Btrfs: don't delay inode ref updates during log replay
[platform/kernel/linux-stable.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK         512
26 #define BTRFS_DELAYED_BACKGROUND        128
27 #define BTRFS_DELAYED_BATCH             16
28
29 static struct kmem_cache *delayed_node_cache;
30
31 int __init btrfs_delayed_inode_init(void)
32 {
33         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
34                                         sizeof(struct btrfs_delayed_node),
35                                         0,
36                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
37                                         NULL);
38         if (!delayed_node_cache)
39                 return -ENOMEM;
40         return 0;
41 }
42
43 void btrfs_delayed_inode_exit(void)
44 {
45         if (delayed_node_cache)
46                 kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         atomic_set(&delayed_node->refs, 0);
56         delayed_node->count = 0;
57         delayed_node->in_list = 0;
58         delayed_node->inode_dirty = 0;
59         delayed_node->ins_root = RB_ROOT;
60         delayed_node->del_root = RB_ROOT;
61         mutex_init(&delayed_node->mutex);
62         delayed_node->index_cnt = 0;
63         INIT_LIST_HEAD(&delayed_node->n_list);
64         INIT_LIST_HEAD(&delayed_node->p_list);
65         delayed_node->bytes_reserved = 0;
66         memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68
69 static inline int btrfs_is_continuous_delayed_item(
70                                         struct btrfs_delayed_item *item1,
71                                         struct btrfs_delayed_item *item2)
72 {
73         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74             item1->key.objectid == item2->key.objectid &&
75             item1->key.type == item2->key.type &&
76             item1->key.offset + 1 == item2->key.offset)
77                 return 1;
78         return 0;
79 }
80
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82                                                         struct btrfs_root *root)
83 {
84         return root->fs_info->delayed_root;
85 }
86
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90         struct btrfs_root *root = btrfs_inode->root;
91         u64 ino = btrfs_ino(inode);
92         struct btrfs_delayed_node *node;
93
94         node = ACCESS_ONCE(btrfs_inode->delayed_node);
95         if (node) {
96                 atomic_inc(&node->refs);
97                 return node;
98         }
99
100         spin_lock(&root->inode_lock);
101         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102         if (node) {
103                 if (btrfs_inode->delayed_node) {
104                         atomic_inc(&node->refs);        /* can be accessed */
105                         BUG_ON(btrfs_inode->delayed_node != node);
106                         spin_unlock(&root->inode_lock);
107                         return node;
108                 }
109                 btrfs_inode->delayed_node = node;
110                 atomic_inc(&node->refs);        /* can be accessed */
111                 atomic_inc(&node->refs);        /* cached in the inode */
112                 spin_unlock(&root->inode_lock);
113                 return node;
114         }
115         spin_unlock(&root->inode_lock);
116
117         return NULL;
118 }
119
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122                                                         struct inode *inode)
123 {
124         struct btrfs_delayed_node *node;
125         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126         struct btrfs_root *root = btrfs_inode->root;
127         u64 ino = btrfs_ino(inode);
128         int ret;
129
130 again:
131         node = btrfs_get_delayed_node(inode);
132         if (node)
133                 return node;
134
135         node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136         if (!node)
137                 return ERR_PTR(-ENOMEM);
138         btrfs_init_delayed_node(node, root, ino);
139
140         atomic_inc(&node->refs);        /* cached in the btrfs inode */
141         atomic_inc(&node->refs);        /* can be accessed */
142
143         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144         if (ret) {
145                 kmem_cache_free(delayed_node_cache, node);
146                 return ERR_PTR(ret);
147         }
148
149         spin_lock(&root->inode_lock);
150         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151         if (ret == -EEXIST) {
152                 kmem_cache_free(delayed_node_cache, node);
153                 spin_unlock(&root->inode_lock);
154                 radix_tree_preload_end();
155                 goto again;
156         }
157         btrfs_inode->delayed_node = node;
158         spin_unlock(&root->inode_lock);
159         radix_tree_preload_end();
160
161         return node;
162 }
163
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170                                      struct btrfs_delayed_node *node,
171                                      int mod)
172 {
173         spin_lock(&root->lock);
174         if (node->in_list) {
175                 if (!list_empty(&node->p_list))
176                         list_move_tail(&node->p_list, &root->prepare_list);
177                 else if (mod)
178                         list_add_tail(&node->p_list, &root->prepare_list);
179         } else {
180                 list_add_tail(&node->n_list, &root->node_list);
181                 list_add_tail(&node->p_list, &root->prepare_list);
182                 atomic_inc(&node->refs);        /* inserted into list */
183                 root->nodes++;
184                 node->in_list = 1;
185         }
186         spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191                                        struct btrfs_delayed_node *node)
192 {
193         spin_lock(&root->lock);
194         if (node->in_list) {
195                 root->nodes--;
196                 atomic_dec(&node->refs);        /* not in the list */
197                 list_del_init(&node->n_list);
198                 if (!list_empty(&node->p_list))
199                         list_del_init(&node->p_list);
200                 node->in_list = 0;
201         }
202         spin_unlock(&root->lock);
203 }
204
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206                         struct btrfs_delayed_root *delayed_root)
207 {
208         struct list_head *p;
209         struct btrfs_delayed_node *node = NULL;
210
211         spin_lock(&delayed_root->lock);
212         if (list_empty(&delayed_root->node_list))
213                 goto out;
214
215         p = delayed_root->node_list.next;
216         node = list_entry(p, struct btrfs_delayed_node, n_list);
217         atomic_inc(&node->refs);
218 out:
219         spin_unlock(&delayed_root->lock);
220
221         return node;
222 }
223
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225                                                 struct btrfs_delayed_node *node)
226 {
227         struct btrfs_delayed_root *delayed_root;
228         struct list_head *p;
229         struct btrfs_delayed_node *next = NULL;
230
231         delayed_root = node->root->fs_info->delayed_root;
232         spin_lock(&delayed_root->lock);
233         if (!node->in_list) {   /* not in the list */
234                 if (list_empty(&delayed_root->node_list))
235                         goto out;
236                 p = delayed_root->node_list.next;
237         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238                 goto out;
239         else
240                 p = node->n_list.next;
241
242         next = list_entry(p, struct btrfs_delayed_node, n_list);
243         atomic_inc(&next->refs);
244 out:
245         spin_unlock(&delayed_root->lock);
246
247         return next;
248 }
249
250 static void __btrfs_release_delayed_node(
251                                 struct btrfs_delayed_node *delayed_node,
252                                 int mod)
253 {
254         struct btrfs_delayed_root *delayed_root;
255
256         if (!delayed_node)
257                 return;
258
259         delayed_root = delayed_node->root->fs_info->delayed_root;
260
261         mutex_lock(&delayed_node->mutex);
262         if (delayed_node->count)
263                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264         else
265                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266         mutex_unlock(&delayed_node->mutex);
267
268         if (atomic_dec_and_test(&delayed_node->refs)) {
269                 struct btrfs_root *root = delayed_node->root;
270                 spin_lock(&root->inode_lock);
271                 if (atomic_read(&delayed_node->refs) == 0) {
272                         radix_tree_delete(&root->delayed_nodes_tree,
273                                           delayed_node->inode_id);
274                         kmem_cache_free(delayed_node_cache, delayed_node);
275                 }
276                 spin_unlock(&root->inode_lock);
277         }
278 }
279
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 {
282         __btrfs_release_delayed_node(node, 0);
283 }
284
285 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
286                                         struct btrfs_delayed_root *delayed_root)
287 {
288         struct list_head *p;
289         struct btrfs_delayed_node *node = NULL;
290
291         spin_lock(&delayed_root->lock);
292         if (list_empty(&delayed_root->prepare_list))
293                 goto out;
294
295         p = delayed_root->prepare_list.next;
296         list_del_init(p);
297         node = list_entry(p, struct btrfs_delayed_node, p_list);
298         atomic_inc(&node->refs);
299 out:
300         spin_unlock(&delayed_root->lock);
301
302         return node;
303 }
304
305 static inline void btrfs_release_prepared_delayed_node(
306                                         struct btrfs_delayed_node *node)
307 {
308         __btrfs_release_delayed_node(node, 1);
309 }
310
311 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
312 {
313         struct btrfs_delayed_item *item;
314         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
315         if (item) {
316                 item->data_len = data_len;
317                 item->ins_or_del = 0;
318                 item->bytes_reserved = 0;
319                 item->delayed_node = NULL;
320                 atomic_set(&item->refs, 1);
321         }
322         return item;
323 }
324
325 /*
326  * __btrfs_lookup_delayed_item - look up the delayed item by key
327  * @delayed_node: pointer to the delayed node
328  * @key:          the key to look up
329  * @prev:         used to store the prev item if the right item isn't found
330  * @next:         used to store the next item if the right item isn't found
331  *
332  * Note: if we don't find the right item, we will return the prev item and
333  * the next item.
334  */
335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
336                                 struct rb_root *root,
337                                 struct btrfs_key *key,
338                                 struct btrfs_delayed_item **prev,
339                                 struct btrfs_delayed_item **next)
340 {
341         struct rb_node *node, *prev_node = NULL;
342         struct btrfs_delayed_item *delayed_item = NULL;
343         int ret = 0;
344
345         node = root->rb_node;
346
347         while (node) {
348                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
349                                         rb_node);
350                 prev_node = node;
351                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
352                 if (ret < 0)
353                         node = node->rb_right;
354                 else if (ret > 0)
355                         node = node->rb_left;
356                 else
357                         return delayed_item;
358         }
359
360         if (prev) {
361                 if (!prev_node)
362                         *prev = NULL;
363                 else if (ret < 0)
364                         *prev = delayed_item;
365                 else if ((node = rb_prev(prev_node)) != NULL) {
366                         *prev = rb_entry(node, struct btrfs_delayed_item,
367                                          rb_node);
368                 } else
369                         *prev = NULL;
370         }
371
372         if (next) {
373                 if (!prev_node)
374                         *next = NULL;
375                 else if (ret > 0)
376                         *next = delayed_item;
377                 else if ((node = rb_next(prev_node)) != NULL) {
378                         *next = rb_entry(node, struct btrfs_delayed_item,
379                                          rb_node);
380                 } else
381                         *next = NULL;
382         }
383         return NULL;
384 }
385
386 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
387                                         struct btrfs_delayed_node *delayed_node,
388                                         struct btrfs_key *key)
389 {
390         struct btrfs_delayed_item *item;
391
392         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
393                                            NULL, NULL);
394         return item;
395 }
396
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398                                     struct btrfs_delayed_item *ins,
399                                     int action)
400 {
401         struct rb_node **p, *node;
402         struct rb_node *parent_node = NULL;
403         struct rb_root *root;
404         struct btrfs_delayed_item *item;
405         int cmp;
406
407         if (action == BTRFS_DELAYED_INSERTION_ITEM)
408                 root = &delayed_node->ins_root;
409         else if (action == BTRFS_DELAYED_DELETION_ITEM)
410                 root = &delayed_node->del_root;
411         else
412                 BUG();
413         p = &root->rb_node;
414         node = &ins->rb_node;
415
416         while (*p) {
417                 parent_node = *p;
418                 item = rb_entry(parent_node, struct btrfs_delayed_item,
419                                  rb_node);
420
421                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422                 if (cmp < 0)
423                         p = &(*p)->rb_right;
424                 else if (cmp > 0)
425                         p = &(*p)->rb_left;
426                 else
427                         return -EEXIST;
428         }
429
430         rb_link_node(node, parent_node, p);
431         rb_insert_color(node, root);
432         ins->delayed_node = delayed_node;
433         ins->ins_or_del = action;
434
435         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436             action == BTRFS_DELAYED_INSERTION_ITEM &&
437             ins->key.offset >= delayed_node->index_cnt)
438                         delayed_node->index_cnt = ins->key.offset + 1;
439
440         delayed_node->count++;
441         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442         return 0;
443 }
444
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446                                               struct btrfs_delayed_item *item)
447 {
448         return __btrfs_add_delayed_item(node, item,
449                                         BTRFS_DELAYED_INSERTION_ITEM);
450 }
451
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453                                              struct btrfs_delayed_item *item)
454 {
455         return __btrfs_add_delayed_item(node, item,
456                                         BTRFS_DELAYED_DELETION_ITEM);
457 }
458
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461         int seq = atomic_inc_return(&delayed_root->items_seq);
462         if ((atomic_dec_return(&delayed_root->items) <
463             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
464             waitqueue_active(&delayed_root->wait))
465                 wake_up(&delayed_root->wait);
466 }
467
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 {
470         struct rb_root *root;
471         struct btrfs_delayed_root *delayed_root;
472
473         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
474
475         BUG_ON(!delayed_root);
476         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
477                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
478
479         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
480                 root = &delayed_item->delayed_node->ins_root;
481         else
482                 root = &delayed_item->delayed_node->del_root;
483
484         rb_erase(&delayed_item->rb_node, root);
485         delayed_item->delayed_node->count--;
486
487         finish_one_item(delayed_root);
488 }
489
490 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
491 {
492         if (item) {
493                 __btrfs_remove_delayed_item(item);
494                 if (atomic_dec_and_test(&item->refs))
495                         kfree(item);
496         }
497 }
498
499 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
500                                         struct btrfs_delayed_node *delayed_node)
501 {
502         struct rb_node *p;
503         struct btrfs_delayed_item *item = NULL;
504
505         p = rb_first(&delayed_node->ins_root);
506         if (p)
507                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
508
509         return item;
510 }
511
512 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
513                                         struct btrfs_delayed_node *delayed_node)
514 {
515         struct rb_node *p;
516         struct btrfs_delayed_item *item = NULL;
517
518         p = rb_first(&delayed_node->del_root);
519         if (p)
520                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
521
522         return item;
523 }
524
525 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
526                                                 struct btrfs_delayed_item *item)
527 {
528         struct rb_node *p;
529         struct btrfs_delayed_item *next = NULL;
530
531         p = rb_next(&item->rb_node);
532         if (p)
533                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
534
535         return next;
536 }
537
538 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
539                                                    u64 root_id)
540 {
541         struct btrfs_key root_key;
542
543         if (root->objectid == root_id)
544                 return root;
545
546         root_key.objectid = root_id;
547         root_key.type = BTRFS_ROOT_ITEM_KEY;
548         root_key.offset = (u64)-1;
549         return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
550 }
551
552 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
553                                                struct btrfs_root *root,
554                                                struct btrfs_delayed_item *item)
555 {
556         struct btrfs_block_rsv *src_rsv;
557         struct btrfs_block_rsv *dst_rsv;
558         u64 num_bytes;
559         int ret;
560
561         if (!trans->bytes_reserved)
562                 return 0;
563
564         src_rsv = trans->block_rsv;
565         dst_rsv = &root->fs_info->delayed_block_rsv;
566
567         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
568         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
569         if (!ret) {
570                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
571                                               item->key.objectid,
572                                               num_bytes, 1);
573                 item->bytes_reserved = num_bytes;
574         }
575
576         return ret;
577 }
578
579 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
580                                                 struct btrfs_delayed_item *item)
581 {
582         struct btrfs_block_rsv *rsv;
583
584         if (!item->bytes_reserved)
585                 return;
586
587         rsv = &root->fs_info->delayed_block_rsv;
588         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
589                                       item->key.objectid, item->bytes_reserved,
590                                       0);
591         btrfs_block_rsv_release(root, rsv,
592                                 item->bytes_reserved);
593 }
594
595 static int btrfs_delayed_inode_reserve_metadata(
596                                         struct btrfs_trans_handle *trans,
597                                         struct btrfs_root *root,
598                                         struct inode *inode,
599                                         struct btrfs_delayed_node *node)
600 {
601         struct btrfs_block_rsv *src_rsv;
602         struct btrfs_block_rsv *dst_rsv;
603         u64 num_bytes;
604         int ret;
605         bool release = false;
606
607         src_rsv = trans->block_rsv;
608         dst_rsv = &root->fs_info->delayed_block_rsv;
609
610         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
611
612         /*
613          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
614          * which doesn't reserve space for speed.  This is a problem since we
615          * still need to reserve space for this update, so try to reserve the
616          * space.
617          *
618          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
619          * we're accounted for.
620          */
621         if (!src_rsv || (!trans->bytes_reserved &&
622                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
623                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
624                                           BTRFS_RESERVE_NO_FLUSH);
625                 /*
626                  * Since we're under a transaction reserve_metadata_bytes could
627                  * try to commit the transaction which will make it return
628                  * EAGAIN to make us stop the transaction we have, so return
629                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
630                  */
631                 if (ret == -EAGAIN)
632                         ret = -ENOSPC;
633                 if (!ret) {
634                         node->bytes_reserved = num_bytes;
635                         trace_btrfs_space_reservation(root->fs_info,
636                                                       "delayed_inode",
637                                                       btrfs_ino(inode),
638                                                       num_bytes, 1);
639                 }
640                 return ret;
641         } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
642                 spin_lock(&BTRFS_I(inode)->lock);
643                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
644                                        &BTRFS_I(inode)->runtime_flags)) {
645                         spin_unlock(&BTRFS_I(inode)->lock);
646                         release = true;
647                         goto migrate;
648                 }
649                 spin_unlock(&BTRFS_I(inode)->lock);
650
651                 /* Ok we didn't have space pre-reserved.  This shouldn't happen
652                  * too often but it can happen if we do delalloc to an existing
653                  * inode which gets dirtied because of the time update, and then
654                  * isn't touched again until after the transaction commits and
655                  * then we try to write out the data.  First try to be nice and
656                  * reserve something strictly for us.  If not be a pain and try
657                  * to steal from the delalloc block rsv.
658                  */
659                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
660                                           BTRFS_RESERVE_NO_FLUSH);
661                 if (!ret)
662                         goto out;
663
664                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
665                 if (!ret)
666                         goto out;
667
668                 /*
669                  * Ok this is a problem, let's just steal from the global rsv
670                  * since this really shouldn't happen that often.
671                  */
672                 WARN_ON(1);
673                 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
674                                               dst_rsv, num_bytes);
675                 goto out;
676         }
677
678 migrate:
679         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
680
681 out:
682         /*
683          * Migrate only takes a reservation, it doesn't touch the size of the
684          * block_rsv.  This is to simplify people who don't normally have things
685          * migrated from their block rsv.  If they go to release their
686          * reservation, that will decrease the size as well, so if migrate
687          * reduced size we'd end up with a negative size.  But for the
688          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
689          * but we could in fact do this reserve/migrate dance several times
690          * between the time we did the original reservation and we'd clean it
691          * up.  So to take care of this, release the space for the meta
692          * reservation here.  I think it may be time for a documentation page on
693          * how block rsvs. work.
694          */
695         if (!ret) {
696                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
697                                               btrfs_ino(inode), num_bytes, 1);
698                 node->bytes_reserved = num_bytes;
699         }
700
701         if (release) {
702                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
703                                               btrfs_ino(inode), num_bytes, 0);
704                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
705         }
706
707         return ret;
708 }
709
710 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
711                                                 struct btrfs_delayed_node *node)
712 {
713         struct btrfs_block_rsv *rsv;
714
715         if (!node->bytes_reserved)
716                 return;
717
718         rsv = &root->fs_info->delayed_block_rsv;
719         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
720                                       node->inode_id, node->bytes_reserved, 0);
721         btrfs_block_rsv_release(root, rsv,
722                                 node->bytes_reserved);
723         node->bytes_reserved = 0;
724 }
725
726 /*
727  * This helper will insert some continuous items into the same leaf according
728  * to the free space of the leaf.
729  */
730 static int btrfs_batch_insert_items(struct btrfs_root *root,
731                                     struct btrfs_path *path,
732                                     struct btrfs_delayed_item *item)
733 {
734         struct btrfs_delayed_item *curr, *next;
735         int free_space;
736         int total_data_size = 0, total_size = 0;
737         struct extent_buffer *leaf;
738         char *data_ptr;
739         struct btrfs_key *keys;
740         u32 *data_size;
741         struct list_head head;
742         int slot;
743         int nitems;
744         int i;
745         int ret = 0;
746
747         BUG_ON(!path->nodes[0]);
748
749         leaf = path->nodes[0];
750         free_space = btrfs_leaf_free_space(root, leaf);
751         INIT_LIST_HEAD(&head);
752
753         next = item;
754         nitems = 0;
755
756         /*
757          * count the number of the continuous items that we can insert in batch
758          */
759         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
760                free_space) {
761                 total_data_size += next->data_len;
762                 total_size += next->data_len + sizeof(struct btrfs_item);
763                 list_add_tail(&next->tree_list, &head);
764                 nitems++;
765
766                 curr = next;
767                 next = __btrfs_next_delayed_item(curr);
768                 if (!next)
769                         break;
770
771                 if (!btrfs_is_continuous_delayed_item(curr, next))
772                         break;
773         }
774
775         if (!nitems) {
776                 ret = 0;
777                 goto out;
778         }
779
780         /*
781          * we need allocate some memory space, but it might cause the task
782          * to sleep, so we set all locked nodes in the path to blocking locks
783          * first.
784          */
785         btrfs_set_path_blocking(path);
786
787         keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
788         if (!keys) {
789                 ret = -ENOMEM;
790                 goto out;
791         }
792
793         data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
794         if (!data_size) {
795                 ret = -ENOMEM;
796                 goto error;
797         }
798
799         /* get keys of all the delayed items */
800         i = 0;
801         list_for_each_entry(next, &head, tree_list) {
802                 keys[i] = next->key;
803                 data_size[i] = next->data_len;
804                 i++;
805         }
806
807         /* reset all the locked nodes in the patch to spinning locks. */
808         btrfs_clear_path_blocking(path, NULL, 0);
809
810         /* insert the keys of the items */
811         setup_items_for_insert(root, path, keys, data_size,
812                                total_data_size, total_size, nitems);
813
814         /* insert the dir index items */
815         slot = path->slots[0];
816         list_for_each_entry_safe(curr, next, &head, tree_list) {
817                 data_ptr = btrfs_item_ptr(leaf, slot, char);
818                 write_extent_buffer(leaf, &curr->data,
819                                     (unsigned long)data_ptr,
820                                     curr->data_len);
821                 slot++;
822
823                 btrfs_delayed_item_release_metadata(root, curr);
824
825                 list_del(&curr->tree_list);
826                 btrfs_release_delayed_item(curr);
827         }
828
829 error:
830         kfree(data_size);
831         kfree(keys);
832 out:
833         return ret;
834 }
835
836 /*
837  * This helper can just do simple insertion that needn't extend item for new
838  * data, such as directory name index insertion, inode insertion.
839  */
840 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
841                                      struct btrfs_root *root,
842                                      struct btrfs_path *path,
843                                      struct btrfs_delayed_item *delayed_item)
844 {
845         struct extent_buffer *leaf;
846         char *ptr;
847         int ret;
848
849         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
850                                       delayed_item->data_len);
851         if (ret < 0 && ret != -EEXIST)
852                 return ret;
853
854         leaf = path->nodes[0];
855
856         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
857
858         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
859                             delayed_item->data_len);
860         btrfs_mark_buffer_dirty(leaf);
861
862         btrfs_delayed_item_release_metadata(root, delayed_item);
863         return 0;
864 }
865
866 /*
867  * we insert an item first, then if there are some continuous items, we try
868  * to insert those items into the same leaf.
869  */
870 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
871                                       struct btrfs_path *path,
872                                       struct btrfs_root *root,
873                                       struct btrfs_delayed_node *node)
874 {
875         struct btrfs_delayed_item *curr, *prev;
876         int ret = 0;
877
878 do_again:
879         mutex_lock(&node->mutex);
880         curr = __btrfs_first_delayed_insertion_item(node);
881         if (!curr)
882                 goto insert_end;
883
884         ret = btrfs_insert_delayed_item(trans, root, path, curr);
885         if (ret < 0) {
886                 btrfs_release_path(path);
887                 goto insert_end;
888         }
889
890         prev = curr;
891         curr = __btrfs_next_delayed_item(prev);
892         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
893                 /* insert the continuous items into the same leaf */
894                 path->slots[0]++;
895                 btrfs_batch_insert_items(root, path, curr);
896         }
897         btrfs_release_delayed_item(prev);
898         btrfs_mark_buffer_dirty(path->nodes[0]);
899
900         btrfs_release_path(path);
901         mutex_unlock(&node->mutex);
902         goto do_again;
903
904 insert_end:
905         mutex_unlock(&node->mutex);
906         return ret;
907 }
908
909 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
910                                     struct btrfs_root *root,
911                                     struct btrfs_path *path,
912                                     struct btrfs_delayed_item *item)
913 {
914         struct btrfs_delayed_item *curr, *next;
915         struct extent_buffer *leaf;
916         struct btrfs_key key;
917         struct list_head head;
918         int nitems, i, last_item;
919         int ret = 0;
920
921         BUG_ON(!path->nodes[0]);
922
923         leaf = path->nodes[0];
924
925         i = path->slots[0];
926         last_item = btrfs_header_nritems(leaf) - 1;
927         if (i > last_item)
928                 return -ENOENT; /* FIXME: Is errno suitable? */
929
930         next = item;
931         INIT_LIST_HEAD(&head);
932         btrfs_item_key_to_cpu(leaf, &key, i);
933         nitems = 0;
934         /*
935          * count the number of the dir index items that we can delete in batch
936          */
937         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
938                 list_add_tail(&next->tree_list, &head);
939                 nitems++;
940
941                 curr = next;
942                 next = __btrfs_next_delayed_item(curr);
943                 if (!next)
944                         break;
945
946                 if (!btrfs_is_continuous_delayed_item(curr, next))
947                         break;
948
949                 i++;
950                 if (i > last_item)
951                         break;
952                 btrfs_item_key_to_cpu(leaf, &key, i);
953         }
954
955         if (!nitems)
956                 return 0;
957
958         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
959         if (ret)
960                 goto out;
961
962         list_for_each_entry_safe(curr, next, &head, tree_list) {
963                 btrfs_delayed_item_release_metadata(root, curr);
964                 list_del(&curr->tree_list);
965                 btrfs_release_delayed_item(curr);
966         }
967
968 out:
969         return ret;
970 }
971
972 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
973                                       struct btrfs_path *path,
974                                       struct btrfs_root *root,
975                                       struct btrfs_delayed_node *node)
976 {
977         struct btrfs_delayed_item *curr, *prev;
978         int ret = 0;
979
980 do_again:
981         mutex_lock(&node->mutex);
982         curr = __btrfs_first_delayed_deletion_item(node);
983         if (!curr)
984                 goto delete_fail;
985
986         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
987         if (ret < 0)
988                 goto delete_fail;
989         else if (ret > 0) {
990                 /*
991                  * can't find the item which the node points to, so this node
992                  * is invalid, just drop it.
993                  */
994                 prev = curr;
995                 curr = __btrfs_next_delayed_item(prev);
996                 btrfs_release_delayed_item(prev);
997                 ret = 0;
998                 btrfs_release_path(path);
999                 if (curr) {
1000                         mutex_unlock(&node->mutex);
1001                         goto do_again;
1002                 } else
1003                         goto delete_fail;
1004         }
1005
1006         btrfs_batch_delete_items(trans, root, path, curr);
1007         btrfs_release_path(path);
1008         mutex_unlock(&node->mutex);
1009         goto do_again;
1010
1011 delete_fail:
1012         btrfs_release_path(path);
1013         mutex_unlock(&node->mutex);
1014         return ret;
1015 }
1016
1017 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1018 {
1019         struct btrfs_delayed_root *delayed_root;
1020
1021         if (delayed_node && delayed_node->inode_dirty) {
1022                 BUG_ON(!delayed_node->root);
1023                 delayed_node->inode_dirty = 0;
1024                 delayed_node->count--;
1025
1026                 delayed_root = delayed_node->root->fs_info->delayed_root;
1027                 finish_one_item(delayed_root);
1028         }
1029 }
1030
1031 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1032                                         struct btrfs_root *root,
1033                                         struct btrfs_path *path,
1034                                         struct btrfs_delayed_node *node)
1035 {
1036         struct btrfs_key key;
1037         struct btrfs_inode_item *inode_item;
1038         struct extent_buffer *leaf;
1039         int ret;
1040
1041         key.objectid = node->inode_id;
1042         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043         key.offset = 0;
1044
1045         ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1046         if (ret > 0) {
1047                 btrfs_release_path(path);
1048                 return -ENOENT;
1049         } else if (ret < 0) {
1050                 return ret;
1051         }
1052
1053         btrfs_unlock_up_safe(path, 1);
1054         leaf = path->nodes[0];
1055         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1056                                     struct btrfs_inode_item);
1057         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1058                             sizeof(struct btrfs_inode_item));
1059         btrfs_mark_buffer_dirty(leaf);
1060         btrfs_release_path(path);
1061
1062         btrfs_delayed_inode_release_metadata(root, node);
1063         btrfs_release_delayed_inode(node);
1064
1065         return 0;
1066 }
1067
1068 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1069                                              struct btrfs_root *root,
1070                                              struct btrfs_path *path,
1071                                              struct btrfs_delayed_node *node)
1072 {
1073         int ret;
1074
1075         mutex_lock(&node->mutex);
1076         if (!node->inode_dirty) {
1077                 mutex_unlock(&node->mutex);
1078                 return 0;
1079         }
1080
1081         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1082         mutex_unlock(&node->mutex);
1083         return ret;
1084 }
1085
1086 static inline int
1087 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1088                                    struct btrfs_path *path,
1089                                    struct btrfs_delayed_node *node)
1090 {
1091         int ret;
1092
1093         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1094         if (ret)
1095                 return ret;
1096
1097         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1098         if (ret)
1099                 return ret;
1100
1101         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1102         return ret;
1103 }
1104
1105 /*
1106  * Called when committing the transaction.
1107  * Returns 0 on success.
1108  * Returns < 0 on error and returns with an aborted transaction with any
1109  * outstanding delayed items cleaned up.
1110  */
1111 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1112                                      struct btrfs_root *root, int nr)
1113 {
1114         struct btrfs_delayed_root *delayed_root;
1115         struct btrfs_delayed_node *curr_node, *prev_node;
1116         struct btrfs_path *path;
1117         struct btrfs_block_rsv *block_rsv;
1118         int ret = 0;
1119         bool count = (nr > 0);
1120
1121         if (trans->aborted)
1122                 return -EIO;
1123
1124         path = btrfs_alloc_path();
1125         if (!path)
1126                 return -ENOMEM;
1127         path->leave_spinning = 1;
1128
1129         block_rsv = trans->block_rsv;
1130         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1131
1132         delayed_root = btrfs_get_delayed_root(root);
1133
1134         curr_node = btrfs_first_delayed_node(delayed_root);
1135         while (curr_node && (!count || (count && nr--))) {
1136                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1137                                                          curr_node);
1138                 if (ret) {
1139                         btrfs_release_delayed_node(curr_node);
1140                         curr_node = NULL;
1141                         btrfs_abort_transaction(trans, root, ret);
1142                         break;
1143                 }
1144
1145                 prev_node = curr_node;
1146                 curr_node = btrfs_next_delayed_node(curr_node);
1147                 btrfs_release_delayed_node(prev_node);
1148         }
1149
1150         if (curr_node)
1151                 btrfs_release_delayed_node(curr_node);
1152         btrfs_free_path(path);
1153         trans->block_rsv = block_rsv;
1154
1155         return ret;
1156 }
1157
1158 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1159                             struct btrfs_root *root)
1160 {
1161         return __btrfs_run_delayed_items(trans, root, -1);
1162 }
1163
1164 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1165                                struct btrfs_root *root, int nr)
1166 {
1167         return __btrfs_run_delayed_items(trans, root, nr);
1168 }
1169
1170 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1171                                      struct inode *inode)
1172 {
1173         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1174         struct btrfs_path *path;
1175         struct btrfs_block_rsv *block_rsv;
1176         int ret;
1177
1178         if (!delayed_node)
1179                 return 0;
1180
1181         mutex_lock(&delayed_node->mutex);
1182         if (!delayed_node->count) {
1183                 mutex_unlock(&delayed_node->mutex);
1184                 btrfs_release_delayed_node(delayed_node);
1185                 return 0;
1186         }
1187         mutex_unlock(&delayed_node->mutex);
1188
1189         path = btrfs_alloc_path();
1190         if (!path)
1191                 return -ENOMEM;
1192         path->leave_spinning = 1;
1193
1194         block_rsv = trans->block_rsv;
1195         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1196
1197         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1198
1199         btrfs_release_delayed_node(delayed_node);
1200         btrfs_free_path(path);
1201         trans->block_rsv = block_rsv;
1202
1203         return ret;
1204 }
1205
1206 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1207 {
1208         struct btrfs_trans_handle *trans;
1209         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1210         struct btrfs_path *path;
1211         struct btrfs_block_rsv *block_rsv;
1212         int ret;
1213
1214         if (!delayed_node)
1215                 return 0;
1216
1217         mutex_lock(&delayed_node->mutex);
1218         if (!delayed_node->inode_dirty) {
1219                 mutex_unlock(&delayed_node->mutex);
1220                 btrfs_release_delayed_node(delayed_node);
1221                 return 0;
1222         }
1223         mutex_unlock(&delayed_node->mutex);
1224
1225         trans = btrfs_join_transaction(delayed_node->root);
1226         if (IS_ERR(trans)) {
1227                 ret = PTR_ERR(trans);
1228                 goto out;
1229         }
1230
1231         path = btrfs_alloc_path();
1232         if (!path) {
1233                 ret = -ENOMEM;
1234                 goto trans_out;
1235         }
1236         path->leave_spinning = 1;
1237
1238         block_rsv = trans->block_rsv;
1239         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1240
1241         mutex_lock(&delayed_node->mutex);
1242         if (delayed_node->inode_dirty)
1243                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1244                                                    path, delayed_node);
1245         else
1246                 ret = 0;
1247         mutex_unlock(&delayed_node->mutex);
1248
1249         btrfs_free_path(path);
1250         trans->block_rsv = block_rsv;
1251 trans_out:
1252         btrfs_end_transaction(trans, delayed_node->root);
1253         btrfs_btree_balance_dirty(delayed_node->root);
1254 out:
1255         btrfs_release_delayed_node(delayed_node);
1256
1257         return ret;
1258 }
1259
1260 void btrfs_remove_delayed_node(struct inode *inode)
1261 {
1262         struct btrfs_delayed_node *delayed_node;
1263
1264         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1265         if (!delayed_node)
1266                 return;
1267
1268         BTRFS_I(inode)->delayed_node = NULL;
1269         btrfs_release_delayed_node(delayed_node);
1270 }
1271
1272 struct btrfs_async_delayed_work {
1273         struct btrfs_delayed_root *delayed_root;
1274         int nr;
1275         struct btrfs_work work;
1276 };
1277
1278 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1279 {
1280         struct btrfs_async_delayed_work *async_work;
1281         struct btrfs_delayed_root *delayed_root;
1282         struct btrfs_trans_handle *trans;
1283         struct btrfs_path *path;
1284         struct btrfs_delayed_node *delayed_node = NULL;
1285         struct btrfs_root *root;
1286         struct btrfs_block_rsv *block_rsv;
1287         int total_done = 0;
1288
1289         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1290         delayed_root = async_work->delayed_root;
1291
1292         path = btrfs_alloc_path();
1293         if (!path)
1294                 goto out;
1295
1296 again:
1297         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1298                 goto free_path;
1299
1300         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1301         if (!delayed_node)
1302                 goto free_path;
1303
1304         path->leave_spinning = 1;
1305         root = delayed_node->root;
1306
1307         trans = btrfs_join_transaction(root);
1308         if (IS_ERR(trans))
1309                 goto release_path;
1310
1311         block_rsv = trans->block_rsv;
1312         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1313
1314         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1315         /*
1316          * Maybe new delayed items have been inserted, so we need requeue
1317          * the work. Besides that, we must dequeue the empty delayed nodes
1318          * to avoid the race between delayed items balance and the worker.
1319          * The race like this:
1320          *      Task1                           Worker thread
1321          *                                      count == 0, needn't requeue
1322          *                                        also needn't insert the
1323          *                                        delayed node into prepare
1324          *                                        list again.
1325          *      add lots of delayed items
1326          *      queue the delayed node
1327          *        already in the list,
1328          *        and not in the prepare
1329          *        list, it means the delayed
1330          *        node is being dealt with
1331          *        by the worker.
1332          *      do delayed items balance
1333          *        the delayed node is being
1334          *        dealt with by the worker
1335          *        now, just wait.
1336          *                                      the worker goto idle.
1337          * Task1 will sleep until the transaction is commited.
1338          */
1339         mutex_lock(&delayed_node->mutex);
1340         btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
1341         mutex_unlock(&delayed_node->mutex);
1342
1343         trans->block_rsv = block_rsv;
1344         btrfs_end_transaction_dmeta(trans, root);
1345         btrfs_btree_balance_dirty_nodelay(root);
1346
1347 release_path:
1348         btrfs_release_path(path);
1349         total_done++;
1350
1351         btrfs_release_prepared_delayed_node(delayed_node);
1352         if (async_work->nr == 0 || total_done < async_work->nr)
1353                 goto again;
1354
1355 free_path:
1356         btrfs_free_path(path);
1357 out:
1358         wake_up(&delayed_root->wait);
1359         kfree(async_work);
1360 }
1361
1362
1363 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1364                                      struct btrfs_root *root, int nr)
1365 {
1366         struct btrfs_async_delayed_work *async_work;
1367
1368         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1369                 return 0;
1370
1371         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1372         if (!async_work)
1373                 return -ENOMEM;
1374
1375         async_work->delayed_root = delayed_root;
1376         async_work->work.func = btrfs_async_run_delayed_root;
1377         async_work->work.flags = 0;
1378         async_work->nr = nr;
1379
1380         btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1381         return 0;
1382 }
1383
1384 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1385 {
1386         struct btrfs_delayed_root *delayed_root;
1387         delayed_root = btrfs_get_delayed_root(root);
1388         WARN_ON(btrfs_first_delayed_node(delayed_root));
1389 }
1390
1391 static int refs_newer(struct btrfs_delayed_root *delayed_root,
1392                       int seq, int count)
1393 {
1394         int val = atomic_read(&delayed_root->items_seq);
1395
1396         if (val < seq || val >= seq + count)
1397                 return 1;
1398         return 0;
1399 }
1400
1401 void btrfs_balance_delayed_items(struct btrfs_root *root)
1402 {
1403         struct btrfs_delayed_root *delayed_root;
1404         int seq;
1405
1406         delayed_root = btrfs_get_delayed_root(root);
1407
1408         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409                 return;
1410
1411         seq = atomic_read(&delayed_root->items_seq);
1412
1413         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1414                 int ret;
1415                 DEFINE_WAIT(__wait);
1416
1417                 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1418                 if (ret)
1419                         return;
1420
1421                 while (1) {
1422                         prepare_to_wait(&delayed_root->wait, &__wait,
1423                                         TASK_INTERRUPTIBLE);
1424
1425                         if (refs_newer(delayed_root, seq,
1426                                        BTRFS_DELAYED_BATCH) ||
1427                             atomic_read(&delayed_root->items) <
1428                             BTRFS_DELAYED_BACKGROUND) {
1429                                 break;
1430                         }
1431                         if (!signal_pending(current))
1432                                 schedule();
1433                         else
1434                                 break;
1435                 }
1436                 finish_wait(&delayed_root->wait, &__wait);
1437         }
1438
1439         btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1440 }
1441
1442 /* Will return 0 or -ENOMEM */
1443 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1444                                    struct btrfs_root *root, const char *name,
1445                                    int name_len, struct inode *dir,
1446                                    struct btrfs_disk_key *disk_key, u8 type,
1447                                    u64 index)
1448 {
1449         struct btrfs_delayed_node *delayed_node;
1450         struct btrfs_delayed_item *delayed_item;
1451         struct btrfs_dir_item *dir_item;
1452         int ret;
1453
1454         delayed_node = btrfs_get_or_create_delayed_node(dir);
1455         if (IS_ERR(delayed_node))
1456                 return PTR_ERR(delayed_node);
1457
1458         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1459         if (!delayed_item) {
1460                 ret = -ENOMEM;
1461                 goto release_node;
1462         }
1463
1464         delayed_item->key.objectid = btrfs_ino(dir);
1465         btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1466         delayed_item->key.offset = index;
1467
1468         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1469         dir_item->location = *disk_key;
1470         dir_item->transid = cpu_to_le64(trans->transid);
1471         dir_item->data_len = 0;
1472         dir_item->name_len = cpu_to_le16(name_len);
1473         dir_item->type = type;
1474         memcpy((char *)(dir_item + 1), name, name_len);
1475
1476         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1477         /*
1478          * we have reserved enough space when we start a new transaction,
1479          * so reserving metadata failure is impossible
1480          */
1481         BUG_ON(ret);
1482
1483
1484         mutex_lock(&delayed_node->mutex);
1485         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1486         if (unlikely(ret)) {
1487                 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1488                                 "the insertion tree of the delayed node"
1489                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1490                                 name,
1491                                 (unsigned long long)delayed_node->root->objectid,
1492                                 (unsigned long long)delayed_node->inode_id,
1493                                 ret);
1494                 BUG();
1495         }
1496         mutex_unlock(&delayed_node->mutex);
1497
1498 release_node:
1499         btrfs_release_delayed_node(delayed_node);
1500         return ret;
1501 }
1502
1503 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1504                                                struct btrfs_delayed_node *node,
1505                                                struct btrfs_key *key)
1506 {
1507         struct btrfs_delayed_item *item;
1508
1509         mutex_lock(&node->mutex);
1510         item = __btrfs_lookup_delayed_insertion_item(node, key);
1511         if (!item) {
1512                 mutex_unlock(&node->mutex);
1513                 return 1;
1514         }
1515
1516         btrfs_delayed_item_release_metadata(root, item);
1517         btrfs_release_delayed_item(item);
1518         mutex_unlock(&node->mutex);
1519         return 0;
1520 }
1521
1522 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1523                                    struct btrfs_root *root, struct inode *dir,
1524                                    u64 index)
1525 {
1526         struct btrfs_delayed_node *node;
1527         struct btrfs_delayed_item *item;
1528         struct btrfs_key item_key;
1529         int ret;
1530
1531         node = btrfs_get_or_create_delayed_node(dir);
1532         if (IS_ERR(node))
1533                 return PTR_ERR(node);
1534
1535         item_key.objectid = btrfs_ino(dir);
1536         btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1537         item_key.offset = index;
1538
1539         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1540         if (!ret)
1541                 goto end;
1542
1543         item = btrfs_alloc_delayed_item(0);
1544         if (!item) {
1545                 ret = -ENOMEM;
1546                 goto end;
1547         }
1548
1549         item->key = item_key;
1550
1551         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1552         /*
1553          * we have reserved enough space when we start a new transaction,
1554          * so reserving metadata failure is impossible.
1555          */
1556         BUG_ON(ret);
1557
1558         mutex_lock(&node->mutex);
1559         ret = __btrfs_add_delayed_deletion_item(node, item);
1560         if (unlikely(ret)) {
1561                 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1562                                 "into the deletion tree of the delayed node"
1563                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1564                                 (unsigned long long)index,
1565                                 (unsigned long long)node->root->objectid,
1566                                 (unsigned long long)node->inode_id,
1567                                 ret);
1568                 BUG();
1569         }
1570         mutex_unlock(&node->mutex);
1571 end:
1572         btrfs_release_delayed_node(node);
1573         return ret;
1574 }
1575
1576 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1577 {
1578         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1579
1580         if (!delayed_node)
1581                 return -ENOENT;
1582
1583         /*
1584          * Since we have held i_mutex of this directory, it is impossible that
1585          * a new directory index is added into the delayed node and index_cnt
1586          * is updated now. So we needn't lock the delayed node.
1587          */
1588         if (!delayed_node->index_cnt) {
1589                 btrfs_release_delayed_node(delayed_node);
1590                 return -EINVAL;
1591         }
1592
1593         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1594         btrfs_release_delayed_node(delayed_node);
1595         return 0;
1596 }
1597
1598 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1599                              struct list_head *del_list)
1600 {
1601         struct btrfs_delayed_node *delayed_node;
1602         struct btrfs_delayed_item *item;
1603
1604         delayed_node = btrfs_get_delayed_node(inode);
1605         if (!delayed_node)
1606                 return;
1607
1608         mutex_lock(&delayed_node->mutex);
1609         item = __btrfs_first_delayed_insertion_item(delayed_node);
1610         while (item) {
1611                 atomic_inc(&item->refs);
1612                 list_add_tail(&item->readdir_list, ins_list);
1613                 item = __btrfs_next_delayed_item(item);
1614         }
1615
1616         item = __btrfs_first_delayed_deletion_item(delayed_node);
1617         while (item) {
1618                 atomic_inc(&item->refs);
1619                 list_add_tail(&item->readdir_list, del_list);
1620                 item = __btrfs_next_delayed_item(item);
1621         }
1622         mutex_unlock(&delayed_node->mutex);
1623         /*
1624          * This delayed node is still cached in the btrfs inode, so refs
1625          * must be > 1 now, and we needn't check it is going to be freed
1626          * or not.
1627          *
1628          * Besides that, this function is used to read dir, we do not
1629          * insert/delete delayed items in this period. So we also needn't
1630          * requeue or dequeue this delayed node.
1631          */
1632         atomic_dec(&delayed_node->refs);
1633 }
1634
1635 void btrfs_put_delayed_items(struct list_head *ins_list,
1636                              struct list_head *del_list)
1637 {
1638         struct btrfs_delayed_item *curr, *next;
1639
1640         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1641                 list_del(&curr->readdir_list);
1642                 if (atomic_dec_and_test(&curr->refs))
1643                         kfree(curr);
1644         }
1645
1646         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647                 list_del(&curr->readdir_list);
1648                 if (atomic_dec_and_test(&curr->refs))
1649                         kfree(curr);
1650         }
1651 }
1652
1653 int btrfs_should_delete_dir_index(struct list_head *del_list,
1654                                   u64 index)
1655 {
1656         struct btrfs_delayed_item *curr, *next;
1657         int ret;
1658
1659         if (list_empty(del_list))
1660                 return 0;
1661
1662         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1663                 if (curr->key.offset > index)
1664                         break;
1665
1666                 list_del(&curr->readdir_list);
1667                 ret = (curr->key.offset == index);
1668
1669                 if (atomic_dec_and_test(&curr->refs))
1670                         kfree(curr);
1671
1672                 if (ret)
1673                         return 1;
1674                 else
1675                         continue;
1676         }
1677         return 0;
1678 }
1679
1680 /*
1681  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1682  *
1683  */
1684 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1685                                     filldir_t filldir,
1686                                     struct list_head *ins_list)
1687 {
1688         struct btrfs_dir_item *di;
1689         struct btrfs_delayed_item *curr, *next;
1690         struct btrfs_key location;
1691         char *name;
1692         int name_len;
1693         int over = 0;
1694         unsigned char d_type;
1695
1696         if (list_empty(ins_list))
1697                 return 0;
1698
1699         /*
1700          * Changing the data of the delayed item is impossible. So
1701          * we needn't lock them. And we have held i_mutex of the
1702          * directory, nobody can delete any directory indexes now.
1703          */
1704         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1705                 list_del(&curr->readdir_list);
1706
1707                 if (curr->key.offset < filp->f_pos) {
1708                         if (atomic_dec_and_test(&curr->refs))
1709                                 kfree(curr);
1710                         continue;
1711                 }
1712
1713                 filp->f_pos = curr->key.offset;
1714
1715                 di = (struct btrfs_dir_item *)curr->data;
1716                 name = (char *)(di + 1);
1717                 name_len = le16_to_cpu(di->name_len);
1718
1719                 d_type = btrfs_filetype_table[di->type];
1720                 btrfs_disk_key_to_cpu(&location, &di->location);
1721
1722                 over = filldir(dirent, name, name_len, curr->key.offset,
1723                                location.objectid, d_type);
1724
1725                 if (atomic_dec_and_test(&curr->refs))
1726                         kfree(curr);
1727
1728                 if (over)
1729                         return 1;
1730         }
1731         return 0;
1732 }
1733
1734 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1735                          generation, 64);
1736 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1737                          sequence, 64);
1738 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1739                          transid, 64);
1740 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1741 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1742                          nbytes, 64);
1743 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1744                          block_group, 64);
1745 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1746 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1748 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1750 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1751
1752 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1753 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1754
1755 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1756                                   struct btrfs_inode_item *inode_item,
1757                                   struct inode *inode)
1758 {
1759         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1760         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1761         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1762         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1763         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1764         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1765         btrfs_set_stack_inode_generation(inode_item,
1766                                          BTRFS_I(inode)->generation);
1767         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1768         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1769         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1770         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1771         btrfs_set_stack_inode_block_group(inode_item, 0);
1772
1773         btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1774                                      inode->i_atime.tv_sec);
1775         btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1776                                       inode->i_atime.tv_nsec);
1777
1778         btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1779                                      inode->i_mtime.tv_sec);
1780         btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1781                                       inode->i_mtime.tv_nsec);
1782
1783         btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1784                                      inode->i_ctime.tv_sec);
1785         btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1786                                       inode->i_ctime.tv_nsec);
1787 }
1788
1789 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1790 {
1791         struct btrfs_delayed_node *delayed_node;
1792         struct btrfs_inode_item *inode_item;
1793         struct btrfs_timespec *tspec;
1794
1795         delayed_node = btrfs_get_delayed_node(inode);
1796         if (!delayed_node)
1797                 return -ENOENT;
1798
1799         mutex_lock(&delayed_node->mutex);
1800         if (!delayed_node->inode_dirty) {
1801                 mutex_unlock(&delayed_node->mutex);
1802                 btrfs_release_delayed_node(delayed_node);
1803                 return -ENOENT;
1804         }
1805
1806         inode_item = &delayed_node->inode_item;
1807
1808         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1809         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1810         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1811         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1812         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1813         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1814         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1815         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1816         inode->i_rdev = 0;
1817         *rdev = btrfs_stack_inode_rdev(inode_item);
1818         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1819
1820         tspec = btrfs_inode_atime(inode_item);
1821         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1822         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1823
1824         tspec = btrfs_inode_mtime(inode_item);
1825         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1826         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1827
1828         tspec = btrfs_inode_ctime(inode_item);
1829         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1830         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1831
1832         inode->i_generation = BTRFS_I(inode)->generation;
1833         BTRFS_I(inode)->index_cnt = (u64)-1;
1834
1835         mutex_unlock(&delayed_node->mutex);
1836         btrfs_release_delayed_node(delayed_node);
1837         return 0;
1838 }
1839
1840 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1841                                struct btrfs_root *root, struct inode *inode)
1842 {
1843         struct btrfs_delayed_node *delayed_node;
1844         int ret = 0;
1845
1846         /*
1847          * we don't do delayed inode updates during log recovery because it
1848          * leads to enospc problems.  This means we also can't do
1849          * delayed inode refs
1850          */
1851         if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1852                 return -EAGAIN;
1853
1854         delayed_node = btrfs_get_or_create_delayed_node(inode);
1855         if (IS_ERR(delayed_node))
1856                 return PTR_ERR(delayed_node);
1857
1858         mutex_lock(&delayed_node->mutex);
1859         if (delayed_node->inode_dirty) {
1860                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1861                 goto release_node;
1862         }
1863
1864         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1865                                                    delayed_node);
1866         if (ret)
1867                 goto release_node;
1868
1869         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1870         delayed_node->inode_dirty = 1;
1871         delayed_node->count++;
1872         atomic_inc(&root->fs_info->delayed_root->items);
1873 release_node:
1874         mutex_unlock(&delayed_node->mutex);
1875         btrfs_release_delayed_node(delayed_node);
1876         return ret;
1877 }
1878
1879 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1880 {
1881         struct btrfs_root *root = delayed_node->root;
1882         struct btrfs_delayed_item *curr_item, *prev_item;
1883
1884         mutex_lock(&delayed_node->mutex);
1885         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1886         while (curr_item) {
1887                 btrfs_delayed_item_release_metadata(root, curr_item);
1888                 prev_item = curr_item;
1889                 curr_item = __btrfs_next_delayed_item(prev_item);
1890                 btrfs_release_delayed_item(prev_item);
1891         }
1892
1893         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1894         while (curr_item) {
1895                 btrfs_delayed_item_release_metadata(root, curr_item);
1896                 prev_item = curr_item;
1897                 curr_item = __btrfs_next_delayed_item(prev_item);
1898                 btrfs_release_delayed_item(prev_item);
1899         }
1900
1901         if (delayed_node->inode_dirty) {
1902                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1903                 btrfs_release_delayed_inode(delayed_node);
1904         }
1905         mutex_unlock(&delayed_node->mutex);
1906 }
1907
1908 void btrfs_kill_delayed_inode_items(struct inode *inode)
1909 {
1910         struct btrfs_delayed_node *delayed_node;
1911
1912         delayed_node = btrfs_get_delayed_node(inode);
1913         if (!delayed_node)
1914                 return;
1915
1916         __btrfs_kill_delayed_node(delayed_node);
1917         btrfs_release_delayed_node(delayed_node);
1918 }
1919
1920 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1921 {
1922         u64 inode_id = 0;
1923         struct btrfs_delayed_node *delayed_nodes[8];
1924         int i, n;
1925
1926         while (1) {
1927                 spin_lock(&root->inode_lock);
1928                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1929                                            (void **)delayed_nodes, inode_id,
1930                                            ARRAY_SIZE(delayed_nodes));
1931                 if (!n) {
1932                         spin_unlock(&root->inode_lock);
1933                         break;
1934                 }
1935
1936                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1937
1938                 for (i = 0; i < n; i++)
1939                         atomic_inc(&delayed_nodes[i]->refs);
1940                 spin_unlock(&root->inode_lock);
1941
1942                 for (i = 0; i < n; i++) {
1943                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1944                         btrfs_release_delayed_node(delayed_nodes[i]);
1945                 }
1946         }
1947 }
1948
1949 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1950 {
1951         struct btrfs_delayed_root *delayed_root;
1952         struct btrfs_delayed_node *curr_node, *prev_node;
1953
1954         delayed_root = btrfs_get_delayed_root(root);
1955
1956         curr_node = btrfs_first_delayed_node(delayed_root);
1957         while (curr_node) {
1958                 __btrfs_kill_delayed_node(curr_node);
1959
1960                 prev_node = curr_node;
1961                 curr_node = btrfs_next_delayed_node(curr_node);
1962                 btrfs_release_delayed_node(prev_node);
1963         }
1964 }
1965