2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
55 #include <asm/cpufeature.h>
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
70 struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
73 struct extent_io_tree *dirty_pages,
75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
76 struct extent_io_tree *pinned_extents);
77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
83 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_end_io_wq {
89 struct btrfs_fs_info *info;
91 enum btrfs_wq_endio_type metadata;
92 struct btrfs_work work;
95 static struct kmem_cache *btrfs_end_io_wq_cache;
97 int __init btrfs_end_io_wq_init(void)
99 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
100 sizeof(struct btrfs_end_io_wq),
104 if (!btrfs_end_io_wq_cache)
109 void btrfs_end_io_wq_exit(void)
111 kmem_cache_destroy(btrfs_end_io_wq_cache);
115 * async submit bios are used to offload expensive checksumming
116 * onto the worker threads. They checksum file and metadata bios
117 * just before they are sent down the IO stack.
119 struct async_submit_bio {
121 struct btrfs_fs_info *fs_info;
123 extent_submit_bio_hook_t *submit_bio_start;
124 extent_submit_bio_hook_t *submit_bio_done;
126 unsigned long bio_flags;
128 * bio_offset is optional, can be used if the pages in the bio
129 * can't tell us where in the file the bio should go
132 struct btrfs_work work;
137 * Lockdep class keys for extent_buffer->lock's in this root. For a given
138 * eb, the lockdep key is determined by the btrfs_root it belongs to and
139 * the level the eb occupies in the tree.
141 * Different roots are used for different purposes and may nest inside each
142 * other and they require separate keysets. As lockdep keys should be
143 * static, assign keysets according to the purpose of the root as indicated
144 * by btrfs_root->objectid. This ensures that all special purpose roots
145 * have separate keysets.
147 * Lock-nesting across peer nodes is always done with the immediate parent
148 * node locked thus preventing deadlock. As lockdep doesn't know this, use
149 * subclass to avoid triggering lockdep warning in such cases.
151 * The key is set by the readpage_end_io_hook after the buffer has passed
152 * csum validation but before the pages are unlocked. It is also set by
153 * btrfs_init_new_buffer on freshly allocated blocks.
155 * We also add a check to make sure the highest level of the tree is the
156 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
157 * needs update as well.
159 #ifdef CONFIG_DEBUG_LOCK_ALLOC
160 # if BTRFS_MAX_LEVEL != 8
164 static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
166 const char *name_stem; /* lock name stem */
167 char names[BTRFS_MAX_LEVEL + 1][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
169 } btrfs_lockdep_keysets[] = {
170 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
173 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
174 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
175 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
177 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
180 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
182 { .id = 0, .name_stem = "tree" },
185 void __init btrfs_init_lockdep(void)
189 /* initialize lockdep class names */
190 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
191 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
193 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
194 snprintf(ks->names[j], sizeof(ks->names[j]),
195 "btrfs-%s-%02d", ks->name_stem, j);
199 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 struct btrfs_lockdep_keyset *ks;
204 BUG_ON(level >= ARRAY_SIZE(ks->keys));
206 /* find the matching keyset, id 0 is the default entry */
207 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
208 if (ks->id == objectid)
211 lockdep_set_class_and_name(&eb->lock,
212 &ks->keys[level], ks->names[level]);
218 * extents on the btree inode are pretty simple, there's one extent
219 * that covers the entire device
221 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
222 struct page *page, size_t pg_offset, u64 start, u64 len,
225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
226 struct extent_map_tree *em_tree = &inode->extent_tree;
227 struct extent_map *em;
230 read_lock(&em_tree->lock);
231 em = lookup_extent_mapping(em_tree, start, len);
233 em->bdev = fs_info->fs_devices->latest_bdev;
234 read_unlock(&em_tree->lock);
237 read_unlock(&em_tree->lock);
239 em = alloc_extent_map();
241 em = ERR_PTR(-ENOMEM);
246 em->block_len = (u64)-1;
248 em->bdev = fs_info->fs_devices->latest_bdev;
250 write_lock(&em_tree->lock);
251 ret = add_extent_mapping(em_tree, em, 0);
252 if (ret == -EEXIST) {
254 em = lookup_extent_mapping(em_tree, start, len);
261 write_unlock(&em_tree->lock);
267 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
269 return btrfs_crc32c(seed, data, len);
272 void btrfs_csum_final(u32 crc, u8 *result)
274 put_unaligned_le32(~crc, result);
278 * compute the csum for a btree block, and either verify it or write it
279 * into the csum field of the block.
281 static int csum_tree_block(struct btrfs_fs_info *fs_info,
282 struct extent_buffer *buf,
285 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 unsigned long cur_len;
289 unsigned long offset = BTRFS_CSUM_SIZE;
291 unsigned long map_start;
292 unsigned long map_len;
295 unsigned long inline_result;
297 len = buf->len - offset;
299 err = map_private_extent_buffer(buf, offset, 32,
300 &kaddr, &map_start, &map_len);
303 cur_len = min(len, map_len - (offset - map_start));
304 crc = btrfs_csum_data(kaddr + offset - map_start,
309 if (csum_size > sizeof(inline_result)) {
310 result = kzalloc(csum_size, GFP_NOFS);
314 result = (char *)&inline_result;
317 btrfs_csum_final(crc, result);
320 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 memcpy(&found, result, csum_size);
325 read_extent_buffer(buf, &val, 0, csum_size);
326 btrfs_warn_rl(fs_info,
327 "%s checksum verify failed on %llu wanted %X found %X level %d",
328 fs_info->sb->s_id, buf->start,
329 val, found, btrfs_header_level(buf));
330 if (result != (char *)&inline_result)
335 write_extent_buffer(buf, result, 0, csum_size);
337 if (result != (char *)&inline_result)
343 * we can't consider a given block up to date unless the transid of the
344 * block matches the transid in the parent node's pointer. This is how we
345 * detect blocks that either didn't get written at all or got written
346 * in the wrong place.
348 static int verify_parent_transid(struct extent_io_tree *io_tree,
349 struct extent_buffer *eb, u64 parent_transid,
352 struct extent_state *cached_state = NULL;
354 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
356 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
363 btrfs_tree_read_lock(eb);
364 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
369 if (extent_buffer_uptodate(eb) &&
370 btrfs_header_generation(eb) == parent_transid) {
374 btrfs_err_rl(eb->fs_info,
375 "parent transid verify failed on %llu wanted %llu found %llu",
377 parent_transid, btrfs_header_generation(eb));
381 * Things reading via commit roots that don't have normal protection,
382 * like send, can have a really old block in cache that may point at a
383 * block that has been freed and re-allocated. So don't clear uptodate
384 * if we find an eb that is under IO (dirty/writeback) because we could
385 * end up reading in the stale data and then writing it back out and
386 * making everybody very sad.
388 if (!extent_buffer_under_io(eb))
389 clear_extent_buffer_uptodate(eb);
391 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
392 &cached_state, GFP_NOFS);
394 btrfs_tree_read_unlock_blocking(eb);
399 * Return 0 if the superblock checksum type matches the checksum value of that
400 * algorithm. Pass the raw disk superblock data.
402 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 struct btrfs_super_block *disk_sb =
406 (struct btrfs_super_block *)raw_disk_sb;
407 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
412 const int csum_size = sizeof(crc);
413 char result[csum_size];
416 * The super_block structure does not span the whole
417 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
418 * is filled with zeros and is included in the checksum.
420 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
421 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
422 btrfs_csum_final(crc, result);
424 if (memcmp(raw_disk_sb, result, csum_size))
428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
429 btrfs_err(fs_info, "unsupported checksum algorithm %u",
438 * helper to read a given tree block, doing retries as required when
439 * the checksums don't match and we have alternate mirrors to try.
441 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
442 struct extent_buffer *eb,
445 struct extent_io_tree *io_tree;
450 int failed_mirror = 0;
452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
453 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
456 btree_get_extent, mirror_num);
458 if (!verify_parent_transid(io_tree, eb,
466 * This buffer's crc is fine, but its contents are corrupted, so
467 * there is no reason to read the other copies, they won't be
470 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 num_copies = btrfs_num_copies(fs_info,
478 if (!failed_mirror) {
480 failed_mirror = eb->read_mirror;
484 if (mirror_num == failed_mirror)
487 if (mirror_num > num_copies)
491 if (failed && !ret && failed_mirror)
492 repair_eb_io_failure(fs_info, eb, failed_mirror);
498 * checksum a dirty tree block before IO. This has extra checks to make sure
499 * we only fill in the checksum field in the first page of a multi-page block
502 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
504 u64 start = page_offset(page);
506 struct extent_buffer *eb;
508 eb = (struct extent_buffer *)page->private;
509 if (page != eb->pages[0])
512 found_start = btrfs_header_bytenr(eb);
514 * Please do not consolidate these warnings into a single if.
515 * It is useful to know what went wrong.
517 if (WARN_ON(found_start != start))
519 if (WARN_ON(!PageUptodate(page)))
522 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
523 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
525 return csum_tree_block(fs_info, eb, 0);
528 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
529 struct extent_buffer *eb)
531 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
532 u8 fsid[BTRFS_UUID_SIZE];
535 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
537 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 fs_devices = fs_devices->seed;
546 #define CORRUPT(reason, eb, root, slot) \
547 btrfs_crit(root->fs_info, \
548 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
549 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
550 reason, btrfs_header_bytenr(eb), root->objectid, slot)
552 static noinline int check_leaf(struct btrfs_root *root,
553 struct extent_buffer *leaf)
555 struct btrfs_fs_info *fs_info = root->fs_info;
556 struct btrfs_key key;
557 struct btrfs_key leaf_key;
558 u32 nritems = btrfs_header_nritems(leaf);
562 * Extent buffers from a relocation tree have a owner field that
563 * corresponds to the subvolume tree they are based on. So just from an
564 * extent buffer alone we can not find out what is the id of the
565 * corresponding subvolume tree, so we can not figure out if the extent
566 * buffer corresponds to the root of the relocation tree or not. So skip
567 * this check for relocation trees.
569 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
570 struct btrfs_root *check_root;
572 key.objectid = btrfs_header_owner(leaf);
573 key.type = BTRFS_ROOT_ITEM_KEY;
574 key.offset = (u64)-1;
576 check_root = btrfs_get_fs_root(fs_info, &key, false);
578 * The only reason we also check NULL here is that during
579 * open_ctree() some roots has not yet been set up.
581 if (!IS_ERR_OR_NULL(check_root)) {
582 struct extent_buffer *eb;
584 eb = btrfs_root_node(check_root);
585 /* if leaf is the root, then it's fine */
587 CORRUPT("non-root leaf's nritems is 0",
588 leaf, check_root, 0);
589 free_extent_buffer(eb);
592 free_extent_buffer(eb);
600 /* Check the 0 item */
601 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
602 BTRFS_LEAF_DATA_SIZE(fs_info)) {
603 CORRUPT("invalid item offset size pair", leaf, root, 0);
608 * Check to make sure each items keys are in the correct order and their
609 * offsets make sense. We only have to loop through nritems-1 because
610 * we check the current slot against the next slot, which verifies the
611 * next slot's offset+size makes sense and that the current's slot
614 for (slot = 0; slot < nritems - 1; slot++) {
615 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
616 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
618 /* Make sure the keys are in the right order */
619 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
620 CORRUPT("bad key order", leaf, root, slot);
625 * Make sure the offset and ends are right, remember that the
626 * item data starts at the end of the leaf and grows towards the
629 if (btrfs_item_offset_nr(leaf, slot) !=
630 btrfs_item_end_nr(leaf, slot + 1)) {
631 CORRUPT("slot offset bad", leaf, root, slot);
636 * Check to make sure that we don't point outside of the leaf,
637 * just in case all the items are consistent to each other, but
638 * all point outside of the leaf.
640 if (btrfs_item_end_nr(leaf, slot) >
641 BTRFS_LEAF_DATA_SIZE(fs_info)) {
642 CORRUPT("slot end outside of leaf", leaf, root, slot);
650 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
652 unsigned long nr = btrfs_header_nritems(node);
653 struct btrfs_key key, next_key;
658 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
659 btrfs_crit(root->fs_info,
660 "corrupt node: block %llu root %llu nritems %lu",
661 node->start, root->objectid, nr);
665 for (slot = 0; slot < nr - 1; slot++) {
666 bytenr = btrfs_node_blockptr(node, slot);
667 btrfs_node_key_to_cpu(node, &key, slot);
668 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
671 CORRUPT("invalid item slot", node, root, slot);
676 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
677 CORRUPT("bad key order", node, root, slot);
686 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
687 u64 phy_offset, struct page *page,
688 u64 start, u64 end, int mirror)
692 struct extent_buffer *eb;
693 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
694 struct btrfs_fs_info *fs_info = root->fs_info;
701 eb = (struct extent_buffer *)page->private;
703 /* the pending IO might have been the only thing that kept this buffer
704 * in memory. Make sure we have a ref for all this other checks
706 extent_buffer_get(eb);
708 reads_done = atomic_dec_and_test(&eb->io_pages);
712 eb->read_mirror = mirror;
713 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
718 found_start = btrfs_header_bytenr(eb);
719 if (found_start != eb->start) {
720 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
721 found_start, eb->start);
725 if (check_tree_block_fsid(fs_info, eb)) {
726 btrfs_err_rl(fs_info, "bad fsid on block %llu",
731 found_level = btrfs_header_level(eb);
732 if (found_level >= BTRFS_MAX_LEVEL) {
733 btrfs_err(fs_info, "bad tree block level %d",
734 (int)btrfs_header_level(eb));
739 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
742 ret = csum_tree_block(fs_info, eb, 1);
747 * If this is a leaf block and it is corrupt, set the corrupt bit so
748 * that we don't try and read the other copies of this block, just
751 if (found_level == 0 && check_leaf(root, eb)) {
752 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
756 if (found_level > 0 && check_node(root, eb))
760 set_extent_buffer_uptodate(eb);
763 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
764 btree_readahead_hook(eb, ret);
768 * our io error hook is going to dec the io pages
769 * again, we have to make sure it has something
772 atomic_inc(&eb->io_pages);
773 clear_extent_buffer_uptodate(eb);
775 free_extent_buffer(eb);
780 static int btree_io_failed_hook(struct page *page, int failed_mirror)
782 struct extent_buffer *eb;
784 eb = (struct extent_buffer *)page->private;
785 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
786 eb->read_mirror = failed_mirror;
787 atomic_dec(&eb->io_pages);
788 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
789 btree_readahead_hook(eb, -EIO);
790 return -EIO; /* we fixed nothing */
793 static void end_workqueue_bio(struct bio *bio)
795 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
796 struct btrfs_fs_info *fs_info;
797 struct btrfs_workqueue *wq;
798 btrfs_work_func_t func;
800 fs_info = end_io_wq->info;
801 end_io_wq->status = bio->bi_status;
803 if (bio_op(bio) == REQ_OP_WRITE) {
804 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
805 wq = fs_info->endio_meta_write_workers;
806 func = btrfs_endio_meta_write_helper;
807 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
808 wq = fs_info->endio_freespace_worker;
809 func = btrfs_freespace_write_helper;
810 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
811 wq = fs_info->endio_raid56_workers;
812 func = btrfs_endio_raid56_helper;
814 wq = fs_info->endio_write_workers;
815 func = btrfs_endio_write_helper;
818 if (unlikely(end_io_wq->metadata ==
819 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
820 wq = fs_info->endio_repair_workers;
821 func = btrfs_endio_repair_helper;
822 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
823 wq = fs_info->endio_raid56_workers;
824 func = btrfs_endio_raid56_helper;
825 } else if (end_io_wq->metadata) {
826 wq = fs_info->endio_meta_workers;
827 func = btrfs_endio_meta_helper;
829 wq = fs_info->endio_workers;
830 func = btrfs_endio_helper;
834 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
835 btrfs_queue_work(wq, &end_io_wq->work);
838 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
839 enum btrfs_wq_endio_type metadata)
841 struct btrfs_end_io_wq *end_io_wq;
843 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
845 return BLK_STS_RESOURCE;
847 end_io_wq->private = bio->bi_private;
848 end_io_wq->end_io = bio->bi_end_io;
849 end_io_wq->info = info;
850 end_io_wq->status = 0;
851 end_io_wq->bio = bio;
852 end_io_wq->metadata = metadata;
854 bio->bi_private = end_io_wq;
855 bio->bi_end_io = end_workqueue_bio;
859 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
861 unsigned long limit = min_t(unsigned long,
862 info->thread_pool_size,
863 info->fs_devices->open_devices);
867 static void run_one_async_start(struct btrfs_work *work)
869 struct async_submit_bio *async;
872 async = container_of(work, struct async_submit_bio, work);
873 ret = async->submit_bio_start(async->private_data, async->bio,
874 async->mirror_num, async->bio_flags,
880 static void run_one_async_done(struct btrfs_work *work)
882 struct btrfs_fs_info *fs_info;
883 struct async_submit_bio *async;
886 async = container_of(work, struct async_submit_bio, work);
887 fs_info = async->fs_info;
889 limit = btrfs_async_submit_limit(fs_info);
890 limit = limit * 2 / 3;
893 * atomic_dec_return implies a barrier for waitqueue_active
895 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
896 waitqueue_active(&fs_info->async_submit_wait))
897 wake_up(&fs_info->async_submit_wait);
899 /* If an error occurred we just want to clean up the bio and move on */
901 async->bio->bi_status = async->status;
902 bio_endio(async->bio);
906 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
907 async->bio_flags, async->bio_offset);
910 static void run_one_async_free(struct btrfs_work *work)
912 struct async_submit_bio *async;
914 async = container_of(work, struct async_submit_bio, work);
918 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset, void *private_data,
921 extent_submit_bio_hook_t *submit_bio_start,
922 extent_submit_bio_hook_t *submit_bio_done)
924 struct async_submit_bio *async;
926 async = kmalloc(sizeof(*async), GFP_NOFS);
928 return BLK_STS_RESOURCE;
930 async->private_data = private_data;
931 async->fs_info = fs_info;
933 async->mirror_num = mirror_num;
934 async->submit_bio_start = submit_bio_start;
935 async->submit_bio_done = submit_bio_done;
937 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
938 run_one_async_done, run_one_async_free);
940 async->bio_flags = bio_flags;
941 async->bio_offset = bio_offset;
945 atomic_inc(&fs_info->nr_async_submits);
947 if (op_is_sync(bio->bi_opf))
948 btrfs_set_work_high_priority(&async->work);
950 btrfs_queue_work(fs_info->workers, &async->work);
952 while (atomic_read(&fs_info->async_submit_draining) &&
953 atomic_read(&fs_info->nr_async_submits)) {
954 wait_event(fs_info->async_submit_wait,
955 (atomic_read(&fs_info->nr_async_submits) == 0));
961 static blk_status_t btree_csum_one_bio(struct bio *bio)
963 struct bio_vec *bvec;
964 struct btrfs_root *root;
967 ASSERT(!bio_flagged(bio, BIO_CLONED));
968 bio_for_each_segment_all(bvec, bio, i) {
969 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
975 return errno_to_blk_status(ret);
978 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
979 int mirror_num, unsigned long bio_flags,
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
986 return btree_csum_one_bio(bio);
989 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
990 int mirror_num, unsigned long bio_flags,
993 struct inode *inode = private_data;
997 * when we're called for a write, we're already in the async
998 * submission context. Just jump into btrfs_map_bio
1000 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1002 bio->bi_status = ret;
1008 static int check_async_write(unsigned long bio_flags)
1010 if (bio_flags & EXTENT_BIO_TREE_LOG)
1013 if (static_cpu_has(X86_FEATURE_XMM4_2))
1019 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
1020 int mirror_num, unsigned long bio_flags,
1023 struct inode *inode = private_data;
1024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1025 int async = check_async_write(bio_flags);
1028 if (bio_op(bio) != REQ_OP_WRITE) {
1030 * called for a read, do the setup so that checksum validation
1031 * can happen in the async kernel threads
1033 ret = btrfs_bio_wq_end_io(fs_info, bio,
1034 BTRFS_WQ_ENDIO_METADATA);
1037 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1038 } else if (!async) {
1039 ret = btree_csum_one_bio(bio);
1042 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1045 * kthread helpers are used to submit writes so that
1046 * checksumming can happen in parallel across all CPUs
1048 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
1049 bio_offset, private_data,
1050 __btree_submit_bio_start,
1051 __btree_submit_bio_done);
1059 bio->bi_status = ret;
1064 #ifdef CONFIG_MIGRATION
1065 static int btree_migratepage(struct address_space *mapping,
1066 struct page *newpage, struct page *page,
1067 enum migrate_mode mode)
1070 * we can't safely write a btree page from here,
1071 * we haven't done the locking hook
1073 if (PageDirty(page))
1076 * Buffers may be managed in a filesystem specific way.
1077 * We must have no buffers or drop them.
1079 if (page_has_private(page) &&
1080 !try_to_release_page(page, GFP_KERNEL))
1082 return migrate_page(mapping, newpage, page, mode);
1087 static int btree_writepages(struct address_space *mapping,
1088 struct writeback_control *wbc)
1090 struct btrfs_fs_info *fs_info;
1093 if (wbc->sync_mode == WB_SYNC_NONE) {
1095 if (wbc->for_kupdate)
1098 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1099 /* this is a bit racy, but that's ok */
1100 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1101 BTRFS_DIRTY_METADATA_THRESH);
1105 return btree_write_cache_pages(mapping, wbc);
1108 static int btree_readpage(struct file *file, struct page *page)
1110 struct extent_io_tree *tree;
1111 tree = &BTRFS_I(page->mapping->host)->io_tree;
1112 return extent_read_full_page(tree, page, btree_get_extent, 0);
1115 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1117 if (PageWriteback(page) || PageDirty(page))
1120 return try_release_extent_buffer(page);
1123 static void btree_invalidatepage(struct page *page, unsigned int offset,
1124 unsigned int length)
1126 struct extent_io_tree *tree;
1127 tree = &BTRFS_I(page->mapping->host)->io_tree;
1128 extent_invalidatepage(tree, page, offset);
1129 btree_releasepage(page, GFP_NOFS);
1130 if (PagePrivate(page)) {
1131 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1132 "page private not zero on page %llu",
1133 (unsigned long long)page_offset(page));
1134 ClearPagePrivate(page);
1135 set_page_private(page, 0);
1140 static int btree_set_page_dirty(struct page *page)
1143 struct extent_buffer *eb;
1145 BUG_ON(!PagePrivate(page));
1146 eb = (struct extent_buffer *)page->private;
1148 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1149 BUG_ON(!atomic_read(&eb->refs));
1150 btrfs_assert_tree_locked(eb);
1152 return __set_page_dirty_nobuffers(page);
1155 static const struct address_space_operations btree_aops = {
1156 .readpage = btree_readpage,
1157 .writepages = btree_writepages,
1158 .releasepage = btree_releasepage,
1159 .invalidatepage = btree_invalidatepage,
1160 #ifdef CONFIG_MIGRATION
1161 .migratepage = btree_migratepage,
1163 .set_page_dirty = btree_set_page_dirty,
1166 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1168 struct extent_buffer *buf = NULL;
1169 struct inode *btree_inode = fs_info->btree_inode;
1171 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1174 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1175 buf, WAIT_NONE, btree_get_extent, 0);
1176 free_extent_buffer(buf);
1179 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1180 int mirror_num, struct extent_buffer **eb)
1182 struct extent_buffer *buf = NULL;
1183 struct inode *btree_inode = fs_info->btree_inode;
1184 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1187 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1191 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1193 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1194 btree_get_extent, mirror_num);
1196 free_extent_buffer(buf);
1200 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1201 free_extent_buffer(buf);
1203 } else if (extent_buffer_uptodate(buf)) {
1206 free_extent_buffer(buf);
1211 struct extent_buffer *btrfs_find_create_tree_block(
1212 struct btrfs_fs_info *fs_info,
1215 if (btrfs_is_testing(fs_info))
1216 return alloc_test_extent_buffer(fs_info, bytenr);
1217 return alloc_extent_buffer(fs_info, bytenr);
1221 int btrfs_write_tree_block(struct extent_buffer *buf)
1223 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1224 buf->start + buf->len - 1);
1227 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1229 filemap_fdatawait_range(buf->pages[0]->mapping,
1230 buf->start, buf->start + buf->len - 1);
1233 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1236 struct extent_buffer *buf = NULL;
1239 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1243 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1245 free_extent_buffer(buf);
1246 return ERR_PTR(ret);
1252 void clean_tree_block(struct btrfs_fs_info *fs_info,
1253 struct extent_buffer *buf)
1255 if (btrfs_header_generation(buf) ==
1256 fs_info->running_transaction->transid) {
1257 btrfs_assert_tree_locked(buf);
1259 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1262 fs_info->dirty_metadata_batch);
1263 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1264 btrfs_set_lock_blocking(buf);
1265 clear_extent_buffer_dirty(buf);
1270 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1272 struct btrfs_subvolume_writers *writers;
1275 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1277 return ERR_PTR(-ENOMEM);
1279 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1282 return ERR_PTR(ret);
1285 init_waitqueue_head(&writers->wait);
1290 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1292 percpu_counter_destroy(&writers->counter);
1296 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1299 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1301 root->commit_root = NULL;
1303 root->orphan_cleanup_state = 0;
1305 root->objectid = objectid;
1306 root->last_trans = 0;
1307 root->highest_objectid = 0;
1308 root->nr_delalloc_inodes = 0;
1309 root->nr_ordered_extents = 0;
1311 root->inode_tree = RB_ROOT;
1312 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313 root->block_rsv = NULL;
1314 root->orphan_block_rsv = NULL;
1316 INIT_LIST_HEAD(&root->dirty_list);
1317 INIT_LIST_HEAD(&root->root_list);
1318 INIT_LIST_HEAD(&root->delalloc_inodes);
1319 INIT_LIST_HEAD(&root->delalloc_root);
1320 INIT_LIST_HEAD(&root->ordered_extents);
1321 INIT_LIST_HEAD(&root->ordered_root);
1322 INIT_LIST_HEAD(&root->logged_list[0]);
1323 INIT_LIST_HEAD(&root->logged_list[1]);
1324 spin_lock_init(&root->orphan_lock);
1325 spin_lock_init(&root->inode_lock);
1326 spin_lock_init(&root->delalloc_lock);
1327 spin_lock_init(&root->ordered_extent_lock);
1328 spin_lock_init(&root->accounting_lock);
1329 spin_lock_init(&root->log_extents_lock[0]);
1330 spin_lock_init(&root->log_extents_lock[1]);
1331 mutex_init(&root->objectid_mutex);
1332 mutex_init(&root->log_mutex);
1333 mutex_init(&root->ordered_extent_mutex);
1334 mutex_init(&root->delalloc_mutex);
1335 init_waitqueue_head(&root->log_writer_wait);
1336 init_waitqueue_head(&root->log_commit_wait[0]);
1337 init_waitqueue_head(&root->log_commit_wait[1]);
1338 INIT_LIST_HEAD(&root->log_ctxs[0]);
1339 INIT_LIST_HEAD(&root->log_ctxs[1]);
1340 atomic_set(&root->log_commit[0], 0);
1341 atomic_set(&root->log_commit[1], 0);
1342 atomic_set(&root->log_writers, 0);
1343 atomic_set(&root->log_batch, 0);
1344 atomic_set(&root->orphan_inodes, 0);
1345 refcount_set(&root->refs, 1);
1346 atomic_set(&root->will_be_snapshoted, 0);
1347 atomic64_set(&root->qgroup_meta_rsv, 0);
1348 root->log_transid = 0;
1349 root->log_transid_committed = -1;
1350 root->last_log_commit = 0;
1352 extent_io_tree_init(&root->dirty_log_pages, NULL);
1354 memset(&root->root_key, 0, sizeof(root->root_key));
1355 memset(&root->root_item, 0, sizeof(root->root_item));
1356 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358 root->defrag_trans_start = fs_info->generation;
1360 root->defrag_trans_start = 0;
1361 root->root_key.objectid = objectid;
1364 spin_lock_init(&root->root_item_lock);
1367 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1370 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372 root->fs_info = fs_info;
1376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1377 /* Should only be used by the testing infrastructure */
1378 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380 struct btrfs_root *root;
1383 return ERR_PTR(-EINVAL);
1385 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387 return ERR_PTR(-ENOMEM);
1389 /* We don't use the stripesize in selftest, set it as sectorsize */
1390 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1391 root->alloc_bytenr = 0;
1397 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info,
1401 struct extent_buffer *leaf;
1402 struct btrfs_root *tree_root = fs_info->tree_root;
1403 struct btrfs_root *root;
1404 struct btrfs_key key;
1408 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1410 return ERR_PTR(-ENOMEM);
1412 __setup_root(root, fs_info, objectid);
1413 root->root_key.objectid = objectid;
1414 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1415 root->root_key.offset = 0;
1417 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1419 ret = PTR_ERR(leaf);
1424 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1425 btrfs_set_header_bytenr(leaf, leaf->start);
1426 btrfs_set_header_generation(leaf, trans->transid);
1427 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1428 btrfs_set_header_owner(leaf, objectid);
1431 write_extent_buffer_fsid(leaf, fs_info->fsid);
1432 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1433 btrfs_mark_buffer_dirty(leaf);
1435 root->commit_root = btrfs_root_node(root);
1436 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438 root->root_item.flags = 0;
1439 root->root_item.byte_limit = 0;
1440 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441 btrfs_set_root_generation(&root->root_item, trans->transid);
1442 btrfs_set_root_level(&root->root_item, 0);
1443 btrfs_set_root_refs(&root->root_item, 1);
1444 btrfs_set_root_used(&root->root_item, leaf->len);
1445 btrfs_set_root_last_snapshot(&root->root_item, 0);
1446 btrfs_set_root_dirid(&root->root_item, 0);
1448 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1449 root->root_item.drop_level = 0;
1451 key.objectid = objectid;
1452 key.type = BTRFS_ROOT_ITEM_KEY;
1454 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1458 btrfs_tree_unlock(leaf);
1464 btrfs_tree_unlock(leaf);
1465 free_extent_buffer(root->commit_root);
1466 free_extent_buffer(leaf);
1470 return ERR_PTR(ret);
1473 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474 struct btrfs_fs_info *fs_info)
1476 struct btrfs_root *root;
1477 struct extent_buffer *leaf;
1479 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481 return ERR_PTR(-ENOMEM);
1483 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1486 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1487 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1490 * DON'T set REF_COWS for log trees
1492 * log trees do not get reference counted because they go away
1493 * before a real commit is actually done. They do store pointers
1494 * to file data extents, and those reference counts still get
1495 * updated (along with back refs to the log tree).
1498 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1502 return ERR_CAST(leaf);
1505 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1506 btrfs_set_header_bytenr(leaf, leaf->start);
1507 btrfs_set_header_generation(leaf, trans->transid);
1508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1509 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1512 write_extent_buffer_fsid(root->node, fs_info->fsid);
1513 btrfs_mark_buffer_dirty(root->node);
1514 btrfs_tree_unlock(root->node);
1518 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1519 struct btrfs_fs_info *fs_info)
1521 struct btrfs_root *log_root;
1523 log_root = alloc_log_tree(trans, fs_info);
1524 if (IS_ERR(log_root))
1525 return PTR_ERR(log_root);
1526 WARN_ON(fs_info->log_root_tree);
1527 fs_info->log_root_tree = log_root;
1531 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root)
1534 struct btrfs_fs_info *fs_info = root->fs_info;
1535 struct btrfs_root *log_root;
1536 struct btrfs_inode_item *inode_item;
1538 log_root = alloc_log_tree(trans, fs_info);
1539 if (IS_ERR(log_root))
1540 return PTR_ERR(log_root);
1542 log_root->last_trans = trans->transid;
1543 log_root->root_key.offset = root->root_key.objectid;
1545 inode_item = &log_root->root_item.inode;
1546 btrfs_set_stack_inode_generation(inode_item, 1);
1547 btrfs_set_stack_inode_size(inode_item, 3);
1548 btrfs_set_stack_inode_nlink(inode_item, 1);
1549 btrfs_set_stack_inode_nbytes(inode_item,
1551 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553 btrfs_set_root_node(&log_root->root_item, log_root->node);
1555 WARN_ON(root->log_root);
1556 root->log_root = log_root;
1557 root->log_transid = 0;
1558 root->log_transid_committed = -1;
1559 root->last_log_commit = 0;
1563 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1564 struct btrfs_key *key)
1566 struct btrfs_root *root;
1567 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1568 struct btrfs_path *path;
1572 path = btrfs_alloc_path();
1574 return ERR_PTR(-ENOMEM);
1576 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1582 __setup_root(root, fs_info, key->objectid);
1584 ret = btrfs_find_root(tree_root, key, path,
1585 &root->root_item, &root->root_key);
1592 generation = btrfs_root_generation(&root->root_item);
1593 root->node = read_tree_block(fs_info,
1594 btrfs_root_bytenr(&root->root_item),
1596 if (IS_ERR(root->node)) {
1597 ret = PTR_ERR(root->node);
1599 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601 free_extent_buffer(root->node);
1604 root->commit_root = btrfs_root_node(root);
1606 btrfs_free_path(path);
1612 root = ERR_PTR(ret);
1616 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1617 struct btrfs_key *location)
1619 struct btrfs_root *root;
1621 root = btrfs_read_tree_root(tree_root, location);
1625 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1626 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1627 btrfs_check_and_init_root_item(&root->root_item);
1633 int btrfs_init_fs_root(struct btrfs_root *root)
1636 struct btrfs_subvolume_writers *writers;
1638 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1639 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1646 writers = btrfs_alloc_subvolume_writers();
1647 if (IS_ERR(writers)) {
1648 ret = PTR_ERR(writers);
1651 root->subv_writers = writers;
1653 btrfs_init_free_ino_ctl(root);
1654 spin_lock_init(&root->ino_cache_lock);
1655 init_waitqueue_head(&root->ino_cache_wait);
1657 ret = get_anon_bdev(&root->anon_dev);
1661 mutex_lock(&root->objectid_mutex);
1662 ret = btrfs_find_highest_objectid(root,
1663 &root->highest_objectid);
1665 mutex_unlock(&root->objectid_mutex);
1669 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671 mutex_unlock(&root->objectid_mutex);
1675 /* the caller is responsible to call free_fs_root */
1679 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1682 struct btrfs_root *root;
1684 spin_lock(&fs_info->fs_roots_radix_lock);
1685 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1686 (unsigned long)root_id);
1687 spin_unlock(&fs_info->fs_roots_radix_lock);
1691 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1692 struct btrfs_root *root)
1696 ret = radix_tree_preload(GFP_NOFS);
1700 spin_lock(&fs_info->fs_roots_radix_lock);
1701 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1702 (unsigned long)root->root_key.objectid,
1705 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1706 spin_unlock(&fs_info->fs_roots_radix_lock);
1707 radix_tree_preload_end();
1712 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1713 struct btrfs_key *location,
1716 struct btrfs_root *root;
1717 struct btrfs_path *path;
1718 struct btrfs_key key;
1721 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1722 return fs_info->tree_root;
1723 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1724 return fs_info->extent_root;
1725 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1726 return fs_info->chunk_root;
1727 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1728 return fs_info->dev_root;
1729 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1730 return fs_info->csum_root;
1731 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1732 return fs_info->quota_root ? fs_info->quota_root :
1734 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1735 return fs_info->uuid_root ? fs_info->uuid_root :
1737 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1738 return fs_info->free_space_root ? fs_info->free_space_root :
1741 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1744 return ERR_PTR(-ENOENT);
1748 root = btrfs_read_fs_root(fs_info->tree_root, location);
1752 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1757 ret = btrfs_init_fs_root(root);
1761 path = btrfs_alloc_path();
1766 key.objectid = BTRFS_ORPHAN_OBJECTID;
1767 key.type = BTRFS_ORPHAN_ITEM_KEY;
1768 key.offset = location->objectid;
1770 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1771 btrfs_free_path(path);
1775 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777 ret = btrfs_insert_fs_root(fs_info, root);
1779 if (ret == -EEXIST) {
1788 return ERR_PTR(ret);
1791 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1793 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795 struct btrfs_device *device;
1796 struct backing_dev_info *bdi;
1799 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1802 bdi = device->bdev->bd_bdi;
1803 if (bdi_congested(bdi, bdi_bits)) {
1813 * called by the kthread helper functions to finally call the bio end_io
1814 * functions. This is where read checksum verification actually happens
1816 static void end_workqueue_fn(struct btrfs_work *work)
1819 struct btrfs_end_io_wq *end_io_wq;
1821 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1822 bio = end_io_wq->bio;
1824 bio->bi_status = end_io_wq->status;
1825 bio->bi_private = end_io_wq->private;
1826 bio->bi_end_io = end_io_wq->end_io;
1827 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1831 static int cleaner_kthread(void *arg)
1833 struct btrfs_root *root = arg;
1834 struct btrfs_fs_info *fs_info = root->fs_info;
1836 struct btrfs_trans_handle *trans;
1841 /* Make the cleaner go to sleep early. */
1842 if (btrfs_need_cleaner_sleep(fs_info))
1846 * Do not do anything if we might cause open_ctree() to block
1847 * before we have finished mounting the filesystem.
1849 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1852 if (!mutex_trylock(&fs_info->cleaner_mutex))
1856 * Avoid the problem that we change the status of the fs
1857 * during the above check and trylock.
1859 if (btrfs_need_cleaner_sleep(fs_info)) {
1860 mutex_unlock(&fs_info->cleaner_mutex);
1864 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1865 btrfs_run_delayed_iputs(fs_info);
1866 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1868 again = btrfs_clean_one_deleted_snapshot(root);
1869 mutex_unlock(&fs_info->cleaner_mutex);
1872 * The defragger has dealt with the R/O remount and umount,
1873 * needn't do anything special here.
1875 btrfs_run_defrag_inodes(fs_info);
1878 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1879 * with relocation (btrfs_relocate_chunk) and relocation
1880 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1881 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1882 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1883 * unused block groups.
1885 btrfs_delete_unused_bgs(fs_info);
1888 set_current_state(TASK_INTERRUPTIBLE);
1889 if (!kthread_should_stop())
1891 __set_current_state(TASK_RUNNING);
1893 } while (!kthread_should_stop());
1896 * Transaction kthread is stopped before us and wakes us up.
1897 * However we might have started a new transaction and COWed some
1898 * tree blocks when deleting unused block groups for example. So
1899 * make sure we commit the transaction we started to have a clean
1900 * shutdown when evicting the btree inode - if it has dirty pages
1901 * when we do the final iput() on it, eviction will trigger a
1902 * writeback for it which will fail with null pointer dereferences
1903 * since work queues and other resources were already released and
1904 * destroyed by the time the iput/eviction/writeback is made.
1906 trans = btrfs_attach_transaction(root);
1907 if (IS_ERR(trans)) {
1908 if (PTR_ERR(trans) != -ENOENT)
1910 "cleaner transaction attach returned %ld",
1915 ret = btrfs_commit_transaction(trans);
1918 "cleaner open transaction commit returned %d",
1925 static int transaction_kthread(void *arg)
1927 struct btrfs_root *root = arg;
1928 struct btrfs_fs_info *fs_info = root->fs_info;
1929 struct btrfs_trans_handle *trans;
1930 struct btrfs_transaction *cur;
1933 unsigned long delay;
1937 cannot_commit = false;
1938 delay = HZ * fs_info->commit_interval;
1939 mutex_lock(&fs_info->transaction_kthread_mutex);
1941 spin_lock(&fs_info->trans_lock);
1942 cur = fs_info->running_transaction;
1944 spin_unlock(&fs_info->trans_lock);
1948 now = get_seconds();
1949 if (cur->state < TRANS_STATE_BLOCKED &&
1950 (now < cur->start_time ||
1951 now - cur->start_time < fs_info->commit_interval)) {
1952 spin_unlock(&fs_info->trans_lock);
1956 transid = cur->transid;
1957 spin_unlock(&fs_info->trans_lock);
1959 /* If the file system is aborted, this will always fail. */
1960 trans = btrfs_attach_transaction(root);
1961 if (IS_ERR(trans)) {
1962 if (PTR_ERR(trans) != -ENOENT)
1963 cannot_commit = true;
1966 if (transid == trans->transid) {
1967 btrfs_commit_transaction(trans);
1969 btrfs_end_transaction(trans);
1972 wake_up_process(fs_info->cleaner_kthread);
1973 mutex_unlock(&fs_info->transaction_kthread_mutex);
1975 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1976 &fs_info->fs_state)))
1977 btrfs_cleanup_transaction(fs_info);
1978 set_current_state(TASK_INTERRUPTIBLE);
1979 if (!kthread_should_stop() &&
1980 (!btrfs_transaction_blocked(fs_info) ||
1982 schedule_timeout(delay);
1983 __set_current_state(TASK_RUNNING);
1984 } while (!kthread_should_stop());
1989 * this will find the highest generation in the array of
1990 * root backups. The index of the highest array is returned,
1991 * or -1 if we can't find anything.
1993 * We check to make sure the array is valid by comparing the
1994 * generation of the latest root in the array with the generation
1995 * in the super block. If they don't match we pitch it.
1997 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2000 int newest_index = -1;
2001 struct btrfs_root_backup *root_backup;
2004 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2005 root_backup = info->super_copy->super_roots + i;
2006 cur = btrfs_backup_tree_root_gen(root_backup);
2007 if (cur == newest_gen)
2011 /* check to see if we actually wrapped around */
2012 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2013 root_backup = info->super_copy->super_roots;
2014 cur = btrfs_backup_tree_root_gen(root_backup);
2015 if (cur == newest_gen)
2018 return newest_index;
2023 * find the oldest backup so we know where to store new entries
2024 * in the backup array. This will set the backup_root_index
2025 * field in the fs_info struct
2027 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2030 int newest_index = -1;
2032 newest_index = find_newest_super_backup(info, newest_gen);
2033 /* if there was garbage in there, just move along */
2034 if (newest_index == -1) {
2035 info->backup_root_index = 0;
2037 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2042 * copy all the root pointers into the super backup array.
2043 * this will bump the backup pointer by one when it is
2046 static void backup_super_roots(struct btrfs_fs_info *info)
2049 struct btrfs_root_backup *root_backup;
2052 next_backup = info->backup_root_index;
2053 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2054 BTRFS_NUM_BACKUP_ROOTS;
2057 * just overwrite the last backup if we're at the same generation
2058 * this happens only at umount
2060 root_backup = info->super_for_commit->super_roots + last_backup;
2061 if (btrfs_backup_tree_root_gen(root_backup) ==
2062 btrfs_header_generation(info->tree_root->node))
2063 next_backup = last_backup;
2065 root_backup = info->super_for_commit->super_roots + next_backup;
2068 * make sure all of our padding and empty slots get zero filled
2069 * regardless of which ones we use today
2071 memset(root_backup, 0, sizeof(*root_backup));
2073 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2075 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2076 btrfs_set_backup_tree_root_gen(root_backup,
2077 btrfs_header_generation(info->tree_root->node));
2079 btrfs_set_backup_tree_root_level(root_backup,
2080 btrfs_header_level(info->tree_root->node));
2082 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2083 btrfs_set_backup_chunk_root_gen(root_backup,
2084 btrfs_header_generation(info->chunk_root->node));
2085 btrfs_set_backup_chunk_root_level(root_backup,
2086 btrfs_header_level(info->chunk_root->node));
2088 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2089 btrfs_set_backup_extent_root_gen(root_backup,
2090 btrfs_header_generation(info->extent_root->node));
2091 btrfs_set_backup_extent_root_level(root_backup,
2092 btrfs_header_level(info->extent_root->node));
2095 * we might commit during log recovery, which happens before we set
2096 * the fs_root. Make sure it is valid before we fill it in.
2098 if (info->fs_root && info->fs_root->node) {
2099 btrfs_set_backup_fs_root(root_backup,
2100 info->fs_root->node->start);
2101 btrfs_set_backup_fs_root_gen(root_backup,
2102 btrfs_header_generation(info->fs_root->node));
2103 btrfs_set_backup_fs_root_level(root_backup,
2104 btrfs_header_level(info->fs_root->node));
2107 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2108 btrfs_set_backup_dev_root_gen(root_backup,
2109 btrfs_header_generation(info->dev_root->node));
2110 btrfs_set_backup_dev_root_level(root_backup,
2111 btrfs_header_level(info->dev_root->node));
2113 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2114 btrfs_set_backup_csum_root_gen(root_backup,
2115 btrfs_header_generation(info->csum_root->node));
2116 btrfs_set_backup_csum_root_level(root_backup,
2117 btrfs_header_level(info->csum_root->node));
2119 btrfs_set_backup_total_bytes(root_backup,
2120 btrfs_super_total_bytes(info->super_copy));
2121 btrfs_set_backup_bytes_used(root_backup,
2122 btrfs_super_bytes_used(info->super_copy));
2123 btrfs_set_backup_num_devices(root_backup,
2124 btrfs_super_num_devices(info->super_copy));
2127 * if we don't copy this out to the super_copy, it won't get remembered
2128 * for the next commit
2130 memcpy(&info->super_copy->super_roots,
2131 &info->super_for_commit->super_roots,
2132 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2136 * this copies info out of the root backup array and back into
2137 * the in-memory super block. It is meant to help iterate through
2138 * the array, so you send it the number of backups you've already
2139 * tried and the last backup index you used.
2141 * this returns -1 when it has tried all the backups
2143 static noinline int next_root_backup(struct btrfs_fs_info *info,
2144 struct btrfs_super_block *super,
2145 int *num_backups_tried, int *backup_index)
2147 struct btrfs_root_backup *root_backup;
2148 int newest = *backup_index;
2150 if (*num_backups_tried == 0) {
2151 u64 gen = btrfs_super_generation(super);
2153 newest = find_newest_super_backup(info, gen);
2157 *backup_index = newest;
2158 *num_backups_tried = 1;
2159 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2160 /* we've tried all the backups, all done */
2163 /* jump to the next oldest backup */
2164 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2165 BTRFS_NUM_BACKUP_ROOTS;
2166 *backup_index = newest;
2167 *num_backups_tried += 1;
2169 root_backup = super->super_roots + newest;
2171 btrfs_set_super_generation(super,
2172 btrfs_backup_tree_root_gen(root_backup));
2173 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2174 btrfs_set_super_root_level(super,
2175 btrfs_backup_tree_root_level(root_backup));
2176 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2179 * fixme: the total bytes and num_devices need to match or we should
2182 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2183 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2187 /* helper to cleanup workers */
2188 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2190 btrfs_destroy_workqueue(fs_info->fixup_workers);
2191 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2192 btrfs_destroy_workqueue(fs_info->workers);
2193 btrfs_destroy_workqueue(fs_info->endio_workers);
2194 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2195 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2196 btrfs_destroy_workqueue(fs_info->rmw_workers);
2197 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2198 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2199 btrfs_destroy_workqueue(fs_info->submit_workers);
2200 btrfs_destroy_workqueue(fs_info->delayed_workers);
2201 btrfs_destroy_workqueue(fs_info->caching_workers);
2202 btrfs_destroy_workqueue(fs_info->readahead_workers);
2203 btrfs_destroy_workqueue(fs_info->flush_workers);
2204 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2205 btrfs_destroy_workqueue(fs_info->extent_workers);
2207 * Now that all other work queues are destroyed, we can safely destroy
2208 * the queues used for metadata I/O, since tasks from those other work
2209 * queues can do metadata I/O operations.
2211 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2212 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215 static void free_root_extent_buffers(struct btrfs_root *root)
2218 free_extent_buffer(root->node);
2219 free_extent_buffer(root->commit_root);
2221 root->commit_root = NULL;
2225 /* helper to cleanup tree roots */
2226 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2228 free_root_extent_buffers(info->tree_root);
2230 free_root_extent_buffers(info->dev_root);
2231 free_root_extent_buffers(info->extent_root);
2232 free_root_extent_buffers(info->csum_root);
2233 free_root_extent_buffers(info->quota_root);
2234 free_root_extent_buffers(info->uuid_root);
2236 free_root_extent_buffers(info->chunk_root);
2237 free_root_extent_buffers(info->free_space_root);
2240 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2243 struct btrfs_root *gang[8];
2246 while (!list_empty(&fs_info->dead_roots)) {
2247 gang[0] = list_entry(fs_info->dead_roots.next,
2248 struct btrfs_root, root_list);
2249 list_del(&gang[0]->root_list);
2251 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2252 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2254 free_extent_buffer(gang[0]->node);
2255 free_extent_buffer(gang[0]->commit_root);
2256 btrfs_put_fs_root(gang[0]);
2261 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2266 for (i = 0; i < ret; i++)
2267 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2270 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2271 btrfs_free_log_root_tree(NULL, fs_info);
2272 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2276 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2278 mutex_init(&fs_info->scrub_lock);
2279 atomic_set(&fs_info->scrubs_running, 0);
2280 atomic_set(&fs_info->scrub_pause_req, 0);
2281 atomic_set(&fs_info->scrubs_paused, 0);
2282 atomic_set(&fs_info->scrub_cancel_req, 0);
2283 init_waitqueue_head(&fs_info->scrub_pause_wait);
2284 fs_info->scrub_workers_refcnt = 0;
2287 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2289 spin_lock_init(&fs_info->balance_lock);
2290 mutex_init(&fs_info->balance_mutex);
2291 atomic_set(&fs_info->balance_running, 0);
2292 atomic_set(&fs_info->balance_pause_req, 0);
2293 atomic_set(&fs_info->balance_cancel_req, 0);
2294 fs_info->balance_ctl = NULL;
2295 init_waitqueue_head(&fs_info->balance_wait_q);
2298 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2300 struct inode *inode = fs_info->btree_inode;
2302 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2303 set_nlink(inode, 1);
2305 * we set the i_size on the btree inode to the max possible int.
2306 * the real end of the address space is determined by all of
2307 * the devices in the system
2309 inode->i_size = OFFSET_MAX;
2310 inode->i_mapping->a_ops = &btree_aops;
2312 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2313 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2314 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2315 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2317 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2319 BTRFS_I(inode)->root = fs_info->tree_root;
2320 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2321 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2322 btrfs_insert_inode_hash(inode);
2325 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2327 fs_info->dev_replace.lock_owner = 0;
2328 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2329 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2330 rwlock_init(&fs_info->dev_replace.lock);
2331 atomic_set(&fs_info->dev_replace.read_locks, 0);
2332 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2333 init_waitqueue_head(&fs_info->replace_wait);
2334 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2337 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2339 spin_lock_init(&fs_info->qgroup_lock);
2340 mutex_init(&fs_info->qgroup_ioctl_lock);
2341 fs_info->qgroup_tree = RB_ROOT;
2342 fs_info->qgroup_op_tree = RB_ROOT;
2343 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2344 fs_info->qgroup_seq = 1;
2345 fs_info->qgroup_ulist = NULL;
2346 fs_info->qgroup_rescan_running = false;
2347 mutex_init(&fs_info->qgroup_rescan_lock);
2350 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2351 struct btrfs_fs_devices *fs_devices)
2353 int max_active = fs_info->thread_pool_size;
2354 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2357 btrfs_alloc_workqueue(fs_info, "worker",
2358 flags | WQ_HIGHPRI, max_active, 16);
2360 fs_info->delalloc_workers =
2361 btrfs_alloc_workqueue(fs_info, "delalloc",
2362 flags, max_active, 2);
2364 fs_info->flush_workers =
2365 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2366 flags, max_active, 0);
2368 fs_info->caching_workers =
2369 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2372 * a higher idle thresh on the submit workers makes it much more
2373 * likely that bios will be send down in a sane order to the
2376 fs_info->submit_workers =
2377 btrfs_alloc_workqueue(fs_info, "submit", flags,
2378 min_t(u64, fs_devices->num_devices,
2381 fs_info->fixup_workers =
2382 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2385 * endios are largely parallel and should have a very
2388 fs_info->endio_workers =
2389 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2390 fs_info->endio_meta_workers =
2391 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2393 fs_info->endio_meta_write_workers =
2394 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2396 fs_info->endio_raid56_workers =
2397 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2399 fs_info->endio_repair_workers =
2400 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2401 fs_info->rmw_workers =
2402 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2403 fs_info->endio_write_workers =
2404 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2406 fs_info->endio_freespace_worker =
2407 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2409 fs_info->delayed_workers =
2410 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2412 fs_info->readahead_workers =
2413 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2415 fs_info->qgroup_rescan_workers =
2416 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2417 fs_info->extent_workers =
2418 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2419 min_t(u64, fs_devices->num_devices,
2422 if (!(fs_info->workers && fs_info->delalloc_workers &&
2423 fs_info->submit_workers && fs_info->flush_workers &&
2424 fs_info->endio_workers && fs_info->endio_meta_workers &&
2425 fs_info->endio_meta_write_workers &&
2426 fs_info->endio_repair_workers &&
2427 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2428 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2429 fs_info->caching_workers && fs_info->readahead_workers &&
2430 fs_info->fixup_workers && fs_info->delayed_workers &&
2431 fs_info->extent_workers &&
2432 fs_info->qgroup_rescan_workers)) {
2439 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2440 struct btrfs_fs_devices *fs_devices)
2443 struct btrfs_root *log_tree_root;
2444 struct btrfs_super_block *disk_super = fs_info->super_copy;
2445 u64 bytenr = btrfs_super_log_root(disk_super);
2447 if (fs_devices->rw_devices == 0) {
2448 btrfs_warn(fs_info, "log replay required on RO media");
2452 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2456 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2458 log_tree_root->node = read_tree_block(fs_info, bytenr,
2459 fs_info->generation + 1);
2460 if (IS_ERR(log_tree_root->node)) {
2461 btrfs_warn(fs_info, "failed to read log tree");
2462 ret = PTR_ERR(log_tree_root->node);
2463 kfree(log_tree_root);
2465 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2466 btrfs_err(fs_info, "failed to read log tree");
2467 free_extent_buffer(log_tree_root->node);
2468 kfree(log_tree_root);
2471 /* returns with log_tree_root freed on success */
2472 ret = btrfs_recover_log_trees(log_tree_root);
2474 btrfs_handle_fs_error(fs_info, ret,
2475 "Failed to recover log tree");
2476 free_extent_buffer(log_tree_root->node);
2477 kfree(log_tree_root);
2481 if (fs_info->sb->s_flags & MS_RDONLY) {
2482 ret = btrfs_commit_super(fs_info);
2490 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2492 struct btrfs_root *tree_root = fs_info->tree_root;
2493 struct btrfs_root *root;
2494 struct btrfs_key location;
2497 BUG_ON(!fs_info->tree_root);
2499 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2500 location.type = BTRFS_ROOT_ITEM_KEY;
2501 location.offset = 0;
2503 root = btrfs_read_tree_root(tree_root, &location);
2505 return PTR_ERR(root);
2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 fs_info->extent_root = root;
2509 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2510 root = btrfs_read_tree_root(tree_root, &location);
2512 return PTR_ERR(root);
2513 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2514 fs_info->dev_root = root;
2515 btrfs_init_devices_late(fs_info);
2517 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2518 root = btrfs_read_tree_root(tree_root, &location);
2520 return PTR_ERR(root);
2521 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2522 fs_info->csum_root = root;
2524 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2525 root = btrfs_read_tree_root(tree_root, &location);
2526 if (!IS_ERR(root)) {
2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2529 fs_info->quota_root = root;
2532 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2533 root = btrfs_read_tree_root(tree_root, &location);
2535 ret = PTR_ERR(root);
2539 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 fs_info->uuid_root = root;
2543 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545 root = btrfs_read_tree_root(tree_root, &location);
2547 return PTR_ERR(root);
2548 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549 fs_info->free_space_root = root;
2555 int open_ctree(struct super_block *sb,
2556 struct btrfs_fs_devices *fs_devices,
2564 struct btrfs_key location;
2565 struct buffer_head *bh;
2566 struct btrfs_super_block *disk_super;
2567 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2568 struct btrfs_root *tree_root;
2569 struct btrfs_root *chunk_root;
2572 int num_backups_tried = 0;
2573 int backup_index = 0;
2575 int clear_free_space_tree = 0;
2577 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2579 if (!tree_root || !chunk_root) {
2584 ret = init_srcu_struct(&fs_info->subvol_srcu);
2590 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2595 fs_info->dirty_metadata_batch = PAGE_SIZE *
2596 (1 + ilog2(nr_cpu_ids));
2598 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2601 goto fail_dirty_metadata_bytes;
2604 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2607 goto fail_delalloc_bytes;
2610 fs_info->btree_inode = new_inode(sb);
2611 if (!fs_info->btree_inode) {
2613 goto fail_bio_counter;
2616 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2618 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2619 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2620 INIT_LIST_HEAD(&fs_info->trans_list);
2621 INIT_LIST_HEAD(&fs_info->dead_roots);
2622 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2623 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2624 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2625 spin_lock_init(&fs_info->delalloc_root_lock);
2626 spin_lock_init(&fs_info->trans_lock);
2627 spin_lock_init(&fs_info->fs_roots_radix_lock);
2628 spin_lock_init(&fs_info->delayed_iput_lock);
2629 spin_lock_init(&fs_info->defrag_inodes_lock);
2630 spin_lock_init(&fs_info->tree_mod_seq_lock);
2631 spin_lock_init(&fs_info->super_lock);
2632 spin_lock_init(&fs_info->qgroup_op_lock);
2633 spin_lock_init(&fs_info->buffer_lock);
2634 spin_lock_init(&fs_info->unused_bgs_lock);
2635 rwlock_init(&fs_info->tree_mod_log_lock);
2636 mutex_init(&fs_info->unused_bg_unpin_mutex);
2637 mutex_init(&fs_info->delete_unused_bgs_mutex);
2638 mutex_init(&fs_info->reloc_mutex);
2639 mutex_init(&fs_info->delalloc_root_mutex);
2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2641 seqlock_init(&fs_info->profiles_lock);
2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2644 INIT_LIST_HEAD(&fs_info->space_info);
2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2646 INIT_LIST_HEAD(&fs_info->unused_bgs);
2647 btrfs_mapping_init(&fs_info->mapping_tree);
2648 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649 BTRFS_BLOCK_RSV_GLOBAL);
2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651 BTRFS_BLOCK_RSV_DELALLOC);
2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656 BTRFS_BLOCK_RSV_DELOPS);
2657 atomic_set(&fs_info->nr_async_submits, 0);
2658 atomic_set(&fs_info->async_delalloc_pages, 0);
2659 atomic_set(&fs_info->async_submit_draining, 0);
2660 atomic_set(&fs_info->nr_async_bios, 0);
2661 atomic_set(&fs_info->defrag_running, 0);
2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2663 atomic_set(&fs_info->reada_works_cnt, 0);
2664 atomic64_set(&fs_info->tree_mod_seq, 0);
2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2667 fs_info->metadata_ratio = 0;
2668 fs_info->defrag_inodes = RB_ROOT;
2669 atomic64_set(&fs_info->free_chunk_space, 0);
2670 fs_info->tree_mod_log = RB_ROOT;
2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2673 /* readahead state */
2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2675 spin_lock_init(&fs_info->reada_lock);
2677 fs_info->thread_pool_size = min_t(unsigned long,
2678 num_online_cpus() + 2, 8);
2680 INIT_LIST_HEAD(&fs_info->ordered_roots);
2681 spin_lock_init(&fs_info->ordered_root_lock);
2682 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2684 if (!fs_info->delayed_root) {
2688 btrfs_init_delayed_root(fs_info->delayed_root);
2690 btrfs_init_scrub(fs_info);
2691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2692 fs_info->check_integrity_print_mask = 0;
2694 btrfs_init_balance(fs_info);
2695 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2697 sb->s_blocksize = 4096;
2698 sb->s_blocksize_bits = blksize_bits(4096);
2700 btrfs_init_btree_inode(fs_info);
2702 spin_lock_init(&fs_info->block_group_cache_lock);
2703 fs_info->block_group_cache_tree = RB_ROOT;
2704 fs_info->first_logical_byte = (u64)-1;
2706 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2707 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2708 fs_info->pinned_extents = &fs_info->freed_extents[0];
2709 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2711 mutex_init(&fs_info->ordered_operations_mutex);
2712 mutex_init(&fs_info->tree_log_mutex);
2713 mutex_init(&fs_info->chunk_mutex);
2714 mutex_init(&fs_info->transaction_kthread_mutex);
2715 mutex_init(&fs_info->cleaner_mutex);
2716 mutex_init(&fs_info->volume_mutex);
2717 mutex_init(&fs_info->ro_block_group_mutex);
2718 init_rwsem(&fs_info->commit_root_sem);
2719 init_rwsem(&fs_info->cleanup_work_sem);
2720 init_rwsem(&fs_info->subvol_sem);
2721 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2723 btrfs_init_dev_replace_locks(fs_info);
2724 btrfs_init_qgroup(fs_info);
2726 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2727 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2729 init_waitqueue_head(&fs_info->transaction_throttle);
2730 init_waitqueue_head(&fs_info->transaction_wait);
2731 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2732 init_waitqueue_head(&fs_info->async_submit_wait);
2734 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2736 /* Usable values until the real ones are cached from the superblock */
2737 fs_info->nodesize = 4096;
2738 fs_info->sectorsize = 4096;
2739 fs_info->stripesize = 4096;
2741 ret = btrfs_alloc_stripe_hash_table(fs_info);
2747 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2749 invalidate_bdev(fs_devices->latest_bdev);
2752 * Read super block and check the signature bytes only
2754 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2761 * We want to check superblock checksum, the type is stored inside.
2762 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2764 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2765 btrfs_err(fs_info, "superblock checksum mismatch");
2772 * super_copy is zeroed at allocation time and we never touch the
2773 * following bytes up to INFO_SIZE, the checksum is calculated from
2774 * the whole block of INFO_SIZE
2776 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2777 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2778 sizeof(*fs_info->super_for_commit));
2781 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2783 ret = btrfs_check_super_valid(fs_info);
2785 btrfs_err(fs_info, "superblock contains fatal errors");
2790 disk_super = fs_info->super_copy;
2791 if (!btrfs_super_root(disk_super))
2794 /* check FS state, whether FS is broken. */
2795 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2796 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2799 * run through our array of backup supers and setup
2800 * our ring pointer to the oldest one
2802 generation = btrfs_super_generation(disk_super);
2803 find_oldest_super_backup(fs_info, generation);
2806 * In the long term, we'll store the compression type in the super
2807 * block, and it'll be used for per file compression control.
2809 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2811 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2817 features = btrfs_super_incompat_flags(disk_super) &
2818 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2821 "cannot mount because of unsupported optional features (%llx)",
2827 features = btrfs_super_incompat_flags(disk_super);
2828 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2829 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2830 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2832 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2833 btrfs_info(fs_info, "has skinny extents");
2836 * flag our filesystem as having big metadata blocks if
2837 * they are bigger than the page size
2839 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2840 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2842 "flagging fs with big metadata feature");
2843 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2846 nodesize = btrfs_super_nodesize(disk_super);
2847 sectorsize = btrfs_super_sectorsize(disk_super);
2848 stripesize = sectorsize;
2849 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2850 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2852 /* Cache block sizes */
2853 fs_info->nodesize = nodesize;
2854 fs_info->sectorsize = sectorsize;
2855 fs_info->stripesize = stripesize;
2858 * mixed block groups end up with duplicate but slightly offset
2859 * extent buffers for the same range. It leads to corruptions
2861 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2862 (sectorsize != nodesize)) {
2864 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2865 nodesize, sectorsize);
2870 * Needn't use the lock because there is no other task which will
2873 btrfs_set_super_incompat_flags(disk_super, features);
2875 features = btrfs_super_compat_ro_flags(disk_super) &
2876 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2877 if (!(sb->s_flags & MS_RDONLY) && features) {
2879 "cannot mount read-write because of unsupported optional features (%llx)",
2885 max_active = fs_info->thread_pool_size;
2887 ret = btrfs_init_workqueues(fs_info, fs_devices);
2890 goto fail_sb_buffer;
2893 sb->s_bdi->congested_fn = btrfs_congested_fn;
2894 sb->s_bdi->congested_data = fs_info;
2895 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2896 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2897 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2898 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2900 sb->s_blocksize = sectorsize;
2901 sb->s_blocksize_bits = blksize_bits(sectorsize);
2903 mutex_lock(&fs_info->chunk_mutex);
2904 ret = btrfs_read_sys_array(fs_info);
2905 mutex_unlock(&fs_info->chunk_mutex);
2907 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2908 goto fail_sb_buffer;
2911 generation = btrfs_super_chunk_root_generation(disk_super);
2913 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2915 chunk_root->node = read_tree_block(fs_info,
2916 btrfs_super_chunk_root(disk_super),
2918 if (IS_ERR(chunk_root->node) ||
2919 !extent_buffer_uptodate(chunk_root->node)) {
2920 btrfs_err(fs_info, "failed to read chunk root");
2921 if (!IS_ERR(chunk_root->node))
2922 free_extent_buffer(chunk_root->node);
2923 chunk_root->node = NULL;
2924 goto fail_tree_roots;
2926 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2927 chunk_root->commit_root = btrfs_root_node(chunk_root);
2929 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2930 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2932 ret = btrfs_read_chunk_tree(fs_info);
2934 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2935 goto fail_tree_roots;
2939 * keep the device that is marked to be the target device for the
2940 * dev_replace procedure
2942 btrfs_close_extra_devices(fs_devices, 0);
2944 if (!fs_devices->latest_bdev) {
2945 btrfs_err(fs_info, "failed to read devices");
2946 goto fail_tree_roots;
2950 generation = btrfs_super_generation(disk_super);
2952 tree_root->node = read_tree_block(fs_info,
2953 btrfs_super_root(disk_super),
2955 if (IS_ERR(tree_root->node) ||
2956 !extent_buffer_uptodate(tree_root->node)) {
2957 btrfs_warn(fs_info, "failed to read tree root");
2958 if (!IS_ERR(tree_root->node))
2959 free_extent_buffer(tree_root->node);
2960 tree_root->node = NULL;
2961 goto recovery_tree_root;
2964 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2965 tree_root->commit_root = btrfs_root_node(tree_root);
2966 btrfs_set_root_refs(&tree_root->root_item, 1);
2968 mutex_lock(&tree_root->objectid_mutex);
2969 ret = btrfs_find_highest_objectid(tree_root,
2970 &tree_root->highest_objectid);
2972 mutex_unlock(&tree_root->objectid_mutex);
2973 goto recovery_tree_root;
2976 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2978 mutex_unlock(&tree_root->objectid_mutex);
2980 ret = btrfs_read_roots(fs_info);
2982 goto recovery_tree_root;
2984 fs_info->generation = generation;
2985 fs_info->last_trans_committed = generation;
2987 ret = btrfs_recover_balance(fs_info);
2989 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2990 goto fail_block_groups;
2993 ret = btrfs_init_dev_stats(fs_info);
2995 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2996 goto fail_block_groups;
2999 ret = btrfs_init_dev_replace(fs_info);
3001 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3002 goto fail_block_groups;
3005 btrfs_close_extra_devices(fs_devices, 1);
3007 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3009 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3011 goto fail_block_groups;
3014 ret = btrfs_sysfs_add_device(fs_devices);
3016 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3018 goto fail_fsdev_sysfs;
3021 ret = btrfs_sysfs_add_mounted(fs_info);
3023 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3024 goto fail_fsdev_sysfs;
3027 ret = btrfs_init_space_info(fs_info);
3029 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3033 ret = btrfs_read_block_groups(fs_info);
3035 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3038 fs_info->num_tolerated_disk_barrier_failures =
3039 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3040 if (fs_info->fs_devices->missing_devices >
3041 fs_info->num_tolerated_disk_barrier_failures &&
3042 !(sb->s_flags & MS_RDONLY)) {
3044 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3045 fs_info->fs_devices->missing_devices,
3046 fs_info->num_tolerated_disk_barrier_failures);
3050 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3052 if (IS_ERR(fs_info->cleaner_kthread))
3055 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3057 "btrfs-transaction");
3058 if (IS_ERR(fs_info->transaction_kthread))
3061 if (!btrfs_test_opt(fs_info, SSD) &&
3062 !btrfs_test_opt(fs_info, NOSSD) &&
3063 !fs_info->fs_devices->rotating) {
3064 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3065 btrfs_set_opt(fs_info->mount_opt, SSD);
3069 * Mount does not set all options immediately, we can do it now and do
3070 * not have to wait for transaction commit
3072 btrfs_apply_pending_changes(fs_info);
3074 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3075 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3076 ret = btrfsic_mount(fs_info, fs_devices,
3077 btrfs_test_opt(fs_info,
3078 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3080 fs_info->check_integrity_print_mask);
3083 "failed to initialize integrity check module: %d",
3087 ret = btrfs_read_qgroup_config(fs_info);
3089 goto fail_trans_kthread;
3091 /* do not make disk changes in broken FS or nologreplay is given */
3092 if (btrfs_super_log_root(disk_super) != 0 &&
3093 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3094 ret = btrfs_replay_log(fs_info, fs_devices);
3101 ret = btrfs_find_orphan_roots(fs_info);
3105 if (!(sb->s_flags & MS_RDONLY)) {
3106 ret = btrfs_cleanup_fs_roots(fs_info);
3110 mutex_lock(&fs_info->cleaner_mutex);
3111 ret = btrfs_recover_relocation(tree_root);
3112 mutex_unlock(&fs_info->cleaner_mutex);
3114 btrfs_warn(fs_info, "failed to recover relocation: %d",
3121 location.objectid = BTRFS_FS_TREE_OBJECTID;
3122 location.type = BTRFS_ROOT_ITEM_KEY;
3123 location.offset = 0;
3125 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3126 if (IS_ERR(fs_info->fs_root)) {
3127 err = PTR_ERR(fs_info->fs_root);
3131 if (sb->s_flags & MS_RDONLY)
3134 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3135 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3136 clear_free_space_tree = 1;
3137 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3138 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3139 btrfs_warn(fs_info, "free space tree is invalid");
3140 clear_free_space_tree = 1;
3143 if (clear_free_space_tree) {
3144 btrfs_info(fs_info, "clearing free space tree");
3145 ret = btrfs_clear_free_space_tree(fs_info);
3148 "failed to clear free space tree: %d", ret);
3149 close_ctree(fs_info);
3154 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3155 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3156 btrfs_info(fs_info, "creating free space tree");
3157 ret = btrfs_create_free_space_tree(fs_info);
3160 "failed to create free space tree: %d", ret);
3161 close_ctree(fs_info);
3166 down_read(&fs_info->cleanup_work_sem);
3167 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3168 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3169 up_read(&fs_info->cleanup_work_sem);
3170 close_ctree(fs_info);
3173 up_read(&fs_info->cleanup_work_sem);
3175 ret = btrfs_resume_balance_async(fs_info);
3177 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3178 close_ctree(fs_info);
3182 ret = btrfs_resume_dev_replace_async(fs_info);
3184 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3185 close_ctree(fs_info);
3189 btrfs_qgroup_rescan_resume(fs_info);
3191 if (!fs_info->uuid_root) {
3192 btrfs_info(fs_info, "creating UUID tree");
3193 ret = btrfs_create_uuid_tree(fs_info);
3196 "failed to create the UUID tree: %d", ret);
3197 close_ctree(fs_info);
3200 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3201 fs_info->generation !=
3202 btrfs_super_uuid_tree_generation(disk_super)) {
3203 btrfs_info(fs_info, "checking UUID tree");
3204 ret = btrfs_check_uuid_tree(fs_info);
3207 "failed to check the UUID tree: %d", ret);
3208 close_ctree(fs_info);
3212 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3214 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3217 * backuproot only affect mount behavior, and if open_ctree succeeded,
3218 * no need to keep the flag
3220 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3225 btrfs_free_qgroup_config(fs_info);
3227 kthread_stop(fs_info->transaction_kthread);
3228 btrfs_cleanup_transaction(fs_info);
3229 btrfs_free_fs_roots(fs_info);
3231 kthread_stop(fs_info->cleaner_kthread);
3234 * make sure we're done with the btree inode before we stop our
3237 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3240 btrfs_sysfs_remove_mounted(fs_info);
3243 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3246 btrfs_put_block_group_cache(fs_info);
3249 free_root_pointers(fs_info, 1);
3250 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3253 btrfs_stop_all_workers(fs_info);
3254 btrfs_free_block_groups(fs_info);
3257 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3259 iput(fs_info->btree_inode);
3261 percpu_counter_destroy(&fs_info->bio_counter);
3262 fail_delalloc_bytes:
3263 percpu_counter_destroy(&fs_info->delalloc_bytes);
3264 fail_dirty_metadata_bytes:
3265 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3267 cleanup_srcu_struct(&fs_info->subvol_srcu);
3269 btrfs_free_stripe_hash_table(fs_info);
3270 btrfs_close_devices(fs_info->fs_devices);
3274 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3275 goto fail_tree_roots;
3277 free_root_pointers(fs_info, 0);
3279 /* don't use the log in recovery mode, it won't be valid */
3280 btrfs_set_super_log_root(disk_super, 0);
3282 /* we can't trust the free space cache either */
3283 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3285 ret = next_root_backup(fs_info, fs_info->super_copy,
3286 &num_backups_tried, &backup_index);
3288 goto fail_block_groups;
3289 goto retry_root_backup;
3292 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3295 set_buffer_uptodate(bh);
3297 struct btrfs_device *device = (struct btrfs_device *)
3300 btrfs_warn_rl_in_rcu(device->fs_info,
3301 "lost page write due to IO error on %s",
3302 rcu_str_deref(device->name));
3303 /* note, we don't set_buffer_write_io_error because we have
3304 * our own ways of dealing with the IO errors
3306 clear_buffer_uptodate(bh);
3307 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3313 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3314 struct buffer_head **bh_ret)
3316 struct buffer_head *bh;
3317 struct btrfs_super_block *super;
3320 bytenr = btrfs_sb_offset(copy_num);
3321 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3324 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3326 * If we fail to read from the underlying devices, as of now
3327 * the best option we have is to mark it EIO.
3332 super = (struct btrfs_super_block *)bh->b_data;
3333 if (btrfs_super_bytenr(super) != bytenr ||
3334 btrfs_super_magic(super) != BTRFS_MAGIC) {
3344 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3346 struct buffer_head *bh;
3347 struct buffer_head *latest = NULL;
3348 struct btrfs_super_block *super;
3353 /* we would like to check all the supers, but that would make
3354 * a btrfs mount succeed after a mkfs from a different FS.
3355 * So, we need to add a special mount option to scan for
3356 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3358 for (i = 0; i < 1; i++) {
3359 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3363 super = (struct btrfs_super_block *)bh->b_data;
3365 if (!latest || btrfs_super_generation(super) > transid) {
3368 transid = btrfs_super_generation(super);
3375 return ERR_PTR(ret);
3381 * this should be called twice, once with wait == 0 and
3382 * once with wait == 1. When wait == 0 is done, all the buffer heads
3383 * we write are pinned.
3385 * They are released when wait == 1 is done.
3386 * max_mirrors must be the same for both runs, and it indicates how
3387 * many supers on this one device should be written.
3389 * max_mirrors == 0 means to write them all.
3391 static int write_dev_supers(struct btrfs_device *device,
3392 struct btrfs_super_block *sb,
3393 int wait, int max_mirrors)
3395 struct buffer_head *bh;
3402 if (max_mirrors == 0)
3403 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3405 for (i = 0; i < max_mirrors; i++) {
3406 bytenr = btrfs_sb_offset(i);
3407 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3408 device->commit_total_bytes)
3412 bh = __find_get_block(device->bdev, bytenr / 4096,
3413 BTRFS_SUPER_INFO_SIZE);
3419 if (!buffer_uptodate(bh))
3422 /* drop our reference */
3425 /* drop the reference from the wait == 0 run */
3429 btrfs_set_super_bytenr(sb, bytenr);
3432 crc = btrfs_csum_data((const char *)sb +
3433 BTRFS_CSUM_SIZE, crc,
3434 BTRFS_SUPER_INFO_SIZE -
3436 btrfs_csum_final(crc, sb->csum);
3439 * one reference for us, and we leave it for the
3442 bh = __getblk(device->bdev, bytenr / 4096,
3443 BTRFS_SUPER_INFO_SIZE);
3445 btrfs_err(device->fs_info,
3446 "couldn't get super buffer head for bytenr %llu",
3452 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3454 /* one reference for submit_bh */
3457 set_buffer_uptodate(bh);
3459 bh->b_end_io = btrfs_end_buffer_write_sync;
3460 bh->b_private = device;
3464 * we fua the first super. The others we allow
3468 ret = btrfsic_submit_bh(REQ_OP_WRITE,
3469 REQ_SYNC | REQ_FUA, bh);
3471 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3476 return errors < i ? 0 : -1;
3480 * endio for the write_dev_flush, this will wake anyone waiting
3481 * for the barrier when it is done
3483 static void btrfs_end_empty_barrier(struct bio *bio)
3485 complete(bio->bi_private);
3489 * Submit a flush request to the device if it supports it. Error handling is
3490 * done in the waiting counterpart.
3492 static void write_dev_flush(struct btrfs_device *device)
3494 struct request_queue *q = bdev_get_queue(device->bdev);
3495 struct bio *bio = device->flush_bio;
3497 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3501 bio->bi_end_io = btrfs_end_empty_barrier;
3502 bio->bi_bdev = device->bdev;
3503 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3504 init_completion(&device->flush_wait);
3505 bio->bi_private = &device->flush_wait;
3508 device->flush_bio_sent = 1;
3512 * If the flush bio has been submitted by write_dev_flush, wait for it.
3514 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3516 struct bio *bio = device->flush_bio;
3518 if (!device->flush_bio_sent)
3521 device->flush_bio_sent = 0;
3522 wait_for_completion_io(&device->flush_wait);
3524 return bio->bi_status;
3527 static int check_barrier_error(struct btrfs_fs_devices *fsdevs)
3529 int dev_flush_error = 0;
3530 struct btrfs_device *dev;
3532 list_for_each_entry_rcu(dev, &fsdevs->devices, dev_list) {
3533 if (!dev->bdev || dev->last_flush_error)
3537 if (dev_flush_error >
3538 fsdevs->fs_info->num_tolerated_disk_barrier_failures)
3545 * send an empty flush down to each device in parallel,
3546 * then wait for them
3548 static int barrier_all_devices(struct btrfs_fs_info *info)
3550 struct list_head *head;
3551 struct btrfs_device *dev;
3552 int errors_wait = 0;
3555 /* send down all the barriers */
3556 head = &info->fs_devices->devices;
3557 list_for_each_entry_rcu(dev, head, dev_list) {
3562 if (!dev->in_fs_metadata || !dev->writeable)
3565 write_dev_flush(dev);
3566 dev->last_flush_error = 0;
3569 /* wait for all the barriers */
3570 list_for_each_entry_rcu(dev, head, dev_list) {
3577 if (!dev->in_fs_metadata || !dev->writeable)
3580 ret = wait_dev_flush(dev);
3582 dev->last_flush_error = ret;
3583 btrfs_dev_stat_inc_and_print(dev,
3584 BTRFS_DEV_STAT_FLUSH_ERRS);
3591 * At some point we need the status of all disks
3592 * to arrive at the volume status. So error checking
3593 * is being pushed to a separate loop.
3595 return check_barrier_error(info->fs_devices);
3600 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3603 int min_tolerated = INT_MAX;
3605 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3606 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3607 min_tolerated = min(min_tolerated,
3608 btrfs_raid_array[BTRFS_RAID_SINGLE].
3609 tolerated_failures);
3611 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3612 if (raid_type == BTRFS_RAID_SINGLE)
3614 if (!(flags & btrfs_raid_group[raid_type]))
3616 min_tolerated = min(min_tolerated,
3617 btrfs_raid_array[raid_type].
3618 tolerated_failures);
3621 if (min_tolerated == INT_MAX) {
3622 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3626 return min_tolerated;
3629 int btrfs_calc_num_tolerated_disk_barrier_failures(
3630 struct btrfs_fs_info *fs_info)
3632 struct btrfs_ioctl_space_info space;
3633 struct btrfs_space_info *sinfo;
3634 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3635 BTRFS_BLOCK_GROUP_SYSTEM,
3636 BTRFS_BLOCK_GROUP_METADATA,
3637 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3640 int num_tolerated_disk_barrier_failures =
3641 (int)fs_info->fs_devices->num_devices;
3643 for (i = 0; i < ARRAY_SIZE(types); i++) {
3644 struct btrfs_space_info *tmp;
3648 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3649 if (tmp->flags == types[i]) {
3659 down_read(&sinfo->groups_sem);
3660 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3663 if (list_empty(&sinfo->block_groups[c]))
3666 btrfs_get_block_group_info(&sinfo->block_groups[c],
3668 if (space.total_bytes == 0 || space.used_bytes == 0)
3670 flags = space.flags;
3672 num_tolerated_disk_barrier_failures = min(
3673 num_tolerated_disk_barrier_failures,
3674 btrfs_get_num_tolerated_disk_barrier_failures(
3677 up_read(&sinfo->groups_sem);
3680 return num_tolerated_disk_barrier_failures;
3683 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3685 struct list_head *head;
3686 struct btrfs_device *dev;
3687 struct btrfs_super_block *sb;
3688 struct btrfs_dev_item *dev_item;
3692 int total_errors = 0;
3695 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3696 backup_super_roots(fs_info);
3698 sb = fs_info->super_for_commit;
3699 dev_item = &sb->dev_item;
3701 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3702 head = &fs_info->fs_devices->devices;
3703 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3706 ret = barrier_all_devices(fs_info);
3709 &fs_info->fs_devices->device_list_mutex);
3710 btrfs_handle_fs_error(fs_info, ret,
3711 "errors while submitting device barriers.");
3716 list_for_each_entry_rcu(dev, head, dev_list) {
3721 if (!dev->in_fs_metadata || !dev->writeable)
3724 btrfs_set_stack_device_generation(dev_item, 0);
3725 btrfs_set_stack_device_type(dev_item, dev->type);
3726 btrfs_set_stack_device_id(dev_item, dev->devid);
3727 btrfs_set_stack_device_total_bytes(dev_item,
3728 dev->commit_total_bytes);
3729 btrfs_set_stack_device_bytes_used(dev_item,
3730 dev->commit_bytes_used);
3731 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3732 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3733 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3734 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3735 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3737 flags = btrfs_super_flags(sb);
3738 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3740 ret = write_dev_supers(dev, sb, 0, max_mirrors);
3744 if (total_errors > max_errors) {
3745 btrfs_err(fs_info, "%d errors while writing supers",
3747 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3749 /* FUA is masked off if unsupported and can't be the reason */
3750 btrfs_handle_fs_error(fs_info, -EIO,
3751 "%d errors while writing supers",
3757 list_for_each_entry_rcu(dev, head, dev_list) {
3760 if (!dev->in_fs_metadata || !dev->writeable)
3763 ret = write_dev_supers(dev, sb, 1, max_mirrors);
3767 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3768 if (total_errors > max_errors) {
3769 btrfs_handle_fs_error(fs_info, -EIO,
3770 "%d errors while writing supers",
3777 /* Drop a fs root from the radix tree and free it. */
3778 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3779 struct btrfs_root *root)
3781 spin_lock(&fs_info->fs_roots_radix_lock);
3782 radix_tree_delete(&fs_info->fs_roots_radix,
3783 (unsigned long)root->root_key.objectid);
3784 spin_unlock(&fs_info->fs_roots_radix_lock);
3786 if (btrfs_root_refs(&root->root_item) == 0)
3787 synchronize_srcu(&fs_info->subvol_srcu);
3789 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3790 btrfs_free_log(NULL, root);
3791 if (root->reloc_root) {
3792 free_extent_buffer(root->reloc_root->node);
3793 free_extent_buffer(root->reloc_root->commit_root);
3794 btrfs_put_fs_root(root->reloc_root);
3795 root->reloc_root = NULL;
3799 if (root->free_ino_pinned)
3800 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3801 if (root->free_ino_ctl)
3802 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3806 static void free_fs_root(struct btrfs_root *root)
3808 iput(root->ino_cache_inode);
3809 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3810 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3811 root->orphan_block_rsv = NULL;
3813 free_anon_bdev(root->anon_dev);
3814 if (root->subv_writers)
3815 btrfs_free_subvolume_writers(root->subv_writers);
3816 free_extent_buffer(root->node);
3817 free_extent_buffer(root->commit_root);
3818 kfree(root->free_ino_ctl);
3819 kfree(root->free_ino_pinned);
3821 btrfs_put_fs_root(root);
3824 void btrfs_free_fs_root(struct btrfs_root *root)
3829 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3831 u64 root_objectid = 0;
3832 struct btrfs_root *gang[8];
3835 unsigned int ret = 0;
3839 index = srcu_read_lock(&fs_info->subvol_srcu);
3840 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3841 (void **)gang, root_objectid,
3844 srcu_read_unlock(&fs_info->subvol_srcu, index);
3847 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3849 for (i = 0; i < ret; i++) {
3850 /* Avoid to grab roots in dead_roots */
3851 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3855 /* grab all the search result for later use */
3856 gang[i] = btrfs_grab_fs_root(gang[i]);
3858 srcu_read_unlock(&fs_info->subvol_srcu, index);
3860 for (i = 0; i < ret; i++) {
3863 root_objectid = gang[i]->root_key.objectid;
3864 err = btrfs_orphan_cleanup(gang[i]);
3867 btrfs_put_fs_root(gang[i]);
3872 /* release the uncleaned roots due to error */
3873 for (; i < ret; i++) {
3875 btrfs_put_fs_root(gang[i]);
3880 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3882 struct btrfs_root *root = fs_info->tree_root;
3883 struct btrfs_trans_handle *trans;
3885 mutex_lock(&fs_info->cleaner_mutex);
3886 btrfs_run_delayed_iputs(fs_info);
3887 mutex_unlock(&fs_info->cleaner_mutex);
3888 wake_up_process(fs_info->cleaner_kthread);
3890 /* wait until ongoing cleanup work done */
3891 down_write(&fs_info->cleanup_work_sem);
3892 up_write(&fs_info->cleanup_work_sem);
3894 trans = btrfs_join_transaction(root);
3896 return PTR_ERR(trans);
3897 return btrfs_commit_transaction(trans);
3900 void close_ctree(struct btrfs_fs_info *fs_info)
3902 struct btrfs_root *root = fs_info->tree_root;
3905 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3907 /* wait for the qgroup rescan worker to stop */
3908 btrfs_qgroup_wait_for_completion(fs_info, false);
3910 /* wait for the uuid_scan task to finish */
3911 down(&fs_info->uuid_tree_rescan_sem);
3912 /* avoid complains from lockdep et al., set sem back to initial state */
3913 up(&fs_info->uuid_tree_rescan_sem);
3915 /* pause restriper - we want to resume on mount */
3916 btrfs_pause_balance(fs_info);
3918 btrfs_dev_replace_suspend_for_unmount(fs_info);
3920 btrfs_scrub_cancel(fs_info);
3922 /* wait for any defraggers to finish */
3923 wait_event(fs_info->transaction_wait,
3924 (atomic_read(&fs_info->defrag_running) == 0));
3926 /* clear out the rbtree of defraggable inodes */
3927 btrfs_cleanup_defrag_inodes(fs_info);
3929 cancel_work_sync(&fs_info->async_reclaim_work);
3931 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3933 * If the cleaner thread is stopped and there are
3934 * block groups queued for removal, the deletion will be
3935 * skipped when we quit the cleaner thread.
3937 btrfs_delete_unused_bgs(fs_info);
3939 ret = btrfs_commit_super(fs_info);
3941 btrfs_err(fs_info, "commit super ret %d", ret);
3944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3945 btrfs_error_commit_super(fs_info);
3947 kthread_stop(fs_info->transaction_kthread);
3948 kthread_stop(fs_info->cleaner_kthread);
3950 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3952 btrfs_free_qgroup_config(fs_info);
3954 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3955 btrfs_info(fs_info, "at unmount delalloc count %lld",
3956 percpu_counter_sum(&fs_info->delalloc_bytes));
3959 btrfs_sysfs_remove_mounted(fs_info);
3960 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3962 btrfs_free_fs_roots(fs_info);
3964 btrfs_put_block_group_cache(fs_info);
3967 * we must make sure there is not any read request to
3968 * submit after we stopping all workers.
3970 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3971 btrfs_stop_all_workers(fs_info);
3973 btrfs_free_block_groups(fs_info);
3975 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3976 free_root_pointers(fs_info, 1);
3978 iput(fs_info->btree_inode);
3980 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3981 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3982 btrfsic_unmount(fs_info->fs_devices);
3985 btrfs_close_devices(fs_info->fs_devices);
3986 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3988 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3989 percpu_counter_destroy(&fs_info->delalloc_bytes);
3990 percpu_counter_destroy(&fs_info->bio_counter);
3991 cleanup_srcu_struct(&fs_info->subvol_srcu);
3993 btrfs_free_stripe_hash_table(fs_info);
3995 __btrfs_free_block_rsv(root->orphan_block_rsv);
3996 root->orphan_block_rsv = NULL;
3998 mutex_lock(&fs_info->chunk_mutex);
3999 while (!list_empty(&fs_info->pinned_chunks)) {
4000 struct extent_map *em;
4002 em = list_first_entry(&fs_info->pinned_chunks,
4003 struct extent_map, list);
4004 list_del_init(&em->list);
4005 free_extent_map(em);
4007 mutex_unlock(&fs_info->chunk_mutex);
4010 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4014 struct inode *btree_inode = buf->pages[0]->mapping->host;
4016 ret = extent_buffer_uptodate(buf);
4020 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4021 parent_transid, atomic);
4027 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4029 struct btrfs_fs_info *fs_info;
4030 struct btrfs_root *root;
4031 u64 transid = btrfs_header_generation(buf);
4034 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4036 * This is a fast path so only do this check if we have sanity tests
4037 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4038 * outside of the sanity tests.
4040 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4043 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4044 fs_info = root->fs_info;
4045 btrfs_assert_tree_locked(buf);
4046 if (transid != fs_info->generation)
4047 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4048 buf->start, transid, fs_info->generation);
4049 was_dirty = set_extent_buffer_dirty(buf);
4051 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4053 fs_info->dirty_metadata_batch);
4054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4055 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4056 btrfs_print_leaf(fs_info, buf);
4062 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4066 * looks as though older kernels can get into trouble with
4067 * this code, they end up stuck in balance_dirty_pages forever
4071 if (current->flags & PF_MEMALLOC)
4075 btrfs_balance_delayed_items(fs_info);
4077 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4078 BTRFS_DIRTY_METADATA_THRESH);
4080 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4084 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4086 __btrfs_btree_balance_dirty(fs_info, 1);
4089 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4091 __btrfs_btree_balance_dirty(fs_info, 0);
4094 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4096 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4097 struct btrfs_fs_info *fs_info = root->fs_info;
4099 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4102 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
4104 struct btrfs_super_block *sb = fs_info->super_copy;
4105 u64 nodesize = btrfs_super_nodesize(sb);
4106 u64 sectorsize = btrfs_super_sectorsize(sb);
4109 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4110 btrfs_err(fs_info, "no valid FS found");
4113 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4114 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4115 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4116 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4117 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4118 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4121 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4122 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4123 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4126 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4127 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4128 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4133 * Check sectorsize and nodesize first, other check will need it.
4134 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4136 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4137 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4138 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4141 /* Only PAGE SIZE is supported yet */
4142 if (sectorsize != PAGE_SIZE) {
4144 "sectorsize %llu not supported yet, only support %lu",
4145 sectorsize, PAGE_SIZE);
4148 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4149 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4150 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4153 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4154 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4155 le32_to_cpu(sb->__unused_leafsize), nodesize);
4159 /* Root alignment check */
4160 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4161 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4162 btrfs_super_root(sb));
4165 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4166 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4167 btrfs_super_chunk_root(sb));
4170 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4171 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4172 btrfs_super_log_root(sb));
4176 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4178 "dev_item UUID does not match fsid: %pU != %pU",
4179 fs_info->fsid, sb->dev_item.fsid);
4184 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4187 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4188 btrfs_err(fs_info, "bytes_used is too small %llu",
4189 btrfs_super_bytes_used(sb));
4192 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4193 btrfs_err(fs_info, "invalid stripesize %u",
4194 btrfs_super_stripesize(sb));
4197 if (btrfs_super_num_devices(sb) > (1UL << 31))
4198 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4199 btrfs_super_num_devices(sb));
4200 if (btrfs_super_num_devices(sb) == 0) {
4201 btrfs_err(fs_info, "number of devices is 0");
4205 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4206 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4207 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4212 * Obvious sys_chunk_array corruptions, it must hold at least one key
4215 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4216 btrfs_err(fs_info, "system chunk array too big %u > %u",
4217 btrfs_super_sys_array_size(sb),
4218 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4221 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4222 + sizeof(struct btrfs_chunk)) {
4223 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4224 btrfs_super_sys_array_size(sb),
4225 sizeof(struct btrfs_disk_key)
4226 + sizeof(struct btrfs_chunk));
4231 * The generation is a global counter, we'll trust it more than the others
4232 * but it's still possible that it's the one that's wrong.
4234 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4236 "suspicious: generation < chunk_root_generation: %llu < %llu",
4237 btrfs_super_generation(sb),
4238 btrfs_super_chunk_root_generation(sb));
4239 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4240 && btrfs_super_cache_generation(sb) != (u64)-1)
4242 "suspicious: generation < cache_generation: %llu < %llu",
4243 btrfs_super_generation(sb),
4244 btrfs_super_cache_generation(sb));
4249 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4251 mutex_lock(&fs_info->cleaner_mutex);
4252 btrfs_run_delayed_iputs(fs_info);
4253 mutex_unlock(&fs_info->cleaner_mutex);
4255 down_write(&fs_info->cleanup_work_sem);
4256 up_write(&fs_info->cleanup_work_sem);
4258 /* cleanup FS via transaction */
4259 btrfs_cleanup_transaction(fs_info);
4262 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4264 struct btrfs_ordered_extent *ordered;
4266 spin_lock(&root->ordered_extent_lock);
4268 * This will just short circuit the ordered completion stuff which will
4269 * make sure the ordered extent gets properly cleaned up.
4271 list_for_each_entry(ordered, &root->ordered_extents,
4273 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4274 spin_unlock(&root->ordered_extent_lock);
4277 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4279 struct btrfs_root *root;
4280 struct list_head splice;
4282 INIT_LIST_HEAD(&splice);
4284 spin_lock(&fs_info->ordered_root_lock);
4285 list_splice_init(&fs_info->ordered_roots, &splice);
4286 while (!list_empty(&splice)) {
4287 root = list_first_entry(&splice, struct btrfs_root,
4289 list_move_tail(&root->ordered_root,
4290 &fs_info->ordered_roots);
4292 spin_unlock(&fs_info->ordered_root_lock);
4293 btrfs_destroy_ordered_extents(root);
4296 spin_lock(&fs_info->ordered_root_lock);
4298 spin_unlock(&fs_info->ordered_root_lock);
4301 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4302 struct btrfs_fs_info *fs_info)
4304 struct rb_node *node;
4305 struct btrfs_delayed_ref_root *delayed_refs;
4306 struct btrfs_delayed_ref_node *ref;
4309 delayed_refs = &trans->delayed_refs;
4311 spin_lock(&delayed_refs->lock);
4312 if (atomic_read(&delayed_refs->num_entries) == 0) {
4313 spin_unlock(&delayed_refs->lock);
4314 btrfs_info(fs_info, "delayed_refs has NO entry");
4318 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4319 struct btrfs_delayed_ref_head *head;
4320 struct btrfs_delayed_ref_node *tmp;
4321 bool pin_bytes = false;
4323 head = rb_entry(node, struct btrfs_delayed_ref_head,
4325 if (!mutex_trylock(&head->mutex)) {
4326 refcount_inc(&head->node.refs);
4327 spin_unlock(&delayed_refs->lock);
4329 mutex_lock(&head->mutex);
4330 mutex_unlock(&head->mutex);
4331 btrfs_put_delayed_ref(&head->node);
4332 spin_lock(&delayed_refs->lock);
4335 spin_lock(&head->lock);
4336 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4339 list_del(&ref->list);
4340 if (!list_empty(&ref->add_list))
4341 list_del(&ref->add_list);
4342 atomic_dec(&delayed_refs->num_entries);
4343 btrfs_put_delayed_ref(ref);
4345 if (head->must_insert_reserved)
4347 btrfs_free_delayed_extent_op(head->extent_op);
4348 delayed_refs->num_heads--;
4349 if (head->processing == 0)
4350 delayed_refs->num_heads_ready--;
4351 atomic_dec(&delayed_refs->num_entries);
4352 head->node.in_tree = 0;
4353 rb_erase(&head->href_node, &delayed_refs->href_root);
4354 spin_unlock(&head->lock);
4355 spin_unlock(&delayed_refs->lock);
4356 mutex_unlock(&head->mutex);
4359 btrfs_pin_extent(fs_info, head->node.bytenr,
4360 head->node.num_bytes, 1);
4361 btrfs_put_delayed_ref(&head->node);
4363 spin_lock(&delayed_refs->lock);
4366 spin_unlock(&delayed_refs->lock);
4371 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4373 struct btrfs_inode *btrfs_inode;
4374 struct list_head splice;
4376 INIT_LIST_HEAD(&splice);
4378 spin_lock(&root->delalloc_lock);
4379 list_splice_init(&root->delalloc_inodes, &splice);
4381 while (!list_empty(&splice)) {
4382 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4385 list_del_init(&btrfs_inode->delalloc_inodes);
4386 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4387 &btrfs_inode->runtime_flags);
4388 spin_unlock(&root->delalloc_lock);
4390 btrfs_invalidate_inodes(btrfs_inode->root);
4392 spin_lock(&root->delalloc_lock);
4395 spin_unlock(&root->delalloc_lock);
4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4400 struct btrfs_root *root;
4401 struct list_head splice;
4403 INIT_LIST_HEAD(&splice);
4405 spin_lock(&fs_info->delalloc_root_lock);
4406 list_splice_init(&fs_info->delalloc_roots, &splice);
4407 while (!list_empty(&splice)) {
4408 root = list_first_entry(&splice, struct btrfs_root,
4410 list_del_init(&root->delalloc_root);
4411 root = btrfs_grab_fs_root(root);
4413 spin_unlock(&fs_info->delalloc_root_lock);
4415 btrfs_destroy_delalloc_inodes(root);
4416 btrfs_put_fs_root(root);
4418 spin_lock(&fs_info->delalloc_root_lock);
4420 spin_unlock(&fs_info->delalloc_root_lock);
4423 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4424 struct extent_io_tree *dirty_pages,
4428 struct extent_buffer *eb;
4433 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4438 clear_extent_bits(dirty_pages, start, end, mark);
4439 while (start <= end) {
4440 eb = find_extent_buffer(fs_info, start);
4441 start += fs_info->nodesize;
4444 wait_on_extent_buffer_writeback(eb);
4446 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4448 clear_extent_buffer_dirty(eb);
4449 free_extent_buffer_stale(eb);
4456 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4457 struct extent_io_tree *pinned_extents)
4459 struct extent_io_tree *unpin;
4465 unpin = pinned_extents;
4468 ret = find_first_extent_bit(unpin, 0, &start, &end,
4469 EXTENT_DIRTY, NULL);
4473 clear_extent_dirty(unpin, start, end);
4474 btrfs_error_unpin_extent_range(fs_info, start, end);
4479 if (unpin == &fs_info->freed_extents[0])
4480 unpin = &fs_info->freed_extents[1];
4482 unpin = &fs_info->freed_extents[0];
4490 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4492 struct inode *inode;
4494 inode = cache->io_ctl.inode;
4496 invalidate_inode_pages2(inode->i_mapping);
4497 BTRFS_I(inode)->generation = 0;
4498 cache->io_ctl.inode = NULL;
4501 btrfs_put_block_group(cache);
4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4505 struct btrfs_fs_info *fs_info)
4507 struct btrfs_block_group_cache *cache;
4509 spin_lock(&cur_trans->dirty_bgs_lock);
4510 while (!list_empty(&cur_trans->dirty_bgs)) {
4511 cache = list_first_entry(&cur_trans->dirty_bgs,
4512 struct btrfs_block_group_cache,
4515 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4516 spin_unlock(&cur_trans->dirty_bgs_lock);
4520 if (!list_empty(&cache->io_list)) {
4521 spin_unlock(&cur_trans->dirty_bgs_lock);
4522 list_del_init(&cache->io_list);
4523 btrfs_cleanup_bg_io(cache);
4524 spin_lock(&cur_trans->dirty_bgs_lock);
4527 list_del_init(&cache->dirty_list);
4528 spin_lock(&cache->lock);
4529 cache->disk_cache_state = BTRFS_DC_ERROR;
4530 spin_unlock(&cache->lock);
4532 spin_unlock(&cur_trans->dirty_bgs_lock);
4533 btrfs_put_block_group(cache);
4534 spin_lock(&cur_trans->dirty_bgs_lock);
4536 spin_unlock(&cur_trans->dirty_bgs_lock);
4538 while (!list_empty(&cur_trans->io_bgs)) {
4539 cache = list_first_entry(&cur_trans->io_bgs,
4540 struct btrfs_block_group_cache,
4543 btrfs_err(fs_info, "orphan block group on io_bgs list");
4547 list_del_init(&cache->io_list);
4548 spin_lock(&cache->lock);
4549 cache->disk_cache_state = BTRFS_DC_ERROR;
4550 spin_unlock(&cache->lock);
4551 btrfs_cleanup_bg_io(cache);
4555 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4556 struct btrfs_fs_info *fs_info)
4558 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4559 ASSERT(list_empty(&cur_trans->dirty_bgs));
4560 ASSERT(list_empty(&cur_trans->io_bgs));
4562 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4564 cur_trans->state = TRANS_STATE_COMMIT_START;
4565 wake_up(&fs_info->transaction_blocked_wait);
4567 cur_trans->state = TRANS_STATE_UNBLOCKED;
4568 wake_up(&fs_info->transaction_wait);
4570 btrfs_destroy_delayed_inodes(fs_info);
4571 btrfs_assert_delayed_root_empty(fs_info);
4573 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4575 btrfs_destroy_pinned_extent(fs_info,
4576 fs_info->pinned_extents);
4578 cur_trans->state =TRANS_STATE_COMPLETED;
4579 wake_up(&cur_trans->commit_wait);
4582 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4584 struct btrfs_transaction *t;
4586 mutex_lock(&fs_info->transaction_kthread_mutex);
4588 spin_lock(&fs_info->trans_lock);
4589 while (!list_empty(&fs_info->trans_list)) {
4590 t = list_first_entry(&fs_info->trans_list,
4591 struct btrfs_transaction, list);
4592 if (t->state >= TRANS_STATE_COMMIT_START) {
4593 refcount_inc(&t->use_count);
4594 spin_unlock(&fs_info->trans_lock);
4595 btrfs_wait_for_commit(fs_info, t->transid);
4596 btrfs_put_transaction(t);
4597 spin_lock(&fs_info->trans_lock);
4600 if (t == fs_info->running_transaction) {
4601 t->state = TRANS_STATE_COMMIT_DOING;
4602 spin_unlock(&fs_info->trans_lock);
4604 * We wait for 0 num_writers since we don't hold a trans
4605 * handle open currently for this transaction.
4607 wait_event(t->writer_wait,
4608 atomic_read(&t->num_writers) == 0);
4610 spin_unlock(&fs_info->trans_lock);
4612 btrfs_cleanup_one_transaction(t, fs_info);
4614 spin_lock(&fs_info->trans_lock);
4615 if (t == fs_info->running_transaction)
4616 fs_info->running_transaction = NULL;
4617 list_del_init(&t->list);
4618 spin_unlock(&fs_info->trans_lock);
4620 btrfs_put_transaction(t);
4621 trace_btrfs_transaction_commit(fs_info->tree_root);
4622 spin_lock(&fs_info->trans_lock);
4624 spin_unlock(&fs_info->trans_lock);
4625 btrfs_destroy_all_ordered_extents(fs_info);
4626 btrfs_destroy_delayed_inodes(fs_info);
4627 btrfs_assert_delayed_root_empty(fs_info);
4628 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4629 btrfs_destroy_all_delalloc_inodes(fs_info);
4630 mutex_unlock(&fs_info->transaction_kthread_mutex);
4635 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4637 struct inode *inode = private_data;
4638 return btrfs_sb(inode->i_sb);
4641 static const struct extent_io_ops btree_extent_io_ops = {
4642 /* mandatory callbacks */
4643 .submit_bio_hook = btree_submit_bio_hook,
4644 .readpage_end_io_hook = btree_readpage_end_io_hook,
4645 /* note we're sharing with inode.c for the merge bio hook */
4646 .merge_bio_hook = btrfs_merge_bio_hook,
4647 .readpage_io_failed_hook = btree_io_failed_hook,
4648 .set_range_writeback = btrfs_set_range_writeback,
4649 .tree_fs_info = btree_fs_info,
4651 /* optional callbacks */