2 * From linux/fs/btrfs/ctree.h
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
5 * Modified in 2017 by Marek Behun, CZ.NIC, marek.behun@nic.cz
7 * SPDX-License-Identifier: GPL-2.0+
10 #ifndef __BTRFS_CTREE_H__
11 #define __BTRFS_CTREE_H__
15 #include "btrfs_tree.h"
17 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
19 #define BTRFS_MAX_MIRRORS 3
21 #define BTRFS_MAX_LEVEL 8
23 #define BTRFS_COMPAT_EXTENT_TREE_V0
26 * the max metadata block size. This limit is somewhat artificial,
27 * but the memmove costs go through the roof for larger blocks.
29 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
32 * we can actually store much bigger names, but lets not confuse the rest
35 #define BTRFS_NAME_LEN 255
38 * Theoretical limit is larger, but we keep this down to a sane
39 * value. That should limit greatly the possibility of collisions on
42 #define BTRFS_LINK_MAX 65535U
44 static const int btrfs_csum_sizes[] = { 4 };
46 /* four bytes for CRC32 */
47 #define BTRFS_EMPTY_DIR_SIZE 0
49 /* ioprio of readahead is set to idle */
50 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
52 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
54 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
59 #define BTRFS_FS_STATE_ERROR 0
60 #define BTRFS_FS_STATE_REMOUNTING 1
61 #define BTRFS_FS_STATE_TRANS_ABORTED 2
62 #define BTRFS_FS_STATE_DEV_REPLACING 3
63 #define BTRFS_FS_STATE_DUMMY_FS_INFO 4
65 #define BTRFS_BACKREF_REV_MAX 256
66 #define BTRFS_BACKREF_REV_SHIFT 56
67 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
68 BTRFS_BACKREF_REV_SHIFT)
70 #define BTRFS_OLD_BACKREF_REV 0
71 #define BTRFS_MIXED_BACKREF_REV 1
74 * every tree block (leaf or node) starts with this header.
77 /* these first four must match the super block */
78 __u8 csum[BTRFS_CSUM_SIZE];
79 __u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
80 __u64 bytenr; /* which block this node is supposed to live in */
83 /* allowed to be different from the super from here on down */
84 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
89 } __attribute__ ((__packed__));
92 * this is a very generous portion of the super block, giving us
93 * room to translate 14 chunks with 3 stripes each.
95 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
98 * just in case we somehow lose the roots and are not able to mount,
99 * we store an array of the roots from previous transactions
102 #define BTRFS_NUM_BACKUP_ROOTS 4
103 struct btrfs_root_backup {
108 __u64 chunk_root_gen;
111 __u64 extent_root_gen;
128 __u8 tree_root_level;
129 __u8 chunk_root_level;
130 __u8 extent_root_level;
133 __u8 csum_root_level;
134 /* future and to align */
136 } __attribute__ ((__packed__));
139 * the super block basically lists the main trees of the FS
140 * it currently lacks any block count etc etc
142 struct btrfs_super_block {
143 __u8 csum[BTRFS_CSUM_SIZE];
144 /* the first 4 fields must match struct btrfs_header */
145 __u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
146 __u64 bytenr; /* this block number */
149 /* allowed to be different from the btrfs_header from here own down */
156 /* this will help find the new super based on the log root */
157 __u64 log_root_transid;
160 __u64 root_dir_objectid;
164 __u32 __unused_leafsize;
166 __u32 sys_chunk_array_size;
167 __u64 chunk_root_generation;
169 __u64 compat_ro_flags;
170 __u64 incompat_flags;
173 __u8 chunk_root_level;
175 struct btrfs_dev_item dev_item;
177 char label[BTRFS_LABEL_SIZE];
179 __u64 cache_generation;
180 __u64 uuid_tree_generation;
182 /* future expansion */
184 __u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
185 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
186 } __attribute__ ((__packed__));
189 * Compat flags that we support. If any incompat flags are set other than the
190 * ones specified below then we will fail to mount
192 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
193 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
194 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
196 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
197 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
198 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
200 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
201 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
203 #define BTRFS_FEATURE_INCOMPAT_SUPP \
204 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
205 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
206 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
207 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
208 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
209 BTRFS_FEATURE_INCOMPAT_RAID56 | \
210 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
211 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
212 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
214 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
215 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
216 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
219 * A leaf is full of items. offset and size tell us where to find
220 * the item in the leaf (relative to the start of the data area)
223 struct btrfs_key key;
226 } __attribute__ ((__packed__));
229 * leaves have an item area and a data area:
230 * [item0, item1....itemN] [free space] [dataN...data1, data0]
232 * The data is separate from the items to get the keys closer together
236 struct btrfs_header header;
237 struct btrfs_item items[];
238 } __attribute__ ((__packed__));
241 * all non-leaf blocks are nodes, they hold only keys and pointers to
244 struct btrfs_key_ptr {
245 struct btrfs_key key;
248 } __attribute__ ((__packed__));
251 struct btrfs_header header;
252 struct btrfs_key_ptr ptrs[];
253 } __attribute__ ((__packed__));
255 union btrfs_tree_node {
256 struct btrfs_header header;
257 struct btrfs_leaf leaf;
258 struct btrfs_node node;
267 union btrfs_tree_node *nodes[BTRFS_MAX_LEVEL];
268 u32 slots[BTRFS_MAX_LEVEL];
277 int btrfs_comp_keys(struct btrfs_key *, struct btrfs_key *);
278 int btrfs_comp_keys_type(struct btrfs_key *, struct btrfs_key *);
279 int btrfs_bin_search(union btrfs_tree_node *, struct btrfs_key *, int *);
280 void btrfs_free_path(struct btrfs_path *);
281 int btrfs_search_tree(const struct btrfs_root *, struct btrfs_key *,
282 struct btrfs_path *);
283 int btrfs_prev_slot(struct btrfs_path *);
284 int btrfs_next_slot(struct btrfs_path *);
286 static inline struct btrfs_key *btrfs_path_leaf_key(struct btrfs_path *p) {
287 return &p->nodes[0]->leaf.items[p->slots[0]].key;
290 static inline struct btrfs_key *
291 btrfs_search_tree_key_type(const struct btrfs_root *root, u64 objectid,
292 u8 type, struct btrfs_path *path)
294 struct btrfs_key key, *res;
296 key.objectid = objectid;
300 if (btrfs_search_tree(root, &key, path))
303 res = btrfs_path_leaf_key(path);
304 if (btrfs_comp_keys_type(&key, res)) {
305 btrfs_free_path(path);
312 static inline u32 btrfs_path_item_size(struct btrfs_path *p)
314 return p->nodes[0]->leaf.items[p->slots[0]].size;
317 static inline void *btrfs_leaf_data(struct btrfs_leaf *leaf, u32 slot)
319 return ((u8 *) leaf) + sizeof(struct btrfs_header)
320 + leaf->items[slot].offset;
323 static inline void *btrfs_path_leaf_data(struct btrfs_path *p)
325 return btrfs_leaf_data(&p->nodes[0]->leaf, p->slots[0]);
328 #define btrfs_item_ptr(l,s,t) \
329 ((t *) btrfs_leaf_data((l),(s)))
331 #define btrfs_path_item_ptr(p,t) \
332 ((t *) btrfs_path_leaf_data((p)))
334 #endif /* __BTRFS_CTREE_H__ */