Btrfs: use slabs for delayed reference allocation
[profile/ivi/kernel-x86-ivi.git] / fs / btrfs / delayed-ref.c
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
25
26 struct kmem_cache *btrfs_delayed_ref_head_cachep;
27 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
28 struct kmem_cache *btrfs_delayed_data_ref_cachep;
29 struct kmem_cache *btrfs_delayed_extent_op_cachep;
30 /*
31  * delayed back reference update tracking.  For subvolume trees
32  * we queue up extent allocations and backref maintenance for
33  * delayed processing.   This avoids deep call chains where we
34  * add extents in the middle of btrfs_search_slot, and it allows
35  * us to buffer up frequently modified backrefs in an rb tree instead
36  * of hammering updates on the extent allocation tree.
37  */
38
39 /*
40  * compare two delayed tree backrefs with same bytenr and type
41  */
42 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
43                           struct btrfs_delayed_tree_ref *ref1)
44 {
45         if (ref1->root < ref2->root)
46                 return -1;
47         if (ref1->root > ref2->root)
48                 return 1;
49         if (ref1->parent < ref2->parent)
50                 return -1;
51         if (ref1->parent > ref2->parent)
52                 return 1;
53         return 0;
54 }
55
56 /*
57  * compare two delayed data backrefs with same bytenr and type
58  */
59 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
60                           struct btrfs_delayed_data_ref *ref1)
61 {
62         if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
63                 if (ref1->root < ref2->root)
64                         return -1;
65                 if (ref1->root > ref2->root)
66                         return 1;
67                 if (ref1->objectid < ref2->objectid)
68                         return -1;
69                 if (ref1->objectid > ref2->objectid)
70                         return 1;
71                 if (ref1->offset < ref2->offset)
72                         return -1;
73                 if (ref1->offset > ref2->offset)
74                         return 1;
75         } else {
76                 if (ref1->parent < ref2->parent)
77                         return -1;
78                 if (ref1->parent > ref2->parent)
79                         return 1;
80         }
81         return 0;
82 }
83
84 /*
85  * entries in the rb tree are ordered by the byte number of the extent,
86  * type of the delayed backrefs and content of delayed backrefs.
87  */
88 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
89                       struct btrfs_delayed_ref_node *ref1,
90                       bool compare_seq)
91 {
92         if (ref1->bytenr < ref2->bytenr)
93                 return -1;
94         if (ref1->bytenr > ref2->bytenr)
95                 return 1;
96         if (ref1->is_head && ref2->is_head)
97                 return 0;
98         if (ref2->is_head)
99                 return -1;
100         if (ref1->is_head)
101                 return 1;
102         if (ref1->type < ref2->type)
103                 return -1;
104         if (ref1->type > ref2->type)
105                 return 1;
106         /* merging of sequenced refs is not allowed */
107         if (compare_seq) {
108                 if (ref1->seq < ref2->seq)
109                         return -1;
110                 if (ref1->seq > ref2->seq)
111                         return 1;
112         }
113         if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
114             ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
115                 return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
116                                       btrfs_delayed_node_to_tree_ref(ref1));
117         } else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
118                    ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
119                 return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
120                                       btrfs_delayed_node_to_data_ref(ref1));
121         }
122         BUG();
123         return 0;
124 }
125
126 /*
127  * insert a new ref into the rbtree.  This returns any existing refs
128  * for the same (bytenr,parent) tuple, or NULL if the new node was properly
129  * inserted.
130  */
131 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
132                                                   struct rb_node *node)
133 {
134         struct rb_node **p = &root->rb_node;
135         struct rb_node *parent_node = NULL;
136         struct btrfs_delayed_ref_node *entry;
137         struct btrfs_delayed_ref_node *ins;
138         int cmp;
139
140         ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
141         while (*p) {
142                 parent_node = *p;
143                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
144                                  rb_node);
145
146                 cmp = comp_entry(entry, ins, 1);
147                 if (cmp < 0)
148                         p = &(*p)->rb_left;
149                 else if (cmp > 0)
150                         p = &(*p)->rb_right;
151                 else
152                         return entry;
153         }
154
155         rb_link_node(node, parent_node, p);
156         rb_insert_color(node, root);
157         return NULL;
158 }
159
160 /*
161  * find an head entry based on bytenr. This returns the delayed ref
162  * head if it was able to find one, or NULL if nothing was in that spot.
163  * If return_bigger is given, the next bigger entry is returned if no exact
164  * match is found.
165  */
166 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
167                                   u64 bytenr,
168                                   struct btrfs_delayed_ref_node **last,
169                                   int return_bigger)
170 {
171         struct rb_node *n;
172         struct btrfs_delayed_ref_node *entry;
173         int cmp = 0;
174
175 again:
176         n = root->rb_node;
177         entry = NULL;
178         while (n) {
179                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
180                 WARN_ON(!entry->in_tree);
181                 if (last)
182                         *last = entry;
183
184                 if (bytenr < entry->bytenr)
185                         cmp = -1;
186                 else if (bytenr > entry->bytenr)
187                         cmp = 1;
188                 else if (!btrfs_delayed_ref_is_head(entry))
189                         cmp = 1;
190                 else
191                         cmp = 0;
192
193                 if (cmp < 0)
194                         n = n->rb_left;
195                 else if (cmp > 0)
196                         n = n->rb_right;
197                 else
198                         return entry;
199         }
200         if (entry && return_bigger) {
201                 if (cmp > 0) {
202                         n = rb_next(&entry->rb_node);
203                         if (!n)
204                                 n = rb_first(root);
205                         entry = rb_entry(n, struct btrfs_delayed_ref_node,
206                                          rb_node);
207                         bytenr = entry->bytenr;
208                         return_bigger = 0;
209                         goto again;
210                 }
211                 return entry;
212         }
213         return NULL;
214 }
215
216 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
217                            struct btrfs_delayed_ref_head *head)
218 {
219         struct btrfs_delayed_ref_root *delayed_refs;
220
221         delayed_refs = &trans->transaction->delayed_refs;
222         assert_spin_locked(&delayed_refs->lock);
223         if (mutex_trylock(&head->mutex))
224                 return 0;
225
226         atomic_inc(&head->node.refs);
227         spin_unlock(&delayed_refs->lock);
228
229         mutex_lock(&head->mutex);
230         spin_lock(&delayed_refs->lock);
231         if (!head->node.in_tree) {
232                 mutex_unlock(&head->mutex);
233                 btrfs_put_delayed_ref(&head->node);
234                 return -EAGAIN;
235         }
236         btrfs_put_delayed_ref(&head->node);
237         return 0;
238 }
239
240 static void inline drop_delayed_ref(struct btrfs_trans_handle *trans,
241                                     struct btrfs_delayed_ref_root *delayed_refs,
242                                     struct btrfs_delayed_ref_node *ref)
243 {
244         rb_erase(&ref->rb_node, &delayed_refs->root);
245         ref->in_tree = 0;
246         btrfs_put_delayed_ref(ref);
247         delayed_refs->num_entries--;
248         if (trans->delayed_ref_updates)
249                 trans->delayed_ref_updates--;
250 }
251
252 static int merge_ref(struct btrfs_trans_handle *trans,
253                      struct btrfs_delayed_ref_root *delayed_refs,
254                      struct btrfs_delayed_ref_node *ref, u64 seq)
255 {
256         struct rb_node *node;
257         int merged = 0;
258         int mod = 0;
259         int done = 0;
260
261         node = rb_prev(&ref->rb_node);
262         while (node) {
263                 struct btrfs_delayed_ref_node *next;
264
265                 next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
266                 node = rb_prev(node);
267                 if (next->bytenr != ref->bytenr)
268                         break;
269                 if (seq && next->seq >= seq)
270                         break;
271                 if (comp_entry(ref, next, 0))
272                         continue;
273
274                 if (ref->action == next->action) {
275                         mod = next->ref_mod;
276                 } else {
277                         if (ref->ref_mod < next->ref_mod) {
278                                 struct btrfs_delayed_ref_node *tmp;
279
280                                 tmp = ref;
281                                 ref = next;
282                                 next = tmp;
283                                 done = 1;
284                         }
285                         mod = -next->ref_mod;
286                 }
287
288                 merged++;
289                 drop_delayed_ref(trans, delayed_refs, next);
290                 ref->ref_mod += mod;
291                 if (ref->ref_mod == 0) {
292                         drop_delayed_ref(trans, delayed_refs, ref);
293                         break;
294                 } else {
295                         /*
296                          * You can't have multiples of the same ref on a tree
297                          * block.
298                          */
299                         WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
300                                 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
301                 }
302
303                 if (done)
304                         break;
305                 node = rb_prev(&ref->rb_node);
306         }
307
308         return merged;
309 }
310
311 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
312                               struct btrfs_fs_info *fs_info,
313                               struct btrfs_delayed_ref_root *delayed_refs,
314                               struct btrfs_delayed_ref_head *head)
315 {
316         struct rb_node *node;
317         u64 seq = 0;
318
319         spin_lock(&fs_info->tree_mod_seq_lock);
320         if (!list_empty(&fs_info->tree_mod_seq_list)) {
321                 struct seq_list *elem;
322
323                 elem = list_first_entry(&fs_info->tree_mod_seq_list,
324                                         struct seq_list, list);
325                 seq = elem->seq;
326         }
327         spin_unlock(&fs_info->tree_mod_seq_lock);
328
329         node = rb_prev(&head->node.rb_node);
330         while (node) {
331                 struct btrfs_delayed_ref_node *ref;
332
333                 ref = rb_entry(node, struct btrfs_delayed_ref_node,
334                                rb_node);
335                 if (ref->bytenr != head->node.bytenr)
336                         break;
337
338                 /* We can't merge refs that are outside of our seq count */
339                 if (seq && ref->seq >= seq)
340                         break;
341                 if (merge_ref(trans, delayed_refs, ref, seq))
342                         node = rb_prev(&head->node.rb_node);
343                 else
344                         node = rb_prev(node);
345         }
346 }
347
348 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
349                             struct btrfs_delayed_ref_root *delayed_refs,
350                             u64 seq)
351 {
352         struct seq_list *elem;
353         int ret = 0;
354
355         spin_lock(&fs_info->tree_mod_seq_lock);
356         if (!list_empty(&fs_info->tree_mod_seq_list)) {
357                 elem = list_first_entry(&fs_info->tree_mod_seq_list,
358                                         struct seq_list, list);
359                 if (seq >= elem->seq) {
360                         pr_debug("holding back delayed_ref %llu, lowest is "
361                                  "%llu (%p)\n", seq, elem->seq, delayed_refs);
362                         ret = 1;
363                 }
364         }
365
366         spin_unlock(&fs_info->tree_mod_seq_lock);
367         return ret;
368 }
369
370 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
371                            struct list_head *cluster, u64 start)
372 {
373         int count = 0;
374         struct btrfs_delayed_ref_root *delayed_refs;
375         struct rb_node *node;
376         struct btrfs_delayed_ref_node *ref;
377         struct btrfs_delayed_ref_head *head;
378
379         delayed_refs = &trans->transaction->delayed_refs;
380         if (start == 0) {
381                 node = rb_first(&delayed_refs->root);
382         } else {
383                 ref = NULL;
384                 find_ref_head(&delayed_refs->root, start + 1, &ref, 1);
385                 if (ref) {
386                         node = &ref->rb_node;
387                 } else
388                         node = rb_first(&delayed_refs->root);
389         }
390 again:
391         while (node && count < 32) {
392                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
393                 if (btrfs_delayed_ref_is_head(ref)) {
394                         head = btrfs_delayed_node_to_head(ref);
395                         if (list_empty(&head->cluster)) {
396                                 list_add_tail(&head->cluster, cluster);
397                                 delayed_refs->run_delayed_start =
398                                         head->node.bytenr;
399                                 count++;
400
401                                 WARN_ON(delayed_refs->num_heads_ready == 0);
402                                 delayed_refs->num_heads_ready--;
403                         } else if (count) {
404                                 /* the goal of the clustering is to find extents
405                                  * that are likely to end up in the same extent
406                                  * leaf on disk.  So, we don't want them spread
407                                  * all over the tree.  Stop now if we've hit
408                                  * a head that was already in use
409                                  */
410                                 break;
411                         }
412                 }
413                 node = rb_next(node);
414         }
415         if (count) {
416                 return 0;
417         } else if (start) {
418                 /*
419                  * we've gone to the end of the rbtree without finding any
420                  * clusters.  start from the beginning and try again
421                  */
422                 start = 0;
423                 node = rb_first(&delayed_refs->root);
424                 goto again;
425         }
426         return 1;
427 }
428
429 /*
430  * helper function to update an extent delayed ref in the
431  * rbtree.  existing and update must both have the same
432  * bytenr and parent
433  *
434  * This may free existing if the update cancels out whatever
435  * operation it was doing.
436  */
437 static noinline void
438 update_existing_ref(struct btrfs_trans_handle *trans,
439                     struct btrfs_delayed_ref_root *delayed_refs,
440                     struct btrfs_delayed_ref_node *existing,
441                     struct btrfs_delayed_ref_node *update)
442 {
443         if (update->action != existing->action) {
444                 /*
445                  * this is effectively undoing either an add or a
446                  * drop.  We decrement the ref_mod, and if it goes
447                  * down to zero we just delete the entry without
448                  * every changing the extent allocation tree.
449                  */
450                 existing->ref_mod--;
451                 if (existing->ref_mod == 0)
452                         drop_delayed_ref(trans, delayed_refs, existing);
453                 else
454                         WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
455                                 existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
456         } else {
457                 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
458                         existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
459                 /*
460                  * the action on the existing ref matches
461                  * the action on the ref we're trying to add.
462                  * Bump the ref_mod by one so the backref that
463                  * is eventually added/removed has the correct
464                  * reference count
465                  */
466                 existing->ref_mod += update->ref_mod;
467         }
468 }
469
470 /*
471  * helper function to update the accounting in the head ref
472  * existing and update must have the same bytenr
473  */
474 static noinline void
475 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
476                          struct btrfs_delayed_ref_node *update)
477 {
478         struct btrfs_delayed_ref_head *existing_ref;
479         struct btrfs_delayed_ref_head *ref;
480
481         existing_ref = btrfs_delayed_node_to_head(existing);
482         ref = btrfs_delayed_node_to_head(update);
483         BUG_ON(existing_ref->is_data != ref->is_data);
484
485         if (ref->must_insert_reserved) {
486                 /* if the extent was freed and then
487                  * reallocated before the delayed ref
488                  * entries were processed, we can end up
489                  * with an existing head ref without
490                  * the must_insert_reserved flag set.
491                  * Set it again here
492                  */
493                 existing_ref->must_insert_reserved = ref->must_insert_reserved;
494
495                 /*
496                  * update the num_bytes so we make sure the accounting
497                  * is done correctly
498                  */
499                 existing->num_bytes = update->num_bytes;
500
501         }
502
503         if (ref->extent_op) {
504                 if (!existing_ref->extent_op) {
505                         existing_ref->extent_op = ref->extent_op;
506                 } else {
507                         if (ref->extent_op->update_key) {
508                                 memcpy(&existing_ref->extent_op->key,
509                                        &ref->extent_op->key,
510                                        sizeof(ref->extent_op->key));
511                                 existing_ref->extent_op->update_key = 1;
512                         }
513                         if (ref->extent_op->update_flags) {
514                                 existing_ref->extent_op->flags_to_set |=
515                                         ref->extent_op->flags_to_set;
516                                 existing_ref->extent_op->update_flags = 1;
517                         }
518                         btrfs_free_delayed_extent_op(ref->extent_op);
519                 }
520         }
521         /*
522          * update the reference mod on the head to reflect this new operation
523          */
524         existing->ref_mod += update->ref_mod;
525 }
526
527 /*
528  * helper function to actually insert a head node into the rbtree.
529  * this does all the dirty work in terms of maintaining the correct
530  * overall modification count.
531  */
532 static noinline void add_delayed_ref_head(struct btrfs_fs_info *fs_info,
533                                         struct btrfs_trans_handle *trans,
534                                         struct btrfs_delayed_ref_node *ref,
535                                         u64 bytenr, u64 num_bytes,
536                                         int action, int is_data)
537 {
538         struct btrfs_delayed_ref_node *existing;
539         struct btrfs_delayed_ref_head *head_ref = NULL;
540         struct btrfs_delayed_ref_root *delayed_refs;
541         int count_mod = 1;
542         int must_insert_reserved = 0;
543
544         /*
545          * the head node stores the sum of all the mods, so dropping a ref
546          * should drop the sum in the head node by one.
547          */
548         if (action == BTRFS_UPDATE_DELAYED_HEAD)
549                 count_mod = 0;
550         else if (action == BTRFS_DROP_DELAYED_REF)
551                 count_mod = -1;
552
553         /*
554          * BTRFS_ADD_DELAYED_EXTENT means that we need to update
555          * the reserved accounting when the extent is finally added, or
556          * if a later modification deletes the delayed ref without ever
557          * inserting the extent into the extent allocation tree.
558          * ref->must_insert_reserved is the flag used to record
559          * that accounting mods are required.
560          *
561          * Once we record must_insert_reserved, switch the action to
562          * BTRFS_ADD_DELAYED_REF because other special casing is not required.
563          */
564         if (action == BTRFS_ADD_DELAYED_EXTENT)
565                 must_insert_reserved = 1;
566         else
567                 must_insert_reserved = 0;
568
569         delayed_refs = &trans->transaction->delayed_refs;
570
571         /* first set the basic ref node struct up */
572         atomic_set(&ref->refs, 1);
573         ref->bytenr = bytenr;
574         ref->num_bytes = num_bytes;
575         ref->ref_mod = count_mod;
576         ref->type  = 0;
577         ref->action  = 0;
578         ref->is_head = 1;
579         ref->in_tree = 1;
580         ref->seq = 0;
581
582         head_ref = btrfs_delayed_node_to_head(ref);
583         head_ref->must_insert_reserved = must_insert_reserved;
584         head_ref->is_data = is_data;
585
586         INIT_LIST_HEAD(&head_ref->cluster);
587         mutex_init(&head_ref->mutex);
588
589         trace_btrfs_delayed_ref_head(ref, head_ref, action);
590
591         existing = tree_insert(&delayed_refs->root, &ref->rb_node);
592
593         if (existing) {
594                 update_existing_head_ref(existing, ref);
595                 /*
596                  * we've updated the existing ref, free the newly
597                  * allocated ref
598                  */
599                 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
600         } else {
601                 delayed_refs->num_heads++;
602                 delayed_refs->num_heads_ready++;
603                 delayed_refs->num_entries++;
604                 trans->delayed_ref_updates++;
605         }
606 }
607
608 /*
609  * helper to insert a delayed tree ref into the rbtree.
610  */
611 static noinline void add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
612                                          struct btrfs_trans_handle *trans,
613                                          struct btrfs_delayed_ref_node *ref,
614                                          u64 bytenr, u64 num_bytes, u64 parent,
615                                          u64 ref_root, int level, int action,
616                                          int for_cow)
617 {
618         struct btrfs_delayed_ref_node *existing;
619         struct btrfs_delayed_tree_ref *full_ref;
620         struct btrfs_delayed_ref_root *delayed_refs;
621         u64 seq = 0;
622
623         if (action == BTRFS_ADD_DELAYED_EXTENT)
624                 action = BTRFS_ADD_DELAYED_REF;
625
626         delayed_refs = &trans->transaction->delayed_refs;
627
628         /* first set the basic ref node struct up */
629         atomic_set(&ref->refs, 1);
630         ref->bytenr = bytenr;
631         ref->num_bytes = num_bytes;
632         ref->ref_mod = 1;
633         ref->action = action;
634         ref->is_head = 0;
635         ref->in_tree = 1;
636
637         if (need_ref_seq(for_cow, ref_root))
638                 seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
639         ref->seq = seq;
640
641         full_ref = btrfs_delayed_node_to_tree_ref(ref);
642         full_ref->parent = parent;
643         full_ref->root = ref_root;
644         if (parent)
645                 ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
646         else
647                 ref->type = BTRFS_TREE_BLOCK_REF_KEY;
648         full_ref->level = level;
649
650         trace_btrfs_delayed_tree_ref(ref, full_ref, action);
651
652         existing = tree_insert(&delayed_refs->root, &ref->rb_node);
653
654         if (existing) {
655                 update_existing_ref(trans, delayed_refs, existing, ref);
656                 /*
657                  * we've updated the existing ref, free the newly
658                  * allocated ref
659                  */
660                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
661         } else {
662                 delayed_refs->num_entries++;
663                 trans->delayed_ref_updates++;
664         }
665 }
666
667 /*
668  * helper to insert a delayed data ref into the rbtree.
669  */
670 static noinline void add_delayed_data_ref(struct btrfs_fs_info *fs_info,
671                                          struct btrfs_trans_handle *trans,
672                                          struct btrfs_delayed_ref_node *ref,
673                                          u64 bytenr, u64 num_bytes, u64 parent,
674                                          u64 ref_root, u64 owner, u64 offset,
675                                          int action, int for_cow)
676 {
677         struct btrfs_delayed_ref_node *existing;
678         struct btrfs_delayed_data_ref *full_ref;
679         struct btrfs_delayed_ref_root *delayed_refs;
680         u64 seq = 0;
681
682         if (action == BTRFS_ADD_DELAYED_EXTENT)
683                 action = BTRFS_ADD_DELAYED_REF;
684
685         delayed_refs = &trans->transaction->delayed_refs;
686
687         /* first set the basic ref node struct up */
688         atomic_set(&ref->refs, 1);
689         ref->bytenr = bytenr;
690         ref->num_bytes = num_bytes;
691         ref->ref_mod = 1;
692         ref->action = action;
693         ref->is_head = 0;
694         ref->in_tree = 1;
695
696         if (need_ref_seq(for_cow, ref_root))
697                 seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
698         ref->seq = seq;
699
700         full_ref = btrfs_delayed_node_to_data_ref(ref);
701         full_ref->parent = parent;
702         full_ref->root = ref_root;
703         if (parent)
704                 ref->type = BTRFS_SHARED_DATA_REF_KEY;
705         else
706                 ref->type = BTRFS_EXTENT_DATA_REF_KEY;
707
708         full_ref->objectid = owner;
709         full_ref->offset = offset;
710
711         trace_btrfs_delayed_data_ref(ref, full_ref, action);
712
713         existing = tree_insert(&delayed_refs->root, &ref->rb_node);
714
715         if (existing) {
716                 update_existing_ref(trans, delayed_refs, existing, ref);
717                 /*
718                  * we've updated the existing ref, free the newly
719                  * allocated ref
720                  */
721                 kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
722         } else {
723                 delayed_refs->num_entries++;
724                 trans->delayed_ref_updates++;
725         }
726 }
727
728 /*
729  * add a delayed tree ref.  This does all of the accounting required
730  * to make sure the delayed ref is eventually processed before this
731  * transaction commits.
732  */
733 int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
734                                struct btrfs_trans_handle *trans,
735                                u64 bytenr, u64 num_bytes, u64 parent,
736                                u64 ref_root,  int level, int action,
737                                struct btrfs_delayed_extent_op *extent_op,
738                                int for_cow)
739 {
740         struct btrfs_delayed_tree_ref *ref;
741         struct btrfs_delayed_ref_head *head_ref;
742         struct btrfs_delayed_ref_root *delayed_refs;
743
744         BUG_ON(extent_op && extent_op->is_data);
745         ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
746         if (!ref)
747                 return -ENOMEM;
748
749         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
750         if (!head_ref) {
751                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
752                 return -ENOMEM;
753         }
754
755         head_ref->extent_op = extent_op;
756
757         delayed_refs = &trans->transaction->delayed_refs;
758         spin_lock(&delayed_refs->lock);
759
760         /*
761          * insert both the head node and the new ref without dropping
762          * the spin lock
763          */
764         add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
765                                    num_bytes, action, 0);
766
767         add_delayed_tree_ref(fs_info, trans, &ref->node, bytenr,
768                                    num_bytes, parent, ref_root, level, action,
769                                    for_cow);
770         spin_unlock(&delayed_refs->lock);
771         if (need_ref_seq(for_cow, ref_root))
772                 btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
773
774         return 0;
775 }
776
777 /*
778  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
779  */
780 int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
781                                struct btrfs_trans_handle *trans,
782                                u64 bytenr, u64 num_bytes,
783                                u64 parent, u64 ref_root,
784                                u64 owner, u64 offset, int action,
785                                struct btrfs_delayed_extent_op *extent_op,
786                                int for_cow)
787 {
788         struct btrfs_delayed_data_ref *ref;
789         struct btrfs_delayed_ref_head *head_ref;
790         struct btrfs_delayed_ref_root *delayed_refs;
791
792         BUG_ON(extent_op && !extent_op->is_data);
793         ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
794         if (!ref)
795                 return -ENOMEM;
796
797         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
798         if (!head_ref) {
799                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
800                 return -ENOMEM;
801         }
802
803         head_ref->extent_op = extent_op;
804
805         delayed_refs = &trans->transaction->delayed_refs;
806         spin_lock(&delayed_refs->lock);
807
808         /*
809          * insert both the head node and the new ref without dropping
810          * the spin lock
811          */
812         add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
813                                    num_bytes, action, 1);
814
815         add_delayed_data_ref(fs_info, trans, &ref->node, bytenr,
816                                    num_bytes, parent, ref_root, owner, offset,
817                                    action, for_cow);
818         spin_unlock(&delayed_refs->lock);
819         if (need_ref_seq(for_cow, ref_root))
820                 btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
821
822         return 0;
823 }
824
825 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
826                                 struct btrfs_trans_handle *trans,
827                                 u64 bytenr, u64 num_bytes,
828                                 struct btrfs_delayed_extent_op *extent_op)
829 {
830         struct btrfs_delayed_ref_head *head_ref;
831         struct btrfs_delayed_ref_root *delayed_refs;
832
833         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
834         if (!head_ref)
835                 return -ENOMEM;
836
837         head_ref->extent_op = extent_op;
838
839         delayed_refs = &trans->transaction->delayed_refs;
840         spin_lock(&delayed_refs->lock);
841
842         add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
843                                    num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
844                                    extent_op->is_data);
845
846         spin_unlock(&delayed_refs->lock);
847         return 0;
848 }
849
850 /*
851  * this does a simple search for the head node for a given extent.
852  * It must be called with the delayed ref spinlock held, and it returns
853  * the head node if any where found, or NULL if not.
854  */
855 struct btrfs_delayed_ref_head *
856 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
857 {
858         struct btrfs_delayed_ref_node *ref;
859         struct btrfs_delayed_ref_root *delayed_refs;
860
861         delayed_refs = &trans->transaction->delayed_refs;
862         ref = find_ref_head(&delayed_refs->root, bytenr, NULL, 0);
863         if (ref)
864                 return btrfs_delayed_node_to_head(ref);
865         return NULL;
866 }
867
868 void btrfs_delayed_ref_exit(void)
869 {
870         if (btrfs_delayed_ref_head_cachep)
871                 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
872         if (btrfs_delayed_tree_ref_cachep)
873                 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
874         if (btrfs_delayed_data_ref_cachep)
875                 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
876         if (btrfs_delayed_extent_op_cachep)
877                 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
878 }
879
880 int btrfs_delayed_ref_init(void)
881 {
882         btrfs_delayed_ref_head_cachep = kmem_cache_create(
883                                 "btrfs_delayed_ref_head",
884                                 sizeof(struct btrfs_delayed_ref_head), 0,
885                                 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
886         if (!btrfs_delayed_ref_head_cachep)
887                 goto fail;
888
889         btrfs_delayed_tree_ref_cachep = kmem_cache_create(
890                                 "btrfs_delayed_tree_ref",
891                                 sizeof(struct btrfs_delayed_tree_ref), 0,
892                                 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
893         if (!btrfs_delayed_tree_ref_cachep)
894                 goto fail;
895
896         btrfs_delayed_data_ref_cachep = kmem_cache_create(
897                                 "btrfs_delayed_data_ref",
898                                 sizeof(struct btrfs_delayed_data_ref), 0,
899                                 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
900         if (!btrfs_delayed_data_ref_cachep)
901                 goto fail;
902
903         btrfs_delayed_extent_op_cachep = kmem_cache_create(
904                                 "btrfs_delayed_extent_op",
905                                 sizeof(struct btrfs_delayed_extent_op), 0,
906                                 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
907         if (!btrfs_delayed_extent_op_cachep)
908                 goto fail;
909
910         return 0;
911 fail:
912         btrfs_delayed_ref_exit();
913         return -ENOMEM;
914 }