1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
11 #include "delayed-inode.h"
13 #include "transaction.h"
18 #define BTRFS_DELAYED_WRITEBACK 512
19 #define BTRFS_DELAYED_BACKGROUND 128
20 #define BTRFS_DELAYED_BATCH 16
22 static struct kmem_cache *delayed_node_cache;
24 int __init btrfs_delayed_inode_init(void)
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
31 if (!delayed_node_cache)
36 void __cold btrfs_delayed_inode_exit(void)
38 kmem_cache_destroy(delayed_node_cache);
41 static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
55 static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
74 node = READ_ONCE(btrfs_inode->delayed_node);
76 refcount_inc(&node->refs);
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
114 spin_unlock(&root->inode_lock);
117 spin_unlock(&root->inode_lock);
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
132 node = btrfs_get_delayed_node(btrfs_inode);
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
144 ret = radix_tree_preload(GFP_NOFS);
146 kmem_cache_free(delayed_node_cache, node);
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
166 * Call it when holding delayed_node->mutex
168 * If mod = 1, add this node into the prepared list.
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
187 spin_unlock(&root->lock);
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
203 spin_unlock(&root->lock);
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
210 struct btrfs_delayed_node *node = NULL;
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
220 spin_unlock(&delayed_root->lock);
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
228 struct btrfs_delayed_root *delayed_root;
230 struct btrfs_delayed_node *next = NULL;
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
242 p = node->n_list.next;
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
247 spin_unlock(&delayed_root->lock);
252 static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
256 struct btrfs_delayed_root *delayed_root;
261 delayed_root = delayed_node->root->fs_info->delayed_root;
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
273 spin_lock(&root->inode_lock);
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
288 __btrfs_release_delayed_node(node, 0);
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
295 struct btrfs_delayed_node *node = NULL;
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
301 p = delayed_root->prepare_list.next;
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
306 spin_unlock(&delayed_root->lock);
311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
314 __btrfs_release_delayed_node(node, 1);
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
338 * Note: if we don't find the right item, we will return the prev item and
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
351 node = root->rb_node;
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
359 node = node->rb_right;
361 node = node->rb_left;
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
409 bool leftmost = true;
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
429 } else if (cmp > 0) {
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
467 int seq = atomic_inc_return(&delayed_root->items_seq);
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
492 root = &delayed_item->delayed_node->del_root;
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
497 finish_one_item(delayed_root);
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
513 struct btrfs_delayed_item *item = NULL;
515 p = rb_first_cached(&delayed_node->ins_root);
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
526 struct btrfs_delayed_item *item = NULL;
528 p = rb_first_cached(&delayed_node->del_root);
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
539 struct btrfs_delayed_item *next = NULL;
541 p = rb_next(&item->rb_node);
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
558 if (!trans->bytes_reserved)
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
576 item->bytes_reserved = num_bytes;
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
588 if (!item->bytes_reserved)
591 rsv = &fs_info->delayed_block_rsv;
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
602 static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_delayed_node *node)
607 struct btrfs_fs_info *fs_info = root->fs_info;
608 struct btrfs_block_rsv *src_rsv;
609 struct btrfs_block_rsv *dst_rsv;
613 src_rsv = trans->block_rsv;
614 dst_rsv = &fs_info->delayed_block_rsv;
616 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 * which doesn't reserve space for speed. This is a problem since we
621 * still need to reserve space for this update, so try to reserve the
624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 * we always reserve enough to update the inode item.
627 if (!src_rsv || (!trans->bytes_reserved &&
628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630 BTRFS_QGROUP_RSV_META_PREALLOC, true);
633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 BTRFS_RESERVE_NO_FLUSH);
635 /* NO_FLUSH could only fail with -ENOSPC */
636 ASSERT(ret == 0 || ret == -ENOSPC);
638 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
644 trace_btrfs_space_reservation(fs_info, "delayed_inode",
645 node->inode_id, num_bytes, 1);
646 node->bytes_reserved = num_bytes;
652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653 struct btrfs_delayed_node *node,
656 struct btrfs_block_rsv *rsv;
658 if (!node->bytes_reserved)
661 rsv = &fs_info->delayed_block_rsv;
662 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 node->inode_id, node->bytes_reserved, 0);
664 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
666 btrfs_qgroup_free_meta_prealloc(node->root,
667 node->bytes_reserved);
669 btrfs_qgroup_convert_reserved_meta(node->root,
670 node->bytes_reserved);
671 node->bytes_reserved = 0;
675 * This helper will insert some continuous items into the same leaf according
676 * to the free space of the leaf.
678 static int btrfs_batch_insert_items(struct btrfs_root *root,
679 struct btrfs_path *path,
680 struct btrfs_delayed_item *item)
682 struct btrfs_delayed_item *curr, *next;
685 struct extent_buffer *leaf;
687 struct btrfs_key *keys;
689 struct list_head head;
695 BUG_ON(!path->nodes[0]);
697 leaf = path->nodes[0];
698 free_space = btrfs_leaf_free_space(leaf);
699 INIT_LIST_HEAD(&head);
705 * count the number of the continuous items that we can insert in batch
707 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
709 total_size += next->data_len + sizeof(struct btrfs_item);
710 list_add_tail(&next->tree_list, &head);
714 next = __btrfs_next_delayed_item(curr);
718 if (!btrfs_is_continuous_delayed_item(curr, next))
727 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
733 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
739 /* get keys of all the delayed items */
741 list_for_each_entry(next, &head, tree_list) {
743 data_size[i] = next->data_len;
747 /* insert the keys of the items */
748 setup_items_for_insert(root, path, keys, data_size, nitems);
750 /* insert the dir index items */
751 slot = path->slots[0];
752 list_for_each_entry_safe(curr, next, &head, tree_list) {
753 data_ptr = btrfs_item_ptr(leaf, slot, char);
754 write_extent_buffer(leaf, &curr->data,
755 (unsigned long)data_ptr,
759 btrfs_delayed_item_release_metadata(root, curr);
761 list_del(&curr->tree_list);
762 btrfs_release_delayed_item(curr);
773 * This helper can just do simple insertion that needn't extend item for new
774 * data, such as directory name index insertion, inode insertion.
776 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
777 struct btrfs_root *root,
778 struct btrfs_path *path,
779 struct btrfs_delayed_item *delayed_item)
781 struct extent_buffer *leaf;
782 unsigned int nofs_flag;
786 nofs_flag = memalloc_nofs_save();
787 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
788 delayed_item->data_len);
789 memalloc_nofs_restore(nofs_flag);
790 if (ret < 0 && ret != -EEXIST)
793 leaf = path->nodes[0];
795 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
797 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
798 delayed_item->data_len);
799 btrfs_mark_buffer_dirty(leaf);
801 btrfs_delayed_item_release_metadata(root, delayed_item);
806 * we insert an item first, then if there are some continuous items, we try
807 * to insert those items into the same leaf.
809 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
810 struct btrfs_path *path,
811 struct btrfs_root *root,
812 struct btrfs_delayed_node *node)
814 struct btrfs_delayed_item *curr, *prev;
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
823 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 btrfs_release_path(path);
830 curr = __btrfs_next_delayed_item(prev);
831 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
832 /* insert the continuous items into the same leaf */
834 btrfs_batch_insert_items(root, path, curr);
836 btrfs_release_delayed_item(prev);
837 btrfs_mark_buffer_dirty(path->nodes[0]);
839 btrfs_release_path(path);
840 mutex_unlock(&node->mutex);
844 mutex_unlock(&node->mutex);
848 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
851 struct btrfs_delayed_item *item)
853 struct btrfs_delayed_item *curr, *next;
854 struct extent_buffer *leaf;
855 struct btrfs_key key;
856 struct list_head head;
857 int nitems, i, last_item;
860 BUG_ON(!path->nodes[0]);
862 leaf = path->nodes[0];
865 last_item = btrfs_header_nritems(leaf) - 1;
867 return -ENOENT; /* FIXME: Is errno suitable? */
870 INIT_LIST_HEAD(&head);
871 btrfs_item_key_to_cpu(leaf, &key, i);
874 * count the number of the dir index items that we can delete in batch
876 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
877 list_add_tail(&next->tree_list, &head);
881 next = __btrfs_next_delayed_item(curr);
885 if (!btrfs_is_continuous_delayed_item(curr, next))
891 btrfs_item_key_to_cpu(leaf, &key, i);
897 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
901 list_for_each_entry_safe(curr, next, &head, tree_list) {
902 btrfs_delayed_item_release_metadata(root, curr);
903 list_del(&curr->tree_list);
904 btrfs_release_delayed_item(curr);
911 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
912 struct btrfs_path *path,
913 struct btrfs_root *root,
914 struct btrfs_delayed_node *node)
916 struct btrfs_delayed_item *curr, *prev;
917 unsigned int nofs_flag;
921 mutex_lock(&node->mutex);
922 curr = __btrfs_first_delayed_deletion_item(node);
926 nofs_flag = memalloc_nofs_save();
927 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
928 memalloc_nofs_restore(nofs_flag);
933 * can't find the item which the node points to, so this node
934 * is invalid, just drop it.
937 curr = __btrfs_next_delayed_item(prev);
938 btrfs_release_delayed_item(prev);
940 btrfs_release_path(path);
942 mutex_unlock(&node->mutex);
948 btrfs_batch_delete_items(trans, root, path, curr);
949 btrfs_release_path(path);
950 mutex_unlock(&node->mutex);
954 btrfs_release_path(path);
955 mutex_unlock(&node->mutex);
959 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
961 struct btrfs_delayed_root *delayed_root;
964 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
965 BUG_ON(!delayed_node->root);
966 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
967 delayed_node->count--;
969 delayed_root = delayed_node->root->fs_info->delayed_root;
970 finish_one_item(delayed_root);
974 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
977 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
978 struct btrfs_delayed_root *delayed_root;
980 ASSERT(delayed_node->root);
981 delayed_node->count--;
983 delayed_root = delayed_node->root->fs_info->delayed_root;
984 finish_one_item(delayed_root);
988 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 struct btrfs_delayed_node *node)
993 struct btrfs_fs_info *fs_info = root->fs_info;
994 struct btrfs_key key;
995 struct btrfs_inode_item *inode_item;
996 struct extent_buffer *leaf;
997 unsigned int nofs_flag;
1001 key.objectid = node->inode_id;
1002 key.type = BTRFS_INODE_ITEM_KEY;
1005 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1010 nofs_flag = memalloc_nofs_save();
1011 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1012 memalloc_nofs_restore(nofs_flag);
1018 leaf = path->nodes[0];
1019 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_inode_item);
1021 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1022 sizeof(struct btrfs_inode_item));
1023 btrfs_mark_buffer_dirty(leaf);
1025 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 if (path->slots[0] >= btrfs_header_nritems(leaf))
1032 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1033 if (key.objectid != node->inode_id)
1036 if (key.type != BTRFS_INODE_REF_KEY &&
1037 key.type != BTRFS_INODE_EXTREF_KEY)
1041 * Delayed iref deletion is for the inode who has only one link,
1042 * so there is only one iref. The case that several irefs are
1043 * in the same item doesn't exist.
1045 btrfs_del_item(trans, root, path);
1047 btrfs_release_delayed_iref(node);
1048 btrfs_release_path(path);
1050 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1051 btrfs_release_delayed_inode(node);
1054 * If we fail to update the delayed inode we need to abort the
1055 * transaction, because we could leave the inode with the improper
1058 if (ret && ret != -ENOENT)
1059 btrfs_abort_transaction(trans, ret);
1064 btrfs_release_path(path);
1066 key.type = BTRFS_INODE_EXTREF_KEY;
1069 nofs_flag = memalloc_nofs_save();
1070 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1071 memalloc_nofs_restore(nofs_flag);
1077 leaf = path->nodes[0];
1082 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root,
1084 struct btrfs_path *path,
1085 struct btrfs_delayed_node *node)
1089 mutex_lock(&node->mutex);
1090 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1091 mutex_unlock(&node->mutex);
1095 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1096 mutex_unlock(&node->mutex);
1101 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1102 struct btrfs_path *path,
1103 struct btrfs_delayed_node *node)
1107 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1111 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1115 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 * Called when committing the transaction.
1121 * Returns 0 on success.
1122 * Returns < 0 on error and returns with an aborted transaction with any
1123 * outstanding delayed items cleaned up.
1125 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1127 struct btrfs_fs_info *fs_info = trans->fs_info;
1128 struct btrfs_delayed_root *delayed_root;
1129 struct btrfs_delayed_node *curr_node, *prev_node;
1130 struct btrfs_path *path;
1131 struct btrfs_block_rsv *block_rsv;
1133 bool count = (nr > 0);
1135 if (TRANS_ABORTED(trans))
1138 path = btrfs_alloc_path();
1142 block_rsv = trans->block_rsv;
1143 trans->block_rsv = &fs_info->delayed_block_rsv;
1145 delayed_root = fs_info->delayed_root;
1147 curr_node = btrfs_first_delayed_node(delayed_root);
1148 while (curr_node && (!count || nr--)) {
1149 ret = __btrfs_commit_inode_delayed_items(trans, path,
1152 btrfs_release_delayed_node(curr_node);
1154 btrfs_abort_transaction(trans, ret);
1158 prev_node = curr_node;
1159 curr_node = btrfs_next_delayed_node(curr_node);
1160 btrfs_release_delayed_node(prev_node);
1164 btrfs_release_delayed_node(curr_node);
1165 btrfs_free_path(path);
1166 trans->block_rsv = block_rsv;
1171 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1173 return __btrfs_run_delayed_items(trans, -1);
1176 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1178 return __btrfs_run_delayed_items(trans, nr);
1181 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182 struct btrfs_inode *inode)
1184 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185 struct btrfs_path *path;
1186 struct btrfs_block_rsv *block_rsv;
1192 mutex_lock(&delayed_node->mutex);
1193 if (!delayed_node->count) {
1194 mutex_unlock(&delayed_node->mutex);
1195 btrfs_release_delayed_node(delayed_node);
1198 mutex_unlock(&delayed_node->mutex);
1200 path = btrfs_alloc_path();
1202 btrfs_release_delayed_node(delayed_node);
1206 block_rsv = trans->block_rsv;
1207 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1209 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1211 btrfs_release_delayed_node(delayed_node);
1212 btrfs_free_path(path);
1213 trans->block_rsv = block_rsv;
1218 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1221 struct btrfs_trans_handle *trans;
1222 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1223 struct btrfs_path *path;
1224 struct btrfs_block_rsv *block_rsv;
1230 mutex_lock(&delayed_node->mutex);
1231 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1232 mutex_unlock(&delayed_node->mutex);
1233 btrfs_release_delayed_node(delayed_node);
1236 mutex_unlock(&delayed_node->mutex);
1238 trans = btrfs_join_transaction(delayed_node->root);
1239 if (IS_ERR(trans)) {
1240 ret = PTR_ERR(trans);
1244 path = btrfs_alloc_path();
1250 block_rsv = trans->block_rsv;
1251 trans->block_rsv = &fs_info->delayed_block_rsv;
1253 mutex_lock(&delayed_node->mutex);
1254 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1255 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1256 path, delayed_node);
1259 mutex_unlock(&delayed_node->mutex);
1261 btrfs_free_path(path);
1262 trans->block_rsv = block_rsv;
1264 btrfs_end_transaction(trans);
1265 btrfs_btree_balance_dirty(fs_info);
1267 btrfs_release_delayed_node(delayed_node);
1272 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1274 struct btrfs_delayed_node *delayed_node;
1276 delayed_node = READ_ONCE(inode->delayed_node);
1280 inode->delayed_node = NULL;
1281 btrfs_release_delayed_node(delayed_node);
1284 struct btrfs_async_delayed_work {
1285 struct btrfs_delayed_root *delayed_root;
1287 struct btrfs_work work;
1290 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1292 struct btrfs_async_delayed_work *async_work;
1293 struct btrfs_delayed_root *delayed_root;
1294 struct btrfs_trans_handle *trans;
1295 struct btrfs_path *path;
1296 struct btrfs_delayed_node *delayed_node = NULL;
1297 struct btrfs_root *root;
1298 struct btrfs_block_rsv *block_rsv;
1301 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1302 delayed_root = async_work->delayed_root;
1304 path = btrfs_alloc_path();
1309 if (atomic_read(&delayed_root->items) <
1310 BTRFS_DELAYED_BACKGROUND / 2)
1313 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1317 root = delayed_node->root;
1319 trans = btrfs_join_transaction(root);
1320 if (IS_ERR(trans)) {
1321 btrfs_release_path(path);
1322 btrfs_release_prepared_delayed_node(delayed_node);
1327 block_rsv = trans->block_rsv;
1328 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1330 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1332 trans->block_rsv = block_rsv;
1333 btrfs_end_transaction(trans);
1334 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1336 btrfs_release_path(path);
1337 btrfs_release_prepared_delayed_node(delayed_node);
1340 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1341 || total_done < async_work->nr);
1343 btrfs_free_path(path);
1345 wake_up(&delayed_root->wait);
1350 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1351 struct btrfs_fs_info *fs_info, int nr)
1353 struct btrfs_async_delayed_work *async_work;
1355 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1359 async_work->delayed_root = delayed_root;
1360 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1362 async_work->nr = nr;
1364 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1368 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1370 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1373 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1375 int val = atomic_read(&delayed_root->items_seq);
1377 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1380 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1386 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1388 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1390 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1391 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1394 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1398 seq = atomic_read(&delayed_root->items_seq);
1400 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1404 wait_event_interruptible(delayed_root->wait,
1405 could_end_wait(delayed_root, seq));
1409 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1412 /* Will return 0 or -ENOMEM */
1413 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1414 const char *name, int name_len,
1415 struct btrfs_inode *dir,
1416 struct btrfs_disk_key *disk_key, u8 type,
1419 struct btrfs_delayed_node *delayed_node;
1420 struct btrfs_delayed_item *delayed_item;
1421 struct btrfs_dir_item *dir_item;
1424 delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 if (IS_ERR(delayed_node))
1426 return PTR_ERR(delayed_node);
1428 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429 if (!delayed_item) {
1434 delayed_item->key.objectid = btrfs_ino(dir);
1435 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 delayed_item->key.offset = index;
1438 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439 dir_item->location = *disk_key;
1440 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441 btrfs_set_stack_dir_data_len(dir_item, 0);
1442 btrfs_set_stack_dir_name_len(dir_item, name_len);
1443 btrfs_set_stack_dir_type(dir_item, type);
1444 memcpy((char *)(dir_item + 1), name, name_len);
1446 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1448 * we have reserved enough space when we start a new transaction,
1449 * so reserving metadata failure is impossible
1453 mutex_lock(&delayed_node->mutex);
1454 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455 if (unlikely(ret)) {
1456 btrfs_err(trans->fs_info,
1457 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458 name_len, name, delayed_node->root->root_key.objectid,
1459 delayed_node->inode_id, ret);
1462 mutex_unlock(&delayed_node->mutex);
1465 btrfs_release_delayed_node(delayed_node);
1469 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470 struct btrfs_delayed_node *node,
1471 struct btrfs_key *key)
1473 struct btrfs_delayed_item *item;
1475 mutex_lock(&node->mutex);
1476 item = __btrfs_lookup_delayed_insertion_item(node, key);
1478 mutex_unlock(&node->mutex);
1482 btrfs_delayed_item_release_metadata(node->root, item);
1483 btrfs_release_delayed_item(item);
1484 mutex_unlock(&node->mutex);
1488 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489 struct btrfs_inode *dir, u64 index)
1491 struct btrfs_delayed_node *node;
1492 struct btrfs_delayed_item *item;
1493 struct btrfs_key item_key;
1496 node = btrfs_get_or_create_delayed_node(dir);
1498 return PTR_ERR(node);
1500 item_key.objectid = btrfs_ino(dir);
1501 item_key.type = BTRFS_DIR_INDEX_KEY;
1502 item_key.offset = index;
1504 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1509 item = btrfs_alloc_delayed_item(0);
1515 item->key = item_key;
1517 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1519 * we have reserved enough space when we start a new transaction,
1520 * so reserving metadata failure is impossible.
1523 btrfs_err(trans->fs_info,
1524 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1525 btrfs_release_delayed_item(item);
1529 mutex_lock(&node->mutex);
1530 ret = __btrfs_add_delayed_deletion_item(node, item);
1531 if (unlikely(ret)) {
1532 btrfs_err(trans->fs_info,
1533 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1534 index, node->root->root_key.objectid,
1535 node->inode_id, ret);
1536 btrfs_delayed_item_release_metadata(dir->root, item);
1537 btrfs_release_delayed_item(item);
1539 mutex_unlock(&node->mutex);
1541 btrfs_release_delayed_node(node);
1545 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1547 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1553 * Since we have held i_mutex of this directory, it is impossible that
1554 * a new directory index is added into the delayed node and index_cnt
1555 * is updated now. So we needn't lock the delayed node.
1557 if (!delayed_node->index_cnt) {
1558 btrfs_release_delayed_node(delayed_node);
1562 inode->index_cnt = delayed_node->index_cnt;
1563 btrfs_release_delayed_node(delayed_node);
1567 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568 struct list_head *ins_list,
1569 struct list_head *del_list)
1571 struct btrfs_delayed_node *delayed_node;
1572 struct btrfs_delayed_item *item;
1574 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1579 * We can only do one readdir with delayed items at a time because of
1580 * item->readdir_list.
1582 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1583 btrfs_inode_lock(inode, 0);
1585 mutex_lock(&delayed_node->mutex);
1586 item = __btrfs_first_delayed_insertion_item(delayed_node);
1588 refcount_inc(&item->refs);
1589 list_add_tail(&item->readdir_list, ins_list);
1590 item = __btrfs_next_delayed_item(item);
1593 item = __btrfs_first_delayed_deletion_item(delayed_node);
1595 refcount_inc(&item->refs);
1596 list_add_tail(&item->readdir_list, del_list);
1597 item = __btrfs_next_delayed_item(item);
1599 mutex_unlock(&delayed_node->mutex);
1601 * This delayed node is still cached in the btrfs inode, so refs
1602 * must be > 1 now, and we needn't check it is going to be freed
1605 * Besides that, this function is used to read dir, we do not
1606 * insert/delete delayed items in this period. So we also needn't
1607 * requeue or dequeue this delayed node.
1609 refcount_dec(&delayed_node->refs);
1614 void btrfs_readdir_put_delayed_items(struct inode *inode,
1615 struct list_head *ins_list,
1616 struct list_head *del_list)
1618 struct btrfs_delayed_item *curr, *next;
1620 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621 list_del(&curr->readdir_list);
1622 if (refcount_dec_and_test(&curr->refs))
1626 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627 list_del(&curr->readdir_list);
1628 if (refcount_dec_and_test(&curr->refs))
1633 * The VFS is going to do up_read(), so we need to downgrade back to a
1636 downgrade_write(&inode->i_rwsem);
1639 int btrfs_should_delete_dir_index(struct list_head *del_list,
1642 struct btrfs_delayed_item *curr;
1645 list_for_each_entry(curr, del_list, readdir_list) {
1646 if (curr->key.offset > index)
1648 if (curr->key.offset == index) {
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1660 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1661 struct list_head *ins_list)
1663 struct btrfs_dir_item *di;
1664 struct btrfs_delayed_item *curr, *next;
1665 struct btrfs_key location;
1669 unsigned char d_type;
1671 if (list_empty(ins_list))
1675 * Changing the data of the delayed item is impossible. So
1676 * we needn't lock them. And we have held i_mutex of the
1677 * directory, nobody can delete any directory indexes now.
1679 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680 list_del(&curr->readdir_list);
1682 if (curr->key.offset < ctx->pos) {
1683 if (refcount_dec_and_test(&curr->refs))
1688 ctx->pos = curr->key.offset;
1690 di = (struct btrfs_dir_item *)curr->data;
1691 name = (char *)(di + 1);
1692 name_len = btrfs_stack_dir_name_len(di);
1694 d_type = fs_ftype_to_dtype(di->type);
1695 btrfs_disk_key_to_cpu(&location, &di->location);
1697 over = !dir_emit(ctx, name, name_len,
1698 location.objectid, d_type);
1700 if (refcount_dec_and_test(&curr->refs))
1710 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711 struct btrfs_inode_item *inode_item,
1712 struct inode *inode)
1714 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720 btrfs_set_stack_inode_generation(inode_item,
1721 BTRFS_I(inode)->generation);
1722 btrfs_set_stack_inode_sequence(inode_item,
1723 inode_peek_iversion(inode));
1724 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727 btrfs_set_stack_inode_block_group(inode_item, 0);
1729 btrfs_set_stack_timespec_sec(&inode_item->atime,
1730 inode->i_atime.tv_sec);
1731 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732 inode->i_atime.tv_nsec);
1734 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735 inode->i_mtime.tv_sec);
1736 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737 inode->i_mtime.tv_nsec);
1739 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740 inode->i_ctime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742 inode->i_ctime.tv_nsec);
1744 btrfs_set_stack_timespec_sec(&inode_item->otime,
1745 BTRFS_I(inode)->i_otime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747 BTRFS_I(inode)->i_otime.tv_nsec);
1750 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1752 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1753 struct btrfs_delayed_node *delayed_node;
1754 struct btrfs_inode_item *inode_item;
1756 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1760 mutex_lock(&delayed_node->mutex);
1761 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762 mutex_unlock(&delayed_node->mutex);
1763 btrfs_release_delayed_node(delayed_node);
1767 inode_item = &delayed_node->inode_item;
1769 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1773 round_up(i_size_read(inode), fs_info->sectorsize));
1774 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1775 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1777 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1780 inode_set_iversion_queried(inode,
1781 btrfs_stack_inode_sequence(inode_item));
1783 *rdev = btrfs_stack_inode_rdev(inode_item);
1784 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1786 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1787 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1789 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1790 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1792 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1793 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1795 BTRFS_I(inode)->i_otime.tv_sec =
1796 btrfs_stack_timespec_sec(&inode_item->otime);
1797 BTRFS_I(inode)->i_otime.tv_nsec =
1798 btrfs_stack_timespec_nsec(&inode_item->otime);
1800 inode->i_generation = BTRFS_I(inode)->generation;
1801 BTRFS_I(inode)->index_cnt = (u64)-1;
1803 mutex_unlock(&delayed_node->mutex);
1804 btrfs_release_delayed_node(delayed_node);
1808 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1809 struct btrfs_root *root,
1810 struct btrfs_inode *inode)
1812 struct btrfs_delayed_node *delayed_node;
1815 delayed_node = btrfs_get_or_create_delayed_node(inode);
1816 if (IS_ERR(delayed_node))
1817 return PTR_ERR(delayed_node);
1819 mutex_lock(&delayed_node->mutex);
1820 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1821 fill_stack_inode_item(trans, &delayed_node->inode_item,
1826 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1830 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1831 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1832 delayed_node->count++;
1833 atomic_inc(&root->fs_info->delayed_root->items);
1835 mutex_unlock(&delayed_node->mutex);
1836 btrfs_release_delayed_node(delayed_node);
1840 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1843 struct btrfs_delayed_node *delayed_node;
1846 * we don't do delayed inode updates during log recovery because it
1847 * leads to enospc problems. This means we also can't do
1848 * delayed inode refs
1850 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1853 delayed_node = btrfs_get_or_create_delayed_node(inode);
1854 if (IS_ERR(delayed_node))
1855 return PTR_ERR(delayed_node);
1858 * We don't reserve space for inode ref deletion is because:
1859 * - We ONLY do async inode ref deletion for the inode who has only
1860 * one link(i_nlink == 1), it means there is only one inode ref.
1861 * And in most case, the inode ref and the inode item are in the
1862 * same leaf, and we will deal with them at the same time.
1863 * Since we are sure we will reserve the space for the inode item,
1864 * it is unnecessary to reserve space for inode ref deletion.
1865 * - If the inode ref and the inode item are not in the same leaf,
1866 * We also needn't worry about enospc problem, because we reserve
1867 * much more space for the inode update than it needs.
1868 * - At the worst, we can steal some space from the global reservation.
1871 mutex_lock(&delayed_node->mutex);
1872 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1875 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1876 delayed_node->count++;
1877 atomic_inc(&fs_info->delayed_root->items);
1879 mutex_unlock(&delayed_node->mutex);
1880 btrfs_release_delayed_node(delayed_node);
1884 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1886 struct btrfs_root *root = delayed_node->root;
1887 struct btrfs_fs_info *fs_info = root->fs_info;
1888 struct btrfs_delayed_item *curr_item, *prev_item;
1890 mutex_lock(&delayed_node->mutex);
1891 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1893 btrfs_delayed_item_release_metadata(root, curr_item);
1894 prev_item = curr_item;
1895 curr_item = __btrfs_next_delayed_item(prev_item);
1896 btrfs_release_delayed_item(prev_item);
1899 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1901 btrfs_delayed_item_release_metadata(root, curr_item);
1902 prev_item = curr_item;
1903 curr_item = __btrfs_next_delayed_item(prev_item);
1904 btrfs_release_delayed_item(prev_item);
1907 btrfs_release_delayed_iref(delayed_node);
1909 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1910 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1911 btrfs_release_delayed_inode(delayed_node);
1913 mutex_unlock(&delayed_node->mutex);
1916 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1918 struct btrfs_delayed_node *delayed_node;
1920 delayed_node = btrfs_get_delayed_node(inode);
1924 __btrfs_kill_delayed_node(delayed_node);
1925 btrfs_release_delayed_node(delayed_node);
1928 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1931 struct btrfs_delayed_node *delayed_nodes[8];
1935 spin_lock(&root->inode_lock);
1936 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1937 (void **)delayed_nodes, inode_id,
1938 ARRAY_SIZE(delayed_nodes));
1940 spin_unlock(&root->inode_lock);
1944 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1945 for (i = 0; i < n; i++) {
1947 * Don't increase refs in case the node is dead and
1948 * about to be removed from the tree in the loop below
1950 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1951 delayed_nodes[i] = NULL;
1953 spin_unlock(&root->inode_lock);
1955 for (i = 0; i < n; i++) {
1956 if (!delayed_nodes[i])
1958 __btrfs_kill_delayed_node(delayed_nodes[i]);
1959 btrfs_release_delayed_node(delayed_nodes[i]);
1964 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1966 struct btrfs_delayed_node *curr_node, *prev_node;
1968 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1970 __btrfs_kill_delayed_node(curr_node);
1972 prev_node = curr_node;
1973 curr_node = btrfs_next_delayed_node(curr_node);
1974 btrfs_release_delayed_node(prev_node);