_info - filesystem whose backup roots need to be read
2005  * priority - priority of backup root required
2006  *
2007  * Returns backup root index on success and -EINVAL otherwise.
2008  */
2009 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2010 {
2011         int backup_index = find_newest_super_backup(fs_info);
2012         struct btrfs_super_block *super = fs_info->super_copy;
2013         struct btrfs_root_backup *root_backup;
2014
2015         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2016                 if (priority == 0)
2017                         return backup_index;
2018
2019                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2020                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2021         } else {
2022                 return -EINVAL;
2023         }
2024
2025         root_backup = super->super_roots + backup_index;
2026
2027         btrfs_set_super_generation(super,
2028                                    btrfs_backup_tree_root_gen(root_backup));
2029         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2030         btrfs_set_super_root_level(super,
2031                                    btrfs_backup_tree_root_level(root_backup));
2032         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2033
2034         /*
2035          * Fixme: the total bytes and num_devices need to match or we should
2036          * need a fsck
2037          */
2038         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2039         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2040
2041         return backup_index;
2042 }
2043
2044 /* helper to cleanup workers */
2045 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2046 {
2047         btrfs_destroy_workqueue(fs_info->fixup_workers);
2048         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2049         btrfs_destroy_workqueue(fs_info->workers);
2050         btrfs_destroy_workqueue(fs_info->endio_workers);
2051         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2052         btrfs_destroy_workqueue(fs_info->rmw_workers);
2053         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2054         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2055         btrfs_destroy_workqueue(fs_info->delayed_workers);
2056         btrfs_destroy_workqueue(fs_info->caching_workers);
2057         btrfs_destroy_workqueue(fs_info->readahead_workers);
2058         btrfs_destroy_workqueue(fs_info->flush_workers);
2059         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2060         if (fs_info->discard_ctl.discard_workers)
2061                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2062         /*
2063          * Now that all other work queues are destroyed, we can safely destroy
2064          * the queues used for metadata I/O, since tasks from those other work
2065          * queues can do metadata I/O operations.
2066          */
2067         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2068         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2069 }
2070
2071 static void free_root_extent_buffers(struct btrfs_root *root)
2072 {
2073         if (root) {
2074                 free_extent_buffer(root->node);
2075                 free_extent_buffer(root->commit_root);
2076                 root->node = NULL;
2077                 root->commit_root = NULL;
2078         }
2079 }
2080
2081 /* helper to cleanup tree roots */
2082 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2083 {
2084         free_root_extent_buffers(info->tree_root);
2085
2086         free_root_extent_buffers(info->dev_root);
2087         free_root_extent_buffers(info->extent_root);
2088         free_root_extent_buffers(info->csum_root);
2089         free_root_extent_buffers(info->quota_root);
2090         free_root_extent_buffers(info->uuid_root);
2091         free_root_extent_buffers(info->fs_root);
2092         free_root_extent_buffers(info->data_reloc_root);
2093         if (free_chunk_root)
2094                 free_root_extent_buffers(info->chunk_root);
2095         free_root_extent_buffers(info->free_space_root);
2096 }
2097
2098 void btrfs_put_root(struct btrfs_root *root)
2099 {
2100         if (!root)
2101                 return;
2102
2103         if (refcount_dec_and_test(&root->refs)) {
2104                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2105                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2106                 if (root->anon_dev)
2107                         free_anon_bdev(root->anon_dev);
2108                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2109                 free_root_extent_buffers(root);
2110 #ifdef CONFIG_BTRFS_DEBUG
2111                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2112                 list_del_init(&root->leak_list);
2113                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2114 #endif
2115                 kfree(root);
2116         }
2117 }
2118
2119 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2120 {
2121         int ret;
2122         struct btrfs_root *gang[8];
2123         int i;
2124
2125         while (!list_empty(&fs_info->dead_roots)) {
2126                 gang[0] = list_entry(fs_info->dead_roots.next,
2127                                      struct btrfs_root, root_list);
2128                 list_del(&gang[0]->root_list);
2129
2130                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2131                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2132                 btrfs_put_root(gang[0]);
2133         }
2134
2135         while (1) {
2136                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137                                              (void **)gang, 0,
2138                                              ARRAY_SIZE(gang));
2139                 if (!ret)
2140                         break;
2141                 for (i = 0; i < ret; i++)
2142                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2143         }
2144 }
2145
2146 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2147 {
2148         mutex_init(&fs_info->scrub_lock);
2149         atomic_set(&fs_info->scrubs_running, 0);
2150         atomic_set(&fs_info->scrub_pause_req, 0);
2151         atomic_set(&fs_info->scrubs_paused, 0);
2152         atomic_set(&fs_info->scrub_cancel_req, 0);
2153         init_waitqueue_head(&fs_info->scrub_pause_wait);
2154         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2155 }
2156
2157 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2158 {
2159         spin_lock_init(&fs_info->balance_lock);
2160         mutex_init(&fs_info->balance_mutex);
2161         atomic_set(&fs_info->balance_pause_req, 0);
2162         atomic_set(&fs_info->balance_cancel_req, 0);
2163         fs_info->balance_ctl = NULL;
2164         init_waitqueue_head(&fs_info->balance_wait_q);
2165 }
2166
2167 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2168 {
2169         struct inode *inode = fs_info->btree_inode;
2170
2171         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2172         set_nlink(inode, 1);
2173         /*
2174          * we set the i_size on the btree inode to the max possible int.
2175          * the real end of the address space is determined by all of
2176          * the devices in the system
2177          */
2178         inode->i_size = OFFSET_MAX;
2179         inode->i_mapping->a_ops = &btree_aops;
2180
2181         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2182         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2183                             IO_TREE_BTREE_INODE_IO, inode);
2184         BTRFS_I(inode)->io_tree.track_uptodate = false;
2185         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2186
2187         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2188         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2189         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2190         btrfs_insert_inode_hash(inode);
2191 }
2192
2193 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2194 {
2195         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2196         init_rwsem(&fs_info->dev_replace.rwsem);
2197         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2198 }
2199
2200 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2201 {
2202         spin_lock_init(&fs_info->qgroup_lock);
2203         mutex_init(&fs_info->qgroup_ioctl_lock);
2204         fs_info->qgroup_tree = RB_ROOT;
2205         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2206         fs_info->qgroup_seq = 1;
2207         fs_info->qgroup_ulist = NULL;
2208         fs_info->qgroup_rescan_running = false;
2209         mutex_init(&fs_info->qgroup_rescan_lock);
2210 }
2211
2212 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2213                 struct btrfs_fs_devices *fs_devices)
2214 {
2215         u32 max_active = fs_info->thread_pool_size;
2216         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2217
2218         fs_info->workers =
2219                 btrfs_alloc_workqueue(fs_info, "worker",
2220                                       flags | WQ_HIGHPRI, max_active, 16);
2221
2222         fs_info->delalloc_workers =
2223                 btrfs_alloc_workqueue(fs_info, "delalloc",
2224                                       flags, max_active, 2);
2225
2226         fs_info->flush_workers =
2227                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2228                                       flags, max_active, 0);
2229
2230         fs_info->caching_workers =
2231                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2232
2233         fs_info->fixup_workers =
2234                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2235
2236         /*
2237          * endios are largely parallel and should have a very
2238          * low idle thresh
2239          */
2240         fs_info->endio_workers =
2241                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2242         fs_info->endio_meta_workers =
2243                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2244                                       max_active, 4);
2245         fs_info->endio_meta_write_workers =
2246                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2247                                       max_active, 2);
2248         fs_info->endio_raid56_workers =
2249                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2250                                       max_active, 4);
2251         fs_info->rmw_workers =
2252                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2253         fs_info->endio_write_workers =
2254                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2255                                       max_active, 2);
2256         fs_info->endio_freespace_worker =
2257                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2258                                       max_active, 0);
2259         fs_info->delayed_workers =
2260                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2261                                       max_active, 0);
2262         fs_info->readahead_workers =
2263                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2264                                       max_active, 2);
2265         fs_info->qgroup_rescan_workers =
2266                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2267         fs_info->discard_ctl.discard_workers =
2268                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2269
2270         if (!(fs_info->workers && fs_info->delalloc_workers &&
2271               fs_info->flush_workers &&
2272               fs_info->endio_workers && fs_info->endio_meta_workers &&
2273               fs_info->endio_meta_write_workers &&
2274               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2275               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2276               fs_info->caching_workers && fs_info->readahead_workers &&
2277               fs_info->fixup_workers && fs_info->delayed_workers &&
2278               fs_info->qgroup_rescan_workers &&
2279               fs_info->discard_ctl.discard_workers)) {
2280                 return -ENOMEM;
2281         }
2282
2283         return 0;
2284 }
2285
2286 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2287 {
2288         struct crypto_shash *csum_shash;
2289         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2290
2291         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2292
2293         if (IS_ERR(csum_shash)) {
2294                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2295                           csum_driver);
2296                 return PTR_ERR(csum_shash);
2297         }
2298
2299         fs_info->csum_shash = csum_shash;
2300
2301         return 0;
2302 }
2303
2304 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2305                             struct btrfs_fs_devices *fs_devices)
2306 {
2307         int ret;
2308         struct btrfs_root *log_tree_root;
2309         struct btrfs_super_block *disk_super = fs_info->super_copy;
2310         u64 bytenr = btrfs_super_log_root(disk_super);
2311         int level = btrfs_super_log_root_level(disk_super);
2312
2313         if (fs_devices->rw_devices == 0) {
2314                 btrfs_warn(fs_info, "log replay required on RO media");
2315                 return -EIO;
2316         }
2317
2318         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2319                                          GFP_KERNEL);
2320         if (!log_tree_root)
2321                 return -ENOMEM;
2322
2323         log_tree_root->node = read_tree_block(fs_info, bytenr,
2324                                               BTRFS_TREE_LOG_OBJECTID,
2325                                               fs_info->generation + 1, level,
2326                                               NULL);
2327         if (IS_ERR(log_tree_root->node)) {
2328                 btrfs_warn(fs_info, "failed to read log tree");
2329                 ret = PTR_ERR(log_tree_root->node);
2330                 log_tree_root->node = NULL;
2331                 btrfs_put_root(log_tree_root);
2332                 return ret;
2333         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2334                 btrfs_err(fs_info, "failed to read log tree");
2335                 btrfs_put_root(log_tree_root);
2336                 return -EIO;
2337         }
2338         /* returns with log_tree_root freed on success */
2339         ret = btrfs_recover_log_trees(log_tree_root);
2340         if (ret) {
2341                 btrfs_handle_fs_error(fs_info, ret,
2342                                       "Failed to recover log tree");
2343                 btrfs_put_root(log_tree_root);
2344                 return ret;
2345         }
2346
2347         if (sb_rdonly(fs_info->sb)) {
2348                 ret = btrfs_commit_super(fs_info);
2349                 if (ret)
2350                         return ret;
2351         }
2352
2353         return 0;
2354 }
2355
2356 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2357 {
2358         struct btrfs_root *tree_root = fs_info->tree_root;
2359         struct btrfs_root *root;
2360         struct btrfs_key location;
2361         int ret;
2362
2363         BUG_ON(!fs_info->tree_root);
2364
2365         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2366         location.type = BTRFS_ROOT_ITEM_KEY;
2367         location.offset = 0;
2368
2369         root = btrfs_read_tree_root(tree_root, &location);
2370         if (IS_ERR(root)) {
2371                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2372                         ret = PTR_ERR(root);
2373                         goto out;
2374                 }
2375         } else {
2376                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377                 fs_info->extent_root = root;
2378         }
2379
2380         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2381         root = btrfs_read_tree_root(tree_root, &location);
2382         if (IS_ERR(root)) {
2383                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2384                         ret = PTR_ERR(root);
2385                         goto out;
2386                 }
2387         } else {
2388                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389                 fs_info->dev_root = root;
2390         }
2391         /* Initialize fs_info for all devices in any case */
2392         btrfs_init_devices_late(fs_info);
2393
2394         /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2395         if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2396                 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2397                 root = btrfs_read_tree_root(tree_root, &location);
2398                 if (IS_ERR(root)) {
2399                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2400                                 ret = PTR_ERR(root);
2401                                 goto out;
2402                         }
2403                 } else {
2404                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2405                         fs_info->csum_root = root;
2406                 }
2407         }
2408
2409         /*
2410          * This tree can share blocks with some other fs tree during relocation
2411          * and we need a proper setup by btrfs_get_fs_root
2412          */
2413         root = btrfs_get_fs_root(tree_root->fs_info,
2414                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2415         if (IS_ERR(root)) {
2416                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2417                         ret = PTR_ERR(root);
2418                         goto out;
2419                 }
2420         } else {
2421                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2422                 fs_info->data_reloc_root = root;
2423         }
2424
2425         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2426         root = btrfs_read_tree_root(tree_root, &location);
2427         if (!IS_ERR(root)) {
2428                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2429                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2430                 fs_info->quota_root = root;
2431         }
2432
2433         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2434         root = btrfs_read_tree_root(tree_root, &location);
2435         if (IS_ERR(root)) {
2436                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2437                         ret = PTR_ERR(root);
2438                         if (ret != -ENOENT)
2439                                 goto out;
2440                 }
2441         } else {
2442                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2443                 fs_info->uuid_root = root;
2444         }
2445
2446         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2447                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2448                 root = btrfs_read_tree_root(tree_root, &location);
2449                 if (IS_ERR(root)) {
2450                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2451                                 ret = PTR_ERR(root);
2452                                 goto out;
2453                         }
2454                 }  else {
2455                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2456                         fs_info->free_space_root = root;
2457                 }
2458         }
2459
2460         return 0;
2461 out:
2462         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2463                    location.objectid, ret);
2464         return ret;
2465 }
2466
2467 /*
2468  * Real super block validation
2469  * NOTE: super csum type and incompat features will not be checked here.
2470  *
2471  * @sb:         super block to check
2472  * @mirror_num: the super block number to check its bytenr:
2473  *              0       the primary (1st) sb
2474  *              1, 2    2nd and 3rd backup copy
2475  *             -1       skip bytenr check
2476  */
2477 static int validate_super(struct btrfs_fs_info *fs_info,
2478                             struct btrfs_super_block *sb, int mirror_num)
2479 {
2480         u64 nodesize = btrfs_super_nodesize(sb);
2481         u64 sectorsize = btrfs_super_sectorsize(sb);
2482         int ret = 0;
2483
2484         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2485                 btrfs_err(fs_info, "no valid FS found");
2486                 ret = -EINVAL;
2487         }
2488         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2489                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2490                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2491                 ret = -EINVAL;
2492         }
2493         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2494                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2495                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2496                 ret = -EINVAL;
2497         }
2498         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2499                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2500                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2501                 ret = -EINVAL;
2502         }
2503         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2504                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2505                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2506                 ret = -EINVAL;
2507         }
2508
2509         /*
2510          * Check sectorsize and nodesize first, other check will need it.
2511          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2512          */
2513         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2514             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2515                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2516                 ret = -EINVAL;
2517         }
2518
2519         /*
2520          * For 4K page size, we only support 4K sector size.
2521          * For 64K page size, we support read-write for 64K sector size, and
2522          * read-only for 4K sector size.
2523          */
2524         if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2525             (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2526                                      sectorsize != SZ_64K))) {
2527                 btrfs_err(fs_info,
2528                         "sectorsize %llu not yet supported for page size %lu",
2529                         sectorsize, PAGE_SIZE);
2530                 ret = -EINVAL;
2531         }
2532
2533         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2534             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2535                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2536                 ret = -EINVAL;
2537         }
2538         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2539                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2540                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2541                 ret = -EINVAL;
2542         }
2543
2544         /* Root alignment check */
2545         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2546                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2547                            btrfs_super_root(sb));
2548                 ret = -EINVAL;
2549         }
2550         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2551                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2552                            btrfs_super_chunk_root(sb));
2553                 ret = -EINVAL;
2554         }
2555         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2556                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2557                            btrfs_super_log_root(sb));
2558                 ret = -EINVAL;
2559         }
2560
2561         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2562                    BTRFS_FSID_SIZE) != 0) {
2563                 btrfs_err(fs_info,
2564                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2565                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2566                 ret = -EINVAL;
2567         }
2568
2569         /*
2570          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2571          * done later
2572          */
2573         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2574                 btrfs_err(fs_info, "bytes_used is too small %llu",
2575                           btrfs_super_bytes_used(sb));
2576                 ret = -EINVAL;
2577         }
2578         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2579                 btrfs_err(fs_info, "invalid stripesize %u",
2580                           btrfs_super_stripesize(sb));
2581                 ret = -EINVAL;
2582         }
2583         if (btrfs_super_num_devices(sb) > (1UL << 31))
2584                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2585                            btrfs_super_num_devices(sb));
2586         if (btrfs_super_num_devices(sb) == 0) {
2587                 btrfs_err(fs_info, "number of devices is 0");
2588                 ret = -EINVAL;
2589         }
2590
2591         if (mirror_num >= 0 &&
2592             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2593                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2594                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2595                 ret = -EINVAL;
2596         }
2597
2598         /*
2599          * Obvious sys_chunk_array corruptions, it must hold at least one key
2600          * and one chunk
2601          */
2602         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2603                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2604                           btrfs_super_sys_array_size(sb),
2605                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2606                 ret = -EINVAL;
2607         }
2608         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2609                         + sizeof(struct btrfs_chunk)) {
2610                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2611                           btrfs_super_sys_array_size(sb),
2612                           sizeof(struct btrfs_disk_key)
2613                           + sizeof(struct btrfs_chunk));
2614                 ret = -EINVAL;
2615         }
2616
2617         /*
2618          * The generation is a global counter, we'll trust it more than the others
2619          * but it's still possible that it's the one that's wrong.
2620          */
2621         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2622                 btrfs_warn(fs_info,
2623                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2624                         btrfs_super_generation(sb),
2625                         btrfs_super_chunk_root_generation(sb));
2626         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2627             && btrfs_super_cache_generation(sb) != (u64)-1)
2628                 btrfs_warn(fs_info,
2629                         "suspicious: generation < cache_generation: %llu < %llu",
2630                         btrfs_super_generation(sb),
2631                         btrfs_super_cache_generation(sb));
2632
2633         return ret;
2634 }
2635
2636 /*
2637  * Validation of super block at mount time.
2638  * Some checks already done early at mount time, like csum type and incompat
2639  * flags will be skipped.
2640  */
2641 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2642 {
2643         return validate_super(fs_info, fs_info->super_copy, 0);
2644 }
2645
2646 /*
2647  * Validation of super block at write time.
2648  * Some checks like bytenr check will be skipped as their values will be
2649  * overwritten soon.
2650  * Extra checks like csum type and incompat flags will be done here.
2651  */
2652 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2653                                       struct btrfs_super_block *sb)
2654 {
2655         int ret;
2656
2657         ret = validate_super(fs_info, sb, -1);
2658         if (ret < 0)
2659                 goto out;
2660         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2661                 ret = -EUCLEAN;
2662                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2663                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2664                 goto out;
2665         }
2666         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2667                 ret = -EUCLEAN;
2668                 btrfs_err(fs_info,
2669                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2670                           btrfs_super_incompat_flags(sb),
2671                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2672                 goto out;
2673         }
2674 out:
2675         if (ret < 0)
2676                 btrfs_err(fs_info,
2677                 "super block corruption detected before writing it to disk");
2678         return ret;
2679 }
2680
2681 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2682 {
2683         int backup_index = find_newest_super_backup(fs_info);
2684         struct btrfs_super_block *sb = fs_info->super_copy;
2685         struct btrfs_root *tree_root = fs_info->tree_root;
2686         bool handle_error = false;
2687         int ret = 0;
2688         int i;
2689
2690         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2691                 u64 generation;
2692                 int level;
2693
2694                 if (handle_error) {
2695                         if (!IS_ERR(tree_root->node))
2696                                 free_extent_buffer(tree_root->node);
2697                         tree_root->node = NULL;
2698
2699                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2700                                 break;
2701
2702                         free_root_pointers(fs_info, 0);
2703
2704                         /*
2705                          * Don't use the log in recovery mode, it won't be
2706                          * valid
2707                          */
2708                         btrfs_set_super_log_root(sb, 0);
2709
2710                         /* We can't trust the free space cache either */
2711                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2712
2713                         ret = read_backup_root(fs_info, i);
2714                         backup_index = ret;
2715                         if (ret < 0)
2716                                 return ret;
2717                 }
2718                 generation = btrfs_super_generation(sb);
2719                 level = btrfs_super_root_level(sb);
2720                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2721                                                   BTRFS_ROOT_TREE_OBJECTID,
2722                                                   generation, level, NULL);
2723                 if (IS_ERR(tree_root->node)) {
2724                         handle_error = true;
2725                         ret = PTR_ERR(tree_root->node);
2726                         tree_root->node = NULL;
2727                         btrfs_warn(fs_info, "couldn't read tree root");
2728                         continue;
2729
2730                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2731                         handle_error = true;
2732                         ret = -EIO;
2733                         btrfs_warn(fs_info, "error while reading tree root");
2734                         continue;
2735                 }
2736
2737                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2738                 tree_root->commit_root = btrfs_root_node(tree_root);
2739                 btrfs_set_root_refs(&tree_root->root_item, 1);
2740
2741                 /*
2742                  * No need to hold btrfs_root::objectid_mutex since the fs
2743                  * hasn't been fully initialised and we are the only user
2744                  */
2745                 ret = btrfs_init_root_free_objectid(tree_root);
2746                 if (ret < 0) {
2747                         handle_error = true;
2748                         continue;
2749                 }
2750
2751                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2752
2753                 ret = btrfs_read_roots(fs_info);
2754                 if (ret < 0) {
2755                         handle_error = true;
2756                         continue;
2757                 }
2758
2759                 /* All successful */
2760                 fs_info->generation = generation;
2761                 fs_info->last_trans_committed = generation;
2762
2763                 /* Always begin writing backup roots after the one being used */
2764                 if (backup_index < 0) {
2765                         fs_info->backup_root_index = 0;
2766                 } else {
2767                         fs_info->backup_root_index = backup_index + 1;
2768                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2769                 }
2770                 break;
2771         }
2772
2773         return ret;
2774 }
2775
2776 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2777 {
2778         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2779         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2780         INIT_LIST_HEAD(&fs_info->trans_list);
2781         INIT_LIST_HEAD(&fs_info->dead_roots);
2782         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2783         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2784         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2785         spin_lock_init(&fs_info->delalloc_root_lock);
2786         spin_lock_init(&fs_info->trans_lock);
2787         spin_lock_init(&fs_info->fs_roots_radix_lock);
2788         spin_lock_init(&fs_info->delayed_iput_lock);
2789         spin_lock_init(&fs_info->defrag_inodes_lock);
2790         spin_lock_init(&fs_info->super_lock);
2791         spin_lock_init(&fs_info->buffer_lock);
2792         spin_lock_init(&fs_info->unused_bgs_lock);
2793         spin_lock_init(&fs_info->treelog_bg_lock);
2794         rwlock_init(&fs_info->tree_mod_log_lock);
2795         mutex_init(&fs_info->unused_bg_unpin_mutex);
2796         mutex_init(&fs_info->delete_unused_bgs_mutex);
2797         mutex_init(&fs_info->reloc_mutex);
2798         mutex_init(&fs_info->delalloc_root_mutex);
2799         mutex_init(&fs_info->zoned_meta_io_lock);
2800         seqlock_init(&fs_info->profiles_lock);
2801
2802         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2803         INIT_LIST_HEAD(&fs_info->space_info);
2804         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2805         INIT_LIST_HEAD(&fs_info->unused_bgs);
2806 #ifdef CONFIG_BTRFS_DEBUG
2807         INIT_LIST_HEAD(&fs_info->allocated_roots);
2808         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2809         spin_lock_init(&fs_info->eb_leak_lock);
2810 #endif
2811         extent_map_tree_init(&fs_info->mapping_tree);
2812         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2813                              BTRFS_BLOCK_RSV_GLOBAL);
2814         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2815         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2816         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2817         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2818                              BTRFS_BLOCK_RSV_DELOPS);
2819         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2820                              BTRFS_BLOCK_RSV_DELREFS);
2821
2822         atomic_set(&fs_info->async_delalloc_pages, 0);
2823         atomic_set(&fs_info->defrag_running, 0);
2824         atomic_set(&fs_info->reada_works_cnt, 0);
2825         atomic_set(&fs_info->nr_delayed_iputs, 0);
2826         atomic64_set(&fs_info->tree_mod_seq, 0);
2827         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2828         fs_info->metadata_ratio = 0;
2829         fs_info->defrag_inodes = RB_ROOT;
2830         atomic64_set(&fs_info->free_chunk_space, 0);
2831         fs_info->tree_mod_log = RB_ROOT;
2832         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2833         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2834         /* readahead state */
2835         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2836         spin_lock_init(&fs_info->reada_lock);
2837         btrfs_init_ref_verify(fs_info);
2838
2839         fs_info->thread_pool_size = min_t(unsigned long,
2840                                           num_online_cpus() + 2, 8);
2841
2842         INIT_LIST_HEAD(&fs_info->ordered_roots);
2843         spin_lock_init(&fs_info->ordered_root_lock);
2844
2845         btrfs_init_scrub(fs_info);
2846 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2847         fs_info->check_integrity_print_mask = 0;
2848 #endif
2849         btrfs_init_balance(fs_info);
2850         btrfs_init_async_reclaim_work(fs_info);
2851
2852         spin_lock_init(&fs_info->block_group_cache_lock);
2853         fs_info->block_group_cache_tree = RB_ROOT;
2854         fs_info->first_logical_byte = (u64)-1;
2855
2856         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2857                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2858         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2859
2860         mutex_init(&fs_info->ordered_operations_mutex);
2861         mutex_init(&fs_info->tree_log_mutex);
2862         mutex_init(&fs_info->chunk_mutex);
2863         mutex_init(&fs_info->transaction_kthread_mutex);
2864         mutex_init(&fs_info->cleaner_mutex);
2865         mutex_init(&fs_info->ro_block_group_mutex);
2866         init_rwsem(&fs_info->commit_root_sem);
2867         init_rwsem(&fs_info->cleanup_work_sem);
2868         init_rwsem(&fs_info->subvol_sem);
2869         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2870
2871         btrfs_init_dev_replace_locks(fs_info);
2872         btrfs_init_qgroup(fs_info);
2873         btrfs_discard_init(fs_info);
2874
2875         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2876         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2877
2878         init_waitqueue_head(&fs_info->transaction_throttle);
2879         init_waitqueue_head(&fs_info->transaction_wait);
2880         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2881         init_waitqueue_head(&fs_info->async_submit_wait);
2882         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2883
2884         /* Usable values until the real ones are cached from the superblock */
2885         fs_info->nodesize = 4096;
2886         fs_info->sectorsize = 4096;
2887         fs_info->sectorsize_bits = ilog2(4096);
2888         fs_info->stripesize = 4096;
2889
2890         spin_lock_init(&fs_info->swapfile_pins_lock);
2891         fs_info->swapfile_pins = RB_ROOT;
2892
2893         fs_info->send_in_progress = 0;
2894 }
2895
2896 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2897 {
2898         int ret;
2899
2900         fs_info->sb = sb;
2901         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2902         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2903
2904         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2905         if (ret)
2906                 return ret;
2907
2908         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2909         if (ret)
2910                 return ret;
2911
2912         fs_info->dirty_metadata_batch = PAGE_SIZE *
2913                                         (1 + ilog2(nr_cpu_ids));
2914
2915         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2916         if (ret)
2917                 return ret;
2918
2919         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2920                         GFP_KERNEL);
2921         if (ret)
2922                 return ret;
2923
2924         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2925                                         GFP_KERNEL);
2926         if (!fs_info->delayed_root)
2927                 return -ENOMEM;
2928         btrfs_init_delayed_root(fs_info->delayed_root);
2929
2930         if (sb_rdonly(sb))
2931                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2932
2933         return btrfs_alloc_stripe_hash_table(fs_info);
2934 }
2935
2936 static int btrfs_uuid_rescan_kthread(void *data)
2937 {
2938         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2939         int ret;
2940
2941         /*
2942          * 1st step is to iterate through the existing UUID tree and
2943          * to delete all entries that contain outdated data.
2944          * 2nd step is to add all missing entries to the UUID tree.
2945          */
2946         ret = btrfs_uuid_tree_iterate(fs_info);
2947         if (ret < 0) {
2948                 if (ret != -EINTR)
2949                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2950                                    ret);
2951                 up(&fs_info->uuid_tree_rescan_sem);
2952                 return ret;
2953         }
2954         return btrfs_uuid_scan_kthread(data);
2955 }
2956
2957 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2958 {
2959         struct task_struct *task;
2960
2961         down(&fs_info->uuid_tree_rescan_sem);
2962         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2963         if (IS_ERR(task)) {
2964                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2965                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2966                 up(&fs_info->uuid_tree_rescan_sem);
2967                 return PTR_ERR(task);
2968         }
2969
2970         return 0;
2971 }
2972
2973 /*
2974  * Some options only have meaning at mount time and shouldn't persist across
2975  * remounts, or be displayed. Clear these at the end of mount and remount
2976  * code paths.
2977  */
2978 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2979 {
2980         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2981         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2982 }
2983
2984 /*
2985  * Mounting logic specific to read-write file systems. Shared by open_ctree
2986  * and btrfs_remount when remounting from read-only to read-write.
2987  */
2988 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2989 {
2990         int ret;
2991         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2992         bool clear_free_space_tree = false;
2993
2994         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2995             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2996                 clear_free_space_tree = true;
2997         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2998                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2999                 btrfs_warn(fs_info, "free space tree is invalid");
3000                 clear_free_space_tree = true;
3001         }
3002
3003         if (clear_free_space_tree) {
3004                 btrfs_info(fs_info, "clearing free space tree");
3005                 ret = btrfs_clear_free_space_tree(fs_info);
3006                 if (ret) {
3007                         btrfs_warn(fs_info,
3008                                    "failed to clear free space tree: %d", ret);
3009                         goto out;
3010                 }
3011         }
3012
3013         /*
3014          * btrfs_find_orphan_roots() is responsible for finding all the dead
3015          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3016          * them into the fs_info->fs_roots_radix tree. This must be done before
3017          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3018          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3019          * item before the root's tree is deleted - this means that if we unmount
3020          * or crash before the deletion completes, on the next mount we will not
3021          * delete what remains of the tree because the orphan item does not
3022          * exists anymore, which is what tells us we have a pending deletion.
3023          */
3024         ret = btrfs_find_orphan_roots(fs_info);
3025         if (ret)
3026                 goto out;
3027
3028         ret = btrfs_cleanup_fs_roots(fs_info);
3029         if (ret)
3030                 goto out;
3031
3032         down_read(&fs_info->cleanup_work_sem);
3033         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3034             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3035                 up_read(&fs_info->cleanup_work_sem);
3036                 goto out;
3037         }
3038         up_read(&fs_info->cleanup_work_sem);
3039
3040         mutex_lock(&fs_info->cleaner_mutex);
3041         ret = btrfs_recover_relocation(fs_info->tree_root);
3042         mutex_unlock(&fs_info->cleaner_mutex);
3043         if (ret < 0) {
3044                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3045                 goto out;
3046         }
3047
3048         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3049             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3050                 btrfs_info(fs_info, "creating free space tree");
3051                 ret = btrfs_create_free_space_tree(fs_info);
3052                 if (ret) {
3053                         btrfs_warn(fs_info,
3054                                 "failed to create free space tree: %d", ret);
3055                         goto out;
3056                 }
3057         }
3058
3059         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3060                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3061                 if (ret)
3062                         goto out;
3063         }
3064
3065         ret = btrfs_resume_balance_async(fs_info);
3066         if (ret)
3067                 goto out;
3068
3069         ret = btrfs_resume_dev_replace_async(fs_info);
3070         if (ret) {
3071                 btrfs_warn(fs_info, "failed to resume dev_replace");
3072                 goto out;
3073         }
3074
3075         btrfs_qgroup_rescan_resume(fs_info);
3076
3077         if (!fs_info->uuid_root) {
3078                 btrfs_info(fs_info, "creating UUID tree");
3079                 ret = btrfs_create_uuid_tree(fs_info);
3080                 if (ret) {
3081                         btrfs_warn(fs_info,
3082                                    "failed to create the UUID tree %d", ret);
3083                         goto out;
3084                 }
3085         }
3086
3087 out:
3088         return ret;
3089 }
3090
3091 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3092                       char *options)
3093 {
3094         u32 sectorsize;
3095         u32 nodesize;
3096         u32 stripesize;
3097         u64 generation;
3098         u64 features;
3099         u16 csum_type;
3100         struct btrfs_super_block *disk_super;
3101         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3102         struct btrfs_root *tree_root;
3103         struct btrfs_root *chunk_root;
3104         int ret;
3105         int err = -EINVAL;
3106         int level;
3107
3108         ret = init_mount_fs_info(fs_info, sb);
3109         if (ret) {
3110                 err = ret;
3111                 goto fail;
3112         }
3113
3114         /* These need to be init'ed before we start creating inodes and such. */
3115         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3116                                      GFP_KERNEL);
3117         fs_info->tree_root = tree_root;
3118         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3119                                       GFP_KERNEL);
3120         fs_info->chunk_root = chunk_root;
3121         if (!tree_root || !chunk_root) {
3122                 err = -ENOMEM;
3123                 goto fail;
3124         }
3125
3126         fs_info->btree_inode = new_inode(sb);
3127         if (!fs_info->btree_inode) {
3128                 err = -ENOMEM;
3129                 goto fail;
3130         }
3131         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3132         btrfs_init_btree_inode(fs_info);
3133
3134         invalidate_bdev(fs_devices->latest_bdev);
3135
3136         /*
3137          * Read super block and check the signature bytes only
3138          */
3139         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3140         if (IS_ERR(disk_super)) {
3141                 err = PTR_ERR(disk_super);
3142                 goto fail_alloc;
3143         }
3144
3145         /*
3146          * Verify the type first, if that or the checksum value are
3147          * corrupted, we'll find out
3148          */
3149         csum_type = btrfs_super_csum_type(disk_super);
3150         if (!btrfs_supported_super_csum(csum_type)) {
3151                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3152                           csum_type);
3153                 err = -EINVAL;
3154                 btrfs_release_disk_super(disk_super);
3155                 goto fail_alloc;
3156         }
3157
3158         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3159
3160         ret = btrfs_init_csum_hash(fs_info, csum_type);
3161         if (ret) {
3162                 err = ret;
3163                 btrfs_release_disk_super(disk_super);
3164                 goto fail_alloc;
3165         }
3166
3167         /*
3168          * We want to check superblock checksum, the type is stored inside.
3169          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3170          */
3171         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3172                 btrfs_err(fs_info, "superblock checksum mismatch");
3173                 err = -EINVAL;
3174                 btrfs_release_disk_super(disk_super);
3175                 goto fail_alloc;
3176         }
3177
3178         /*
3179          * super_copy is zeroed at allocation time and we never touch the
3180          * following bytes up to INFO_SIZE, the checksum is calculated from
3181          * the whole block of INFO_SIZE
3182          */
3183         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3184         btrfs_release_disk_super(disk_super);
3185
3186         disk_super = fs_info->super_copy;
3187
3188         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3189                        BTRFS_FSID_SIZE));
3190
3191         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3192                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3193                                 fs_info->super_copy->metadata_uuid,
3194                                 BTRFS_FSID_SIZE));
3195         }
3196
3197         features = btrfs_super_flags(disk_super);
3198         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3199                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3200                 btrfs_set_super_flags(disk_super, features);
3201                 btrfs_info(fs_info,
3202                         "found metadata UUID change in progress flag, clearing");
3203         }
3204
3205         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3206                sizeof(*fs_info->super_for_commit));
3207
3208         ret = btrfs_validate_mount_super(fs_info);
3209         if (ret) {
3210                 btrfs_err(fs_info, "superblock contains fatal errors");
3211                 err = -EINVAL;
3212                 goto fail_alloc;
3213         }
3214
3215         if (!btrfs_super_root(disk_super))
3216                 goto fail_alloc;
3217
3218         /* check FS state, whether FS is broken. */
3219         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3220                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3221
3222         /*
3223          * In the long term, we'll store the compression type in the super
3224          * block, and it'll be used for per file compression control.
3225          */
3226         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3227
3228         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3229         if (ret) {
3230                 err = ret;
3231                 goto fail_alloc;
3232         }
3233
3234         features = btrfs_super_incompat_flags(disk_super) &
3235                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3236         if (features) {
3237                 btrfs_err(fs_info,
3238                     "cannot mount because of unsupported optional features (%llx)",
3239                     features);
3240                 err = -EINVAL;
3241                 goto fail_alloc;
3242         }
3243
3244         features = btrfs_super_incompat_flags(disk_super);
3245         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3246         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3247                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3248         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3249                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3250
3251         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3252                 btrfs_info(fs_info, "has skinny extents");
3253
3254         /*
3255          * flag our filesystem as having big metadata blocks if
3256          * they are bigger than the page size
3257          */
3258         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3259                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3260                         btrfs_info(fs_info,
3261                                 "flagging fs with big metadata feature");
3262                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3263         }
3264
3265         nodesize = btrfs_super_nodesize(disk_super);
3266         sectorsize = btrfs_super_sectorsize(disk_super);
3267         stripesize = sectorsize;
3268         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3269         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3270
3271         /* Cache block sizes */
3272         fs_info->nodesize = nodesize;
3273         fs_info->sectorsize = sectorsize;
3274         fs_info->sectorsize_bits = ilog2(sectorsize);
3275         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3276         fs_info->stripesize = stripesize;
3277
3278         /*
3279          * mixed block groups end up with duplicate but slightly offset
3280          * extent buffers for the same range.  It leads to corruptions
3281          */
3282         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3283             (sectorsize != nodesize)) {
3284                 btrfs_err(fs_info,
3285 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3286                         nodesize, sectorsize);
3287                 goto fail_alloc;
3288         }
3289
3290         /*
3291          * Needn't use the lock because there is no other task which will
3292          * update the flag.
3293          */
3294         btrfs_set_super_incompat_flags(disk_super, features);
3295
3296         features = btrfs_super_compat_ro_flags(disk_super) &
3297                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3298         if (!sb_rdonly(sb) && features) {
3299                 btrfs_err(fs_info,
3300         "cannot mount read-write because of unsupported optional features (%llx)",
3301                        features);
3302                 err = -EINVAL;
3303                 goto fail_alloc;
3304         }
3305
3306         /* For 4K sector size support, it's only read-only */
3307         if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3308                 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3309                         btrfs_err(fs_info,
3310         "subpage sectorsize %u only supported read-only for page size %lu",
3311                                 sectorsize, PAGE_SIZE);
3312                         err = -EINVAL;
3313                         goto fail_alloc;
3314                 }
3315         }
3316
3317         ret = btrfs_init_workqueues(fs_info, fs_devices);
3318         if (ret) {
3319                 err = ret;
3320                 goto fail_sb_buffer;
3321         }
3322
3323         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3324         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3325
3326         sb->s_blocksize = sectorsize;
3327         sb->s_blocksize_bits = blksize_bits(sectorsize);
3328         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3329
3330         mutex_lock(&fs_info->chunk_mutex);
3331         ret = btrfs_read_sys_array(fs_info);
3332         mutex_unlock(&fs_info->chunk_mutex);
3333         if (ret) {
3334                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3335                 goto fail_sb_buffer;
3336         }
3337
3338         generation = btrfs_super_chunk_root_generation(disk_super);
3339         level = btrfs_super_chunk_root_level(disk_super);
3340
3341         chunk_root->node = read_tree_block(fs_info,
3342                                            btrfs_super_chunk_root(disk_super),
3343                                            BTRFS_CHUNK_TREE_OBJECTID,
3344                                            generation, level, NULL);
3345         if (IS_ERR(chunk_root->node) ||
3346             !extent_buffer_uptodate(chunk_root->node)) {
3347                 btrfs_err(fs_info, "failed to read chunk root");
3348                 if (!IS_ERR(chunk_root->node))
3349                         free_extent_buffer(chunk_root->node);
3350                 chunk_root->node = NULL;
3351                 goto fail_tree_roots;
3352         }
3353         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3354         chunk_root->commit_root = btrfs_root_node(chunk_root);
3355
3356         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3357                            offsetof(struct btrfs_header, chunk_tree_uuid),
3358                            BTRFS_UUID_SIZE);
3359
3360         ret = btrfs_read_chunk_tree(fs_info);
3361         if (ret) {
3362                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3363                 goto fail_tree_roots;
3364         }
3365
3366         /*
3367          * At this point we know all the devices that make this filesystem,
3368          * including the seed devices but we don't know yet if the replace
3369          * target is required. So free devices that are not part of this
3370          * filesystem but skip the replace traget device which is checked
3371          * below in btrfs_init_dev_replace().
3372          */
3373         btrfs_free_extra_devids(fs_devices);
3374         if (!fs_devices->latest_bdev) {
3375                 btrfs_err(fs_info, "failed to read devices");
3376                 goto fail_tree_roots;
3377         }
3378
3379         ret = init_tree_roots(fs_info);
3380         if (ret)
3381                 goto fail_tree_roots;
3382
3383         /*
3384          * Get zone type information of zoned block devices. This will also
3385          * handle emulation of a zoned filesystem if a regular device has the
3386          * zoned incompat feature flag set.
3387          */
3388         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3389         if (ret) {
3390                 btrfs_err(fs_info,
3391                           "zoned: failed to read device zone info: %d",
3392                           ret);
3393                 goto fail_block_groups;
3394         }
3395
3396         /*
3397          * If we have a uuid root and we're not being told to rescan we need to
3398          * check the generation here so we can set the
3399          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3400          * transaction during a balance or the log replay without updating the
3401          * uuid generation, and then if we crash we would rescan the uuid tree,
3402          * even though it was perfectly fine.
3403          */
3404         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3405             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3406                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3407
3408         ret = btrfs_verify_dev_extents(fs_info);
3409         if (ret) {
3410                 btrfs_err(fs_info,
3411                           "failed to verify dev extents against chunks: %d",
3412                           ret);
3413                 goto fail_block_groups;
3414         }
3415         ret = btrfs_recover_balance(fs_info);
3416         if (ret) {
3417                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3418                 goto fail_block_groups;
3419         }
3420
3421         ret = btrfs_init_dev_stats(fs_info);
3422         if (ret) {
3423                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3424                 goto fail_block_groups;
3425         }
3426
3427         ret = btrfs_init_dev_replace(fs_info);
3428         if (ret) {
3429                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3430                 goto fail_block_groups;
3431         }
3432
3433         ret = btrfs_check_zoned_mode(fs_info);
3434         if (ret) {
3435                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3436                           ret);
3437                 goto fail_block_groups;
3438         }
3439
3440         ret = btrfs_sysfs_add_fsid(fs_devices);
3441         if (ret) {
3442                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3443                                 ret);
3444                 goto fail_block_groups;
3445         }
3446
3447         ret = btrfs_sysfs_add_mounted(fs_info);
3448         if (ret) {
3449                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3450                 goto fail_fsdev_sysfs;
3451         }
3452
3453         ret = btrfs_init_space_info(fs_info);
3454         if (ret) {
3455                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3456                 goto fail_sysfs;
3457         }
3458
3459         ret = btrfs_read_block_groups(fs_info);
3460         if (ret) {
3461                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3462                 goto fail_sysfs;
3463         }
3464
3465         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3466                 btrfs_warn(fs_info,
3467                 "writable mount is not allowed due to too many missing devices");
3468                 goto fail_sysfs;
3469         }
3470
3471         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3472                                                "btrfs-cleaner");
3473         if (IS_ERR(fs_info->cleaner_kthread))
3474                 goto fail_sysfs;
3475
3476         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3477                                                    tree_root,
3478                                                    "btrfs-transaction");
3479         if (IS_ERR(fs_info->transaction_kthread))
3480                 goto fail_cleaner;
3481
3482         if (!btrfs_test_opt(fs_info, NOSSD) &&
3483             !fs_info->fs_devices->rotating) {
3484                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3485         }
3486
3487         /*
3488          * Mount does not set all options immediately, we can do it now and do
3489          * not have to wait for transaction commit
3490          */
3491         btrfs_apply_pending_changes(fs_info);
3492
3493 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3494         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3495                 ret = btrfsic_mount(fs_info, fs_devices,
3496                                     btrfs_test_opt(fs_info,
3497                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3498                                     1 : 0,
3499                                     fs_info->check_integrity_print_mask);
3500                 if (ret)
3501                         btrfs_warn(fs_info,
3502                                 "failed to initialize integrity check module: %d",
3503                                 ret);
3504         }
3505 #endif
3506         ret = btrfs_read_qgroup_config(fs_info);
3507         if (ret)
3508                 goto fail_trans_kthread;
3509
3510         if (btrfs_build_ref_tree(fs_info))
3511                 btrfs_err(fs_info, "couldn't build ref tree");
3512
3513         /* do not make disk changes in broken FS or nologreplay is given */
3514         if (btrfs_super_log_root(disk_super) != 0 &&
3515             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3516                 btrfs_info(fs_info, "start tree-log replay");
3517                 ret = btrfs_replay_log(fs_info, fs_devices);
3518                 if (ret) {
3519                         err = ret;
3520                         goto fail_qgroup;
3521                 }
3522         }
3523
3524         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3525         if (IS_ERR(fs_info->fs_root)) {
3526                 err = PTR_ERR(fs_info->fs_root);
3527                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3528                 fs_info->fs_root = NULL;
3529                 goto fail_qgroup;
3530         }
3531
3532         if (sb_rdonly(sb))
3533                 goto clear_oneshot;
3534
3535         ret = btrfs_start_pre_rw_mount(fs_info);
3536         if (ret) {
3537                 close_ctree(fs_info);
3538                 return ret;
3539         }
3540         btrfs_discard_resume(fs_info);
3541
3542         if (fs_info->uuid_root &&
3543             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3544              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3545                 btrfs_info(fs_info, "checking UUID tree");
3546                 ret = btrfs_check_uuid_tree(fs_info);
3547                 if (ret) {
3548                         btrfs_warn(fs_info,
3549                                 "failed to check the UUID tree: %d", ret);
3550                         close_ctree(fs_info);
3551                         return ret;
3552                 }
3553         }
3554
3555         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3556
3557 clear_oneshot:
3558         btrfs_clear_oneshot_options(fs_info);
3559         return 0;
3560
3561 fail_qgroup:
3562         btrfs_free_qgroup_config(fs_info);
3563 fail_trans_kthread:
3564         kthread_stop(fs_info->transaction_kthread);
3565         btrfs_cleanup_transaction(fs_info);
3566         btrfs_free_fs_roots(fs_info);
3567 fail_cleaner:
3568         kthread_stop(fs_info->cleaner_kthread);
3569
3570         /*
3571          * make sure we're done with the btree inode before we stop our
3572          * kthreads
3573          */
3574         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3575
3576 fail_sysfs:
3577         btrfs_sysfs_remove_mounted(fs_info);
3578
3579 fail_fsdev_sysfs:
3580         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3581
3582 fail_block_groups:
3583         btrfs_put_block_group_cache(fs_info);
3584
3585 fail_tree_roots:
3586         if (fs_info->data_reloc_root)
3587                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3588         free_root_pointers(fs_info, true);
3589         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3590
3591 fail_sb_buffer:
3592         btrfs_stop_all_workers(fs_info);
3593         btrfs_free_block_groups(fs_info);
3594 fail_alloc:
3595         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3596
3597         iput(fs_info->btree_inode);
3598 fail:
3599         btrfs_close_devices(fs_info->fs_devices);
3600         return err;
3601 }
3602 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3603
3604 static void btrfs_end_super_write(struct bio *bio)
3605 {
3606         struct btrfs_device *device = bio->bi_private;
3607         struct bio_vec *bvec;
3608         struct bvec_iter_all iter_all;
3609         struct page *page;
3610
3611         bio_for_each_segment_all(bvec, bio, iter_all) {
3612                 page = bvec->bv_page;
3613
3614                 if (bio->bi_status) {
3615                         btrfs_warn_rl_in_rcu(device->fs_info,
3616                                 "lost page write due to IO error on %s (%d)",
3617                                 rcu_str_deref(device->name),
3618                                 blk_status_to_errno(bio->bi_status));
3619                         ClearPageUptodate(page);
3620                         SetPageError(page);
3621                         btrfs_dev_stat_inc_and_print(device,
3622                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3623                 } else {
3624                         SetPageUptodate(page);
3625                 }
3626
3627                 put_page(page);
3628                 unlock_page(page);
3629         }
3630
3631         bio_put(bio);
3632 }
3633
3634 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3635                                                    int copy_num)
3636 {
3637         struct btrfs_super_block *super;
3638         struct page *page;
3639         u64 bytenr, bytenr_orig;
3640         struct address_space *mapping = bdev->bd_inode->i_mapping;
3641         int ret;
3642
3643         bytenr_orig = btrfs_sb_offset(copy_num);
3644         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3645         if (ret == -ENOENT)
3646                 return ERR_PTR(-EINVAL);
3647         else if (ret)
3648                 return ERR_PTR(ret);
3649
3650         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3651                 return ERR_PTR(-EINVAL);
3652
3653         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3654         if (IS_ERR(page))
3655                 return ERR_CAST(page);
3656
3657         super = page_address(page);
3658         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3659                 btrfs_release_disk_super(super);
3660                 return ERR_PTR(-ENODATA);
3661         }
3662
3663         if (btrfs_super_bytenr(super) != bytenr_orig) {
3664                 btrfs_release_disk_super(super);
3665                 return ERR_PTR(-EINVAL);
3666         }
3667
3668         return super;
3669 }
3670
3671
3672 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3673 {
3674         struct btrfs_super_block *super, *latest = NULL;
3675         int i;
3676         u64 transid = 0;
3677
3678         /* we would like to check all the supers, but that would make
3679          * a btrfs mount succeed after a mkfs from a different FS.
3680          * So, we need to add a special mount option to scan for
3681          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3682          */
3683         for (i = 0; i < 1; i++) {
3684                 super = btrfs_read_dev_one_super(bdev, i);
3685                 if (IS_ERR(super))
3686                         continue;
3687
3688                 if (!latest || btrfs_super_generation(super) > transid) {
3689                         if (latest)
3690                                 btrfs_release_disk_super(super);
3691
3692                         latest = super;
3693                         transid = btrfs_super_generation(super);
3694                 }
3695         }
3696
3697         return super;
3698 }
3699
3700 /*
3701  * Write superblock @sb to the @device. Do not wait for completion, all the
3702  * pages we use for writing are locked.
3703  *
3704  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3705  * the expected device size at commit time. Note that max_mirrors must be
3706  * same for write and wait phases.
3707  *
3708  * Return number of errors when page is not found or submission fails.
3709  */
3710 static int write_dev_supers(struct btrfs_device *device,
3711                             struct btrfs_super_block *sb, int max_mirrors)
3712 {
3713         struct btrfs_fs_info *fs_info = device->fs_info;
3714         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3715         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3716         int i;
3717         int errors = 0;
3718         int ret;
3719         u64 bytenr, bytenr_orig;
3720
3721         if (max_mirrors == 0)
3722                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3723
3724         shash->tfm = fs_info->csum_shash;
3725
3726         for (i = 0; i < max_mirrors; i++) {
3727                 struct page *page;
3728                 struct bio *bio;
3729                 struct btrfs_super_block *disk_super;
3730
3731                 bytenr_orig = btrfs_sb_offset(i);
3732                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3733                 if (ret == -ENOENT) {
3734                         continue;
3735                 } else if (ret < 0) {
3736                         btrfs_err(device->fs_info,
3737                                 "couldn't get super block location for mirror %d",
3738                                 i);
3739                         errors++;
3740                         continue;
3741                 }
3742                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3743                     device->commit_total_bytes)
3744                         break;
3745
3746                 btrfs_set_super_bytenr(sb, bytenr_orig);
3747
3748                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3749                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3750                                     sb->csum);
3751
3752                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3753                                            GFP_NOFS);
3754                 if (!page) {
3755                         btrfs_err(device->fs_info,
3756                             "couldn't get super block page for bytenr %llu",
3757                             bytenr);
3758                         errors++;
3759                         continue;
3760                 }
3761
3762                 /* Bump the refcount for wait_dev_supers() */
3763                 get_page(page);
3764
3765                 disk_super = page_address(page);
3766                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3767
3768                 /*
3769                  * Directly use bios here instead of relying on the page cache
3770                  * to do I/O, so we don't lose the ability to do integrity
3771                  * checking.
3772                  */
3773                 bio = bio_alloc(GFP_NOFS, 1);
3774                 bio_set_dev(bio, device->bdev);
3775                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3776                 bio->bi_private = device;
3777                 bio->bi_end_io = btrfs_end_super_write;
3778                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3779                                offset_in_page(bytenr));
3780
3781                 /*
3782                  * We FUA only the first super block.  The others we allow to
3783                  * go down lazy and there's a short window where the on-disk
3784                  * copies might still contain the older version.
3785                  */
3786                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3787                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3788                         bio->bi_opf |= REQ_FUA;
3789
3790                 btrfsic_submit_bio(bio);
3791                 btrfs_advance_sb_log(device, i);
3792         }
3793         return errors < i ? 0 : -1;
3794 }
3795
3796 /*
3797  * Wait for write completion of superblocks done by write_dev_supers,
3798  * @max_mirrors same for write and wait phases.
3799  *
3800  * Return number of errors when page is not found or not marked up to
3801  * date.
3802  */
3803 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3804 {
3805         int i;
3806         int errors = 0;
3807         bool primary_failed = false;
3808         int ret;
3809         u64 bytenr;
3810
3811         if (max_mirrors == 0)
3812                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3813
3814         for (i = 0; i < max_mirrors; i++) {
3815                 struct page *page;
3816
3817                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3818                 if (ret == -ENOENT) {
3819                         break;
3820                 } else if (ret < 0) {
3821                         errors++;
3822                         if (i == 0)
3823                                 primary_failed = true;
3824                         continue;
3825                 }
3826                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3827                     device->commit_total_bytes)
3828                         break;
3829
3830                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3831                                      bytenr >> PAGE_SHIFT);
3832                 if (!page) {
3833                         errors++;
3834                         if (i == 0)
3835                                 primary_failed = true;
3836                         continue;
3837                 }
3838                 /* Page is submitted locked and unlocked once the IO completes */
3839                 wait_on_page_locked(page);
3840                 if (PageError(page)) {
3841                         errors++;
3842                         if (i == 0)
3843                                 primary_failed = true;
3844                 }
3845
3846                 /* Drop our reference */
3847                 put_page(page);
3848
3849                 /* Drop the reference from the writing run */
3850                 put_page(page);
3851         }
3852
3853         /* log error, force error return */
3854         if (primary_failed) {
3855                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3856                           device->devid);
3857                 return -1;
3858         }
3859
3860         return errors < i ? 0 : -1;
3861 }
3862
3863 /*
3864  * endio for the write_dev_flush, this will wake anyone waiting
3865  * for the barrier when it is done
3866  */
3867 static void btrfs_end_empty_barrier(struct bio *bio)
3868 {
3869         complete(bio->bi_private);
3870 }
3871
3872 /*
3873  * Submit a flush request to the device if it supports it. Error handling is
3874  * done in the waiting counterpart.
3875  */
3876 static void write_dev_flush(struct btrfs_device *device)
3877 {
3878         struct request_queue *q = bdev_get_queue(device->bdev);
3879         struct bio *bio = device->flush_bio;
3880
3881         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3882                 return;
3883
3884         bio_reset(bio);
3885         bio->bi_end_io = btrfs_end_empty_barrier;
3886         bio_set_dev(bio, device->bdev);
3887         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3888         init_completion(&device->flush_wait);
3889         bio->bi_private = &device->flush_wait;
3890
3891         btrfsic_submit_bio(bio);
3892         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3893 }
3894
3895 /*
3896  * If the flush bio has been submitted by write_dev_flush, wait for it.
3897  */
3898 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3899 {
3900         struct bio *bio = device->flush_bio;
3901
3902         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3903                 return BLK_STS_OK;
3904
3905         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3906         wait_for_completion_io(&device->flush_wait);
3907
3908         return bio->bi_status;
3909 }
3910
3911 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3912 {
3913         if (!btrfs_check_rw_degradable(fs_info, NULL))
3914                 return -EIO;
3915         return 0;
3916 }
3917
3918 /*
3919  * send an empty flush down to each device in parallel,
3920  * then wait for them
3921  */
3922 static int barrier_all_devices(struct btrfs_fs_info *info)
3923 {
3924         struct list_head *head;
3925         struct btrfs_device *dev;
3926         int errors_wait = 0;
3927         blk_status_t ret;
3928
3929         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3930         /* send down all the barriers */
3931         head = &info->fs_devices->devices;
3932         list_for_each_entry(dev, head, dev_list) {
3933                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3934                         continue;
3935                 if (!dev->bdev)
3936                         continue;
3937                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3938                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3939                         continue;
3940
3941                 write_dev_flush(dev);
3942                 dev->last_flush_error = BLK_STS_OK;
3943         }
3944
3945         /* wait for all the barriers */
3946         list_for_each_entry(dev, head, dev_list) {
3947                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3948                         continue;
3949                 if (!dev->bdev) {
3950                         errors_wait++;
3951                         continue;
3952                 }
3953                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3954                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3955                         continue;
3956
3957                 ret = wait_dev_flush(dev);
3958                 if (ret) {
3959                         dev->last_flush_error = ret;
3960                         btrfs_dev_stat_inc_and_print(dev,
3961                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3962                         errors_wait++;
3963                 }
3964         }
3965
3966         if (errors_wait) {
3967                 /*
3968                  * At some point we need the status of all disks
3969                  * to arrive at the volume status. So error checking
3970                  * is being pushed to a separate loop.
3971                  */
3972                 return check_barrier_error(info);
3973         }
3974         return 0;
3975 }
3976
3977 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3978 {
3979         int raid_type;
3980         int min_tolerated = INT_MAX;
3981
3982         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3983             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3984                 min_tolerated = min_t(int, min_tolerated,
3985                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3986                                     tolerated_failures);
3987
3988         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3989                 if (raid_type == BTRFS_RAID_SINGLE)
3990                         continue;
3991                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3992                         continue;
3993                 min_tolerated = min_t(int, min_tolerated,
3994                                     btrfs_raid_array[raid_type].
3995                                     tolerated_failures);
3996         }
3997
3998         if (min_tolerated == INT_MAX) {
3999                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4000                 min_tolerated = 0;
4001         }
4002
4003         return min_tolerated;
4004 }
4005
4006 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4007 {
4008         struct list_head *head;
4009         struct btrfs_device *dev;
4010         struct btrfs_super_block *sb;
4011         struct btrfs_dev_item *dev_item;
4012         int ret;
4013         int do_barriers;
4014         int max_errors;
4015         int total_errors = 0;
4016         u64 flags;
4017
4018         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4019
4020         /*
4021          * max_mirrors == 0 indicates we're from commit_transaction,
4022          * not from fsync where the tree roots in fs_info have not
4023          * been consistent on disk.
4024          */
4025         if (max_mirrors == 0)
4026                 backup_super_roots(fs_info);
4027
4028         sb = fs_info->super_for_commit;
4029         dev_item = &sb->dev_item;
4030
4031         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4032         head = &fs_info->fs_devices->devices;
4033         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4034
4035         if (do_barriers) {
4036                 ret = barrier_all_devices(fs_info);
4037                 if (ret) {
4038                         mutex_unlock(
4039                                 &fs_info->fs_devices->device_list_mutex);
4040                         btrfs_handle_fs_error(fs_info, ret,
4041                                               "errors while submitting device barriers.");
4042                         return ret;
4043                 }
4044         }
4045
4046         list_for_each_entry(dev, head, dev_list) {
4047                 if (!dev->bdev) {
4048                         total_errors++;
4049                         continue;
4050                 }
4051                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4052                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4053                         continue;
4054
4055                 btrfs_set_stack_device_generation(dev_item, 0);
4056                 btrfs_set_stack_device_type(dev_item, dev->type);
4057                 btrfs_set_stack_device_id(dev_item, dev->devid);
4058                 btrfs_set_stack_device_total_bytes(dev_item,
4059                                                    dev->commit_total_bytes);
4060                 btrfs_set_stack_device_bytes_used(dev_item,
4061                                                   dev->commit_bytes_used);
4062                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4063                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4064                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4065                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4066                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4067                        BTRFS_FSID_SIZE);
4068
4069                 flags = btrfs_super_flags(sb);
4070                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4071
4072                 ret = btrfs_validate_write_super(fs_info, sb);
4073                 if (ret < 0) {
4074                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4075                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4076                                 "unexpected superblock corruption detected");
4077                         return -EUCLEAN;
4078                 }
4079
4080                 ret = write_dev_supers(dev, sb, max_mirrors);
4081                 if (ret)
4082                         total_errors++;
4083         }
4084         if (total_errors > max_errors) {
4085                 btrfs_err(fs_info, "%d errors while writing supers",
4086                           total_errors);
4087                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088
4089                 /* FUA is masked off if unsupported and can't be the reason */
4090                 btrfs_handle_fs_error(fs_info, -EIO,
4091                                       "%d errors while writing supers",
4092                                       total_errors);
4093                 return -EIO;
4094         }
4095
4096         total_errors = 0;
4097         list_for_each_entry(dev, head, dev_list) {
4098                 if (!dev->bdev)
4099                         continue;
4100                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4101                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4102                         continue;
4103
4104                 ret = wait_dev_supers(dev, max_mirrors);
4105                 if (ret)
4106                         total_errors++;
4107         }
4108         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4109         if (total_errors > max_errors) {
4110                 btrfs_handle_fs_error(fs_info, -EIO,
4111                                       "%d errors while writing supers",
4112                                       total_errors);
4113                 return -EIO;
4114         }
4115         return 0;
4116 }
4117
4118 /* Drop a fs root from the radix tree and free it. */
4119 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4120                                   struct btrfs_root *root)
4121 {
4122         bool drop_ref = false;
4123
4124         spin_lock(&fs_info->fs_roots_radix_lock);
4125         radix_tree_delete(&fs_info->fs_roots_radix,
4126                           (unsigned long)root->root_key.objectid);
4127         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4128                 drop_ref = true;
4129         spin_unlock(&fs_info->fs_roots_radix_lock);
4130
4131         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4132                 ASSERT(root->log_root == NULL);
4133                 if (root->reloc_root) {
4134                         btrfs_put_root(root->reloc_root);
4135                         root->reloc_root = NULL;
4136                 }
4137         }
4138
4139         if (drop_ref)
4140                 btrfs_put_root(root);
4141 }
4142
4143 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4144 {
4145         u64 root_objectid = 0;
4146         struct btrfs_root *gang[8];
4147         int i = 0;
4148         int err = 0;
4149         unsigned int ret = 0;
4150
4151         while (1) {
4152                 spin_lock(&fs_info->fs_roots_radix_lock);
4153                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4154                                              (void **)gang, root_objectid,
4155                                              ARRAY_SIZE(gang));
4156                 if (!ret) {
4157                         spin_unlock(&fs_info->fs_roots_radix_lock);
4158                         break;
4159                 }
4160                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4161
4162                 for (i = 0; i < ret; i++) {
4163                         /* Avoid to grab roots in dead_roots */
4164                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4165                                 gang[i] = NULL;
4166                                 continue;
4167                         }
4168                         /* grab all the search result for later use */
4169                         gang[i] = btrfs_grab_root(gang[i]);
4170                 }
4171                 spin_unlock(&fs_info->fs_roots_radix_lock);
4172
4173                 for (i = 0; i < ret; i++) {
4174                         if (!gang[i])
4175                                 continue;
4176                         root_objectid = gang[i]->root_key.objectid;
4177                         err = btrfs_orphan_cleanup(gang[i]);
4178                         if (err)
4179                                 break;
4180                         btrfs_put_root(gang[i]);
4181                 }
4182                 root_objectid++;
4183         }
4184
4185         /* release the uncleaned roots due to error */
4186         for (; i < ret; i++) {
4187                 if (gang[i])
4188                         btrfs_put_root(gang[i]);
4189         }
4190         return err;
4191 }
4192
4193 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4194 {
4195         struct btrfs_root *root = fs_info->tree_root;
4196         struct btrfs_trans_handle *trans;
4197
4198         mutex_lock(&fs_info->cleaner_mutex);
4199         btrfs_run_delayed_iputs(fs_info);
4200         mutex_unlock(&fs_info->cleaner_mutex);
4201         wake_up_process(fs_info->cleaner_kthread);
4202
4203         /* wait until ongoing cleanup work done */
4204         down_write(&fs_info->cleanup_work_sem);
4205         up_write(&fs_info->cleanup_work_sem);
4206
4207         trans = btrfs_join_transaction(root);
4208         if (IS_ERR(trans))
4209                 return PTR_ERR(trans);
4210         return btrfs_commit_transaction(trans);
4211 }
4212
4213 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4214 {
4215         int ret;
4216
4217         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4218         /*
4219          * We don't want the cleaner to start new transactions, add more delayed
4220          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4221          * because that frees the task_struct, and the transaction kthread might
4222          * still try to wake up the cleaner.
4223          */
4224         kthread_park(fs_info->cleaner_kthread);
4225
4226         /* wait for the qgroup rescan worker to stop */
4227         btrfs_qgroup_wait_for_completion(fs_info, false);
4228
4229         /* wait for the uuid_scan task to finish */
4230         down(&fs_info->uuid_tree_rescan_sem);
4231         /* avoid complains from lockdep et al., set sem back to initial state */
4232         up(&fs_info->uuid_tree_rescan_sem);
4233
4234         /* pause restriper - we want to resume on mount */
4235         btrfs_pause_balance(fs_info);
4236
4237         btrfs_dev_replace_suspend_for_unmount(fs_info);
4238
4239         btrfs_scrub_cancel(fs_info);
4240
4241         /* wait for any defraggers to finish */
4242         wait_event(fs_info->transaction_wait,
4243                    (atomic_read(&fs_info->defrag_running) == 0));
4244
4245         /* clear out the rbtree of defraggable inodes */
4246         btrfs_cleanup_defrag_inodes(fs_info);
4247
4248         cancel_work_sync(&fs_info->async_reclaim_work);
4249         cancel_work_sync(&fs_info->async_data_reclaim_work);
4250         cancel_work_sync(&fs_info->preempt_reclaim_work);
4251
4252         /* Cancel or finish ongoing discard work */
4253         btrfs_discard_cleanup(fs_info);
4254
4255         if (!sb_rdonly(fs_info->sb)) {
4256                 /*
4257                  * The cleaner kthread is stopped, so do one final pass over
4258                  * unused block groups.
4259                  */
4260                 btrfs_delete_unused_bgs(fs_info);
4261
4262                 /*
4263                  * There might be existing delayed inode workers still running
4264                  * and holding an empty delayed inode item. We must wait for
4265                  * them to complete first because they can create a transaction.
4266                  * This happens when someone calls btrfs_balance_delayed_items()
4267                  * and then a transaction commit runs the same delayed nodes
4268                  * before any delayed worker has done something with the nodes.
4269                  * We must wait for any worker here and not at transaction
4270                  * commit time since that could cause a deadlock.
4271                  * This is a very rare case.
4272                  */
4273                 btrfs_flush_workqueue(fs_info->delayed_workers);
4274
4275                 ret = btrfs_commit_super(fs_info);
4276                 if (ret)
4277                         btrfs_err(fs_info, "commit super ret %d", ret);
4278         }
4279
4280         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4281             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4282                 btrfs_error_commit_super(fs_info);
4283
4284         kthread_stop(fs_info->transaction_kthread);
4285         kthread_stop(fs_info->cleaner_kthread);
4286
4287         ASSERT(list_empty(&fs_info->delayed_iputs));
4288         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4289
4290         if (btrfs_check_quota_leak(fs_info)) {
4291                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4292                 btrfs_err(fs_info, "qgroup reserved space leaked");
4293         }
4294
4295         btrfs_free_qgroup_config(fs_info);
4296         ASSERT(list_empty(&fs_info->delalloc_roots));
4297
4298         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4299                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4300                        percpu_counter_sum(&fs_info->delalloc_bytes));
4301         }
4302
4303         if (percpu_counter_sum(&fs_info->ordered_bytes))
4304                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4305                            percpu_counter_sum(&fs_info->ordered_bytes));
4306
4307         btrfs_sysfs_remove_mounted(fs_info);
4308         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4309
4310         btrfs_put_block_group_cache(fs_info);
4311
4312         /*
4313          * we must make sure there is not any read request to
4314          * submit after we stopping all workers.
4315          */
4316         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4317         btrfs_stop_all_workers(fs_info);
4318
4319         /* We shouldn't have any transaction open at this point */
4320         ASSERT(list_empty(&fs_info->trans_list));
4321
4322         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4323         free_root_pointers(fs_info, true);
4324         btrfs_free_fs_roots(fs_info);
4325
4326         /*
4327          * We must free the block groups after dropping the fs_roots as we could
4328          * have had an IO error and have left over tree log blocks that aren't
4329          * cleaned up until the fs roots are freed.  This makes the block group
4330          * accounting appear to be wrong because there's pending reserved bytes,
4331          * so make sure we do the block group cleanup afterwards.
4332          */
4333         btrfs_free_block_groups(fs_info);
4334
4335         iput(fs_info->btree_inode);
4336
4337 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4338         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4339                 btrfsic_unmount(fs_info->fs_devices);
4340 #endif
4341
4342         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4343         btrfs_close_devices(fs_info->fs_devices);
4344 }
4345
4346 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4347                           int atomic)
4348 {
4349         int ret;
4350         struct inode *btree_inode = buf->pages[0]->mapping->host;
4351
4352         ret = extent_buffer_uptodate(buf);
4353         if (!ret)
4354                 return ret;
4355
4356         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4357                                     parent_transid, atomic);
4358         if (ret == -EAGAIN)
4359                 return ret;
4360         return !ret;
4361 }
4362
4363 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4364 {
4365         struct btrfs_fs_info *fs_info = buf->fs_info;
4366         u64 transid = btrfs_header_generation(buf);
4367         int was_dirty;
4368
4369 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4370         /*
4371          * This is a fast path so only do this check if we have sanity tests
4372          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4373          * outside of the sanity tests.
4374          */
4375         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4376                 return;
4377 #endif
4378         btrfs_assert_tree_locked(buf);
4379         if (transid != fs_info->generation)
4380                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4381                         buf->start, transid, fs_info->generation);
4382         was_dirty = set_extent_buffer_dirty(buf);
4383         if (!was_dirty)
4384                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4385                                          buf->len,
4386                                          fs_info->dirty_metadata_batch);
4387 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4388         /*
4389          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4390          * but item data not updated.
4391          * So here we should only check item pointers, not item data.
4392          */
4393         if (btrfs_header_level(buf) == 0 &&
4394             btrfs_check_leaf_relaxed(buf)) {
4395                 btrfs_print_leaf(buf);
4396                 ASSERT(0);
4397         }
4398 #endif
4399 }
4400
4401 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4402                                         int flush_delayed)
4403 {
4404         /*
4405          * looks as though older kernels can get into trouble with
4406          * this code, they end up stuck in balance_dirty_pages forever
4407          */
4408         int ret;
4409
4410         if (current->flags & PF_MEMALLOC)
4411                 return;
4412
4413         if (flush_delayed)
4414                 btrfs_balance_delayed_items(fs_info);
4415
4416         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4417                                      BTRFS_DIRTY_METADATA_THRESH,
4418                                      fs_info->dirty_metadata_batch);
4419         if (ret > 0) {
4420                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4421         }
4422 }
4423
4424 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4425 {
4426         __btrfs_btree_balance_dirty(fs_info, 1);
4427 }
4428
4429 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4430 {
4431         __btrfs_btree_balance_dirty(fs_info, 0);
4432 }
4433
4434 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4435                       struct btrfs_key *first_key)
4436 {
4437         return btree_read_extent_buffer_pages(buf, parent_transid,
4438                                               level, first_key);
4439 }
4440
4441 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4442 {
4443         /* cleanup FS via transaction */
4444         btrfs_cleanup_transaction(fs_info);
4445
4446         mutex_lock(&fs_info->cleaner_mutex);
4447         btrfs_run_delayed_iputs(fs_info);
4448         mutex_unlock(&fs_info->cleaner_mutex);
4449
4450         down_write(&fs_info->cleanup_work_sem);
4451         up_write(&fs_info->cleanup_work_sem);
4452 }
4453
4454 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4455 {
4456         struct btrfs_root *gang[8];
4457         u64 root_objectid = 0;
4458         int ret;
4459
4460         spin_lock(&fs_info->fs_roots_radix_lock);
4461         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4462                                              (void **)gang, root_objectid,
4463                                              ARRAY_SIZE(gang))) != 0) {
4464                 int i;
4465
4466                 for (i = 0; i < ret; i++)
4467                         gang[i] = btrfs_grab_root(gang[i]);
4468                 spin_unlock(&fs_info->fs_roots_radix_lock);
4469
4470                 for (i = 0; i < ret; i++) {
4471                         if (!gang[i])
4472                                 continue;
4473                         root_objectid = gang[i]->root_key.objectid;
4474                         btrfs_free_log(NULL, gang[i]);
4475                         btrfs_put_root(gang[i]);
4476                 }
4477                 root_objectid++;
4478                 spin_lock(&fs_info->fs_roots_radix_lock);
4479         }
4480         spin_unlock(&fs_info->fs_roots_radix_lock);
4481         btrfs_free_log_root_tree(NULL, fs_info);
4482 }
4483
4484 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4485 {
4486         struct btrfs_ordered_extent *ordered;
4487
4488         spin_lock(&root->ordered_extent_lock);
4489         /*
4490          * This will just short circuit the ordered completion stuff which will
4491          * make sure the ordered extent gets properly cleaned up.
4492          */
4493         list_for_each_entry(ordered, &root->ordered_extents,
4494                             root_extent_list)
4495                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4496         spin_unlock(&root->ordered_extent_lock);
4497 }
4498
4499 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4500 {
4501         struct btrfs_root *root;
4502         struct list_head splice;
4503
4504         INIT_LIST_HEAD(&splice);
4505
4506         spin_lock(&fs_info->ordered_root_lock);
4507         list_splice_init(&fs_info->ordered_roots, &splice);
4508         while (!list_empty(&splice)) {
4509                 root = list_first_entry(&splice, struct btrfs_root,
4510                                         ordered_root);
4511                 list_move_tail(&root->ordered_root,
4512                                &fs_info->ordered_roots);
4513
4514                 spin_unlock(&fs_info->ordered_root_lock);
4515                 btrfs_destroy_ordered_extents(root);
4516
4517                 cond_resched();
4518                 spin_lock(&fs_info->ordered_root_lock);
4519         }
4520         spin_unlock(&fs_info->ordered_root_lock);
4521
4522         /*
4523          * We need this here because if we've been flipped read-only we won't
4524          * get sync() from the umount, so we need to make sure any ordered
4525          * extents that haven't had their dirty pages IO start writeout yet
4526          * actually get run and error out properly.
4527          */
4528         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4529 }
4530
4531 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4532                                       struct btrfs_fs_info *fs_info)
4533 {
4534         struct rb_node *node;
4535         struct btrfs_delayed_ref_root *delayed_refs;
4536         struct btrfs_delayed_ref_node *ref;
4537         int ret = 0;
4538
4539         delayed_refs = &trans->delayed_refs;
4540
4541         spin_lock(&delayed_refs->lock);
4542         if (atomic_read(&delayed_refs->num_entries) == 0) {
4543                 spin_unlock(&delayed_refs->lock);
4544                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4545                 return ret;
4546         }
4547
4548         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4549                 struct btrfs_delayed_ref_head *head;
4550                 struct rb_node *n;
4551                 bool pin_bytes = false;
4552
4553                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4554                                 href_node);
4555                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4556                         continue;
4557
4558                 spin_lock(&head->lock);
4559                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4560                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4561                                        ref_node);
4562                         ref->in_tree = 0;
4563                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4564                         RB_CLEAR_NODE(&ref->ref_node);
4565                         if (!list_empty(&ref->add_list))
4566                                 list_del(&ref->add_list);
4567                         atomic_dec(&delayed_refs->num_entries);
4568                         btrfs_put_delayed_ref(ref);
4569                 }
4570                 if (head->must_insert_reserved)
4571                         pin_bytes = true;
4572                 btrfs_free_delayed_extent_op(head->extent_op);
4573                 btrfs_delete_ref_head(delayed_refs, head);
4574                 spin_unlock(&head->lock);
4575                 spin_unlock(&delayed_refs->lock);
4576                 mutex_unlock(&head->mutex);
4577
4578                 if (pin_bytes) {
4579                         struct btrfs_block_group *cache;
4580
4581                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4582                         BUG_ON(!cache);
4583
4584                         spin_lock(&cache->space_info->lock);
4585                         spin_lock(&cache->lock);
4586                         cache->pinned += head->num_bytes;
4587                         btrfs_space_info_update_bytes_pinned(fs_info,
4588                                 cache->space_info, head->num_bytes);
4589                         cache->reserved -= head->num_bytes;
4590                         cache->space_info->bytes_reserved -= head->num_bytes;
4591                         spin_unlock(&cache->lock);
4592                         spin_unlock(&cache->space_info->lock);
4593                         percpu_counter_add_batch(
4594                                 &cache->space_info->total_bytes_pinned,
4595                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4596
4597                         btrfs_put_block_group(cache);
4598
4599                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4600                                 head->bytenr + head->num_bytes - 1);
4601                 }
4602                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4603                 btrfs_put_delayed_ref_head(head);
4604                 cond_resched();
4605                 spin_lock(&delayed_refs->lock);
4606         }
4607         btrfs_qgroup_destroy_extent_records(trans);
4608
4609         spin_unlock(&delayed_refs->lock);
4610
4611         return ret;
4612 }
4613
4614 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4615 {
4616         struct btrfs_inode *btrfs_inode;
4617         struct list_head splice;
4618
4619         INIT_LIST_HEAD(&splice);
4620
4621         spin_lock(&root->delalloc_lock);
4622         list_splice_init(&root->delalloc_inodes, &splice);
4623
4624         while (!list_empty(&splice)) {
4625                 struct inode *inode = NULL;
4626                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4627                                                delalloc_inodes);
4628                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4629                 spin_unlock(&root->delalloc_lock);
4630
4631                 /*
4632                  * Make sure we get a live inode and that it'll not disappear
4633                  * meanwhile.
4634                  */
4635                 inode = igrab(&btrfs_inode->vfs_inode);
4636                 if (inode) {
4637                         invalidate_inode_pages2(inode->i_mapping);
4638                         iput(inode);
4639                 }
4640                 spin_lock(&root->delalloc_lock);
4641         }
4642         spin_unlock(&root->delalloc_lock);
4643 }
4644
4645 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4646 {
4647         struct btrfs_root *root;
4648         struct list_head splice;
4649
4650         INIT_LIST_HEAD(&splice);
4651
4652         spin_lock(&fs_info->delalloc_root_lock);
4653         list_splice_init(&fs_info->delalloc_roots, &splice);
4654         while (!list_empty(&splice)) {
4655                 root = list_first_entry(&splice, struct btrfs_root,
4656                                          delalloc_root);
4657                 root = btrfs_grab_root(root);
4658                 BUG_ON(!root);
4659                 spin_unlock(&fs_info->delalloc_root_lock);
4660
4661                 btrfs_destroy_delalloc_inodes(root);
4662                 btrfs_put_root(root);
4663
4664                 spin_lock(&fs_info->delalloc_root_lock);
4665         }
4666         spin_unlock(&fs_info->delalloc_root_lock);
4667 }
4668
4669 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4670                                         struct extent_io_tree *dirty_pages,
4671                                         int mark)
4672 {
4673         int ret;
4674         struct extent_buffer *eb;
4675         u64 start = 0;
4676         u64 end;
4677
4678         while (1) {
4679                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4680                                             mark, NULL);
4681                 if (ret)
4682                         break;
4683
4684                 clear_extent_bits(dirty_pages, start, end, mark);
4685                 while (start <= end) {
4686                         eb = find_extent_buffer(fs_info, start);
4687                         start += fs_info->nodesize;
4688                         if (!eb)
4689                                 continue;
4690                         wait_on_extent_buffer_writeback(eb);
4691
4692                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4693                                                &eb->bflags))
4694                                 clear_extent_buffer_dirty(eb);
4695                         free_extent_buffer_stale(eb);
4696                 }
4697         }
4698
4699         return ret;
4700 }
4701
4702 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703                                        struct extent_io_tree *unpin)
4704 {
4705         u64 start;
4706         u64 end;
4707         int ret;
4708
4709         while (1) {
4710                 struct extent_state *cached_state = NULL;
4711
4712                 /*
4713                  * The btrfs_finish_extent_commit() may get the same range as
4714                  * ours between find_first_extent_bit and clear_extent_dirty.
4715                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4716                  * the same extent range.
4717                  */
4718                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4719                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4720                                             EXTENT_DIRTY, &cached_state);
4721                 if (ret) {
4722                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4723                         break;
4724                 }
4725
4726                 clear_extent_dirty(unpin, start, end, &cached_state);
4727                 free_extent_state(cached_state);
4728                 btrfs_error_unpin_extent_range(fs_info, start, end);
4729                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4730                 cond_resched();
4731         }
4732
4733         return 0;
4734 }
4735
4736 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4737 {
4738         struct inode *inode;
4739
4740         inode = cache->io_ctl.inode;
4741         if (inode) {
4742                 invalidate_inode_pages2(inode->i_mapping);
4743                 BTRFS_I(inode)->generation = 0;
4744                 cache->io_ctl.inode = NULL;
4745                 iput(inode);
4746         }
4747         ASSERT(cache->io_ctl.pages == NULL);
4748         btrfs_put_block_group(cache);
4749 }
4750
4751 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4752                              struct btrfs_fs_info *fs_info)
4753 {
4754         struct btrfs_block_group *cache;
4755
4756         spin_lock(&cur_trans->dirty_bgs_lock);
4757         while (!list_empty(&cur_trans->dirty_bgs)) {
4758                 cache = list_first_entry(&cur_trans->dirty_bgs,
4759                                          struct btrfs_block_group,
4760                                          dirty_list);
4761
4762                 if (!list_empty(&cache->io_list)) {
4763                         spin_unlock(&cur_trans->dirty_bgs_lock);
4764                         list_del_init(&cache->io_list);
4765                         btrfs_cleanup_bg_io(cache);
4766                         spin_lock(&cur_trans->dirty_bgs_lock);
4767                 }
4768
4769                 list_del_init(&cache->dirty_list);
4770                 spin_lock(&cache->lock);
4771                 cache->disk_cache_state = BTRFS_DC_ERROR;
4772                 spin_unlock(&cache->lock);
4773
4774                 spin_unlock(&cur_trans->dirty_bgs_lock);
4775                 btrfs_put_block_group(cache);
4776                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4777                 spin_lock(&cur_trans->dirty_bgs_lock);
4778         }
4779         spin_unlock(&cur_trans->dirty_bgs_lock);
4780
4781         /*
4782          * Refer to the definition of io_bgs member for details why it's safe
4783          * to use it without any locking
4784          */
4785         while (!list_empty(&cur_trans->io_bgs)) {
4786                 cache = list_first_entry(&cur_trans->io_bgs,
4787                                          struct btrfs_block_group,
4788                                          io_list);
4789
4790                 list_del_init(&cache->io_list);
4791                 spin_lock(&cache->lock);
4792                 cache->disk_cache_state = BTRFS_DC_ERROR;
4793                 spin_unlock(&cache->lock);
4794                 btrfs_cleanup_bg_io(cache);
4795         }
4796 }
4797
4798 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4799                                    struct btrfs_fs_info *fs_info)
4800 {
4801         struct btrfs_device *dev, *tmp;
4802
4803         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4804         ASSERT(list_empty(&cur_trans->dirty_bgs));
4805         ASSERT(list_empty(&cur_trans->io_bgs));
4806
4807         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4808                                  post_commit_list) {
4809                 list_del_init(&dev->post_commit_list);
4810         }
4811
4812         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4813
4814         cur_trans->state = TRANS_STATE_COMMIT_START;
4815         wake_up(&fs_info->transaction_blocked_wait);
4816
4817         cur_trans->state = TRANS_STATE_UNBLOCKED;
4818         wake_up(&fs_info->transaction_wait);
4819
4820         btrfs_destroy_delayed_inodes(fs_info);
4821
4822         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4823                                      EXTENT_DIRTY);
4824         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4825
4826         btrfs_free_redirty_list(cur_trans);
4827
4828         cur_trans->state =TRANS_STATE_COMPLETED;
4829         wake_up(&cur_trans->commit_wait);
4830 }
4831
4832 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4833 {
4834         struct btrfs_transaction *t;
4835
4836         mutex_lock(&fs_info->transaction_kthread_mutex);
4837
4838         spin_lock(&fs_info->trans_lock);
4839         while (!list_empty(&fs_info->trans_list)) {
4840                 t = list_first_entry(&fs_info->trans_list,
4841                                      struct btrfs_transaction, list);
4842                 if (t->state >= TRANS_STATE_COMMIT_START) {
4843                         refcount_inc(&t->use_count);
4844                         spin_unlock(&fs_info->trans_lock);
4845                         btrfs_wait_for_commit(fs_info, t->transid);
4846                         btrfs_put_transaction(t);
4847                         spin_lock(&fs_info->trans_lock);
4848                         continue;
4849                 }
4850                 if (t == fs_info->running_transaction) {
4851                         t->state = TRANS_STATE_COMMIT_DOING;
4852                         spin_unlock(&fs_info->trans_lock);
4853                         /*
4854                          * We wait for 0 num_writers since we don't hold a trans
4855                          * handle open currently for this transaction.
4856                          */
4857                         wait_event(t->writer_wait,
4858                                    atomic_read(&t->num_writers) == 0);
4859                 } else {
4860                         spin_unlock(&fs_info->trans_lock);
4861                 }
4862                 btrfs_cleanup_one_transaction(t, fs_info);
4863
4864                 spin_lock(&fs_info->trans_lock);
4865                 if (t == fs_info->running_transaction)
4866                         fs_info->running_transaction = NULL;
4867                 list_del_init(&t->list);
4868                 spin_unlock(&fs_info->trans_lock);
4869
4870                 btrfs_put_transaction(t);
4871                 trace_btrfs_transaction_commit(fs_info->tree_root);
4872                 spin_lock(&fs_info->trans_lock);
4873         }
4874         spin_unlock(&fs_info->trans_lock);
4875         btrfs_destroy_all_ordered_extents(fs_info);
4876         btrfs_destroy_delayed_inodes(fs_info);
4877         btrfs_assert_delayed_root_empty(fs_info);
4878         btrfs_destroy_all_delalloc_inodes(fs_info);
4879         btrfs_drop_all_logs(fs_info);
4880         mutex_unlock(&fs_info->transaction_kthread_mutex);
4881
4882         return 0;
4883 }
4884
4885 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4886 {
4887         struct btrfs_path *path;
4888         int ret;
4889         struct extent_buffer *l;
4890         struct btrfs_key search_key;
4891         struct btrfs_key found_key;
4892         int slot;
4893
4894         path = btrfs_alloc_path();
4895         if (!path)
4896                 return -ENOMEM;
4897
4898         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4899         search_key.type = -1;
4900         search_key.offset = (u64)-1;
4901         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4902         if (ret < 0)
4903                 goto error;
4904         BUG_ON(ret == 0); /* Corruption */
4905         if (path->slots[0] > 0) {
4906                 slot = path->slots[0] - 1;
4907                 l = path->nodes[0];
4908                 btrfs_item_key_to_cpu(l, &found_key, slot);
4909                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4910                                             BTRFS_FIRST_FREE_OBJECTID);
4911         } else {
4912                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4913         }
4914         ret = 0;
4915 error:
4916         btrfs_free_path(path);
4917         return ret;
4918 }
4919
4920 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4921 {
4922         int ret;
4923         mutex_lock(&root->objectid_mutex);
4924
4925         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4926                 btrfs_warn(root->fs_info,
4927                            "the objectid of root %llu reaches its highest value",
4928                            root->root_key.objectid);
4929                 ret = -ENOSPC;
4930                 goto out;
4931         }
4932
4933         *objectid = root->free_objectid++;
4934         ret = 0;
4935 out:
4936         mutex_unlock(&root->objectid_mutex);
4937         return ret;
4938 }