NFSv4: Warn once about servers that incorrectly apply open mode to setattr
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK         400
26 #define BTRFS_DELAYED_BACKGROUND        100
27
28 static struct kmem_cache *delayed_node_cache;
29
30 int __init btrfs_delayed_inode_init(void)
31 {
32         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
33                                         sizeof(struct btrfs_delayed_node),
34                                         0,
35                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36                                         NULL);
37         if (!delayed_node_cache)
38                 return -ENOMEM;
39         return 0;
40 }
41
42 void btrfs_delayed_inode_exit(void)
43 {
44         if (delayed_node_cache)
45                 kmem_cache_destroy(delayed_node_cache);
46 }
47
48 static inline void btrfs_init_delayed_node(
49                                 struct btrfs_delayed_node *delayed_node,
50                                 struct btrfs_root *root, u64 inode_id)
51 {
52         delayed_node->root = root;
53         delayed_node->inode_id = inode_id;
54         atomic_set(&delayed_node->refs, 0);
55         delayed_node->count = 0;
56         delayed_node->in_list = 0;
57         delayed_node->inode_dirty = 0;
58         delayed_node->ins_root = RB_ROOT;
59         delayed_node->del_root = RB_ROOT;
60         mutex_init(&delayed_node->mutex);
61         delayed_node->index_cnt = 0;
62         INIT_LIST_HEAD(&delayed_node->n_list);
63         INIT_LIST_HEAD(&delayed_node->p_list);
64         delayed_node->bytes_reserved = 0;
65         memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
66 }
67
68 static inline int btrfs_is_continuous_delayed_item(
69                                         struct btrfs_delayed_item *item1,
70                                         struct btrfs_delayed_item *item2)
71 {
72         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
73             item1->key.objectid == item2->key.objectid &&
74             item1->key.type == item2->key.type &&
75             item1->key.offset + 1 == item2->key.offset)
76                 return 1;
77         return 0;
78 }
79
80 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
81                                                         struct btrfs_root *root)
82 {
83         return root->fs_info->delayed_root;
84 }
85
86 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 {
88         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
89         struct btrfs_root *root = btrfs_inode->root;
90         u64 ino = btrfs_ino(inode);
91         struct btrfs_delayed_node *node;
92
93         node = ACCESS_ONCE(btrfs_inode->delayed_node);
94         if (node) {
95                 atomic_inc(&node->refs);
96                 return node;
97         }
98
99         spin_lock(&root->inode_lock);
100         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
101         if (node) {
102                 if (btrfs_inode->delayed_node) {
103                         atomic_inc(&node->refs);        /* can be accessed */
104                         BUG_ON(btrfs_inode->delayed_node != node);
105                         spin_unlock(&root->inode_lock);
106                         return node;
107                 }
108                 btrfs_inode->delayed_node = node;
109                 atomic_inc(&node->refs);        /* can be accessed */
110                 atomic_inc(&node->refs);        /* cached in the inode */
111                 spin_unlock(&root->inode_lock);
112                 return node;
113         }
114         spin_unlock(&root->inode_lock);
115
116         return NULL;
117 }
118
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121                                                         struct inode *inode)
122 {
123         struct btrfs_delayed_node *node;
124         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
125         struct btrfs_root *root = btrfs_inode->root;
126         u64 ino = btrfs_ino(inode);
127         int ret;
128
129 again:
130         node = btrfs_get_delayed_node(inode);
131         if (node)
132                 return node;
133
134         node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
135         if (!node)
136                 return ERR_PTR(-ENOMEM);
137         btrfs_init_delayed_node(node, root, ino);
138
139         atomic_inc(&node->refs);        /* cached in the btrfs inode */
140         atomic_inc(&node->refs);        /* can be accessed */
141
142         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
143         if (ret) {
144                 kmem_cache_free(delayed_node_cache, node);
145                 return ERR_PTR(ret);
146         }
147
148         spin_lock(&root->inode_lock);
149         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150         if (ret == -EEXIST) {
151                 kmem_cache_free(delayed_node_cache, node);
152                 spin_unlock(&root->inode_lock);
153                 radix_tree_preload_end();
154                 goto again;
155         }
156         btrfs_inode->delayed_node = node;
157         spin_unlock(&root->inode_lock);
158         radix_tree_preload_end();
159
160         return node;
161 }
162
163 /*
164  * Call it when holding delayed_node->mutex
165  *
166  * If mod = 1, add this node into the prepared list.
167  */
168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169                                      struct btrfs_delayed_node *node,
170                                      int mod)
171 {
172         spin_lock(&root->lock);
173         if (node->in_list) {
174                 if (!list_empty(&node->p_list))
175                         list_move_tail(&node->p_list, &root->prepare_list);
176                 else if (mod)
177                         list_add_tail(&node->p_list, &root->prepare_list);
178         } else {
179                 list_add_tail(&node->n_list, &root->node_list);
180                 list_add_tail(&node->p_list, &root->prepare_list);
181                 atomic_inc(&node->refs);        /* inserted into list */
182                 root->nodes++;
183                 node->in_list = 1;
184         }
185         spin_unlock(&root->lock);
186 }
187
188 /* Call it when holding delayed_node->mutex */
189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190                                        struct btrfs_delayed_node *node)
191 {
192         spin_lock(&root->lock);
193         if (node->in_list) {
194                 root->nodes--;
195                 atomic_dec(&node->refs);        /* not in the list */
196                 list_del_init(&node->n_list);
197                 if (!list_empty(&node->p_list))
198                         list_del_init(&node->p_list);
199                 node->in_list = 0;
200         }
201         spin_unlock(&root->lock);
202 }
203
204 struct btrfs_delayed_node *btrfs_first_delayed_node(
205                         struct btrfs_delayed_root *delayed_root)
206 {
207         struct list_head *p;
208         struct btrfs_delayed_node *node = NULL;
209
210         spin_lock(&delayed_root->lock);
211         if (list_empty(&delayed_root->node_list))
212                 goto out;
213
214         p = delayed_root->node_list.next;
215         node = list_entry(p, struct btrfs_delayed_node, n_list);
216         atomic_inc(&node->refs);
217 out:
218         spin_unlock(&delayed_root->lock);
219
220         return node;
221 }
222
223 struct btrfs_delayed_node *btrfs_next_delayed_node(
224                                                 struct btrfs_delayed_node *node)
225 {
226         struct btrfs_delayed_root *delayed_root;
227         struct list_head *p;
228         struct btrfs_delayed_node *next = NULL;
229
230         delayed_root = node->root->fs_info->delayed_root;
231         spin_lock(&delayed_root->lock);
232         if (!node->in_list) {   /* not in the list */
233                 if (list_empty(&delayed_root->node_list))
234                         goto out;
235                 p = delayed_root->node_list.next;
236         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237                 goto out;
238         else
239                 p = node->n_list.next;
240
241         next = list_entry(p, struct btrfs_delayed_node, n_list);
242         atomic_inc(&next->refs);
243 out:
244         spin_unlock(&delayed_root->lock);
245
246         return next;
247 }
248
249 static void __btrfs_release_delayed_node(
250                                 struct btrfs_delayed_node *delayed_node,
251                                 int mod)
252 {
253         struct btrfs_delayed_root *delayed_root;
254
255         if (!delayed_node)
256                 return;
257
258         delayed_root = delayed_node->root->fs_info->delayed_root;
259
260         mutex_lock(&delayed_node->mutex);
261         if (delayed_node->count)
262                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263         else
264                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265         mutex_unlock(&delayed_node->mutex);
266
267         if (atomic_dec_and_test(&delayed_node->refs)) {
268                 struct btrfs_root *root = delayed_node->root;
269                 spin_lock(&root->inode_lock);
270                 if (atomic_read(&delayed_node->refs) == 0) {
271                         radix_tree_delete(&root->delayed_nodes_tree,
272                                           delayed_node->inode_id);
273                         kmem_cache_free(delayed_node_cache, delayed_node);
274                 }
275                 spin_unlock(&root->inode_lock);
276         }
277 }
278
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281         __btrfs_release_delayed_node(node, 0);
282 }
283
284 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285                                         struct btrfs_delayed_root *delayed_root)
286 {
287         struct list_head *p;
288         struct btrfs_delayed_node *node = NULL;
289
290         spin_lock(&delayed_root->lock);
291         if (list_empty(&delayed_root->prepare_list))
292                 goto out;
293
294         p = delayed_root->prepare_list.next;
295         list_del_init(p);
296         node = list_entry(p, struct btrfs_delayed_node, p_list);
297         atomic_inc(&node->refs);
298 out:
299         spin_unlock(&delayed_root->lock);
300
301         return node;
302 }
303
304 static inline void btrfs_release_prepared_delayed_node(
305                                         struct btrfs_delayed_node *node)
306 {
307         __btrfs_release_delayed_node(node, 1);
308 }
309
310 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312         struct btrfs_delayed_item *item;
313         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314         if (item) {
315                 item->data_len = data_len;
316                 item->ins_or_del = 0;
317                 item->bytes_reserved = 0;
318                 item->delayed_node = NULL;
319                 atomic_set(&item->refs, 1);
320         }
321         return item;
322 }
323
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:          the key to look up
328  * @prev:         used to store the prev item if the right item isn't found
329  * @next:         used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335                                 struct rb_root *root,
336                                 struct btrfs_key *key,
337                                 struct btrfs_delayed_item **prev,
338                                 struct btrfs_delayed_item **next)
339 {
340         struct rb_node *node, *prev_node = NULL;
341         struct btrfs_delayed_item *delayed_item = NULL;
342         int ret = 0;
343
344         node = root->rb_node;
345
346         while (node) {
347                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
348                                         rb_node);
349                 prev_node = node;
350                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351                 if (ret < 0)
352                         node = node->rb_right;
353                 else if (ret > 0)
354                         node = node->rb_left;
355                 else
356                         return delayed_item;
357         }
358
359         if (prev) {
360                 if (!prev_node)
361                         *prev = NULL;
362                 else if (ret < 0)
363                         *prev = delayed_item;
364                 else if ((node = rb_prev(prev_node)) != NULL) {
365                         *prev = rb_entry(node, struct btrfs_delayed_item,
366                                          rb_node);
367                 } else
368                         *prev = NULL;
369         }
370
371         if (next) {
372                 if (!prev_node)
373                         *next = NULL;
374                 else if (ret > 0)
375                         *next = delayed_item;
376                 else if ((node = rb_next(prev_node)) != NULL) {
377                         *next = rb_entry(node, struct btrfs_delayed_item,
378                                          rb_node);
379                 } else
380                         *next = NULL;
381         }
382         return NULL;
383 }
384
385 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386                                         struct btrfs_delayed_node *delayed_node,
387                                         struct btrfs_key *key)
388 {
389         struct btrfs_delayed_item *item;
390
391         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392                                            NULL, NULL);
393         return item;
394 }
395
396 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
397                                         struct btrfs_delayed_node *delayed_node,
398                                         struct btrfs_key *key)
399 {
400         struct btrfs_delayed_item *item;
401
402         item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
403                                            NULL, NULL);
404         return item;
405 }
406
407 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
408                                         struct btrfs_delayed_node *delayed_node,
409                                         struct btrfs_key *key)
410 {
411         struct btrfs_delayed_item *item, *next;
412
413         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
414                                            NULL, &next);
415         if (!item)
416                 item = next;
417
418         return item;
419 }
420
421 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
422                                         struct btrfs_delayed_node *delayed_node,
423                                         struct btrfs_key *key)
424 {
425         struct btrfs_delayed_item *item, *next;
426
427         item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
428                                            NULL, &next);
429         if (!item)
430                 item = next;
431
432         return item;
433 }
434
435 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
436                                     struct btrfs_delayed_item *ins,
437                                     int action)
438 {
439         struct rb_node **p, *node;
440         struct rb_node *parent_node = NULL;
441         struct rb_root *root;
442         struct btrfs_delayed_item *item;
443         int cmp;
444
445         if (action == BTRFS_DELAYED_INSERTION_ITEM)
446                 root = &delayed_node->ins_root;
447         else if (action == BTRFS_DELAYED_DELETION_ITEM)
448                 root = &delayed_node->del_root;
449         else
450                 BUG();
451         p = &root->rb_node;
452         node = &ins->rb_node;
453
454         while (*p) {
455                 parent_node = *p;
456                 item = rb_entry(parent_node, struct btrfs_delayed_item,
457                                  rb_node);
458
459                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
460                 if (cmp < 0)
461                         p = &(*p)->rb_right;
462                 else if (cmp > 0)
463                         p = &(*p)->rb_left;
464                 else
465                         return -EEXIST;
466         }
467
468         rb_link_node(node, parent_node, p);
469         rb_insert_color(node, root);
470         ins->delayed_node = delayed_node;
471         ins->ins_or_del = action;
472
473         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
474             action == BTRFS_DELAYED_INSERTION_ITEM &&
475             ins->key.offset >= delayed_node->index_cnt)
476                         delayed_node->index_cnt = ins->key.offset + 1;
477
478         delayed_node->count++;
479         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
480         return 0;
481 }
482
483 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
484                                               struct btrfs_delayed_item *item)
485 {
486         return __btrfs_add_delayed_item(node, item,
487                                         BTRFS_DELAYED_INSERTION_ITEM);
488 }
489
490 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
491                                              struct btrfs_delayed_item *item)
492 {
493         return __btrfs_add_delayed_item(node, item,
494                                         BTRFS_DELAYED_DELETION_ITEM);
495 }
496
497 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
498 {
499         struct rb_root *root;
500         struct btrfs_delayed_root *delayed_root;
501
502         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
503
504         BUG_ON(!delayed_root);
505         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
506                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
507
508         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
509                 root = &delayed_item->delayed_node->ins_root;
510         else
511                 root = &delayed_item->delayed_node->del_root;
512
513         rb_erase(&delayed_item->rb_node, root);
514         delayed_item->delayed_node->count--;
515         if (atomic_dec_return(&delayed_root->items) <
516             BTRFS_DELAYED_BACKGROUND &&
517             waitqueue_active(&delayed_root->wait))
518                 wake_up(&delayed_root->wait);
519 }
520
521 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
522 {
523         if (item) {
524                 __btrfs_remove_delayed_item(item);
525                 if (atomic_dec_and_test(&item->refs))
526                         kfree(item);
527         }
528 }
529
530 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
531                                         struct btrfs_delayed_node *delayed_node)
532 {
533         struct rb_node *p;
534         struct btrfs_delayed_item *item = NULL;
535
536         p = rb_first(&delayed_node->ins_root);
537         if (p)
538                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
539
540         return item;
541 }
542
543 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
544                                         struct btrfs_delayed_node *delayed_node)
545 {
546         struct rb_node *p;
547         struct btrfs_delayed_item *item = NULL;
548
549         p = rb_first(&delayed_node->del_root);
550         if (p)
551                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
552
553         return item;
554 }
555
556 struct btrfs_delayed_item *__btrfs_next_delayed_item(
557                                                 struct btrfs_delayed_item *item)
558 {
559         struct rb_node *p;
560         struct btrfs_delayed_item *next = NULL;
561
562         p = rb_next(&item->rb_node);
563         if (p)
564                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
565
566         return next;
567 }
568
569 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
570                                                    u64 root_id)
571 {
572         struct btrfs_key root_key;
573
574         if (root->objectid == root_id)
575                 return root;
576
577         root_key.objectid = root_id;
578         root_key.type = BTRFS_ROOT_ITEM_KEY;
579         root_key.offset = (u64)-1;
580         return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 }
582
583 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
584                                                struct btrfs_root *root,
585                                                struct btrfs_delayed_item *item)
586 {
587         struct btrfs_block_rsv *src_rsv;
588         struct btrfs_block_rsv *dst_rsv;
589         u64 num_bytes;
590         int ret;
591
592         if (!trans->bytes_reserved)
593                 return 0;
594
595         src_rsv = trans->block_rsv;
596         dst_rsv = &root->fs_info->delayed_block_rsv;
597
598         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
600         if (!ret) {
601                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
602                                               item->key.objectid,
603                                               num_bytes, 1);
604                 item->bytes_reserved = num_bytes;
605         }
606
607         return ret;
608 }
609
610 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
611                                                 struct btrfs_delayed_item *item)
612 {
613         struct btrfs_block_rsv *rsv;
614
615         if (!item->bytes_reserved)
616                 return;
617
618         rsv = &root->fs_info->delayed_block_rsv;
619         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
620                                       item->key.objectid, item->bytes_reserved,
621                                       0);
622         btrfs_block_rsv_release(root, rsv,
623                                 item->bytes_reserved);
624 }
625
626 static int btrfs_delayed_inode_reserve_metadata(
627                                         struct btrfs_trans_handle *trans,
628                                         struct btrfs_root *root,
629                                         struct inode *inode,
630                                         struct btrfs_delayed_node *node)
631 {
632         struct btrfs_block_rsv *src_rsv;
633         struct btrfs_block_rsv *dst_rsv;
634         u64 num_bytes;
635         int ret;
636         bool release = false;
637
638         src_rsv = trans->block_rsv;
639         dst_rsv = &root->fs_info->delayed_block_rsv;
640
641         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
642
643         /*
644          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
645          * which doesn't reserve space for speed.  This is a problem since we
646          * still need to reserve space for this update, so try to reserve the
647          * space.
648          *
649          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
650          * we're accounted for.
651          */
652         if (!src_rsv || (!trans->bytes_reserved &&
653                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
654                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
655                                           BTRFS_RESERVE_NO_FLUSH);
656                 /*
657                  * Since we're under a transaction reserve_metadata_bytes could
658                  * try to commit the transaction which will make it return
659                  * EAGAIN to make us stop the transaction we have, so return
660                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
661                  */
662                 if (ret == -EAGAIN)
663                         ret = -ENOSPC;
664                 if (!ret) {
665                         node->bytes_reserved = num_bytes;
666                         trace_btrfs_space_reservation(root->fs_info,
667                                                       "delayed_inode",
668                                                       btrfs_ino(inode),
669                                                       num_bytes, 1);
670                 }
671                 return ret;
672         } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
673                 spin_lock(&BTRFS_I(inode)->lock);
674                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
675                                        &BTRFS_I(inode)->runtime_flags)) {
676                         spin_unlock(&BTRFS_I(inode)->lock);
677                         release = true;
678                         goto migrate;
679                 }
680                 spin_unlock(&BTRFS_I(inode)->lock);
681
682                 /* Ok we didn't have space pre-reserved.  This shouldn't happen
683                  * too often but it can happen if we do delalloc to an existing
684                  * inode which gets dirtied because of the time update, and then
685                  * isn't touched again until after the transaction commits and
686                  * then we try to write out the data.  First try to be nice and
687                  * reserve something strictly for us.  If not be a pain and try
688                  * to steal from the delalloc block rsv.
689                  */
690                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
691                                           BTRFS_RESERVE_NO_FLUSH);
692                 if (!ret)
693                         goto out;
694
695                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
696                 if (!ret)
697                         goto out;
698
699                 /*
700                  * Ok this is a problem, let's just steal from the global rsv
701                  * since this really shouldn't happen that often.
702                  */
703                 WARN_ON(1);
704                 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
705                                               dst_rsv, num_bytes);
706                 goto out;
707         }
708
709 migrate:
710         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
711
712 out:
713         /*
714          * Migrate only takes a reservation, it doesn't touch the size of the
715          * block_rsv.  This is to simplify people who don't normally have things
716          * migrated from their block rsv.  If they go to release their
717          * reservation, that will decrease the size as well, so if migrate
718          * reduced size we'd end up with a negative size.  But for the
719          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
720          * but we could in fact do this reserve/migrate dance several times
721          * between the time we did the original reservation and we'd clean it
722          * up.  So to take care of this, release the space for the meta
723          * reservation here.  I think it may be time for a documentation page on
724          * how block rsvs. work.
725          */
726         if (!ret) {
727                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
728                                               btrfs_ino(inode), num_bytes, 1);
729                 node->bytes_reserved = num_bytes;
730         }
731
732         if (release) {
733                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
734                                               btrfs_ino(inode), num_bytes, 0);
735                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
736         }
737
738         return ret;
739 }
740
741 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
742                                                 struct btrfs_delayed_node *node)
743 {
744         struct btrfs_block_rsv *rsv;
745
746         if (!node->bytes_reserved)
747                 return;
748
749         rsv = &root->fs_info->delayed_block_rsv;
750         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
751                                       node->inode_id, node->bytes_reserved, 0);
752         btrfs_block_rsv_release(root, rsv,
753                                 node->bytes_reserved);
754         node->bytes_reserved = 0;
755 }
756
757 /*
758  * This helper will insert some continuous items into the same leaf according
759  * to the free space of the leaf.
760  */
761 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
762                                 struct btrfs_root *root,
763                                 struct btrfs_path *path,
764                                 struct btrfs_delayed_item *item)
765 {
766         struct btrfs_delayed_item *curr, *next;
767         int free_space;
768         int total_data_size = 0, total_size = 0;
769         struct extent_buffer *leaf;
770         char *data_ptr;
771         struct btrfs_key *keys;
772         u32 *data_size;
773         struct list_head head;
774         int slot;
775         int nitems;
776         int i;
777         int ret = 0;
778
779         BUG_ON(!path->nodes[0]);
780
781         leaf = path->nodes[0];
782         free_space = btrfs_leaf_free_space(root, leaf);
783         INIT_LIST_HEAD(&head);
784
785         next = item;
786         nitems = 0;
787
788         /*
789          * count the number of the continuous items that we can insert in batch
790          */
791         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
792                free_space) {
793                 total_data_size += next->data_len;
794                 total_size += next->data_len + sizeof(struct btrfs_item);
795                 list_add_tail(&next->tree_list, &head);
796                 nitems++;
797
798                 curr = next;
799                 next = __btrfs_next_delayed_item(curr);
800                 if (!next)
801                         break;
802
803                 if (!btrfs_is_continuous_delayed_item(curr, next))
804                         break;
805         }
806
807         if (!nitems) {
808                 ret = 0;
809                 goto out;
810         }
811
812         /*
813          * we need allocate some memory space, but it might cause the task
814          * to sleep, so we set all locked nodes in the path to blocking locks
815          * first.
816          */
817         btrfs_set_path_blocking(path);
818
819         keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
820         if (!keys) {
821                 ret = -ENOMEM;
822                 goto out;
823         }
824
825         data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
826         if (!data_size) {
827                 ret = -ENOMEM;
828                 goto error;
829         }
830
831         /* get keys of all the delayed items */
832         i = 0;
833         list_for_each_entry(next, &head, tree_list) {
834                 keys[i] = next->key;
835                 data_size[i] = next->data_len;
836                 i++;
837         }
838
839         /* reset all the locked nodes in the patch to spinning locks. */
840         btrfs_clear_path_blocking(path, NULL, 0);
841
842         /* insert the keys of the items */
843         setup_items_for_insert(trans, root, path, keys, data_size,
844                                total_data_size, total_size, nitems);
845
846         /* insert the dir index items */
847         slot = path->slots[0];
848         list_for_each_entry_safe(curr, next, &head, tree_list) {
849                 data_ptr = btrfs_item_ptr(leaf, slot, char);
850                 write_extent_buffer(leaf, &curr->data,
851                                     (unsigned long)data_ptr,
852                                     curr->data_len);
853                 slot++;
854
855                 btrfs_delayed_item_release_metadata(root, curr);
856
857                 list_del(&curr->tree_list);
858                 btrfs_release_delayed_item(curr);
859         }
860
861 error:
862         kfree(data_size);
863         kfree(keys);
864 out:
865         return ret;
866 }
867
868 /*
869  * This helper can just do simple insertion that needn't extend item for new
870  * data, such as directory name index insertion, inode insertion.
871  */
872 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
873                                      struct btrfs_root *root,
874                                      struct btrfs_path *path,
875                                      struct btrfs_delayed_item *delayed_item)
876 {
877         struct extent_buffer *leaf;
878         char *ptr;
879         int ret;
880
881         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
882                                       delayed_item->data_len);
883         if (ret < 0 && ret != -EEXIST)
884                 return ret;
885
886         leaf = path->nodes[0];
887
888         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
889
890         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
891                             delayed_item->data_len);
892         btrfs_mark_buffer_dirty(leaf);
893
894         btrfs_delayed_item_release_metadata(root, delayed_item);
895         return 0;
896 }
897
898 /*
899  * we insert an item first, then if there are some continuous items, we try
900  * to insert those items into the same leaf.
901  */
902 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
903                                       struct btrfs_path *path,
904                                       struct btrfs_root *root,
905                                       struct btrfs_delayed_node *node)
906 {
907         struct btrfs_delayed_item *curr, *prev;
908         int ret = 0;
909
910 do_again:
911         mutex_lock(&node->mutex);
912         curr = __btrfs_first_delayed_insertion_item(node);
913         if (!curr)
914                 goto insert_end;
915
916         ret = btrfs_insert_delayed_item(trans, root, path, curr);
917         if (ret < 0) {
918                 btrfs_release_path(path);
919                 goto insert_end;
920         }
921
922         prev = curr;
923         curr = __btrfs_next_delayed_item(prev);
924         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
925                 /* insert the continuous items into the same leaf */
926                 path->slots[0]++;
927                 btrfs_batch_insert_items(trans, root, path, curr);
928         }
929         btrfs_release_delayed_item(prev);
930         btrfs_mark_buffer_dirty(path->nodes[0]);
931
932         btrfs_release_path(path);
933         mutex_unlock(&node->mutex);
934         goto do_again;
935
936 insert_end:
937         mutex_unlock(&node->mutex);
938         return ret;
939 }
940
941 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
942                                     struct btrfs_root *root,
943                                     struct btrfs_path *path,
944                                     struct btrfs_delayed_item *item)
945 {
946         struct btrfs_delayed_item *curr, *next;
947         struct extent_buffer *leaf;
948         struct btrfs_key key;
949         struct list_head head;
950         int nitems, i, last_item;
951         int ret = 0;
952
953         BUG_ON(!path->nodes[0]);
954
955         leaf = path->nodes[0];
956
957         i = path->slots[0];
958         last_item = btrfs_header_nritems(leaf) - 1;
959         if (i > last_item)
960                 return -ENOENT; /* FIXME: Is errno suitable? */
961
962         next = item;
963         INIT_LIST_HEAD(&head);
964         btrfs_item_key_to_cpu(leaf, &key, i);
965         nitems = 0;
966         /*
967          * count the number of the dir index items that we can delete in batch
968          */
969         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
970                 list_add_tail(&next->tree_list, &head);
971                 nitems++;
972
973                 curr = next;
974                 next = __btrfs_next_delayed_item(curr);
975                 if (!next)
976                         break;
977
978                 if (!btrfs_is_continuous_delayed_item(curr, next))
979                         break;
980
981                 i++;
982                 if (i > last_item)
983                         break;
984                 btrfs_item_key_to_cpu(leaf, &key, i);
985         }
986
987         if (!nitems)
988                 return 0;
989
990         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
991         if (ret)
992                 goto out;
993
994         list_for_each_entry_safe(curr, next, &head, tree_list) {
995                 btrfs_delayed_item_release_metadata(root, curr);
996                 list_del(&curr->tree_list);
997                 btrfs_release_delayed_item(curr);
998         }
999
1000 out:
1001         return ret;
1002 }
1003
1004 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1005                                       struct btrfs_path *path,
1006                                       struct btrfs_root *root,
1007                                       struct btrfs_delayed_node *node)
1008 {
1009         struct btrfs_delayed_item *curr, *prev;
1010         int ret = 0;
1011
1012 do_again:
1013         mutex_lock(&node->mutex);
1014         curr = __btrfs_first_delayed_deletion_item(node);
1015         if (!curr)
1016                 goto delete_fail;
1017
1018         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1019         if (ret < 0)
1020                 goto delete_fail;
1021         else if (ret > 0) {
1022                 /*
1023                  * can't find the item which the node points to, so this node
1024                  * is invalid, just drop it.
1025                  */
1026                 prev = curr;
1027                 curr = __btrfs_next_delayed_item(prev);
1028                 btrfs_release_delayed_item(prev);
1029                 ret = 0;
1030                 btrfs_release_path(path);
1031                 if (curr) {
1032                         mutex_unlock(&node->mutex);
1033                         goto do_again;
1034                 } else
1035                         goto delete_fail;
1036         }
1037
1038         btrfs_batch_delete_items(trans, root, path, curr);
1039         btrfs_release_path(path);
1040         mutex_unlock(&node->mutex);
1041         goto do_again;
1042
1043 delete_fail:
1044         btrfs_release_path(path);
1045         mutex_unlock(&node->mutex);
1046         return ret;
1047 }
1048
1049 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1050 {
1051         struct btrfs_delayed_root *delayed_root;
1052
1053         if (delayed_node && delayed_node->inode_dirty) {
1054                 BUG_ON(!delayed_node->root);
1055                 delayed_node->inode_dirty = 0;
1056                 delayed_node->count--;
1057
1058                 delayed_root = delayed_node->root->fs_info->delayed_root;
1059                 if (atomic_dec_return(&delayed_root->items) <
1060                     BTRFS_DELAYED_BACKGROUND &&
1061                     waitqueue_active(&delayed_root->wait))
1062                         wake_up(&delayed_root->wait);
1063         }
1064 }
1065
1066 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1067                                         struct btrfs_root *root,
1068                                         struct btrfs_path *path,
1069                                         struct btrfs_delayed_node *node)
1070 {
1071         struct btrfs_key key;
1072         struct btrfs_inode_item *inode_item;
1073         struct extent_buffer *leaf;
1074         int ret;
1075
1076         key.objectid = node->inode_id;
1077         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1078         key.offset = 0;
1079
1080         ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1081         if (ret > 0) {
1082                 btrfs_release_path(path);
1083                 return -ENOENT;
1084         } else if (ret < 0) {
1085                 return ret;
1086         }
1087
1088         btrfs_unlock_up_safe(path, 1);
1089         leaf = path->nodes[0];
1090         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1091                                     struct btrfs_inode_item);
1092         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1093                             sizeof(struct btrfs_inode_item));
1094         btrfs_mark_buffer_dirty(leaf);
1095         btrfs_release_path(path);
1096
1097         btrfs_delayed_inode_release_metadata(root, node);
1098         btrfs_release_delayed_inode(node);
1099
1100         return 0;
1101 }
1102
1103 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1104                                              struct btrfs_root *root,
1105                                              struct btrfs_path *path,
1106                                              struct btrfs_delayed_node *node)
1107 {
1108         int ret;
1109
1110         mutex_lock(&node->mutex);
1111         if (!node->inode_dirty) {
1112                 mutex_unlock(&node->mutex);
1113                 return 0;
1114         }
1115
1116         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1117         mutex_unlock(&node->mutex);
1118         return ret;
1119 }
1120
1121 static inline int
1122 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1123                                    struct btrfs_path *path,
1124                                    struct btrfs_delayed_node *node)
1125 {
1126         int ret;
1127
1128         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1129         if (ret)
1130                 return ret;
1131
1132         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1133         if (ret)
1134                 return ret;
1135
1136         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1137         return ret;
1138 }
1139
1140 /*
1141  * Called when committing the transaction.
1142  * Returns 0 on success.
1143  * Returns < 0 on error and returns with an aborted transaction with any
1144  * outstanding delayed items cleaned up.
1145  */
1146 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1147                                      struct btrfs_root *root, int nr)
1148 {
1149         struct btrfs_delayed_root *delayed_root;
1150         struct btrfs_delayed_node *curr_node, *prev_node;
1151         struct btrfs_path *path;
1152         struct btrfs_block_rsv *block_rsv;
1153         int ret = 0;
1154         bool count = (nr > 0);
1155
1156         if (trans->aborted)
1157                 return -EIO;
1158
1159         path = btrfs_alloc_path();
1160         if (!path)
1161                 return -ENOMEM;
1162         path->leave_spinning = 1;
1163
1164         block_rsv = trans->block_rsv;
1165         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1166
1167         delayed_root = btrfs_get_delayed_root(root);
1168
1169         curr_node = btrfs_first_delayed_node(delayed_root);
1170         while (curr_node && (!count || (count && nr--))) {
1171                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1172                                                          curr_node);
1173                 if (ret) {
1174                         btrfs_release_delayed_node(curr_node);
1175                         curr_node = NULL;
1176                         btrfs_abort_transaction(trans, root, ret);
1177                         break;
1178                 }
1179
1180                 prev_node = curr_node;
1181                 curr_node = btrfs_next_delayed_node(curr_node);
1182                 btrfs_release_delayed_node(prev_node);
1183         }
1184
1185         if (curr_node)
1186                 btrfs_release_delayed_node(curr_node);
1187         btrfs_free_path(path);
1188         trans->block_rsv = block_rsv;
1189
1190         return ret;
1191 }
1192
1193 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1194                             struct btrfs_root *root)
1195 {
1196         return __btrfs_run_delayed_items(trans, root, -1);
1197 }
1198
1199 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1200                                struct btrfs_root *root, int nr)
1201 {
1202         return __btrfs_run_delayed_items(trans, root, nr);
1203 }
1204
1205 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1206                                      struct inode *inode)
1207 {
1208         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1209         struct btrfs_path *path;
1210         struct btrfs_block_rsv *block_rsv;
1211         int ret;
1212
1213         if (!delayed_node)
1214                 return 0;
1215
1216         mutex_lock(&delayed_node->mutex);
1217         if (!delayed_node->count) {
1218                 mutex_unlock(&delayed_node->mutex);
1219                 btrfs_release_delayed_node(delayed_node);
1220                 return 0;
1221         }
1222         mutex_unlock(&delayed_node->mutex);
1223
1224         path = btrfs_alloc_path();
1225         if (!path)
1226                 return -ENOMEM;
1227         path->leave_spinning = 1;
1228
1229         block_rsv = trans->block_rsv;
1230         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1231
1232         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1233
1234         btrfs_release_delayed_node(delayed_node);
1235         btrfs_free_path(path);
1236         trans->block_rsv = block_rsv;
1237
1238         return ret;
1239 }
1240
1241 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1242 {
1243         struct btrfs_trans_handle *trans;
1244         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1245         struct btrfs_path *path;
1246         struct btrfs_block_rsv *block_rsv;
1247         int ret;
1248
1249         if (!delayed_node)
1250                 return 0;
1251
1252         mutex_lock(&delayed_node->mutex);
1253         if (!delayed_node->inode_dirty) {
1254                 mutex_unlock(&delayed_node->mutex);
1255                 btrfs_release_delayed_node(delayed_node);
1256                 return 0;
1257         }
1258         mutex_unlock(&delayed_node->mutex);
1259
1260         trans = btrfs_join_transaction(delayed_node->root);
1261         if (IS_ERR(trans)) {
1262                 ret = PTR_ERR(trans);
1263                 goto out;
1264         }
1265
1266         path = btrfs_alloc_path();
1267         if (!path) {
1268                 ret = -ENOMEM;
1269                 goto trans_out;
1270         }
1271         path->leave_spinning = 1;
1272
1273         block_rsv = trans->block_rsv;
1274         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1275
1276         mutex_lock(&delayed_node->mutex);
1277         if (delayed_node->inode_dirty)
1278                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1279                                                    path, delayed_node);
1280         else
1281                 ret = 0;
1282         mutex_unlock(&delayed_node->mutex);
1283
1284         btrfs_free_path(path);
1285         trans->block_rsv = block_rsv;
1286 trans_out:
1287         btrfs_end_transaction(trans, delayed_node->root);
1288         btrfs_btree_balance_dirty(delayed_node->root);
1289 out:
1290         btrfs_release_delayed_node(delayed_node);
1291
1292         return ret;
1293 }
1294
1295 void btrfs_remove_delayed_node(struct inode *inode)
1296 {
1297         struct btrfs_delayed_node *delayed_node;
1298
1299         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1300         if (!delayed_node)
1301                 return;
1302
1303         BTRFS_I(inode)->delayed_node = NULL;
1304         btrfs_release_delayed_node(delayed_node);
1305 }
1306
1307 struct btrfs_async_delayed_node {
1308         struct btrfs_root *root;
1309         struct btrfs_delayed_node *delayed_node;
1310         struct btrfs_work work;
1311 };
1312
1313 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1314 {
1315         struct btrfs_async_delayed_node *async_node;
1316         struct btrfs_trans_handle *trans;
1317         struct btrfs_path *path;
1318         struct btrfs_delayed_node *delayed_node = NULL;
1319         struct btrfs_root *root;
1320         struct btrfs_block_rsv *block_rsv;
1321         int need_requeue = 0;
1322
1323         async_node = container_of(work, struct btrfs_async_delayed_node, work);
1324
1325         path = btrfs_alloc_path();
1326         if (!path)
1327                 goto out;
1328         path->leave_spinning = 1;
1329
1330         delayed_node = async_node->delayed_node;
1331         root = delayed_node->root;
1332
1333         trans = btrfs_join_transaction(root);
1334         if (IS_ERR(trans))
1335                 goto free_path;
1336
1337         block_rsv = trans->block_rsv;
1338         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341         /*
1342          * Maybe new delayed items have been inserted, so we need requeue
1343          * the work. Besides that, we must dequeue the empty delayed nodes
1344          * to avoid the race between delayed items balance and the worker.
1345          * The race like this:
1346          *      Task1                           Worker thread
1347          *                                      count == 0, needn't requeue
1348          *                                        also needn't insert the
1349          *                                        delayed node into prepare
1350          *                                        list again.
1351          *      add lots of delayed items
1352          *      queue the delayed node
1353          *        already in the list,
1354          *        and not in the prepare
1355          *        list, it means the delayed
1356          *        node is being dealt with
1357          *        by the worker.
1358          *      do delayed items balance
1359          *        the delayed node is being
1360          *        dealt with by the worker
1361          *        now, just wait.
1362          *                                      the worker goto idle.
1363          * Task1 will sleep until the transaction is commited.
1364          */
1365         mutex_lock(&delayed_node->mutex);
1366         if (delayed_node->count)
1367                 need_requeue = 1;
1368         else
1369                 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1370                                            delayed_node);
1371         mutex_unlock(&delayed_node->mutex);
1372
1373         trans->block_rsv = block_rsv;
1374         btrfs_end_transaction_dmeta(trans, root);
1375         btrfs_btree_balance_dirty_nodelay(root);
1376 free_path:
1377         btrfs_free_path(path);
1378 out:
1379         if (need_requeue)
1380                 btrfs_requeue_work(&async_node->work);
1381         else {
1382                 btrfs_release_prepared_delayed_node(delayed_node);
1383                 kfree(async_node);
1384         }
1385 }
1386
1387 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1388                                      struct btrfs_root *root, int all)
1389 {
1390         struct btrfs_async_delayed_node *async_node;
1391         struct btrfs_delayed_node *curr;
1392         int count = 0;
1393
1394 again:
1395         curr = btrfs_first_prepared_delayed_node(delayed_root);
1396         if (!curr)
1397                 return 0;
1398
1399         async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1400         if (!async_node) {
1401                 btrfs_release_prepared_delayed_node(curr);
1402                 return -ENOMEM;
1403         }
1404
1405         async_node->root = root;
1406         async_node->delayed_node = curr;
1407
1408         async_node->work.func = btrfs_async_run_delayed_node_done;
1409         async_node->work.flags = 0;
1410
1411         btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1412         count++;
1413
1414         if (all || count < 4)
1415                 goto again;
1416
1417         return 0;
1418 }
1419
1420 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1421 {
1422         struct btrfs_delayed_root *delayed_root;
1423         delayed_root = btrfs_get_delayed_root(root);
1424         WARN_ON(btrfs_first_delayed_node(delayed_root));
1425 }
1426
1427 void btrfs_balance_delayed_items(struct btrfs_root *root)
1428 {
1429         struct btrfs_delayed_root *delayed_root;
1430
1431         delayed_root = btrfs_get_delayed_root(root);
1432
1433         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1434                 return;
1435
1436         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1437                 int ret;
1438                 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1439                 if (ret)
1440                         return;
1441
1442                 wait_event_interruptible_timeout(
1443                                 delayed_root->wait,
1444                                 (atomic_read(&delayed_root->items) <
1445                                  BTRFS_DELAYED_BACKGROUND),
1446                                 HZ);
1447                 return;
1448         }
1449
1450         btrfs_wq_run_delayed_node(delayed_root, root, 0);
1451 }
1452
1453 /* Will return 0 or -ENOMEM */
1454 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1455                                    struct btrfs_root *root, const char *name,
1456                                    int name_len, struct inode *dir,
1457                                    struct btrfs_disk_key *disk_key, u8 type,
1458                                    u64 index)
1459 {
1460         struct btrfs_delayed_node *delayed_node;
1461         struct btrfs_delayed_item *delayed_item;
1462         struct btrfs_dir_item *dir_item;
1463         int ret;
1464
1465         delayed_node = btrfs_get_or_create_delayed_node(dir);
1466         if (IS_ERR(delayed_node))
1467                 return PTR_ERR(delayed_node);
1468
1469         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1470         if (!delayed_item) {
1471                 ret = -ENOMEM;
1472                 goto release_node;
1473         }
1474
1475         delayed_item->key.objectid = btrfs_ino(dir);
1476         btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1477         delayed_item->key.offset = index;
1478
1479         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1480         dir_item->location = *disk_key;
1481         dir_item->transid = cpu_to_le64(trans->transid);
1482         dir_item->data_len = 0;
1483         dir_item->name_len = cpu_to_le16(name_len);
1484         dir_item->type = type;
1485         memcpy((char *)(dir_item + 1), name, name_len);
1486
1487         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1488         /*
1489          * we have reserved enough space when we start a new transaction,
1490          * so reserving metadata failure is impossible
1491          */
1492         BUG_ON(ret);
1493
1494
1495         mutex_lock(&delayed_node->mutex);
1496         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497         if (unlikely(ret)) {
1498                 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1499                                 "the insertion tree of the delayed node"
1500                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1501                                 name,
1502                                 (unsigned long long)delayed_node->root->objectid,
1503                                 (unsigned long long)delayed_node->inode_id,
1504                                 ret);
1505                 BUG();
1506         }
1507         mutex_unlock(&delayed_node->mutex);
1508
1509 release_node:
1510         btrfs_release_delayed_node(delayed_node);
1511         return ret;
1512 }
1513
1514 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1515                                                struct btrfs_delayed_node *node,
1516                                                struct btrfs_key *key)
1517 {
1518         struct btrfs_delayed_item *item;
1519
1520         mutex_lock(&node->mutex);
1521         item = __btrfs_lookup_delayed_insertion_item(node, key);
1522         if (!item) {
1523                 mutex_unlock(&node->mutex);
1524                 return 1;
1525         }
1526
1527         btrfs_delayed_item_release_metadata(root, item);
1528         btrfs_release_delayed_item(item);
1529         mutex_unlock(&node->mutex);
1530         return 0;
1531 }
1532
1533 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1534                                    struct btrfs_root *root, struct inode *dir,
1535                                    u64 index)
1536 {
1537         struct btrfs_delayed_node *node;
1538         struct btrfs_delayed_item *item;
1539         struct btrfs_key item_key;
1540         int ret;
1541
1542         node = btrfs_get_or_create_delayed_node(dir);
1543         if (IS_ERR(node))
1544                 return PTR_ERR(node);
1545
1546         item_key.objectid = btrfs_ino(dir);
1547         btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1548         item_key.offset = index;
1549
1550         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1551         if (!ret)
1552                 goto end;
1553
1554         item = btrfs_alloc_delayed_item(0);
1555         if (!item) {
1556                 ret = -ENOMEM;
1557                 goto end;
1558         }
1559
1560         item->key = item_key;
1561
1562         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1563         /*
1564          * we have reserved enough space when we start a new transaction,
1565          * so reserving metadata failure is impossible.
1566          */
1567         BUG_ON(ret);
1568
1569         mutex_lock(&node->mutex);
1570         ret = __btrfs_add_delayed_deletion_item(node, item);
1571         if (unlikely(ret)) {
1572                 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1573                                 "into the deletion tree of the delayed node"
1574                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1575                                 (unsigned long long)index,
1576                                 (unsigned long long)node->root->objectid,
1577                                 (unsigned long long)node->inode_id,
1578                                 ret);
1579                 BUG();
1580         }
1581         mutex_unlock(&node->mutex);
1582 end:
1583         btrfs_release_delayed_node(node);
1584         return ret;
1585 }
1586
1587 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1588 {
1589         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1590
1591         if (!delayed_node)
1592                 return -ENOENT;
1593
1594         /*
1595          * Since we have held i_mutex of this directory, it is impossible that
1596          * a new directory index is added into the delayed node and index_cnt
1597          * is updated now. So we needn't lock the delayed node.
1598          */
1599         if (!delayed_node->index_cnt) {
1600                 btrfs_release_delayed_node(delayed_node);
1601                 return -EINVAL;
1602         }
1603
1604         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1605         btrfs_release_delayed_node(delayed_node);
1606         return 0;
1607 }
1608
1609 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1610                              struct list_head *del_list)
1611 {
1612         struct btrfs_delayed_node *delayed_node;
1613         struct btrfs_delayed_item *item;
1614
1615         delayed_node = btrfs_get_delayed_node(inode);
1616         if (!delayed_node)
1617                 return;
1618
1619         mutex_lock(&delayed_node->mutex);
1620         item = __btrfs_first_delayed_insertion_item(delayed_node);
1621         while (item) {
1622                 atomic_inc(&item->refs);
1623                 list_add_tail(&item->readdir_list, ins_list);
1624                 item = __btrfs_next_delayed_item(item);
1625         }
1626
1627         item = __btrfs_first_delayed_deletion_item(delayed_node);
1628         while (item) {
1629                 atomic_inc(&item->refs);
1630                 list_add_tail(&item->readdir_list, del_list);
1631                 item = __btrfs_next_delayed_item(item);
1632         }
1633         mutex_unlock(&delayed_node->mutex);
1634         /*
1635          * This delayed node is still cached in the btrfs inode, so refs
1636          * must be > 1 now, and we needn't check it is going to be freed
1637          * or not.
1638          *
1639          * Besides that, this function is used to read dir, we do not
1640          * insert/delete delayed items in this period. So we also needn't
1641          * requeue or dequeue this delayed node.
1642          */
1643         atomic_dec(&delayed_node->refs);
1644 }
1645
1646 void btrfs_put_delayed_items(struct list_head *ins_list,
1647                              struct list_head *del_list)
1648 {
1649         struct btrfs_delayed_item *curr, *next;
1650
1651         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1652                 list_del(&curr->readdir_list);
1653                 if (atomic_dec_and_test(&curr->refs))
1654                         kfree(curr);
1655         }
1656
1657         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1658                 list_del(&curr->readdir_list);
1659                 if (atomic_dec_and_test(&curr->refs))
1660                         kfree(curr);
1661         }
1662 }
1663
1664 int btrfs_should_delete_dir_index(struct list_head *del_list,
1665                                   u64 index)
1666 {
1667         struct btrfs_delayed_item *curr, *next;
1668         int ret;
1669
1670         if (list_empty(del_list))
1671                 return 0;
1672
1673         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1674                 if (curr->key.offset > index)
1675                         break;
1676
1677                 list_del(&curr->readdir_list);
1678                 ret = (curr->key.offset == index);
1679
1680                 if (atomic_dec_and_test(&curr->refs))
1681                         kfree(curr);
1682
1683                 if (ret)
1684                         return 1;
1685                 else
1686                         continue;
1687         }
1688         return 0;
1689 }
1690
1691 /*
1692  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1693  *
1694  */
1695 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1696                                     filldir_t filldir,
1697                                     struct list_head *ins_list)
1698 {
1699         struct btrfs_dir_item *di;
1700         struct btrfs_delayed_item *curr, *next;
1701         struct btrfs_key location;
1702         char *name;
1703         int name_len;
1704         int over = 0;
1705         unsigned char d_type;
1706
1707         if (list_empty(ins_list))
1708                 return 0;
1709
1710         /*
1711          * Changing the data of the delayed item is impossible. So
1712          * we needn't lock them. And we have held i_mutex of the
1713          * directory, nobody can delete any directory indexes now.
1714          */
1715         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1716                 list_del(&curr->readdir_list);
1717
1718                 if (curr->key.offset < filp->f_pos) {
1719                         if (atomic_dec_and_test(&curr->refs))
1720                                 kfree(curr);
1721                         continue;
1722                 }
1723
1724                 filp->f_pos = curr->key.offset;
1725
1726                 di = (struct btrfs_dir_item *)curr->data;
1727                 name = (char *)(di + 1);
1728                 name_len = le16_to_cpu(di->name_len);
1729
1730                 d_type = btrfs_filetype_table[di->type];
1731                 btrfs_disk_key_to_cpu(&location, &di->location);
1732
1733                 over = filldir(dirent, name, name_len, curr->key.offset,
1734                                location.objectid, d_type);
1735
1736                 if (atomic_dec_and_test(&curr->refs))
1737                         kfree(curr);
1738
1739                 if (over)
1740                         return 1;
1741         }
1742         return 0;
1743 }
1744
1745 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1746                          generation, 64);
1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1748                          sequence, 64);
1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1750                          transid, 64);
1751 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1752 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1753                          nbytes, 64);
1754 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1755                          block_group, 64);
1756 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1757 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1758 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1759 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1760 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1761 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1762
1763 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1764 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1765
1766 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1767                                   struct btrfs_inode_item *inode_item,
1768                                   struct inode *inode)
1769 {
1770         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1771         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1772         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1773         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1774         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1775         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1776         btrfs_set_stack_inode_generation(inode_item,
1777                                          BTRFS_I(inode)->generation);
1778         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1779         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1780         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1781         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1782         btrfs_set_stack_inode_block_group(inode_item, 0);
1783
1784         btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1785                                      inode->i_atime.tv_sec);
1786         btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1787                                       inode->i_atime.tv_nsec);
1788
1789         btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1790                                      inode->i_mtime.tv_sec);
1791         btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1792                                       inode->i_mtime.tv_nsec);
1793
1794         btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1795                                      inode->i_ctime.tv_sec);
1796         btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1797                                       inode->i_ctime.tv_nsec);
1798 }
1799
1800 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1801 {
1802         struct btrfs_delayed_node *delayed_node;
1803         struct btrfs_inode_item *inode_item;
1804         struct btrfs_timespec *tspec;
1805
1806         delayed_node = btrfs_get_delayed_node(inode);
1807         if (!delayed_node)
1808                 return -ENOENT;
1809
1810         mutex_lock(&delayed_node->mutex);
1811         if (!delayed_node->inode_dirty) {
1812                 mutex_unlock(&delayed_node->mutex);
1813                 btrfs_release_delayed_node(delayed_node);
1814                 return -ENOENT;
1815         }
1816
1817         inode_item = &delayed_node->inode_item;
1818
1819         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1820         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1821         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1822         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1823         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1824         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1825         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1826         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1827         inode->i_rdev = 0;
1828         *rdev = btrfs_stack_inode_rdev(inode_item);
1829         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1830
1831         tspec = btrfs_inode_atime(inode_item);
1832         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1833         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1834
1835         tspec = btrfs_inode_mtime(inode_item);
1836         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1837         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1838
1839         tspec = btrfs_inode_ctime(inode_item);
1840         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1841         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1842
1843         inode->i_generation = BTRFS_I(inode)->generation;
1844         BTRFS_I(inode)->index_cnt = (u64)-1;
1845
1846         mutex_unlock(&delayed_node->mutex);
1847         btrfs_release_delayed_node(delayed_node);
1848         return 0;
1849 }
1850
1851 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1852                                struct btrfs_root *root, struct inode *inode)
1853 {
1854         struct btrfs_delayed_node *delayed_node;
1855         int ret = 0;
1856
1857         delayed_node = btrfs_get_or_create_delayed_node(inode);
1858         if (IS_ERR(delayed_node))
1859                 return PTR_ERR(delayed_node);
1860
1861         mutex_lock(&delayed_node->mutex);
1862         if (delayed_node->inode_dirty) {
1863                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1864                 goto release_node;
1865         }
1866
1867         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1868                                                    delayed_node);
1869         if (ret)
1870                 goto release_node;
1871
1872         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1873         delayed_node->inode_dirty = 1;
1874         delayed_node->count++;
1875         atomic_inc(&root->fs_info->delayed_root->items);
1876 release_node:
1877         mutex_unlock(&delayed_node->mutex);
1878         btrfs_release_delayed_node(delayed_node);
1879         return ret;
1880 }
1881
1882 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1883 {
1884         struct btrfs_root *root = delayed_node->root;
1885         struct btrfs_delayed_item *curr_item, *prev_item;
1886
1887         mutex_lock(&delayed_node->mutex);
1888         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1889         while (curr_item) {
1890                 btrfs_delayed_item_release_metadata(root, curr_item);
1891                 prev_item = curr_item;
1892                 curr_item = __btrfs_next_delayed_item(prev_item);
1893                 btrfs_release_delayed_item(prev_item);
1894         }
1895
1896         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1897         while (curr_item) {
1898                 btrfs_delayed_item_release_metadata(root, curr_item);
1899                 prev_item = curr_item;
1900                 curr_item = __btrfs_next_delayed_item(prev_item);
1901                 btrfs_release_delayed_item(prev_item);
1902         }
1903
1904         if (delayed_node->inode_dirty) {
1905                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1906                 btrfs_release_delayed_inode(delayed_node);
1907         }
1908         mutex_unlock(&delayed_node->mutex);
1909 }
1910
1911 void btrfs_kill_delayed_inode_items(struct inode *inode)
1912 {
1913         struct btrfs_delayed_node *delayed_node;
1914
1915         delayed_node = btrfs_get_delayed_node(inode);
1916         if (!delayed_node)
1917                 return;
1918
1919         __btrfs_kill_delayed_node(delayed_node);
1920         btrfs_release_delayed_node(delayed_node);
1921 }
1922
1923 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1924 {
1925         u64 inode_id = 0;
1926         struct btrfs_delayed_node *delayed_nodes[8];
1927         int i, n;
1928
1929         while (1) {
1930                 spin_lock(&root->inode_lock);
1931                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1932                                            (void **)delayed_nodes, inode_id,
1933                                            ARRAY_SIZE(delayed_nodes));
1934                 if (!n) {
1935                         spin_unlock(&root->inode_lock);
1936                         break;
1937                 }
1938
1939                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1940
1941                 for (i = 0; i < n; i++)
1942                         atomic_inc(&delayed_nodes[i]->refs);
1943                 spin_unlock(&root->inode_lock);
1944
1945                 for (i = 0; i < n; i++) {
1946                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1947                         btrfs_release_delayed_node(delayed_nodes[i]);
1948                 }
1949         }
1950 }
1951
1952 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1953 {
1954         struct btrfs_delayed_root *delayed_root;
1955         struct btrfs_delayed_node *curr_node, *prev_node;
1956
1957         delayed_root = btrfs_get_delayed_root(root);
1958
1959         curr_node = btrfs_first_delayed_node(delayed_root);
1960         while (curr_node) {
1961                 __btrfs_kill_delayed_node(curr_node);
1962
1963                 prev_node = curr_node;
1964                 curr_node = btrfs_next_delayed_node(curr_node);
1965                 btrfs_release_delayed_node(prev_node);
1966         }
1967 }
1968