1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
13 #include "delayed-inode.h"
15 #include "transaction.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
27 static struct kmem_cache *delayed_node_cache;
29 int __init btrfs_delayed_inode_init(void)
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
36 if (!delayed_node_cache)
41 void __cold btrfs_delayed_inode_exit(void)
43 kmem_cache_destroy(delayed_node_cache);
46 static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
60 static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
67 node = READ_ONCE(btrfs_inode->delayed_node);
69 refcount_inc(&node->refs);
73 spin_lock(&root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
107 spin_unlock(&root->inode_lock);
110 spin_unlock(&root->inode_lock);
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
125 node = btrfs_get_delayed_node(btrfs_inode);
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
137 ret = radix_tree_preload(GFP_NOFS);
139 kmem_cache_free(delayed_node_cache, node);
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
159 * Call it when holding delayed_node->mutex
161 * If mod = 1, add this node into the prepared list.
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
172 list_add_tail(&node->p_list, &root->prepare_list);
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 refcount_inc(&node->refs); /* inserted into list */
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
180 spin_unlock(&root->lock);
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
190 refcount_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 spin_unlock(&root->lock);
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
203 struct btrfs_delayed_node *node = NULL;
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(&node->refs);
213 spin_unlock(&delayed_root->lock);
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
221 struct btrfs_delayed_root *delayed_root;
223 struct btrfs_delayed_node *next = NULL;
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 p = node->n_list.next;
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(&next->refs);
240 spin_unlock(&delayed_root->lock);
245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
249 struct btrfs_delayed_root *delayed_root;
254 delayed_root = delayed_node->root->fs_info->delayed_root;
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
263 if (refcount_dec_and_test(&delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
266 spin_lock(&root->inode_lock);
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 __btrfs_release_delayed_node(node, 0);
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
288 struct btrfs_delayed_node *node = NULL;
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
294 p = delayed_root->prepare_list.next;
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(&node->refs);
299 spin_unlock(&delayed_root->lock);
304 static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
307 __btrfs_release_delayed_node(node, 1);
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
314 struct btrfs_delayed_item *item;
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 item->data_len = data_len;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
325 refcount_set(&item->refs, 1);
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index: the dir index value to lookup (offset of a dir index key)
335 * Note: if we don't find the right item, we will return the prev item and
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
342 struct rb_node *node = root->rb_node;
343 struct btrfs_delayed_item *delayed_item = NULL;
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 if (delayed_item->index < index)
349 node = node->rb_right;
350 else if (delayed_item->index > index)
351 node = node->rb_left;
359 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 struct btrfs_delayed_item *ins)
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
364 struct rb_root_cached *root;
365 struct btrfs_delayed_item *item;
366 bool leftmost = true;
368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 root = &delayed_node->ins_root;
371 root = &delayed_node->del_root;
373 p = &root->rb_root.rb_node;
374 node = &ins->rb_node;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
381 if (item->index < ins->index) {
384 } else if (item->index > ins->index) {
391 rb_link_node(node, parent_node, p);
392 rb_insert_color_cached(node, root, leftmost);
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
403 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
405 int seq = atomic_inc_return(&delayed_root->items_seq);
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
415 struct rb_root_cached *root;
416 struct btrfs_delayed_root *delayed_root;
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
424 BUG_ON(!delayed_root);
426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 root = &delayed_item->delayed_node->ins_root;
429 root = &delayed_item->delayed_node->del_root;
431 rb_erase_cached(&delayed_item->rb_node, root);
432 RB_CLEAR_NODE(&delayed_item->rb_node);
433 delayed_item->delayed_node->count--;
435 finish_one_item(delayed_root);
438 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
441 __btrfs_remove_delayed_item(item);
442 if (refcount_dec_and_test(&item->refs))
447 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 struct btrfs_delayed_node *delayed_node)
451 struct btrfs_delayed_item *item = NULL;
453 p = rb_first_cached(&delayed_node->ins_root);
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
460 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
464 struct btrfs_delayed_item *item = NULL;
466 p = rb_first_cached(&delayed_node->del_root);
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
473 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 struct btrfs_delayed_item *item)
477 struct btrfs_delayed_item *next = NULL;
479 p = rb_next(&item->rb_node);
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
486 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 struct btrfs_delayed_item *item)
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
491 struct btrfs_fs_info *fs_info = trans->fs_info;
495 if (!trans->bytes_reserved)
498 src_rsv = trans->block_rsv;
499 dst_rsv = &fs_info->delayed_block_rsv;
501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
510 trace_btrfs_space_reservation(fs_info, "delayed_item",
511 item->delayed_node->inode_id,
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 item->bytes_reserved = num_bytes;
525 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 struct btrfs_delayed_item *item)
528 struct btrfs_block_rsv *rsv;
529 struct btrfs_fs_info *fs_info = root->fs_info;
531 if (!item->bytes_reserved)
534 rsv = &fs_info->delayed_block_rsv;
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
539 trace_btrfs_space_reservation(fs_info, "delayed_item",
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
545 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
560 static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
565 struct btrfs_fs_info *fs_info = root->fs_info;
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
571 src_rsv = trans->block_rsv;
572 dst_rsv = &fs_info->delayed_block_rsv;
574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 * we always reserve enough to update the inode item.
585 if (!src_rsv || (!trans->bytes_reserved &&
586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 BTRFS_RESERVE_NO_FLUSH);
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 node->inode_id, num_bytes, 1);
604 node->bytes_reserved = num_bytes;
610 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 struct btrfs_delayed_node *node,
614 struct btrfs_block_rsv *rsv;
616 if (!node->bytes_reserved)
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 node->inode_id, node->bytes_reserved, 0);
622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
629 node->bytes_reserved = 0;
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
642 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
649 LIST_HEAD(item_list);
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 struct btrfs_item_batch batch;
654 struct btrfs_key first_key;
655 const u32 first_data_size = first_item->data_len;
657 char *ins_data = NULL;
659 bool continuous_keys_only = false;
661 lockdep_assert_held(&node->mutex);
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
681 ASSERT(first_item->bytes_reserved == 0);
683 list_add_tail(&first_item->tree_list, &item_list);
684 batch.total_data_size = first_data_size;
686 total_size = first_data_size + sizeof(struct btrfs_item);
692 next = __btrfs_next_delayed_item(curr);
697 * We cannot allow gaps in the key space if we're doing log
700 if (continuous_keys_only && (next->index != curr->index + 1))
703 ASSERT(next->bytes_reserved == 0);
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
709 list_add_tail(&next->tree_list, &item_list);
711 total_size += next_size;
712 batch.total_data_size += next->data_len;
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
721 batch.data_sizes = &first_data_size;
723 struct btrfs_key *ins_keys;
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
733 ins_sizes = (u32 *)ins_data;
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
741 ins_sizes[i] = curr->data_len;
746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
750 list_for_each_entry(curr, &item_list, tree_list) {
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
764 btrfs_release_path(path);
766 ASSERT(node->index_item_leaves > 0);
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
778 if (next && !continuous_keys_only) {
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
808 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
816 struct btrfs_delayed_item *curr;
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
821 mutex_unlock(&node->mutex);
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
831 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
836 const u64 ino = item->delayed_node->inode_id;
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_delayed_item *curr, *next;
839 struct extent_buffer *leaf = path->nodes[0];
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
843 u64 total_reserved_size = item->bytes_reserved;
845 ASSERT(leaf != NULL);
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
859 list_add_tail(&curr->tree_list, &batch_list);
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
866 while (slot < last_slot) {
867 struct btrfs_key key;
869 next = __btrfs_next_delayed_item(curr);
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
881 list_add_tail(&curr->tree_list, &batch_list);
882 total_reserved_size += curr->bytes_reserved;
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
909 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
914 struct btrfs_key key;
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
921 struct btrfs_delayed_item *item;
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
926 mutex_unlock(&node->mutex);
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
962 mutex_unlock(&node->mutex);
968 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
970 struct btrfs_delayed_root *delayed_root;
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 BUG_ON(!delayed_node->root);
975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 delayed_node->count--;
978 delayed_root = delayed_node->root->fs_info->delayed_root;
979 finish_one_item(delayed_root);
983 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
997 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
1009 key.objectid = node->inode_id;
1010 key.type = BTRFS_INODE_ITEM_KEY;
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1051 ret = btrfs_del_item(trans, root, path);
1053 btrfs_release_delayed_iref(node);
1054 btrfs_release_path(path);
1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 btrfs_release_delayed_inode(node);
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1070 btrfs_release_path(path);
1072 key.type = BTRFS_INODE_EXTREF_KEY;
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1081 leaf = path->nodes[0];
1086 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1093 mutex_lock(&node->mutex);
1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 mutex_unlock(&node->mutex);
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1105 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1129 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
1135 struct btrfs_block_rsv *block_rsv;
1137 bool count = (nr > 0);
1139 if (TRANS_ABORTED(trans))
1142 path = btrfs_alloc_path();
1146 block_rsv = trans->block_rsv;
1147 trans->block_rsv = &fs_info->delayed_block_rsv;
1149 delayed_root = fs_info->delayed_root;
1151 curr_node = btrfs_first_delayed_node(delayed_root);
1152 while (curr_node && (!count || nr--)) {
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1156 btrfs_release_delayed_node(curr_node);
1158 btrfs_abort_transaction(trans, ret);
1162 prev_node = curr_node;
1163 curr_node = btrfs_next_delayed_node(curr_node);
1164 btrfs_release_delayed_node(prev_node);
1168 btrfs_release_delayed_node(curr_node);
1169 btrfs_free_path(path);
1170 trans->block_rsv = block_rsv;
1175 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1177 return __btrfs_run_delayed_items(trans, -1);
1180 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1182 return __btrfs_run_delayed_items(trans, nr);
1185 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_inode *inode)
1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 struct btrfs_path *path;
1190 struct btrfs_block_rsv *block_rsv;
1196 mutex_lock(&delayed_node->mutex);
1197 if (!delayed_node->count) {
1198 mutex_unlock(&delayed_node->mutex);
1199 btrfs_release_delayed_node(delayed_node);
1202 mutex_unlock(&delayed_node->mutex);
1204 path = btrfs_alloc_path();
1206 btrfs_release_delayed_node(delayed_node);
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1215 btrfs_release_delayed_node(delayed_node);
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1222 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 struct btrfs_trans_handle *trans;
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1234 mutex_lock(&delayed_node->mutex);
1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1240 mutex_unlock(&delayed_node->mutex);
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1248 path = btrfs_alloc_path();
1254 block_rsv = trans->block_rsv;
1255 trans->block_rsv = &fs_info->delayed_block_rsv;
1257 mutex_lock(&delayed_node->mutex);
1258 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1259 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 path, delayed_node);
1263 mutex_unlock(&delayed_node->mutex);
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1268 btrfs_end_transaction(trans);
1269 btrfs_btree_balance_dirty(fs_info);
1271 btrfs_release_delayed_node(delayed_node);
1276 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1278 struct btrfs_delayed_node *delayed_node;
1280 delayed_node = READ_ONCE(inode->delayed_node);
1284 inode->delayed_node = NULL;
1285 btrfs_release_delayed_node(delayed_node);
1288 struct btrfs_async_delayed_work {
1289 struct btrfs_delayed_root *delayed_root;
1291 struct btrfs_work work;
1294 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1296 struct btrfs_async_delayed_work *async_work;
1297 struct btrfs_delayed_root *delayed_root;
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_path *path;
1300 struct btrfs_delayed_node *delayed_node = NULL;
1301 struct btrfs_root *root;
1302 struct btrfs_block_rsv *block_rsv;
1305 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 delayed_root = async_work->delayed_root;
1308 path = btrfs_alloc_path();
1313 if (atomic_read(&delayed_root->items) <
1314 BTRFS_DELAYED_BACKGROUND / 2)
1317 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1321 root = delayed_node->root;
1323 trans = btrfs_join_transaction(root);
1324 if (IS_ERR(trans)) {
1325 btrfs_release_path(path);
1326 btrfs_release_prepared_delayed_node(delayed_node);
1331 block_rsv = trans->block_rsv;
1332 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1334 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1336 trans->block_rsv = block_rsv;
1337 btrfs_end_transaction(trans);
1338 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1340 btrfs_release_path(path);
1341 btrfs_release_prepared_delayed_node(delayed_node);
1344 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 || total_done < async_work->nr);
1347 btrfs_free_path(path);
1349 wake_up(&delayed_root->wait);
1354 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1355 struct btrfs_fs_info *fs_info, int nr)
1357 struct btrfs_async_delayed_work *async_work;
1359 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1363 async_work->delayed_root = delayed_root;
1364 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1366 async_work->nr = nr;
1368 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1372 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1374 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1377 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1379 int val = atomic_read(&delayed_root->items_seq);
1381 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1384 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1390 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1392 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1394 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1398 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1402 seq = atomic_read(&delayed_root->items_seq);
1404 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1408 wait_event_interruptible(delayed_root->wait,
1409 could_end_wait(delayed_root, seq));
1413 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1416 /* Will return 0 or -ENOMEM */
1417 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1418 const char *name, int name_len,
1419 struct btrfs_inode *dir,
1420 struct btrfs_disk_key *disk_key, u8 flags,
1423 struct btrfs_fs_info *fs_info = trans->fs_info;
1424 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
1428 bool reserve_leaf_space;
1432 delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 if (IS_ERR(delayed_node))
1434 return PTR_ERR(delayed_node);
1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1438 BTRFS_DELAYED_INSERTION_ITEM);
1439 if (!delayed_item) {
1444 delayed_item->index = index;
1446 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 dir_item->location = *disk_key;
1448 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 btrfs_set_stack_dir_data_len(dir_item, 0);
1450 btrfs_set_stack_dir_name_len(dir_item, name_len);
1451 btrfs_set_stack_dir_flags(dir_item, flags);
1452 memcpy((char *)(dir_item + 1), name, name_len);
1454 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1456 mutex_lock(&delayed_node->mutex);
1458 if (delayed_node->index_item_leaves == 0 ||
1459 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 delayed_node->curr_index_batch_size = data_len;
1461 reserve_leaf_space = true;
1463 delayed_node->curr_index_batch_size += data_len;
1464 reserve_leaf_space = false;
1467 if (reserve_leaf_space) {
1468 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1470 * Space was reserved for a dir index item insertion when we
1471 * started the transaction, so getting a failure here should be
1475 mutex_unlock(&delayed_node->mutex);
1476 btrfs_release_delayed_item(delayed_item);
1480 delayed_node->index_item_leaves++;
1481 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1485 * Adding the new dir index item does not require touching another
1486 * leaf, so we can release 1 unit of metadata that was previously
1487 * reserved when starting the transaction. This applies only to
1488 * the case where we had a transaction start and excludes the
1489 * transaction join case (when replaying log trees).
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid, bytes, 0);
1493 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 ASSERT(trans->bytes_reserved >= bytes);
1495 trans->bytes_reserved -= bytes;
1498 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1499 if (unlikely(ret)) {
1500 btrfs_err(trans->fs_info,
1501 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1502 name_len, name, delayed_node->root->root_key.objectid,
1503 delayed_node->inode_id, ret);
1506 mutex_unlock(&delayed_node->mutex);
1509 btrfs_release_delayed_node(delayed_node);
1513 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1514 struct btrfs_delayed_node *node,
1517 struct btrfs_delayed_item *item;
1519 mutex_lock(&node->mutex);
1520 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1522 mutex_unlock(&node->mutex);
1527 * For delayed items to insert, we track reserved metadata bytes based
1528 * on the number of leaves that we will use.
1529 * See btrfs_insert_delayed_dir_index() and
1530 * btrfs_delayed_item_reserve_metadata()).
1532 ASSERT(item->bytes_reserved == 0);
1533 ASSERT(node->index_item_leaves > 0);
1536 * If there's only one leaf reserved, we can decrement this item from the
1537 * current batch, otherwise we can not because we don't know which leaf
1538 * it belongs to. With the current limit on delayed items, we rarely
1539 * accumulate enough dir index items to fill more than one leaf (even
1540 * when using a leaf size of 4K).
1542 if (node->index_item_leaves == 1) {
1543 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1545 ASSERT(node->curr_index_batch_size >= data_len);
1546 node->curr_index_batch_size -= data_len;
1549 btrfs_release_delayed_item(item);
1551 /* If we now have no more dir index items, we can release all leaves. */
1552 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 node->index_item_leaves = 0;
1557 mutex_unlock(&node->mutex);
1561 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1562 struct btrfs_inode *dir, u64 index)
1564 struct btrfs_delayed_node *node;
1565 struct btrfs_delayed_item *item;
1568 node = btrfs_get_or_create_delayed_node(dir);
1570 return PTR_ERR(node);
1572 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1576 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1582 item->index = index;
1584 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1586 * we have reserved enough space when we start a new transaction,
1587 * so reserving metadata failure is impossible.
1590 btrfs_err(trans->fs_info,
1591 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 btrfs_release_delayed_item(item);
1596 mutex_lock(&node->mutex);
1597 ret = __btrfs_add_delayed_item(node, item);
1598 if (unlikely(ret)) {
1599 btrfs_err(trans->fs_info,
1600 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1601 index, node->root->root_key.objectid,
1602 node->inode_id, ret);
1603 btrfs_delayed_item_release_metadata(dir->root, item);
1604 btrfs_release_delayed_item(item);
1606 mutex_unlock(&node->mutex);
1608 btrfs_release_delayed_node(node);
1612 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1614 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1620 * Since we have held i_mutex of this directory, it is impossible that
1621 * a new directory index is added into the delayed node and index_cnt
1622 * is updated now. So we needn't lock the delayed node.
1624 if (!delayed_node->index_cnt) {
1625 btrfs_release_delayed_node(delayed_node);
1629 inode->index_cnt = delayed_node->index_cnt;
1630 btrfs_release_delayed_node(delayed_node);
1634 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1638 struct btrfs_delayed_node *delayed_node;
1639 struct btrfs_delayed_item *item;
1641 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1646 * We can only do one readdir with delayed items at a time because of
1647 * item->readdir_list.
1649 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1650 btrfs_inode_lock(BTRFS_I(inode), 0);
1652 mutex_lock(&delayed_node->mutex);
1653 item = __btrfs_first_delayed_insertion_item(delayed_node);
1655 refcount_inc(&item->refs);
1656 list_add_tail(&item->readdir_list, ins_list);
1657 item = __btrfs_next_delayed_item(item);
1660 item = __btrfs_first_delayed_deletion_item(delayed_node);
1662 refcount_inc(&item->refs);
1663 list_add_tail(&item->readdir_list, del_list);
1664 item = __btrfs_next_delayed_item(item);
1666 mutex_unlock(&delayed_node->mutex);
1668 * This delayed node is still cached in the btrfs inode, so refs
1669 * must be > 1 now, and we needn't check it is going to be freed
1672 * Besides that, this function is used to read dir, we do not
1673 * insert/delete delayed items in this period. So we also needn't
1674 * requeue or dequeue this delayed node.
1676 refcount_dec(&delayed_node->refs);
1681 void btrfs_readdir_put_delayed_items(struct inode *inode,
1682 struct list_head *ins_list,
1683 struct list_head *del_list)
1685 struct btrfs_delayed_item *curr, *next;
1687 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 list_del(&curr->readdir_list);
1689 if (refcount_dec_and_test(&curr->refs))
1693 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1694 list_del(&curr->readdir_list);
1695 if (refcount_dec_and_test(&curr->refs))
1700 * The VFS is going to do up_read(), so we need to downgrade back to a
1703 downgrade_write(&inode->i_rwsem);
1706 int btrfs_should_delete_dir_index(struct list_head *del_list,
1709 struct btrfs_delayed_item *curr;
1712 list_for_each_entry(curr, del_list, readdir_list) {
1713 if (curr->index > index)
1715 if (curr->index == index) {
1724 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1727 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1728 struct list_head *ins_list)
1730 struct btrfs_dir_item *di;
1731 struct btrfs_delayed_item *curr, *next;
1732 struct btrfs_key location;
1736 unsigned char d_type;
1738 if (list_empty(ins_list))
1742 * Changing the data of the delayed item is impossible. So
1743 * we needn't lock them. And we have held i_mutex of the
1744 * directory, nobody can delete any directory indexes now.
1746 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1747 list_del(&curr->readdir_list);
1749 if (curr->index < ctx->pos) {
1750 if (refcount_dec_and_test(&curr->refs))
1755 ctx->pos = curr->index;
1757 di = (struct btrfs_dir_item *)curr->data;
1758 name = (char *)(di + 1);
1759 name_len = btrfs_stack_dir_name_len(di);
1761 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1762 btrfs_disk_key_to_cpu(&location, &di->location);
1764 over = !dir_emit(ctx, name, name_len,
1765 location.objectid, d_type);
1767 if (refcount_dec_and_test(&curr->refs))
1777 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1778 struct btrfs_inode_item *inode_item,
1779 struct inode *inode)
1783 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1784 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1785 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1786 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1787 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1788 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1789 btrfs_set_stack_inode_generation(inode_item,
1790 BTRFS_I(inode)->generation);
1791 btrfs_set_stack_inode_sequence(inode_item,
1792 inode_peek_iversion(inode));
1793 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1794 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1795 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1796 BTRFS_I(inode)->ro_flags);
1797 btrfs_set_stack_inode_flags(inode_item, flags);
1798 btrfs_set_stack_inode_block_group(inode_item, 0);
1800 btrfs_set_stack_timespec_sec(&inode_item->atime,
1801 inode->i_atime.tv_sec);
1802 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1803 inode->i_atime.tv_nsec);
1805 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1806 inode->i_mtime.tv_sec);
1807 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1808 inode->i_mtime.tv_nsec);
1810 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1811 inode->i_ctime.tv_sec);
1812 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1813 inode->i_ctime.tv_nsec);
1815 btrfs_set_stack_timespec_sec(&inode_item->otime,
1816 BTRFS_I(inode)->i_otime.tv_sec);
1817 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1818 BTRFS_I(inode)->i_otime.tv_nsec);
1821 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1824 struct btrfs_delayed_node *delayed_node;
1825 struct btrfs_inode_item *inode_item;
1827 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1831 mutex_lock(&delayed_node->mutex);
1832 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1833 mutex_unlock(&delayed_node->mutex);
1834 btrfs_release_delayed_node(delayed_node);
1838 inode_item = &delayed_node->inode_item;
1840 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1841 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1842 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1843 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1844 round_up(i_size_read(inode), fs_info->sectorsize));
1845 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1846 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1847 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1848 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1849 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1851 inode_set_iversion_queried(inode,
1852 btrfs_stack_inode_sequence(inode_item));
1854 *rdev = btrfs_stack_inode_rdev(inode_item);
1855 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1856 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1858 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1859 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1861 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1862 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1864 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1865 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1867 BTRFS_I(inode)->i_otime.tv_sec =
1868 btrfs_stack_timespec_sec(&inode_item->otime);
1869 BTRFS_I(inode)->i_otime.tv_nsec =
1870 btrfs_stack_timespec_nsec(&inode_item->otime);
1872 inode->i_generation = BTRFS_I(inode)->generation;
1873 BTRFS_I(inode)->index_cnt = (u64)-1;
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1880 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_inode *inode)
1884 struct btrfs_delayed_node *delayed_node;
1887 delayed_node = btrfs_get_or_create_delayed_node(inode);
1888 if (IS_ERR(delayed_node))
1889 return PTR_ERR(delayed_node);
1891 mutex_lock(&delayed_node->mutex);
1892 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1893 fill_stack_inode_item(trans, &delayed_node->inode_item,
1898 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1902 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1903 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1904 delayed_node->count++;
1905 atomic_inc(&root->fs_info->delayed_root->items);
1907 mutex_unlock(&delayed_node->mutex);
1908 btrfs_release_delayed_node(delayed_node);
1912 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1914 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1915 struct btrfs_delayed_node *delayed_node;
1918 * we don't do delayed inode updates during log recovery because it
1919 * leads to enospc problems. This means we also can't do
1920 * delayed inode refs
1922 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1930 * We don't reserve space for inode ref deletion is because:
1931 * - We ONLY do async inode ref deletion for the inode who has only
1932 * one link(i_nlink == 1), it means there is only one inode ref.
1933 * And in most case, the inode ref and the inode item are in the
1934 * same leaf, and we will deal with them at the same time.
1935 * Since we are sure we will reserve the space for the inode item,
1936 * it is unnecessary to reserve space for inode ref deletion.
1937 * - If the inode ref and the inode item are not in the same leaf,
1938 * We also needn't worry about enospc problem, because we reserve
1939 * much more space for the inode update than it needs.
1940 * - At the worst, we can steal some space from the global reservation.
1943 mutex_lock(&delayed_node->mutex);
1944 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1947 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1948 delayed_node->count++;
1949 atomic_inc(&fs_info->delayed_root->items);
1951 mutex_unlock(&delayed_node->mutex);
1952 btrfs_release_delayed_node(delayed_node);
1956 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1958 struct btrfs_root *root = delayed_node->root;
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960 struct btrfs_delayed_item *curr_item, *prev_item;
1962 mutex_lock(&delayed_node->mutex);
1963 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1965 prev_item = curr_item;
1966 curr_item = __btrfs_next_delayed_item(prev_item);
1967 btrfs_release_delayed_item(prev_item);
1970 if (delayed_node->index_item_leaves > 0) {
1971 btrfs_delayed_item_release_leaves(delayed_node,
1972 delayed_node->index_item_leaves);
1973 delayed_node->index_item_leaves = 0;
1976 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1978 btrfs_delayed_item_release_metadata(root, curr_item);
1979 prev_item = curr_item;
1980 curr_item = __btrfs_next_delayed_item(prev_item);
1981 btrfs_release_delayed_item(prev_item);
1984 btrfs_release_delayed_iref(delayed_node);
1986 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1987 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1988 btrfs_release_delayed_inode(delayed_node);
1990 mutex_unlock(&delayed_node->mutex);
1993 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1995 struct btrfs_delayed_node *delayed_node;
1997 delayed_node = btrfs_get_delayed_node(inode);
2001 __btrfs_kill_delayed_node(delayed_node);
2002 btrfs_release_delayed_node(delayed_node);
2005 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2008 struct btrfs_delayed_node *delayed_nodes[8];
2012 spin_lock(&root->inode_lock);
2013 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2014 (void **)delayed_nodes, inode_id,
2015 ARRAY_SIZE(delayed_nodes));
2017 spin_unlock(&root->inode_lock);
2021 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2022 for (i = 0; i < n; i++) {
2024 * Don't increase refs in case the node is dead and
2025 * about to be removed from the tree in the loop below
2027 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2028 delayed_nodes[i] = NULL;
2030 spin_unlock(&root->inode_lock);
2032 for (i = 0; i < n; i++) {
2033 if (!delayed_nodes[i])
2035 __btrfs_kill_delayed_node(delayed_nodes[i]);
2036 btrfs_release_delayed_node(delayed_nodes[i]);
2041 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2043 struct btrfs_delayed_node *curr_node, *prev_node;
2045 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2047 __btrfs_kill_delayed_node(curr_node);
2049 prev_node = curr_node;
2050 curr_node = btrfs_next_delayed_node(curr_node);
2051 btrfs_release_delayed_node(prev_node);
2055 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2056 struct list_head *ins_list,
2057 struct list_head *del_list)
2059 struct btrfs_delayed_node *node;
2060 struct btrfs_delayed_item *item;
2062 node = btrfs_get_delayed_node(inode);
2066 mutex_lock(&node->mutex);
2067 item = __btrfs_first_delayed_insertion_item(node);
2070 * It's possible that the item is already in a log list. This
2071 * can happen in case two tasks are trying to log the same
2072 * directory. For example if we have tasks A and task B:
2074 * Task A collected the delayed items into a log list while
2075 * under the inode's log_mutex (at btrfs_log_inode()), but it
2076 * only releases the items after logging the inodes they point
2077 * to (if they are new inodes), which happens after unlocking
2080 * Task B enters btrfs_log_inode() and acquires the log_mutex
2081 * of the same directory inode, before task B releases the
2082 * delayed items. This can happen for example when logging some
2083 * inode we need to trigger logging of its parent directory, so
2084 * logging two files that have the same parent directory can
2087 * If this happens, just ignore delayed items already in a log
2088 * list. All the tasks logging the directory are under a log
2089 * transaction and whichever finishes first can not sync the log
2090 * before the other completes and leaves the log transaction.
2092 if (!item->logged && list_empty(&item->log_list)) {
2093 refcount_inc(&item->refs);
2094 list_add_tail(&item->log_list, ins_list);
2096 item = __btrfs_next_delayed_item(item);
2099 item = __btrfs_first_delayed_deletion_item(node);
2101 /* It may be non-empty, for the same reason mentioned above. */
2102 if (!item->logged && list_empty(&item->log_list)) {
2103 refcount_inc(&item->refs);
2104 list_add_tail(&item->log_list, del_list);
2106 item = __btrfs_next_delayed_item(item);
2108 mutex_unlock(&node->mutex);
2111 * We are called during inode logging, which means the inode is in use
2112 * and can not be evicted before we finish logging the inode. So we never
2113 * have the last reference on the delayed inode.
2114 * Also, we don't use btrfs_release_delayed_node() because that would
2115 * requeue the delayed inode (change its order in the list of prepared
2116 * nodes) and we don't want to do such change because we don't create or
2117 * delete delayed items.
2119 ASSERT(refcount_read(&node->refs) > 1);
2120 refcount_dec(&node->refs);
2123 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2124 struct list_head *ins_list,
2125 struct list_head *del_list)
2127 struct btrfs_delayed_node *node;
2128 struct btrfs_delayed_item *item;
2129 struct btrfs_delayed_item *next;
2131 node = btrfs_get_delayed_node(inode);
2135 mutex_lock(&node->mutex);
2137 list_for_each_entry_safe(item, next, ins_list, log_list) {
2138 item->logged = true;
2139 list_del_init(&item->log_list);
2140 if (refcount_dec_and_test(&item->refs))
2144 list_for_each_entry_safe(item, next, del_list, log_list) {
2145 item->logged = true;
2146 list_del_init(&item->log_list);
2147 if (refcount_dec_and_test(&item->refs))
2151 mutex_unlock(&node->mutex);
2154 * We are called during inode logging, which means the inode is in use
2155 * and can not be evicted before we finish logging the inode. So we never
2156 * have the last reference on the delayed inode.
2157 * Also, we don't use btrfs_release_delayed_node() because that would
2158 * requeue the delayed inode (change its order in the list of prepared
2159 * nodes) and we don't want to do such change because we don't create or
2160 * delete delayed items.
2162 ASSERT(refcount_read(&node->refs) > 1);
2163 refcount_dec(&node->refs);