ext4: force inode writes when nfsd calls commit_metadata()
[platform/kernel/linux-exynos.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK         512
27 #define BTRFS_DELAYED_BACKGROUND        128
28 #define BTRFS_DELAYED_BATCH             16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35                                         sizeof(struct btrfs_delayed_node),
36                                         0,
37                                         SLAB_MEM_SPREAD,
38                                         NULL);
39         if (!delayed_node_cache)
40                 return -ENOMEM;
41         return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46         kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         refcount_set(&delayed_node->refs, 0);
56         delayed_node->ins_root = RB_ROOT;
57         delayed_node->del_root = RB_ROOT;
58         mutex_init(&delayed_node->mutex);
59         INIT_LIST_HEAD(&delayed_node->n_list);
60         INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
63 static inline int btrfs_is_continuous_delayed_item(
64                                         struct btrfs_delayed_item *item1,
65                                         struct btrfs_delayed_item *item2)
66 {
67         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68             item1->key.objectid == item2->key.objectid &&
69             item1->key.type == item2->key.type &&
70             item1->key.offset + 1 == item2->key.offset)
71                 return 1;
72         return 0;
73 }
74
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(
76                 struct btrfs_inode *btrfs_inode)
77 {
78         struct btrfs_root *root = btrfs_inode->root;
79         u64 ino = btrfs_ino(btrfs_inode);
80         struct btrfs_delayed_node *node;
81
82         node = READ_ONCE(btrfs_inode->delayed_node);
83         if (node) {
84                 refcount_inc(&node->refs);
85                 return node;
86         }
87
88         spin_lock(&root->inode_lock);
89         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90
91         if (node) {
92                 if (btrfs_inode->delayed_node) {
93                         refcount_inc(&node->refs);      /* can be accessed */
94                         BUG_ON(btrfs_inode->delayed_node != node);
95                         spin_unlock(&root->inode_lock);
96                         return node;
97                 }
98
99                 /*
100                  * It's possible that we're racing into the middle of removing
101                  * this node from the radix tree.  In this case, the refcount
102                  * was zero and it should never go back to one.  Just return
103                  * NULL like it was never in the radix at all; our release
104                  * function is in the process of removing it.
105                  *
106                  * Some implementations of refcount_inc refuse to bump the
107                  * refcount once it has hit zero.  If we don't do this dance
108                  * here, refcount_inc() may decide to just WARN_ONCE() instead
109                  * of actually bumping the refcount.
110                  *
111                  * If this node is properly in the radix, we want to bump the
112                  * refcount twice, once for the inode and once for this get
113                  * operation.
114                  */
115                 if (refcount_inc_not_zero(&node->refs)) {
116                         refcount_inc(&node->refs);
117                         btrfs_inode->delayed_node = node;
118                 } else {
119                         node = NULL;
120                 }
121
122                 spin_unlock(&root->inode_lock);
123                 return node;
124         }
125         spin_unlock(&root->inode_lock);
126
127         return NULL;
128 }
129
130 /* Will return either the node or PTR_ERR(-ENOMEM) */
131 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
132                 struct btrfs_inode *btrfs_inode)
133 {
134         struct btrfs_delayed_node *node;
135         struct btrfs_root *root = btrfs_inode->root;
136         u64 ino = btrfs_ino(btrfs_inode);
137         int ret;
138
139 again:
140         node = btrfs_get_delayed_node(btrfs_inode);
141         if (node)
142                 return node;
143
144         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
145         if (!node)
146                 return ERR_PTR(-ENOMEM);
147         btrfs_init_delayed_node(node, root, ino);
148
149         /* cached in the btrfs inode and can be accessed */
150         refcount_set(&node->refs, 2);
151
152         ret = radix_tree_preload(GFP_NOFS);
153         if (ret) {
154                 kmem_cache_free(delayed_node_cache, node);
155                 return ERR_PTR(ret);
156         }
157
158         spin_lock(&root->inode_lock);
159         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
160         if (ret == -EEXIST) {
161                 spin_unlock(&root->inode_lock);
162                 kmem_cache_free(delayed_node_cache, node);
163                 radix_tree_preload_end();
164                 goto again;
165         }
166         btrfs_inode->delayed_node = node;
167         spin_unlock(&root->inode_lock);
168         radix_tree_preload_end();
169
170         return node;
171 }
172
173 /*
174  * Call it when holding delayed_node->mutex
175  *
176  * If mod = 1, add this node into the prepared list.
177  */
178 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
179                                      struct btrfs_delayed_node *node,
180                                      int mod)
181 {
182         spin_lock(&root->lock);
183         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
184                 if (!list_empty(&node->p_list))
185                         list_move_tail(&node->p_list, &root->prepare_list);
186                 else if (mod)
187                         list_add_tail(&node->p_list, &root->prepare_list);
188         } else {
189                 list_add_tail(&node->n_list, &root->node_list);
190                 list_add_tail(&node->p_list, &root->prepare_list);
191                 refcount_inc(&node->refs);      /* inserted into list */
192                 root->nodes++;
193                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
194         }
195         spin_unlock(&root->lock);
196 }
197
198 /* Call it when holding delayed_node->mutex */
199 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
200                                        struct btrfs_delayed_node *node)
201 {
202         spin_lock(&root->lock);
203         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
204                 root->nodes--;
205                 refcount_dec(&node->refs);      /* not in the list */
206                 list_del_init(&node->n_list);
207                 if (!list_empty(&node->p_list))
208                         list_del_init(&node->p_list);
209                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
210         }
211         spin_unlock(&root->lock);
212 }
213
214 static struct btrfs_delayed_node *btrfs_first_delayed_node(
215                         struct btrfs_delayed_root *delayed_root)
216 {
217         struct list_head *p;
218         struct btrfs_delayed_node *node = NULL;
219
220         spin_lock(&delayed_root->lock);
221         if (list_empty(&delayed_root->node_list))
222                 goto out;
223
224         p = delayed_root->node_list.next;
225         node = list_entry(p, struct btrfs_delayed_node, n_list);
226         refcount_inc(&node->refs);
227 out:
228         spin_unlock(&delayed_root->lock);
229
230         return node;
231 }
232
233 static struct btrfs_delayed_node *btrfs_next_delayed_node(
234                                                 struct btrfs_delayed_node *node)
235 {
236         struct btrfs_delayed_root *delayed_root;
237         struct list_head *p;
238         struct btrfs_delayed_node *next = NULL;
239
240         delayed_root = node->root->fs_info->delayed_root;
241         spin_lock(&delayed_root->lock);
242         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
243                 /* not in the list */
244                 if (list_empty(&delayed_root->node_list))
245                         goto out;
246                 p = delayed_root->node_list.next;
247         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
248                 goto out;
249         else
250                 p = node->n_list.next;
251
252         next = list_entry(p, struct btrfs_delayed_node, n_list);
253         refcount_inc(&next->refs);
254 out:
255         spin_unlock(&delayed_root->lock);
256
257         return next;
258 }
259
260 static void __btrfs_release_delayed_node(
261                                 struct btrfs_delayed_node *delayed_node,
262                                 int mod)
263 {
264         struct btrfs_delayed_root *delayed_root;
265
266         if (!delayed_node)
267                 return;
268
269         delayed_root = delayed_node->root->fs_info->delayed_root;
270
271         mutex_lock(&delayed_node->mutex);
272         if (delayed_node->count)
273                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
274         else
275                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
276         mutex_unlock(&delayed_node->mutex);
277
278         if (refcount_dec_and_test(&delayed_node->refs)) {
279                 struct btrfs_root *root = delayed_node->root;
280
281                 spin_lock(&root->inode_lock);
282                 /*
283                  * Once our refcount goes to zero, nobody is allowed to bump it
284                  * back up.  We can delete it now.
285                  */
286                 ASSERT(refcount_read(&delayed_node->refs) == 0);
287                 radix_tree_delete(&root->delayed_nodes_tree,
288                                   delayed_node->inode_id);
289                 spin_unlock(&root->inode_lock);
290                 kmem_cache_free(delayed_node_cache, delayed_node);
291         }
292 }
293
294 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
295 {
296         __btrfs_release_delayed_node(node, 0);
297 }
298
299 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
300                                         struct btrfs_delayed_root *delayed_root)
301 {
302         struct list_head *p;
303         struct btrfs_delayed_node *node = NULL;
304
305         spin_lock(&delayed_root->lock);
306         if (list_empty(&delayed_root->prepare_list))
307                 goto out;
308
309         p = delayed_root->prepare_list.next;
310         list_del_init(p);
311         node = list_entry(p, struct btrfs_delayed_node, p_list);
312         refcount_inc(&node->refs);
313 out:
314         spin_unlock(&delayed_root->lock);
315
316         return node;
317 }
318
319 static inline void btrfs_release_prepared_delayed_node(
320                                         struct btrfs_delayed_node *node)
321 {
322         __btrfs_release_delayed_node(node, 1);
323 }
324
325 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
326 {
327         struct btrfs_delayed_item *item;
328         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
329         if (item) {
330                 item->data_len = data_len;
331                 item->ins_or_del = 0;
332                 item->bytes_reserved = 0;
333                 item->delayed_node = NULL;
334                 refcount_set(&item->refs, 1);
335         }
336         return item;
337 }
338
339 /*
340  * __btrfs_lookup_delayed_item - look up the delayed item by key
341  * @delayed_node: pointer to the delayed node
342  * @key:          the key to look up
343  * @prev:         used to store the prev item if the right item isn't found
344  * @next:         used to store the next item if the right item isn't found
345  *
346  * Note: if we don't find the right item, we will return the prev item and
347  * the next item.
348  */
349 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
350                                 struct rb_root *root,
351                                 struct btrfs_key *key,
352                                 struct btrfs_delayed_item **prev,
353                                 struct btrfs_delayed_item **next)
354 {
355         struct rb_node *node, *prev_node = NULL;
356         struct btrfs_delayed_item *delayed_item = NULL;
357         int ret = 0;
358
359         node = root->rb_node;
360
361         while (node) {
362                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
363                                         rb_node);
364                 prev_node = node;
365                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
366                 if (ret < 0)
367                         node = node->rb_right;
368                 else if (ret > 0)
369                         node = node->rb_left;
370                 else
371                         return delayed_item;
372         }
373
374         if (prev) {
375                 if (!prev_node)
376                         *prev = NULL;
377                 else if (ret < 0)
378                         *prev = delayed_item;
379                 else if ((node = rb_prev(prev_node)) != NULL) {
380                         *prev = rb_entry(node, struct btrfs_delayed_item,
381                                          rb_node);
382                 } else
383                         *prev = NULL;
384         }
385
386         if (next) {
387                 if (!prev_node)
388                         *next = NULL;
389                 else if (ret > 0)
390                         *next = delayed_item;
391                 else if ((node = rb_next(prev_node)) != NULL) {
392                         *next = rb_entry(node, struct btrfs_delayed_item,
393                                          rb_node);
394                 } else
395                         *next = NULL;
396         }
397         return NULL;
398 }
399
400 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
401                                         struct btrfs_delayed_node *delayed_node,
402                                         struct btrfs_key *key)
403 {
404         return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
405                                            NULL, NULL);
406 }
407
408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409                                     struct btrfs_delayed_item *ins,
410                                     int action)
411 {
412         struct rb_node **p, *node;
413         struct rb_node *parent_node = NULL;
414         struct rb_root *root;
415         struct btrfs_delayed_item *item;
416         int cmp;
417
418         if (action == BTRFS_DELAYED_INSERTION_ITEM)
419                 root = &delayed_node->ins_root;
420         else if (action == BTRFS_DELAYED_DELETION_ITEM)
421                 root = &delayed_node->del_root;
422         else
423                 BUG();
424         p = &root->rb_node;
425         node = &ins->rb_node;
426
427         while (*p) {
428                 parent_node = *p;
429                 item = rb_entry(parent_node, struct btrfs_delayed_item,
430                                  rb_node);
431
432                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
433                 if (cmp < 0)
434                         p = &(*p)->rb_right;
435                 else if (cmp > 0)
436                         p = &(*p)->rb_left;
437                 else
438                         return -EEXIST;
439         }
440
441         rb_link_node(node, parent_node, p);
442         rb_insert_color(node, root);
443         ins->delayed_node = delayed_node;
444         ins->ins_or_del = action;
445
446         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
447             action == BTRFS_DELAYED_INSERTION_ITEM &&
448             ins->key.offset >= delayed_node->index_cnt)
449                         delayed_node->index_cnt = ins->key.offset + 1;
450
451         delayed_node->count++;
452         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
453         return 0;
454 }
455
456 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
457                                               struct btrfs_delayed_item *item)
458 {
459         return __btrfs_add_delayed_item(node, item,
460                                         BTRFS_DELAYED_INSERTION_ITEM);
461 }
462
463 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
464                                              struct btrfs_delayed_item *item)
465 {
466         return __btrfs_add_delayed_item(node, item,
467                                         BTRFS_DELAYED_DELETION_ITEM);
468 }
469
470 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
471 {
472         int seq = atomic_inc_return(&delayed_root->items_seq);
473
474         /*
475          * atomic_dec_return implies a barrier for waitqueue_active
476          */
477         if ((atomic_dec_return(&delayed_root->items) <
478             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
479             waitqueue_active(&delayed_root->wait))
480                 wake_up(&delayed_root->wait);
481 }
482
483 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
484 {
485         struct rb_root *root;
486         struct btrfs_delayed_root *delayed_root;
487
488         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
489
490         BUG_ON(!delayed_root);
491         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
492                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
493
494         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
495                 root = &delayed_item->delayed_node->ins_root;
496         else
497                 root = &delayed_item->delayed_node->del_root;
498
499         rb_erase(&delayed_item->rb_node, root);
500         delayed_item->delayed_node->count--;
501
502         finish_one_item(delayed_root);
503 }
504
505 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
506 {
507         if (item) {
508                 __btrfs_remove_delayed_item(item);
509                 if (refcount_dec_and_test(&item->refs))
510                         kfree(item);
511         }
512 }
513
514 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
515                                         struct btrfs_delayed_node *delayed_node)
516 {
517         struct rb_node *p;
518         struct btrfs_delayed_item *item = NULL;
519
520         p = rb_first(&delayed_node->ins_root);
521         if (p)
522                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
523
524         return item;
525 }
526
527 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
528                                         struct btrfs_delayed_node *delayed_node)
529 {
530         struct rb_node *p;
531         struct btrfs_delayed_item *item = NULL;
532
533         p = rb_first(&delayed_node->del_root);
534         if (p)
535                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
536
537         return item;
538 }
539
540 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
541                                                 struct btrfs_delayed_item *item)
542 {
543         struct rb_node *p;
544         struct btrfs_delayed_item *next = NULL;
545
546         p = rb_next(&item->rb_node);
547         if (p)
548                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
549
550         return next;
551 }
552
553 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
554                                                struct btrfs_fs_info *fs_info,
555                                                struct btrfs_delayed_item *item)
556 {
557         struct btrfs_block_rsv *src_rsv;
558         struct btrfs_block_rsv *dst_rsv;
559         u64 num_bytes;
560         int ret;
561
562         if (!trans->bytes_reserved)
563                 return 0;
564
565         src_rsv = trans->block_rsv;
566         dst_rsv = &fs_info->delayed_block_rsv;
567
568         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
569         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
570         if (!ret) {
571                 trace_btrfs_space_reservation(fs_info, "delayed_item",
572                                               item->key.objectid,
573                                               num_bytes, 1);
574                 item->bytes_reserved = num_bytes;
575         }
576
577         return ret;
578 }
579
580 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
581                                                 struct btrfs_delayed_item *item)
582 {
583         struct btrfs_block_rsv *rsv;
584
585         if (!item->bytes_reserved)
586                 return;
587
588         rsv = &fs_info->delayed_block_rsv;
589         trace_btrfs_space_reservation(fs_info, "delayed_item",
590                                       item->key.objectid, item->bytes_reserved,
591                                       0);
592         btrfs_block_rsv_release(fs_info, rsv,
593                                 item->bytes_reserved);
594 }
595
596 static int btrfs_delayed_inode_reserve_metadata(
597                                         struct btrfs_trans_handle *trans,
598                                         struct btrfs_root *root,
599                                         struct btrfs_inode *inode,
600                                         struct btrfs_delayed_node *node)
601 {
602         struct btrfs_fs_info *fs_info = root->fs_info;
603         struct btrfs_block_rsv *src_rsv;
604         struct btrfs_block_rsv *dst_rsv;
605         u64 num_bytes;
606         int ret;
607         bool release = false;
608
609         src_rsv = trans->block_rsv;
610         dst_rsv = &fs_info->delayed_block_rsv;
611
612         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613
614         /*
615          * If our block_rsv is the delalloc block reserve then check and see if
616          * we have our extra reservation for updating the inode.  If not fall
617          * through and try to reserve space quickly.
618          *
619          * We used to try and steal from the delalloc block rsv or the global
620          * reserve, but we'd steal a full reservation, which isn't kind.  We are
621          * here through delalloc which means we've likely just cowed down close
622          * to the leaf that contains the inode, so we would steal less just
623          * doing the fallback inode update, so if we do end up having to steal
624          * from the global block rsv we hopefully only steal one or two blocks
625          * worth which is less likely to hurt us.
626          */
627         if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
628                 spin_lock(&inode->lock);
629                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
630                                        &inode->runtime_flags))
631                         release = true;
632                 else
633                         src_rsv = NULL;
634                 spin_unlock(&inode->lock);
635         }
636
637         /*
638          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
639          * which doesn't reserve space for speed.  This is a problem since we
640          * still need to reserve space for this update, so try to reserve the
641          * space.
642          *
643          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
644          * we're accounted for.
645          */
646         if (!src_rsv || (!trans->bytes_reserved &&
647                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
648                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
649                                           BTRFS_RESERVE_NO_FLUSH);
650                 /*
651                  * Since we're under a transaction reserve_metadata_bytes could
652                  * try to commit the transaction which will make it return
653                  * EAGAIN to make us stop the transaction we have, so return
654                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
655                  */
656                 if (ret == -EAGAIN)
657                         ret = -ENOSPC;
658                 if (!ret) {
659                         node->bytes_reserved = num_bytes;
660                         trace_btrfs_space_reservation(fs_info,
661                                                       "delayed_inode",
662                                                       btrfs_ino(inode),
663                                                       num_bytes, 1);
664                 }
665                 return ret;
666         }
667
668         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
669
670         /*
671          * Migrate only takes a reservation, it doesn't touch the size of the
672          * block_rsv.  This is to simplify people who don't normally have things
673          * migrated from their block rsv.  If they go to release their
674          * reservation, that will decrease the size as well, so if migrate
675          * reduced size we'd end up with a negative size.  But for the
676          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
677          * but we could in fact do this reserve/migrate dance several times
678          * between the time we did the original reservation and we'd clean it
679          * up.  So to take care of this, release the space for the meta
680          * reservation here.  I think it may be time for a documentation page on
681          * how block rsvs. work.
682          */
683         if (!ret) {
684                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
685                                               btrfs_ino(inode), num_bytes, 1);
686                 node->bytes_reserved = num_bytes;
687         }
688
689         if (release) {
690                 trace_btrfs_space_reservation(fs_info, "delalloc",
691                                               btrfs_ino(inode), num_bytes, 0);
692                 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
693         }
694
695         return ret;
696 }
697
698 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
699                                                 struct btrfs_delayed_node *node)
700 {
701         struct btrfs_block_rsv *rsv;
702
703         if (!node->bytes_reserved)
704                 return;
705
706         rsv = &fs_info->delayed_block_rsv;
707         trace_btrfs_space_reservation(fs_info, "delayed_inode",
708                                       node->inode_id, node->bytes_reserved, 0);
709         btrfs_block_rsv_release(fs_info, rsv,
710                                 node->bytes_reserved);
711         node->bytes_reserved = 0;
712 }
713
714 /*
715  * This helper will insert some continuous items into the same leaf according
716  * to the free space of the leaf.
717  */
718 static int btrfs_batch_insert_items(struct btrfs_root *root,
719                                     struct btrfs_path *path,
720                                     struct btrfs_delayed_item *item)
721 {
722         struct btrfs_fs_info *fs_info = root->fs_info;
723         struct btrfs_delayed_item *curr, *next;
724         int free_space;
725         int total_data_size = 0, total_size = 0;
726         struct extent_buffer *leaf;
727         char *data_ptr;
728         struct btrfs_key *keys;
729         u32 *data_size;
730         struct list_head head;
731         int slot;
732         int nitems;
733         int i;
734         int ret = 0;
735
736         BUG_ON(!path->nodes[0]);
737
738         leaf = path->nodes[0];
739         free_space = btrfs_leaf_free_space(fs_info, leaf);
740         INIT_LIST_HEAD(&head);
741
742         next = item;
743         nitems = 0;
744
745         /*
746          * count the number of the continuous items that we can insert in batch
747          */
748         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
749                free_space) {
750                 total_data_size += next->data_len;
751                 total_size += next->data_len + sizeof(struct btrfs_item);
752                 list_add_tail(&next->tree_list, &head);
753                 nitems++;
754
755                 curr = next;
756                 next = __btrfs_next_delayed_item(curr);
757                 if (!next)
758                         break;
759
760                 if (!btrfs_is_continuous_delayed_item(curr, next))
761                         break;
762         }
763
764         if (!nitems) {
765                 ret = 0;
766                 goto out;
767         }
768
769         /*
770          * we need allocate some memory space, but it might cause the task
771          * to sleep, so we set all locked nodes in the path to blocking locks
772          * first.
773          */
774         btrfs_set_path_blocking(path);
775
776         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
777         if (!keys) {
778                 ret = -ENOMEM;
779                 goto out;
780         }
781
782         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
783         if (!data_size) {
784                 ret = -ENOMEM;
785                 goto error;
786         }
787
788         /* get keys of all the delayed items */
789         i = 0;
790         list_for_each_entry(next, &head, tree_list) {
791                 keys[i] = next->key;
792                 data_size[i] = next->data_len;
793                 i++;
794         }
795
796         /* reset all the locked nodes in the patch to spinning locks. */
797         btrfs_clear_path_blocking(path, NULL, 0);
798
799         /* insert the keys of the items */
800         setup_items_for_insert(root, path, keys, data_size,
801                                total_data_size, total_size, nitems);
802
803         /* insert the dir index items */
804         slot = path->slots[0];
805         list_for_each_entry_safe(curr, next, &head, tree_list) {
806                 data_ptr = btrfs_item_ptr(leaf, slot, char);
807                 write_extent_buffer(leaf, &curr->data,
808                                     (unsigned long)data_ptr,
809                                     curr->data_len);
810                 slot++;
811
812                 btrfs_delayed_item_release_metadata(fs_info, curr);
813
814                 list_del(&curr->tree_list);
815                 btrfs_release_delayed_item(curr);
816         }
817
818 error:
819         kfree(data_size);
820         kfree(keys);
821 out:
822         return ret;
823 }
824
825 /*
826  * This helper can just do simple insertion that needn't extend item for new
827  * data, such as directory name index insertion, inode insertion.
828  */
829 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
830                                      struct btrfs_root *root,
831                                      struct btrfs_path *path,
832                                      struct btrfs_delayed_item *delayed_item)
833 {
834         struct btrfs_fs_info *fs_info = root->fs_info;
835         struct extent_buffer *leaf;
836         char *ptr;
837         int ret;
838
839         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
840                                       delayed_item->data_len);
841         if (ret < 0 && ret != -EEXIST)
842                 return ret;
843
844         leaf = path->nodes[0];
845
846         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
847
848         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
849                             delayed_item->data_len);
850         btrfs_mark_buffer_dirty(leaf);
851
852         btrfs_delayed_item_release_metadata(fs_info, delayed_item);
853         return 0;
854 }
855
856 /*
857  * we insert an item first, then if there are some continuous items, we try
858  * to insert those items into the same leaf.
859  */
860 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
861                                       struct btrfs_path *path,
862                                       struct btrfs_root *root,
863                                       struct btrfs_delayed_node *node)
864 {
865         struct btrfs_delayed_item *curr, *prev;
866         int ret = 0;
867
868 do_again:
869         mutex_lock(&node->mutex);
870         curr = __btrfs_first_delayed_insertion_item(node);
871         if (!curr)
872                 goto insert_end;
873
874         ret = btrfs_insert_delayed_item(trans, root, path, curr);
875         if (ret < 0) {
876                 btrfs_release_path(path);
877                 goto insert_end;
878         }
879
880         prev = curr;
881         curr = __btrfs_next_delayed_item(prev);
882         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
883                 /* insert the continuous items into the same leaf */
884                 path->slots[0]++;
885                 btrfs_batch_insert_items(root, path, curr);
886         }
887         btrfs_release_delayed_item(prev);
888         btrfs_mark_buffer_dirty(path->nodes[0]);
889
890         btrfs_release_path(path);
891         mutex_unlock(&node->mutex);
892         goto do_again;
893
894 insert_end:
895         mutex_unlock(&node->mutex);
896         return ret;
897 }
898
899 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
900                                     struct btrfs_root *root,
901                                     struct btrfs_path *path,
902                                     struct btrfs_delayed_item *item)
903 {
904         struct btrfs_fs_info *fs_info = root->fs_info;
905         struct btrfs_delayed_item *curr, *next;
906         struct extent_buffer *leaf;
907         struct btrfs_key key;
908         struct list_head head;
909         int nitems, i, last_item;
910         int ret = 0;
911
912         BUG_ON(!path->nodes[0]);
913
914         leaf = path->nodes[0];
915
916         i = path->slots[0];
917         last_item = btrfs_header_nritems(leaf) - 1;
918         if (i > last_item)
919                 return -ENOENT; /* FIXME: Is errno suitable? */
920
921         next = item;
922         INIT_LIST_HEAD(&head);
923         btrfs_item_key_to_cpu(leaf, &key, i);
924         nitems = 0;
925         /*
926          * count the number of the dir index items that we can delete in batch
927          */
928         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
929                 list_add_tail(&next->tree_list, &head);
930                 nitems++;
931
932                 curr = next;
933                 next = __btrfs_next_delayed_item(curr);
934                 if (!next)
935                         break;
936
937                 if (!btrfs_is_continuous_delayed_item(curr, next))
938                         break;
939
940                 i++;
941                 if (i > last_item)
942                         break;
943                 btrfs_item_key_to_cpu(leaf, &key, i);
944         }
945
946         if (!nitems)
947                 return 0;
948
949         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
950         if (ret)
951                 goto out;
952
953         list_for_each_entry_safe(curr, next, &head, tree_list) {
954                 btrfs_delayed_item_release_metadata(fs_info, curr);
955                 list_del(&curr->tree_list);
956                 btrfs_release_delayed_item(curr);
957         }
958
959 out:
960         return ret;
961 }
962
963 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
964                                       struct btrfs_path *path,
965                                       struct btrfs_root *root,
966                                       struct btrfs_delayed_node *node)
967 {
968         struct btrfs_delayed_item *curr, *prev;
969         int ret = 0;
970
971 do_again:
972         mutex_lock(&node->mutex);
973         curr = __btrfs_first_delayed_deletion_item(node);
974         if (!curr)
975                 goto delete_fail;
976
977         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
978         if (ret < 0)
979                 goto delete_fail;
980         else if (ret > 0) {
981                 /*
982                  * can't find the item which the node points to, so this node
983                  * is invalid, just drop it.
984                  */
985                 prev = curr;
986                 curr = __btrfs_next_delayed_item(prev);
987                 btrfs_release_delayed_item(prev);
988                 ret = 0;
989                 btrfs_release_path(path);
990                 if (curr) {
991                         mutex_unlock(&node->mutex);
992                         goto do_again;
993                 } else
994                         goto delete_fail;
995         }
996
997         btrfs_batch_delete_items(trans, root, path, curr);
998         btrfs_release_path(path);
999         mutex_unlock(&node->mutex);
1000         goto do_again;
1001
1002 delete_fail:
1003         btrfs_release_path(path);
1004         mutex_unlock(&node->mutex);
1005         return ret;
1006 }
1007
1008 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1009 {
1010         struct btrfs_delayed_root *delayed_root;
1011
1012         if (delayed_node &&
1013             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1014                 BUG_ON(!delayed_node->root);
1015                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1016                 delayed_node->count--;
1017
1018                 delayed_root = delayed_node->root->fs_info->delayed_root;
1019                 finish_one_item(delayed_root);
1020         }
1021 }
1022
1023 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1024 {
1025         struct btrfs_delayed_root *delayed_root;
1026
1027         ASSERT(delayed_node->root);
1028         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1029         delayed_node->count--;
1030
1031         delayed_root = delayed_node->root->fs_info->delayed_root;
1032         finish_one_item(delayed_root);
1033 }
1034
1035 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1036                                         struct btrfs_root *root,
1037                                         struct btrfs_path *path,
1038                                         struct btrfs_delayed_node *node)
1039 {
1040         struct btrfs_fs_info *fs_info = root->fs_info;
1041         struct btrfs_key key;
1042         struct btrfs_inode_item *inode_item;
1043         struct extent_buffer *leaf;
1044         int mod;
1045         int ret;
1046
1047         key.objectid = node->inode_id;
1048         key.type = BTRFS_INODE_ITEM_KEY;
1049         key.offset = 0;
1050
1051         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052                 mod = -1;
1053         else
1054                 mod = 1;
1055
1056         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1057         if (ret > 0) {
1058                 btrfs_release_path(path);
1059                 return -ENOENT;
1060         } else if (ret < 0) {
1061                 return ret;
1062         }
1063
1064         leaf = path->nodes[0];
1065         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1066                                     struct btrfs_inode_item);
1067         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1068                             sizeof(struct btrfs_inode_item));
1069         btrfs_mark_buffer_dirty(leaf);
1070
1071         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1072                 goto no_iref;
1073
1074         path->slots[0]++;
1075         if (path->slots[0] >= btrfs_header_nritems(leaf))
1076                 goto search;
1077 again:
1078         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079         if (key.objectid != node->inode_id)
1080                 goto out;
1081
1082         if (key.type != BTRFS_INODE_REF_KEY &&
1083             key.type != BTRFS_INODE_EXTREF_KEY)
1084                 goto out;
1085
1086         /*
1087          * Delayed iref deletion is for the inode who has only one link,
1088          * so there is only one iref. The case that several irefs are
1089          * in the same item doesn't exist.
1090          */
1091         btrfs_del_item(trans, root, path);
1092 out:
1093         btrfs_release_delayed_iref(node);
1094 no_iref:
1095         btrfs_release_path(path);
1096 err_out:
1097         btrfs_delayed_inode_release_metadata(fs_info, node);
1098         btrfs_release_delayed_inode(node);
1099
1100         return ret;
1101
1102 search:
1103         btrfs_release_path(path);
1104
1105         key.type = BTRFS_INODE_EXTREF_KEY;
1106         key.offset = -1;
1107         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1108         if (ret < 0)
1109                 goto err_out;
1110         ASSERT(ret);
1111
1112         ret = 0;
1113         leaf = path->nodes[0];
1114         path->slots[0]--;
1115         goto again;
1116 }
1117
1118 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1119                                              struct btrfs_root *root,
1120                                              struct btrfs_path *path,
1121                                              struct btrfs_delayed_node *node)
1122 {
1123         int ret;
1124
1125         mutex_lock(&node->mutex);
1126         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1127                 mutex_unlock(&node->mutex);
1128                 return 0;
1129         }
1130
1131         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1132         mutex_unlock(&node->mutex);
1133         return ret;
1134 }
1135
1136 static inline int
1137 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1138                                    struct btrfs_path *path,
1139                                    struct btrfs_delayed_node *node)
1140 {
1141         int ret;
1142
1143         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1144         if (ret)
1145                 return ret;
1146
1147         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1148         if (ret)
1149                 return ret;
1150
1151         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1152         return ret;
1153 }
1154
1155 /*
1156  * Called when committing the transaction.
1157  * Returns 0 on success.
1158  * Returns < 0 on error and returns with an aborted transaction with any
1159  * outstanding delayed items cleaned up.
1160  */
1161 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1162                                      struct btrfs_fs_info *fs_info, int nr)
1163 {
1164         struct btrfs_delayed_root *delayed_root;
1165         struct btrfs_delayed_node *curr_node, *prev_node;
1166         struct btrfs_path *path;
1167         struct btrfs_block_rsv *block_rsv;
1168         int ret = 0;
1169         bool count = (nr > 0);
1170
1171         if (trans->aborted)
1172                 return -EIO;
1173
1174         path = btrfs_alloc_path();
1175         if (!path)
1176                 return -ENOMEM;
1177         path->leave_spinning = 1;
1178
1179         block_rsv = trans->block_rsv;
1180         trans->block_rsv = &fs_info->delayed_block_rsv;
1181
1182         delayed_root = fs_info->delayed_root;
1183
1184         curr_node = btrfs_first_delayed_node(delayed_root);
1185         while (curr_node && (!count || (count && nr--))) {
1186                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1187                                                          curr_node);
1188                 if (ret) {
1189                         btrfs_release_delayed_node(curr_node);
1190                         curr_node = NULL;
1191                         btrfs_abort_transaction(trans, ret);
1192                         break;
1193                 }
1194
1195                 prev_node = curr_node;
1196                 curr_node = btrfs_next_delayed_node(curr_node);
1197                 btrfs_release_delayed_node(prev_node);
1198         }
1199
1200         if (curr_node)
1201                 btrfs_release_delayed_node(curr_node);
1202         btrfs_free_path(path);
1203         trans->block_rsv = block_rsv;
1204
1205         return ret;
1206 }
1207
1208 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1209                             struct btrfs_fs_info *fs_info)
1210 {
1211         return __btrfs_run_delayed_items(trans, fs_info, -1);
1212 }
1213
1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1215                                struct btrfs_fs_info *fs_info, int nr)
1216 {
1217         return __btrfs_run_delayed_items(trans, fs_info, nr);
1218 }
1219
1220 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1221                                      struct btrfs_inode *inode)
1222 {
1223         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1224         struct btrfs_path *path;
1225         struct btrfs_block_rsv *block_rsv;
1226         int ret;
1227
1228         if (!delayed_node)
1229                 return 0;
1230
1231         mutex_lock(&delayed_node->mutex);
1232         if (!delayed_node->count) {
1233                 mutex_unlock(&delayed_node->mutex);
1234                 btrfs_release_delayed_node(delayed_node);
1235                 return 0;
1236         }
1237         mutex_unlock(&delayed_node->mutex);
1238
1239         path = btrfs_alloc_path();
1240         if (!path) {
1241                 btrfs_release_delayed_node(delayed_node);
1242                 return -ENOMEM;
1243         }
1244         path->leave_spinning = 1;
1245
1246         block_rsv = trans->block_rsv;
1247         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248
1249         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1250
1251         btrfs_release_delayed_node(delayed_node);
1252         btrfs_free_path(path);
1253         trans->block_rsv = block_rsv;
1254
1255         return ret;
1256 }
1257
1258 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1259 {
1260         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1261         struct btrfs_trans_handle *trans;
1262         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1263         struct btrfs_path *path;
1264         struct btrfs_block_rsv *block_rsv;
1265         int ret;
1266
1267         if (!delayed_node)
1268                 return 0;
1269
1270         mutex_lock(&delayed_node->mutex);
1271         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1272                 mutex_unlock(&delayed_node->mutex);
1273                 btrfs_release_delayed_node(delayed_node);
1274                 return 0;
1275         }
1276         mutex_unlock(&delayed_node->mutex);
1277
1278         trans = btrfs_join_transaction(delayed_node->root);
1279         if (IS_ERR(trans)) {
1280                 ret = PTR_ERR(trans);
1281                 goto out;
1282         }
1283
1284         path = btrfs_alloc_path();
1285         if (!path) {
1286                 ret = -ENOMEM;
1287                 goto trans_out;
1288         }
1289         path->leave_spinning = 1;
1290
1291         block_rsv = trans->block_rsv;
1292         trans->block_rsv = &fs_info->delayed_block_rsv;
1293
1294         mutex_lock(&delayed_node->mutex);
1295         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1297                                                    path, delayed_node);
1298         else
1299                 ret = 0;
1300         mutex_unlock(&delayed_node->mutex);
1301
1302         btrfs_free_path(path);
1303         trans->block_rsv = block_rsv;
1304 trans_out:
1305         btrfs_end_transaction(trans);
1306         btrfs_btree_balance_dirty(fs_info);
1307 out:
1308         btrfs_release_delayed_node(delayed_node);
1309
1310         return ret;
1311 }
1312
1313 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1314 {
1315         struct btrfs_delayed_node *delayed_node;
1316
1317         delayed_node = READ_ONCE(inode->delayed_node);
1318         if (!delayed_node)
1319                 return;
1320
1321         inode->delayed_node = NULL;
1322         btrfs_release_delayed_node(delayed_node);
1323 }
1324
1325 struct btrfs_async_delayed_work {
1326         struct btrfs_delayed_root *delayed_root;
1327         int nr;
1328         struct btrfs_work work;
1329 };
1330
1331 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1332 {
1333         struct btrfs_async_delayed_work *async_work;
1334         struct btrfs_delayed_root *delayed_root;
1335         struct btrfs_trans_handle *trans;
1336         struct btrfs_path *path;
1337         struct btrfs_delayed_node *delayed_node = NULL;
1338         struct btrfs_root *root;
1339         struct btrfs_block_rsv *block_rsv;
1340         int total_done = 0;
1341
1342         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1343         delayed_root = async_work->delayed_root;
1344
1345         path = btrfs_alloc_path();
1346         if (!path)
1347                 goto out;
1348
1349 again:
1350         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1351                 goto free_path;
1352
1353         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1354         if (!delayed_node)
1355                 goto free_path;
1356
1357         path->leave_spinning = 1;
1358         root = delayed_node->root;
1359
1360         trans = btrfs_join_transaction(root);
1361         if (IS_ERR(trans))
1362                 goto release_path;
1363
1364         block_rsv = trans->block_rsv;
1365         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1366
1367         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1368
1369         trans->block_rsv = block_rsv;
1370         btrfs_end_transaction(trans);
1371         btrfs_btree_balance_dirty_nodelay(root->fs_info);
1372
1373 release_path:
1374         btrfs_release_path(path);
1375         total_done++;
1376
1377         btrfs_release_prepared_delayed_node(delayed_node);
1378         if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1379             total_done < async_work->nr)
1380                 goto again;
1381
1382 free_path:
1383         btrfs_free_path(path);
1384 out:
1385         wake_up(&delayed_root->wait);
1386         kfree(async_work);
1387 }
1388
1389
1390 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1391                                      struct btrfs_fs_info *fs_info, int nr)
1392 {
1393         struct btrfs_async_delayed_work *async_work;
1394
1395         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1396             btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1397                 return 0;
1398
1399         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1400         if (!async_work)
1401                 return -ENOMEM;
1402
1403         async_work->delayed_root = delayed_root;
1404         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1405                         btrfs_async_run_delayed_root, NULL, NULL);
1406         async_work->nr = nr;
1407
1408         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1409         return 0;
1410 }
1411
1412 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1413 {
1414         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1415 }
1416
1417 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1418 {
1419         int val = atomic_read(&delayed_root->items_seq);
1420
1421         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1422                 return 1;
1423
1424         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1425                 return 1;
1426
1427         return 0;
1428 }
1429
1430 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1431 {
1432         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1433
1434         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1435                 return;
1436
1437         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1438                 int seq;
1439                 int ret;
1440
1441                 seq = atomic_read(&delayed_root->items_seq);
1442
1443                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1444                 if (ret)
1445                         return;
1446
1447                 wait_event_interruptible(delayed_root->wait,
1448                                          could_end_wait(delayed_root, seq));
1449                 return;
1450         }
1451
1452         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1453 }
1454
1455 /* Will return 0 or -ENOMEM */
1456 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1457                                    struct btrfs_fs_info *fs_info,
1458                                    const char *name, int name_len,
1459                                    struct btrfs_inode *dir,
1460                                    struct btrfs_disk_key *disk_key, u8 type,
1461                                    u64 index)
1462 {
1463         struct btrfs_delayed_node *delayed_node;
1464         struct btrfs_delayed_item *delayed_item;
1465         struct btrfs_dir_item *dir_item;
1466         int ret;
1467
1468         delayed_node = btrfs_get_or_create_delayed_node(dir);
1469         if (IS_ERR(delayed_node))
1470                 return PTR_ERR(delayed_node);
1471
1472         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1473         if (!delayed_item) {
1474                 ret = -ENOMEM;
1475                 goto release_node;
1476         }
1477
1478         delayed_item->key.objectid = btrfs_ino(dir);
1479         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1480         delayed_item->key.offset = index;
1481
1482         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1483         dir_item->location = *disk_key;
1484         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1485         btrfs_set_stack_dir_data_len(dir_item, 0);
1486         btrfs_set_stack_dir_name_len(dir_item, name_len);
1487         btrfs_set_stack_dir_type(dir_item, type);
1488         memcpy((char *)(dir_item + 1), name, name_len);
1489
1490         ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1491         /*
1492          * we have reserved enough space when we start a new transaction,
1493          * so reserving metadata failure is impossible
1494          */
1495         BUG_ON(ret);
1496
1497
1498         mutex_lock(&delayed_node->mutex);
1499         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1500         if (unlikely(ret)) {
1501                 btrfs_err(fs_info,
1502                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1503                           name_len, name, delayed_node->root->objectid,
1504                           delayed_node->inode_id, ret);
1505                 BUG();
1506         }
1507         mutex_unlock(&delayed_node->mutex);
1508
1509 release_node:
1510         btrfs_release_delayed_node(delayed_node);
1511         return ret;
1512 }
1513
1514 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1515                                                struct btrfs_delayed_node *node,
1516                                                struct btrfs_key *key)
1517 {
1518         struct btrfs_delayed_item *item;
1519
1520         mutex_lock(&node->mutex);
1521         item = __btrfs_lookup_delayed_insertion_item(node, key);
1522         if (!item) {
1523                 mutex_unlock(&node->mutex);
1524                 return 1;
1525         }
1526
1527         btrfs_delayed_item_release_metadata(fs_info, item);
1528         btrfs_release_delayed_item(item);
1529         mutex_unlock(&node->mutex);
1530         return 0;
1531 }
1532
1533 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1534                                    struct btrfs_fs_info *fs_info,
1535                                    struct btrfs_inode *dir, u64 index)
1536 {
1537         struct btrfs_delayed_node *node;
1538         struct btrfs_delayed_item *item;
1539         struct btrfs_key item_key;
1540         int ret;
1541
1542         node = btrfs_get_or_create_delayed_node(dir);
1543         if (IS_ERR(node))
1544                 return PTR_ERR(node);
1545
1546         item_key.objectid = btrfs_ino(dir);
1547         item_key.type = BTRFS_DIR_INDEX_KEY;
1548         item_key.offset = index;
1549
1550         ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1551         if (!ret)
1552                 goto end;
1553
1554         item = btrfs_alloc_delayed_item(0);
1555         if (!item) {
1556                 ret = -ENOMEM;
1557                 goto end;
1558         }
1559
1560         item->key = item_key;
1561
1562         ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1563         /*
1564          * we have reserved enough space when we start a new transaction,
1565          * so reserving metadata failure is impossible.
1566          */
1567         BUG_ON(ret);
1568
1569         mutex_lock(&node->mutex);
1570         ret = __btrfs_add_delayed_deletion_item(node, item);
1571         if (unlikely(ret)) {
1572                 btrfs_err(fs_info,
1573                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1574                           index, node->root->objectid, node->inode_id, ret);
1575                 BUG();
1576         }
1577         mutex_unlock(&node->mutex);
1578 end:
1579         btrfs_release_delayed_node(node);
1580         return ret;
1581 }
1582
1583 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1584 {
1585         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1586
1587         if (!delayed_node)
1588                 return -ENOENT;
1589
1590         /*
1591          * Since we have held i_mutex of this directory, it is impossible that
1592          * a new directory index is added into the delayed node and index_cnt
1593          * is updated now. So we needn't lock the delayed node.
1594          */
1595         if (!delayed_node->index_cnt) {
1596                 btrfs_release_delayed_node(delayed_node);
1597                 return -EINVAL;
1598         }
1599
1600         inode->index_cnt = delayed_node->index_cnt;
1601         btrfs_release_delayed_node(delayed_node);
1602         return 0;
1603 }
1604
1605 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1606                                      struct list_head *ins_list,
1607                                      struct list_head *del_list)
1608 {
1609         struct btrfs_delayed_node *delayed_node;
1610         struct btrfs_delayed_item *item;
1611
1612         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1613         if (!delayed_node)
1614                 return false;
1615
1616         /*
1617          * We can only do one readdir with delayed items at a time because of
1618          * item->readdir_list.
1619          */
1620         inode_unlock_shared(inode);
1621         inode_lock(inode);
1622
1623         mutex_lock(&delayed_node->mutex);
1624         item = __btrfs_first_delayed_insertion_item(delayed_node);
1625         while (item) {
1626                 refcount_inc(&item->refs);
1627                 list_add_tail(&item->readdir_list, ins_list);
1628                 item = __btrfs_next_delayed_item(item);
1629         }
1630
1631         item = __btrfs_first_delayed_deletion_item(delayed_node);
1632         while (item) {
1633                 refcount_inc(&item->refs);
1634                 list_add_tail(&item->readdir_list, del_list);
1635                 item = __btrfs_next_delayed_item(item);
1636         }
1637         mutex_unlock(&delayed_node->mutex);
1638         /*
1639          * This delayed node is still cached in the btrfs inode, so refs
1640          * must be > 1 now, and we needn't check it is going to be freed
1641          * or not.
1642          *
1643          * Besides that, this function is used to read dir, we do not
1644          * insert/delete delayed items in this period. So we also needn't
1645          * requeue or dequeue this delayed node.
1646          */
1647         refcount_dec(&delayed_node->refs);
1648
1649         return true;
1650 }
1651
1652 void btrfs_readdir_put_delayed_items(struct inode *inode,
1653                                      struct list_head *ins_list,
1654                                      struct list_head *del_list)
1655 {
1656         struct btrfs_delayed_item *curr, *next;
1657
1658         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1659                 list_del(&curr->readdir_list);
1660                 if (refcount_dec_and_test(&curr->refs))
1661                         kfree(curr);
1662         }
1663
1664         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665                 list_del(&curr->readdir_list);
1666                 if (refcount_dec_and_test(&curr->refs))
1667                         kfree(curr);
1668         }
1669
1670         /*
1671          * The VFS is going to do up_read(), so we need to downgrade back to a
1672          * read lock.
1673          */
1674         downgrade_write(&inode->i_rwsem);
1675 }
1676
1677 int btrfs_should_delete_dir_index(struct list_head *del_list,
1678                                   u64 index)
1679 {
1680         struct btrfs_delayed_item *curr;
1681         int ret = 0;
1682
1683         list_for_each_entry(curr, del_list, readdir_list) {
1684                 if (curr->key.offset > index)
1685                         break;
1686                 if (curr->key.offset == index) {
1687                         ret = 1;
1688                         break;
1689                 }
1690         }
1691         return ret;
1692 }
1693
1694 /*
1695  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1696  *
1697  */
1698 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1699                                     struct list_head *ins_list)
1700 {
1701         struct btrfs_dir_item *di;
1702         struct btrfs_delayed_item *curr, *next;
1703         struct btrfs_key location;
1704         char *name;
1705         int name_len;
1706         int over = 0;
1707         unsigned char d_type;
1708
1709         if (list_empty(ins_list))
1710                 return 0;
1711
1712         /*
1713          * Changing the data of the delayed item is impossible. So
1714          * we needn't lock them. And we have held i_mutex of the
1715          * directory, nobody can delete any directory indexes now.
1716          */
1717         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1718                 list_del(&curr->readdir_list);
1719
1720                 if (curr->key.offset < ctx->pos) {
1721                         if (refcount_dec_and_test(&curr->refs))
1722                                 kfree(curr);
1723                         continue;
1724                 }
1725
1726                 ctx->pos = curr->key.offset;
1727
1728                 di = (struct btrfs_dir_item *)curr->data;
1729                 name = (char *)(di + 1);
1730                 name_len = btrfs_stack_dir_name_len(di);
1731
1732                 d_type = btrfs_filetype_table[di->type];
1733                 btrfs_disk_key_to_cpu(&location, &di->location);
1734
1735                 over = !dir_emit(ctx, name, name_len,
1736                                location.objectid, d_type);
1737
1738                 if (refcount_dec_and_test(&curr->refs))
1739                         kfree(curr);
1740
1741                 if (over)
1742                         return 1;
1743                 ctx->pos++;
1744         }
1745         return 0;
1746 }
1747
1748 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1749                                   struct btrfs_inode_item *inode_item,
1750                                   struct inode *inode)
1751 {
1752         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1753         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1754         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1755         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1756         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1757         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1758         btrfs_set_stack_inode_generation(inode_item,
1759                                          BTRFS_I(inode)->generation);
1760         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1761         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1762         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1763         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1764         btrfs_set_stack_inode_block_group(inode_item, 0);
1765
1766         btrfs_set_stack_timespec_sec(&inode_item->atime,
1767                                      inode->i_atime.tv_sec);
1768         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1769                                       inode->i_atime.tv_nsec);
1770
1771         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1772                                      inode->i_mtime.tv_sec);
1773         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1774                                       inode->i_mtime.tv_nsec);
1775
1776         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1777                                      inode->i_ctime.tv_sec);
1778         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1779                                       inode->i_ctime.tv_nsec);
1780
1781         btrfs_set_stack_timespec_sec(&inode_item->otime,
1782                                      BTRFS_I(inode)->i_otime.tv_sec);
1783         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1784                                      BTRFS_I(inode)->i_otime.tv_nsec);
1785 }
1786
1787 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1788 {
1789         struct btrfs_delayed_node *delayed_node;
1790         struct btrfs_inode_item *inode_item;
1791
1792         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1793         if (!delayed_node)
1794                 return -ENOENT;
1795
1796         mutex_lock(&delayed_node->mutex);
1797         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1798                 mutex_unlock(&delayed_node->mutex);
1799                 btrfs_release_delayed_node(delayed_node);
1800                 return -ENOENT;
1801         }
1802
1803         inode_item = &delayed_node->inode_item;
1804
1805         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1806         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1807         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1808         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1809         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1810         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1811         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1812         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1813
1814         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1815         inode->i_rdev = 0;
1816         *rdev = btrfs_stack_inode_rdev(inode_item);
1817         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1818
1819         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1820         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1821
1822         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1823         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1824
1825         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1826         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1827
1828         BTRFS_I(inode)->i_otime.tv_sec =
1829                 btrfs_stack_timespec_sec(&inode_item->otime);
1830         BTRFS_I(inode)->i_otime.tv_nsec =
1831                 btrfs_stack_timespec_nsec(&inode_item->otime);
1832
1833         inode->i_generation = BTRFS_I(inode)->generation;
1834         BTRFS_I(inode)->index_cnt = (u64)-1;
1835
1836         mutex_unlock(&delayed_node->mutex);
1837         btrfs_release_delayed_node(delayed_node);
1838         return 0;
1839 }
1840
1841 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1842                                struct btrfs_root *root, struct inode *inode)
1843 {
1844         struct btrfs_delayed_node *delayed_node;
1845         int ret = 0;
1846
1847         delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1848         if (IS_ERR(delayed_node))
1849                 return PTR_ERR(delayed_node);
1850
1851         mutex_lock(&delayed_node->mutex);
1852         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1853                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1854                 goto release_node;
1855         }
1856
1857         ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1858                                                    delayed_node);
1859         if (ret)
1860                 goto release_node;
1861
1862         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1863         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1864         delayed_node->count++;
1865         atomic_inc(&root->fs_info->delayed_root->items);
1866 release_node:
1867         mutex_unlock(&delayed_node->mutex);
1868         btrfs_release_delayed_node(delayed_node);
1869         return ret;
1870 }
1871
1872 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1873 {
1874         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1875         struct btrfs_delayed_node *delayed_node;
1876
1877         /*
1878          * we don't do delayed inode updates during log recovery because it
1879          * leads to enospc problems.  This means we also can't do
1880          * delayed inode refs
1881          */
1882         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1883                 return -EAGAIN;
1884
1885         delayed_node = btrfs_get_or_create_delayed_node(inode);
1886         if (IS_ERR(delayed_node))
1887                 return PTR_ERR(delayed_node);
1888
1889         /*
1890          * We don't reserve space for inode ref deletion is because:
1891          * - We ONLY do async inode ref deletion for the inode who has only
1892          *   one link(i_nlink == 1), it means there is only one inode ref.
1893          *   And in most case, the inode ref and the inode item are in the
1894          *   same leaf, and we will deal with them at the same time.
1895          *   Since we are sure we will reserve the space for the inode item,
1896          *   it is unnecessary to reserve space for inode ref deletion.
1897          * - If the inode ref and the inode item are not in the same leaf,
1898          *   We also needn't worry about enospc problem, because we reserve
1899          *   much more space for the inode update than it needs.
1900          * - At the worst, we can steal some space from the global reservation.
1901          *   It is very rare.
1902          */
1903         mutex_lock(&delayed_node->mutex);
1904         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1905                 goto release_node;
1906
1907         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1908         delayed_node->count++;
1909         atomic_inc(&fs_info->delayed_root->items);
1910 release_node:
1911         mutex_unlock(&delayed_node->mutex);
1912         btrfs_release_delayed_node(delayed_node);
1913         return 0;
1914 }
1915
1916 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1917 {
1918         struct btrfs_root *root = delayed_node->root;
1919         struct btrfs_fs_info *fs_info = root->fs_info;
1920         struct btrfs_delayed_item *curr_item, *prev_item;
1921
1922         mutex_lock(&delayed_node->mutex);
1923         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1924         while (curr_item) {
1925                 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1926                 prev_item = curr_item;
1927                 curr_item = __btrfs_next_delayed_item(prev_item);
1928                 btrfs_release_delayed_item(prev_item);
1929         }
1930
1931         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1932         while (curr_item) {
1933                 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1934                 prev_item = curr_item;
1935                 curr_item = __btrfs_next_delayed_item(prev_item);
1936                 btrfs_release_delayed_item(prev_item);
1937         }
1938
1939         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1940                 btrfs_release_delayed_iref(delayed_node);
1941
1942         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1943                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1944                 btrfs_release_delayed_inode(delayed_node);
1945         }
1946         mutex_unlock(&delayed_node->mutex);
1947 }
1948
1949 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1950 {
1951         struct btrfs_delayed_node *delayed_node;
1952
1953         delayed_node = btrfs_get_delayed_node(inode);
1954         if (!delayed_node)
1955                 return;
1956
1957         __btrfs_kill_delayed_node(delayed_node);
1958         btrfs_release_delayed_node(delayed_node);
1959 }
1960
1961 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1962 {
1963         u64 inode_id = 0;
1964         struct btrfs_delayed_node *delayed_nodes[8];
1965         int i, n;
1966
1967         while (1) {
1968                 spin_lock(&root->inode_lock);
1969                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1970                                            (void **)delayed_nodes, inode_id,
1971                                            ARRAY_SIZE(delayed_nodes));
1972                 if (!n) {
1973                         spin_unlock(&root->inode_lock);
1974                         break;
1975                 }
1976
1977                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1978
1979                 for (i = 0; i < n; i++)
1980                         refcount_inc(&delayed_nodes[i]->refs);
1981                 spin_unlock(&root->inode_lock);
1982
1983                 for (i = 0; i < n; i++) {
1984                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1985                         btrfs_release_delayed_node(delayed_nodes[i]);
1986                 }
1987         }
1988 }
1989
1990 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1991 {
1992         struct btrfs_delayed_node *curr_node, *prev_node;
1993
1994         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1995         while (curr_node) {
1996                 __btrfs_kill_delayed_node(curr_node);
1997
1998                 prev_node = curr_node;
1999                 curr_node = btrfs_next_delayed_node(curr_node);
2000                 btrfs_release_delayed_node(prev_node);
2001         }
2002 }
2003