1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
10 #include <linux/error-injection.h>
13 #include "transaction.h"
14 #include "print-tree.h"
18 #include "tree-mod-log.h"
19 #include "tree-checker.h"
21 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
22 *root, struct btrfs_path *path, int level);
23 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
24 const struct btrfs_key *ins_key, struct btrfs_path *path,
25 int data_size, int extend);
26 static int push_node_left(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst,
28 struct extent_buffer *src, int empty);
29 static int balance_node_right(struct btrfs_trans_handle *trans,
30 struct extent_buffer *dst_buf,
31 struct extent_buffer *src_buf);
32 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
35 static const struct btrfs_csums {
38 const char driver[12];
40 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
41 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
42 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
43 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
44 .driver = "blake2b-256" },
47 int btrfs_super_csum_size(const struct btrfs_super_block *s)
49 u16 t = btrfs_super_csum_type(s);
51 * csum type is validated at mount time
53 return btrfs_csums[t].size;
56 const char *btrfs_super_csum_name(u16 csum_type)
58 /* csum type is validated at mount time */
59 return btrfs_csums[csum_type].name;
63 * Return driver name if defined, otherwise the name that's also a valid driver
66 const char *btrfs_super_csum_driver(u16 csum_type)
68 /* csum type is validated at mount time */
69 return btrfs_csums[csum_type].driver[0] ?
70 btrfs_csums[csum_type].driver :
71 btrfs_csums[csum_type].name;
74 size_t __attribute_const__ btrfs_get_num_csums(void)
76 return ARRAY_SIZE(btrfs_csums);
79 struct btrfs_path *btrfs_alloc_path(void)
81 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
84 /* this also releases the path */
85 void btrfs_free_path(struct btrfs_path *p)
89 btrfs_release_path(p);
90 kmem_cache_free(btrfs_path_cachep, p);
94 * path release drops references on the extent buffers in the path
95 * and it drops any locks held by this path
97 * It is safe to call this on paths that no locks or extent buffers held.
99 noinline void btrfs_release_path(struct btrfs_path *p)
103 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
108 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
111 free_extent_buffer(p->nodes[i]);
117 * safely gets a reference on the root node of a tree. A lock
118 * is not taken, so a concurrent writer may put a different node
119 * at the root of the tree. See btrfs_lock_root_node for the
122 * The extent buffer returned by this has a reference taken, so
123 * it won't disappear. It may stop being the root of the tree
124 * at any time because there are no locks held.
126 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
128 struct extent_buffer *eb;
132 eb = rcu_dereference(root->node);
135 * RCU really hurts here, we could free up the root node because
136 * it was COWed but we may not get the new root node yet so do
137 * the inc_not_zero dance and if it doesn't work then
138 * synchronize_rcu and try again.
140 if (atomic_inc_not_zero(&eb->refs)) {
151 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
152 * just get put onto a simple dirty list. Transaction walks this list to make
153 * sure they get properly updated on disk.
155 static void add_root_to_dirty_list(struct btrfs_root *root)
157 struct btrfs_fs_info *fs_info = root->fs_info;
159 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
160 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
163 spin_lock(&fs_info->trans_lock);
164 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
165 /* Want the extent tree to be the last on the list */
166 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
167 list_move_tail(&root->dirty_list,
168 &fs_info->dirty_cowonly_roots);
170 list_move(&root->dirty_list,
171 &fs_info->dirty_cowonly_roots);
173 spin_unlock(&fs_info->trans_lock);
177 * used by snapshot creation to make a copy of a root for a tree with
178 * a given objectid. The buffer with the new root node is returned in
179 * cow_ret, and this func returns zero on success or a negative error code.
181 int btrfs_copy_root(struct btrfs_trans_handle *trans,
182 struct btrfs_root *root,
183 struct extent_buffer *buf,
184 struct extent_buffer **cow_ret, u64 new_root_objectid)
186 struct btrfs_fs_info *fs_info = root->fs_info;
187 struct extent_buffer *cow;
190 struct btrfs_disk_key disk_key;
192 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 trans->transid != fs_info->running_transaction->transid);
194 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
195 trans->transid != root->last_trans);
197 level = btrfs_header_level(buf);
199 btrfs_item_key(buf, &disk_key, 0);
201 btrfs_node_key(buf, &disk_key, 0);
203 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
204 &disk_key, level, buf->start, 0,
205 BTRFS_NESTING_NEW_ROOT);
209 copy_extent_buffer_full(cow, buf);
210 btrfs_set_header_bytenr(cow, cow->start);
211 btrfs_set_header_generation(cow, trans->transid);
212 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
213 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
214 BTRFS_HEADER_FLAG_RELOC);
215 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
216 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
218 btrfs_set_header_owner(cow, new_root_objectid);
220 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
222 WARN_ON(btrfs_header_generation(buf) > trans->transid);
223 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
224 ret = btrfs_inc_ref(trans, root, cow, 1);
226 ret = btrfs_inc_ref(trans, root, cow, 0);
228 btrfs_tree_unlock(cow);
229 free_extent_buffer(cow);
230 btrfs_abort_transaction(trans, ret);
234 btrfs_mark_buffer_dirty(cow);
240 * check if the tree block can be shared by multiple trees
242 int btrfs_block_can_be_shared(struct btrfs_root *root,
243 struct extent_buffer *buf)
246 * Tree blocks not in shareable trees and tree roots are never shared.
247 * If a block was allocated after the last snapshot and the block was
248 * not allocated by tree relocation, we know the block is not shared.
250 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
251 buf != root->node && buf != root->commit_root &&
252 (btrfs_header_generation(buf) <=
253 btrfs_root_last_snapshot(&root->root_item) ||
254 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
260 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
261 struct btrfs_root *root,
262 struct extent_buffer *buf,
263 struct extent_buffer *cow,
266 struct btrfs_fs_info *fs_info = root->fs_info;
274 * Backrefs update rules:
276 * Always use full backrefs for extent pointers in tree block
277 * allocated by tree relocation.
279 * If a shared tree block is no longer referenced by its owner
280 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
281 * use full backrefs for extent pointers in tree block.
283 * If a tree block is been relocating
284 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
285 * use full backrefs for extent pointers in tree block.
286 * The reason for this is some operations (such as drop tree)
287 * are only allowed for blocks use full backrefs.
290 if (btrfs_block_can_be_shared(root, buf)) {
291 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
292 btrfs_header_level(buf), 1,
298 btrfs_handle_fs_error(fs_info, ret, NULL);
303 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
304 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
305 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
310 owner = btrfs_header_owner(buf);
311 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
312 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
315 if ((owner == root->root_key.objectid ||
316 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
317 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
318 ret = btrfs_inc_ref(trans, root, buf, 1);
322 if (root->root_key.objectid ==
323 BTRFS_TREE_RELOC_OBJECTID) {
324 ret = btrfs_dec_ref(trans, root, buf, 0);
327 ret = btrfs_inc_ref(trans, root, cow, 1);
331 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
334 if (root->root_key.objectid ==
335 BTRFS_TREE_RELOC_OBJECTID)
336 ret = btrfs_inc_ref(trans, root, cow, 1);
338 ret = btrfs_inc_ref(trans, root, cow, 0);
342 if (new_flags != 0) {
343 int level = btrfs_header_level(buf);
345 ret = btrfs_set_disk_extent_flags(trans, buf,
351 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
352 if (root->root_key.objectid ==
353 BTRFS_TREE_RELOC_OBJECTID)
354 ret = btrfs_inc_ref(trans, root, cow, 1);
356 ret = btrfs_inc_ref(trans, root, cow, 0);
359 ret = btrfs_dec_ref(trans, root, buf, 1);
363 btrfs_clean_tree_block(buf);
370 * does the dirty work in cow of a single block. The parent block (if
371 * supplied) is updated to point to the new cow copy. The new buffer is marked
372 * dirty and returned locked. If you modify the block it needs to be marked
375 * search_start -- an allocation hint for the new block
377 * empty_size -- a hint that you plan on doing more cow. This is the size in
378 * bytes the allocator should try to find free next to the block it returns.
379 * This is just a hint and may be ignored by the allocator.
381 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
382 struct btrfs_root *root,
383 struct extent_buffer *buf,
384 struct extent_buffer *parent, int parent_slot,
385 struct extent_buffer **cow_ret,
386 u64 search_start, u64 empty_size,
387 enum btrfs_lock_nesting nest)
389 struct btrfs_fs_info *fs_info = root->fs_info;
390 struct btrfs_disk_key disk_key;
391 struct extent_buffer *cow;
395 u64 parent_start = 0;
400 btrfs_assert_tree_write_locked(buf);
402 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 trans->transid != fs_info->running_transaction->transid);
404 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 trans->transid != root->last_trans);
407 level = btrfs_header_level(buf);
410 btrfs_item_key(buf, &disk_key, 0);
412 btrfs_node_key(buf, &disk_key, 0);
414 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
415 parent_start = parent->start;
417 cow = btrfs_alloc_tree_block(trans, root, parent_start,
418 root->root_key.objectid, &disk_key, level,
419 search_start, empty_size, nest);
423 /* cow is set to blocking by btrfs_init_new_buffer */
425 copy_extent_buffer_full(cow, buf);
426 btrfs_set_header_bytenr(cow, cow->start);
427 btrfs_set_header_generation(cow, trans->transid);
428 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
429 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
430 BTRFS_HEADER_FLAG_RELOC);
431 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
432 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
434 btrfs_set_header_owner(cow, root->root_key.objectid);
436 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
438 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
440 btrfs_tree_unlock(cow);
441 free_extent_buffer(cow);
442 btrfs_abort_transaction(trans, ret);
446 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
447 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
449 btrfs_tree_unlock(cow);
450 free_extent_buffer(cow);
451 btrfs_abort_transaction(trans, ret);
456 if (buf == root->node) {
457 WARN_ON(parent && parent != buf);
458 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
459 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
460 parent_start = buf->start;
462 atomic_inc(&cow->refs);
463 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
465 rcu_assign_pointer(root->node, cow);
467 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
468 parent_start, last_ref);
469 free_extent_buffer(buf);
470 add_root_to_dirty_list(root);
472 WARN_ON(trans->transid != btrfs_header_generation(parent));
473 btrfs_tree_mod_log_insert_key(parent, parent_slot,
474 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
475 btrfs_set_node_blockptr(parent, parent_slot,
477 btrfs_set_node_ptr_generation(parent, parent_slot,
479 btrfs_mark_buffer_dirty(parent);
481 ret = btrfs_tree_mod_log_free_eb(buf);
483 btrfs_tree_unlock(cow);
484 free_extent_buffer(cow);
485 btrfs_abort_transaction(trans, ret);
489 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
490 parent_start, last_ref);
493 btrfs_tree_unlock(buf);
494 free_extent_buffer_stale(buf);
495 btrfs_mark_buffer_dirty(cow);
500 static inline int should_cow_block(struct btrfs_trans_handle *trans,
501 struct btrfs_root *root,
502 struct extent_buffer *buf)
504 if (btrfs_is_testing(root->fs_info))
507 /* Ensure we can see the FORCE_COW bit */
508 smp_mb__before_atomic();
511 * We do not need to cow a block if
512 * 1) this block is not created or changed in this transaction;
513 * 2) this block does not belong to TREE_RELOC tree;
514 * 3) the root is not forced COW.
516 * What is forced COW:
517 * when we create snapshot during committing the transaction,
518 * after we've finished copying src root, we must COW the shared
519 * block to ensure the metadata consistency.
521 if (btrfs_header_generation(buf) == trans->transid &&
522 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
523 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
524 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
525 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
531 * cows a single block, see __btrfs_cow_block for the real work.
532 * This version of it has extra checks so that a block isn't COWed more than
533 * once per transaction, as long as it hasn't been written yet
535 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
536 struct btrfs_root *root, struct extent_buffer *buf,
537 struct extent_buffer *parent, int parent_slot,
538 struct extent_buffer **cow_ret,
539 enum btrfs_lock_nesting nest)
541 struct btrfs_fs_info *fs_info = root->fs_info;
545 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
547 "COW'ing blocks on a fs root that's being dropped");
549 if (trans->transaction != fs_info->running_transaction)
550 WARN(1, KERN_CRIT "trans %llu running %llu\n",
552 fs_info->running_transaction->transid);
554 if (trans->transid != fs_info->generation)
555 WARN(1, KERN_CRIT "trans %llu running %llu\n",
556 trans->transid, fs_info->generation);
558 if (!should_cow_block(trans, root, buf)) {
563 search_start = buf->start & ~((u64)SZ_1G - 1);
566 * Before CoWing this block for later modification, check if it's
567 * the subtree root and do the delayed subtree trace if needed.
569 * Also We don't care about the error, as it's handled internally.
571 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
572 ret = __btrfs_cow_block(trans, root, buf, parent,
573 parent_slot, cow_ret, search_start, 0, nest);
575 trace_btrfs_cow_block(root, buf, *cow_ret);
579 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
582 * helper function for defrag to decide if two blocks pointed to by a
583 * node are actually close by
585 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
587 if (blocknr < other && other - (blocknr + blocksize) < 32768)
589 if (blocknr > other && blocknr - (other + blocksize) < 32768)
594 #ifdef __LITTLE_ENDIAN
597 * Compare two keys, on little-endian the disk order is same as CPU order and
598 * we can avoid the conversion.
600 static int comp_keys(const struct btrfs_disk_key *disk_key,
601 const struct btrfs_key *k2)
603 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
605 return btrfs_comp_cpu_keys(k1, k2);
611 * compare two keys in a memcmp fashion
613 static int comp_keys(const struct btrfs_disk_key *disk,
614 const struct btrfs_key *k2)
618 btrfs_disk_key_to_cpu(&k1, disk);
620 return btrfs_comp_cpu_keys(&k1, k2);
625 * same as comp_keys only with two btrfs_key's
627 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
629 if (k1->objectid > k2->objectid)
631 if (k1->objectid < k2->objectid)
633 if (k1->type > k2->type)
635 if (k1->type < k2->type)
637 if (k1->offset > k2->offset)
639 if (k1->offset < k2->offset)
645 * this is used by the defrag code to go through all the
646 * leaves pointed to by a node and reallocate them so that
647 * disk order is close to key order
649 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
650 struct btrfs_root *root, struct extent_buffer *parent,
651 int start_slot, u64 *last_ret,
652 struct btrfs_key *progress)
654 struct btrfs_fs_info *fs_info = root->fs_info;
655 struct extent_buffer *cur;
657 u64 search_start = *last_ret;
665 int progress_passed = 0;
666 struct btrfs_disk_key disk_key;
668 WARN_ON(trans->transaction != fs_info->running_transaction);
669 WARN_ON(trans->transid != fs_info->generation);
671 parent_nritems = btrfs_header_nritems(parent);
672 blocksize = fs_info->nodesize;
673 end_slot = parent_nritems - 1;
675 if (parent_nritems <= 1)
678 for (i = start_slot; i <= end_slot; i++) {
681 btrfs_node_key(parent, &disk_key, i);
682 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
686 blocknr = btrfs_node_blockptr(parent, i);
688 last_block = blocknr;
691 other = btrfs_node_blockptr(parent, i - 1);
692 close = close_blocks(blocknr, other, blocksize);
694 if (!close && i < end_slot) {
695 other = btrfs_node_blockptr(parent, i + 1);
696 close = close_blocks(blocknr, other, blocksize);
699 last_block = blocknr;
703 cur = btrfs_read_node_slot(parent, i);
706 if (search_start == 0)
707 search_start = last_block;
709 btrfs_tree_lock(cur);
710 err = __btrfs_cow_block(trans, root, cur, parent, i,
713 (end_slot - i) * blocksize),
716 btrfs_tree_unlock(cur);
717 free_extent_buffer(cur);
720 search_start = cur->start;
721 last_block = cur->start;
722 *last_ret = search_start;
723 btrfs_tree_unlock(cur);
724 free_extent_buffer(cur);
730 * Search for a key in the given extent_buffer.
732 * The lower boundary for the search is specified by the slot number @low. Use a
733 * value of 0 to search over the whole extent buffer.
735 * The slot in the extent buffer is returned via @slot. If the key exists in the
736 * extent buffer, then @slot will point to the slot where the key is, otherwise
737 * it points to the slot where you would insert the key.
739 * Slot may point to the total number of items (i.e. one position beyond the last
740 * key) if the key is bigger than the last key in the extent buffer.
742 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
743 const struct btrfs_key *key, int *slot)
747 int high = btrfs_header_nritems(eb);
749 const int key_size = sizeof(struct btrfs_disk_key);
752 btrfs_err(eb->fs_info,
753 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
754 __func__, low, high, eb->start,
755 btrfs_header_owner(eb), btrfs_header_level(eb));
759 if (btrfs_header_level(eb) == 0) {
760 p = offsetof(struct btrfs_leaf, items);
761 item_size = sizeof(struct btrfs_item);
763 p = offsetof(struct btrfs_node, ptrs);
764 item_size = sizeof(struct btrfs_key_ptr);
769 unsigned long offset;
770 struct btrfs_disk_key *tmp;
771 struct btrfs_disk_key unaligned;
774 mid = (low + high) / 2;
775 offset = p + mid * item_size;
776 oip = offset_in_page(offset);
778 if (oip + key_size <= PAGE_SIZE) {
779 const unsigned long idx = get_eb_page_index(offset);
780 char *kaddr = page_address(eb->pages[idx]);
782 oip = get_eb_offset_in_page(eb, offset);
783 tmp = (struct btrfs_disk_key *)(kaddr + oip);
785 read_extent_buffer(eb, &unaligned, offset, key_size);
789 ret = comp_keys(tmp, key);
805 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
806 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
808 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
811 return generic_bin_search(eb, 0, key, slot);
814 static void root_add_used(struct btrfs_root *root, u32 size)
816 spin_lock(&root->accounting_lock);
817 btrfs_set_root_used(&root->root_item,
818 btrfs_root_used(&root->root_item) + size);
819 spin_unlock(&root->accounting_lock);
822 static void root_sub_used(struct btrfs_root *root, u32 size)
824 spin_lock(&root->accounting_lock);
825 btrfs_set_root_used(&root->root_item,
826 btrfs_root_used(&root->root_item) - size);
827 spin_unlock(&root->accounting_lock);
830 /* given a node and slot number, this reads the blocks it points to. The
831 * extent buffer is returned with a reference taken (but unlocked).
833 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
836 int level = btrfs_header_level(parent);
837 struct extent_buffer *eb;
838 struct btrfs_key first_key;
840 if (slot < 0 || slot >= btrfs_header_nritems(parent))
841 return ERR_PTR(-ENOENT);
845 btrfs_node_key_to_cpu(parent, &first_key, slot);
846 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
847 btrfs_header_owner(parent),
848 btrfs_node_ptr_generation(parent, slot),
849 level - 1, &first_key);
852 if (!extent_buffer_uptodate(eb)) {
853 free_extent_buffer(eb);
854 return ERR_PTR(-EIO);
861 * node level balancing, used to make sure nodes are in proper order for
862 * item deletion. We balance from the top down, so we have to make sure
863 * that a deletion won't leave an node completely empty later on.
865 static noinline int balance_level(struct btrfs_trans_handle *trans,
866 struct btrfs_root *root,
867 struct btrfs_path *path, int level)
869 struct btrfs_fs_info *fs_info = root->fs_info;
870 struct extent_buffer *right = NULL;
871 struct extent_buffer *mid;
872 struct extent_buffer *left = NULL;
873 struct extent_buffer *parent = NULL;
877 int orig_slot = path->slots[level];
882 mid = path->nodes[level];
884 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
885 WARN_ON(btrfs_header_generation(mid) != trans->transid);
887 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
889 if (level < BTRFS_MAX_LEVEL - 1) {
890 parent = path->nodes[level + 1];
891 pslot = path->slots[level + 1];
895 * deal with the case where there is only one pointer in the root
896 * by promoting the node below to a root
899 struct extent_buffer *child;
901 if (btrfs_header_nritems(mid) != 1)
904 /* promote the child to a root */
905 child = btrfs_read_node_slot(mid, 0);
907 ret = PTR_ERR(child);
908 btrfs_handle_fs_error(fs_info, ret, NULL);
912 btrfs_tree_lock(child);
913 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
916 btrfs_tree_unlock(child);
917 free_extent_buffer(child);
921 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
923 rcu_assign_pointer(root->node, child);
925 add_root_to_dirty_list(root);
926 btrfs_tree_unlock(child);
928 path->locks[level] = 0;
929 path->nodes[level] = NULL;
930 btrfs_clean_tree_block(mid);
931 btrfs_tree_unlock(mid);
932 /* once for the path */
933 free_extent_buffer(mid);
935 root_sub_used(root, mid->len);
936 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
937 /* once for the root ptr */
938 free_extent_buffer_stale(mid);
941 if (btrfs_header_nritems(mid) >
942 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
945 left = btrfs_read_node_slot(parent, pslot - 1);
950 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
951 wret = btrfs_cow_block(trans, root, left,
952 parent, pslot - 1, &left,
953 BTRFS_NESTING_LEFT_COW);
960 right = btrfs_read_node_slot(parent, pslot + 1);
965 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
966 wret = btrfs_cow_block(trans, root, right,
967 parent, pslot + 1, &right,
968 BTRFS_NESTING_RIGHT_COW);
975 /* first, try to make some room in the middle buffer */
977 orig_slot += btrfs_header_nritems(left);
978 wret = push_node_left(trans, left, mid, 1);
984 * then try to empty the right most buffer into the middle
987 wret = push_node_left(trans, mid, right, 1);
988 if (wret < 0 && wret != -ENOSPC)
990 if (btrfs_header_nritems(right) == 0) {
991 btrfs_clean_tree_block(right);
992 btrfs_tree_unlock(right);
993 del_ptr(root, path, level + 1, pslot + 1);
994 root_sub_used(root, right->len);
995 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
997 free_extent_buffer_stale(right);
1000 struct btrfs_disk_key right_key;
1001 btrfs_node_key(right, &right_key, 0);
1002 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1003 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1005 btrfs_set_node_key(parent, &right_key, pslot + 1);
1006 btrfs_mark_buffer_dirty(parent);
1009 if (btrfs_header_nritems(mid) == 1) {
1011 * we're not allowed to leave a node with one item in the
1012 * tree during a delete. A deletion from lower in the tree
1013 * could try to delete the only pointer in this node.
1014 * So, pull some keys from the left.
1015 * There has to be a left pointer at this point because
1016 * otherwise we would have pulled some pointers from the
1021 btrfs_handle_fs_error(fs_info, ret, NULL);
1024 wret = balance_node_right(trans, mid, left);
1030 wret = push_node_left(trans, left, mid, 1);
1036 if (btrfs_header_nritems(mid) == 0) {
1037 btrfs_clean_tree_block(mid);
1038 btrfs_tree_unlock(mid);
1039 del_ptr(root, path, level + 1, pslot);
1040 root_sub_used(root, mid->len);
1041 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1042 free_extent_buffer_stale(mid);
1045 /* update the parent key to reflect our changes */
1046 struct btrfs_disk_key mid_key;
1047 btrfs_node_key(mid, &mid_key, 0);
1048 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1049 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1051 btrfs_set_node_key(parent, &mid_key, pslot);
1052 btrfs_mark_buffer_dirty(parent);
1055 /* update the path */
1057 if (btrfs_header_nritems(left) > orig_slot) {
1058 atomic_inc(&left->refs);
1059 /* left was locked after cow */
1060 path->nodes[level] = left;
1061 path->slots[level + 1] -= 1;
1062 path->slots[level] = orig_slot;
1064 btrfs_tree_unlock(mid);
1065 free_extent_buffer(mid);
1068 orig_slot -= btrfs_header_nritems(left);
1069 path->slots[level] = orig_slot;
1072 /* double check we haven't messed things up */
1074 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1078 btrfs_tree_unlock(right);
1079 free_extent_buffer(right);
1082 if (path->nodes[level] != left)
1083 btrfs_tree_unlock(left);
1084 free_extent_buffer(left);
1089 /* Node balancing for insertion. Here we only split or push nodes around
1090 * when they are completely full. This is also done top down, so we
1091 * have to be pessimistic.
1093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct btrfs_path *path, int level)
1097 struct btrfs_fs_info *fs_info = root->fs_info;
1098 struct extent_buffer *right = NULL;
1099 struct extent_buffer *mid;
1100 struct extent_buffer *left = NULL;
1101 struct extent_buffer *parent = NULL;
1105 int orig_slot = path->slots[level];
1110 mid = path->nodes[level];
1111 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1113 if (level < BTRFS_MAX_LEVEL - 1) {
1114 parent = path->nodes[level + 1];
1115 pslot = path->slots[level + 1];
1121 left = btrfs_read_node_slot(parent, pslot - 1);
1125 /* first, try to make some room in the middle buffer */
1129 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1131 left_nr = btrfs_header_nritems(left);
1132 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1135 ret = btrfs_cow_block(trans, root, left, parent,
1137 BTRFS_NESTING_LEFT_COW);
1141 wret = push_node_left(trans, left, mid, 0);
1147 struct btrfs_disk_key disk_key;
1148 orig_slot += left_nr;
1149 btrfs_node_key(mid, &disk_key, 0);
1150 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1151 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1153 btrfs_set_node_key(parent, &disk_key, pslot);
1154 btrfs_mark_buffer_dirty(parent);
1155 if (btrfs_header_nritems(left) > orig_slot) {
1156 path->nodes[level] = left;
1157 path->slots[level + 1] -= 1;
1158 path->slots[level] = orig_slot;
1159 btrfs_tree_unlock(mid);
1160 free_extent_buffer(mid);
1163 btrfs_header_nritems(left);
1164 path->slots[level] = orig_slot;
1165 btrfs_tree_unlock(left);
1166 free_extent_buffer(left);
1170 btrfs_tree_unlock(left);
1171 free_extent_buffer(left);
1173 right = btrfs_read_node_slot(parent, pslot + 1);
1178 * then try to empty the right most buffer into the middle
1183 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1185 right_nr = btrfs_header_nritems(right);
1186 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1189 ret = btrfs_cow_block(trans, root, right,
1191 &right, BTRFS_NESTING_RIGHT_COW);
1195 wret = balance_node_right(trans, right, mid);
1201 struct btrfs_disk_key disk_key;
1203 btrfs_node_key(right, &disk_key, 0);
1204 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1205 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1207 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1208 btrfs_mark_buffer_dirty(parent);
1210 if (btrfs_header_nritems(mid) <= orig_slot) {
1211 path->nodes[level] = right;
1212 path->slots[level + 1] += 1;
1213 path->slots[level] = orig_slot -
1214 btrfs_header_nritems(mid);
1215 btrfs_tree_unlock(mid);
1216 free_extent_buffer(mid);
1218 btrfs_tree_unlock(right);
1219 free_extent_buffer(right);
1223 btrfs_tree_unlock(right);
1224 free_extent_buffer(right);
1230 * readahead one full node of leaves, finding things that are close
1231 * to the block in 'slot', and triggering ra on them.
1233 static void reada_for_search(struct btrfs_fs_info *fs_info,
1234 struct btrfs_path *path,
1235 int level, int slot, u64 objectid)
1237 struct extent_buffer *node;
1238 struct btrfs_disk_key disk_key;
1248 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1251 if (!path->nodes[level])
1254 node = path->nodes[level];
1257 * Since the time between visiting leaves is much shorter than the time
1258 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1259 * much IO at once (possibly random).
1261 if (path->reada == READA_FORWARD_ALWAYS) {
1263 nread_max = node->fs_info->nodesize;
1265 nread_max = SZ_128K;
1270 search = btrfs_node_blockptr(node, slot);
1271 blocksize = fs_info->nodesize;
1272 if (path->reada != READA_FORWARD_ALWAYS) {
1273 struct extent_buffer *eb;
1275 eb = find_extent_buffer(fs_info, search);
1277 free_extent_buffer(eb);
1284 nritems = btrfs_header_nritems(node);
1288 if (path->reada == READA_BACK) {
1292 } else if (path->reada == READA_FORWARD ||
1293 path->reada == READA_FORWARD_ALWAYS) {
1298 if (path->reada == READA_BACK && objectid) {
1299 btrfs_node_key(node, &disk_key, nr);
1300 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1303 search = btrfs_node_blockptr(node, nr);
1304 if (path->reada == READA_FORWARD_ALWAYS ||
1305 (search <= target && target - search <= 65536) ||
1306 (search > target && search - target <= 65536)) {
1307 btrfs_readahead_node_child(node, nr);
1311 if (nread > nread_max || nscan > 32)
1316 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1318 struct extent_buffer *parent;
1322 parent = path->nodes[level + 1];
1326 nritems = btrfs_header_nritems(parent);
1327 slot = path->slots[level + 1];
1330 btrfs_readahead_node_child(parent, slot - 1);
1331 if (slot + 1 < nritems)
1332 btrfs_readahead_node_child(parent, slot + 1);
1337 * when we walk down the tree, it is usually safe to unlock the higher layers
1338 * in the tree. The exceptions are when our path goes through slot 0, because
1339 * operations on the tree might require changing key pointers higher up in the
1342 * callers might also have set path->keep_locks, which tells this code to keep
1343 * the lock if the path points to the last slot in the block. This is part of
1344 * walking through the tree, and selecting the next slot in the higher block.
1346 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1347 * if lowest_unlock is 1, level 0 won't be unlocked
1349 static noinline void unlock_up(struct btrfs_path *path, int level,
1350 int lowest_unlock, int min_write_lock_level,
1351 int *write_lock_level)
1354 int skip_level = level;
1355 bool check_skip = true;
1357 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1358 if (!path->nodes[i])
1360 if (!path->locks[i])
1364 if (path->slots[i] == 0) {
1369 if (path->keep_locks) {
1372 nritems = btrfs_header_nritems(path->nodes[i]);
1373 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1380 if (i >= lowest_unlock && i > skip_level) {
1382 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1384 if (write_lock_level &&
1385 i > min_write_lock_level &&
1386 i <= *write_lock_level) {
1387 *write_lock_level = i - 1;
1394 * Helper function for btrfs_search_slot() and other functions that do a search
1395 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1396 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1397 * its pages from disk.
1399 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1400 * whole btree search, starting again from the current root node.
1403 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1404 struct extent_buffer **eb_ret, int level, int slot,
1405 const struct btrfs_key *key)
1407 struct btrfs_fs_info *fs_info = root->fs_info;
1410 struct extent_buffer *tmp;
1411 struct btrfs_key first_key;
1416 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1417 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1418 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1419 parent_level = btrfs_header_level(*eb_ret);
1420 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1423 * If we need to read an extent buffer from disk and we are holding locks
1424 * on upper level nodes, we unlock all the upper nodes before reading the
1425 * extent buffer, and then return -EAGAIN to the caller as it needs to
1426 * restart the search. We don't release the lock on the current level
1427 * because we need to walk this node to figure out which blocks to read.
1429 tmp = find_extent_buffer(fs_info, blocknr);
1431 if (p->reada == READA_FORWARD_ALWAYS)
1432 reada_for_search(fs_info, p, level, slot, key->objectid);
1434 /* first we do an atomic uptodate check */
1435 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1437 * Do extra check for first_key, eb can be stale due to
1438 * being cached, read from scrub, or have multiple
1439 * parents (shared tree blocks).
1441 if (btrfs_verify_level_key(tmp,
1442 parent_level - 1, &first_key, gen)) {
1443 free_extent_buffer(tmp);
1451 btrfs_unlock_up_safe(p, level + 1);
1453 /* now we're allowed to do a blocking uptodate check */
1454 ret = btrfs_read_extent_buffer(tmp, gen, parent_level - 1, &first_key);
1456 free_extent_buffer(tmp);
1457 btrfs_release_path(p);
1460 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1461 free_extent_buffer(tmp);
1462 btrfs_release_path(p);
1473 btrfs_unlock_up_safe(p, level + 1);
1479 if (p->reada != READA_NONE)
1480 reada_for_search(fs_info, p, level, slot, key->objectid);
1482 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1483 gen, parent_level - 1, &first_key);
1485 btrfs_release_path(p);
1486 return PTR_ERR(tmp);
1489 * If the read above didn't mark this buffer up to date,
1490 * it will never end up being up to date. Set ret to EIO now
1491 * and give up so that our caller doesn't loop forever
1494 if (!extent_buffer_uptodate(tmp))
1501 free_extent_buffer(tmp);
1502 btrfs_release_path(p);
1509 * helper function for btrfs_search_slot. This does all of the checks
1510 * for node-level blocks and does any balancing required based on
1513 * If no extra work was required, zero is returned. If we had to
1514 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1518 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1519 struct btrfs_root *root, struct btrfs_path *p,
1520 struct extent_buffer *b, int level, int ins_len,
1521 int *write_lock_level)
1523 struct btrfs_fs_info *fs_info = root->fs_info;
1526 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1527 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1529 if (*write_lock_level < level + 1) {
1530 *write_lock_level = level + 1;
1531 btrfs_release_path(p);
1535 reada_for_balance(p, level);
1536 ret = split_node(trans, root, p, level);
1538 b = p->nodes[level];
1539 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1540 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1542 if (*write_lock_level < level + 1) {
1543 *write_lock_level = level + 1;
1544 btrfs_release_path(p);
1548 reada_for_balance(p, level);
1549 ret = balance_level(trans, root, p, level);
1553 b = p->nodes[level];
1555 btrfs_release_path(p);
1558 BUG_ON(btrfs_header_nritems(b) == 1);
1563 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1564 u64 iobjectid, u64 ioff, u8 key_type,
1565 struct btrfs_key *found_key)
1568 struct btrfs_key key;
1569 struct extent_buffer *eb;
1574 key.type = key_type;
1575 key.objectid = iobjectid;
1578 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1582 eb = path->nodes[0];
1583 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1584 ret = btrfs_next_leaf(fs_root, path);
1587 eb = path->nodes[0];
1590 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1591 if (found_key->type != key.type ||
1592 found_key->objectid != key.objectid)
1598 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1599 struct btrfs_path *p,
1600 int write_lock_level)
1602 struct extent_buffer *b;
1606 if (p->search_commit_root) {
1607 b = root->commit_root;
1608 atomic_inc(&b->refs);
1609 level = btrfs_header_level(b);
1611 * Ensure that all callers have set skip_locking when
1612 * p->search_commit_root = 1.
1614 ASSERT(p->skip_locking == 1);
1619 if (p->skip_locking) {
1620 b = btrfs_root_node(root);
1621 level = btrfs_header_level(b);
1625 /* We try very hard to do read locks on the root */
1626 root_lock = BTRFS_READ_LOCK;
1629 * If the level is set to maximum, we can skip trying to get the read
1632 if (write_lock_level < BTRFS_MAX_LEVEL) {
1634 * We don't know the level of the root node until we actually
1635 * have it read locked
1637 b = btrfs_read_lock_root_node(root);
1638 level = btrfs_header_level(b);
1639 if (level > write_lock_level)
1642 /* Whoops, must trade for write lock */
1643 btrfs_tree_read_unlock(b);
1644 free_extent_buffer(b);
1647 b = btrfs_lock_root_node(root);
1648 root_lock = BTRFS_WRITE_LOCK;
1650 /* The level might have changed, check again */
1651 level = btrfs_header_level(b);
1655 * The root may have failed to write out at some point, and thus is no
1656 * longer valid, return an error in this case.
1658 if (!extent_buffer_uptodate(b)) {
1660 btrfs_tree_unlock_rw(b, root_lock);
1661 free_extent_buffer(b);
1662 return ERR_PTR(-EIO);
1665 p->nodes[level] = b;
1666 if (!p->skip_locking)
1667 p->locks[level] = root_lock;
1669 * Callers are responsible for dropping b's references.
1675 * Replace the extent buffer at the lowest level of the path with a cloned
1676 * version. The purpose is to be able to use it safely, after releasing the
1677 * commit root semaphore, even if relocation is happening in parallel, the
1678 * transaction used for relocation is committed and the extent buffer is
1679 * reallocated in the next transaction.
1681 * This is used in a context where the caller does not prevent transaction
1682 * commits from happening, either by holding a transaction handle or holding
1683 * some lock, while it's doing searches through a commit root.
1684 * At the moment it's only used for send operations.
1686 static int finish_need_commit_sem_search(struct btrfs_path *path)
1688 const int i = path->lowest_level;
1689 const int slot = path->slots[i];
1690 struct extent_buffer *lowest = path->nodes[i];
1691 struct extent_buffer *clone;
1693 ASSERT(path->need_commit_sem);
1698 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1700 clone = btrfs_clone_extent_buffer(lowest);
1704 btrfs_release_path(path);
1705 path->nodes[i] = clone;
1706 path->slots[i] = slot;
1711 static inline int search_for_key_slot(struct extent_buffer *eb,
1712 int search_low_slot,
1713 const struct btrfs_key *key,
1718 * If a previous call to btrfs_bin_search() on a parent node returned an
1719 * exact match (prev_cmp == 0), we can safely assume the target key will
1720 * always be at slot 0 on lower levels, since each key pointer
1721 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1722 * subtree it points to. Thus we can skip searching lower levels.
1724 if (prev_cmp == 0) {
1729 return generic_bin_search(eb, search_low_slot, key, slot);
1732 static int search_leaf(struct btrfs_trans_handle *trans,
1733 struct btrfs_root *root,
1734 const struct btrfs_key *key,
1735 struct btrfs_path *path,
1739 struct extent_buffer *leaf = path->nodes[0];
1740 int leaf_free_space = -1;
1741 int search_low_slot = 0;
1743 bool do_bin_search = true;
1746 * If we are doing an insertion, the leaf has enough free space and the
1747 * destination slot for the key is not slot 0, then we can unlock our
1748 * write lock on the parent, and any other upper nodes, before doing the
1749 * binary search on the leaf (with search_for_key_slot()), allowing other
1750 * tasks to lock the parent and any other upper nodes.
1754 * Cache the leaf free space, since we will need it later and it
1755 * will not change until then.
1757 leaf_free_space = btrfs_leaf_free_space(leaf);
1760 * !path->locks[1] means we have a single node tree, the leaf is
1761 * the root of the tree.
1763 if (path->locks[1] && leaf_free_space >= ins_len) {
1764 struct btrfs_disk_key first_key;
1766 ASSERT(btrfs_header_nritems(leaf) > 0);
1767 btrfs_item_key(leaf, &first_key, 0);
1770 * Doing the extra comparison with the first key is cheap,
1771 * taking into account that the first key is very likely
1772 * already in a cache line because it immediately follows
1773 * the extent buffer's header and we have recently accessed
1774 * the header's level field.
1776 ret = comp_keys(&first_key, key);
1779 * The first key is smaller than the key we want
1780 * to insert, so we are safe to unlock all upper
1781 * nodes and we have to do the binary search.
1783 * We do use btrfs_unlock_up_safe() and not
1784 * unlock_up() because the later does not unlock
1785 * nodes with a slot of 0 - we can safely unlock
1786 * any node even if its slot is 0 since in this
1787 * case the key does not end up at slot 0 of the
1788 * leaf and there's no need to split the leaf.
1790 btrfs_unlock_up_safe(path, 1);
1791 search_low_slot = 1;
1794 * The first key is >= then the key we want to
1795 * insert, so we can skip the binary search as
1796 * the target key will be at slot 0.
1798 * We can not unlock upper nodes when the key is
1799 * less than the first key, because we will need
1800 * to update the key at slot 0 of the parent node
1801 * and possibly of other upper nodes too.
1802 * If the key matches the first key, then we can
1803 * unlock all the upper nodes, using
1804 * btrfs_unlock_up_safe() instead of unlock_up()
1808 btrfs_unlock_up_safe(path, 1);
1810 * ret is already 0 or 1, matching the result of
1811 * a btrfs_bin_search() call, so there is no need
1814 do_bin_search = false;
1820 if (do_bin_search) {
1821 ret = search_for_key_slot(leaf, search_low_slot, key,
1822 prev_cmp, &path->slots[0]);
1829 * Item key already exists. In this case, if we are allowed to
1830 * insert the item (for example, in dir_item case, item key
1831 * collision is allowed), it will be merged with the original
1832 * item. Only the item size grows, no new btrfs item will be
1833 * added. If search_for_extension is not set, ins_len already
1834 * accounts the size btrfs_item, deduct it here so leaf space
1835 * check will be correct.
1837 if (ret == 0 && !path->search_for_extension) {
1838 ASSERT(ins_len >= sizeof(struct btrfs_item));
1839 ins_len -= sizeof(struct btrfs_item);
1842 ASSERT(leaf_free_space >= 0);
1844 if (leaf_free_space < ins_len) {
1847 err = split_leaf(trans, root, key, path, ins_len,
1850 if (WARN_ON(err > 0))
1861 * btrfs_search_slot - look for a key in a tree and perform necessary
1862 * modifications to preserve tree invariants.
1864 * @trans: Handle of transaction, used when modifying the tree
1865 * @p: Holds all btree nodes along the search path
1866 * @root: The root node of the tree
1867 * @key: The key we are looking for
1868 * @ins_len: Indicates purpose of search:
1869 * >0 for inserts it's size of item inserted (*)
1871 * 0 for plain searches, not modifying the tree
1873 * (*) If size of item inserted doesn't include
1874 * sizeof(struct btrfs_item), then p->search_for_extension must
1876 * @cow: boolean should CoW operations be performed. Must always be 1
1877 * when modifying the tree.
1879 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1880 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1882 * If @key is found, 0 is returned and you can find the item in the leaf level
1883 * of the path (level 0)
1885 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1886 * points to the slot where it should be inserted
1888 * If an error is encountered while searching the tree a negative error number
1891 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1892 const struct btrfs_key *key, struct btrfs_path *p,
1893 int ins_len, int cow)
1895 struct btrfs_fs_info *fs_info = root->fs_info;
1896 struct extent_buffer *b;
1901 int lowest_unlock = 1;
1902 /* everything at write_lock_level or lower must be write locked */
1903 int write_lock_level = 0;
1904 u8 lowest_level = 0;
1905 int min_write_lock_level;
1908 lowest_level = p->lowest_level;
1909 WARN_ON(lowest_level && ins_len > 0);
1910 WARN_ON(p->nodes[0] != NULL);
1911 BUG_ON(!cow && ins_len);
1916 /* when we are removing items, we might have to go up to level
1917 * two as we update tree pointers Make sure we keep write
1918 * for those levels as well
1920 write_lock_level = 2;
1921 } else if (ins_len > 0) {
1923 * for inserting items, make sure we have a write lock on
1924 * level 1 so we can update keys
1926 write_lock_level = 1;
1930 write_lock_level = -1;
1932 if (cow && (p->keep_locks || p->lowest_level))
1933 write_lock_level = BTRFS_MAX_LEVEL;
1935 min_write_lock_level = write_lock_level;
1937 if (p->need_commit_sem) {
1938 ASSERT(p->search_commit_root);
1939 down_read(&fs_info->commit_root_sem);
1944 b = btrfs_search_slot_get_root(root, p, write_lock_level);
1953 level = btrfs_header_level(b);
1956 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1959 * if we don't really need to cow this block
1960 * then we don't want to set the path blocking,
1961 * so we test it here
1963 if (!should_cow_block(trans, root, b))
1967 * must have write locks on this node and the
1970 if (level > write_lock_level ||
1971 (level + 1 > write_lock_level &&
1972 level + 1 < BTRFS_MAX_LEVEL &&
1973 p->nodes[level + 1])) {
1974 write_lock_level = level + 1;
1975 btrfs_release_path(p);
1980 err = btrfs_cow_block(trans, root, b, NULL, 0,
1984 err = btrfs_cow_block(trans, root, b,
1985 p->nodes[level + 1],
1986 p->slots[level + 1], &b,
1994 p->nodes[level] = b;
1997 * we have a lock on b and as long as we aren't changing
1998 * the tree, there is no way to for the items in b to change.
1999 * It is safe to drop the lock on our parent before we
2000 * go through the expensive btree search on b.
2002 * If we're inserting or deleting (ins_len != 0), then we might
2003 * be changing slot zero, which may require changing the parent.
2004 * So, we can't drop the lock until after we know which slot
2005 * we're operating on.
2007 if (!ins_len && !p->keep_locks) {
2010 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2011 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2018 ASSERT(write_lock_level >= 1);
2020 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2021 if (!p->search_for_split)
2022 unlock_up(p, level, lowest_unlock,
2023 min_write_lock_level, NULL);
2027 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2032 if (ret && slot > 0) {
2036 p->slots[level] = slot;
2037 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2045 b = p->nodes[level];
2046 slot = p->slots[level];
2049 * Slot 0 is special, if we change the key we have to update
2050 * the parent pointer which means we must have a write lock on
2053 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2054 write_lock_level = level + 1;
2055 btrfs_release_path(p);
2059 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2062 if (level == lowest_level) {
2068 err = read_block_for_search(root, p, &b, level, slot, key);
2076 if (!p->skip_locking) {
2077 level = btrfs_header_level(b);
2079 btrfs_maybe_reset_lockdep_class(root, b);
2081 if (level <= write_lock_level) {
2083 p->locks[level] = BTRFS_WRITE_LOCK;
2085 btrfs_tree_read_lock(b);
2086 p->locks[level] = BTRFS_READ_LOCK;
2088 p->nodes[level] = b;
2093 if (ret < 0 && !p->skip_release_on_error)
2094 btrfs_release_path(p);
2096 if (p->need_commit_sem) {
2099 ret2 = finish_need_commit_sem_search(p);
2100 up_read(&fs_info->commit_root_sem);
2107 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2110 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2111 * current state of the tree together with the operations recorded in the tree
2112 * modification log to search for the key in a previous version of this tree, as
2113 * denoted by the time_seq parameter.
2115 * Naturally, there is no support for insert, delete or cow operations.
2117 * The resulting path and return value will be set up as if we called
2118 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2120 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2121 struct btrfs_path *p, u64 time_seq)
2123 struct btrfs_fs_info *fs_info = root->fs_info;
2124 struct extent_buffer *b;
2129 int lowest_unlock = 1;
2130 u8 lowest_level = 0;
2132 lowest_level = p->lowest_level;
2133 WARN_ON(p->nodes[0] != NULL);
2135 if (p->search_commit_root) {
2137 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2141 b = btrfs_get_old_root(root, time_seq);
2146 level = btrfs_header_level(b);
2147 p->locks[level] = BTRFS_READ_LOCK;
2152 level = btrfs_header_level(b);
2153 p->nodes[level] = b;
2156 * we have a lock on b and as long as we aren't changing
2157 * the tree, there is no way to for the items in b to change.
2158 * It is safe to drop the lock on our parent before we
2159 * go through the expensive btree search on b.
2161 btrfs_unlock_up_safe(p, level + 1);
2163 ret = btrfs_bin_search(b, key, &slot);
2168 p->slots[level] = slot;
2169 unlock_up(p, level, lowest_unlock, 0, NULL);
2173 if (ret && slot > 0) {
2177 p->slots[level] = slot;
2178 unlock_up(p, level, lowest_unlock, 0, NULL);
2180 if (level == lowest_level) {
2186 err = read_block_for_search(root, p, &b, level, slot, key);
2194 level = btrfs_header_level(b);
2195 btrfs_tree_read_lock(b);
2196 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2201 p->locks[level] = BTRFS_READ_LOCK;
2202 p->nodes[level] = b;
2207 btrfs_release_path(p);
2213 * helper to use instead of search slot if no exact match is needed but
2214 * instead the next or previous item should be returned.
2215 * When find_higher is true, the next higher item is returned, the next lower
2217 * When return_any and find_higher are both true, and no higher item is found,
2218 * return the next lower instead.
2219 * When return_any is true and find_higher is false, and no lower item is found,
2220 * return the next higher instead.
2221 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2224 int btrfs_search_slot_for_read(struct btrfs_root *root,
2225 const struct btrfs_key *key,
2226 struct btrfs_path *p, int find_higher,
2230 struct extent_buffer *leaf;
2233 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2237 * a return value of 1 means the path is at the position where the
2238 * item should be inserted. Normally this is the next bigger item,
2239 * but in case the previous item is the last in a leaf, path points
2240 * to the first free slot in the previous leaf, i.e. at an invalid
2246 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2247 ret = btrfs_next_leaf(root, p);
2253 * no higher item found, return the next
2258 btrfs_release_path(p);
2262 if (p->slots[0] == 0) {
2263 ret = btrfs_prev_leaf(root, p);
2268 if (p->slots[0] == btrfs_header_nritems(leaf))
2275 * no lower item found, return the next
2280 btrfs_release_path(p);
2290 * Execute search and call btrfs_previous_item to traverse backwards if the item
2293 * Return 0 if found, 1 if not found and < 0 if error.
2295 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2296 struct btrfs_path *path)
2300 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2302 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2305 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2311 * Search for a valid slot for the given path.
2313 * @root: The root node of the tree.
2314 * @key: Will contain a valid item if found.
2315 * @path: The starting point to validate the slot.
2317 * Return: 0 if the item is valid
2321 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2322 struct btrfs_path *path)
2326 const int slot = path->slots[0];
2327 const struct extent_buffer *leaf = path->nodes[0];
2329 /* This is where we start walking the path. */
2330 if (slot >= btrfs_header_nritems(leaf)) {
2332 * If we've reached the last slot in this leaf we need
2333 * to go to the next leaf and reset the path.
2335 ret = btrfs_next_leaf(root, path);
2340 /* Store the found, valid item in @key. */
2341 btrfs_item_key_to_cpu(leaf, key, slot);
2348 * adjust the pointers going up the tree, starting at level
2349 * making sure the right key of each node is points to 'key'.
2350 * This is used after shifting pointers to the left, so it stops
2351 * fixing up pointers when a given leaf/node is not in slot 0 of the
2355 static void fixup_low_keys(struct btrfs_path *path,
2356 struct btrfs_disk_key *key, int level)
2359 struct extent_buffer *t;
2362 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2363 int tslot = path->slots[i];
2365 if (!path->nodes[i])
2368 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2369 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2371 btrfs_set_node_key(t, key, tslot);
2372 btrfs_mark_buffer_dirty(path->nodes[i]);
2381 * This function isn't completely safe. It's the caller's responsibility
2382 * that the new key won't break the order
2384 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2385 struct btrfs_path *path,
2386 const struct btrfs_key *new_key)
2388 struct btrfs_disk_key disk_key;
2389 struct extent_buffer *eb;
2392 eb = path->nodes[0];
2393 slot = path->slots[0];
2395 btrfs_item_key(eb, &disk_key, slot - 1);
2396 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2398 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2399 slot, btrfs_disk_key_objectid(&disk_key),
2400 btrfs_disk_key_type(&disk_key),
2401 btrfs_disk_key_offset(&disk_key),
2402 new_key->objectid, new_key->type,
2404 btrfs_print_leaf(eb);
2408 if (slot < btrfs_header_nritems(eb) - 1) {
2409 btrfs_item_key(eb, &disk_key, slot + 1);
2410 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2412 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2413 slot, btrfs_disk_key_objectid(&disk_key),
2414 btrfs_disk_key_type(&disk_key),
2415 btrfs_disk_key_offset(&disk_key),
2416 new_key->objectid, new_key->type,
2418 btrfs_print_leaf(eb);
2423 btrfs_cpu_key_to_disk(&disk_key, new_key);
2424 btrfs_set_item_key(eb, &disk_key, slot);
2425 btrfs_mark_buffer_dirty(eb);
2427 fixup_low_keys(path, &disk_key, 1);
2431 * Check key order of two sibling extent buffers.
2433 * Return true if something is wrong.
2434 * Return false if everything is fine.
2436 * Tree-checker only works inside one tree block, thus the following
2437 * corruption can not be detected by tree-checker:
2439 * Leaf @left | Leaf @right
2440 * --------------------------------------------------------------
2441 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2443 * Key f6 in leaf @left itself is valid, but not valid when the next
2444 * key in leaf @right is 7.
2445 * This can only be checked at tree block merge time.
2446 * And since tree checker has ensured all key order in each tree block
2447 * is correct, we only need to bother the last key of @left and the first
2450 static bool check_sibling_keys(struct extent_buffer *left,
2451 struct extent_buffer *right)
2453 struct btrfs_key left_last;
2454 struct btrfs_key right_first;
2455 int level = btrfs_header_level(left);
2456 int nr_left = btrfs_header_nritems(left);
2457 int nr_right = btrfs_header_nritems(right);
2459 /* No key to check in one of the tree blocks */
2460 if (!nr_left || !nr_right)
2464 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2465 btrfs_node_key_to_cpu(right, &right_first, 0);
2467 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2468 btrfs_item_key_to_cpu(right, &right_first, 0);
2471 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2472 btrfs_crit(left->fs_info,
2473 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2474 left_last.objectid, left_last.type,
2475 left_last.offset, right_first.objectid,
2476 right_first.type, right_first.offset);
2483 * try to push data from one node into the next node left in the
2486 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2487 * error, and > 0 if there was no room in the left hand block.
2489 static int push_node_left(struct btrfs_trans_handle *trans,
2490 struct extent_buffer *dst,
2491 struct extent_buffer *src, int empty)
2493 struct btrfs_fs_info *fs_info = trans->fs_info;
2499 src_nritems = btrfs_header_nritems(src);
2500 dst_nritems = btrfs_header_nritems(dst);
2501 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2502 WARN_ON(btrfs_header_generation(src) != trans->transid);
2503 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2505 if (!empty && src_nritems <= 8)
2508 if (push_items <= 0)
2512 push_items = min(src_nritems, push_items);
2513 if (push_items < src_nritems) {
2514 /* leave at least 8 pointers in the node if
2515 * we aren't going to empty it
2517 if (src_nritems - push_items < 8) {
2518 if (push_items <= 8)
2524 push_items = min(src_nritems - 8, push_items);
2526 /* dst is the left eb, src is the middle eb */
2527 if (check_sibling_keys(dst, src)) {
2529 btrfs_abort_transaction(trans, ret);
2532 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2534 btrfs_abort_transaction(trans, ret);
2537 copy_extent_buffer(dst, src,
2538 btrfs_node_key_ptr_offset(dst_nritems),
2539 btrfs_node_key_ptr_offset(0),
2540 push_items * sizeof(struct btrfs_key_ptr));
2542 if (push_items < src_nritems) {
2544 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2545 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2547 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2548 btrfs_node_key_ptr_offset(push_items),
2549 (src_nritems - push_items) *
2550 sizeof(struct btrfs_key_ptr));
2552 btrfs_set_header_nritems(src, src_nritems - push_items);
2553 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2554 btrfs_mark_buffer_dirty(src);
2555 btrfs_mark_buffer_dirty(dst);
2561 * try to push data from one node into the next node right in the
2564 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2565 * error, and > 0 if there was no room in the right hand block.
2567 * this will only push up to 1/2 the contents of the left node over
2569 static int balance_node_right(struct btrfs_trans_handle *trans,
2570 struct extent_buffer *dst,
2571 struct extent_buffer *src)
2573 struct btrfs_fs_info *fs_info = trans->fs_info;
2580 WARN_ON(btrfs_header_generation(src) != trans->transid);
2581 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2583 src_nritems = btrfs_header_nritems(src);
2584 dst_nritems = btrfs_header_nritems(dst);
2585 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2586 if (push_items <= 0)
2589 if (src_nritems < 4)
2592 max_push = src_nritems / 2 + 1;
2593 /* don't try to empty the node */
2594 if (max_push >= src_nritems)
2597 if (max_push < push_items)
2598 push_items = max_push;
2600 /* dst is the right eb, src is the middle eb */
2601 if (check_sibling_keys(src, dst)) {
2603 btrfs_abort_transaction(trans, ret);
2606 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2608 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2609 btrfs_node_key_ptr_offset(0),
2611 sizeof(struct btrfs_key_ptr));
2613 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2616 btrfs_abort_transaction(trans, ret);
2619 copy_extent_buffer(dst, src,
2620 btrfs_node_key_ptr_offset(0),
2621 btrfs_node_key_ptr_offset(src_nritems - push_items),
2622 push_items * sizeof(struct btrfs_key_ptr));
2624 btrfs_set_header_nritems(src, src_nritems - push_items);
2625 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2627 btrfs_mark_buffer_dirty(src);
2628 btrfs_mark_buffer_dirty(dst);
2634 * helper function to insert a new root level in the tree.
2635 * A new node is allocated, and a single item is inserted to
2636 * point to the existing root
2638 * returns zero on success or < 0 on failure.
2640 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct btrfs_path *path, int level)
2644 struct btrfs_fs_info *fs_info = root->fs_info;
2646 struct extent_buffer *lower;
2647 struct extent_buffer *c;
2648 struct extent_buffer *old;
2649 struct btrfs_disk_key lower_key;
2652 BUG_ON(path->nodes[level]);
2653 BUG_ON(path->nodes[level-1] != root->node);
2655 lower = path->nodes[level-1];
2657 btrfs_item_key(lower, &lower_key, 0);
2659 btrfs_node_key(lower, &lower_key, 0);
2661 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2662 &lower_key, level, root->node->start, 0,
2663 BTRFS_NESTING_NEW_ROOT);
2667 root_add_used(root, fs_info->nodesize);
2669 btrfs_set_header_nritems(c, 1);
2670 btrfs_set_node_key(c, &lower_key, 0);
2671 btrfs_set_node_blockptr(c, 0, lower->start);
2672 lower_gen = btrfs_header_generation(lower);
2673 WARN_ON(lower_gen != trans->transid);
2675 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2677 btrfs_mark_buffer_dirty(c);
2680 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2682 rcu_assign_pointer(root->node, c);
2684 /* the super has an extra ref to root->node */
2685 free_extent_buffer(old);
2687 add_root_to_dirty_list(root);
2688 atomic_inc(&c->refs);
2689 path->nodes[level] = c;
2690 path->locks[level] = BTRFS_WRITE_LOCK;
2691 path->slots[level] = 0;
2696 * worker function to insert a single pointer in a node.
2697 * the node should have enough room for the pointer already
2699 * slot and level indicate where you want the key to go, and
2700 * blocknr is the block the key points to.
2702 static void insert_ptr(struct btrfs_trans_handle *trans,
2703 struct btrfs_path *path,
2704 struct btrfs_disk_key *key, u64 bytenr,
2705 int slot, int level)
2707 struct extent_buffer *lower;
2711 BUG_ON(!path->nodes[level]);
2712 btrfs_assert_tree_write_locked(path->nodes[level]);
2713 lower = path->nodes[level];
2714 nritems = btrfs_header_nritems(lower);
2715 BUG_ON(slot > nritems);
2716 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2717 if (slot != nritems) {
2719 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2720 slot, nritems - slot);
2723 memmove_extent_buffer(lower,
2724 btrfs_node_key_ptr_offset(slot + 1),
2725 btrfs_node_key_ptr_offset(slot),
2726 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2729 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2730 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2733 btrfs_set_node_key(lower, key, slot);
2734 btrfs_set_node_blockptr(lower, slot, bytenr);
2735 WARN_ON(trans->transid == 0);
2736 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2737 btrfs_set_header_nritems(lower, nritems + 1);
2738 btrfs_mark_buffer_dirty(lower);
2742 * split the node at the specified level in path in two.
2743 * The path is corrected to point to the appropriate node after the split
2745 * Before splitting this tries to make some room in the node by pushing
2746 * left and right, if either one works, it returns right away.
2748 * returns 0 on success and < 0 on failure
2750 static noinline int split_node(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root,
2752 struct btrfs_path *path, int level)
2754 struct btrfs_fs_info *fs_info = root->fs_info;
2755 struct extent_buffer *c;
2756 struct extent_buffer *split;
2757 struct btrfs_disk_key disk_key;
2762 c = path->nodes[level];
2763 WARN_ON(btrfs_header_generation(c) != trans->transid);
2764 if (c == root->node) {
2766 * trying to split the root, lets make a new one
2768 * tree mod log: We don't log_removal old root in
2769 * insert_new_root, because that root buffer will be kept as a
2770 * normal node. We are going to log removal of half of the
2771 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2772 * holding a tree lock on the buffer, which is why we cannot
2773 * race with other tree_mod_log users.
2775 ret = insert_new_root(trans, root, path, level + 1);
2779 ret = push_nodes_for_insert(trans, root, path, level);
2780 c = path->nodes[level];
2781 if (!ret && btrfs_header_nritems(c) <
2782 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2788 c_nritems = btrfs_header_nritems(c);
2789 mid = (c_nritems + 1) / 2;
2790 btrfs_node_key(c, &disk_key, mid);
2792 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2793 &disk_key, level, c->start, 0,
2794 BTRFS_NESTING_SPLIT);
2796 return PTR_ERR(split);
2798 root_add_used(root, fs_info->nodesize);
2799 ASSERT(btrfs_header_level(c) == level);
2801 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2803 btrfs_abort_transaction(trans, ret);
2806 copy_extent_buffer(split, c,
2807 btrfs_node_key_ptr_offset(0),
2808 btrfs_node_key_ptr_offset(mid),
2809 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2810 btrfs_set_header_nritems(split, c_nritems - mid);
2811 btrfs_set_header_nritems(c, mid);
2813 btrfs_mark_buffer_dirty(c);
2814 btrfs_mark_buffer_dirty(split);
2816 insert_ptr(trans, path, &disk_key, split->start,
2817 path->slots[level + 1] + 1, level + 1);
2819 if (path->slots[level] >= mid) {
2820 path->slots[level] -= mid;
2821 btrfs_tree_unlock(c);
2822 free_extent_buffer(c);
2823 path->nodes[level] = split;
2824 path->slots[level + 1] += 1;
2826 btrfs_tree_unlock(split);
2827 free_extent_buffer(split);
2833 * how many bytes are required to store the items in a leaf. start
2834 * and nr indicate which items in the leaf to check. This totals up the
2835 * space used both by the item structs and the item data
2837 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2840 int nritems = btrfs_header_nritems(l);
2841 int end = min(nritems, start + nr) - 1;
2845 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2846 data_len = data_len - btrfs_item_offset(l, end);
2847 data_len += sizeof(struct btrfs_item) * nr;
2848 WARN_ON(data_len < 0);
2853 * The space between the end of the leaf items and
2854 * the start of the leaf data. IOW, how much room
2855 * the leaf has left for both items and data
2857 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2859 struct btrfs_fs_info *fs_info = leaf->fs_info;
2860 int nritems = btrfs_header_nritems(leaf);
2863 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2866 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2868 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2869 leaf_space_used(leaf, 0, nritems), nritems);
2875 * min slot controls the lowest index we're willing to push to the
2876 * right. We'll push up to and including min_slot, but no lower
2878 static noinline int __push_leaf_right(struct btrfs_path *path,
2879 int data_size, int empty,
2880 struct extent_buffer *right,
2881 int free_space, u32 left_nritems,
2884 struct btrfs_fs_info *fs_info = right->fs_info;
2885 struct extent_buffer *left = path->nodes[0];
2886 struct extent_buffer *upper = path->nodes[1];
2887 struct btrfs_map_token token;
2888 struct btrfs_disk_key disk_key;
2901 nr = max_t(u32, 1, min_slot);
2903 if (path->slots[0] >= left_nritems)
2904 push_space += data_size;
2906 slot = path->slots[1];
2907 i = left_nritems - 1;
2909 if (!empty && push_items > 0) {
2910 if (path->slots[0] > i)
2912 if (path->slots[0] == i) {
2913 int space = btrfs_leaf_free_space(left);
2915 if (space + push_space * 2 > free_space)
2920 if (path->slots[0] == i)
2921 push_space += data_size;
2923 this_item_size = btrfs_item_size(left, i);
2924 if (this_item_size + sizeof(struct btrfs_item) +
2925 push_space > free_space)
2929 push_space += this_item_size + sizeof(struct btrfs_item);
2935 if (push_items == 0)
2938 WARN_ON(!empty && push_items == left_nritems);
2940 /* push left to right */
2941 right_nritems = btrfs_header_nritems(right);
2943 push_space = btrfs_item_data_end(left, left_nritems - push_items);
2944 push_space -= leaf_data_end(left);
2946 /* make room in the right data area */
2947 data_end = leaf_data_end(right);
2948 memmove_extent_buffer(right,
2949 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2950 BTRFS_LEAF_DATA_OFFSET + data_end,
2951 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2953 /* copy from the left data area */
2954 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2955 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2956 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2959 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2960 btrfs_item_nr_offset(0),
2961 right_nritems * sizeof(struct btrfs_item));
2963 /* copy the items from left to right */
2964 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2965 btrfs_item_nr_offset(left_nritems - push_items),
2966 push_items * sizeof(struct btrfs_item));
2968 /* update the item pointers */
2969 btrfs_init_map_token(&token, right);
2970 right_nritems += push_items;
2971 btrfs_set_header_nritems(right, right_nritems);
2972 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2973 for (i = 0; i < right_nritems; i++) {
2974 push_space -= btrfs_token_item_size(&token, i);
2975 btrfs_set_token_item_offset(&token, i, push_space);
2978 left_nritems -= push_items;
2979 btrfs_set_header_nritems(left, left_nritems);
2982 btrfs_mark_buffer_dirty(left);
2984 btrfs_clean_tree_block(left);
2986 btrfs_mark_buffer_dirty(right);
2988 btrfs_item_key(right, &disk_key, 0);
2989 btrfs_set_node_key(upper, &disk_key, slot + 1);
2990 btrfs_mark_buffer_dirty(upper);
2992 /* then fixup the leaf pointer in the path */
2993 if (path->slots[0] >= left_nritems) {
2994 path->slots[0] -= left_nritems;
2995 if (btrfs_header_nritems(path->nodes[0]) == 0)
2996 btrfs_clean_tree_block(path->nodes[0]);
2997 btrfs_tree_unlock(path->nodes[0]);
2998 free_extent_buffer(path->nodes[0]);
2999 path->nodes[0] = right;
3000 path->slots[1] += 1;
3002 btrfs_tree_unlock(right);
3003 free_extent_buffer(right);
3008 btrfs_tree_unlock(right);
3009 free_extent_buffer(right);
3014 * push some data in the path leaf to the right, trying to free up at
3015 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3017 * returns 1 if the push failed because the other node didn't have enough
3018 * room, 0 if everything worked out and < 0 if there were major errors.
3020 * this will push starting from min_slot to the end of the leaf. It won't
3021 * push any slot lower than min_slot
3023 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3024 *root, struct btrfs_path *path,
3025 int min_data_size, int data_size,
3026 int empty, u32 min_slot)
3028 struct extent_buffer *left = path->nodes[0];
3029 struct extent_buffer *right;
3030 struct extent_buffer *upper;
3036 if (!path->nodes[1])
3039 slot = path->slots[1];
3040 upper = path->nodes[1];
3041 if (slot >= btrfs_header_nritems(upper) - 1)
3044 btrfs_assert_tree_write_locked(path->nodes[1]);
3046 right = btrfs_read_node_slot(upper, slot + 1);
3048 * slot + 1 is not valid or we fail to read the right node,
3049 * no big deal, just return.
3054 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3056 free_space = btrfs_leaf_free_space(right);
3057 if (free_space < data_size)
3060 ret = btrfs_cow_block(trans, root, right, upper,
3061 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3065 left_nritems = btrfs_header_nritems(left);
3066 if (left_nritems == 0)
3069 if (check_sibling_keys(left, right)) {
3071 btrfs_tree_unlock(right);
3072 free_extent_buffer(right);
3075 if (path->slots[0] == left_nritems && !empty) {
3076 /* Key greater than all keys in the leaf, right neighbor has
3077 * enough room for it and we're not emptying our leaf to delete
3078 * it, therefore use right neighbor to insert the new item and
3079 * no need to touch/dirty our left leaf. */
3080 btrfs_tree_unlock(left);
3081 free_extent_buffer(left);
3082 path->nodes[0] = right;
3088 return __push_leaf_right(path, min_data_size, empty,
3089 right, free_space, left_nritems, min_slot);
3091 btrfs_tree_unlock(right);
3092 free_extent_buffer(right);
3097 * push some data in the path leaf to the left, trying to free up at
3098 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3100 * max_slot can put a limit on how far into the leaf we'll push items. The
3101 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3104 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3105 int empty, struct extent_buffer *left,
3106 int free_space, u32 right_nritems,
3109 struct btrfs_fs_info *fs_info = left->fs_info;
3110 struct btrfs_disk_key disk_key;
3111 struct extent_buffer *right = path->nodes[0];
3115 u32 old_left_nritems;
3119 u32 old_left_item_size;
3120 struct btrfs_map_token token;
3123 nr = min(right_nritems, max_slot);
3125 nr = min(right_nritems - 1, max_slot);
3127 for (i = 0; i < nr; i++) {
3128 if (!empty && push_items > 0) {
3129 if (path->slots[0] < i)
3131 if (path->slots[0] == i) {
3132 int space = btrfs_leaf_free_space(right);
3134 if (space + push_space * 2 > free_space)
3139 if (path->slots[0] == i)
3140 push_space += data_size;
3142 this_item_size = btrfs_item_size(right, i);
3143 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3148 push_space += this_item_size + sizeof(struct btrfs_item);
3151 if (push_items == 0) {
3155 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3157 /* push data from right to left */
3158 copy_extent_buffer(left, right,
3159 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3160 btrfs_item_nr_offset(0),
3161 push_items * sizeof(struct btrfs_item));
3163 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3164 btrfs_item_offset(right, push_items - 1);
3166 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3167 leaf_data_end(left) - push_space,
3168 BTRFS_LEAF_DATA_OFFSET +
3169 btrfs_item_offset(right, push_items - 1),
3171 old_left_nritems = btrfs_header_nritems(left);
3172 BUG_ON(old_left_nritems <= 0);
3174 btrfs_init_map_token(&token, left);
3175 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3176 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3179 ioff = btrfs_token_item_offset(&token, i);
3180 btrfs_set_token_item_offset(&token, i,
3181 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3183 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3185 /* fixup right node */
3186 if (push_items > right_nritems)
3187 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3190 if (push_items < right_nritems) {
3191 push_space = btrfs_item_offset(right, push_items - 1) -
3192 leaf_data_end(right);
3193 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3194 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3195 BTRFS_LEAF_DATA_OFFSET +
3196 leaf_data_end(right), push_space);
3198 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3199 btrfs_item_nr_offset(push_items),
3200 (btrfs_header_nritems(right) - push_items) *
3201 sizeof(struct btrfs_item));
3204 btrfs_init_map_token(&token, right);
3205 right_nritems -= push_items;
3206 btrfs_set_header_nritems(right, right_nritems);
3207 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3208 for (i = 0; i < right_nritems; i++) {
3209 push_space = push_space - btrfs_token_item_size(&token, i);
3210 btrfs_set_token_item_offset(&token, i, push_space);
3213 btrfs_mark_buffer_dirty(left);
3215 btrfs_mark_buffer_dirty(right);
3217 btrfs_clean_tree_block(right);
3219 btrfs_item_key(right, &disk_key, 0);
3220 fixup_low_keys(path, &disk_key, 1);
3222 /* then fixup the leaf pointer in the path */
3223 if (path->slots[0] < push_items) {
3224 path->slots[0] += old_left_nritems;
3225 btrfs_tree_unlock(path->nodes[0]);
3226 free_extent_buffer(path->nodes[0]);
3227 path->nodes[0] = left;
3228 path->slots[1] -= 1;
3230 btrfs_tree_unlock(left);
3231 free_extent_buffer(left);
3232 path->slots[0] -= push_items;
3234 BUG_ON(path->slots[0] < 0);
3237 btrfs_tree_unlock(left);
3238 free_extent_buffer(left);
3243 * push some data in the path leaf to the left, trying to free up at
3244 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3246 * max_slot can put a limit on how far into the leaf we'll push items. The
3247 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3250 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3251 *root, struct btrfs_path *path, int min_data_size,
3252 int data_size, int empty, u32 max_slot)
3254 struct extent_buffer *right = path->nodes[0];
3255 struct extent_buffer *left;
3261 slot = path->slots[1];
3264 if (!path->nodes[1])
3267 right_nritems = btrfs_header_nritems(right);
3268 if (right_nritems == 0)
3271 btrfs_assert_tree_write_locked(path->nodes[1]);
3273 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3275 * slot - 1 is not valid or we fail to read the left node,
3276 * no big deal, just return.
3281 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3283 free_space = btrfs_leaf_free_space(left);
3284 if (free_space < data_size) {
3289 ret = btrfs_cow_block(trans, root, left,
3290 path->nodes[1], slot - 1, &left,
3291 BTRFS_NESTING_LEFT_COW);
3293 /* we hit -ENOSPC, but it isn't fatal here */
3299 if (check_sibling_keys(left, right)) {
3303 return __push_leaf_left(path, min_data_size,
3304 empty, left, free_space, right_nritems,
3307 btrfs_tree_unlock(left);
3308 free_extent_buffer(left);
3313 * split the path's leaf in two, making sure there is at least data_size
3314 * available for the resulting leaf level of the path.
3316 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path,
3318 struct extent_buffer *l,
3319 struct extent_buffer *right,
3320 int slot, int mid, int nritems)
3322 struct btrfs_fs_info *fs_info = trans->fs_info;
3326 struct btrfs_disk_key disk_key;
3327 struct btrfs_map_token token;
3329 nritems = nritems - mid;
3330 btrfs_set_header_nritems(right, nritems);
3331 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3333 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3334 btrfs_item_nr_offset(mid),
3335 nritems * sizeof(struct btrfs_item));
3337 copy_extent_buffer(right, l,
3338 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3339 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3340 leaf_data_end(l), data_copy_size);
3342 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3344 btrfs_init_map_token(&token, right);
3345 for (i = 0; i < nritems; i++) {
3348 ioff = btrfs_token_item_offset(&token, i);
3349 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3352 btrfs_set_header_nritems(l, mid);
3353 btrfs_item_key(right, &disk_key, 0);
3354 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3356 btrfs_mark_buffer_dirty(right);
3357 btrfs_mark_buffer_dirty(l);
3358 BUG_ON(path->slots[0] != slot);
3361 btrfs_tree_unlock(path->nodes[0]);
3362 free_extent_buffer(path->nodes[0]);
3363 path->nodes[0] = right;
3364 path->slots[0] -= mid;
3365 path->slots[1] += 1;
3367 btrfs_tree_unlock(right);
3368 free_extent_buffer(right);
3371 BUG_ON(path->slots[0] < 0);
3375 * double splits happen when we need to insert a big item in the middle
3376 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3377 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3380 * We avoid this by trying to push the items on either side of our target
3381 * into the adjacent leaves. If all goes well we can avoid the double split
3384 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root,
3386 struct btrfs_path *path,
3393 int space_needed = data_size;
3395 slot = path->slots[0];
3396 if (slot < btrfs_header_nritems(path->nodes[0]))
3397 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3400 * try to push all the items after our slot into the
3403 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3410 nritems = btrfs_header_nritems(path->nodes[0]);
3412 * our goal is to get our slot at the start or end of a leaf. If
3413 * we've done so we're done
3415 if (path->slots[0] == 0 || path->slots[0] == nritems)
3418 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3421 /* try to push all the items before our slot into the next leaf */
3422 slot = path->slots[0];
3423 space_needed = data_size;
3425 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3426 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3439 * split the path's leaf in two, making sure there is at least data_size
3440 * available for the resulting leaf level of the path.
3442 * returns 0 if all went well and < 0 on failure.
3444 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3445 struct btrfs_root *root,
3446 const struct btrfs_key *ins_key,
3447 struct btrfs_path *path, int data_size,
3450 struct btrfs_disk_key disk_key;
3451 struct extent_buffer *l;
3455 struct extent_buffer *right;
3456 struct btrfs_fs_info *fs_info = root->fs_info;
3460 int num_doubles = 0;
3461 int tried_avoid_double = 0;
3464 slot = path->slots[0];
3465 if (extend && data_size + btrfs_item_size(l, slot) +
3466 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3469 /* first try to make some room by pushing left and right */
3470 if (data_size && path->nodes[1]) {
3471 int space_needed = data_size;
3473 if (slot < btrfs_header_nritems(l))
3474 space_needed -= btrfs_leaf_free_space(l);
3476 wret = push_leaf_right(trans, root, path, space_needed,
3477 space_needed, 0, 0);
3481 space_needed = data_size;
3483 space_needed -= btrfs_leaf_free_space(l);
3484 wret = push_leaf_left(trans, root, path, space_needed,
3485 space_needed, 0, (u32)-1);
3491 /* did the pushes work? */
3492 if (btrfs_leaf_free_space(l) >= data_size)
3496 if (!path->nodes[1]) {
3497 ret = insert_new_root(trans, root, path, 1);
3504 slot = path->slots[0];
3505 nritems = btrfs_header_nritems(l);
3506 mid = (nritems + 1) / 2;
3510 leaf_space_used(l, mid, nritems - mid) + data_size >
3511 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3512 if (slot >= nritems) {
3516 if (mid != nritems &&
3517 leaf_space_used(l, mid, nritems - mid) +
3518 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3519 if (data_size && !tried_avoid_double)
3520 goto push_for_double;
3526 if (leaf_space_used(l, 0, mid) + data_size >
3527 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3528 if (!extend && data_size && slot == 0) {
3530 } else if ((extend || !data_size) && slot == 0) {
3534 if (mid != nritems &&
3535 leaf_space_used(l, mid, nritems - mid) +
3536 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3537 if (data_size && !tried_avoid_double)
3538 goto push_for_double;
3546 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3548 btrfs_item_key(l, &disk_key, mid);
3551 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3552 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3553 * subclasses, which is 8 at the time of this patch, and we've maxed it
3554 * out. In the future we could add a
3555 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3556 * use BTRFS_NESTING_NEW_ROOT.
3558 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3559 &disk_key, 0, l->start, 0,
3560 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3561 BTRFS_NESTING_SPLIT);
3563 return PTR_ERR(right);
3565 root_add_used(root, fs_info->nodesize);
3569 btrfs_set_header_nritems(right, 0);
3570 insert_ptr(trans, path, &disk_key,
3571 right->start, path->slots[1] + 1, 1);
3572 btrfs_tree_unlock(path->nodes[0]);
3573 free_extent_buffer(path->nodes[0]);
3574 path->nodes[0] = right;
3576 path->slots[1] += 1;
3578 btrfs_set_header_nritems(right, 0);
3579 insert_ptr(trans, path, &disk_key,
3580 right->start, path->slots[1], 1);
3581 btrfs_tree_unlock(path->nodes[0]);
3582 free_extent_buffer(path->nodes[0]);
3583 path->nodes[0] = right;
3585 if (path->slots[1] == 0)
3586 fixup_low_keys(path, &disk_key, 1);
3589 * We create a new leaf 'right' for the required ins_len and
3590 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3591 * the content of ins_len to 'right'.
3596 copy_for_split(trans, path, l, right, slot, mid, nritems);
3599 BUG_ON(num_doubles != 0);
3607 push_for_double_split(trans, root, path, data_size);
3608 tried_avoid_double = 1;
3609 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3614 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3615 struct btrfs_root *root,
3616 struct btrfs_path *path, int ins_len)
3618 struct btrfs_key key;
3619 struct extent_buffer *leaf;
3620 struct btrfs_file_extent_item *fi;
3625 leaf = path->nodes[0];
3626 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3628 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3629 key.type != BTRFS_EXTENT_CSUM_KEY);
3631 if (btrfs_leaf_free_space(leaf) >= ins_len)
3634 item_size = btrfs_item_size(leaf, path->slots[0]);
3635 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3636 fi = btrfs_item_ptr(leaf, path->slots[0],
3637 struct btrfs_file_extent_item);
3638 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3640 btrfs_release_path(path);
3642 path->keep_locks = 1;
3643 path->search_for_split = 1;
3644 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3645 path->search_for_split = 0;
3652 leaf = path->nodes[0];
3653 /* if our item isn't there, return now */
3654 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3657 /* the leaf has changed, it now has room. return now */
3658 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3661 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3662 fi = btrfs_item_ptr(leaf, path->slots[0],
3663 struct btrfs_file_extent_item);
3664 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3668 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3672 path->keep_locks = 0;
3673 btrfs_unlock_up_safe(path, 1);
3676 path->keep_locks = 0;
3680 static noinline int split_item(struct btrfs_path *path,
3681 const struct btrfs_key *new_key,
3682 unsigned long split_offset)
3684 struct extent_buffer *leaf;
3685 int orig_slot, slot;
3690 struct btrfs_disk_key disk_key;
3692 leaf = path->nodes[0];
3693 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3695 orig_slot = path->slots[0];
3696 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3697 item_size = btrfs_item_size(leaf, path->slots[0]);
3699 buf = kmalloc(item_size, GFP_NOFS);
3703 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3704 path->slots[0]), item_size);
3706 slot = path->slots[0] + 1;
3707 nritems = btrfs_header_nritems(leaf);
3708 if (slot != nritems) {
3709 /* shift the items */
3710 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3711 btrfs_item_nr_offset(slot),
3712 (nritems - slot) * sizeof(struct btrfs_item));
3715 btrfs_cpu_key_to_disk(&disk_key, new_key);
3716 btrfs_set_item_key(leaf, &disk_key, slot);
3718 btrfs_set_item_offset(leaf, slot, orig_offset);
3719 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3721 btrfs_set_item_offset(leaf, orig_slot,
3722 orig_offset + item_size - split_offset);
3723 btrfs_set_item_size(leaf, orig_slot, split_offset);
3725 btrfs_set_header_nritems(leaf, nritems + 1);
3727 /* write the data for the start of the original item */
3728 write_extent_buffer(leaf, buf,
3729 btrfs_item_ptr_offset(leaf, path->slots[0]),
3732 /* write the data for the new item */
3733 write_extent_buffer(leaf, buf + split_offset,
3734 btrfs_item_ptr_offset(leaf, slot),
3735 item_size - split_offset);
3736 btrfs_mark_buffer_dirty(leaf);
3738 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3744 * This function splits a single item into two items,
3745 * giving 'new_key' to the new item and splitting the
3746 * old one at split_offset (from the start of the item).
3748 * The path may be released by this operation. After
3749 * the split, the path is pointing to the old item. The
3750 * new item is going to be in the same node as the old one.
3752 * Note, the item being split must be smaller enough to live alone on
3753 * a tree block with room for one extra struct btrfs_item
3755 * This allows us to split the item in place, keeping a lock on the
3756 * leaf the entire time.
3758 int btrfs_split_item(struct btrfs_trans_handle *trans,
3759 struct btrfs_root *root,
3760 struct btrfs_path *path,
3761 const struct btrfs_key *new_key,
3762 unsigned long split_offset)
3765 ret = setup_leaf_for_split(trans, root, path,
3766 sizeof(struct btrfs_item));
3770 ret = split_item(path, new_key, split_offset);
3775 * make the item pointed to by the path smaller. new_size indicates
3776 * how small to make it, and from_end tells us if we just chop bytes
3777 * off the end of the item or if we shift the item to chop bytes off
3780 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3783 struct extent_buffer *leaf;
3785 unsigned int data_end;
3786 unsigned int old_data_start;
3787 unsigned int old_size;
3788 unsigned int size_diff;
3790 struct btrfs_map_token token;
3792 leaf = path->nodes[0];
3793 slot = path->slots[0];
3795 old_size = btrfs_item_size(leaf, slot);
3796 if (old_size == new_size)
3799 nritems = btrfs_header_nritems(leaf);
3800 data_end = leaf_data_end(leaf);
3802 old_data_start = btrfs_item_offset(leaf, slot);
3804 size_diff = old_size - new_size;
3807 BUG_ON(slot >= nritems);
3810 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3812 /* first correct the data pointers */
3813 btrfs_init_map_token(&token, leaf);
3814 for (i = slot; i < nritems; i++) {
3817 ioff = btrfs_token_item_offset(&token, i);
3818 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3821 /* shift the data */
3823 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3824 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3825 data_end, old_data_start + new_size - data_end);
3827 struct btrfs_disk_key disk_key;
3830 btrfs_item_key(leaf, &disk_key, slot);
3832 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3834 struct btrfs_file_extent_item *fi;
3836 fi = btrfs_item_ptr(leaf, slot,
3837 struct btrfs_file_extent_item);
3838 fi = (struct btrfs_file_extent_item *)(
3839 (unsigned long)fi - size_diff);
3841 if (btrfs_file_extent_type(leaf, fi) ==
3842 BTRFS_FILE_EXTENT_INLINE) {
3843 ptr = btrfs_item_ptr_offset(leaf, slot);
3844 memmove_extent_buffer(leaf, ptr,
3846 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3850 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3851 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3852 data_end, old_data_start - data_end);
3854 offset = btrfs_disk_key_offset(&disk_key);
3855 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3856 btrfs_set_item_key(leaf, &disk_key, slot);
3858 fixup_low_keys(path, &disk_key, 1);
3861 btrfs_set_item_size(leaf, slot, new_size);
3862 btrfs_mark_buffer_dirty(leaf);
3864 if (btrfs_leaf_free_space(leaf) < 0) {
3865 btrfs_print_leaf(leaf);
3871 * make the item pointed to by the path bigger, data_size is the added size.
3873 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3876 struct extent_buffer *leaf;
3878 unsigned int data_end;
3879 unsigned int old_data;
3880 unsigned int old_size;
3882 struct btrfs_map_token token;
3884 leaf = path->nodes[0];
3886 nritems = btrfs_header_nritems(leaf);
3887 data_end = leaf_data_end(leaf);
3889 if (btrfs_leaf_free_space(leaf) < data_size) {
3890 btrfs_print_leaf(leaf);
3893 slot = path->slots[0];
3894 old_data = btrfs_item_data_end(leaf, slot);
3897 if (slot >= nritems) {
3898 btrfs_print_leaf(leaf);
3899 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3905 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3907 /* first correct the data pointers */
3908 btrfs_init_map_token(&token, leaf);
3909 for (i = slot; i < nritems; i++) {
3912 ioff = btrfs_token_item_offset(&token, i);
3913 btrfs_set_token_item_offset(&token, i, ioff - data_size);
3916 /* shift the data */
3917 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3918 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3919 data_end, old_data - data_end);
3921 data_end = old_data;
3922 old_size = btrfs_item_size(leaf, slot);
3923 btrfs_set_item_size(leaf, slot, old_size + data_size);
3924 btrfs_mark_buffer_dirty(leaf);
3926 if (btrfs_leaf_free_space(leaf) < 0) {
3927 btrfs_print_leaf(leaf);
3933 * setup_items_for_insert - Helper called before inserting one or more items
3934 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3935 * in a function that doesn't call btrfs_search_slot
3937 * @root: root we are inserting items to
3938 * @path: points to the leaf/slot where we are going to insert new items
3939 * @batch: information about the batch of items to insert
3941 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3942 const struct btrfs_item_batch *batch)
3944 struct btrfs_fs_info *fs_info = root->fs_info;
3947 unsigned int data_end;
3948 struct btrfs_disk_key disk_key;
3949 struct extent_buffer *leaf;
3951 struct btrfs_map_token token;
3955 * Before anything else, update keys in the parent and other ancestors
3956 * if needed, then release the write locks on them, so that other tasks
3957 * can use them while we modify the leaf.
3959 if (path->slots[0] == 0) {
3960 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3961 fixup_low_keys(path, &disk_key, 1);
3963 btrfs_unlock_up_safe(path, 1);
3965 leaf = path->nodes[0];
3966 slot = path->slots[0];
3968 nritems = btrfs_header_nritems(leaf);
3969 data_end = leaf_data_end(leaf);
3970 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3972 if (btrfs_leaf_free_space(leaf) < total_size) {
3973 btrfs_print_leaf(leaf);
3974 btrfs_crit(fs_info, "not enough freespace need %u have %d",
3975 total_size, btrfs_leaf_free_space(leaf));
3979 btrfs_init_map_token(&token, leaf);
3980 if (slot != nritems) {
3981 unsigned int old_data = btrfs_item_data_end(leaf, slot);
3983 if (old_data < data_end) {
3984 btrfs_print_leaf(leaf);
3986 "item at slot %d with data offset %u beyond data end of leaf %u",
3987 slot, old_data, data_end);
3991 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3993 /* first correct the data pointers */
3994 for (i = slot; i < nritems; i++) {
3997 ioff = btrfs_token_item_offset(&token, i);
3998 btrfs_set_token_item_offset(&token, i,
3999 ioff - batch->total_data_size);
4001 /* shift the items */
4002 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
4003 btrfs_item_nr_offset(slot),
4004 (nritems - slot) * sizeof(struct btrfs_item));
4006 /* shift the data */
4007 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4008 data_end - batch->total_data_size,
4009 BTRFS_LEAF_DATA_OFFSET + data_end,
4010 old_data - data_end);
4011 data_end = old_data;
4014 /* setup the item for the new data */
4015 for (i = 0; i < batch->nr; i++) {
4016 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4017 btrfs_set_item_key(leaf, &disk_key, slot + i);
4018 data_end -= batch->data_sizes[i];
4019 btrfs_set_token_item_offset(&token, slot + i, data_end);
4020 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4023 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4024 btrfs_mark_buffer_dirty(leaf);
4026 if (btrfs_leaf_free_space(leaf) < 0) {
4027 btrfs_print_leaf(leaf);
4033 * Insert a new item into a leaf.
4035 * @root: The root of the btree.
4036 * @path: A path pointing to the target leaf and slot.
4037 * @key: The key of the new item.
4038 * @data_size: The size of the data associated with the new key.
4040 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4041 struct btrfs_path *path,
4042 const struct btrfs_key *key,
4045 struct btrfs_item_batch batch;
4048 batch.data_sizes = &data_size;
4049 batch.total_data_size = data_size;
4052 setup_items_for_insert(root, path, &batch);
4056 * Given a key and some data, insert items into the tree.
4057 * This does all the path init required, making room in the tree if needed.
4059 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4060 struct btrfs_root *root,
4061 struct btrfs_path *path,
4062 const struct btrfs_item_batch *batch)
4068 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4069 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4075 slot = path->slots[0];
4078 setup_items_for_insert(root, path, batch);
4083 * Given a key and some data, insert an item into the tree.
4084 * This does all the path init required, making room in the tree if needed.
4086 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4087 const struct btrfs_key *cpu_key, void *data,
4091 struct btrfs_path *path;
4092 struct extent_buffer *leaf;
4095 path = btrfs_alloc_path();
4098 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4100 leaf = path->nodes[0];
4101 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4102 write_extent_buffer(leaf, data, ptr, data_size);
4103 btrfs_mark_buffer_dirty(leaf);
4105 btrfs_free_path(path);
4110 * This function duplicates an item, giving 'new_key' to the new item.
4111 * It guarantees both items live in the same tree leaf and the new item is
4112 * contiguous with the original item.
4114 * This allows us to split a file extent in place, keeping a lock on the leaf
4117 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4118 struct btrfs_root *root,
4119 struct btrfs_path *path,
4120 const struct btrfs_key *new_key)
4122 struct extent_buffer *leaf;
4126 leaf = path->nodes[0];
4127 item_size = btrfs_item_size(leaf, path->slots[0]);
4128 ret = setup_leaf_for_split(trans, root, path,
4129 item_size + sizeof(struct btrfs_item));
4134 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4135 leaf = path->nodes[0];
4136 memcpy_extent_buffer(leaf,
4137 btrfs_item_ptr_offset(leaf, path->slots[0]),
4138 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4144 * delete the pointer from a given node.
4146 * the tree should have been previously balanced so the deletion does not
4149 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4150 int level, int slot)
4152 struct extent_buffer *parent = path->nodes[level];
4156 nritems = btrfs_header_nritems(parent);
4157 if (slot != nritems - 1) {
4159 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4160 slot + 1, nritems - slot - 1);
4163 memmove_extent_buffer(parent,
4164 btrfs_node_key_ptr_offset(slot),
4165 btrfs_node_key_ptr_offset(slot + 1),
4166 sizeof(struct btrfs_key_ptr) *
4167 (nritems - slot - 1));
4169 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4170 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4175 btrfs_set_header_nritems(parent, nritems);
4176 if (nritems == 0 && parent == root->node) {
4177 BUG_ON(btrfs_header_level(root->node) != 1);
4178 /* just turn the root into a leaf and break */
4179 btrfs_set_header_level(root->node, 0);
4180 } else if (slot == 0) {
4181 struct btrfs_disk_key disk_key;
4183 btrfs_node_key(parent, &disk_key, 0);
4184 fixup_low_keys(path, &disk_key, level + 1);
4186 btrfs_mark_buffer_dirty(parent);
4190 * a helper function to delete the leaf pointed to by path->slots[1] and
4193 * This deletes the pointer in path->nodes[1] and frees the leaf
4194 * block extent. zero is returned if it all worked out, < 0 otherwise.
4196 * The path must have already been setup for deleting the leaf, including
4197 * all the proper balancing. path->nodes[1] must be locked.
4199 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4200 struct btrfs_root *root,
4201 struct btrfs_path *path,
4202 struct extent_buffer *leaf)
4204 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4205 del_ptr(root, path, 1, path->slots[1]);
4208 * btrfs_free_extent is expensive, we want to make sure we
4209 * aren't holding any locks when we call it
4211 btrfs_unlock_up_safe(path, 0);
4213 root_sub_used(root, leaf->len);
4215 atomic_inc(&leaf->refs);
4216 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4217 free_extent_buffer_stale(leaf);
4220 * delete the item at the leaf level in path. If that empties
4221 * the leaf, remove it from the tree
4223 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224 struct btrfs_path *path, int slot, int nr)
4226 struct btrfs_fs_info *fs_info = root->fs_info;
4227 struct extent_buffer *leaf;
4232 leaf = path->nodes[0];
4233 nritems = btrfs_header_nritems(leaf);
4235 if (slot + nr != nritems) {
4236 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4237 const int data_end = leaf_data_end(leaf);
4238 struct btrfs_map_token token;
4242 for (i = 0; i < nr; i++)
4243 dsize += btrfs_item_size(leaf, slot + i);
4245 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4247 BTRFS_LEAF_DATA_OFFSET + data_end,
4248 last_off - data_end);
4250 btrfs_init_map_token(&token, leaf);
4251 for (i = slot + nr; i < nritems; i++) {
4254 ioff = btrfs_token_item_offset(&token, i);
4255 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4258 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4259 btrfs_item_nr_offset(slot + nr),
4260 sizeof(struct btrfs_item) *
4261 (nritems - slot - nr));
4263 btrfs_set_header_nritems(leaf, nritems - nr);
4266 /* delete the leaf if we've emptied it */
4268 if (leaf == root->node) {
4269 btrfs_set_header_level(leaf, 0);
4271 btrfs_clean_tree_block(leaf);
4272 btrfs_del_leaf(trans, root, path, leaf);
4275 int used = leaf_space_used(leaf, 0, nritems);
4277 struct btrfs_disk_key disk_key;
4279 btrfs_item_key(leaf, &disk_key, 0);
4280 fixup_low_keys(path, &disk_key, 1);
4284 * Try to delete the leaf if it is mostly empty. We do this by
4285 * trying to move all its items into its left and right neighbours.
4286 * If we can't move all the items, then we don't delete it - it's
4287 * not ideal, but future insertions might fill the leaf with more
4288 * items, or items from other leaves might be moved later into our
4289 * leaf due to deletions on those leaves.
4291 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4294 /* push_leaf_left fixes the path.
4295 * make sure the path still points to our leaf
4296 * for possible call to del_ptr below
4298 slot = path->slots[1];
4299 atomic_inc(&leaf->refs);
4301 * We want to be able to at least push one item to the
4302 * left neighbour leaf, and that's the first item.
4304 min_push_space = sizeof(struct btrfs_item) +
4305 btrfs_item_size(leaf, 0);
4306 wret = push_leaf_left(trans, root, path, 0,
4307 min_push_space, 1, (u32)-1);
4308 if (wret < 0 && wret != -ENOSPC)
4311 if (path->nodes[0] == leaf &&
4312 btrfs_header_nritems(leaf)) {
4314 * If we were not able to push all items from our
4315 * leaf to its left neighbour, then attempt to
4316 * either push all the remaining items to the
4317 * right neighbour or none. There's no advantage
4318 * in pushing only some items, instead of all, as
4319 * it's pointless to end up with a leaf having
4320 * too few items while the neighbours can be full
4323 nritems = btrfs_header_nritems(leaf);
4324 min_push_space = leaf_space_used(leaf, 0, nritems);
4325 wret = push_leaf_right(trans, root, path, 0,
4326 min_push_space, 1, 0);
4327 if (wret < 0 && wret != -ENOSPC)
4331 if (btrfs_header_nritems(leaf) == 0) {
4332 path->slots[1] = slot;
4333 btrfs_del_leaf(trans, root, path, leaf);
4334 free_extent_buffer(leaf);
4337 /* if we're still in the path, make sure
4338 * we're dirty. Otherwise, one of the
4339 * push_leaf functions must have already
4340 * dirtied this buffer
4342 if (path->nodes[0] == leaf)
4343 btrfs_mark_buffer_dirty(leaf);
4344 free_extent_buffer(leaf);
4347 btrfs_mark_buffer_dirty(leaf);
4354 * search the tree again to find a leaf with lesser keys
4355 * returns 0 if it found something or 1 if there are no lesser leaves.
4356 * returns < 0 on io errors.
4358 * This may release the path, and so you may lose any locks held at the
4361 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4363 struct btrfs_key key;
4364 struct btrfs_disk_key found_key;
4367 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4369 if (key.offset > 0) {
4371 } else if (key.type > 0) {
4373 key.offset = (u64)-1;
4374 } else if (key.objectid > 0) {
4377 key.offset = (u64)-1;
4382 btrfs_release_path(path);
4383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4386 btrfs_item_key(path->nodes[0], &found_key, 0);
4387 ret = comp_keys(&found_key, &key);
4389 * We might have had an item with the previous key in the tree right
4390 * before we released our path. And after we released our path, that
4391 * item might have been pushed to the first slot (0) of the leaf we
4392 * were holding due to a tree balance. Alternatively, an item with the
4393 * previous key can exist as the only element of a leaf (big fat item).
4394 * Therefore account for these 2 cases, so that our callers (like
4395 * btrfs_previous_item) don't miss an existing item with a key matching
4396 * the previous key we computed above.
4404 * A helper function to walk down the tree starting at min_key, and looking
4405 * for nodes or leaves that are have a minimum transaction id.
4406 * This is used by the btree defrag code, and tree logging
4408 * This does not cow, but it does stuff the starting key it finds back
4409 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4410 * key and get a writable path.
4412 * This honors path->lowest_level to prevent descent past a given level
4415 * min_trans indicates the oldest transaction that you are interested
4416 * in walking through. Any nodes or leaves older than min_trans are
4417 * skipped over (without reading them).
4419 * returns zero if something useful was found, < 0 on error and 1 if there
4420 * was nothing in the tree that matched the search criteria.
4422 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4423 struct btrfs_path *path,
4426 struct extent_buffer *cur;
4427 struct btrfs_key found_key;
4433 int keep_locks = path->keep_locks;
4435 path->keep_locks = 1;
4437 cur = btrfs_read_lock_root_node(root);
4438 level = btrfs_header_level(cur);
4439 WARN_ON(path->nodes[level]);
4440 path->nodes[level] = cur;
4441 path->locks[level] = BTRFS_READ_LOCK;
4443 if (btrfs_header_generation(cur) < min_trans) {
4448 nritems = btrfs_header_nritems(cur);
4449 level = btrfs_header_level(cur);
4450 sret = btrfs_bin_search(cur, min_key, &slot);
4456 /* at the lowest level, we're done, setup the path and exit */
4457 if (level == path->lowest_level) {
4458 if (slot >= nritems)
4461 path->slots[level] = slot;
4462 btrfs_item_key_to_cpu(cur, &found_key, slot);
4465 if (sret && slot > 0)
4468 * check this node pointer against the min_trans parameters.
4469 * If it is too old, skip to the next one.
4471 while (slot < nritems) {
4474 gen = btrfs_node_ptr_generation(cur, slot);
4475 if (gen < min_trans) {
4483 * we didn't find a candidate key in this node, walk forward
4484 * and find another one
4486 if (slot >= nritems) {
4487 path->slots[level] = slot;
4488 sret = btrfs_find_next_key(root, path, min_key, level,
4491 btrfs_release_path(path);
4497 /* save our key for returning back */
4498 btrfs_node_key_to_cpu(cur, &found_key, slot);
4499 path->slots[level] = slot;
4500 if (level == path->lowest_level) {
4504 cur = btrfs_read_node_slot(cur, slot);
4510 btrfs_tree_read_lock(cur);
4512 path->locks[level - 1] = BTRFS_READ_LOCK;
4513 path->nodes[level - 1] = cur;
4514 unlock_up(path, level, 1, 0, NULL);
4517 path->keep_locks = keep_locks;
4519 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4520 memcpy(min_key, &found_key, sizeof(found_key));
4526 * this is similar to btrfs_next_leaf, but does not try to preserve
4527 * and fixup the path. It looks for and returns the next key in the
4528 * tree based on the current path and the min_trans parameters.
4530 * 0 is returned if another key is found, < 0 if there are any errors
4531 * and 1 is returned if there are no higher keys in the tree
4533 * path->keep_locks should be set to 1 on the search made before
4534 * calling this function.
4536 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4537 struct btrfs_key *key, int level, u64 min_trans)
4540 struct extent_buffer *c;
4542 WARN_ON(!path->keep_locks && !path->skip_locking);
4543 while (level < BTRFS_MAX_LEVEL) {
4544 if (!path->nodes[level])
4547 slot = path->slots[level] + 1;
4548 c = path->nodes[level];
4550 if (slot >= btrfs_header_nritems(c)) {
4553 struct btrfs_key cur_key;
4554 if (level + 1 >= BTRFS_MAX_LEVEL ||
4555 !path->nodes[level + 1])
4558 if (path->locks[level + 1] || path->skip_locking) {
4563 slot = btrfs_header_nritems(c) - 1;
4565 btrfs_item_key_to_cpu(c, &cur_key, slot);
4567 btrfs_node_key_to_cpu(c, &cur_key, slot);
4569 orig_lowest = path->lowest_level;
4570 btrfs_release_path(path);
4571 path->lowest_level = level;
4572 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4574 path->lowest_level = orig_lowest;
4578 c = path->nodes[level];
4579 slot = path->slots[level];
4586 btrfs_item_key_to_cpu(c, key, slot);
4588 u64 gen = btrfs_node_ptr_generation(c, slot);
4590 if (gen < min_trans) {
4594 btrfs_node_key_to_cpu(c, key, slot);
4601 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4606 struct extent_buffer *c;
4607 struct extent_buffer *next;
4608 struct btrfs_fs_info *fs_info = root->fs_info;
4609 struct btrfs_key key;
4610 bool need_commit_sem = false;
4615 nritems = btrfs_header_nritems(path->nodes[0]);
4619 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4623 btrfs_release_path(path);
4625 path->keep_locks = 1;
4628 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4630 if (path->need_commit_sem) {
4631 path->need_commit_sem = 0;
4632 need_commit_sem = true;
4633 down_read(&fs_info->commit_root_sem);
4635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4637 path->keep_locks = 0;
4642 nritems = btrfs_header_nritems(path->nodes[0]);
4644 * by releasing the path above we dropped all our locks. A balance
4645 * could have added more items next to the key that used to be
4646 * at the very end of the block. So, check again here and
4647 * advance the path if there are now more items available.
4649 if (nritems > 0 && path->slots[0] < nritems - 1) {
4656 * So the above check misses one case:
4657 * - after releasing the path above, someone has removed the item that
4658 * used to be at the very end of the block, and balance between leafs
4659 * gets another one with bigger key.offset to replace it.
4661 * This one should be returned as well, or we can get leaf corruption
4662 * later(esp. in __btrfs_drop_extents()).
4664 * And a bit more explanation about this check,
4665 * with ret > 0, the key isn't found, the path points to the slot
4666 * where it should be inserted, so the path->slots[0] item must be the
4669 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4674 while (level < BTRFS_MAX_LEVEL) {
4675 if (!path->nodes[level]) {
4680 slot = path->slots[level] + 1;
4681 c = path->nodes[level];
4682 if (slot >= btrfs_header_nritems(c)) {
4684 if (level == BTRFS_MAX_LEVEL) {
4693 * Our current level is where we're going to start from, and to
4694 * make sure lockdep doesn't complain we need to drop our locks
4695 * and nodes from 0 to our current level.
4697 for (i = 0; i < level; i++) {
4698 if (path->locks[level]) {
4699 btrfs_tree_read_unlock(path->nodes[i]);
4702 free_extent_buffer(path->nodes[i]);
4703 path->nodes[i] = NULL;
4707 ret = read_block_for_search(root, path, &next, level,
4713 btrfs_release_path(path);
4717 if (!path->skip_locking) {
4718 ret = btrfs_try_tree_read_lock(next);
4719 if (!ret && time_seq) {
4721 * If we don't get the lock, we may be racing
4722 * with push_leaf_left, holding that lock while
4723 * itself waiting for the leaf we've currently
4724 * locked. To solve this situation, we give up
4725 * on our lock and cycle.
4727 free_extent_buffer(next);
4728 btrfs_release_path(path);
4733 btrfs_tree_read_lock(next);
4737 path->slots[level] = slot;
4740 path->nodes[level] = next;
4741 path->slots[level] = 0;
4742 if (!path->skip_locking)
4743 path->locks[level] = BTRFS_READ_LOCK;
4747 ret = read_block_for_search(root, path, &next, level,
4753 btrfs_release_path(path);
4757 if (!path->skip_locking)
4758 btrfs_tree_read_lock(next);
4762 unlock_up(path, 0, 1, 0, NULL);
4763 if (need_commit_sem) {
4766 path->need_commit_sem = 1;
4767 ret2 = finish_need_commit_sem_search(path);
4768 up_read(&fs_info->commit_root_sem);
4777 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4778 * searching until it gets past min_objectid or finds an item of 'type'
4780 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4782 int btrfs_previous_item(struct btrfs_root *root,
4783 struct btrfs_path *path, u64 min_objectid,
4786 struct btrfs_key found_key;
4787 struct extent_buffer *leaf;
4792 if (path->slots[0] == 0) {
4793 ret = btrfs_prev_leaf(root, path);
4799 leaf = path->nodes[0];
4800 nritems = btrfs_header_nritems(leaf);
4803 if (path->slots[0] == nritems)
4806 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4807 if (found_key.objectid < min_objectid)
4809 if (found_key.type == type)
4811 if (found_key.objectid == min_objectid &&
4812 found_key.type < type)
4819 * search in extent tree to find a previous Metadata/Data extent item with
4822 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4824 int btrfs_previous_extent_item(struct btrfs_root *root,
4825 struct btrfs_path *path, u64 min_objectid)
4827 struct btrfs_key found_key;
4828 struct extent_buffer *leaf;
4833 if (path->slots[0] == 0) {
4834 ret = btrfs_prev_leaf(root, path);
4840 leaf = path->nodes[0];
4841 nritems = btrfs_header_nritems(leaf);
4844 if (path->slots[0] == nritems)
4847 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4848 if (found_key.objectid < min_objectid)
4850 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4851 found_key.type == BTRFS_METADATA_ITEM_KEY)
4853 if (found_key.objectid == min_objectid &&
4854 found_key.type < BTRFS_EXTENT_ITEM_KEY)