88a1e27d2fc286067c5fb8613c8e53d974e4fafc
[platform/kernel/linux-rpi.git] / fs / btrfs / delayed-ref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "ctree.h"
10 #include "delayed-ref.h"
11 #include "transaction.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14
15 struct kmem_cache *btrfs_delayed_ref_head_cachep;
16 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
17 struct kmem_cache *btrfs_delayed_data_ref_cachep;
18 struct kmem_cache *btrfs_delayed_extent_op_cachep;
19 /*
20  * delayed back reference update tracking.  For subvolume trees
21  * we queue up extent allocations and backref maintenance for
22  * delayed processing.   This avoids deep call chains where we
23  * add extents in the middle of btrfs_search_slot, and it allows
24  * us to buffer up frequently modified backrefs in an rb tree instead
25  * of hammering updates on the extent allocation tree.
26  */
27
28 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
29 {
30         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
31         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
32         bool ret = false;
33         u64 reserved;
34
35         spin_lock(&global_rsv->lock);
36         reserved = global_rsv->reserved;
37         spin_unlock(&global_rsv->lock);
38
39         /*
40          * Since the global reserve is just kind of magic we don't really want
41          * to rely on it to save our bacon, so if our size is more than the
42          * delayed_refs_rsv and the global rsv then it's time to think about
43          * bailing.
44          */
45         spin_lock(&delayed_refs_rsv->lock);
46         reserved += delayed_refs_rsv->reserved;
47         if (delayed_refs_rsv->size >= reserved)
48                 ret = true;
49         spin_unlock(&delayed_refs_rsv->lock);
50         return ret;
51 }
52
53 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
54 {
55         u64 num_entries =
56                 atomic_read(&trans->transaction->delayed_refs.num_entries);
57         u64 avg_runtime;
58         u64 val;
59
60         smp_mb();
61         avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
62         val = num_entries * avg_runtime;
63         if (val >= NSEC_PER_SEC)
64                 return 1;
65         if (val >= NSEC_PER_SEC / 2)
66                 return 2;
67
68         return btrfs_check_space_for_delayed_refs(trans->fs_info);
69 }
70
71 /**
72  * Release a ref head's reservation
73  *
74  * @fs_info:  the filesystem
75  * @nr:       number of items to drop
76  *
77  * This drops the delayed ref head's count from the delayed refs rsv and frees
78  * any excess reservation we had.
79  */
80 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
81 {
82         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
83         u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
84         u64 released = 0;
85
86         released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
87         if (released)
88                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
89                                               0, released, 0);
90 }
91
92 /*
93  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
94  * @trans - the trans that may have generated delayed refs
95  *
96  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
97  * it'll calculate the additional size and add it to the delayed_refs_rsv.
98  */
99 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
100 {
101         struct btrfs_fs_info *fs_info = trans->fs_info;
102         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
103         u64 num_bytes;
104
105         if (!trans->delayed_ref_updates)
106                 return;
107
108         num_bytes = btrfs_calc_insert_metadata_size(fs_info,
109                                                     trans->delayed_ref_updates);
110         spin_lock(&delayed_rsv->lock);
111         delayed_rsv->size += num_bytes;
112         delayed_rsv->full = 0;
113         spin_unlock(&delayed_rsv->lock);
114         trans->delayed_ref_updates = 0;
115 }
116
117 /**
118  * Transfer bytes to our delayed refs rsv
119  *
120  * @fs_info:   the filesystem
121  * @src:       source block rsv to transfer from
122  * @num_bytes: number of bytes to transfer
123  *
124  * This transfers up to the num_bytes amount from the src rsv to the
125  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
126  */
127 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
128                                        struct btrfs_block_rsv *src,
129                                        u64 num_bytes)
130 {
131         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
132         u64 to_free = 0;
133
134         spin_lock(&src->lock);
135         src->reserved -= num_bytes;
136         src->size -= num_bytes;
137         spin_unlock(&src->lock);
138
139         spin_lock(&delayed_refs_rsv->lock);
140         if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
141                 u64 delta = delayed_refs_rsv->size -
142                         delayed_refs_rsv->reserved;
143                 if (num_bytes > delta) {
144                         to_free = num_bytes - delta;
145                         num_bytes = delta;
146                 }
147         } else {
148                 to_free = num_bytes;
149                 num_bytes = 0;
150         }
151
152         if (num_bytes)
153                 delayed_refs_rsv->reserved += num_bytes;
154         if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
155                 delayed_refs_rsv->full = 1;
156         spin_unlock(&delayed_refs_rsv->lock);
157
158         if (num_bytes)
159                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
160                                               0, num_bytes, 1);
161         if (to_free)
162                 btrfs_space_info_free_bytes_may_use(fs_info,
163                                 delayed_refs_rsv->space_info, to_free);
164 }
165
166 /**
167  * Refill based on our delayed refs usage
168  *
169  * @fs_info: the filesystem
170  * @flush:   control how we can flush for this reservation.
171  *
172  * This will refill the delayed block_rsv up to 1 items size worth of space and
173  * will return -ENOSPC if we can't make the reservation.
174  */
175 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
176                                   enum btrfs_reserve_flush_enum flush)
177 {
178         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
179         u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
180         u64 num_bytes = 0;
181         int ret = -ENOSPC;
182
183         spin_lock(&block_rsv->lock);
184         if (block_rsv->reserved < block_rsv->size) {
185                 num_bytes = block_rsv->size - block_rsv->reserved;
186                 num_bytes = min(num_bytes, limit);
187         }
188         spin_unlock(&block_rsv->lock);
189
190         if (!num_bytes)
191                 return 0;
192
193         ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
194                                            num_bytes, flush);
195         if (ret)
196                 return ret;
197         btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
198         trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
199                                       0, num_bytes, 1);
200         return 0;
201 }
202
203 /*
204  * compare two delayed tree backrefs with same bytenr and type
205  */
206 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
207                           struct btrfs_delayed_tree_ref *ref2)
208 {
209         if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
210                 if (ref1->root < ref2->root)
211                         return -1;
212                 if (ref1->root > ref2->root)
213                         return 1;
214         } else {
215                 if (ref1->parent < ref2->parent)
216                         return -1;
217                 if (ref1->parent > ref2->parent)
218                         return 1;
219         }
220         return 0;
221 }
222
223 /*
224  * compare two delayed data backrefs with same bytenr and type
225  */
226 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
227                           struct btrfs_delayed_data_ref *ref2)
228 {
229         if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
230                 if (ref1->root < ref2->root)
231                         return -1;
232                 if (ref1->root > ref2->root)
233                         return 1;
234                 if (ref1->objectid < ref2->objectid)
235                         return -1;
236                 if (ref1->objectid > ref2->objectid)
237                         return 1;
238                 if (ref1->offset < ref2->offset)
239                         return -1;
240                 if (ref1->offset > ref2->offset)
241                         return 1;
242         } else {
243                 if (ref1->parent < ref2->parent)
244                         return -1;
245                 if (ref1->parent > ref2->parent)
246                         return 1;
247         }
248         return 0;
249 }
250
251 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
252                      struct btrfs_delayed_ref_node *ref2,
253                      bool check_seq)
254 {
255         int ret = 0;
256
257         if (ref1->type < ref2->type)
258                 return -1;
259         if (ref1->type > ref2->type)
260                 return 1;
261         if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
262             ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
263                 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
264                                      btrfs_delayed_node_to_tree_ref(ref2));
265         else
266                 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
267                                      btrfs_delayed_node_to_data_ref(ref2));
268         if (ret)
269                 return ret;
270         if (check_seq) {
271                 if (ref1->seq < ref2->seq)
272                         return -1;
273                 if (ref1->seq > ref2->seq)
274                         return 1;
275         }
276         return 0;
277 }
278
279 /* insert a new ref to head ref rbtree */
280 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
281                                                    struct rb_node *node)
282 {
283         struct rb_node **p = &root->rb_root.rb_node;
284         struct rb_node *parent_node = NULL;
285         struct btrfs_delayed_ref_head *entry;
286         struct btrfs_delayed_ref_head *ins;
287         u64 bytenr;
288         bool leftmost = true;
289
290         ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
291         bytenr = ins->bytenr;
292         while (*p) {
293                 parent_node = *p;
294                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
295                                  href_node);
296
297                 if (bytenr < entry->bytenr) {
298                         p = &(*p)->rb_left;
299                 } else if (bytenr > entry->bytenr) {
300                         p = &(*p)->rb_right;
301                         leftmost = false;
302                 } else {
303                         return entry;
304                 }
305         }
306
307         rb_link_node(node, parent_node, p);
308         rb_insert_color_cached(node, root, leftmost);
309         return NULL;
310 }
311
312 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
313                 struct btrfs_delayed_ref_node *ins)
314 {
315         struct rb_node **p = &root->rb_root.rb_node;
316         struct rb_node *node = &ins->ref_node;
317         struct rb_node *parent_node = NULL;
318         struct btrfs_delayed_ref_node *entry;
319         bool leftmost = true;
320
321         while (*p) {
322                 int comp;
323
324                 parent_node = *p;
325                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
326                                  ref_node);
327                 comp = comp_refs(ins, entry, true);
328                 if (comp < 0) {
329                         p = &(*p)->rb_left;
330                 } else if (comp > 0) {
331                         p = &(*p)->rb_right;
332                         leftmost = false;
333                 } else {
334                         return entry;
335                 }
336         }
337
338         rb_link_node(node, parent_node, p);
339         rb_insert_color_cached(node, root, leftmost);
340         return NULL;
341 }
342
343 static struct btrfs_delayed_ref_head *find_first_ref_head(
344                 struct btrfs_delayed_ref_root *dr)
345 {
346         struct rb_node *n;
347         struct btrfs_delayed_ref_head *entry;
348
349         n = rb_first_cached(&dr->href_root);
350         if (!n)
351                 return NULL;
352
353         entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
354
355         return entry;
356 }
357
358 /*
359  * Find a head entry based on bytenr. This returns the delayed ref head if it
360  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
361  * is given, the next bigger entry is returned if no exact match is found.
362  */
363 static struct btrfs_delayed_ref_head *find_ref_head(
364                 struct btrfs_delayed_ref_root *dr, u64 bytenr,
365                 bool return_bigger)
366 {
367         struct rb_root *root = &dr->href_root.rb_root;
368         struct rb_node *n;
369         struct btrfs_delayed_ref_head *entry;
370
371         n = root->rb_node;
372         entry = NULL;
373         while (n) {
374                 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
375
376                 if (bytenr < entry->bytenr)
377                         n = n->rb_left;
378                 else if (bytenr > entry->bytenr)
379                         n = n->rb_right;
380                 else
381                         return entry;
382         }
383         if (entry && return_bigger) {
384                 if (bytenr > entry->bytenr) {
385                         n = rb_next(&entry->href_node);
386                         if (!n)
387                                 return NULL;
388                         entry = rb_entry(n, struct btrfs_delayed_ref_head,
389                                          href_node);
390                 }
391                 return entry;
392         }
393         return NULL;
394 }
395
396 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
397                            struct btrfs_delayed_ref_head *head)
398 {
399         lockdep_assert_held(&delayed_refs->lock);
400         if (mutex_trylock(&head->mutex))
401                 return 0;
402
403         refcount_inc(&head->refs);
404         spin_unlock(&delayed_refs->lock);
405
406         mutex_lock(&head->mutex);
407         spin_lock(&delayed_refs->lock);
408         if (RB_EMPTY_NODE(&head->href_node)) {
409                 mutex_unlock(&head->mutex);
410                 btrfs_put_delayed_ref_head(head);
411                 return -EAGAIN;
412         }
413         btrfs_put_delayed_ref_head(head);
414         return 0;
415 }
416
417 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
418                                     struct btrfs_delayed_ref_root *delayed_refs,
419                                     struct btrfs_delayed_ref_head *head,
420                                     struct btrfs_delayed_ref_node *ref)
421 {
422         lockdep_assert_held(&head->lock);
423         rb_erase_cached(&ref->ref_node, &head->ref_tree);
424         RB_CLEAR_NODE(&ref->ref_node);
425         if (!list_empty(&ref->add_list))
426                 list_del(&ref->add_list);
427         ref->in_tree = 0;
428         btrfs_put_delayed_ref(ref);
429         atomic_dec(&delayed_refs->num_entries);
430 }
431
432 static bool merge_ref(struct btrfs_trans_handle *trans,
433                       struct btrfs_delayed_ref_root *delayed_refs,
434                       struct btrfs_delayed_ref_head *head,
435                       struct btrfs_delayed_ref_node *ref,
436                       u64 seq)
437 {
438         struct btrfs_delayed_ref_node *next;
439         struct rb_node *node = rb_next(&ref->ref_node);
440         bool done = false;
441
442         while (!done && node) {
443                 int mod;
444
445                 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
446                 node = rb_next(node);
447                 if (seq && next->seq >= seq)
448                         break;
449                 if (comp_refs(ref, next, false))
450                         break;
451
452                 if (ref->action == next->action) {
453                         mod = next->ref_mod;
454                 } else {
455                         if (ref->ref_mod < next->ref_mod) {
456                                 swap(ref, next);
457                                 done = true;
458                         }
459                         mod = -next->ref_mod;
460                 }
461
462                 drop_delayed_ref(trans, delayed_refs, head, next);
463                 ref->ref_mod += mod;
464                 if (ref->ref_mod == 0) {
465                         drop_delayed_ref(trans, delayed_refs, head, ref);
466                         done = true;
467                 } else {
468                         /*
469                          * Can't have multiples of the same ref on a tree block.
470                          */
471                         WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
472                                 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
473                 }
474         }
475
476         return done;
477 }
478
479 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
480                               struct btrfs_delayed_ref_root *delayed_refs,
481                               struct btrfs_delayed_ref_head *head)
482 {
483         struct btrfs_fs_info *fs_info = trans->fs_info;
484         struct btrfs_delayed_ref_node *ref;
485         struct rb_node *node;
486         u64 seq = 0;
487
488         lockdep_assert_held(&head->lock);
489
490         if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
491                 return;
492
493         /* We don't have too many refs to merge for data. */
494         if (head->is_data)
495                 return;
496
497         read_lock(&fs_info->tree_mod_log_lock);
498         if (!list_empty(&fs_info->tree_mod_seq_list)) {
499                 struct seq_list *elem;
500
501                 elem = list_first_entry(&fs_info->tree_mod_seq_list,
502                                         struct seq_list, list);
503                 seq = elem->seq;
504         }
505         read_unlock(&fs_info->tree_mod_log_lock);
506
507 again:
508         for (node = rb_first_cached(&head->ref_tree); node;
509              node = rb_next(node)) {
510                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
511                 if (seq && ref->seq >= seq)
512                         continue;
513                 if (merge_ref(trans, delayed_refs, head, ref, seq))
514                         goto again;
515         }
516 }
517
518 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
519 {
520         struct seq_list *elem;
521         int ret = 0;
522
523         read_lock(&fs_info->tree_mod_log_lock);
524         if (!list_empty(&fs_info->tree_mod_seq_list)) {
525                 elem = list_first_entry(&fs_info->tree_mod_seq_list,
526                                         struct seq_list, list);
527                 if (seq >= elem->seq) {
528                         btrfs_debug(fs_info,
529                                 "holding back delayed_ref %#x.%x, lowest is %#x.%x",
530                                 (u32)(seq >> 32), (u32)seq,
531                                 (u32)(elem->seq >> 32), (u32)elem->seq);
532                         ret = 1;
533                 }
534         }
535
536         read_unlock(&fs_info->tree_mod_log_lock);
537         return ret;
538 }
539
540 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
541                 struct btrfs_delayed_ref_root *delayed_refs)
542 {
543         struct btrfs_delayed_ref_head *head;
544
545 again:
546         head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
547                              true);
548         if (!head && delayed_refs->run_delayed_start != 0) {
549                 delayed_refs->run_delayed_start = 0;
550                 head = find_first_ref_head(delayed_refs);
551         }
552         if (!head)
553                 return NULL;
554
555         while (head->processing) {
556                 struct rb_node *node;
557
558                 node = rb_next(&head->href_node);
559                 if (!node) {
560                         if (delayed_refs->run_delayed_start == 0)
561                                 return NULL;
562                         delayed_refs->run_delayed_start = 0;
563                         goto again;
564                 }
565                 head = rb_entry(node, struct btrfs_delayed_ref_head,
566                                 href_node);
567         }
568
569         head->processing = 1;
570         WARN_ON(delayed_refs->num_heads_ready == 0);
571         delayed_refs->num_heads_ready--;
572         delayed_refs->run_delayed_start = head->bytenr +
573                 head->num_bytes;
574         return head;
575 }
576
577 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
578                            struct btrfs_delayed_ref_head *head)
579 {
580         lockdep_assert_held(&delayed_refs->lock);
581         lockdep_assert_held(&head->lock);
582
583         rb_erase_cached(&head->href_node, &delayed_refs->href_root);
584         RB_CLEAR_NODE(&head->href_node);
585         atomic_dec(&delayed_refs->num_entries);
586         delayed_refs->num_heads--;
587         if (head->processing == 0)
588                 delayed_refs->num_heads_ready--;
589 }
590
591 /*
592  * Helper to insert the ref_node to the tail or merge with tail.
593  *
594  * Return 0 for insert.
595  * Return >0 for merge.
596  */
597 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
598                               struct btrfs_delayed_ref_root *root,
599                               struct btrfs_delayed_ref_head *href,
600                               struct btrfs_delayed_ref_node *ref)
601 {
602         struct btrfs_delayed_ref_node *exist;
603         int mod;
604         int ret = 0;
605
606         spin_lock(&href->lock);
607         exist = tree_insert(&href->ref_tree, ref);
608         if (!exist)
609                 goto inserted;
610
611         /* Now we are sure we can merge */
612         ret = 1;
613         if (exist->action == ref->action) {
614                 mod = ref->ref_mod;
615         } else {
616                 /* Need to change action */
617                 if (exist->ref_mod < ref->ref_mod) {
618                         exist->action = ref->action;
619                         mod = -exist->ref_mod;
620                         exist->ref_mod = ref->ref_mod;
621                         if (ref->action == BTRFS_ADD_DELAYED_REF)
622                                 list_add_tail(&exist->add_list,
623                                               &href->ref_add_list);
624                         else if (ref->action == BTRFS_DROP_DELAYED_REF) {
625                                 ASSERT(!list_empty(&exist->add_list));
626                                 list_del(&exist->add_list);
627                         } else {
628                                 ASSERT(0);
629                         }
630                 } else
631                         mod = -ref->ref_mod;
632         }
633         exist->ref_mod += mod;
634
635         /* remove existing tail if its ref_mod is zero */
636         if (exist->ref_mod == 0)
637                 drop_delayed_ref(trans, root, href, exist);
638         spin_unlock(&href->lock);
639         return ret;
640 inserted:
641         if (ref->action == BTRFS_ADD_DELAYED_REF)
642                 list_add_tail(&ref->add_list, &href->ref_add_list);
643         atomic_inc(&root->num_entries);
644         spin_unlock(&href->lock);
645         return ret;
646 }
647
648 /*
649  * helper function to update the accounting in the head ref
650  * existing and update must have the same bytenr
651  */
652 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
653                          struct btrfs_delayed_ref_head *existing,
654                          struct btrfs_delayed_ref_head *update,
655                          int *old_ref_mod_ret)
656 {
657         struct btrfs_delayed_ref_root *delayed_refs =
658                 &trans->transaction->delayed_refs;
659         struct btrfs_fs_info *fs_info = trans->fs_info;
660         int old_ref_mod;
661
662         BUG_ON(existing->is_data != update->is_data);
663
664         spin_lock(&existing->lock);
665         if (update->must_insert_reserved) {
666                 /* if the extent was freed and then
667                  * reallocated before the delayed ref
668                  * entries were processed, we can end up
669                  * with an existing head ref without
670                  * the must_insert_reserved flag set.
671                  * Set it again here
672                  */
673                 existing->must_insert_reserved = update->must_insert_reserved;
674
675                 /*
676                  * update the num_bytes so we make sure the accounting
677                  * is done correctly
678                  */
679                 existing->num_bytes = update->num_bytes;
680
681         }
682
683         if (update->extent_op) {
684                 if (!existing->extent_op) {
685                         existing->extent_op = update->extent_op;
686                 } else {
687                         if (update->extent_op->update_key) {
688                                 memcpy(&existing->extent_op->key,
689                                        &update->extent_op->key,
690                                        sizeof(update->extent_op->key));
691                                 existing->extent_op->update_key = true;
692                         }
693                         if (update->extent_op->update_flags) {
694                                 existing->extent_op->flags_to_set |=
695                                         update->extent_op->flags_to_set;
696                                 existing->extent_op->update_flags = true;
697                         }
698                         btrfs_free_delayed_extent_op(update->extent_op);
699                 }
700         }
701         /*
702          * update the reference mod on the head to reflect this new operation,
703          * only need the lock for this case cause we could be processing it
704          * currently, for refs we just added we know we're a-ok.
705          */
706         old_ref_mod = existing->total_ref_mod;
707         if (old_ref_mod_ret)
708                 *old_ref_mod_ret = old_ref_mod;
709         existing->ref_mod += update->ref_mod;
710         existing->total_ref_mod += update->ref_mod;
711
712         /*
713          * If we are going to from a positive ref mod to a negative or vice
714          * versa we need to make sure to adjust pending_csums accordingly.
715          */
716         if (existing->is_data) {
717                 u64 csum_leaves =
718                         btrfs_csum_bytes_to_leaves(fs_info,
719                                                    existing->num_bytes);
720
721                 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
722                         delayed_refs->pending_csums -= existing->num_bytes;
723                         btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
724                 }
725                 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
726                         delayed_refs->pending_csums += existing->num_bytes;
727                         trans->delayed_ref_updates += csum_leaves;
728                 }
729         }
730         spin_unlock(&existing->lock);
731 }
732
733 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
734                                   struct btrfs_qgroup_extent_record *qrecord,
735                                   u64 bytenr, u64 num_bytes, u64 ref_root,
736                                   u64 reserved, int action, bool is_data,
737                                   bool is_system)
738 {
739         int count_mod = 1;
740         int must_insert_reserved = 0;
741
742         /* If reserved is provided, it must be a data extent. */
743         BUG_ON(!is_data && reserved);
744
745         /*
746          * The head node stores the sum of all the mods, so dropping a ref
747          * should drop the sum in the head node by one.
748          */
749         if (action == BTRFS_UPDATE_DELAYED_HEAD)
750                 count_mod = 0;
751         else if (action == BTRFS_DROP_DELAYED_REF)
752                 count_mod = -1;
753
754         /*
755          * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
756          * accounting when the extent is finally added, or if a later
757          * modification deletes the delayed ref without ever inserting the
758          * extent into the extent allocation tree.  ref->must_insert_reserved
759          * is the flag used to record that accounting mods are required.
760          *
761          * Once we record must_insert_reserved, switch the action to
762          * BTRFS_ADD_DELAYED_REF because other special casing is not required.
763          */
764         if (action == BTRFS_ADD_DELAYED_EXTENT)
765                 must_insert_reserved = 1;
766         else
767                 must_insert_reserved = 0;
768
769         refcount_set(&head_ref->refs, 1);
770         head_ref->bytenr = bytenr;
771         head_ref->num_bytes = num_bytes;
772         head_ref->ref_mod = count_mod;
773         head_ref->must_insert_reserved = must_insert_reserved;
774         head_ref->is_data = is_data;
775         head_ref->is_system = is_system;
776         head_ref->ref_tree = RB_ROOT_CACHED;
777         INIT_LIST_HEAD(&head_ref->ref_add_list);
778         RB_CLEAR_NODE(&head_ref->href_node);
779         head_ref->processing = 0;
780         head_ref->total_ref_mod = count_mod;
781         spin_lock_init(&head_ref->lock);
782         mutex_init(&head_ref->mutex);
783
784         if (qrecord) {
785                 if (ref_root && reserved) {
786                         qrecord->data_rsv = reserved;
787                         qrecord->data_rsv_refroot = ref_root;
788                 }
789                 qrecord->bytenr = bytenr;
790                 qrecord->num_bytes = num_bytes;
791                 qrecord->old_roots = NULL;
792         }
793 }
794
795 /*
796  * helper function to actually insert a head node into the rbtree.
797  * this does all the dirty work in terms of maintaining the correct
798  * overall modification count.
799  */
800 static noinline struct btrfs_delayed_ref_head *
801 add_delayed_ref_head(struct btrfs_trans_handle *trans,
802                      struct btrfs_delayed_ref_head *head_ref,
803                      struct btrfs_qgroup_extent_record *qrecord,
804                      int action, int *qrecord_inserted_ret,
805                      int *old_ref_mod, int *new_ref_mod)
806 {
807         struct btrfs_delayed_ref_head *existing;
808         struct btrfs_delayed_ref_root *delayed_refs;
809         int qrecord_inserted = 0;
810
811         delayed_refs = &trans->transaction->delayed_refs;
812
813         /* Record qgroup extent info if provided */
814         if (qrecord) {
815                 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
816                                         delayed_refs, qrecord))
817                         kfree(qrecord);
818                 else
819                         qrecord_inserted = 1;
820         }
821
822         trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
823
824         existing = htree_insert(&delayed_refs->href_root,
825                                 &head_ref->href_node);
826         if (existing) {
827                 update_existing_head_ref(trans, existing, head_ref,
828                                          old_ref_mod);
829                 /*
830                  * we've updated the existing ref, free the newly
831                  * allocated ref
832                  */
833                 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
834                 head_ref = existing;
835         } else {
836                 if (old_ref_mod)
837                         *old_ref_mod = 0;
838                 if (head_ref->is_data && head_ref->ref_mod < 0) {
839                         delayed_refs->pending_csums += head_ref->num_bytes;
840                         trans->delayed_ref_updates +=
841                                 btrfs_csum_bytes_to_leaves(trans->fs_info,
842                                                            head_ref->num_bytes);
843                 }
844                 delayed_refs->num_heads++;
845                 delayed_refs->num_heads_ready++;
846                 atomic_inc(&delayed_refs->num_entries);
847                 trans->delayed_ref_updates++;
848         }
849         if (qrecord_inserted_ret)
850                 *qrecord_inserted_ret = qrecord_inserted;
851         if (new_ref_mod)
852                 *new_ref_mod = head_ref->total_ref_mod;
853
854         return head_ref;
855 }
856
857 /*
858  * init_delayed_ref_common - Initialize the structure which represents a
859  *                           modification to a an extent.
860  *
861  * @fs_info:    Internal to the mounted filesystem mount structure.
862  *
863  * @ref:        The structure which is going to be initialized.
864  *
865  * @bytenr:     The logical address of the extent for which a modification is
866  *              going to be recorded.
867  *
868  * @num_bytes:  Size of the extent whose modification is being recorded.
869  *
870  * @ref_root:   The id of the root where this modification has originated, this
871  *              can be either one of the well-known metadata trees or the
872  *              subvolume id which references this extent.
873  *
874  * @action:     Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
875  *              BTRFS_ADD_DELAYED_EXTENT
876  *
877  * @ref_type:   Holds the type of the extent which is being recorded, can be
878  *              one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
879  *              when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
880  *              BTRFS_EXTENT_DATA_REF_KEY when recording data extent
881  */
882 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
883                                     struct btrfs_delayed_ref_node *ref,
884                                     u64 bytenr, u64 num_bytes, u64 ref_root,
885                                     int action, u8 ref_type)
886 {
887         u64 seq = 0;
888
889         if (action == BTRFS_ADD_DELAYED_EXTENT)
890                 action = BTRFS_ADD_DELAYED_REF;
891
892         if (is_fstree(ref_root))
893                 seq = atomic64_read(&fs_info->tree_mod_seq);
894
895         refcount_set(&ref->refs, 1);
896         ref->bytenr = bytenr;
897         ref->num_bytes = num_bytes;
898         ref->ref_mod = 1;
899         ref->action = action;
900         ref->is_head = 0;
901         ref->in_tree = 1;
902         ref->seq = seq;
903         ref->type = ref_type;
904         RB_CLEAR_NODE(&ref->ref_node);
905         INIT_LIST_HEAD(&ref->add_list);
906 }
907
908 /*
909  * add a delayed tree ref.  This does all of the accounting required
910  * to make sure the delayed ref is eventually processed before this
911  * transaction commits.
912  */
913 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
914                                struct btrfs_ref *generic_ref,
915                                struct btrfs_delayed_extent_op *extent_op,
916                                int *old_ref_mod, int *new_ref_mod)
917 {
918         struct btrfs_fs_info *fs_info = trans->fs_info;
919         struct btrfs_delayed_tree_ref *ref;
920         struct btrfs_delayed_ref_head *head_ref;
921         struct btrfs_delayed_ref_root *delayed_refs;
922         struct btrfs_qgroup_extent_record *record = NULL;
923         int qrecord_inserted;
924         bool is_system;
925         int action = generic_ref->action;
926         int level = generic_ref->tree_ref.level;
927         int ret;
928         u64 bytenr = generic_ref->bytenr;
929         u64 num_bytes = generic_ref->len;
930         u64 parent = generic_ref->parent;
931         u8 ref_type;
932
933         is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
934
935         ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
936         BUG_ON(extent_op && extent_op->is_data);
937         ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
938         if (!ref)
939                 return -ENOMEM;
940
941         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
942         if (!head_ref) {
943                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
944                 return -ENOMEM;
945         }
946
947         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
948             is_fstree(generic_ref->real_root) &&
949             is_fstree(generic_ref->tree_ref.root) &&
950             !generic_ref->skip_qgroup) {
951                 record = kzalloc(sizeof(*record), GFP_NOFS);
952                 if (!record) {
953                         kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
954                         kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
955                         return -ENOMEM;
956                 }
957         }
958
959         if (parent)
960                 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
961         else
962                 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
963
964         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
965                                 generic_ref->tree_ref.root, action, ref_type);
966         ref->root = generic_ref->tree_ref.root;
967         ref->parent = parent;
968         ref->level = level;
969
970         init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
971                               generic_ref->tree_ref.root, 0, action, false,
972                               is_system);
973         head_ref->extent_op = extent_op;
974
975         delayed_refs = &trans->transaction->delayed_refs;
976         spin_lock(&delayed_refs->lock);
977
978         /*
979          * insert both the head node and the new ref without dropping
980          * the spin lock
981          */
982         head_ref = add_delayed_ref_head(trans, head_ref, record,
983                                         action, &qrecord_inserted,
984                                         old_ref_mod, new_ref_mod);
985
986         ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
987         spin_unlock(&delayed_refs->lock);
988
989         /*
990          * Need to update the delayed_refs_rsv with any changes we may have
991          * made.
992          */
993         btrfs_update_delayed_refs_rsv(trans);
994
995         trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
996                                    action == BTRFS_ADD_DELAYED_EXTENT ?
997                                    BTRFS_ADD_DELAYED_REF : action);
998         if (ret > 0)
999                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1000
1001         if (qrecord_inserted)
1002                 btrfs_qgroup_trace_extent_post(fs_info, record);
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1009  */
1010 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1011                                struct btrfs_ref *generic_ref,
1012                                u64 reserved, int *old_ref_mod,
1013                                int *new_ref_mod)
1014 {
1015         struct btrfs_fs_info *fs_info = trans->fs_info;
1016         struct btrfs_delayed_data_ref *ref;
1017         struct btrfs_delayed_ref_head *head_ref;
1018         struct btrfs_delayed_ref_root *delayed_refs;
1019         struct btrfs_qgroup_extent_record *record = NULL;
1020         int qrecord_inserted;
1021         int action = generic_ref->action;
1022         int ret;
1023         u64 bytenr = generic_ref->bytenr;
1024         u64 num_bytes = generic_ref->len;
1025         u64 parent = generic_ref->parent;
1026         u64 ref_root = generic_ref->data_ref.ref_root;
1027         u64 owner = generic_ref->data_ref.ino;
1028         u64 offset = generic_ref->data_ref.offset;
1029         u8 ref_type;
1030
1031         ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1032         ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1033         if (!ref)
1034                 return -ENOMEM;
1035
1036         if (parent)
1037                 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1038         else
1039                 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1040         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1041                                 ref_root, action, ref_type);
1042         ref->root = ref_root;
1043         ref->parent = parent;
1044         ref->objectid = owner;
1045         ref->offset = offset;
1046
1047
1048         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1049         if (!head_ref) {
1050                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1051                 return -ENOMEM;
1052         }
1053
1054         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1055             is_fstree(ref_root) &&
1056             is_fstree(generic_ref->real_root) &&
1057             !generic_ref->skip_qgroup) {
1058                 record = kzalloc(sizeof(*record), GFP_NOFS);
1059                 if (!record) {
1060                         kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1061                         kmem_cache_free(btrfs_delayed_ref_head_cachep,
1062                                         head_ref);
1063                         return -ENOMEM;
1064                 }
1065         }
1066
1067         init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1068                               reserved, action, true, false);
1069         head_ref->extent_op = NULL;
1070
1071         delayed_refs = &trans->transaction->delayed_refs;
1072         spin_lock(&delayed_refs->lock);
1073
1074         /*
1075          * insert both the head node and the new ref without dropping
1076          * the spin lock
1077          */
1078         head_ref = add_delayed_ref_head(trans, head_ref, record,
1079                                         action, &qrecord_inserted,
1080                                         old_ref_mod, new_ref_mod);
1081
1082         ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1083         spin_unlock(&delayed_refs->lock);
1084
1085         /*
1086          * Need to update the delayed_refs_rsv with any changes we may have
1087          * made.
1088          */
1089         btrfs_update_delayed_refs_rsv(trans);
1090
1091         trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1092                                    action == BTRFS_ADD_DELAYED_EXTENT ?
1093                                    BTRFS_ADD_DELAYED_REF : action);
1094         if (ret > 0)
1095                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1096
1097
1098         if (qrecord_inserted)
1099                 return btrfs_qgroup_trace_extent_post(fs_info, record);
1100         return 0;
1101 }
1102
1103 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1104                                 u64 bytenr, u64 num_bytes,
1105                                 struct btrfs_delayed_extent_op *extent_op)
1106 {
1107         struct btrfs_delayed_ref_head *head_ref;
1108         struct btrfs_delayed_ref_root *delayed_refs;
1109
1110         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1111         if (!head_ref)
1112                 return -ENOMEM;
1113
1114         init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1115                               BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1116                               false);
1117         head_ref->extent_op = extent_op;
1118
1119         delayed_refs = &trans->transaction->delayed_refs;
1120         spin_lock(&delayed_refs->lock);
1121
1122         add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1123                              NULL, NULL, NULL);
1124
1125         spin_unlock(&delayed_refs->lock);
1126
1127         /*
1128          * Need to update the delayed_refs_rsv with any changes we may have
1129          * made.
1130          */
1131         btrfs_update_delayed_refs_rsv(trans);
1132         return 0;
1133 }
1134
1135 /*
1136  * This does a simple search for the head node for a given extent.  Returns the
1137  * head node if found, or NULL if not.
1138  */
1139 struct btrfs_delayed_ref_head *
1140 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1141 {
1142         lockdep_assert_held(&delayed_refs->lock);
1143
1144         return find_ref_head(delayed_refs, bytenr, false);
1145 }
1146
1147 void __cold btrfs_delayed_ref_exit(void)
1148 {
1149         kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1150         kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1151         kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1152         kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1153 }
1154
1155 int __init btrfs_delayed_ref_init(void)
1156 {
1157         btrfs_delayed_ref_head_cachep = kmem_cache_create(
1158                                 "btrfs_delayed_ref_head",
1159                                 sizeof(struct btrfs_delayed_ref_head), 0,
1160                                 SLAB_MEM_SPREAD, NULL);
1161         if (!btrfs_delayed_ref_head_cachep)
1162                 goto fail;
1163
1164         btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1165                                 "btrfs_delayed_tree_ref",
1166                                 sizeof(struct btrfs_delayed_tree_ref), 0,
1167                                 SLAB_MEM_SPREAD, NULL);
1168         if (!btrfs_delayed_tree_ref_cachep)
1169                 goto fail;
1170
1171         btrfs_delayed_data_ref_cachep = kmem_cache_create(
1172                                 "btrfs_delayed_data_ref",
1173                                 sizeof(struct btrfs_delayed_data_ref), 0,
1174                                 SLAB_MEM_SPREAD, NULL);
1175         if (!btrfs_delayed_data_ref_cachep)
1176                 goto fail;
1177
1178         btrfs_delayed_extent_op_cachep = kmem_cache_create(
1179                                 "btrfs_delayed_extent_op",
1180                                 sizeof(struct btrfs_delayed_extent_op), 0,
1181                                 SLAB_MEM_SPREAD, NULL);
1182         if (!btrfs_delayed_extent_op_cachep)
1183                 goto fail;
1184
1185         return 0;
1186 fail:
1187         btrfs_delayed_ref_exit();
1188         return -ENOMEM;
1189 }