1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
17 #include "tree-mod-log.h"
19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
20 *root, struct btrfs_path *path, int level);
21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
22 const struct btrfs_key *ins_key, struct btrfs_path *path,
23 int data_size, int extend);
24 static int push_node_left(struct btrfs_trans_handle *trans,
25 struct extent_buffer *dst,
26 struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 struct extent_buffer *dst_buf,
29 struct extent_buffer *src_buf);
30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
33 static const struct btrfs_csums {
36 const char driver[12];
38 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
39 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
40 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
41 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
42 .driver = "blake2b-256" },
45 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 u16 t = btrfs_super_csum_type(s);
49 * csum type is validated at mount time
51 return btrfs_csums[t].size;
54 const char *btrfs_super_csum_name(u16 csum_type)
56 /* csum type is validated at mount time */
57 return btrfs_csums[csum_type].name;
61 * Return driver name if defined, otherwise the name that's also a valid driver
64 const char *btrfs_super_csum_driver(u16 csum_type)
66 /* csum type is validated at mount time */
67 return btrfs_csums[csum_type].driver[0] ?
68 btrfs_csums[csum_type].driver :
69 btrfs_csums[csum_type].name;
72 size_t __attribute_const__ btrfs_get_num_csums(void)
74 return ARRAY_SIZE(btrfs_csums);
77 struct btrfs_path *btrfs_alloc_path(void)
79 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
87 btrfs_release_path(p);
88 kmem_cache_free(btrfs_path_cachep, p);
92 * path release drops references on the extent buffers in the path
93 * and it drops any locks held by this path
95 * It is safe to call this on paths that no locks or extent buffers held.
97 noinline void btrfs_release_path(struct btrfs_path *p)
101 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
106 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 free_extent_buffer(p->nodes[i]);
115 * safely gets a reference on the root node of a tree. A lock
116 * is not taken, so a concurrent writer may put a different node
117 * at the root of the tree. See btrfs_lock_root_node for the
120 * The extent buffer returned by this has a reference taken, so
121 * it won't disappear. It may stop being the root of the tree
122 * at any time because there are no locks held.
124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 struct extent_buffer *eb;
130 eb = rcu_dereference(root->node);
133 * RCU really hurts here, we could free up the root node because
134 * it was COWed but we may not get the new root node yet so do
135 * the inc_not_zero dance and if it doesn't work then
136 * synchronize_rcu and try again.
138 if (atomic_inc_not_zero(&eb->refs)) {
149 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
150 * just get put onto a simple dirty list. Transaction walks this list to make
151 * sure they get properly updated on disk.
153 static void add_root_to_dirty_list(struct btrfs_root *root)
155 struct btrfs_fs_info *fs_info = root->fs_info;
157 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
158 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
161 spin_lock(&fs_info->trans_lock);
162 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
163 /* Want the extent tree to be the last on the list */
164 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
165 list_move_tail(&root->dirty_list,
166 &fs_info->dirty_cowonly_roots);
168 list_move(&root->dirty_list,
169 &fs_info->dirty_cowonly_roots);
171 spin_unlock(&fs_info->trans_lock);
175 * used by snapshot creation to make a copy of a root for a tree with
176 * a given objectid. The buffer with the new root node is returned in
177 * cow_ret, and this func returns zero on success or a negative error code.
179 int btrfs_copy_root(struct btrfs_trans_handle *trans,
180 struct btrfs_root *root,
181 struct extent_buffer *buf,
182 struct extent_buffer **cow_ret, u64 new_root_objectid)
184 struct btrfs_fs_info *fs_info = root->fs_info;
185 struct extent_buffer *cow;
188 struct btrfs_disk_key disk_key;
190 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
191 trans->transid != fs_info->running_transaction->transid);
192 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 trans->transid != root->last_trans);
195 level = btrfs_header_level(buf);
197 btrfs_item_key(buf, &disk_key, 0);
199 btrfs_node_key(buf, &disk_key, 0);
201 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
202 &disk_key, level, buf->start, 0,
203 BTRFS_NESTING_NEW_ROOT);
207 copy_extent_buffer_full(cow, buf);
208 btrfs_set_header_bytenr(cow, cow->start);
209 btrfs_set_header_generation(cow, trans->transid);
210 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
211 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
212 BTRFS_HEADER_FLAG_RELOC);
213 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
214 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 btrfs_set_header_owner(cow, new_root_objectid);
218 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220 WARN_ON(btrfs_header_generation(buf) > trans->transid);
221 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
222 ret = btrfs_inc_ref(trans, root, cow, 1);
224 ret = btrfs_inc_ref(trans, root, cow, 0);
226 btrfs_tree_unlock(cow);
227 free_extent_buffer(cow);
228 btrfs_abort_transaction(trans, ret);
232 btrfs_mark_buffer_dirty(cow);
238 * check if the tree block can be shared by multiple trees
240 int btrfs_block_can_be_shared(struct btrfs_root *root,
241 struct extent_buffer *buf)
244 * Tree blocks not in shareable trees and tree roots are never shared.
245 * If a block was allocated after the last snapshot and the block was
246 * not allocated by tree relocation, we know the block is not shared.
248 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
249 buf != root->node && buf != root->commit_root &&
250 (btrfs_header_generation(buf) <=
251 btrfs_root_last_snapshot(&root->root_item) ||
252 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
259 struct btrfs_root *root,
260 struct extent_buffer *buf,
261 struct extent_buffer *cow,
264 struct btrfs_fs_info *fs_info = root->fs_info;
272 * Backrefs update rules:
274 * Always use full backrefs for extent pointers in tree block
275 * allocated by tree relocation.
277 * If a shared tree block is no longer referenced by its owner
278 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
279 * use full backrefs for extent pointers in tree block.
281 * If a tree block is been relocating
282 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
283 * use full backrefs for extent pointers in tree block.
284 * The reason for this is some operations (such as drop tree)
285 * are only allowed for blocks use full backrefs.
288 if (btrfs_block_can_be_shared(root, buf)) {
289 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
290 btrfs_header_level(buf), 1,
296 btrfs_handle_fs_error(fs_info, ret, NULL);
301 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
302 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
303 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
308 owner = btrfs_header_owner(buf);
309 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
310 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
313 if ((owner == root->root_key.objectid ||
314 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
315 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
316 ret = btrfs_inc_ref(trans, root, buf, 1);
320 if (root->root_key.objectid ==
321 BTRFS_TREE_RELOC_OBJECTID) {
322 ret = btrfs_dec_ref(trans, root, buf, 0);
325 ret = btrfs_inc_ref(trans, root, cow, 1);
329 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
332 if (root->root_key.objectid ==
333 BTRFS_TREE_RELOC_OBJECTID)
334 ret = btrfs_inc_ref(trans, root, cow, 1);
336 ret = btrfs_inc_ref(trans, root, cow, 0);
340 if (new_flags != 0) {
341 int level = btrfs_header_level(buf);
343 ret = btrfs_set_disk_extent_flags(trans, buf,
344 new_flags, level, 0);
349 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
350 if (root->root_key.objectid ==
351 BTRFS_TREE_RELOC_OBJECTID)
352 ret = btrfs_inc_ref(trans, root, cow, 1);
354 ret = btrfs_inc_ref(trans, root, cow, 0);
357 ret = btrfs_dec_ref(trans, root, buf, 1);
361 btrfs_clean_tree_block(buf);
368 * does the dirty work in cow of a single block. The parent block (if
369 * supplied) is updated to point to the new cow copy. The new buffer is marked
370 * dirty and returned locked. If you modify the block it needs to be marked
373 * search_start -- an allocation hint for the new block
375 * empty_size -- a hint that you plan on doing more cow. This is the size in
376 * bytes the allocator should try to find free next to the block it returns.
377 * This is just a hint and may be ignored by the allocator.
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380 struct btrfs_root *root,
381 struct extent_buffer *buf,
382 struct extent_buffer *parent, int parent_slot,
383 struct extent_buffer **cow_ret,
384 u64 search_start, u64 empty_size,
385 enum btrfs_lock_nesting nest)
387 struct btrfs_fs_info *fs_info = root->fs_info;
388 struct btrfs_disk_key disk_key;
389 struct extent_buffer *cow;
393 u64 parent_start = 0;
398 btrfs_assert_tree_locked(buf);
400 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
401 trans->transid != fs_info->running_transaction->transid);
402 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 trans->transid != root->last_trans);
405 level = btrfs_header_level(buf);
408 btrfs_item_key(buf, &disk_key, 0);
410 btrfs_node_key(buf, &disk_key, 0);
412 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
413 parent_start = parent->start;
415 cow = btrfs_alloc_tree_block(trans, root, parent_start,
416 root->root_key.objectid, &disk_key, level,
417 search_start, empty_size, nest);
421 /* cow is set to blocking by btrfs_init_new_buffer */
423 copy_extent_buffer_full(cow, buf);
424 btrfs_set_header_bytenr(cow, cow->start);
425 btrfs_set_header_generation(cow, trans->transid);
426 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
427 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
428 BTRFS_HEADER_FLAG_RELOC);
429 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
430 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 btrfs_set_header_owner(cow, root->root_key.objectid);
434 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 btrfs_tree_unlock(cow);
439 free_extent_buffer(cow);
440 btrfs_abort_transaction(trans, ret);
444 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
445 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 btrfs_tree_unlock(cow);
448 free_extent_buffer(cow);
449 btrfs_abort_transaction(trans, ret);
454 if (buf == root->node) {
455 WARN_ON(parent && parent != buf);
456 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 parent_start = buf->start;
460 atomic_inc(&cow->refs);
461 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 rcu_assign_pointer(root->node, cow);
465 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
466 parent_start, last_ref);
467 free_extent_buffer(buf);
468 add_root_to_dirty_list(root);
470 WARN_ON(trans->transid != btrfs_header_generation(parent));
471 btrfs_tree_mod_log_insert_key(parent, parent_slot,
472 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
473 btrfs_set_node_blockptr(parent, parent_slot,
475 btrfs_set_node_ptr_generation(parent, parent_slot,
477 btrfs_mark_buffer_dirty(parent);
479 ret = btrfs_tree_mod_log_free_eb(buf);
481 btrfs_tree_unlock(cow);
482 free_extent_buffer(cow);
483 btrfs_abort_transaction(trans, ret);
487 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
488 parent_start, last_ref);
491 btrfs_tree_unlock(buf);
492 free_extent_buffer_stale(buf);
493 btrfs_mark_buffer_dirty(cow);
498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
499 struct btrfs_root *root,
500 struct extent_buffer *buf)
502 if (btrfs_is_testing(root->fs_info))
505 /* Ensure we can see the FORCE_COW bit */
506 smp_mb__before_atomic();
509 * We do not need to cow a block if
510 * 1) this block is not created or changed in this transaction;
511 * 2) this block does not belong to TREE_RELOC tree;
512 * 3) the root is not forced COW.
514 * What is forced COW:
515 * when we create snapshot during committing the transaction,
516 * after we've finished copying src root, we must COW the shared
517 * block to ensure the metadata consistency.
519 if (btrfs_header_generation(buf) == trans->transid &&
520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
529 * cows a single block, see __btrfs_cow_block for the real work.
530 * This version of it has extra checks so that a block isn't COWed more than
531 * once per transaction, as long as it hasn't been written yet
533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
534 struct btrfs_root *root, struct extent_buffer *buf,
535 struct extent_buffer *parent, int parent_slot,
536 struct extent_buffer **cow_ret,
537 enum btrfs_lock_nesting nest)
539 struct btrfs_fs_info *fs_info = root->fs_info;
543 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 "COW'ing blocks on a fs root that's being dropped");
547 if (trans->transaction != fs_info->running_transaction)
548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 fs_info->running_transaction->transid);
552 if (trans->transid != fs_info->generation)
553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
554 trans->transid, fs_info->generation);
556 if (!should_cow_block(trans, root, buf)) {
561 search_start = buf->start & ~((u64)SZ_1G - 1);
564 * Before CoWing this block for later modification, check if it's
565 * the subtree root and do the delayed subtree trace if needed.
567 * Also We don't care about the error, as it's handled internally.
569 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
570 ret = __btrfs_cow_block(trans, root, buf, parent,
571 parent_slot, cow_ret, search_start, 0, nest);
573 trace_btrfs_cow_block(root, buf, *cow_ret);
577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
580 * helper function for defrag to decide if two blocks pointed to by a
581 * node are actually close by
583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 if (blocknr > other && blocknr - (other + blocksize) < 32768)
592 #ifdef __LITTLE_ENDIAN
595 * Compare two keys, on little-endian the disk order is same as CPU order and
596 * we can avoid the conversion.
598 static int comp_keys(const struct btrfs_disk_key *disk_key,
599 const struct btrfs_key *k2)
601 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603 return btrfs_comp_cpu_keys(k1, k2);
609 * compare two keys in a memcmp fashion
611 static int comp_keys(const struct btrfs_disk_key *disk,
612 const struct btrfs_key *k2)
616 btrfs_disk_key_to_cpu(&k1, disk);
618 return btrfs_comp_cpu_keys(&k1, k2);
623 * same as comp_keys only with two btrfs_key's
625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 if (k1->objectid > k2->objectid)
629 if (k1->objectid < k2->objectid)
631 if (k1->type > k2->type)
633 if (k1->type < k2->type)
635 if (k1->offset > k2->offset)
637 if (k1->offset < k2->offset)
643 * this is used by the defrag code to go through all the
644 * leaves pointed to by a node and reallocate them so that
645 * disk order is close to key order
647 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
648 struct btrfs_root *root, struct extent_buffer *parent,
649 int start_slot, u64 *last_ret,
650 struct btrfs_key *progress)
652 struct btrfs_fs_info *fs_info = root->fs_info;
653 struct extent_buffer *cur;
655 u64 search_start = *last_ret;
663 int progress_passed = 0;
664 struct btrfs_disk_key disk_key;
666 WARN_ON(trans->transaction != fs_info->running_transaction);
667 WARN_ON(trans->transid != fs_info->generation);
669 parent_nritems = btrfs_header_nritems(parent);
670 blocksize = fs_info->nodesize;
671 end_slot = parent_nritems - 1;
673 if (parent_nritems <= 1)
676 for (i = start_slot; i <= end_slot; i++) {
679 btrfs_node_key(parent, &disk_key, i);
680 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
684 blocknr = btrfs_node_blockptr(parent, i);
686 last_block = blocknr;
689 other = btrfs_node_blockptr(parent, i - 1);
690 close = close_blocks(blocknr, other, blocksize);
692 if (!close && i < end_slot) {
693 other = btrfs_node_blockptr(parent, i + 1);
694 close = close_blocks(blocknr, other, blocksize);
697 last_block = blocknr;
701 cur = btrfs_read_node_slot(parent, i);
704 if (search_start == 0)
705 search_start = last_block;
707 btrfs_tree_lock(cur);
708 err = __btrfs_cow_block(trans, root, cur, parent, i,
711 (end_slot - i) * blocksize),
714 btrfs_tree_unlock(cur);
715 free_extent_buffer(cur);
718 search_start = cur->start;
719 last_block = cur->start;
720 *last_ret = search_start;
721 btrfs_tree_unlock(cur);
722 free_extent_buffer(cur);
728 * search for key in the extent_buffer. The items start at offset p,
729 * and they are item_size apart.
731 * the slot in the array is returned via slot, and it points to
732 * the place where you would insert key if it is not found in
735 * Slot may point to total number of items if the key is bigger than
738 static noinline int generic_bin_search(struct extent_buffer *eb,
739 unsigned long p, int item_size,
740 const struct btrfs_key *key, int *slot)
743 int high = btrfs_header_nritems(eb);
745 const int key_size = sizeof(struct btrfs_disk_key);
748 btrfs_err(eb->fs_info,
749 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
750 __func__, low, high, eb->start,
751 btrfs_header_owner(eb), btrfs_header_level(eb));
757 unsigned long offset;
758 struct btrfs_disk_key *tmp;
759 struct btrfs_disk_key unaligned;
762 mid = (low + high) / 2;
763 offset = p + mid * item_size;
764 oip = offset_in_page(offset);
766 if (oip + key_size <= PAGE_SIZE) {
767 const unsigned long idx = get_eb_page_index(offset);
768 char *kaddr = page_address(eb->pages[idx]);
770 oip = get_eb_offset_in_page(eb, offset);
771 tmp = (struct btrfs_disk_key *)(kaddr + oip);
773 read_extent_buffer(eb, &unaligned, offset, key_size);
777 ret = comp_keys(tmp, key);
793 * simple bin_search frontend that does the right thing for
796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
799 if (btrfs_header_level(eb) == 0)
800 return generic_bin_search(eb,
801 offsetof(struct btrfs_leaf, items),
802 sizeof(struct btrfs_item), key, slot);
804 return generic_bin_search(eb,
805 offsetof(struct btrfs_node, ptrs),
806 sizeof(struct btrfs_key_ptr), key, slot);
809 static void root_add_used(struct btrfs_root *root, u32 size)
811 spin_lock(&root->accounting_lock);
812 btrfs_set_root_used(&root->root_item,
813 btrfs_root_used(&root->root_item) + size);
814 spin_unlock(&root->accounting_lock);
817 static void root_sub_used(struct btrfs_root *root, u32 size)
819 spin_lock(&root->accounting_lock);
820 btrfs_set_root_used(&root->root_item,
821 btrfs_root_used(&root->root_item) - size);
822 spin_unlock(&root->accounting_lock);
825 /* given a node and slot number, this reads the blocks it points to. The
826 * extent buffer is returned with a reference taken (but unlocked).
828 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
831 int level = btrfs_header_level(parent);
832 struct extent_buffer *eb;
833 struct btrfs_key first_key;
835 if (slot < 0 || slot >= btrfs_header_nritems(parent))
836 return ERR_PTR(-ENOENT);
840 btrfs_node_key_to_cpu(parent, &first_key, slot);
841 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
842 btrfs_header_owner(parent),
843 btrfs_node_ptr_generation(parent, slot),
844 level - 1, &first_key);
845 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
846 free_extent_buffer(eb);
854 * node level balancing, used to make sure nodes are in proper order for
855 * item deletion. We balance from the top down, so we have to make sure
856 * that a deletion won't leave an node completely empty later on.
858 static noinline int balance_level(struct btrfs_trans_handle *trans,
859 struct btrfs_root *root,
860 struct btrfs_path *path, int level)
862 struct btrfs_fs_info *fs_info = root->fs_info;
863 struct extent_buffer *right = NULL;
864 struct extent_buffer *mid;
865 struct extent_buffer *left = NULL;
866 struct extent_buffer *parent = NULL;
870 int orig_slot = path->slots[level];
875 mid = path->nodes[level];
877 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
878 WARN_ON(btrfs_header_generation(mid) != trans->transid);
880 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
882 if (level < BTRFS_MAX_LEVEL - 1) {
883 parent = path->nodes[level + 1];
884 pslot = path->slots[level + 1];
888 * deal with the case where there is only one pointer in the root
889 * by promoting the node below to a root
892 struct extent_buffer *child;
894 if (btrfs_header_nritems(mid) != 1)
897 /* promote the child to a root */
898 child = btrfs_read_node_slot(mid, 0);
900 ret = PTR_ERR(child);
901 btrfs_handle_fs_error(fs_info, ret, NULL);
905 btrfs_tree_lock(child);
906 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
909 btrfs_tree_unlock(child);
910 free_extent_buffer(child);
914 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
916 rcu_assign_pointer(root->node, child);
918 add_root_to_dirty_list(root);
919 btrfs_tree_unlock(child);
921 path->locks[level] = 0;
922 path->nodes[level] = NULL;
923 btrfs_clean_tree_block(mid);
924 btrfs_tree_unlock(mid);
925 /* once for the path */
926 free_extent_buffer(mid);
928 root_sub_used(root, mid->len);
929 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
930 /* once for the root ptr */
931 free_extent_buffer_stale(mid);
934 if (btrfs_header_nritems(mid) >
935 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
938 left = btrfs_read_node_slot(parent, pslot - 1);
943 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
944 wret = btrfs_cow_block(trans, root, left,
945 parent, pslot - 1, &left,
946 BTRFS_NESTING_LEFT_COW);
953 right = btrfs_read_node_slot(parent, pslot + 1);
958 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
959 wret = btrfs_cow_block(trans, root, right,
960 parent, pslot + 1, &right,
961 BTRFS_NESTING_RIGHT_COW);
968 /* first, try to make some room in the middle buffer */
970 orig_slot += btrfs_header_nritems(left);
971 wret = push_node_left(trans, left, mid, 1);
977 * then try to empty the right most buffer into the middle
980 wret = push_node_left(trans, mid, right, 1);
981 if (wret < 0 && wret != -ENOSPC)
983 if (btrfs_header_nritems(right) == 0) {
984 btrfs_clean_tree_block(right);
985 btrfs_tree_unlock(right);
986 del_ptr(root, path, level + 1, pslot + 1);
987 root_sub_used(root, right->len);
988 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
990 free_extent_buffer_stale(right);
993 struct btrfs_disk_key right_key;
994 btrfs_node_key(right, &right_key, 0);
995 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
996 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
998 btrfs_set_node_key(parent, &right_key, pslot + 1);
999 btrfs_mark_buffer_dirty(parent);
1002 if (btrfs_header_nritems(mid) == 1) {
1004 * we're not allowed to leave a node with one item in the
1005 * tree during a delete. A deletion from lower in the tree
1006 * could try to delete the only pointer in this node.
1007 * So, pull some keys from the left.
1008 * There has to be a left pointer at this point because
1009 * otherwise we would have pulled some pointers from the
1014 btrfs_handle_fs_error(fs_info, ret, NULL);
1017 wret = balance_node_right(trans, mid, left);
1023 wret = push_node_left(trans, left, mid, 1);
1029 if (btrfs_header_nritems(mid) == 0) {
1030 btrfs_clean_tree_block(mid);
1031 btrfs_tree_unlock(mid);
1032 del_ptr(root, path, level + 1, pslot);
1033 root_sub_used(root, mid->len);
1034 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1035 free_extent_buffer_stale(mid);
1038 /* update the parent key to reflect our changes */
1039 struct btrfs_disk_key mid_key;
1040 btrfs_node_key(mid, &mid_key, 0);
1041 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1042 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1044 btrfs_set_node_key(parent, &mid_key, pslot);
1045 btrfs_mark_buffer_dirty(parent);
1048 /* update the path */
1050 if (btrfs_header_nritems(left) > orig_slot) {
1051 atomic_inc(&left->refs);
1052 /* left was locked after cow */
1053 path->nodes[level] = left;
1054 path->slots[level + 1] -= 1;
1055 path->slots[level] = orig_slot;
1057 btrfs_tree_unlock(mid);
1058 free_extent_buffer(mid);
1061 orig_slot -= btrfs_header_nritems(left);
1062 path->slots[level] = orig_slot;
1065 /* double check we haven't messed things up */
1067 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1071 btrfs_tree_unlock(right);
1072 free_extent_buffer(right);
1075 if (path->nodes[level] != left)
1076 btrfs_tree_unlock(left);
1077 free_extent_buffer(left);
1082 /* Node balancing for insertion. Here we only split or push nodes around
1083 * when they are completely full. This is also done top down, so we
1084 * have to be pessimistic.
1086 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path, int level)
1090 struct btrfs_fs_info *fs_info = root->fs_info;
1091 struct extent_buffer *right = NULL;
1092 struct extent_buffer *mid;
1093 struct extent_buffer *left = NULL;
1094 struct extent_buffer *parent = NULL;
1098 int orig_slot = path->slots[level];
1103 mid = path->nodes[level];
1104 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1106 if (level < BTRFS_MAX_LEVEL - 1) {
1107 parent = path->nodes[level + 1];
1108 pslot = path->slots[level + 1];
1114 left = btrfs_read_node_slot(parent, pslot - 1);
1118 /* first, try to make some room in the middle buffer */
1122 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1124 left_nr = btrfs_header_nritems(left);
1125 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1128 ret = btrfs_cow_block(trans, root, left, parent,
1130 BTRFS_NESTING_LEFT_COW);
1134 wret = push_node_left(trans, left, mid, 0);
1140 struct btrfs_disk_key disk_key;
1141 orig_slot += left_nr;
1142 btrfs_node_key(mid, &disk_key, 0);
1143 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1144 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1146 btrfs_set_node_key(parent, &disk_key, pslot);
1147 btrfs_mark_buffer_dirty(parent);
1148 if (btrfs_header_nritems(left) > orig_slot) {
1149 path->nodes[level] = left;
1150 path->slots[level + 1] -= 1;
1151 path->slots[level] = orig_slot;
1152 btrfs_tree_unlock(mid);
1153 free_extent_buffer(mid);
1156 btrfs_header_nritems(left);
1157 path->slots[level] = orig_slot;
1158 btrfs_tree_unlock(left);
1159 free_extent_buffer(left);
1163 btrfs_tree_unlock(left);
1164 free_extent_buffer(left);
1166 right = btrfs_read_node_slot(parent, pslot + 1);
1171 * then try to empty the right most buffer into the middle
1176 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1178 right_nr = btrfs_header_nritems(right);
1179 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1182 ret = btrfs_cow_block(trans, root, right,
1184 &right, BTRFS_NESTING_RIGHT_COW);
1188 wret = balance_node_right(trans, right, mid);
1194 struct btrfs_disk_key disk_key;
1196 btrfs_node_key(right, &disk_key, 0);
1197 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1198 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1200 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1201 btrfs_mark_buffer_dirty(parent);
1203 if (btrfs_header_nritems(mid) <= orig_slot) {
1204 path->nodes[level] = right;
1205 path->slots[level + 1] += 1;
1206 path->slots[level] = orig_slot -
1207 btrfs_header_nritems(mid);
1208 btrfs_tree_unlock(mid);
1209 free_extent_buffer(mid);
1211 btrfs_tree_unlock(right);
1212 free_extent_buffer(right);
1216 btrfs_tree_unlock(right);
1217 free_extent_buffer(right);
1223 * readahead one full node of leaves, finding things that are close
1224 * to the block in 'slot', and triggering ra on them.
1226 static void reada_for_search(struct btrfs_fs_info *fs_info,
1227 struct btrfs_path *path,
1228 int level, int slot, u64 objectid)
1230 struct extent_buffer *node;
1231 struct btrfs_disk_key disk_key;
1241 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1244 if (!path->nodes[level])
1247 node = path->nodes[level];
1250 * Since the time between visiting leaves is much shorter than the time
1251 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1252 * much IO at once (possibly random).
1254 if (path->reada == READA_FORWARD_ALWAYS) {
1256 nread_max = node->fs_info->nodesize;
1258 nread_max = SZ_128K;
1263 search = btrfs_node_blockptr(node, slot);
1264 blocksize = fs_info->nodesize;
1265 if (path->reada != READA_FORWARD_ALWAYS) {
1266 struct extent_buffer *eb;
1268 eb = find_extent_buffer(fs_info, search);
1270 free_extent_buffer(eb);
1277 nritems = btrfs_header_nritems(node);
1281 if (path->reada == READA_BACK) {
1285 } else if (path->reada == READA_FORWARD ||
1286 path->reada == READA_FORWARD_ALWAYS) {
1291 if (path->reada == READA_BACK && objectid) {
1292 btrfs_node_key(node, &disk_key, nr);
1293 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296 search = btrfs_node_blockptr(node, nr);
1297 if (path->reada == READA_FORWARD_ALWAYS ||
1298 (search <= target && target - search <= 65536) ||
1299 (search > target && search - target <= 65536)) {
1300 btrfs_readahead_node_child(node, nr);
1304 if (nread > nread_max || nscan > 32)
1309 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1311 struct extent_buffer *parent;
1315 parent = path->nodes[level + 1];
1319 nritems = btrfs_header_nritems(parent);
1320 slot = path->slots[level + 1];
1323 btrfs_readahead_node_child(parent, slot - 1);
1324 if (slot + 1 < nritems)
1325 btrfs_readahead_node_child(parent, slot + 1);
1330 * when we walk down the tree, it is usually safe to unlock the higher layers
1331 * in the tree. The exceptions are when our path goes through slot 0, because
1332 * operations on the tree might require changing key pointers higher up in the
1335 * callers might also have set path->keep_locks, which tells this code to keep
1336 * the lock if the path points to the last slot in the block. This is part of
1337 * walking through the tree, and selecting the next slot in the higher block.
1339 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1340 * if lowest_unlock is 1, level 0 won't be unlocked
1342 static noinline void unlock_up(struct btrfs_path *path, int level,
1343 int lowest_unlock, int min_write_lock_level,
1344 int *write_lock_level)
1347 int skip_level = level;
1349 struct extent_buffer *t;
1351 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1352 if (!path->nodes[i])
1354 if (!path->locks[i])
1356 if (!no_skips && path->slots[i] == 0) {
1360 if (!no_skips && path->keep_locks) {
1363 nritems = btrfs_header_nritems(t);
1364 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1369 if (skip_level < i && i >= lowest_unlock)
1373 if (i >= lowest_unlock && i > skip_level) {
1374 btrfs_tree_unlock_rw(t, path->locks[i]);
1376 if (write_lock_level &&
1377 i > min_write_lock_level &&
1378 i <= *write_lock_level) {
1379 *write_lock_level = i - 1;
1386 * helper function for btrfs_search_slot. The goal is to find a block
1387 * in cache without setting the path to blocking. If we find the block
1388 * we return zero and the path is unchanged.
1390 * If we can't find the block, we set the path blocking and do some
1391 * reada. -EAGAIN is returned and the search must be repeated.
1394 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1395 struct extent_buffer **eb_ret, int level, int slot,
1396 const struct btrfs_key *key)
1398 struct btrfs_fs_info *fs_info = root->fs_info;
1401 struct extent_buffer *tmp;
1402 struct btrfs_key first_key;
1406 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1407 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1408 parent_level = btrfs_header_level(*eb_ret);
1409 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1411 tmp = find_extent_buffer(fs_info, blocknr);
1413 if (p->reada == READA_FORWARD_ALWAYS)
1414 reada_for_search(fs_info, p, level, slot, key->objectid);
1416 /* first we do an atomic uptodate check */
1417 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1419 * Do extra check for first_key, eb can be stale due to
1420 * being cached, read from scrub, or have multiple
1421 * parents (shared tree blocks).
1423 if (btrfs_verify_level_key(tmp,
1424 parent_level - 1, &first_key, gen)) {
1425 free_extent_buffer(tmp);
1432 /* now we're allowed to do a blocking uptodate check */
1433 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1438 free_extent_buffer(tmp);
1439 btrfs_release_path(p);
1444 * reduce lock contention at high levels
1445 * of the btree by dropping locks before
1446 * we read. Don't release the lock on the current
1447 * level because we need to walk this node to figure
1448 * out which blocks to read.
1450 btrfs_unlock_up_safe(p, level + 1);
1452 if (p->reada != READA_NONE)
1453 reada_for_search(fs_info, p, level, slot, key->objectid);
1456 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1457 gen, parent_level - 1, &first_key);
1460 * If the read above didn't mark this buffer up to date,
1461 * it will never end up being up to date. Set ret to EIO now
1462 * and give up so that our caller doesn't loop forever
1465 if (!extent_buffer_uptodate(tmp))
1467 free_extent_buffer(tmp);
1472 btrfs_release_path(p);
1477 * helper function for btrfs_search_slot. This does all of the checks
1478 * for node-level blocks and does any balancing required based on
1481 * If no extra work was required, zero is returned. If we had to
1482 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1486 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1487 struct btrfs_root *root, struct btrfs_path *p,
1488 struct extent_buffer *b, int level, int ins_len,
1489 int *write_lock_level)
1491 struct btrfs_fs_info *fs_info = root->fs_info;
1494 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1497 if (*write_lock_level < level + 1) {
1498 *write_lock_level = level + 1;
1499 btrfs_release_path(p);
1503 reada_for_balance(p, level);
1504 ret = split_node(trans, root, p, level);
1506 b = p->nodes[level];
1507 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1508 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1510 if (*write_lock_level < level + 1) {
1511 *write_lock_level = level + 1;
1512 btrfs_release_path(p);
1516 reada_for_balance(p, level);
1517 ret = balance_level(trans, root, p, level);
1521 b = p->nodes[level];
1523 btrfs_release_path(p);
1526 BUG_ON(btrfs_header_nritems(b) == 1);
1531 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1532 u64 iobjectid, u64 ioff, u8 key_type,
1533 struct btrfs_key *found_key)
1536 struct btrfs_key key;
1537 struct extent_buffer *eb;
1542 key.type = key_type;
1543 key.objectid = iobjectid;
1546 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1550 eb = path->nodes[0];
1551 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1552 ret = btrfs_next_leaf(fs_root, path);
1555 eb = path->nodes[0];
1558 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1559 if (found_key->type != key.type ||
1560 found_key->objectid != key.objectid)
1566 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1567 struct btrfs_path *p,
1568 int write_lock_level)
1570 struct extent_buffer *b;
1574 if (p->search_commit_root) {
1575 b = root->commit_root;
1576 atomic_inc(&b->refs);
1577 level = btrfs_header_level(b);
1579 * Ensure that all callers have set skip_locking when
1580 * p->search_commit_root = 1.
1582 ASSERT(p->skip_locking == 1);
1587 if (p->skip_locking) {
1588 b = btrfs_root_node(root);
1589 level = btrfs_header_level(b);
1593 /* We try very hard to do read locks on the root */
1594 root_lock = BTRFS_READ_LOCK;
1597 * If the level is set to maximum, we can skip trying to get the read
1600 if (write_lock_level < BTRFS_MAX_LEVEL) {
1602 * We don't know the level of the root node until we actually
1603 * have it read locked
1605 b = btrfs_read_lock_root_node(root);
1606 level = btrfs_header_level(b);
1607 if (level > write_lock_level)
1610 /* Whoops, must trade for write lock */
1611 btrfs_tree_read_unlock(b);
1612 free_extent_buffer(b);
1615 b = btrfs_lock_root_node(root);
1616 root_lock = BTRFS_WRITE_LOCK;
1618 /* The level might have changed, check again */
1619 level = btrfs_header_level(b);
1623 * The root may have failed to write out at some point, and thus is no
1624 * longer valid, return an error in this case.
1626 if (!extent_buffer_uptodate(b)) {
1628 btrfs_tree_unlock_rw(b, root_lock);
1629 free_extent_buffer(b);
1630 return ERR_PTR(-EIO);
1633 p->nodes[level] = b;
1634 if (!p->skip_locking)
1635 p->locks[level] = root_lock;
1637 * Callers are responsible for dropping b's references.
1643 * Replace the extent buffer at the lowest level of the path with a cloned
1644 * version. The purpose is to be able to use it safely, after releasing the
1645 * commit root semaphore, even if relocation is happening in parallel, the
1646 * transaction used for relocation is committed and the extent buffer is
1647 * reallocated in the next transaction.
1649 * This is used in a context where the caller does not prevent transaction
1650 * commits from happening, either by holding a transaction handle or holding
1651 * some lock, while it's doing searches through a commit root.
1652 * At the moment it's only used for send operations.
1654 static int finish_need_commit_sem_search(struct btrfs_path *path)
1656 const int i = path->lowest_level;
1657 const int slot = path->slots[i];
1658 struct extent_buffer *lowest = path->nodes[i];
1659 struct extent_buffer *clone;
1661 ASSERT(path->need_commit_sem);
1666 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1668 clone = btrfs_clone_extent_buffer(lowest);
1672 btrfs_release_path(path);
1673 path->nodes[i] = clone;
1674 path->slots[i] = slot;
1680 * btrfs_search_slot - look for a key in a tree and perform necessary
1681 * modifications to preserve tree invariants.
1683 * @trans: Handle of transaction, used when modifying the tree
1684 * @p: Holds all btree nodes along the search path
1685 * @root: The root node of the tree
1686 * @key: The key we are looking for
1687 * @ins_len: Indicates purpose of search:
1688 * >0 for inserts it's size of item inserted (*)
1690 * 0 for plain searches, not modifying the tree
1692 * (*) If size of item inserted doesn't include
1693 * sizeof(struct btrfs_item), then p->search_for_extension must
1695 * @cow: boolean should CoW operations be performed. Must always be 1
1696 * when modifying the tree.
1698 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1699 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1701 * If @key is found, 0 is returned and you can find the item in the leaf level
1702 * of the path (level 0)
1704 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1705 * points to the slot where it should be inserted
1707 * If an error is encountered while searching the tree a negative error number
1710 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1711 const struct btrfs_key *key, struct btrfs_path *p,
1712 int ins_len, int cow)
1714 struct btrfs_fs_info *fs_info = root->fs_info;
1715 struct extent_buffer *b;
1720 int lowest_unlock = 1;
1721 /* everything at write_lock_level or lower must be write locked */
1722 int write_lock_level = 0;
1723 u8 lowest_level = 0;
1724 int min_write_lock_level;
1727 lowest_level = p->lowest_level;
1728 WARN_ON(lowest_level && ins_len > 0);
1729 WARN_ON(p->nodes[0] != NULL);
1730 BUG_ON(!cow && ins_len);
1735 /* when we are removing items, we might have to go up to level
1736 * two as we update tree pointers Make sure we keep write
1737 * for those levels as well
1739 write_lock_level = 2;
1740 } else if (ins_len > 0) {
1742 * for inserting items, make sure we have a write lock on
1743 * level 1 so we can update keys
1745 write_lock_level = 1;
1749 write_lock_level = -1;
1751 if (cow && (p->keep_locks || p->lowest_level))
1752 write_lock_level = BTRFS_MAX_LEVEL;
1754 min_write_lock_level = write_lock_level;
1756 if (p->need_commit_sem) {
1757 ASSERT(p->search_commit_root);
1758 down_read(&fs_info->commit_root_sem);
1763 b = btrfs_search_slot_get_root(root, p, write_lock_level);
1772 level = btrfs_header_level(b);
1775 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1778 * if we don't really need to cow this block
1779 * then we don't want to set the path blocking,
1780 * so we test it here
1782 if (!should_cow_block(trans, root, b))
1786 * must have write locks on this node and the
1789 if (level > write_lock_level ||
1790 (level + 1 > write_lock_level &&
1791 level + 1 < BTRFS_MAX_LEVEL &&
1792 p->nodes[level + 1])) {
1793 write_lock_level = level + 1;
1794 btrfs_release_path(p);
1799 err = btrfs_cow_block(trans, root, b, NULL, 0,
1803 err = btrfs_cow_block(trans, root, b,
1804 p->nodes[level + 1],
1805 p->slots[level + 1], &b,
1813 p->nodes[level] = b;
1815 * Leave path with blocking locks to avoid massive
1816 * lock context switch, this is made on purpose.
1820 * we have a lock on b and as long as we aren't changing
1821 * the tree, there is no way to for the items in b to change.
1822 * It is safe to drop the lock on our parent before we
1823 * go through the expensive btree search on b.
1825 * If we're inserting or deleting (ins_len != 0), then we might
1826 * be changing slot zero, which may require changing the parent.
1827 * So, we can't drop the lock until after we know which slot
1828 * we're operating on.
1830 if (!ins_len && !p->keep_locks) {
1833 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1834 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1840 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1841 * we can safely assume the target key will always be in slot 0
1842 * on lower levels due to the invariants BTRFS' btree provides,
1843 * namely that a btrfs_key_ptr entry always points to the
1844 * lowest key in the child node, thus we can skip searching
1847 if (prev_cmp == 0) {
1851 ret = btrfs_bin_search(b, key, &slot);
1858 p->slots[level] = slot;
1860 * Item key already exists. In this case, if we are
1861 * allowed to insert the item (for example, in dir_item
1862 * case, item key collision is allowed), it will be
1863 * merged with the original item. Only the item size
1864 * grows, no new btrfs item will be added. If
1865 * search_for_extension is not set, ins_len already
1866 * accounts the size btrfs_item, deduct it here so leaf
1867 * space check will be correct.
1869 if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1870 ASSERT(ins_len >= sizeof(struct btrfs_item));
1871 ins_len -= sizeof(struct btrfs_item);
1874 btrfs_leaf_free_space(b) < ins_len) {
1875 if (write_lock_level < 1) {
1876 write_lock_level = 1;
1877 btrfs_release_path(p);
1881 err = split_leaf(trans, root, key,
1882 p, ins_len, ret == 0);
1890 if (!p->search_for_split)
1891 unlock_up(p, level, lowest_unlock,
1892 min_write_lock_level, NULL);
1895 if (ret && slot > 0) {
1899 p->slots[level] = slot;
1900 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1908 b = p->nodes[level];
1909 slot = p->slots[level];
1912 * Slot 0 is special, if we change the key we have to update
1913 * the parent pointer which means we must have a write lock on
1916 if (slot == 0 && ins_len && write_lock_level < level + 1) {
1917 write_lock_level = level + 1;
1918 btrfs_release_path(p);
1922 unlock_up(p, level, lowest_unlock, min_write_lock_level,
1925 if (level == lowest_level) {
1931 err = read_block_for_search(root, p, &b, level, slot, key);
1939 if (!p->skip_locking) {
1940 level = btrfs_header_level(b);
1942 btrfs_maybe_reset_lockdep_class(root, b);
1944 if (level <= write_lock_level) {
1946 p->locks[level] = BTRFS_WRITE_LOCK;
1948 btrfs_tree_read_lock(b);
1949 p->locks[level] = BTRFS_READ_LOCK;
1951 p->nodes[level] = b;
1956 if (ret < 0 && !p->skip_release_on_error)
1957 btrfs_release_path(p);
1959 if (p->need_commit_sem) {
1962 ret2 = finish_need_commit_sem_search(p);
1963 up_read(&fs_info->commit_root_sem);
1970 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1973 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1974 * current state of the tree together with the operations recorded in the tree
1975 * modification log to search for the key in a previous version of this tree, as
1976 * denoted by the time_seq parameter.
1978 * Naturally, there is no support for insert, delete or cow operations.
1980 * The resulting path and return value will be set up as if we called
1981 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1983 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1984 struct btrfs_path *p, u64 time_seq)
1986 struct btrfs_fs_info *fs_info = root->fs_info;
1987 struct extent_buffer *b;
1992 int lowest_unlock = 1;
1993 u8 lowest_level = 0;
1995 lowest_level = p->lowest_level;
1996 WARN_ON(p->nodes[0] != NULL);
1998 if (p->search_commit_root) {
2000 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2004 b = btrfs_get_old_root(root, time_seq);
2009 level = btrfs_header_level(b);
2010 p->locks[level] = BTRFS_READ_LOCK;
2015 level = btrfs_header_level(b);
2016 p->nodes[level] = b;
2019 * we have a lock on b and as long as we aren't changing
2020 * the tree, there is no way to for the items in b to change.
2021 * It is safe to drop the lock on our parent before we
2022 * go through the expensive btree search on b.
2024 btrfs_unlock_up_safe(p, level + 1);
2026 ret = btrfs_bin_search(b, key, &slot);
2031 p->slots[level] = slot;
2032 unlock_up(p, level, lowest_unlock, 0, NULL);
2036 if (ret && slot > 0) {
2040 p->slots[level] = slot;
2041 unlock_up(p, level, lowest_unlock, 0, NULL);
2043 if (level == lowest_level) {
2049 err = read_block_for_search(root, p, &b, level, slot, key);
2057 level = btrfs_header_level(b);
2058 btrfs_tree_read_lock(b);
2059 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2064 p->locks[level] = BTRFS_READ_LOCK;
2065 p->nodes[level] = b;
2070 btrfs_release_path(p);
2076 * helper to use instead of search slot if no exact match is needed but
2077 * instead the next or previous item should be returned.
2078 * When find_higher is true, the next higher item is returned, the next lower
2080 * When return_any and find_higher are both true, and no higher item is found,
2081 * return the next lower instead.
2082 * When return_any is true and find_higher is false, and no lower item is found,
2083 * return the next higher instead.
2084 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2087 int btrfs_search_slot_for_read(struct btrfs_root *root,
2088 const struct btrfs_key *key,
2089 struct btrfs_path *p, int find_higher,
2093 struct extent_buffer *leaf;
2096 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2100 * a return value of 1 means the path is at the position where the
2101 * item should be inserted. Normally this is the next bigger item,
2102 * but in case the previous item is the last in a leaf, path points
2103 * to the first free slot in the previous leaf, i.e. at an invalid
2109 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2110 ret = btrfs_next_leaf(root, p);
2116 * no higher item found, return the next
2121 btrfs_release_path(p);
2125 if (p->slots[0] == 0) {
2126 ret = btrfs_prev_leaf(root, p);
2131 if (p->slots[0] == btrfs_header_nritems(leaf))
2138 * no lower item found, return the next
2143 btrfs_release_path(p);
2153 * Execute search and call btrfs_previous_item to traverse backwards if the item
2156 * Return 0 if found, 1 if not found and < 0 if error.
2158 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2159 struct btrfs_path *path)
2163 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2165 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2168 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2174 * adjust the pointers going up the tree, starting at level
2175 * making sure the right key of each node is points to 'key'.
2176 * This is used after shifting pointers to the left, so it stops
2177 * fixing up pointers when a given leaf/node is not in slot 0 of the
2181 static void fixup_low_keys(struct btrfs_path *path,
2182 struct btrfs_disk_key *key, int level)
2185 struct extent_buffer *t;
2188 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2189 int tslot = path->slots[i];
2191 if (!path->nodes[i])
2194 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2195 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2197 btrfs_set_node_key(t, key, tslot);
2198 btrfs_mark_buffer_dirty(path->nodes[i]);
2207 * This function isn't completely safe. It's the caller's responsibility
2208 * that the new key won't break the order
2210 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2211 struct btrfs_path *path,
2212 const struct btrfs_key *new_key)
2214 struct btrfs_disk_key disk_key;
2215 struct extent_buffer *eb;
2218 eb = path->nodes[0];
2219 slot = path->slots[0];
2221 btrfs_item_key(eb, &disk_key, slot - 1);
2222 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2224 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2225 slot, btrfs_disk_key_objectid(&disk_key),
2226 btrfs_disk_key_type(&disk_key),
2227 btrfs_disk_key_offset(&disk_key),
2228 new_key->objectid, new_key->type,
2230 btrfs_print_leaf(eb);
2234 if (slot < btrfs_header_nritems(eb) - 1) {
2235 btrfs_item_key(eb, &disk_key, slot + 1);
2236 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2238 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2239 slot, btrfs_disk_key_objectid(&disk_key),
2240 btrfs_disk_key_type(&disk_key),
2241 btrfs_disk_key_offset(&disk_key),
2242 new_key->objectid, new_key->type,
2244 btrfs_print_leaf(eb);
2249 btrfs_cpu_key_to_disk(&disk_key, new_key);
2250 btrfs_set_item_key(eb, &disk_key, slot);
2251 btrfs_mark_buffer_dirty(eb);
2253 fixup_low_keys(path, &disk_key, 1);
2257 * Check key order of two sibling extent buffers.
2259 * Return true if something is wrong.
2260 * Return false if everything is fine.
2262 * Tree-checker only works inside one tree block, thus the following
2263 * corruption can not be detected by tree-checker:
2265 * Leaf @left | Leaf @right
2266 * --------------------------------------------------------------
2267 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2269 * Key f6 in leaf @left itself is valid, but not valid when the next
2270 * key in leaf @right is 7.
2271 * This can only be checked at tree block merge time.
2272 * And since tree checker has ensured all key order in each tree block
2273 * is correct, we only need to bother the last key of @left and the first
2276 static bool check_sibling_keys(struct extent_buffer *left,
2277 struct extent_buffer *right)
2279 struct btrfs_key left_last;
2280 struct btrfs_key right_first;
2281 int level = btrfs_header_level(left);
2282 int nr_left = btrfs_header_nritems(left);
2283 int nr_right = btrfs_header_nritems(right);
2285 /* No key to check in one of the tree blocks */
2286 if (!nr_left || !nr_right)
2290 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2291 btrfs_node_key_to_cpu(right, &right_first, 0);
2293 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2294 btrfs_item_key_to_cpu(right, &right_first, 0);
2297 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2298 btrfs_crit(left->fs_info,
2299 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2300 left_last.objectid, left_last.type,
2301 left_last.offset, right_first.objectid,
2302 right_first.type, right_first.offset);
2309 * try to push data from one node into the next node left in the
2312 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2313 * error, and > 0 if there was no room in the left hand block.
2315 static int push_node_left(struct btrfs_trans_handle *trans,
2316 struct extent_buffer *dst,
2317 struct extent_buffer *src, int empty)
2319 struct btrfs_fs_info *fs_info = trans->fs_info;
2325 src_nritems = btrfs_header_nritems(src);
2326 dst_nritems = btrfs_header_nritems(dst);
2327 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2328 WARN_ON(btrfs_header_generation(src) != trans->transid);
2329 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2331 if (!empty && src_nritems <= 8)
2334 if (push_items <= 0)
2338 push_items = min(src_nritems, push_items);
2339 if (push_items < src_nritems) {
2340 /* leave at least 8 pointers in the node if
2341 * we aren't going to empty it
2343 if (src_nritems - push_items < 8) {
2344 if (push_items <= 8)
2350 push_items = min(src_nritems - 8, push_items);
2352 /* dst is the left eb, src is the middle eb */
2353 if (check_sibling_keys(dst, src)) {
2355 btrfs_abort_transaction(trans, ret);
2358 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2360 btrfs_abort_transaction(trans, ret);
2363 copy_extent_buffer(dst, src,
2364 btrfs_node_key_ptr_offset(dst_nritems),
2365 btrfs_node_key_ptr_offset(0),
2366 push_items * sizeof(struct btrfs_key_ptr));
2368 if (push_items < src_nritems) {
2370 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2371 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2373 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2374 btrfs_node_key_ptr_offset(push_items),
2375 (src_nritems - push_items) *
2376 sizeof(struct btrfs_key_ptr));
2378 btrfs_set_header_nritems(src, src_nritems - push_items);
2379 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2380 btrfs_mark_buffer_dirty(src);
2381 btrfs_mark_buffer_dirty(dst);
2387 * try to push data from one node into the next node right in the
2390 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2391 * error, and > 0 if there was no room in the right hand block.
2393 * this will only push up to 1/2 the contents of the left node over
2395 static int balance_node_right(struct btrfs_trans_handle *trans,
2396 struct extent_buffer *dst,
2397 struct extent_buffer *src)
2399 struct btrfs_fs_info *fs_info = trans->fs_info;
2406 WARN_ON(btrfs_header_generation(src) != trans->transid);
2407 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2409 src_nritems = btrfs_header_nritems(src);
2410 dst_nritems = btrfs_header_nritems(dst);
2411 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2412 if (push_items <= 0)
2415 if (src_nritems < 4)
2418 max_push = src_nritems / 2 + 1;
2419 /* don't try to empty the node */
2420 if (max_push >= src_nritems)
2423 if (max_push < push_items)
2424 push_items = max_push;
2426 /* dst is the right eb, src is the middle eb */
2427 if (check_sibling_keys(src, dst)) {
2429 btrfs_abort_transaction(trans, ret);
2432 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2434 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2435 btrfs_node_key_ptr_offset(0),
2437 sizeof(struct btrfs_key_ptr));
2439 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2442 btrfs_abort_transaction(trans, ret);
2445 copy_extent_buffer(dst, src,
2446 btrfs_node_key_ptr_offset(0),
2447 btrfs_node_key_ptr_offset(src_nritems - push_items),
2448 push_items * sizeof(struct btrfs_key_ptr));
2450 btrfs_set_header_nritems(src, src_nritems - push_items);
2451 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2453 btrfs_mark_buffer_dirty(src);
2454 btrfs_mark_buffer_dirty(dst);
2460 * helper function to insert a new root level in the tree.
2461 * A new node is allocated, and a single item is inserted to
2462 * point to the existing root
2464 * returns zero on success or < 0 on failure.
2466 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2467 struct btrfs_root *root,
2468 struct btrfs_path *path, int level)
2470 struct btrfs_fs_info *fs_info = root->fs_info;
2472 struct extent_buffer *lower;
2473 struct extent_buffer *c;
2474 struct extent_buffer *old;
2475 struct btrfs_disk_key lower_key;
2478 BUG_ON(path->nodes[level]);
2479 BUG_ON(path->nodes[level-1] != root->node);
2481 lower = path->nodes[level-1];
2483 btrfs_item_key(lower, &lower_key, 0);
2485 btrfs_node_key(lower, &lower_key, 0);
2487 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2488 &lower_key, level, root->node->start, 0,
2489 BTRFS_NESTING_NEW_ROOT);
2493 root_add_used(root, fs_info->nodesize);
2495 btrfs_set_header_nritems(c, 1);
2496 btrfs_set_node_key(c, &lower_key, 0);
2497 btrfs_set_node_blockptr(c, 0, lower->start);
2498 lower_gen = btrfs_header_generation(lower);
2499 WARN_ON(lower_gen != trans->transid);
2501 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2503 btrfs_mark_buffer_dirty(c);
2506 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2508 rcu_assign_pointer(root->node, c);
2510 /* the super has an extra ref to root->node */
2511 free_extent_buffer(old);
2513 add_root_to_dirty_list(root);
2514 atomic_inc(&c->refs);
2515 path->nodes[level] = c;
2516 path->locks[level] = BTRFS_WRITE_LOCK;
2517 path->slots[level] = 0;
2522 * worker function to insert a single pointer in a node.
2523 * the node should have enough room for the pointer already
2525 * slot and level indicate where you want the key to go, and
2526 * blocknr is the block the key points to.
2528 static void insert_ptr(struct btrfs_trans_handle *trans,
2529 struct btrfs_path *path,
2530 struct btrfs_disk_key *key, u64 bytenr,
2531 int slot, int level)
2533 struct extent_buffer *lower;
2537 BUG_ON(!path->nodes[level]);
2538 btrfs_assert_tree_locked(path->nodes[level]);
2539 lower = path->nodes[level];
2540 nritems = btrfs_header_nritems(lower);
2541 BUG_ON(slot > nritems);
2542 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2543 if (slot != nritems) {
2545 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2546 slot, nritems - slot);
2549 memmove_extent_buffer(lower,
2550 btrfs_node_key_ptr_offset(slot + 1),
2551 btrfs_node_key_ptr_offset(slot),
2552 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2555 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2556 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2559 btrfs_set_node_key(lower, key, slot);
2560 btrfs_set_node_blockptr(lower, slot, bytenr);
2561 WARN_ON(trans->transid == 0);
2562 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2563 btrfs_set_header_nritems(lower, nritems + 1);
2564 btrfs_mark_buffer_dirty(lower);
2568 * split the node at the specified level in path in two.
2569 * The path is corrected to point to the appropriate node after the split
2571 * Before splitting this tries to make some room in the node by pushing
2572 * left and right, if either one works, it returns right away.
2574 * returns 0 on success and < 0 on failure
2576 static noinline int split_node(struct btrfs_trans_handle *trans,
2577 struct btrfs_root *root,
2578 struct btrfs_path *path, int level)
2580 struct btrfs_fs_info *fs_info = root->fs_info;
2581 struct extent_buffer *c;
2582 struct extent_buffer *split;
2583 struct btrfs_disk_key disk_key;
2588 c = path->nodes[level];
2589 WARN_ON(btrfs_header_generation(c) != trans->transid);
2590 if (c == root->node) {
2592 * trying to split the root, lets make a new one
2594 * tree mod log: We don't log_removal old root in
2595 * insert_new_root, because that root buffer will be kept as a
2596 * normal node. We are going to log removal of half of the
2597 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2598 * holding a tree lock on the buffer, which is why we cannot
2599 * race with other tree_mod_log users.
2601 ret = insert_new_root(trans, root, path, level + 1);
2605 ret = push_nodes_for_insert(trans, root, path, level);
2606 c = path->nodes[level];
2607 if (!ret && btrfs_header_nritems(c) <
2608 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2614 c_nritems = btrfs_header_nritems(c);
2615 mid = (c_nritems + 1) / 2;
2616 btrfs_node_key(c, &disk_key, mid);
2618 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2619 &disk_key, level, c->start, 0,
2620 BTRFS_NESTING_SPLIT);
2622 return PTR_ERR(split);
2624 root_add_used(root, fs_info->nodesize);
2625 ASSERT(btrfs_header_level(c) == level);
2627 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2629 btrfs_abort_transaction(trans, ret);
2632 copy_extent_buffer(split, c,
2633 btrfs_node_key_ptr_offset(0),
2634 btrfs_node_key_ptr_offset(mid),
2635 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2636 btrfs_set_header_nritems(split, c_nritems - mid);
2637 btrfs_set_header_nritems(c, mid);
2639 btrfs_mark_buffer_dirty(c);
2640 btrfs_mark_buffer_dirty(split);
2642 insert_ptr(trans, path, &disk_key, split->start,
2643 path->slots[level + 1] + 1, level + 1);
2645 if (path->slots[level] >= mid) {
2646 path->slots[level] -= mid;
2647 btrfs_tree_unlock(c);
2648 free_extent_buffer(c);
2649 path->nodes[level] = split;
2650 path->slots[level + 1] += 1;
2652 btrfs_tree_unlock(split);
2653 free_extent_buffer(split);
2659 * how many bytes are required to store the items in a leaf. start
2660 * and nr indicate which items in the leaf to check. This totals up the
2661 * space used both by the item structs and the item data
2663 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2665 struct btrfs_item *start_item;
2666 struct btrfs_item *end_item;
2668 int nritems = btrfs_header_nritems(l);
2669 int end = min(nritems, start + nr) - 1;
2673 start_item = btrfs_item_nr(start);
2674 end_item = btrfs_item_nr(end);
2675 data_len = btrfs_item_offset(l, start_item) +
2676 btrfs_item_size(l, start_item);
2677 data_len = data_len - btrfs_item_offset(l, end_item);
2678 data_len += sizeof(struct btrfs_item) * nr;
2679 WARN_ON(data_len < 0);
2684 * The space between the end of the leaf items and
2685 * the start of the leaf data. IOW, how much room
2686 * the leaf has left for both items and data
2688 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2690 struct btrfs_fs_info *fs_info = leaf->fs_info;
2691 int nritems = btrfs_header_nritems(leaf);
2694 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2697 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2699 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2700 leaf_space_used(leaf, 0, nritems), nritems);
2706 * min slot controls the lowest index we're willing to push to the
2707 * right. We'll push up to and including min_slot, but no lower
2709 static noinline int __push_leaf_right(struct btrfs_path *path,
2710 int data_size, int empty,
2711 struct extent_buffer *right,
2712 int free_space, u32 left_nritems,
2715 struct btrfs_fs_info *fs_info = right->fs_info;
2716 struct extent_buffer *left = path->nodes[0];
2717 struct extent_buffer *upper = path->nodes[1];
2718 struct btrfs_map_token token;
2719 struct btrfs_disk_key disk_key;
2724 struct btrfs_item *item;
2733 nr = max_t(u32, 1, min_slot);
2735 if (path->slots[0] >= left_nritems)
2736 push_space += data_size;
2738 slot = path->slots[1];
2739 i = left_nritems - 1;
2741 item = btrfs_item_nr(i);
2743 if (!empty && push_items > 0) {
2744 if (path->slots[0] > i)
2746 if (path->slots[0] == i) {
2747 int space = btrfs_leaf_free_space(left);
2749 if (space + push_space * 2 > free_space)
2754 if (path->slots[0] == i)
2755 push_space += data_size;
2757 this_item_size = btrfs_item_size(left, item);
2758 if (this_item_size + sizeof(*item) + push_space > free_space)
2762 push_space += this_item_size + sizeof(*item);
2768 if (push_items == 0)
2771 WARN_ON(!empty && push_items == left_nritems);
2773 /* push left to right */
2774 right_nritems = btrfs_header_nritems(right);
2776 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2777 push_space -= leaf_data_end(left);
2779 /* make room in the right data area */
2780 data_end = leaf_data_end(right);
2781 memmove_extent_buffer(right,
2782 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2783 BTRFS_LEAF_DATA_OFFSET + data_end,
2784 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2786 /* copy from the left data area */
2787 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2788 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2789 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2792 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2793 btrfs_item_nr_offset(0),
2794 right_nritems * sizeof(struct btrfs_item));
2796 /* copy the items from left to right */
2797 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2798 btrfs_item_nr_offset(left_nritems - push_items),
2799 push_items * sizeof(struct btrfs_item));
2801 /* update the item pointers */
2802 btrfs_init_map_token(&token, right);
2803 right_nritems += push_items;
2804 btrfs_set_header_nritems(right, right_nritems);
2805 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2806 for (i = 0; i < right_nritems; i++) {
2807 item = btrfs_item_nr(i);
2808 push_space -= btrfs_token_item_size(&token, item);
2809 btrfs_set_token_item_offset(&token, item, push_space);
2812 left_nritems -= push_items;
2813 btrfs_set_header_nritems(left, left_nritems);
2816 btrfs_mark_buffer_dirty(left);
2818 btrfs_clean_tree_block(left);
2820 btrfs_mark_buffer_dirty(right);
2822 btrfs_item_key(right, &disk_key, 0);
2823 btrfs_set_node_key(upper, &disk_key, slot + 1);
2824 btrfs_mark_buffer_dirty(upper);
2826 /* then fixup the leaf pointer in the path */
2827 if (path->slots[0] >= left_nritems) {
2828 path->slots[0] -= left_nritems;
2829 if (btrfs_header_nritems(path->nodes[0]) == 0)
2830 btrfs_clean_tree_block(path->nodes[0]);
2831 btrfs_tree_unlock(path->nodes[0]);
2832 free_extent_buffer(path->nodes[0]);
2833 path->nodes[0] = right;
2834 path->slots[1] += 1;
2836 btrfs_tree_unlock(right);
2837 free_extent_buffer(right);
2842 btrfs_tree_unlock(right);
2843 free_extent_buffer(right);
2848 * push some data in the path leaf to the right, trying to free up at
2849 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2851 * returns 1 if the push failed because the other node didn't have enough
2852 * room, 0 if everything worked out and < 0 if there were major errors.
2854 * this will push starting from min_slot to the end of the leaf. It won't
2855 * push any slot lower than min_slot
2857 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2858 *root, struct btrfs_path *path,
2859 int min_data_size, int data_size,
2860 int empty, u32 min_slot)
2862 struct extent_buffer *left = path->nodes[0];
2863 struct extent_buffer *right;
2864 struct extent_buffer *upper;
2870 if (!path->nodes[1])
2873 slot = path->slots[1];
2874 upper = path->nodes[1];
2875 if (slot >= btrfs_header_nritems(upper) - 1)
2878 btrfs_assert_tree_locked(path->nodes[1]);
2880 right = btrfs_read_node_slot(upper, slot + 1);
2882 * slot + 1 is not valid or we fail to read the right node,
2883 * no big deal, just return.
2888 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2890 free_space = btrfs_leaf_free_space(right);
2891 if (free_space < data_size)
2894 /* cow and double check */
2895 ret = btrfs_cow_block(trans, root, right, upper,
2896 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2900 free_space = btrfs_leaf_free_space(right);
2901 if (free_space < data_size)
2904 left_nritems = btrfs_header_nritems(left);
2905 if (left_nritems == 0)
2908 if (check_sibling_keys(left, right)) {
2910 btrfs_tree_unlock(right);
2911 free_extent_buffer(right);
2914 if (path->slots[0] == left_nritems && !empty) {
2915 /* Key greater than all keys in the leaf, right neighbor has
2916 * enough room for it and we're not emptying our leaf to delete
2917 * it, therefore use right neighbor to insert the new item and
2918 * no need to touch/dirty our left leaf. */
2919 btrfs_tree_unlock(left);
2920 free_extent_buffer(left);
2921 path->nodes[0] = right;
2927 return __push_leaf_right(path, min_data_size, empty,
2928 right, free_space, left_nritems, min_slot);
2930 btrfs_tree_unlock(right);
2931 free_extent_buffer(right);
2936 * push some data in the path leaf to the left, trying to free up at
2937 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2939 * max_slot can put a limit on how far into the leaf we'll push items. The
2940 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2943 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2944 int empty, struct extent_buffer *left,
2945 int free_space, u32 right_nritems,
2948 struct btrfs_fs_info *fs_info = left->fs_info;
2949 struct btrfs_disk_key disk_key;
2950 struct extent_buffer *right = path->nodes[0];
2954 struct btrfs_item *item;
2955 u32 old_left_nritems;
2959 u32 old_left_item_size;
2960 struct btrfs_map_token token;
2963 nr = min(right_nritems, max_slot);
2965 nr = min(right_nritems - 1, max_slot);
2967 for (i = 0; i < nr; i++) {
2968 item = btrfs_item_nr(i);
2970 if (!empty && push_items > 0) {
2971 if (path->slots[0] < i)
2973 if (path->slots[0] == i) {
2974 int space = btrfs_leaf_free_space(right);
2976 if (space + push_space * 2 > free_space)
2981 if (path->slots[0] == i)
2982 push_space += data_size;
2984 this_item_size = btrfs_item_size(right, item);
2985 if (this_item_size + sizeof(*item) + push_space > free_space)
2989 push_space += this_item_size + sizeof(*item);
2992 if (push_items == 0) {
2996 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2998 /* push data from right to left */
2999 copy_extent_buffer(left, right,
3000 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3001 btrfs_item_nr_offset(0),
3002 push_items * sizeof(struct btrfs_item));
3004 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3005 btrfs_item_offset_nr(right, push_items - 1);
3007 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3008 leaf_data_end(left) - push_space,
3009 BTRFS_LEAF_DATA_OFFSET +
3010 btrfs_item_offset_nr(right, push_items - 1),
3012 old_left_nritems = btrfs_header_nritems(left);
3013 BUG_ON(old_left_nritems <= 0);
3015 btrfs_init_map_token(&token, left);
3016 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3017 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3020 item = btrfs_item_nr(i);
3022 ioff = btrfs_token_item_offset(&token, item);
3023 btrfs_set_token_item_offset(&token, item,
3024 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3026 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3028 /* fixup right node */
3029 if (push_items > right_nritems)
3030 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3033 if (push_items < right_nritems) {
3034 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3035 leaf_data_end(right);
3036 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3037 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3038 BTRFS_LEAF_DATA_OFFSET +
3039 leaf_data_end(right), push_space);
3041 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3042 btrfs_item_nr_offset(push_items),
3043 (btrfs_header_nritems(right) - push_items) *
3044 sizeof(struct btrfs_item));
3047 btrfs_init_map_token(&token, right);
3048 right_nritems -= push_items;
3049 btrfs_set_header_nritems(right, right_nritems);
3050 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3051 for (i = 0; i < right_nritems; i++) {
3052 item = btrfs_item_nr(i);
3054 push_space = push_space - btrfs_token_item_size(&token, item);
3055 btrfs_set_token_item_offset(&token, item, push_space);
3058 btrfs_mark_buffer_dirty(left);
3060 btrfs_mark_buffer_dirty(right);
3062 btrfs_clean_tree_block(right);
3064 btrfs_item_key(right, &disk_key, 0);
3065 fixup_low_keys(path, &disk_key, 1);
3067 /* then fixup the leaf pointer in the path */
3068 if (path->slots[0] < push_items) {
3069 path->slots[0] += old_left_nritems;
3070 btrfs_tree_unlock(path->nodes[0]);
3071 free_extent_buffer(path->nodes[0]);
3072 path->nodes[0] = left;
3073 path->slots[1] -= 1;
3075 btrfs_tree_unlock(left);
3076 free_extent_buffer(left);
3077 path->slots[0] -= push_items;
3079 BUG_ON(path->slots[0] < 0);
3082 btrfs_tree_unlock(left);
3083 free_extent_buffer(left);
3088 * push some data in the path leaf to the left, trying to free up at
3089 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3091 * max_slot can put a limit on how far into the leaf we'll push items. The
3092 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3095 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3096 *root, struct btrfs_path *path, int min_data_size,
3097 int data_size, int empty, u32 max_slot)
3099 struct extent_buffer *right = path->nodes[0];
3100 struct extent_buffer *left;
3106 slot = path->slots[1];
3109 if (!path->nodes[1])
3112 right_nritems = btrfs_header_nritems(right);
3113 if (right_nritems == 0)
3116 btrfs_assert_tree_locked(path->nodes[1]);
3118 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3120 * slot - 1 is not valid or we fail to read the left node,
3121 * no big deal, just return.
3126 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3128 free_space = btrfs_leaf_free_space(left);
3129 if (free_space < data_size) {
3134 /* cow and double check */
3135 ret = btrfs_cow_block(trans, root, left,
3136 path->nodes[1], slot - 1, &left,
3137 BTRFS_NESTING_LEFT_COW);
3139 /* we hit -ENOSPC, but it isn't fatal here */
3145 free_space = btrfs_leaf_free_space(left);
3146 if (free_space < data_size) {
3151 if (check_sibling_keys(left, right)) {
3155 return __push_leaf_left(path, min_data_size,
3156 empty, left, free_space, right_nritems,
3159 btrfs_tree_unlock(left);
3160 free_extent_buffer(left);
3165 * split the path's leaf in two, making sure there is at least data_size
3166 * available for the resulting leaf level of the path.
3168 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3169 struct btrfs_path *path,
3170 struct extent_buffer *l,
3171 struct extent_buffer *right,
3172 int slot, int mid, int nritems)
3174 struct btrfs_fs_info *fs_info = trans->fs_info;
3178 struct btrfs_disk_key disk_key;
3179 struct btrfs_map_token token;
3181 nritems = nritems - mid;
3182 btrfs_set_header_nritems(right, nritems);
3183 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3185 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3186 btrfs_item_nr_offset(mid),
3187 nritems * sizeof(struct btrfs_item));
3189 copy_extent_buffer(right, l,
3190 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3191 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3192 leaf_data_end(l), data_copy_size);
3194 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3196 btrfs_init_map_token(&token, right);
3197 for (i = 0; i < nritems; i++) {
3198 struct btrfs_item *item = btrfs_item_nr(i);
3201 ioff = btrfs_token_item_offset(&token, item);
3202 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3205 btrfs_set_header_nritems(l, mid);
3206 btrfs_item_key(right, &disk_key, 0);
3207 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3209 btrfs_mark_buffer_dirty(right);
3210 btrfs_mark_buffer_dirty(l);
3211 BUG_ON(path->slots[0] != slot);
3214 btrfs_tree_unlock(path->nodes[0]);
3215 free_extent_buffer(path->nodes[0]);
3216 path->nodes[0] = right;
3217 path->slots[0] -= mid;
3218 path->slots[1] += 1;
3220 btrfs_tree_unlock(right);
3221 free_extent_buffer(right);
3224 BUG_ON(path->slots[0] < 0);
3228 * double splits happen when we need to insert a big item in the middle
3229 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3230 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3233 * We avoid this by trying to push the items on either side of our target
3234 * into the adjacent leaves. If all goes well we can avoid the double split
3237 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root,
3239 struct btrfs_path *path,
3246 int space_needed = data_size;
3248 slot = path->slots[0];
3249 if (slot < btrfs_header_nritems(path->nodes[0]))
3250 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3253 * try to push all the items after our slot into the
3256 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3263 nritems = btrfs_header_nritems(path->nodes[0]);
3265 * our goal is to get our slot at the start or end of a leaf. If
3266 * we've done so we're done
3268 if (path->slots[0] == 0 || path->slots[0] == nritems)
3271 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3274 /* try to push all the items before our slot into the next leaf */
3275 slot = path->slots[0];
3276 space_needed = data_size;
3278 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3279 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3292 * split the path's leaf in two, making sure there is at least data_size
3293 * available for the resulting leaf level of the path.
3295 * returns 0 if all went well and < 0 on failure.
3297 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root,
3299 const struct btrfs_key *ins_key,
3300 struct btrfs_path *path, int data_size,
3303 struct btrfs_disk_key disk_key;
3304 struct extent_buffer *l;
3308 struct extent_buffer *right;
3309 struct btrfs_fs_info *fs_info = root->fs_info;
3313 int num_doubles = 0;
3314 int tried_avoid_double = 0;
3317 slot = path->slots[0];
3318 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3319 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3322 /* first try to make some room by pushing left and right */
3323 if (data_size && path->nodes[1]) {
3324 int space_needed = data_size;
3326 if (slot < btrfs_header_nritems(l))
3327 space_needed -= btrfs_leaf_free_space(l);
3329 wret = push_leaf_right(trans, root, path, space_needed,
3330 space_needed, 0, 0);
3334 space_needed = data_size;
3336 space_needed -= btrfs_leaf_free_space(l);
3337 wret = push_leaf_left(trans, root, path, space_needed,
3338 space_needed, 0, (u32)-1);
3344 /* did the pushes work? */
3345 if (btrfs_leaf_free_space(l) >= data_size)
3349 if (!path->nodes[1]) {
3350 ret = insert_new_root(trans, root, path, 1);
3357 slot = path->slots[0];
3358 nritems = btrfs_header_nritems(l);
3359 mid = (nritems + 1) / 2;
3363 leaf_space_used(l, mid, nritems - mid) + data_size >
3364 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3365 if (slot >= nritems) {
3369 if (mid != nritems &&
3370 leaf_space_used(l, mid, nritems - mid) +
3371 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3372 if (data_size && !tried_avoid_double)
3373 goto push_for_double;
3379 if (leaf_space_used(l, 0, mid) + data_size >
3380 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3381 if (!extend && data_size && slot == 0) {
3383 } else if ((extend || !data_size) && slot == 0) {
3387 if (mid != nritems &&
3388 leaf_space_used(l, mid, nritems - mid) +
3389 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3390 if (data_size && !tried_avoid_double)
3391 goto push_for_double;
3399 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3401 btrfs_item_key(l, &disk_key, mid);
3404 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3405 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3406 * subclasses, which is 8 at the time of this patch, and we've maxed it
3407 * out. In the future we could add a
3408 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3409 * use BTRFS_NESTING_NEW_ROOT.
3411 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3412 &disk_key, 0, l->start, 0,
3413 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3414 BTRFS_NESTING_SPLIT);
3416 return PTR_ERR(right);
3418 root_add_used(root, fs_info->nodesize);
3422 btrfs_set_header_nritems(right, 0);
3423 insert_ptr(trans, path, &disk_key,
3424 right->start, path->slots[1] + 1, 1);
3425 btrfs_tree_unlock(path->nodes[0]);
3426 free_extent_buffer(path->nodes[0]);
3427 path->nodes[0] = right;
3429 path->slots[1] += 1;
3431 btrfs_set_header_nritems(right, 0);
3432 insert_ptr(trans, path, &disk_key,
3433 right->start, path->slots[1], 1);
3434 btrfs_tree_unlock(path->nodes[0]);
3435 free_extent_buffer(path->nodes[0]);
3436 path->nodes[0] = right;
3438 if (path->slots[1] == 0)
3439 fixup_low_keys(path, &disk_key, 1);
3442 * We create a new leaf 'right' for the required ins_len and
3443 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3444 * the content of ins_len to 'right'.
3449 copy_for_split(trans, path, l, right, slot, mid, nritems);
3452 BUG_ON(num_doubles != 0);
3460 push_for_double_split(trans, root, path, data_size);
3461 tried_avoid_double = 1;
3462 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3467 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3468 struct btrfs_root *root,
3469 struct btrfs_path *path, int ins_len)
3471 struct btrfs_key key;
3472 struct extent_buffer *leaf;
3473 struct btrfs_file_extent_item *fi;
3478 leaf = path->nodes[0];
3479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3481 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3482 key.type != BTRFS_EXTENT_CSUM_KEY);
3484 if (btrfs_leaf_free_space(leaf) >= ins_len)
3487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3488 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3489 fi = btrfs_item_ptr(leaf, path->slots[0],
3490 struct btrfs_file_extent_item);
3491 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3493 btrfs_release_path(path);
3495 path->keep_locks = 1;
3496 path->search_for_split = 1;
3497 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3498 path->search_for_split = 0;
3505 leaf = path->nodes[0];
3506 /* if our item isn't there, return now */
3507 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3510 /* the leaf has changed, it now has room. return now */
3511 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3514 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3515 fi = btrfs_item_ptr(leaf, path->slots[0],
3516 struct btrfs_file_extent_item);
3517 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3521 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3525 path->keep_locks = 0;
3526 btrfs_unlock_up_safe(path, 1);
3529 path->keep_locks = 0;
3533 static noinline int split_item(struct btrfs_path *path,
3534 const struct btrfs_key *new_key,
3535 unsigned long split_offset)
3537 struct extent_buffer *leaf;
3538 struct btrfs_item *item;
3539 struct btrfs_item *new_item;
3545 struct btrfs_disk_key disk_key;
3547 leaf = path->nodes[0];
3548 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3550 item = btrfs_item_nr(path->slots[0]);
3551 orig_offset = btrfs_item_offset(leaf, item);
3552 item_size = btrfs_item_size(leaf, item);
3554 buf = kmalloc(item_size, GFP_NOFS);
3558 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3559 path->slots[0]), item_size);
3561 slot = path->slots[0] + 1;
3562 nritems = btrfs_header_nritems(leaf);
3563 if (slot != nritems) {
3564 /* shift the items */
3565 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3566 btrfs_item_nr_offset(slot),
3567 (nritems - slot) * sizeof(struct btrfs_item));
3570 btrfs_cpu_key_to_disk(&disk_key, new_key);
3571 btrfs_set_item_key(leaf, &disk_key, slot);
3573 new_item = btrfs_item_nr(slot);
3575 btrfs_set_item_offset(leaf, new_item, orig_offset);
3576 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3578 btrfs_set_item_offset(leaf, item,
3579 orig_offset + item_size - split_offset);
3580 btrfs_set_item_size(leaf, item, split_offset);
3582 btrfs_set_header_nritems(leaf, nritems + 1);
3584 /* write the data for the start of the original item */
3585 write_extent_buffer(leaf, buf,
3586 btrfs_item_ptr_offset(leaf, path->slots[0]),
3589 /* write the data for the new item */
3590 write_extent_buffer(leaf, buf + split_offset,
3591 btrfs_item_ptr_offset(leaf, slot),
3592 item_size - split_offset);
3593 btrfs_mark_buffer_dirty(leaf);
3595 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3601 * This function splits a single item into two items,
3602 * giving 'new_key' to the new item and splitting the
3603 * old one at split_offset (from the start of the item).
3605 * The path may be released by this operation. After
3606 * the split, the path is pointing to the old item. The
3607 * new item is going to be in the same node as the old one.
3609 * Note, the item being split must be smaller enough to live alone on
3610 * a tree block with room for one extra struct btrfs_item
3612 * This allows us to split the item in place, keeping a lock on the
3613 * leaf the entire time.
3615 int btrfs_split_item(struct btrfs_trans_handle *trans,
3616 struct btrfs_root *root,
3617 struct btrfs_path *path,
3618 const struct btrfs_key *new_key,
3619 unsigned long split_offset)
3622 ret = setup_leaf_for_split(trans, root, path,
3623 sizeof(struct btrfs_item));
3627 ret = split_item(path, new_key, split_offset);
3632 * This function duplicate a item, giving 'new_key' to the new item.
3633 * It guarantees both items live in the same tree leaf and the new item
3634 * is contiguous with the original item.
3636 * This allows us to split file extent in place, keeping a lock on the
3637 * leaf the entire time.
3639 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3640 struct btrfs_root *root,
3641 struct btrfs_path *path,
3642 const struct btrfs_key *new_key)
3644 struct extent_buffer *leaf;
3648 leaf = path->nodes[0];
3649 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3650 ret = setup_leaf_for_split(trans, root, path,
3651 item_size + sizeof(struct btrfs_item));
3656 setup_items_for_insert(root, path, new_key, &item_size, 1);
3657 leaf = path->nodes[0];
3658 memcpy_extent_buffer(leaf,
3659 btrfs_item_ptr_offset(leaf, path->slots[0]),
3660 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3666 * make the item pointed to by the path smaller. new_size indicates
3667 * how small to make it, and from_end tells us if we just chop bytes
3668 * off the end of the item or if we shift the item to chop bytes off
3671 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3674 struct extent_buffer *leaf;
3675 struct btrfs_item *item;
3677 unsigned int data_end;
3678 unsigned int old_data_start;
3679 unsigned int old_size;
3680 unsigned int size_diff;
3682 struct btrfs_map_token token;
3684 leaf = path->nodes[0];
3685 slot = path->slots[0];
3687 old_size = btrfs_item_size_nr(leaf, slot);
3688 if (old_size == new_size)
3691 nritems = btrfs_header_nritems(leaf);
3692 data_end = leaf_data_end(leaf);
3694 old_data_start = btrfs_item_offset_nr(leaf, slot);
3696 size_diff = old_size - new_size;
3699 BUG_ON(slot >= nritems);
3702 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3704 /* first correct the data pointers */
3705 btrfs_init_map_token(&token, leaf);
3706 for (i = slot; i < nritems; i++) {
3708 item = btrfs_item_nr(i);
3710 ioff = btrfs_token_item_offset(&token, item);
3711 btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3714 /* shift the data */
3716 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3717 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3718 data_end, old_data_start + new_size - data_end);
3720 struct btrfs_disk_key disk_key;
3723 btrfs_item_key(leaf, &disk_key, slot);
3725 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3727 struct btrfs_file_extent_item *fi;
3729 fi = btrfs_item_ptr(leaf, slot,
3730 struct btrfs_file_extent_item);
3731 fi = (struct btrfs_file_extent_item *)(
3732 (unsigned long)fi - size_diff);
3734 if (btrfs_file_extent_type(leaf, fi) ==
3735 BTRFS_FILE_EXTENT_INLINE) {
3736 ptr = btrfs_item_ptr_offset(leaf, slot);
3737 memmove_extent_buffer(leaf, ptr,
3739 BTRFS_FILE_EXTENT_INLINE_DATA_START);
3743 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3744 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3745 data_end, old_data_start - data_end);
3747 offset = btrfs_disk_key_offset(&disk_key);
3748 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3749 btrfs_set_item_key(leaf, &disk_key, slot);
3751 fixup_low_keys(path, &disk_key, 1);
3754 item = btrfs_item_nr(slot);
3755 btrfs_set_item_size(leaf, item, new_size);
3756 btrfs_mark_buffer_dirty(leaf);
3758 if (btrfs_leaf_free_space(leaf) < 0) {
3759 btrfs_print_leaf(leaf);
3765 * make the item pointed to by the path bigger, data_size is the added size.
3767 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3770 struct extent_buffer *leaf;
3771 struct btrfs_item *item;
3773 unsigned int data_end;
3774 unsigned int old_data;
3775 unsigned int old_size;
3777 struct btrfs_map_token token;
3779 leaf = path->nodes[0];
3781 nritems = btrfs_header_nritems(leaf);
3782 data_end = leaf_data_end(leaf);
3784 if (btrfs_leaf_free_space(leaf) < data_size) {
3785 btrfs_print_leaf(leaf);
3788 slot = path->slots[0];
3789 old_data = btrfs_item_end_nr(leaf, slot);
3792 if (slot >= nritems) {
3793 btrfs_print_leaf(leaf);
3794 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3800 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3802 /* first correct the data pointers */
3803 btrfs_init_map_token(&token, leaf);
3804 for (i = slot; i < nritems; i++) {
3806 item = btrfs_item_nr(i);
3808 ioff = btrfs_token_item_offset(&token, item);
3809 btrfs_set_token_item_offset(&token, item, ioff - data_size);
3812 /* shift the data */
3813 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3814 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3815 data_end, old_data - data_end);
3817 data_end = old_data;
3818 old_size = btrfs_item_size_nr(leaf, slot);
3819 item = btrfs_item_nr(slot);
3820 btrfs_set_item_size(leaf, item, old_size + data_size);
3821 btrfs_mark_buffer_dirty(leaf);
3823 if (btrfs_leaf_free_space(leaf) < 0) {
3824 btrfs_print_leaf(leaf);
3830 * setup_items_for_insert - Helper called before inserting one or more items
3831 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3832 * in a function that doesn't call btrfs_search_slot
3834 * @root: root we are inserting items to
3835 * @path: points to the leaf/slot where we are going to insert new items
3836 * @cpu_key: array of keys for items to be inserted
3837 * @data_size: size of the body of each item we are going to insert
3838 * @nr: size of @cpu_key/@data_size arrays
3840 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3841 const struct btrfs_key *cpu_key, u32 *data_size,
3844 struct btrfs_fs_info *fs_info = root->fs_info;
3845 struct btrfs_item *item;
3848 unsigned int data_end;
3849 struct btrfs_disk_key disk_key;
3850 struct extent_buffer *leaf;
3852 struct btrfs_map_token token;
3856 for (i = 0; i < nr; i++)
3857 total_data += data_size[i];
3858 total_size = total_data + (nr * sizeof(struct btrfs_item));
3860 if (path->slots[0] == 0) {
3861 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3862 fixup_low_keys(path, &disk_key, 1);
3864 btrfs_unlock_up_safe(path, 1);
3866 leaf = path->nodes[0];
3867 slot = path->slots[0];
3869 nritems = btrfs_header_nritems(leaf);
3870 data_end = leaf_data_end(leaf);
3872 if (btrfs_leaf_free_space(leaf) < total_size) {
3873 btrfs_print_leaf(leaf);
3874 btrfs_crit(fs_info, "not enough freespace need %u have %d",
3875 total_size, btrfs_leaf_free_space(leaf));
3879 btrfs_init_map_token(&token, leaf);
3880 if (slot != nritems) {
3881 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3883 if (old_data < data_end) {
3884 btrfs_print_leaf(leaf);
3886 "item at slot %d with data offset %u beyond data end of leaf %u",
3887 slot, old_data, data_end);
3891 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3893 /* first correct the data pointers */
3894 for (i = slot; i < nritems; i++) {
3897 item = btrfs_item_nr(i);
3898 ioff = btrfs_token_item_offset(&token, item);
3899 btrfs_set_token_item_offset(&token, item,
3902 /* shift the items */
3903 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3904 btrfs_item_nr_offset(slot),
3905 (nritems - slot) * sizeof(struct btrfs_item));
3907 /* shift the data */
3908 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3909 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3910 data_end, old_data - data_end);
3911 data_end = old_data;
3914 /* setup the item for the new data */
3915 for (i = 0; i < nr; i++) {
3916 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3917 btrfs_set_item_key(leaf, &disk_key, slot + i);
3918 item = btrfs_item_nr(slot + i);
3919 data_end -= data_size[i];
3920 btrfs_set_token_item_offset(&token, item, data_end);
3921 btrfs_set_token_item_size(&token, item, data_size[i]);
3924 btrfs_set_header_nritems(leaf, nritems + nr);
3925 btrfs_mark_buffer_dirty(leaf);
3927 if (btrfs_leaf_free_space(leaf) < 0) {
3928 btrfs_print_leaf(leaf);
3934 * Given a key and some data, insert items into the tree.
3935 * This does all the path init required, making room in the tree if needed.
3937 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root,
3939 struct btrfs_path *path,
3940 const struct btrfs_key *cpu_key, u32 *data_size,
3949 for (i = 0; i < nr; i++)
3950 total_data += data_size[i];
3952 total_size = total_data + (nr * sizeof(struct btrfs_item));
3953 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3959 slot = path->slots[0];
3962 setup_items_for_insert(root, path, cpu_key, data_size, nr);
3967 * Given a key and some data, insert an item into the tree.
3968 * This does all the path init required, making room in the tree if needed.
3970 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3971 const struct btrfs_key *cpu_key, void *data,
3975 struct btrfs_path *path;
3976 struct extent_buffer *leaf;
3979 path = btrfs_alloc_path();
3982 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3984 leaf = path->nodes[0];
3985 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3986 write_extent_buffer(leaf, data, ptr, data_size);
3987 btrfs_mark_buffer_dirty(leaf);
3989 btrfs_free_path(path);
3994 * delete the pointer from a given node.
3996 * the tree should have been previously balanced so the deletion does not
3999 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4000 int level, int slot)
4002 struct extent_buffer *parent = path->nodes[level];
4006 nritems = btrfs_header_nritems(parent);
4007 if (slot != nritems - 1) {
4009 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4010 slot + 1, nritems - slot - 1);
4013 memmove_extent_buffer(parent,
4014 btrfs_node_key_ptr_offset(slot),
4015 btrfs_node_key_ptr_offset(slot + 1),
4016 sizeof(struct btrfs_key_ptr) *
4017 (nritems - slot - 1));
4019 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4020 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4025 btrfs_set_header_nritems(parent, nritems);
4026 if (nritems == 0 && parent == root->node) {
4027 BUG_ON(btrfs_header_level(root->node) != 1);
4028 /* just turn the root into a leaf and break */
4029 btrfs_set_header_level(root->node, 0);
4030 } else if (slot == 0) {
4031 struct btrfs_disk_key disk_key;
4033 btrfs_node_key(parent, &disk_key, 0);
4034 fixup_low_keys(path, &disk_key, level + 1);
4036 btrfs_mark_buffer_dirty(parent);
4040 * a helper function to delete the leaf pointed to by path->slots[1] and
4043 * This deletes the pointer in path->nodes[1] and frees the leaf
4044 * block extent. zero is returned if it all worked out, < 0 otherwise.
4046 * The path must have already been setup for deleting the leaf, including
4047 * all the proper balancing. path->nodes[1] must be locked.
4049 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4050 struct btrfs_root *root,
4051 struct btrfs_path *path,
4052 struct extent_buffer *leaf)
4054 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4055 del_ptr(root, path, 1, path->slots[1]);
4058 * btrfs_free_extent is expensive, we want to make sure we
4059 * aren't holding any locks when we call it
4061 btrfs_unlock_up_safe(path, 0);
4063 root_sub_used(root, leaf->len);
4065 atomic_inc(&leaf->refs);
4066 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4067 free_extent_buffer_stale(leaf);
4070 * delete the item at the leaf level in path. If that empties
4071 * the leaf, remove it from the tree
4073 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4074 struct btrfs_path *path, int slot, int nr)
4076 struct btrfs_fs_info *fs_info = root->fs_info;
4077 struct extent_buffer *leaf;
4078 struct btrfs_item *item;
4086 leaf = path->nodes[0];
4087 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4089 for (i = 0; i < nr; i++)
4090 dsize += btrfs_item_size_nr(leaf, slot + i);
4092 nritems = btrfs_header_nritems(leaf);
4094 if (slot + nr != nritems) {
4095 int data_end = leaf_data_end(leaf);
4096 struct btrfs_map_token token;
4098 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4100 BTRFS_LEAF_DATA_OFFSET + data_end,
4101 last_off - data_end);
4103 btrfs_init_map_token(&token, leaf);
4104 for (i = slot + nr; i < nritems; i++) {
4107 item = btrfs_item_nr(i);
4108 ioff = btrfs_token_item_offset(&token, item);
4109 btrfs_set_token_item_offset(&token, item, ioff + dsize);
4112 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4113 btrfs_item_nr_offset(slot + nr),
4114 sizeof(struct btrfs_item) *
4115 (nritems - slot - nr));
4117 btrfs_set_header_nritems(leaf, nritems - nr);
4120 /* delete the leaf if we've emptied it */
4122 if (leaf == root->node) {
4123 btrfs_set_header_level(leaf, 0);
4125 btrfs_clean_tree_block(leaf);
4126 btrfs_del_leaf(trans, root, path, leaf);
4129 int used = leaf_space_used(leaf, 0, nritems);
4131 struct btrfs_disk_key disk_key;
4133 btrfs_item_key(leaf, &disk_key, 0);
4134 fixup_low_keys(path, &disk_key, 1);
4137 /* delete the leaf if it is mostly empty */
4138 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4139 /* push_leaf_left fixes the path.
4140 * make sure the path still points to our leaf
4141 * for possible call to del_ptr below
4143 slot = path->slots[1];
4144 atomic_inc(&leaf->refs);
4146 wret = push_leaf_left(trans, root, path, 1, 1,
4148 if (wret < 0 && wret != -ENOSPC)
4151 if (path->nodes[0] == leaf &&
4152 btrfs_header_nritems(leaf)) {
4153 wret = push_leaf_right(trans, root, path, 1,
4155 if (wret < 0 && wret != -ENOSPC)
4159 if (btrfs_header_nritems(leaf) == 0) {
4160 path->slots[1] = slot;
4161 btrfs_del_leaf(trans, root, path, leaf);
4162 free_extent_buffer(leaf);
4165 /* if we're still in the path, make sure
4166 * we're dirty. Otherwise, one of the
4167 * push_leaf functions must have already
4168 * dirtied this buffer
4170 if (path->nodes[0] == leaf)
4171 btrfs_mark_buffer_dirty(leaf);
4172 free_extent_buffer(leaf);
4175 btrfs_mark_buffer_dirty(leaf);
4182 * search the tree again to find a leaf with lesser keys
4183 * returns 0 if it found something or 1 if there are no lesser leaves.
4184 * returns < 0 on io errors.
4186 * This may release the path, and so you may lose any locks held at the
4189 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4191 struct btrfs_key key;
4192 struct btrfs_disk_key found_key;
4195 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4197 if (key.offset > 0) {
4199 } else if (key.type > 0) {
4201 key.offset = (u64)-1;
4202 } else if (key.objectid > 0) {
4205 key.offset = (u64)-1;
4210 btrfs_release_path(path);
4211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4214 btrfs_item_key(path->nodes[0], &found_key, 0);
4215 ret = comp_keys(&found_key, &key);
4217 * We might have had an item with the previous key in the tree right
4218 * before we released our path. And after we released our path, that
4219 * item might have been pushed to the first slot (0) of the leaf we
4220 * were holding due to a tree balance. Alternatively, an item with the
4221 * previous key can exist as the only element of a leaf (big fat item).
4222 * Therefore account for these 2 cases, so that our callers (like
4223 * btrfs_previous_item) don't miss an existing item with a key matching
4224 * the previous key we computed above.
4232 * A helper function to walk down the tree starting at min_key, and looking
4233 * for nodes or leaves that are have a minimum transaction id.
4234 * This is used by the btree defrag code, and tree logging
4236 * This does not cow, but it does stuff the starting key it finds back
4237 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4238 * key and get a writable path.
4240 * This honors path->lowest_level to prevent descent past a given level
4243 * min_trans indicates the oldest transaction that you are interested
4244 * in walking through. Any nodes or leaves older than min_trans are
4245 * skipped over (without reading them).
4247 * returns zero if something useful was found, < 0 on error and 1 if there
4248 * was nothing in the tree that matched the search criteria.
4250 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4251 struct btrfs_path *path,
4254 struct extent_buffer *cur;
4255 struct btrfs_key found_key;
4261 int keep_locks = path->keep_locks;
4263 path->keep_locks = 1;
4265 cur = btrfs_read_lock_root_node(root);
4266 level = btrfs_header_level(cur);
4267 WARN_ON(path->nodes[level]);
4268 path->nodes[level] = cur;
4269 path->locks[level] = BTRFS_READ_LOCK;
4271 if (btrfs_header_generation(cur) < min_trans) {
4276 nritems = btrfs_header_nritems(cur);
4277 level = btrfs_header_level(cur);
4278 sret = btrfs_bin_search(cur, min_key, &slot);
4284 /* at the lowest level, we're done, setup the path and exit */
4285 if (level == path->lowest_level) {
4286 if (slot >= nritems)
4289 path->slots[level] = slot;
4290 btrfs_item_key_to_cpu(cur, &found_key, slot);
4293 if (sret && slot > 0)
4296 * check this node pointer against the min_trans parameters.
4297 * If it is too old, skip to the next one.
4299 while (slot < nritems) {
4302 gen = btrfs_node_ptr_generation(cur, slot);
4303 if (gen < min_trans) {
4311 * we didn't find a candidate key in this node, walk forward
4312 * and find another one
4314 if (slot >= nritems) {
4315 path->slots[level] = slot;
4316 sret = btrfs_find_next_key(root, path, min_key, level,
4319 btrfs_release_path(path);
4325 /* save our key for returning back */
4326 btrfs_node_key_to_cpu(cur, &found_key, slot);
4327 path->slots[level] = slot;
4328 if (level == path->lowest_level) {
4332 cur = btrfs_read_node_slot(cur, slot);
4338 btrfs_tree_read_lock(cur);
4340 path->locks[level - 1] = BTRFS_READ_LOCK;
4341 path->nodes[level - 1] = cur;
4342 unlock_up(path, level, 1, 0, NULL);
4345 path->keep_locks = keep_locks;
4347 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4348 memcpy(min_key, &found_key, sizeof(found_key));
4354 * this is similar to btrfs_next_leaf, but does not try to preserve
4355 * and fixup the path. It looks for and returns the next key in the
4356 * tree based on the current path and the min_trans parameters.
4358 * 0 is returned if another key is found, < 0 if there are any errors
4359 * and 1 is returned if there are no higher keys in the tree
4361 * path->keep_locks should be set to 1 on the search made before
4362 * calling this function.
4364 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4365 struct btrfs_key *key, int level, u64 min_trans)
4368 struct extent_buffer *c;
4370 WARN_ON(!path->keep_locks && !path->skip_locking);
4371 while (level < BTRFS_MAX_LEVEL) {
4372 if (!path->nodes[level])
4375 slot = path->slots[level] + 1;
4376 c = path->nodes[level];
4378 if (slot >= btrfs_header_nritems(c)) {
4381 struct btrfs_key cur_key;
4382 if (level + 1 >= BTRFS_MAX_LEVEL ||
4383 !path->nodes[level + 1])
4386 if (path->locks[level + 1] || path->skip_locking) {
4391 slot = btrfs_header_nritems(c) - 1;
4393 btrfs_item_key_to_cpu(c, &cur_key, slot);
4395 btrfs_node_key_to_cpu(c, &cur_key, slot);
4397 orig_lowest = path->lowest_level;
4398 btrfs_release_path(path);
4399 path->lowest_level = level;
4400 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4402 path->lowest_level = orig_lowest;
4406 c = path->nodes[level];
4407 slot = path->slots[level];
4414 btrfs_item_key_to_cpu(c, key, slot);
4416 u64 gen = btrfs_node_ptr_generation(c, slot);
4418 if (gen < min_trans) {
4422 btrfs_node_key_to_cpu(c, key, slot);
4429 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4434 struct extent_buffer *c;
4435 struct extent_buffer *next;
4436 struct btrfs_fs_info *fs_info = root->fs_info;
4437 struct btrfs_key key;
4438 bool need_commit_sem = false;
4443 nritems = btrfs_header_nritems(path->nodes[0]);
4447 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4451 btrfs_release_path(path);
4453 path->keep_locks = 1;
4456 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4458 if (path->need_commit_sem) {
4459 path->need_commit_sem = 0;
4460 need_commit_sem = true;
4461 down_read(&fs_info->commit_root_sem);
4463 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4465 path->keep_locks = 0;
4470 nritems = btrfs_header_nritems(path->nodes[0]);
4472 * by releasing the path above we dropped all our locks. A balance
4473 * could have added more items next to the key that used to be
4474 * at the very end of the block. So, check again here and
4475 * advance the path if there are now more items available.
4477 if (nritems > 0 && path->slots[0] < nritems - 1) {
4484 * So the above check misses one case:
4485 * - after releasing the path above, someone has removed the item that
4486 * used to be at the very end of the block, and balance between leafs
4487 * gets another one with bigger key.offset to replace it.
4489 * This one should be returned as well, or we can get leaf corruption
4490 * later(esp. in __btrfs_drop_extents()).
4492 * And a bit more explanation about this check,
4493 * with ret > 0, the key isn't found, the path points to the slot
4494 * where it should be inserted, so the path->slots[0] item must be the
4497 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4502 while (level < BTRFS_MAX_LEVEL) {
4503 if (!path->nodes[level]) {
4508 slot = path->slots[level] + 1;
4509 c = path->nodes[level];
4510 if (slot >= btrfs_header_nritems(c)) {
4512 if (level == BTRFS_MAX_LEVEL) {
4521 * Our current level is where we're going to start from, and to
4522 * make sure lockdep doesn't complain we need to drop our locks
4523 * and nodes from 0 to our current level.
4525 for (i = 0; i < level; i++) {
4526 if (path->locks[level]) {
4527 btrfs_tree_read_unlock(path->nodes[i]);
4530 free_extent_buffer(path->nodes[i]);
4531 path->nodes[i] = NULL;
4535 ret = read_block_for_search(root, path, &next, level,
4541 btrfs_release_path(path);
4545 if (!path->skip_locking) {
4546 ret = btrfs_try_tree_read_lock(next);
4547 if (!ret && time_seq) {
4549 * If we don't get the lock, we may be racing
4550 * with push_leaf_left, holding that lock while
4551 * itself waiting for the leaf we've currently
4552 * locked. To solve this situation, we give up
4553 * on our lock and cycle.
4555 free_extent_buffer(next);
4556 btrfs_release_path(path);
4561 btrfs_tree_read_lock(next);
4565 path->slots[level] = slot;
4568 path->nodes[level] = next;
4569 path->slots[level] = 0;
4570 if (!path->skip_locking)
4571 path->locks[level] = BTRFS_READ_LOCK;
4575 ret = read_block_for_search(root, path, &next, level,
4581 btrfs_release_path(path);
4585 if (!path->skip_locking)
4586 btrfs_tree_read_lock(next);
4590 unlock_up(path, 0, 1, 0, NULL);
4591 if (need_commit_sem) {
4594 path->need_commit_sem = 1;
4595 ret2 = finish_need_commit_sem_search(path);
4596 up_read(&fs_info->commit_root_sem);
4605 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4606 * searching until it gets past min_objectid or finds an item of 'type'
4608 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4610 int btrfs_previous_item(struct btrfs_root *root,
4611 struct btrfs_path *path, u64 min_objectid,
4614 struct btrfs_key found_key;
4615 struct extent_buffer *leaf;
4620 if (path->slots[0] == 0) {
4621 ret = btrfs_prev_leaf(root, path);
4627 leaf = path->nodes[0];
4628 nritems = btrfs_header_nritems(leaf);
4631 if (path->slots[0] == nritems)
4634 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4635 if (found_key.objectid < min_objectid)
4637 if (found_key.type == type)
4639 if (found_key.objectid == min_objectid &&
4640 found_key.type < type)
4647 * search in extent tree to find a previous Metadata/Data extent item with
4650 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4652 int btrfs_previous_extent_item(struct btrfs_root *root,
4653 struct btrfs_path *path, u64 min_objectid)
4655 struct btrfs_key found_key;
4656 struct extent_buffer *leaf;
4661 if (path->slots[0] == 0) {
4662 ret = btrfs_prev_leaf(root, path);
4668 leaf = path->nodes[0];
4669 nritems = btrfs_header_nritems(leaf);
4672 if (path->slots[0] == nritems)
4675 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4676 if (found_key.objectid < min_objectid)
4678 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4679 found_key.type == BTRFS_METADATA_ITEM_KEY)
4681 if (found_key.objectid == min_objectid &&
4682 found_key.type < BTRFS_EXTENT_ITEM_KEY)