1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
10 #include <linux/error-injection.h>
14 #include "transaction.h"
15 #include "print-tree.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
27 static struct kmem_cache *btrfs_path_cachep;
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
41 static const struct btrfs_csums {
44 const char driver[12];
46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 .driver = "blake2b-256" },
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
59 u32 nr = btrfs_header_nritems(leaf);
62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 return btrfs_item_offset(leaf, nr - 1);
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 unsigned long dst_offset,
81 unsigned long src_offset,
84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
89 * Copy item data from @src into @dst at the given @offset.
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 const struct extent_buffer *src,
104 unsigned long dst_offset,
105 unsigned long src_offset, unsigned long len)
107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 btrfs_item_nr_offset(src, 0) + src_offset, len);
112 * Move items in a @leaf (using memmove).
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 int dst_item, int src_item, int nr_items)
125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 btrfs_item_nr_offset(leaf, src_item),
127 nr_items * sizeof(struct btrfs_item));
131 * Copy items from @src into @dst at the given @offset.
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 const struct extent_buffer *src,
144 int dst_item, int src_item, int nr_items)
146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 btrfs_item_nr_offset(src, src_item),
148 nr_items * sizeof(struct btrfs_item));
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
154 return btrfs_csums[type].size;
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
159 u16 t = btrfs_super_csum_type(s);
161 * csum type is validated at mount time
163 return btrfs_csum_type_size(t);
166 const char *btrfs_super_csum_name(u16 csum_type)
168 /* csum type is validated at mount time */
169 return btrfs_csums[csum_type].name;
173 * Return driver name if defined, otherwise the name that's also a valid driver
176 const char *btrfs_super_csum_driver(u16 csum_type)
178 /* csum type is validated at mount time */
179 return btrfs_csums[csum_type].driver[0] ?
180 btrfs_csums[csum_type].driver :
181 btrfs_csums[csum_type].name;
184 size_t __attribute_const__ btrfs_get_num_csums(void)
186 return ARRAY_SIZE(btrfs_csums);
189 struct btrfs_path *btrfs_alloc_path(void)
193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
201 btrfs_release_path(p);
202 kmem_cache_free(btrfs_path_cachep, p);
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
209 * It is safe to call this on paths that no locks or extent buffers held.
211 noinline void btrfs_release_path(struct btrfs_path *p)
215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
223 free_extent_buffer(p->nodes[i]);
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
233 bool __cold abort_should_print_stack(int errno)
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
256 struct extent_buffer *eb;
260 eb = rcu_dereference(root->node);
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
268 if (atomic_inc_not_zero(&eb->refs)) {
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
283 static void add_root_to_dirty_list(struct btrfs_root *root)
285 struct btrfs_fs_info *fs_info = root->fs_info;
287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
291 spin_lock(&fs_info->trans_lock);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 /* Want the extent tree to be the last on the list */
294 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 list_move_tail(&root->dirty_list,
296 &fs_info->dirty_cowonly_roots);
298 list_move(&root->dirty_list,
299 &fs_info->dirty_cowonly_roots);
301 spin_unlock(&fs_info->trans_lock);
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct extent_buffer *buf,
312 struct extent_buffer **cow_ret, u64 new_root_objectid)
314 struct btrfs_fs_info *fs_info = root->fs_info;
315 struct extent_buffer *cow;
318 struct btrfs_disk_key disk_key;
320 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321 trans->transid != fs_info->running_transaction->transid);
322 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323 trans->transid != root->last_trans);
325 level = btrfs_header_level(buf);
327 btrfs_item_key(buf, &disk_key, 0);
329 btrfs_node_key(buf, &disk_key, 0);
331 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332 &disk_key, level, buf->start, 0,
333 BTRFS_NESTING_NEW_ROOT);
337 copy_extent_buffer_full(cow, buf);
338 btrfs_set_header_bytenr(cow, cow->start);
339 btrfs_set_header_generation(cow, trans->transid);
340 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342 BTRFS_HEADER_FLAG_RELOC);
343 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
346 btrfs_set_header_owner(cow, new_root_objectid);
348 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
350 WARN_ON(btrfs_header_generation(buf) > trans->transid);
351 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352 ret = btrfs_inc_ref(trans, root, cow, 1);
354 ret = btrfs_inc_ref(trans, root, cow, 0);
356 btrfs_tree_unlock(cow);
357 free_extent_buffer(cow);
358 btrfs_abort_transaction(trans, ret);
362 btrfs_mark_buffer_dirty(cow);
368 * check if the tree block can be shared by multiple trees
370 int btrfs_block_can_be_shared(struct btrfs_root *root,
371 struct extent_buffer *buf)
374 * Tree blocks not in shareable trees and tree roots are never shared.
375 * If a block was allocated after the last snapshot and the block was
376 * not allocated by tree relocation, we know the block is not shared.
378 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
379 buf != root->node && buf != root->commit_root &&
380 (btrfs_header_generation(buf) <=
381 btrfs_root_last_snapshot(&root->root_item) ||
382 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
388 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
389 struct btrfs_root *root,
390 struct extent_buffer *buf,
391 struct extent_buffer *cow,
394 struct btrfs_fs_info *fs_info = root->fs_info;
402 * Backrefs update rules:
404 * Always use full backrefs for extent pointers in tree block
405 * allocated by tree relocation.
407 * If a shared tree block is no longer referenced by its owner
408 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
409 * use full backrefs for extent pointers in tree block.
411 * If a tree block is been relocating
412 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
413 * use full backrefs for extent pointers in tree block.
414 * The reason for this is some operations (such as drop tree)
415 * are only allowed for blocks use full backrefs.
418 if (btrfs_block_can_be_shared(root, buf)) {
419 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
420 btrfs_header_level(buf), 1,
424 if (unlikely(refs == 0)) {
426 "found 0 references for tree block at bytenr %llu level %d root %llu",
427 buf->start, btrfs_header_level(buf),
428 btrfs_root_id(root));
430 btrfs_abort_transaction(trans, ret);
435 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
436 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
437 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
442 owner = btrfs_header_owner(buf);
443 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
444 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
447 if ((owner == root->root_key.objectid ||
448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
449 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
450 ret = btrfs_inc_ref(trans, root, buf, 1);
454 if (root->root_key.objectid ==
455 BTRFS_TREE_RELOC_OBJECTID) {
456 ret = btrfs_dec_ref(trans, root, buf, 0);
459 ret = btrfs_inc_ref(trans, root, cow, 1);
463 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
466 if (root->root_key.objectid ==
467 BTRFS_TREE_RELOC_OBJECTID)
468 ret = btrfs_inc_ref(trans, root, cow, 1);
470 ret = btrfs_inc_ref(trans, root, cow, 0);
474 if (new_flags != 0) {
475 ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
480 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
481 if (root->root_key.objectid ==
482 BTRFS_TREE_RELOC_OBJECTID)
483 ret = btrfs_inc_ref(trans, root, cow, 1);
485 ret = btrfs_inc_ref(trans, root, cow, 0);
488 ret = btrfs_dec_ref(trans, root, buf, 1);
492 btrfs_clear_buffer_dirty(trans, buf);
499 * does the dirty work in cow of a single block. The parent block (if
500 * supplied) is updated to point to the new cow copy. The new buffer is marked
501 * dirty and returned locked. If you modify the block it needs to be marked
504 * search_start -- an allocation hint for the new block
506 * empty_size -- a hint that you plan on doing more cow. This is the size in
507 * bytes the allocator should try to find free next to the block it returns.
508 * This is just a hint and may be ignored by the allocator.
510 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
511 struct btrfs_root *root,
512 struct extent_buffer *buf,
513 struct extent_buffer *parent, int parent_slot,
514 struct extent_buffer **cow_ret,
515 u64 search_start, u64 empty_size,
516 enum btrfs_lock_nesting nest)
518 struct btrfs_fs_info *fs_info = root->fs_info;
519 struct btrfs_disk_key disk_key;
520 struct extent_buffer *cow;
524 u64 parent_start = 0;
529 btrfs_assert_tree_write_locked(buf);
531 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
532 trans->transid != fs_info->running_transaction->transid);
533 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
534 trans->transid != root->last_trans);
536 level = btrfs_header_level(buf);
539 btrfs_item_key(buf, &disk_key, 0);
541 btrfs_node_key(buf, &disk_key, 0);
543 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
544 parent_start = parent->start;
546 cow = btrfs_alloc_tree_block(trans, root, parent_start,
547 root->root_key.objectid, &disk_key, level,
548 search_start, empty_size, nest);
552 /* cow is set to blocking by btrfs_init_new_buffer */
554 copy_extent_buffer_full(cow, buf);
555 btrfs_set_header_bytenr(cow, cow->start);
556 btrfs_set_header_generation(cow, trans->transid);
557 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
558 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
559 BTRFS_HEADER_FLAG_RELOC);
560 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
561 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
563 btrfs_set_header_owner(cow, root->root_key.objectid);
565 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
567 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
569 btrfs_tree_unlock(cow);
570 free_extent_buffer(cow);
571 btrfs_abort_transaction(trans, ret);
575 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
576 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
578 btrfs_tree_unlock(cow);
579 free_extent_buffer(cow);
580 btrfs_abort_transaction(trans, ret);
585 if (buf == root->node) {
586 WARN_ON(parent && parent != buf);
587 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
588 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
589 parent_start = buf->start;
591 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
593 btrfs_tree_unlock(cow);
594 free_extent_buffer(cow);
595 btrfs_abort_transaction(trans, ret);
598 atomic_inc(&cow->refs);
599 rcu_assign_pointer(root->node, cow);
601 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
602 parent_start, last_ref);
603 free_extent_buffer(buf);
604 add_root_to_dirty_list(root);
606 WARN_ON(trans->transid != btrfs_header_generation(parent));
607 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
608 BTRFS_MOD_LOG_KEY_REPLACE);
610 btrfs_tree_unlock(cow);
611 free_extent_buffer(cow);
612 btrfs_abort_transaction(trans, ret);
615 btrfs_set_node_blockptr(parent, parent_slot,
617 btrfs_set_node_ptr_generation(parent, parent_slot,
619 btrfs_mark_buffer_dirty(parent);
621 ret = btrfs_tree_mod_log_free_eb(buf);
623 btrfs_tree_unlock(cow);
624 free_extent_buffer(cow);
625 btrfs_abort_transaction(trans, ret);
629 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
630 parent_start, last_ref);
633 btrfs_tree_unlock(buf);
634 free_extent_buffer_stale(buf);
635 btrfs_mark_buffer_dirty(cow);
640 static inline int should_cow_block(struct btrfs_trans_handle *trans,
641 struct btrfs_root *root,
642 struct extent_buffer *buf)
644 if (btrfs_is_testing(root->fs_info))
647 /* Ensure we can see the FORCE_COW bit */
648 smp_mb__before_atomic();
651 * We do not need to cow a block if
652 * 1) this block is not created or changed in this transaction;
653 * 2) this block does not belong to TREE_RELOC tree;
654 * 3) the root is not forced COW.
656 * What is forced COW:
657 * when we create snapshot during committing the transaction,
658 * after we've finished copying src root, we must COW the shared
659 * block to ensure the metadata consistency.
661 if (btrfs_header_generation(buf) == trans->transid &&
662 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
663 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
664 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
665 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
671 * cows a single block, see __btrfs_cow_block for the real work.
672 * This version of it has extra checks so that a block isn't COWed more than
673 * once per transaction, as long as it hasn't been written yet
675 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root, struct extent_buffer *buf,
677 struct extent_buffer *parent, int parent_slot,
678 struct extent_buffer **cow_ret,
679 enum btrfs_lock_nesting nest)
681 struct btrfs_fs_info *fs_info = root->fs_info;
685 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
686 btrfs_abort_transaction(trans, -EUCLEAN);
688 "attempt to COW block %llu on root %llu that is being deleted",
689 buf->start, btrfs_root_id(root));
694 * COWing must happen through a running transaction, which always
695 * matches the current fs generation (it's a transaction with a state
696 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
697 * into error state to prevent the commit of any transaction.
699 if (unlikely(trans->transaction != fs_info->running_transaction ||
700 trans->transid != fs_info->generation)) {
701 btrfs_abort_transaction(trans, -EUCLEAN);
703 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
704 buf->start, btrfs_root_id(root), trans->transid,
705 fs_info->running_transaction->transid,
706 fs_info->generation);
710 if (!should_cow_block(trans, root, buf)) {
715 search_start = buf->start & ~((u64)SZ_1G - 1);
718 * Before CoWing this block for later modification, check if it's
719 * the subtree root and do the delayed subtree trace if needed.
721 * Also We don't care about the error, as it's handled internally.
723 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
724 ret = __btrfs_cow_block(trans, root, buf, parent,
725 parent_slot, cow_ret, search_start, 0, nest);
727 trace_btrfs_cow_block(root, buf, *cow_ret);
731 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
734 * helper function for defrag to decide if two blocks pointed to by a
735 * node are actually close by
737 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
739 if (blocknr < other && other - (blocknr + blocksize) < 32768)
741 if (blocknr > other && blocknr - (other + blocksize) < 32768)
746 #ifdef __LITTLE_ENDIAN
749 * Compare two keys, on little-endian the disk order is same as CPU order and
750 * we can avoid the conversion.
752 static int comp_keys(const struct btrfs_disk_key *disk_key,
753 const struct btrfs_key *k2)
755 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
757 return btrfs_comp_cpu_keys(k1, k2);
763 * compare two keys in a memcmp fashion
765 static int comp_keys(const struct btrfs_disk_key *disk,
766 const struct btrfs_key *k2)
770 btrfs_disk_key_to_cpu(&k1, disk);
772 return btrfs_comp_cpu_keys(&k1, k2);
777 * same as comp_keys only with two btrfs_key's
779 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
781 if (k1->objectid > k2->objectid)
783 if (k1->objectid < k2->objectid)
785 if (k1->type > k2->type)
787 if (k1->type < k2->type)
789 if (k1->offset > k2->offset)
791 if (k1->offset < k2->offset)
797 * this is used by the defrag code to go through all the
798 * leaves pointed to by a node and reallocate them so that
799 * disk order is close to key order
801 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root, struct extent_buffer *parent,
803 int start_slot, u64 *last_ret,
804 struct btrfs_key *progress)
806 struct btrfs_fs_info *fs_info = root->fs_info;
807 struct extent_buffer *cur;
809 u64 search_start = *last_ret;
817 int progress_passed = 0;
818 struct btrfs_disk_key disk_key;
821 * COWing must happen through a running transaction, which always
822 * matches the current fs generation (it's a transaction with a state
823 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
824 * into error state to prevent the commit of any transaction.
826 if (unlikely(trans->transaction != fs_info->running_transaction ||
827 trans->transid != fs_info->generation)) {
828 btrfs_abort_transaction(trans, -EUCLEAN);
830 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
831 parent->start, btrfs_root_id(root), trans->transid,
832 fs_info->running_transaction->transid,
833 fs_info->generation);
837 parent_nritems = btrfs_header_nritems(parent);
838 blocksize = fs_info->nodesize;
839 end_slot = parent_nritems - 1;
841 if (parent_nritems <= 1)
844 for (i = start_slot; i <= end_slot; i++) {
847 btrfs_node_key(parent, &disk_key, i);
848 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
852 blocknr = btrfs_node_blockptr(parent, i);
854 last_block = blocknr;
857 other = btrfs_node_blockptr(parent, i - 1);
858 close = close_blocks(blocknr, other, blocksize);
860 if (!close && i < end_slot) {
861 other = btrfs_node_blockptr(parent, i + 1);
862 close = close_blocks(blocknr, other, blocksize);
865 last_block = blocknr;
869 cur = btrfs_read_node_slot(parent, i);
872 if (search_start == 0)
873 search_start = last_block;
875 btrfs_tree_lock(cur);
876 err = __btrfs_cow_block(trans, root, cur, parent, i,
879 (end_slot - i) * blocksize),
882 btrfs_tree_unlock(cur);
883 free_extent_buffer(cur);
886 search_start = cur->start;
887 last_block = cur->start;
888 *last_ret = search_start;
889 btrfs_tree_unlock(cur);
890 free_extent_buffer(cur);
896 * Search for a key in the given extent_buffer.
898 * The lower boundary for the search is specified by the slot number @first_slot.
899 * Use a value of 0 to search over the whole extent buffer. Works for both
902 * The slot in the extent buffer is returned via @slot. If the key exists in the
903 * extent buffer, then @slot will point to the slot where the key is, otherwise
904 * it points to the slot where you would insert the key.
906 * Slot may point to the total number of items (i.e. one position beyond the last
907 * key) if the key is bigger than the last key in the extent buffer.
909 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
910 const struct btrfs_key *key, int *slot)
915 * Use unsigned types for the low and high slots, so that we get a more
916 * efficient division in the search loop below.
918 u32 low = first_slot;
919 u32 high = btrfs_header_nritems(eb);
921 const int key_size = sizeof(struct btrfs_disk_key);
923 if (unlikely(low > high)) {
924 btrfs_err(eb->fs_info,
925 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
926 __func__, low, high, eb->start,
927 btrfs_header_owner(eb), btrfs_header_level(eb));
931 if (btrfs_header_level(eb) == 0) {
932 p = offsetof(struct btrfs_leaf, items);
933 item_size = sizeof(struct btrfs_item);
935 p = offsetof(struct btrfs_node, ptrs);
936 item_size = sizeof(struct btrfs_key_ptr);
941 unsigned long offset;
942 struct btrfs_disk_key *tmp;
943 struct btrfs_disk_key unaligned;
946 mid = (low + high) / 2;
947 offset = p + mid * item_size;
948 oip = offset_in_page(offset);
950 if (oip + key_size <= PAGE_SIZE) {
951 const unsigned long idx = get_eb_page_index(offset);
952 char *kaddr = page_address(eb->pages[idx]);
954 oip = get_eb_offset_in_page(eb, offset);
955 tmp = (struct btrfs_disk_key *)(kaddr + oip);
957 read_extent_buffer(eb, &unaligned, offset, key_size);
961 ret = comp_keys(tmp, key);
976 static void root_add_used(struct btrfs_root *root, u32 size)
978 spin_lock(&root->accounting_lock);
979 btrfs_set_root_used(&root->root_item,
980 btrfs_root_used(&root->root_item) + size);
981 spin_unlock(&root->accounting_lock);
984 static void root_sub_used(struct btrfs_root *root, u32 size)
986 spin_lock(&root->accounting_lock);
987 btrfs_set_root_used(&root->root_item,
988 btrfs_root_used(&root->root_item) - size);
989 spin_unlock(&root->accounting_lock);
992 /* given a node and slot number, this reads the blocks it points to. The
993 * extent buffer is returned with a reference taken (but unlocked).
995 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
998 int level = btrfs_header_level(parent);
999 struct btrfs_tree_parent_check check = { 0 };
1000 struct extent_buffer *eb;
1002 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1003 return ERR_PTR(-ENOENT);
1007 check.level = level - 1;
1008 check.transid = btrfs_node_ptr_generation(parent, slot);
1009 check.owner_root = btrfs_header_owner(parent);
1010 check.has_first_key = true;
1011 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1013 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1017 if (!extent_buffer_uptodate(eb)) {
1018 free_extent_buffer(eb);
1019 return ERR_PTR(-EIO);
1026 * node level balancing, used to make sure nodes are in proper order for
1027 * item deletion. We balance from the top down, so we have to make sure
1028 * that a deletion won't leave an node completely empty later on.
1030 static noinline int balance_level(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path, int level)
1034 struct btrfs_fs_info *fs_info = root->fs_info;
1035 struct extent_buffer *right = NULL;
1036 struct extent_buffer *mid;
1037 struct extent_buffer *left = NULL;
1038 struct extent_buffer *parent = NULL;
1042 int orig_slot = path->slots[level];
1047 mid = path->nodes[level];
1049 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1050 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1052 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1054 if (level < BTRFS_MAX_LEVEL - 1) {
1055 parent = path->nodes[level + 1];
1056 pslot = path->slots[level + 1];
1060 * deal with the case where there is only one pointer in the root
1061 * by promoting the node below to a root
1064 struct extent_buffer *child;
1066 if (btrfs_header_nritems(mid) != 1)
1069 /* promote the child to a root */
1070 child = btrfs_read_node_slot(mid, 0);
1071 if (IS_ERR(child)) {
1072 ret = PTR_ERR(child);
1076 btrfs_tree_lock(child);
1077 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1080 btrfs_tree_unlock(child);
1081 free_extent_buffer(child);
1085 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1087 btrfs_tree_unlock(child);
1088 free_extent_buffer(child);
1089 btrfs_abort_transaction(trans, ret);
1092 rcu_assign_pointer(root->node, child);
1094 add_root_to_dirty_list(root);
1095 btrfs_tree_unlock(child);
1097 path->locks[level] = 0;
1098 path->nodes[level] = NULL;
1099 btrfs_clear_buffer_dirty(trans, mid);
1100 btrfs_tree_unlock(mid);
1101 /* once for the path */
1102 free_extent_buffer(mid);
1104 root_sub_used(root, mid->len);
1105 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1106 /* once for the root ptr */
1107 free_extent_buffer_stale(mid);
1110 if (btrfs_header_nritems(mid) >
1111 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1115 left = btrfs_read_node_slot(parent, pslot - 1);
1117 ret = PTR_ERR(left);
1122 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1123 wret = btrfs_cow_block(trans, root, left,
1124 parent, pslot - 1, &left,
1125 BTRFS_NESTING_LEFT_COW);
1132 if (pslot + 1 < btrfs_header_nritems(parent)) {
1133 right = btrfs_read_node_slot(parent, pslot + 1);
1134 if (IS_ERR(right)) {
1135 ret = PTR_ERR(right);
1140 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1141 wret = btrfs_cow_block(trans, root, right,
1142 parent, pslot + 1, &right,
1143 BTRFS_NESTING_RIGHT_COW);
1150 /* first, try to make some room in the middle buffer */
1152 orig_slot += btrfs_header_nritems(left);
1153 wret = push_node_left(trans, left, mid, 1);
1159 * then try to empty the right most buffer into the middle
1162 wret = push_node_left(trans, mid, right, 1);
1163 if (wret < 0 && wret != -ENOSPC)
1165 if (btrfs_header_nritems(right) == 0) {
1166 btrfs_clear_buffer_dirty(trans, right);
1167 btrfs_tree_unlock(right);
1168 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1170 free_extent_buffer_stale(right);
1174 root_sub_used(root, right->len);
1175 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1177 free_extent_buffer_stale(right);
1180 struct btrfs_disk_key right_key;
1181 btrfs_node_key(right, &right_key, 0);
1182 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1183 BTRFS_MOD_LOG_KEY_REPLACE);
1185 btrfs_abort_transaction(trans, ret);
1188 btrfs_set_node_key(parent, &right_key, pslot + 1);
1189 btrfs_mark_buffer_dirty(parent);
1192 if (btrfs_header_nritems(mid) == 1) {
1194 * we're not allowed to leave a node with one item in the
1195 * tree during a delete. A deletion from lower in the tree
1196 * could try to delete the only pointer in this node.
1197 * So, pull some keys from the left.
1198 * There has to be a left pointer at this point because
1199 * otherwise we would have pulled some pointers from the
1202 if (unlikely(!left)) {
1204 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1205 parent->start, btrfs_header_level(parent),
1206 mid->start, btrfs_root_id(root));
1208 btrfs_abort_transaction(trans, ret);
1211 wret = balance_node_right(trans, mid, left);
1217 wret = push_node_left(trans, left, mid, 1);
1223 if (btrfs_header_nritems(mid) == 0) {
1224 btrfs_clear_buffer_dirty(trans, mid);
1225 btrfs_tree_unlock(mid);
1226 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1228 free_extent_buffer_stale(mid);
1232 root_sub_used(root, mid->len);
1233 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1234 free_extent_buffer_stale(mid);
1237 /* update the parent key to reflect our changes */
1238 struct btrfs_disk_key mid_key;
1239 btrfs_node_key(mid, &mid_key, 0);
1240 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1241 BTRFS_MOD_LOG_KEY_REPLACE);
1243 btrfs_abort_transaction(trans, ret);
1246 btrfs_set_node_key(parent, &mid_key, pslot);
1247 btrfs_mark_buffer_dirty(parent);
1250 /* update the path */
1252 if (btrfs_header_nritems(left) > orig_slot) {
1253 atomic_inc(&left->refs);
1254 /* left was locked after cow */
1255 path->nodes[level] = left;
1256 path->slots[level + 1] -= 1;
1257 path->slots[level] = orig_slot;
1259 btrfs_tree_unlock(mid);
1260 free_extent_buffer(mid);
1263 orig_slot -= btrfs_header_nritems(left);
1264 path->slots[level] = orig_slot;
1267 /* double check we haven't messed things up */
1269 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1273 btrfs_tree_unlock(right);
1274 free_extent_buffer(right);
1277 if (path->nodes[level] != left)
1278 btrfs_tree_unlock(left);
1279 free_extent_buffer(left);
1284 /* Node balancing for insertion. Here we only split or push nodes around
1285 * when they are completely full. This is also done top down, so we
1286 * have to be pessimistic.
1288 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1289 struct btrfs_root *root,
1290 struct btrfs_path *path, int level)
1292 struct btrfs_fs_info *fs_info = root->fs_info;
1293 struct extent_buffer *right = NULL;
1294 struct extent_buffer *mid;
1295 struct extent_buffer *left = NULL;
1296 struct extent_buffer *parent = NULL;
1300 int orig_slot = path->slots[level];
1305 mid = path->nodes[level];
1306 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1308 if (level < BTRFS_MAX_LEVEL - 1) {
1309 parent = path->nodes[level + 1];
1310 pslot = path->slots[level + 1];
1316 /* first, try to make some room in the middle buffer */
1320 left = btrfs_read_node_slot(parent, pslot - 1);
1322 return PTR_ERR(left);
1324 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1326 left_nr = btrfs_header_nritems(left);
1327 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1330 ret = btrfs_cow_block(trans, root, left, parent,
1332 BTRFS_NESTING_LEFT_COW);
1336 wret = push_node_left(trans, left, mid, 0);
1342 struct btrfs_disk_key disk_key;
1343 orig_slot += left_nr;
1344 btrfs_node_key(mid, &disk_key, 0);
1345 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1346 BTRFS_MOD_LOG_KEY_REPLACE);
1348 btrfs_tree_unlock(left);
1349 free_extent_buffer(left);
1350 btrfs_abort_transaction(trans, ret);
1353 btrfs_set_node_key(parent, &disk_key, pslot);
1354 btrfs_mark_buffer_dirty(parent);
1355 if (btrfs_header_nritems(left) > orig_slot) {
1356 path->nodes[level] = left;
1357 path->slots[level + 1] -= 1;
1358 path->slots[level] = orig_slot;
1359 btrfs_tree_unlock(mid);
1360 free_extent_buffer(mid);
1363 btrfs_header_nritems(left);
1364 path->slots[level] = orig_slot;
1365 btrfs_tree_unlock(left);
1366 free_extent_buffer(left);
1370 btrfs_tree_unlock(left);
1371 free_extent_buffer(left);
1375 * then try to empty the right most buffer into the middle
1377 if (pslot + 1 < btrfs_header_nritems(parent)) {
1380 right = btrfs_read_node_slot(parent, pslot + 1);
1382 return PTR_ERR(right);
1384 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1386 right_nr = btrfs_header_nritems(right);
1387 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1390 ret = btrfs_cow_block(trans, root, right,
1392 &right, BTRFS_NESTING_RIGHT_COW);
1396 wret = balance_node_right(trans, right, mid);
1402 struct btrfs_disk_key disk_key;
1404 btrfs_node_key(right, &disk_key, 0);
1405 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1406 BTRFS_MOD_LOG_KEY_REPLACE);
1408 btrfs_tree_unlock(right);
1409 free_extent_buffer(right);
1410 btrfs_abort_transaction(trans, ret);
1413 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1414 btrfs_mark_buffer_dirty(parent);
1416 if (btrfs_header_nritems(mid) <= orig_slot) {
1417 path->nodes[level] = right;
1418 path->slots[level + 1] += 1;
1419 path->slots[level] = orig_slot -
1420 btrfs_header_nritems(mid);
1421 btrfs_tree_unlock(mid);
1422 free_extent_buffer(mid);
1424 btrfs_tree_unlock(right);
1425 free_extent_buffer(right);
1429 btrfs_tree_unlock(right);
1430 free_extent_buffer(right);
1436 * readahead one full node of leaves, finding things that are close
1437 * to the block in 'slot', and triggering ra on them.
1439 static void reada_for_search(struct btrfs_fs_info *fs_info,
1440 struct btrfs_path *path,
1441 int level, int slot, u64 objectid)
1443 struct extent_buffer *node;
1444 struct btrfs_disk_key disk_key;
1454 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1457 if (!path->nodes[level])
1460 node = path->nodes[level];
1463 * Since the time between visiting leaves is much shorter than the time
1464 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1465 * much IO at once (possibly random).
1467 if (path->reada == READA_FORWARD_ALWAYS) {
1469 nread_max = node->fs_info->nodesize;
1471 nread_max = SZ_128K;
1476 search = btrfs_node_blockptr(node, slot);
1477 blocksize = fs_info->nodesize;
1478 if (path->reada != READA_FORWARD_ALWAYS) {
1479 struct extent_buffer *eb;
1481 eb = find_extent_buffer(fs_info, search);
1483 free_extent_buffer(eb);
1490 nritems = btrfs_header_nritems(node);
1494 if (path->reada == READA_BACK) {
1498 } else if (path->reada == READA_FORWARD ||
1499 path->reada == READA_FORWARD_ALWAYS) {
1504 if (path->reada == READA_BACK && objectid) {
1505 btrfs_node_key(node, &disk_key, nr);
1506 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1509 search = btrfs_node_blockptr(node, nr);
1510 if (path->reada == READA_FORWARD_ALWAYS ||
1511 (search <= target && target - search <= 65536) ||
1512 (search > target && search - target <= 65536)) {
1513 btrfs_readahead_node_child(node, nr);
1517 if (nread > nread_max || nscan > 32)
1522 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1524 struct extent_buffer *parent;
1528 parent = path->nodes[level + 1];
1532 nritems = btrfs_header_nritems(parent);
1533 slot = path->slots[level + 1];
1536 btrfs_readahead_node_child(parent, slot - 1);
1537 if (slot + 1 < nritems)
1538 btrfs_readahead_node_child(parent, slot + 1);
1543 * when we walk down the tree, it is usually safe to unlock the higher layers
1544 * in the tree. The exceptions are when our path goes through slot 0, because
1545 * operations on the tree might require changing key pointers higher up in the
1548 * callers might also have set path->keep_locks, which tells this code to keep
1549 * the lock if the path points to the last slot in the block. This is part of
1550 * walking through the tree, and selecting the next slot in the higher block.
1552 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1553 * if lowest_unlock is 1, level 0 won't be unlocked
1555 static noinline void unlock_up(struct btrfs_path *path, int level,
1556 int lowest_unlock, int min_write_lock_level,
1557 int *write_lock_level)
1560 int skip_level = level;
1561 bool check_skip = true;
1563 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1564 if (!path->nodes[i])
1566 if (!path->locks[i])
1570 if (path->slots[i] == 0) {
1575 if (path->keep_locks) {
1578 nritems = btrfs_header_nritems(path->nodes[i]);
1579 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1586 if (i >= lowest_unlock && i > skip_level) {
1588 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1590 if (write_lock_level &&
1591 i > min_write_lock_level &&
1592 i <= *write_lock_level) {
1593 *write_lock_level = i - 1;
1600 * Helper function for btrfs_search_slot() and other functions that do a search
1601 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1602 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1603 * its pages from disk.
1605 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1606 * whole btree search, starting again from the current root node.
1609 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1610 struct extent_buffer **eb_ret, int level, int slot,
1611 const struct btrfs_key *key)
1613 struct btrfs_fs_info *fs_info = root->fs_info;
1614 struct btrfs_tree_parent_check check = { 0 };
1617 struct extent_buffer *tmp;
1622 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1623 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1624 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1625 parent_level = btrfs_header_level(*eb_ret);
1626 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1627 check.has_first_key = true;
1628 check.level = parent_level - 1;
1629 check.transid = gen;
1630 check.owner_root = root->root_key.objectid;
1633 * If we need to read an extent buffer from disk and we are holding locks
1634 * on upper level nodes, we unlock all the upper nodes before reading the
1635 * extent buffer, and then return -EAGAIN to the caller as it needs to
1636 * restart the search. We don't release the lock on the current level
1637 * because we need to walk this node to figure out which blocks to read.
1639 tmp = find_extent_buffer(fs_info, blocknr);
1641 if (p->reada == READA_FORWARD_ALWAYS)
1642 reada_for_search(fs_info, p, level, slot, key->objectid);
1644 /* first we do an atomic uptodate check */
1645 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1647 * Do extra check for first_key, eb can be stale due to
1648 * being cached, read from scrub, or have multiple
1649 * parents (shared tree blocks).
1651 if (btrfs_verify_level_key(tmp,
1652 parent_level - 1, &check.first_key, gen)) {
1653 free_extent_buffer(tmp);
1661 free_extent_buffer(tmp);
1666 btrfs_unlock_up_safe(p, level + 1);
1668 /* now we're allowed to do a blocking uptodate check */
1669 ret = btrfs_read_extent_buffer(tmp, &check);
1671 free_extent_buffer(tmp);
1672 btrfs_release_path(p);
1675 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1676 free_extent_buffer(tmp);
1677 btrfs_release_path(p);
1685 } else if (p->nowait) {
1690 btrfs_unlock_up_safe(p, level + 1);
1696 if (p->reada != READA_NONE)
1697 reada_for_search(fs_info, p, level, slot, key->objectid);
1699 tmp = read_tree_block(fs_info, blocknr, &check);
1701 btrfs_release_path(p);
1702 return PTR_ERR(tmp);
1705 * If the read above didn't mark this buffer up to date,
1706 * it will never end up being up to date. Set ret to EIO now
1707 * and give up so that our caller doesn't loop forever
1710 if (!extent_buffer_uptodate(tmp))
1717 free_extent_buffer(tmp);
1718 btrfs_release_path(p);
1725 * helper function for btrfs_search_slot. This does all of the checks
1726 * for node-level blocks and does any balancing required based on
1729 * If no extra work was required, zero is returned. If we had to
1730 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1734 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1735 struct btrfs_root *root, struct btrfs_path *p,
1736 struct extent_buffer *b, int level, int ins_len,
1737 int *write_lock_level)
1739 struct btrfs_fs_info *fs_info = root->fs_info;
1742 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1743 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1745 if (*write_lock_level < level + 1) {
1746 *write_lock_level = level + 1;
1747 btrfs_release_path(p);
1751 reada_for_balance(p, level);
1752 ret = split_node(trans, root, p, level);
1754 b = p->nodes[level];
1755 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1756 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1758 if (*write_lock_level < level + 1) {
1759 *write_lock_level = level + 1;
1760 btrfs_release_path(p);
1764 reada_for_balance(p, level);
1765 ret = balance_level(trans, root, p, level);
1769 b = p->nodes[level];
1771 btrfs_release_path(p);
1774 BUG_ON(btrfs_header_nritems(b) == 1);
1779 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1780 u64 iobjectid, u64 ioff, u8 key_type,
1781 struct btrfs_key *found_key)
1784 struct btrfs_key key;
1785 struct extent_buffer *eb;
1790 key.type = key_type;
1791 key.objectid = iobjectid;
1794 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1798 eb = path->nodes[0];
1799 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1800 ret = btrfs_next_leaf(fs_root, path);
1803 eb = path->nodes[0];
1806 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1807 if (found_key->type != key.type ||
1808 found_key->objectid != key.objectid)
1814 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1815 struct btrfs_path *p,
1816 int write_lock_level)
1818 struct extent_buffer *b;
1822 if (p->search_commit_root) {
1823 b = root->commit_root;
1824 atomic_inc(&b->refs);
1825 level = btrfs_header_level(b);
1827 * Ensure that all callers have set skip_locking when
1828 * p->search_commit_root = 1.
1830 ASSERT(p->skip_locking == 1);
1835 if (p->skip_locking) {
1836 b = btrfs_root_node(root);
1837 level = btrfs_header_level(b);
1841 /* We try very hard to do read locks on the root */
1842 root_lock = BTRFS_READ_LOCK;
1845 * If the level is set to maximum, we can skip trying to get the read
1848 if (write_lock_level < BTRFS_MAX_LEVEL) {
1850 * We don't know the level of the root node until we actually
1851 * have it read locked
1854 b = btrfs_try_read_lock_root_node(root);
1858 b = btrfs_read_lock_root_node(root);
1860 level = btrfs_header_level(b);
1861 if (level > write_lock_level)
1864 /* Whoops, must trade for write lock */
1865 btrfs_tree_read_unlock(b);
1866 free_extent_buffer(b);
1869 b = btrfs_lock_root_node(root);
1870 root_lock = BTRFS_WRITE_LOCK;
1872 /* The level might have changed, check again */
1873 level = btrfs_header_level(b);
1877 * The root may have failed to write out at some point, and thus is no
1878 * longer valid, return an error in this case.
1880 if (!extent_buffer_uptodate(b)) {
1882 btrfs_tree_unlock_rw(b, root_lock);
1883 free_extent_buffer(b);
1884 return ERR_PTR(-EIO);
1887 p->nodes[level] = b;
1888 if (!p->skip_locking)
1889 p->locks[level] = root_lock;
1891 * Callers are responsible for dropping b's references.
1897 * Replace the extent buffer at the lowest level of the path with a cloned
1898 * version. The purpose is to be able to use it safely, after releasing the
1899 * commit root semaphore, even if relocation is happening in parallel, the
1900 * transaction used for relocation is committed and the extent buffer is
1901 * reallocated in the next transaction.
1903 * This is used in a context where the caller does not prevent transaction
1904 * commits from happening, either by holding a transaction handle or holding
1905 * some lock, while it's doing searches through a commit root.
1906 * At the moment it's only used for send operations.
1908 static int finish_need_commit_sem_search(struct btrfs_path *path)
1910 const int i = path->lowest_level;
1911 const int slot = path->slots[i];
1912 struct extent_buffer *lowest = path->nodes[i];
1913 struct extent_buffer *clone;
1915 ASSERT(path->need_commit_sem);
1920 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1922 clone = btrfs_clone_extent_buffer(lowest);
1926 btrfs_release_path(path);
1927 path->nodes[i] = clone;
1928 path->slots[i] = slot;
1933 static inline int search_for_key_slot(struct extent_buffer *eb,
1934 int search_low_slot,
1935 const struct btrfs_key *key,
1940 * If a previous call to btrfs_bin_search() on a parent node returned an
1941 * exact match (prev_cmp == 0), we can safely assume the target key will
1942 * always be at slot 0 on lower levels, since each key pointer
1943 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1944 * subtree it points to. Thus we can skip searching lower levels.
1946 if (prev_cmp == 0) {
1951 return btrfs_bin_search(eb, search_low_slot, key, slot);
1954 static int search_leaf(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 const struct btrfs_key *key,
1957 struct btrfs_path *path,
1961 struct extent_buffer *leaf = path->nodes[0];
1962 int leaf_free_space = -1;
1963 int search_low_slot = 0;
1965 bool do_bin_search = true;
1968 * If we are doing an insertion, the leaf has enough free space and the
1969 * destination slot for the key is not slot 0, then we can unlock our
1970 * write lock on the parent, and any other upper nodes, before doing the
1971 * binary search on the leaf (with search_for_key_slot()), allowing other
1972 * tasks to lock the parent and any other upper nodes.
1976 * Cache the leaf free space, since we will need it later and it
1977 * will not change until then.
1979 leaf_free_space = btrfs_leaf_free_space(leaf);
1982 * !path->locks[1] means we have a single node tree, the leaf is
1983 * the root of the tree.
1985 if (path->locks[1] && leaf_free_space >= ins_len) {
1986 struct btrfs_disk_key first_key;
1988 ASSERT(btrfs_header_nritems(leaf) > 0);
1989 btrfs_item_key(leaf, &first_key, 0);
1992 * Doing the extra comparison with the first key is cheap,
1993 * taking into account that the first key is very likely
1994 * already in a cache line because it immediately follows
1995 * the extent buffer's header and we have recently accessed
1996 * the header's level field.
1998 ret = comp_keys(&first_key, key);
2001 * The first key is smaller than the key we want
2002 * to insert, so we are safe to unlock all upper
2003 * nodes and we have to do the binary search.
2005 * We do use btrfs_unlock_up_safe() and not
2006 * unlock_up() because the later does not unlock
2007 * nodes with a slot of 0 - we can safely unlock
2008 * any node even if its slot is 0 since in this
2009 * case the key does not end up at slot 0 of the
2010 * leaf and there's no need to split the leaf.
2012 btrfs_unlock_up_safe(path, 1);
2013 search_low_slot = 1;
2016 * The first key is >= then the key we want to
2017 * insert, so we can skip the binary search as
2018 * the target key will be at slot 0.
2020 * We can not unlock upper nodes when the key is
2021 * less than the first key, because we will need
2022 * to update the key at slot 0 of the parent node
2023 * and possibly of other upper nodes too.
2024 * If the key matches the first key, then we can
2025 * unlock all the upper nodes, using
2026 * btrfs_unlock_up_safe() instead of unlock_up()
2030 btrfs_unlock_up_safe(path, 1);
2032 * ret is already 0 or 1, matching the result of
2033 * a btrfs_bin_search() call, so there is no need
2036 do_bin_search = false;
2042 if (do_bin_search) {
2043 ret = search_for_key_slot(leaf, search_low_slot, key,
2044 prev_cmp, &path->slots[0]);
2051 * Item key already exists. In this case, if we are allowed to
2052 * insert the item (for example, in dir_item case, item key
2053 * collision is allowed), it will be merged with the original
2054 * item. Only the item size grows, no new btrfs item will be
2055 * added. If search_for_extension is not set, ins_len already
2056 * accounts the size btrfs_item, deduct it here so leaf space
2057 * check will be correct.
2059 if (ret == 0 && !path->search_for_extension) {
2060 ASSERT(ins_len >= sizeof(struct btrfs_item));
2061 ins_len -= sizeof(struct btrfs_item);
2064 ASSERT(leaf_free_space >= 0);
2066 if (leaf_free_space < ins_len) {
2069 err = split_leaf(trans, root, key, path, ins_len,
2072 if (WARN_ON(err > 0))
2083 * btrfs_search_slot - look for a key in a tree and perform necessary
2084 * modifications to preserve tree invariants.
2086 * @trans: Handle of transaction, used when modifying the tree
2087 * @p: Holds all btree nodes along the search path
2088 * @root: The root node of the tree
2089 * @key: The key we are looking for
2090 * @ins_len: Indicates purpose of search:
2091 * >0 for inserts it's size of item inserted (*)
2093 * 0 for plain searches, not modifying the tree
2095 * (*) If size of item inserted doesn't include
2096 * sizeof(struct btrfs_item), then p->search_for_extension must
2098 * @cow: boolean should CoW operations be performed. Must always be 1
2099 * when modifying the tree.
2101 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2102 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2104 * If @key is found, 0 is returned and you can find the item in the leaf level
2105 * of the path (level 0)
2107 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2108 * points to the slot where it should be inserted
2110 * If an error is encountered while searching the tree a negative error number
2113 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2114 const struct btrfs_key *key, struct btrfs_path *p,
2115 int ins_len, int cow)
2117 struct btrfs_fs_info *fs_info = root->fs_info;
2118 struct extent_buffer *b;
2123 int lowest_unlock = 1;
2124 /* everything at write_lock_level or lower must be write locked */
2125 int write_lock_level = 0;
2126 u8 lowest_level = 0;
2127 int min_write_lock_level;
2132 lowest_level = p->lowest_level;
2133 WARN_ON(lowest_level && ins_len > 0);
2134 WARN_ON(p->nodes[0] != NULL);
2135 BUG_ON(!cow && ins_len);
2138 * For now only allow nowait for read only operations. There's no
2139 * strict reason why we can't, we just only need it for reads so it's
2140 * only implemented for reads.
2142 ASSERT(!p->nowait || !cow);
2147 /* when we are removing items, we might have to go up to level
2148 * two as we update tree pointers Make sure we keep write
2149 * for those levels as well
2151 write_lock_level = 2;
2152 } else if (ins_len > 0) {
2154 * for inserting items, make sure we have a write lock on
2155 * level 1 so we can update keys
2157 write_lock_level = 1;
2161 write_lock_level = -1;
2163 if (cow && (p->keep_locks || p->lowest_level))
2164 write_lock_level = BTRFS_MAX_LEVEL;
2166 min_write_lock_level = write_lock_level;
2168 if (p->need_commit_sem) {
2169 ASSERT(p->search_commit_root);
2171 if (!down_read_trylock(&fs_info->commit_root_sem))
2174 down_read(&fs_info->commit_root_sem);
2180 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2189 level = btrfs_header_level(b);
2192 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2195 * if we don't really need to cow this block
2196 * then we don't want to set the path blocking,
2197 * so we test it here
2199 if (!should_cow_block(trans, root, b))
2203 * must have write locks on this node and the
2206 if (level > write_lock_level ||
2207 (level + 1 > write_lock_level &&
2208 level + 1 < BTRFS_MAX_LEVEL &&
2209 p->nodes[level + 1])) {
2210 write_lock_level = level + 1;
2211 btrfs_release_path(p);
2216 err = btrfs_cow_block(trans, root, b, NULL, 0,
2220 err = btrfs_cow_block(trans, root, b,
2221 p->nodes[level + 1],
2222 p->slots[level + 1], &b,
2230 p->nodes[level] = b;
2233 * we have a lock on b and as long as we aren't changing
2234 * the tree, there is no way to for the items in b to change.
2235 * It is safe to drop the lock on our parent before we
2236 * go through the expensive btree search on b.
2238 * If we're inserting or deleting (ins_len != 0), then we might
2239 * be changing slot zero, which may require changing the parent.
2240 * So, we can't drop the lock until after we know which slot
2241 * we're operating on.
2243 if (!ins_len && !p->keep_locks) {
2246 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2247 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2254 ASSERT(write_lock_level >= 1);
2256 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2257 if (!p->search_for_split)
2258 unlock_up(p, level, lowest_unlock,
2259 min_write_lock_level, NULL);
2263 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2268 if (ret && slot > 0) {
2272 p->slots[level] = slot;
2273 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2281 b = p->nodes[level];
2282 slot = p->slots[level];
2285 * Slot 0 is special, if we change the key we have to update
2286 * the parent pointer which means we must have a write lock on
2289 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2290 write_lock_level = level + 1;
2291 btrfs_release_path(p);
2295 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2298 if (level == lowest_level) {
2304 err = read_block_for_search(root, p, &b, level, slot, key);
2312 if (!p->skip_locking) {
2313 level = btrfs_header_level(b);
2315 btrfs_maybe_reset_lockdep_class(root, b);
2317 if (level <= write_lock_level) {
2319 p->locks[level] = BTRFS_WRITE_LOCK;
2322 if (!btrfs_try_tree_read_lock(b)) {
2323 free_extent_buffer(b);
2328 btrfs_tree_read_lock(b);
2330 p->locks[level] = BTRFS_READ_LOCK;
2332 p->nodes[level] = b;
2337 if (ret < 0 && !p->skip_release_on_error)
2338 btrfs_release_path(p);
2340 if (p->need_commit_sem) {
2343 ret2 = finish_need_commit_sem_search(p);
2344 up_read(&fs_info->commit_root_sem);
2351 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2354 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2355 * current state of the tree together with the operations recorded in the tree
2356 * modification log to search for the key in a previous version of this tree, as
2357 * denoted by the time_seq parameter.
2359 * Naturally, there is no support for insert, delete or cow operations.
2361 * The resulting path and return value will be set up as if we called
2362 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2364 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2365 struct btrfs_path *p, u64 time_seq)
2367 struct btrfs_fs_info *fs_info = root->fs_info;
2368 struct extent_buffer *b;
2373 int lowest_unlock = 1;
2374 u8 lowest_level = 0;
2376 lowest_level = p->lowest_level;
2377 WARN_ON(p->nodes[0] != NULL);
2380 if (p->search_commit_root) {
2382 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2386 b = btrfs_get_old_root(root, time_seq);
2391 level = btrfs_header_level(b);
2392 p->locks[level] = BTRFS_READ_LOCK;
2397 level = btrfs_header_level(b);
2398 p->nodes[level] = b;
2401 * we have a lock on b and as long as we aren't changing
2402 * the tree, there is no way to for the items in b to change.
2403 * It is safe to drop the lock on our parent before we
2404 * go through the expensive btree search on b.
2406 btrfs_unlock_up_safe(p, level + 1);
2408 ret = btrfs_bin_search(b, 0, key, &slot);
2413 p->slots[level] = slot;
2414 unlock_up(p, level, lowest_unlock, 0, NULL);
2418 if (ret && slot > 0) {
2422 p->slots[level] = slot;
2423 unlock_up(p, level, lowest_unlock, 0, NULL);
2425 if (level == lowest_level) {
2431 err = read_block_for_search(root, p, &b, level, slot, key);
2439 level = btrfs_header_level(b);
2440 btrfs_tree_read_lock(b);
2441 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2446 p->locks[level] = BTRFS_READ_LOCK;
2447 p->nodes[level] = b;
2452 btrfs_release_path(p);
2458 * Search the tree again to find a leaf with smaller keys.
2459 * Returns 0 if it found something.
2460 * Returns 1 if there are no smaller keys.
2461 * Returns < 0 on error.
2463 * This may release the path, and so you may lose any locks held at the
2466 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2468 struct btrfs_key key;
2469 struct btrfs_key orig_key;
2470 struct btrfs_disk_key found_key;
2473 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2476 if (key.offset > 0) {
2478 } else if (key.type > 0) {
2480 key.offset = (u64)-1;
2481 } else if (key.objectid > 0) {
2484 key.offset = (u64)-1;
2489 btrfs_release_path(path);
2490 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2495 * Previous key not found. Even if we were at slot 0 of the leaf we had
2496 * before releasing the path and calling btrfs_search_slot(), we now may
2497 * be in a slot pointing to the same original key - this can happen if
2498 * after we released the path, one of more items were moved from a
2499 * sibling leaf into the front of the leaf we had due to an insertion
2500 * (see push_leaf_right()).
2501 * If we hit this case and our slot is > 0 and just decrement the slot
2502 * so that the caller does not process the same key again, which may or
2503 * may not break the caller, depending on its logic.
2505 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2506 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2507 ret = comp_keys(&found_key, &orig_key);
2509 if (path->slots[0] > 0) {
2514 * At slot 0, same key as before, it means orig_key is
2515 * the lowest, leftmost, key in the tree. We're done.
2521 btrfs_item_key(path->nodes[0], &found_key, 0);
2522 ret = comp_keys(&found_key, &key);
2524 * We might have had an item with the previous key in the tree right
2525 * before we released our path. And after we released our path, that
2526 * item might have been pushed to the first slot (0) of the leaf we
2527 * were holding due to a tree balance. Alternatively, an item with the
2528 * previous key can exist as the only element of a leaf (big fat item).
2529 * Therefore account for these 2 cases, so that our callers (like
2530 * btrfs_previous_item) don't miss an existing item with a key matching
2531 * the previous key we computed above.
2539 * helper to use instead of search slot if no exact match is needed but
2540 * instead the next or previous item should be returned.
2541 * When find_higher is true, the next higher item is returned, the next lower
2543 * When return_any and find_higher are both true, and no higher item is found,
2544 * return the next lower instead.
2545 * When return_any is true and find_higher is false, and no lower item is found,
2546 * return the next higher instead.
2547 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2550 int btrfs_search_slot_for_read(struct btrfs_root *root,
2551 const struct btrfs_key *key,
2552 struct btrfs_path *p, int find_higher,
2556 struct extent_buffer *leaf;
2559 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2563 * a return value of 1 means the path is at the position where the
2564 * item should be inserted. Normally this is the next bigger item,
2565 * but in case the previous item is the last in a leaf, path points
2566 * to the first free slot in the previous leaf, i.e. at an invalid
2572 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2573 ret = btrfs_next_leaf(root, p);
2579 * no higher item found, return the next
2584 btrfs_release_path(p);
2588 if (p->slots[0] == 0) {
2589 ret = btrfs_prev_leaf(root, p);
2594 if (p->slots[0] == btrfs_header_nritems(leaf))
2601 * no lower item found, return the next
2606 btrfs_release_path(p);
2616 * Execute search and call btrfs_previous_item to traverse backwards if the item
2619 * Return 0 if found, 1 if not found and < 0 if error.
2621 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2622 struct btrfs_path *path)
2626 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2628 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2631 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2637 * Search for a valid slot for the given path.
2639 * @root: The root node of the tree.
2640 * @key: Will contain a valid item if found.
2641 * @path: The starting point to validate the slot.
2643 * Return: 0 if the item is valid
2647 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2648 struct btrfs_path *path)
2650 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2653 ret = btrfs_next_leaf(root, path);
2658 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2663 * adjust the pointers going up the tree, starting at level
2664 * making sure the right key of each node is points to 'key'.
2665 * This is used after shifting pointers to the left, so it stops
2666 * fixing up pointers when a given leaf/node is not in slot 0 of the
2670 static void fixup_low_keys(struct btrfs_path *path,
2671 struct btrfs_disk_key *key, int level)
2674 struct extent_buffer *t;
2677 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2678 int tslot = path->slots[i];
2680 if (!path->nodes[i])
2683 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2684 BTRFS_MOD_LOG_KEY_REPLACE);
2686 btrfs_set_node_key(t, key, tslot);
2687 btrfs_mark_buffer_dirty(path->nodes[i]);
2696 * This function isn't completely safe. It's the caller's responsibility
2697 * that the new key won't break the order
2699 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2700 struct btrfs_path *path,
2701 const struct btrfs_key *new_key)
2703 struct btrfs_disk_key disk_key;
2704 struct extent_buffer *eb;
2707 eb = path->nodes[0];
2708 slot = path->slots[0];
2710 btrfs_item_key(eb, &disk_key, slot - 1);
2711 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2712 btrfs_print_leaf(eb);
2714 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2715 slot, btrfs_disk_key_objectid(&disk_key),
2716 btrfs_disk_key_type(&disk_key),
2717 btrfs_disk_key_offset(&disk_key),
2718 new_key->objectid, new_key->type,
2723 if (slot < btrfs_header_nritems(eb) - 1) {
2724 btrfs_item_key(eb, &disk_key, slot + 1);
2725 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2726 btrfs_print_leaf(eb);
2728 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2729 slot, btrfs_disk_key_objectid(&disk_key),
2730 btrfs_disk_key_type(&disk_key),
2731 btrfs_disk_key_offset(&disk_key),
2732 new_key->objectid, new_key->type,
2738 btrfs_cpu_key_to_disk(&disk_key, new_key);
2739 btrfs_set_item_key(eb, &disk_key, slot);
2740 btrfs_mark_buffer_dirty(eb);
2742 fixup_low_keys(path, &disk_key, 1);
2746 * Check key order of two sibling extent buffers.
2748 * Return true if something is wrong.
2749 * Return false if everything is fine.
2751 * Tree-checker only works inside one tree block, thus the following
2752 * corruption can not be detected by tree-checker:
2754 * Leaf @left | Leaf @right
2755 * --------------------------------------------------------------
2756 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2758 * Key f6 in leaf @left itself is valid, but not valid when the next
2759 * key in leaf @right is 7.
2760 * This can only be checked at tree block merge time.
2761 * And since tree checker has ensured all key order in each tree block
2762 * is correct, we only need to bother the last key of @left and the first
2765 static bool check_sibling_keys(struct extent_buffer *left,
2766 struct extent_buffer *right)
2768 struct btrfs_key left_last;
2769 struct btrfs_key right_first;
2770 int level = btrfs_header_level(left);
2771 int nr_left = btrfs_header_nritems(left);
2772 int nr_right = btrfs_header_nritems(right);
2774 /* No key to check in one of the tree blocks */
2775 if (!nr_left || !nr_right)
2779 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2780 btrfs_node_key_to_cpu(right, &right_first, 0);
2782 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2783 btrfs_item_key_to_cpu(right, &right_first, 0);
2786 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2787 btrfs_crit(left->fs_info, "left extent buffer:");
2788 btrfs_print_tree(left, false);
2789 btrfs_crit(left->fs_info, "right extent buffer:");
2790 btrfs_print_tree(right, false);
2791 btrfs_crit(left->fs_info,
2792 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2793 left_last.objectid, left_last.type,
2794 left_last.offset, right_first.objectid,
2795 right_first.type, right_first.offset);
2802 * try to push data from one node into the next node left in the
2805 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2806 * error, and > 0 if there was no room in the left hand block.
2808 static int push_node_left(struct btrfs_trans_handle *trans,
2809 struct extent_buffer *dst,
2810 struct extent_buffer *src, int empty)
2812 struct btrfs_fs_info *fs_info = trans->fs_info;
2818 src_nritems = btrfs_header_nritems(src);
2819 dst_nritems = btrfs_header_nritems(dst);
2820 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2821 WARN_ON(btrfs_header_generation(src) != trans->transid);
2822 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2824 if (!empty && src_nritems <= 8)
2827 if (push_items <= 0)
2831 push_items = min(src_nritems, push_items);
2832 if (push_items < src_nritems) {
2833 /* leave at least 8 pointers in the node if
2834 * we aren't going to empty it
2836 if (src_nritems - push_items < 8) {
2837 if (push_items <= 8)
2843 push_items = min(src_nritems - 8, push_items);
2845 /* dst is the left eb, src is the middle eb */
2846 if (check_sibling_keys(dst, src)) {
2848 btrfs_abort_transaction(trans, ret);
2851 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2853 btrfs_abort_transaction(trans, ret);
2856 copy_extent_buffer(dst, src,
2857 btrfs_node_key_ptr_offset(dst, dst_nritems),
2858 btrfs_node_key_ptr_offset(src, 0),
2859 push_items * sizeof(struct btrfs_key_ptr));
2861 if (push_items < src_nritems) {
2863 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2864 * don't need to do an explicit tree mod log operation for it.
2866 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2867 btrfs_node_key_ptr_offset(src, push_items),
2868 (src_nritems - push_items) *
2869 sizeof(struct btrfs_key_ptr));
2871 btrfs_set_header_nritems(src, src_nritems - push_items);
2872 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2873 btrfs_mark_buffer_dirty(src);
2874 btrfs_mark_buffer_dirty(dst);
2880 * try to push data from one node into the next node right in the
2883 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2884 * error, and > 0 if there was no room in the right hand block.
2886 * this will only push up to 1/2 the contents of the left node over
2888 static int balance_node_right(struct btrfs_trans_handle *trans,
2889 struct extent_buffer *dst,
2890 struct extent_buffer *src)
2892 struct btrfs_fs_info *fs_info = trans->fs_info;
2899 WARN_ON(btrfs_header_generation(src) != trans->transid);
2900 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2902 src_nritems = btrfs_header_nritems(src);
2903 dst_nritems = btrfs_header_nritems(dst);
2904 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2905 if (push_items <= 0)
2908 if (src_nritems < 4)
2911 max_push = src_nritems / 2 + 1;
2912 /* don't try to empty the node */
2913 if (max_push >= src_nritems)
2916 if (max_push < push_items)
2917 push_items = max_push;
2919 /* dst is the right eb, src is the middle eb */
2920 if (check_sibling_keys(src, dst)) {
2922 btrfs_abort_transaction(trans, ret);
2927 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2928 * need to do an explicit tree mod log operation for it.
2930 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2931 btrfs_node_key_ptr_offset(dst, 0),
2933 sizeof(struct btrfs_key_ptr));
2935 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2938 btrfs_abort_transaction(trans, ret);
2941 copy_extent_buffer(dst, src,
2942 btrfs_node_key_ptr_offset(dst, 0),
2943 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2944 push_items * sizeof(struct btrfs_key_ptr));
2946 btrfs_set_header_nritems(src, src_nritems - push_items);
2947 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2949 btrfs_mark_buffer_dirty(src);
2950 btrfs_mark_buffer_dirty(dst);
2956 * helper function to insert a new root level in the tree.
2957 * A new node is allocated, and a single item is inserted to
2958 * point to the existing root
2960 * returns zero on success or < 0 on failure.
2962 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2963 struct btrfs_root *root,
2964 struct btrfs_path *path, int level)
2966 struct btrfs_fs_info *fs_info = root->fs_info;
2968 struct extent_buffer *lower;
2969 struct extent_buffer *c;
2970 struct extent_buffer *old;
2971 struct btrfs_disk_key lower_key;
2974 BUG_ON(path->nodes[level]);
2975 BUG_ON(path->nodes[level-1] != root->node);
2977 lower = path->nodes[level-1];
2979 btrfs_item_key(lower, &lower_key, 0);
2981 btrfs_node_key(lower, &lower_key, 0);
2983 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2984 &lower_key, level, root->node->start, 0,
2985 BTRFS_NESTING_NEW_ROOT);
2989 root_add_used(root, fs_info->nodesize);
2991 btrfs_set_header_nritems(c, 1);
2992 btrfs_set_node_key(c, &lower_key, 0);
2993 btrfs_set_node_blockptr(c, 0, lower->start);
2994 lower_gen = btrfs_header_generation(lower);
2995 WARN_ON(lower_gen != trans->transid);
2997 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2999 btrfs_mark_buffer_dirty(c);
3002 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3004 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3005 btrfs_tree_unlock(c);
3006 free_extent_buffer(c);
3009 rcu_assign_pointer(root->node, c);
3011 /* the super has an extra ref to root->node */
3012 free_extent_buffer(old);
3014 add_root_to_dirty_list(root);
3015 atomic_inc(&c->refs);
3016 path->nodes[level] = c;
3017 path->locks[level] = BTRFS_WRITE_LOCK;
3018 path->slots[level] = 0;
3023 * worker function to insert a single pointer in a node.
3024 * the node should have enough room for the pointer already
3026 * slot and level indicate where you want the key to go, and
3027 * blocknr is the block the key points to.
3029 static int insert_ptr(struct btrfs_trans_handle *trans,
3030 struct btrfs_path *path,
3031 struct btrfs_disk_key *key, u64 bytenr,
3032 int slot, int level)
3034 struct extent_buffer *lower;
3038 BUG_ON(!path->nodes[level]);
3039 btrfs_assert_tree_write_locked(path->nodes[level]);
3040 lower = path->nodes[level];
3041 nritems = btrfs_header_nritems(lower);
3042 BUG_ON(slot > nritems);
3043 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3044 if (slot != nritems) {
3046 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3047 slot, nritems - slot);
3049 btrfs_abort_transaction(trans, ret);
3053 memmove_extent_buffer(lower,
3054 btrfs_node_key_ptr_offset(lower, slot + 1),
3055 btrfs_node_key_ptr_offset(lower, slot),
3056 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3059 ret = btrfs_tree_mod_log_insert_key(lower, slot,
3060 BTRFS_MOD_LOG_KEY_ADD);
3062 btrfs_abort_transaction(trans, ret);
3066 btrfs_set_node_key(lower, key, slot);
3067 btrfs_set_node_blockptr(lower, slot, bytenr);
3068 WARN_ON(trans->transid == 0);
3069 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3070 btrfs_set_header_nritems(lower, nritems + 1);
3071 btrfs_mark_buffer_dirty(lower);
3077 * split the node at the specified level in path in two.
3078 * The path is corrected to point to the appropriate node after the split
3080 * Before splitting this tries to make some room in the node by pushing
3081 * left and right, if either one works, it returns right away.
3083 * returns 0 on success and < 0 on failure
3085 static noinline int split_node(struct btrfs_trans_handle *trans,
3086 struct btrfs_root *root,
3087 struct btrfs_path *path, int level)
3089 struct btrfs_fs_info *fs_info = root->fs_info;
3090 struct extent_buffer *c;
3091 struct extent_buffer *split;
3092 struct btrfs_disk_key disk_key;
3097 c = path->nodes[level];
3098 WARN_ON(btrfs_header_generation(c) != trans->transid);
3099 if (c == root->node) {
3101 * trying to split the root, lets make a new one
3103 * tree mod log: We don't log_removal old root in
3104 * insert_new_root, because that root buffer will be kept as a
3105 * normal node. We are going to log removal of half of the
3106 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3107 * holding a tree lock on the buffer, which is why we cannot
3108 * race with other tree_mod_log users.
3110 ret = insert_new_root(trans, root, path, level + 1);
3114 ret = push_nodes_for_insert(trans, root, path, level);
3115 c = path->nodes[level];
3116 if (!ret && btrfs_header_nritems(c) <
3117 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3123 c_nritems = btrfs_header_nritems(c);
3124 mid = (c_nritems + 1) / 2;
3125 btrfs_node_key(c, &disk_key, mid);
3127 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3128 &disk_key, level, c->start, 0,
3129 BTRFS_NESTING_SPLIT);
3131 return PTR_ERR(split);
3133 root_add_used(root, fs_info->nodesize);
3134 ASSERT(btrfs_header_level(c) == level);
3136 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3138 btrfs_tree_unlock(split);
3139 free_extent_buffer(split);
3140 btrfs_abort_transaction(trans, ret);
3143 copy_extent_buffer(split, c,
3144 btrfs_node_key_ptr_offset(split, 0),
3145 btrfs_node_key_ptr_offset(c, mid),
3146 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3147 btrfs_set_header_nritems(split, c_nritems - mid);
3148 btrfs_set_header_nritems(c, mid);
3150 btrfs_mark_buffer_dirty(c);
3151 btrfs_mark_buffer_dirty(split);
3153 ret = insert_ptr(trans, path, &disk_key, split->start,
3154 path->slots[level + 1] + 1, level + 1);
3156 btrfs_tree_unlock(split);
3157 free_extent_buffer(split);
3161 if (path->slots[level] >= mid) {
3162 path->slots[level] -= mid;
3163 btrfs_tree_unlock(c);
3164 free_extent_buffer(c);
3165 path->nodes[level] = split;
3166 path->slots[level + 1] += 1;
3168 btrfs_tree_unlock(split);
3169 free_extent_buffer(split);
3175 * how many bytes are required to store the items in a leaf. start
3176 * and nr indicate which items in the leaf to check. This totals up the
3177 * space used both by the item structs and the item data
3179 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3182 int nritems = btrfs_header_nritems(l);
3183 int end = min(nritems, start + nr) - 1;
3187 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3188 data_len = data_len - btrfs_item_offset(l, end);
3189 data_len += sizeof(struct btrfs_item) * nr;
3190 WARN_ON(data_len < 0);
3195 * The space between the end of the leaf items and
3196 * the start of the leaf data. IOW, how much room
3197 * the leaf has left for both items and data
3199 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3201 struct btrfs_fs_info *fs_info = leaf->fs_info;
3202 int nritems = btrfs_header_nritems(leaf);
3205 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3208 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3210 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3211 leaf_space_used(leaf, 0, nritems), nritems);
3217 * min slot controls the lowest index we're willing to push to the
3218 * right. We'll push up to and including min_slot, but no lower
3220 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path,
3222 int data_size, int empty,
3223 struct extent_buffer *right,
3224 int free_space, u32 left_nritems,
3227 struct btrfs_fs_info *fs_info = right->fs_info;
3228 struct extent_buffer *left = path->nodes[0];
3229 struct extent_buffer *upper = path->nodes[1];
3230 struct btrfs_map_token token;
3231 struct btrfs_disk_key disk_key;
3244 nr = max_t(u32, 1, min_slot);
3246 if (path->slots[0] >= left_nritems)
3247 push_space += data_size;
3249 slot = path->slots[1];
3250 i = left_nritems - 1;
3252 if (!empty && push_items > 0) {
3253 if (path->slots[0] > i)
3255 if (path->slots[0] == i) {
3256 int space = btrfs_leaf_free_space(left);
3258 if (space + push_space * 2 > free_space)
3263 if (path->slots[0] == i)
3264 push_space += data_size;
3266 this_item_size = btrfs_item_size(left, i);
3267 if (this_item_size + sizeof(struct btrfs_item) +
3268 push_space > free_space)
3272 push_space += this_item_size + sizeof(struct btrfs_item);
3278 if (push_items == 0)
3281 WARN_ON(!empty && push_items == left_nritems);
3283 /* push left to right */
3284 right_nritems = btrfs_header_nritems(right);
3286 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3287 push_space -= leaf_data_end(left);
3289 /* make room in the right data area */
3290 data_end = leaf_data_end(right);
3291 memmove_leaf_data(right, data_end - push_space, data_end,
3292 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3294 /* copy from the left data area */
3295 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3296 leaf_data_end(left), push_space);
3298 memmove_leaf_items(right, push_items, 0, right_nritems);
3300 /* copy the items from left to right */
3301 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3303 /* update the item pointers */
3304 btrfs_init_map_token(&token, right);
3305 right_nritems += push_items;
3306 btrfs_set_header_nritems(right, right_nritems);
3307 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3308 for (i = 0; i < right_nritems; i++) {
3309 push_space -= btrfs_token_item_size(&token, i);
3310 btrfs_set_token_item_offset(&token, i, push_space);
3313 left_nritems -= push_items;
3314 btrfs_set_header_nritems(left, left_nritems);
3317 btrfs_mark_buffer_dirty(left);
3319 btrfs_clear_buffer_dirty(trans, left);
3321 btrfs_mark_buffer_dirty(right);
3323 btrfs_item_key(right, &disk_key, 0);
3324 btrfs_set_node_key(upper, &disk_key, slot + 1);
3325 btrfs_mark_buffer_dirty(upper);
3327 /* then fixup the leaf pointer in the path */
3328 if (path->slots[0] >= left_nritems) {
3329 path->slots[0] -= left_nritems;
3330 if (btrfs_header_nritems(path->nodes[0]) == 0)
3331 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3332 btrfs_tree_unlock(path->nodes[0]);
3333 free_extent_buffer(path->nodes[0]);
3334 path->nodes[0] = right;
3335 path->slots[1] += 1;
3337 btrfs_tree_unlock(right);
3338 free_extent_buffer(right);
3343 btrfs_tree_unlock(right);
3344 free_extent_buffer(right);
3349 * push some data in the path leaf to the right, trying to free up at
3350 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3352 * returns 1 if the push failed because the other node didn't have enough
3353 * room, 0 if everything worked out and < 0 if there were major errors.
3355 * this will push starting from min_slot to the end of the leaf. It won't
3356 * push any slot lower than min_slot
3358 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3359 *root, struct btrfs_path *path,
3360 int min_data_size, int data_size,
3361 int empty, u32 min_slot)
3363 struct extent_buffer *left = path->nodes[0];
3364 struct extent_buffer *right;
3365 struct extent_buffer *upper;
3371 if (!path->nodes[1])
3374 slot = path->slots[1];
3375 upper = path->nodes[1];
3376 if (slot >= btrfs_header_nritems(upper) - 1)
3379 btrfs_assert_tree_write_locked(path->nodes[1]);
3381 right = btrfs_read_node_slot(upper, slot + 1);
3383 return PTR_ERR(right);
3385 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3387 free_space = btrfs_leaf_free_space(right);
3388 if (free_space < data_size)
3391 ret = btrfs_cow_block(trans, root, right, upper,
3392 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3396 left_nritems = btrfs_header_nritems(left);
3397 if (left_nritems == 0)
3400 if (check_sibling_keys(left, right)) {
3402 btrfs_abort_transaction(trans, ret);
3403 btrfs_tree_unlock(right);
3404 free_extent_buffer(right);
3407 if (path->slots[0] == left_nritems && !empty) {
3408 /* Key greater than all keys in the leaf, right neighbor has
3409 * enough room for it and we're not emptying our leaf to delete
3410 * it, therefore use right neighbor to insert the new item and
3411 * no need to touch/dirty our left leaf. */
3412 btrfs_tree_unlock(left);
3413 free_extent_buffer(left);
3414 path->nodes[0] = right;
3420 return __push_leaf_right(trans, path, min_data_size, empty, right,
3421 free_space, left_nritems, min_slot);
3423 btrfs_tree_unlock(right);
3424 free_extent_buffer(right);
3429 * push some data in the path leaf to the left, trying to free up at
3430 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3432 * max_slot can put a limit on how far into the leaf we'll push items. The
3433 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3436 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3437 struct btrfs_path *path, int data_size,
3438 int empty, struct extent_buffer *left,
3439 int free_space, u32 right_nritems,
3442 struct btrfs_fs_info *fs_info = left->fs_info;
3443 struct btrfs_disk_key disk_key;
3444 struct extent_buffer *right = path->nodes[0];
3448 u32 old_left_nritems;
3452 u32 old_left_item_size;
3453 struct btrfs_map_token token;
3456 nr = min(right_nritems, max_slot);
3458 nr = min(right_nritems - 1, max_slot);
3460 for (i = 0; i < nr; i++) {
3461 if (!empty && push_items > 0) {
3462 if (path->slots[0] < i)
3464 if (path->slots[0] == i) {
3465 int space = btrfs_leaf_free_space(right);
3467 if (space + push_space * 2 > free_space)
3472 if (path->slots[0] == i)
3473 push_space += data_size;
3475 this_item_size = btrfs_item_size(right, i);
3476 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3481 push_space += this_item_size + sizeof(struct btrfs_item);
3484 if (push_items == 0) {
3488 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3490 /* push data from right to left */
3491 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3493 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3494 btrfs_item_offset(right, push_items - 1);
3496 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3497 btrfs_item_offset(right, push_items - 1), push_space);
3498 old_left_nritems = btrfs_header_nritems(left);
3499 BUG_ON(old_left_nritems <= 0);
3501 btrfs_init_map_token(&token, left);
3502 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3503 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3506 ioff = btrfs_token_item_offset(&token, i);
3507 btrfs_set_token_item_offset(&token, i,
3508 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3510 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3512 /* fixup right node */
3513 if (push_items > right_nritems)
3514 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3517 if (push_items < right_nritems) {
3518 push_space = btrfs_item_offset(right, push_items - 1) -
3519 leaf_data_end(right);
3520 memmove_leaf_data(right,
3521 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3522 leaf_data_end(right), push_space);
3524 memmove_leaf_items(right, 0, push_items,
3525 btrfs_header_nritems(right) - push_items);
3528 btrfs_init_map_token(&token, right);
3529 right_nritems -= push_items;
3530 btrfs_set_header_nritems(right, right_nritems);
3531 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3532 for (i = 0; i < right_nritems; i++) {
3533 push_space = push_space - btrfs_token_item_size(&token, i);
3534 btrfs_set_token_item_offset(&token, i, push_space);
3537 btrfs_mark_buffer_dirty(left);
3539 btrfs_mark_buffer_dirty(right);
3541 btrfs_clear_buffer_dirty(trans, right);
3543 btrfs_item_key(right, &disk_key, 0);
3544 fixup_low_keys(path, &disk_key, 1);
3546 /* then fixup the leaf pointer in the path */
3547 if (path->slots[0] < push_items) {
3548 path->slots[0] += old_left_nritems;
3549 btrfs_tree_unlock(path->nodes[0]);
3550 free_extent_buffer(path->nodes[0]);
3551 path->nodes[0] = left;
3552 path->slots[1] -= 1;
3554 btrfs_tree_unlock(left);
3555 free_extent_buffer(left);
3556 path->slots[0] -= push_items;
3558 BUG_ON(path->slots[0] < 0);
3561 btrfs_tree_unlock(left);
3562 free_extent_buffer(left);
3567 * push some data in the path leaf to the left, trying to free up at
3568 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3570 * max_slot can put a limit on how far into the leaf we'll push items. The
3571 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3574 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3575 *root, struct btrfs_path *path, int min_data_size,
3576 int data_size, int empty, u32 max_slot)
3578 struct extent_buffer *right = path->nodes[0];
3579 struct extent_buffer *left;
3585 slot = path->slots[1];
3588 if (!path->nodes[1])
3591 right_nritems = btrfs_header_nritems(right);
3592 if (right_nritems == 0)
3595 btrfs_assert_tree_write_locked(path->nodes[1]);
3597 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3599 return PTR_ERR(left);
3601 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3603 free_space = btrfs_leaf_free_space(left);
3604 if (free_space < data_size) {
3609 ret = btrfs_cow_block(trans, root, left,
3610 path->nodes[1], slot - 1, &left,
3611 BTRFS_NESTING_LEFT_COW);
3613 /* we hit -ENOSPC, but it isn't fatal here */
3619 if (check_sibling_keys(left, right)) {
3621 btrfs_abort_transaction(trans, ret);
3624 return __push_leaf_left(trans, path, min_data_size, empty, left,
3625 free_space, right_nritems, max_slot);
3627 btrfs_tree_unlock(left);
3628 free_extent_buffer(left);
3633 * split the path's leaf in two, making sure there is at least data_size
3634 * available for the resulting leaf level of the path.
3636 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3637 struct btrfs_path *path,
3638 struct extent_buffer *l,
3639 struct extent_buffer *right,
3640 int slot, int mid, int nritems)
3642 struct btrfs_fs_info *fs_info = trans->fs_info;
3647 struct btrfs_disk_key disk_key;
3648 struct btrfs_map_token token;
3650 nritems = nritems - mid;
3651 btrfs_set_header_nritems(right, nritems);
3652 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3654 copy_leaf_items(right, l, 0, mid, nritems);
3656 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3657 leaf_data_end(l), data_copy_size);
3659 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3661 btrfs_init_map_token(&token, right);
3662 for (i = 0; i < nritems; i++) {
3665 ioff = btrfs_token_item_offset(&token, i);
3666 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3669 btrfs_set_header_nritems(l, mid);
3670 btrfs_item_key(right, &disk_key, 0);
3671 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3675 btrfs_mark_buffer_dirty(right);
3676 btrfs_mark_buffer_dirty(l);
3677 BUG_ON(path->slots[0] != slot);
3680 btrfs_tree_unlock(path->nodes[0]);
3681 free_extent_buffer(path->nodes[0]);
3682 path->nodes[0] = right;
3683 path->slots[0] -= mid;
3684 path->slots[1] += 1;
3686 btrfs_tree_unlock(right);
3687 free_extent_buffer(right);
3690 BUG_ON(path->slots[0] < 0);
3696 * double splits happen when we need to insert a big item in the middle
3697 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3698 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3701 * We avoid this by trying to push the items on either side of our target
3702 * into the adjacent leaves. If all goes well we can avoid the double split
3705 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root,
3707 struct btrfs_path *path,
3714 int space_needed = data_size;
3716 slot = path->slots[0];
3717 if (slot < btrfs_header_nritems(path->nodes[0]))
3718 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3721 * try to push all the items after our slot into the
3724 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3731 nritems = btrfs_header_nritems(path->nodes[0]);
3733 * our goal is to get our slot at the start or end of a leaf. If
3734 * we've done so we're done
3736 if (path->slots[0] == 0 || path->slots[0] == nritems)
3739 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3742 /* try to push all the items before our slot into the next leaf */
3743 slot = path->slots[0];
3744 space_needed = data_size;
3746 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3747 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3760 * split the path's leaf in two, making sure there is at least data_size
3761 * available for the resulting leaf level of the path.
3763 * returns 0 if all went well and < 0 on failure.
3765 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3766 struct btrfs_root *root,
3767 const struct btrfs_key *ins_key,
3768 struct btrfs_path *path, int data_size,
3771 struct btrfs_disk_key disk_key;
3772 struct extent_buffer *l;
3776 struct extent_buffer *right;
3777 struct btrfs_fs_info *fs_info = root->fs_info;
3781 int num_doubles = 0;
3782 int tried_avoid_double = 0;
3785 slot = path->slots[0];
3786 if (extend && data_size + btrfs_item_size(l, slot) +
3787 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3790 /* first try to make some room by pushing left and right */
3791 if (data_size && path->nodes[1]) {
3792 int space_needed = data_size;
3794 if (slot < btrfs_header_nritems(l))
3795 space_needed -= btrfs_leaf_free_space(l);
3797 wret = push_leaf_right(trans, root, path, space_needed,
3798 space_needed, 0, 0);
3802 space_needed = data_size;
3804 space_needed -= btrfs_leaf_free_space(l);
3805 wret = push_leaf_left(trans, root, path, space_needed,
3806 space_needed, 0, (u32)-1);
3812 /* did the pushes work? */
3813 if (btrfs_leaf_free_space(l) >= data_size)
3817 if (!path->nodes[1]) {
3818 ret = insert_new_root(trans, root, path, 1);
3825 slot = path->slots[0];
3826 nritems = btrfs_header_nritems(l);
3827 mid = (nritems + 1) / 2;
3831 leaf_space_used(l, mid, nritems - mid) + data_size >
3832 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3833 if (slot >= nritems) {
3837 if (mid != nritems &&
3838 leaf_space_used(l, mid, nritems - mid) +
3839 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3840 if (data_size && !tried_avoid_double)
3841 goto push_for_double;
3847 if (leaf_space_used(l, 0, mid) + data_size >
3848 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3849 if (!extend && data_size && slot == 0) {
3851 } else if ((extend || !data_size) && slot == 0) {
3855 if (mid != nritems &&
3856 leaf_space_used(l, mid, nritems - mid) +
3857 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3858 if (data_size && !tried_avoid_double)
3859 goto push_for_double;
3867 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3869 btrfs_item_key(l, &disk_key, mid);
3872 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3873 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3874 * subclasses, which is 8 at the time of this patch, and we've maxed it
3875 * out. In the future we could add a
3876 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3877 * use BTRFS_NESTING_NEW_ROOT.
3879 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3880 &disk_key, 0, l->start, 0,
3881 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3882 BTRFS_NESTING_SPLIT);
3884 return PTR_ERR(right);
3886 root_add_used(root, fs_info->nodesize);
3890 btrfs_set_header_nritems(right, 0);
3891 ret = insert_ptr(trans, path, &disk_key,
3892 right->start, path->slots[1] + 1, 1);
3894 btrfs_tree_unlock(right);
3895 free_extent_buffer(right);
3898 btrfs_tree_unlock(path->nodes[0]);
3899 free_extent_buffer(path->nodes[0]);
3900 path->nodes[0] = right;
3902 path->slots[1] += 1;
3904 btrfs_set_header_nritems(right, 0);
3905 ret = insert_ptr(trans, path, &disk_key,
3906 right->start, path->slots[1], 1);
3908 btrfs_tree_unlock(right);
3909 free_extent_buffer(right);
3912 btrfs_tree_unlock(path->nodes[0]);
3913 free_extent_buffer(path->nodes[0]);
3914 path->nodes[0] = right;
3916 if (path->slots[1] == 0)
3917 fixup_low_keys(path, &disk_key, 1);
3920 * We create a new leaf 'right' for the required ins_len and
3921 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3922 * the content of ins_len to 'right'.
3927 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3929 btrfs_tree_unlock(right);
3930 free_extent_buffer(right);
3935 BUG_ON(num_doubles != 0);
3943 push_for_double_split(trans, root, path, data_size);
3944 tried_avoid_double = 1;
3945 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3950 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3951 struct btrfs_root *root,
3952 struct btrfs_path *path, int ins_len)
3954 struct btrfs_key key;
3955 struct extent_buffer *leaf;
3956 struct btrfs_file_extent_item *fi;
3961 leaf = path->nodes[0];
3962 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3964 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3965 key.type != BTRFS_EXTENT_CSUM_KEY);
3967 if (btrfs_leaf_free_space(leaf) >= ins_len)
3970 item_size = btrfs_item_size(leaf, path->slots[0]);
3971 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3972 fi = btrfs_item_ptr(leaf, path->slots[0],
3973 struct btrfs_file_extent_item);
3974 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3976 btrfs_release_path(path);
3978 path->keep_locks = 1;
3979 path->search_for_split = 1;
3980 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3981 path->search_for_split = 0;
3988 leaf = path->nodes[0];
3989 /* if our item isn't there, return now */
3990 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3993 /* the leaf has changed, it now has room. return now */
3994 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3997 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3998 fi = btrfs_item_ptr(leaf, path->slots[0],
3999 struct btrfs_file_extent_item);
4000 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4004 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4008 path->keep_locks = 0;
4009 btrfs_unlock_up_safe(path, 1);
4012 path->keep_locks = 0;
4016 static noinline int split_item(struct btrfs_path *path,
4017 const struct btrfs_key *new_key,
4018 unsigned long split_offset)
4020 struct extent_buffer *leaf;
4021 int orig_slot, slot;
4026 struct btrfs_disk_key disk_key;
4028 leaf = path->nodes[0];
4030 * Shouldn't happen because the caller must have previously called
4031 * setup_leaf_for_split() to make room for the new item in the leaf.
4033 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4036 orig_slot = path->slots[0];
4037 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4038 item_size = btrfs_item_size(leaf, path->slots[0]);
4040 buf = kmalloc(item_size, GFP_NOFS);
4044 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4045 path->slots[0]), item_size);
4047 slot = path->slots[0] + 1;
4048 nritems = btrfs_header_nritems(leaf);
4049 if (slot != nritems) {
4050 /* shift the items */
4051 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4054 btrfs_cpu_key_to_disk(&disk_key, new_key);
4055 btrfs_set_item_key(leaf, &disk_key, slot);
4057 btrfs_set_item_offset(leaf, slot, orig_offset);
4058 btrfs_set_item_size(leaf, slot, item_size - split_offset);
4060 btrfs_set_item_offset(leaf, orig_slot,
4061 orig_offset + item_size - split_offset);
4062 btrfs_set_item_size(leaf, orig_slot, split_offset);
4064 btrfs_set_header_nritems(leaf, nritems + 1);
4066 /* write the data for the start of the original item */
4067 write_extent_buffer(leaf, buf,
4068 btrfs_item_ptr_offset(leaf, path->slots[0]),
4071 /* write the data for the new item */
4072 write_extent_buffer(leaf, buf + split_offset,
4073 btrfs_item_ptr_offset(leaf, slot),
4074 item_size - split_offset);
4075 btrfs_mark_buffer_dirty(leaf);
4077 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4083 * This function splits a single item into two items,
4084 * giving 'new_key' to the new item and splitting the
4085 * old one at split_offset (from the start of the item).
4087 * The path may be released by this operation. After
4088 * the split, the path is pointing to the old item. The
4089 * new item is going to be in the same node as the old one.
4091 * Note, the item being split must be smaller enough to live alone on
4092 * a tree block with room for one extra struct btrfs_item
4094 * This allows us to split the item in place, keeping a lock on the
4095 * leaf the entire time.
4097 int btrfs_split_item(struct btrfs_trans_handle *trans,
4098 struct btrfs_root *root,
4099 struct btrfs_path *path,
4100 const struct btrfs_key *new_key,
4101 unsigned long split_offset)
4104 ret = setup_leaf_for_split(trans, root, path,
4105 sizeof(struct btrfs_item));
4109 ret = split_item(path, new_key, split_offset);
4114 * make the item pointed to by the path smaller. new_size indicates
4115 * how small to make it, and from_end tells us if we just chop bytes
4116 * off the end of the item or if we shift the item to chop bytes off
4119 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4122 struct extent_buffer *leaf;
4124 unsigned int data_end;
4125 unsigned int old_data_start;
4126 unsigned int old_size;
4127 unsigned int size_diff;
4129 struct btrfs_map_token token;
4131 leaf = path->nodes[0];
4132 slot = path->slots[0];
4134 old_size = btrfs_item_size(leaf, slot);
4135 if (old_size == new_size)
4138 nritems = btrfs_header_nritems(leaf);
4139 data_end = leaf_data_end(leaf);
4141 old_data_start = btrfs_item_offset(leaf, slot);
4143 size_diff = old_size - new_size;
4146 BUG_ON(slot >= nritems);
4149 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4151 /* first correct the data pointers */
4152 btrfs_init_map_token(&token, leaf);
4153 for (i = slot; i < nritems; i++) {
4156 ioff = btrfs_token_item_offset(&token, i);
4157 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4160 /* shift the data */
4162 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4163 old_data_start + new_size - data_end);
4165 struct btrfs_disk_key disk_key;
4168 btrfs_item_key(leaf, &disk_key, slot);
4170 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4172 struct btrfs_file_extent_item *fi;
4174 fi = btrfs_item_ptr(leaf, slot,
4175 struct btrfs_file_extent_item);
4176 fi = (struct btrfs_file_extent_item *)(
4177 (unsigned long)fi - size_diff);
4179 if (btrfs_file_extent_type(leaf, fi) ==
4180 BTRFS_FILE_EXTENT_INLINE) {
4181 ptr = btrfs_item_ptr_offset(leaf, slot);
4182 memmove_extent_buffer(leaf, ptr,
4184 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4188 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4189 old_data_start - data_end);
4191 offset = btrfs_disk_key_offset(&disk_key);
4192 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4193 btrfs_set_item_key(leaf, &disk_key, slot);
4195 fixup_low_keys(path, &disk_key, 1);
4198 btrfs_set_item_size(leaf, slot, new_size);
4199 btrfs_mark_buffer_dirty(leaf);
4201 if (btrfs_leaf_free_space(leaf) < 0) {
4202 btrfs_print_leaf(leaf);
4208 * make the item pointed to by the path bigger, data_size is the added size.
4210 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4213 struct extent_buffer *leaf;
4215 unsigned int data_end;
4216 unsigned int old_data;
4217 unsigned int old_size;
4219 struct btrfs_map_token token;
4221 leaf = path->nodes[0];
4223 nritems = btrfs_header_nritems(leaf);
4224 data_end = leaf_data_end(leaf);
4226 if (btrfs_leaf_free_space(leaf) < data_size) {
4227 btrfs_print_leaf(leaf);
4230 slot = path->slots[0];
4231 old_data = btrfs_item_data_end(leaf, slot);
4234 if (slot >= nritems) {
4235 btrfs_print_leaf(leaf);
4236 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4242 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4244 /* first correct the data pointers */
4245 btrfs_init_map_token(&token, leaf);
4246 for (i = slot; i < nritems; i++) {
4249 ioff = btrfs_token_item_offset(&token, i);
4250 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4253 /* shift the data */
4254 memmove_leaf_data(leaf, data_end - data_size, data_end,
4255 old_data - data_end);
4257 data_end = old_data;
4258 old_size = btrfs_item_size(leaf, slot);
4259 btrfs_set_item_size(leaf, slot, old_size + data_size);
4260 btrfs_mark_buffer_dirty(leaf);
4262 if (btrfs_leaf_free_space(leaf) < 0) {
4263 btrfs_print_leaf(leaf);
4269 * Make space in the node before inserting one or more items.
4271 * @root: root we are inserting items to
4272 * @path: points to the leaf/slot where we are going to insert new items
4273 * @batch: information about the batch of items to insert
4275 * Main purpose is to save stack depth by doing the bulk of the work in a
4276 * function that doesn't call btrfs_search_slot
4278 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4279 const struct btrfs_item_batch *batch)
4281 struct btrfs_fs_info *fs_info = root->fs_info;
4284 unsigned int data_end;
4285 struct btrfs_disk_key disk_key;
4286 struct extent_buffer *leaf;
4288 struct btrfs_map_token token;
4292 * Before anything else, update keys in the parent and other ancestors
4293 * if needed, then release the write locks on them, so that other tasks
4294 * can use them while we modify the leaf.
4296 if (path->slots[0] == 0) {
4297 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4298 fixup_low_keys(path, &disk_key, 1);
4300 btrfs_unlock_up_safe(path, 1);
4302 leaf = path->nodes[0];
4303 slot = path->slots[0];
4305 nritems = btrfs_header_nritems(leaf);
4306 data_end = leaf_data_end(leaf);
4307 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4309 if (btrfs_leaf_free_space(leaf) < total_size) {
4310 btrfs_print_leaf(leaf);
4311 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4312 total_size, btrfs_leaf_free_space(leaf));
4316 btrfs_init_map_token(&token, leaf);
4317 if (slot != nritems) {
4318 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4320 if (old_data < data_end) {
4321 btrfs_print_leaf(leaf);
4323 "item at slot %d with data offset %u beyond data end of leaf %u",
4324 slot, old_data, data_end);
4328 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4330 /* first correct the data pointers */
4331 for (i = slot; i < nritems; i++) {
4334 ioff = btrfs_token_item_offset(&token, i);
4335 btrfs_set_token_item_offset(&token, i,
4336 ioff - batch->total_data_size);
4338 /* shift the items */
4339 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4341 /* shift the data */
4342 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4343 data_end, old_data - data_end);
4344 data_end = old_data;
4347 /* setup the item for the new data */
4348 for (i = 0; i < batch->nr; i++) {
4349 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4350 btrfs_set_item_key(leaf, &disk_key, slot + i);
4351 data_end -= batch->data_sizes[i];
4352 btrfs_set_token_item_offset(&token, slot + i, data_end);
4353 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4356 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4357 btrfs_mark_buffer_dirty(leaf);
4359 if (btrfs_leaf_free_space(leaf) < 0) {
4360 btrfs_print_leaf(leaf);
4366 * Insert a new item into a leaf.
4368 * @root: The root of the btree.
4369 * @path: A path pointing to the target leaf and slot.
4370 * @key: The key of the new item.
4371 * @data_size: The size of the data associated with the new key.
4373 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4374 struct btrfs_path *path,
4375 const struct btrfs_key *key,
4378 struct btrfs_item_batch batch;
4381 batch.data_sizes = &data_size;
4382 batch.total_data_size = data_size;
4385 setup_items_for_insert(root, path, &batch);
4389 * Given a key and some data, insert items into the tree.
4390 * This does all the path init required, making room in the tree if needed.
4392 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4393 struct btrfs_root *root,
4394 struct btrfs_path *path,
4395 const struct btrfs_item_batch *batch)
4401 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4402 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4408 slot = path->slots[0];
4411 setup_items_for_insert(root, path, batch);
4416 * Given a key and some data, insert an item into the tree.
4417 * This does all the path init required, making room in the tree if needed.
4419 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4420 const struct btrfs_key *cpu_key, void *data,
4424 struct btrfs_path *path;
4425 struct extent_buffer *leaf;
4428 path = btrfs_alloc_path();
4431 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4433 leaf = path->nodes[0];
4434 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4435 write_extent_buffer(leaf, data, ptr, data_size);
4436 btrfs_mark_buffer_dirty(leaf);
4438 btrfs_free_path(path);
4443 * This function duplicates an item, giving 'new_key' to the new item.
4444 * It guarantees both items live in the same tree leaf and the new item is
4445 * contiguous with the original item.
4447 * This allows us to split a file extent in place, keeping a lock on the leaf
4450 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4451 struct btrfs_root *root,
4452 struct btrfs_path *path,
4453 const struct btrfs_key *new_key)
4455 struct extent_buffer *leaf;
4459 leaf = path->nodes[0];
4460 item_size = btrfs_item_size(leaf, path->slots[0]);
4461 ret = setup_leaf_for_split(trans, root, path,
4462 item_size + sizeof(struct btrfs_item));
4467 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4468 leaf = path->nodes[0];
4469 memcpy_extent_buffer(leaf,
4470 btrfs_item_ptr_offset(leaf, path->slots[0]),
4471 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4477 * delete the pointer from a given node.
4479 * the tree should have been previously balanced so the deletion does not
4482 * This is exported for use inside btrfs-progs, don't un-export it.
4484 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4485 struct btrfs_path *path, int level, int slot)
4487 struct extent_buffer *parent = path->nodes[level];
4491 nritems = btrfs_header_nritems(parent);
4492 if (slot != nritems - 1) {
4494 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4495 slot + 1, nritems - slot - 1);
4497 btrfs_abort_transaction(trans, ret);
4501 memmove_extent_buffer(parent,
4502 btrfs_node_key_ptr_offset(parent, slot),
4503 btrfs_node_key_ptr_offset(parent, slot + 1),
4504 sizeof(struct btrfs_key_ptr) *
4505 (nritems - slot - 1));
4507 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4508 BTRFS_MOD_LOG_KEY_REMOVE);
4510 btrfs_abort_transaction(trans, ret);
4516 btrfs_set_header_nritems(parent, nritems);
4517 if (nritems == 0 && parent == root->node) {
4518 BUG_ON(btrfs_header_level(root->node) != 1);
4519 /* just turn the root into a leaf and break */
4520 btrfs_set_header_level(root->node, 0);
4521 } else if (slot == 0) {
4522 struct btrfs_disk_key disk_key;
4524 btrfs_node_key(parent, &disk_key, 0);
4525 fixup_low_keys(path, &disk_key, level + 1);
4527 btrfs_mark_buffer_dirty(parent);
4532 * a helper function to delete the leaf pointed to by path->slots[1] and
4535 * This deletes the pointer in path->nodes[1] and frees the leaf
4536 * block extent. zero is returned if it all worked out, < 0 otherwise.
4538 * The path must have already been setup for deleting the leaf, including
4539 * all the proper balancing. path->nodes[1] must be locked.
4541 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4542 struct btrfs_root *root,
4543 struct btrfs_path *path,
4544 struct extent_buffer *leaf)
4548 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4549 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4554 * btrfs_free_extent is expensive, we want to make sure we
4555 * aren't holding any locks when we call it
4557 btrfs_unlock_up_safe(path, 0);
4559 root_sub_used(root, leaf->len);
4561 atomic_inc(&leaf->refs);
4562 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4563 free_extent_buffer_stale(leaf);
4567 * delete the item at the leaf level in path. If that empties
4568 * the leaf, remove it from the tree
4570 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4571 struct btrfs_path *path, int slot, int nr)
4573 struct btrfs_fs_info *fs_info = root->fs_info;
4574 struct extent_buffer *leaf;
4579 leaf = path->nodes[0];
4580 nritems = btrfs_header_nritems(leaf);
4582 if (slot + nr != nritems) {
4583 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4584 const int data_end = leaf_data_end(leaf);
4585 struct btrfs_map_token token;
4589 for (i = 0; i < nr; i++)
4590 dsize += btrfs_item_size(leaf, slot + i);
4592 memmove_leaf_data(leaf, data_end + dsize, data_end,
4593 last_off - data_end);
4595 btrfs_init_map_token(&token, leaf);
4596 for (i = slot + nr; i < nritems; i++) {
4599 ioff = btrfs_token_item_offset(&token, i);
4600 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4603 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4605 btrfs_set_header_nritems(leaf, nritems - nr);
4608 /* delete the leaf if we've emptied it */
4610 if (leaf == root->node) {
4611 btrfs_set_header_level(leaf, 0);
4613 btrfs_clear_buffer_dirty(trans, leaf);
4614 ret = btrfs_del_leaf(trans, root, path, leaf);
4619 int used = leaf_space_used(leaf, 0, nritems);
4621 struct btrfs_disk_key disk_key;
4623 btrfs_item_key(leaf, &disk_key, 0);
4624 fixup_low_keys(path, &disk_key, 1);
4628 * Try to delete the leaf if it is mostly empty. We do this by
4629 * trying to move all its items into its left and right neighbours.
4630 * If we can't move all the items, then we don't delete it - it's
4631 * not ideal, but future insertions might fill the leaf with more
4632 * items, or items from other leaves might be moved later into our
4633 * leaf due to deletions on those leaves.
4635 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4638 /* push_leaf_left fixes the path.
4639 * make sure the path still points to our leaf
4640 * for possible call to btrfs_del_ptr below
4642 slot = path->slots[1];
4643 atomic_inc(&leaf->refs);
4645 * We want to be able to at least push one item to the
4646 * left neighbour leaf, and that's the first item.
4648 min_push_space = sizeof(struct btrfs_item) +
4649 btrfs_item_size(leaf, 0);
4650 wret = push_leaf_left(trans, root, path, 0,
4651 min_push_space, 1, (u32)-1);
4652 if (wret < 0 && wret != -ENOSPC)
4655 if (path->nodes[0] == leaf &&
4656 btrfs_header_nritems(leaf)) {
4658 * If we were not able to push all items from our
4659 * leaf to its left neighbour, then attempt to
4660 * either push all the remaining items to the
4661 * right neighbour or none. There's no advantage
4662 * in pushing only some items, instead of all, as
4663 * it's pointless to end up with a leaf having
4664 * too few items while the neighbours can be full
4667 nritems = btrfs_header_nritems(leaf);
4668 min_push_space = leaf_space_used(leaf, 0, nritems);
4669 wret = push_leaf_right(trans, root, path, 0,
4670 min_push_space, 1, 0);
4671 if (wret < 0 && wret != -ENOSPC)
4675 if (btrfs_header_nritems(leaf) == 0) {
4676 path->slots[1] = slot;
4677 ret = btrfs_del_leaf(trans, root, path, leaf);
4680 free_extent_buffer(leaf);
4683 /* if we're still in the path, make sure
4684 * we're dirty. Otherwise, one of the
4685 * push_leaf functions must have already
4686 * dirtied this buffer
4688 if (path->nodes[0] == leaf)
4689 btrfs_mark_buffer_dirty(leaf);
4690 free_extent_buffer(leaf);
4693 btrfs_mark_buffer_dirty(leaf);
4700 * A helper function to walk down the tree starting at min_key, and looking
4701 * for nodes or leaves that are have a minimum transaction id.
4702 * This is used by the btree defrag code, and tree logging
4704 * This does not cow, but it does stuff the starting key it finds back
4705 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4706 * key and get a writable path.
4708 * This honors path->lowest_level to prevent descent past a given level
4711 * min_trans indicates the oldest transaction that you are interested
4712 * in walking through. Any nodes or leaves older than min_trans are
4713 * skipped over (without reading them).
4715 * returns zero if something useful was found, < 0 on error and 1 if there
4716 * was nothing in the tree that matched the search criteria.
4718 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4719 struct btrfs_path *path,
4722 struct extent_buffer *cur;
4723 struct btrfs_key found_key;
4729 int keep_locks = path->keep_locks;
4731 ASSERT(!path->nowait);
4732 path->keep_locks = 1;
4734 cur = btrfs_read_lock_root_node(root);
4735 level = btrfs_header_level(cur);
4736 WARN_ON(path->nodes[level]);
4737 path->nodes[level] = cur;
4738 path->locks[level] = BTRFS_READ_LOCK;
4740 if (btrfs_header_generation(cur) < min_trans) {
4745 nritems = btrfs_header_nritems(cur);
4746 level = btrfs_header_level(cur);
4747 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4753 /* at the lowest level, we're done, setup the path and exit */
4754 if (level == path->lowest_level) {
4755 if (slot >= nritems)
4758 path->slots[level] = slot;
4759 btrfs_item_key_to_cpu(cur, &found_key, slot);
4762 if (sret && slot > 0)
4765 * check this node pointer against the min_trans parameters.
4766 * If it is too old, skip to the next one.
4768 while (slot < nritems) {
4771 gen = btrfs_node_ptr_generation(cur, slot);
4772 if (gen < min_trans) {
4780 * we didn't find a candidate key in this node, walk forward
4781 * and find another one
4783 if (slot >= nritems) {
4784 path->slots[level] = slot;
4785 sret = btrfs_find_next_key(root, path, min_key, level,
4788 btrfs_release_path(path);
4794 /* save our key for returning back */
4795 btrfs_node_key_to_cpu(cur, &found_key, slot);
4796 path->slots[level] = slot;
4797 if (level == path->lowest_level) {
4801 cur = btrfs_read_node_slot(cur, slot);
4807 btrfs_tree_read_lock(cur);
4809 path->locks[level - 1] = BTRFS_READ_LOCK;
4810 path->nodes[level - 1] = cur;
4811 unlock_up(path, level, 1, 0, NULL);
4814 path->keep_locks = keep_locks;
4816 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4817 memcpy(min_key, &found_key, sizeof(found_key));
4823 * this is similar to btrfs_next_leaf, but does not try to preserve
4824 * and fixup the path. It looks for and returns the next key in the
4825 * tree based on the current path and the min_trans parameters.
4827 * 0 is returned if another key is found, < 0 if there are any errors
4828 * and 1 is returned if there are no higher keys in the tree
4830 * path->keep_locks should be set to 1 on the search made before
4831 * calling this function.
4833 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4834 struct btrfs_key *key, int level, u64 min_trans)
4837 struct extent_buffer *c;
4839 WARN_ON(!path->keep_locks && !path->skip_locking);
4840 while (level < BTRFS_MAX_LEVEL) {
4841 if (!path->nodes[level])
4844 slot = path->slots[level] + 1;
4845 c = path->nodes[level];
4847 if (slot >= btrfs_header_nritems(c)) {
4850 struct btrfs_key cur_key;
4851 if (level + 1 >= BTRFS_MAX_LEVEL ||
4852 !path->nodes[level + 1])
4855 if (path->locks[level + 1] || path->skip_locking) {
4860 slot = btrfs_header_nritems(c) - 1;
4862 btrfs_item_key_to_cpu(c, &cur_key, slot);
4864 btrfs_node_key_to_cpu(c, &cur_key, slot);
4866 orig_lowest = path->lowest_level;
4867 btrfs_release_path(path);
4868 path->lowest_level = level;
4869 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4871 path->lowest_level = orig_lowest;
4875 c = path->nodes[level];
4876 slot = path->slots[level];
4883 btrfs_item_key_to_cpu(c, key, slot);
4885 u64 gen = btrfs_node_ptr_generation(c, slot);
4887 if (gen < min_trans) {
4891 btrfs_node_key_to_cpu(c, key, slot);
4898 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4903 struct extent_buffer *c;
4904 struct extent_buffer *next;
4905 struct btrfs_fs_info *fs_info = root->fs_info;
4906 struct btrfs_key key;
4907 bool need_commit_sem = false;
4913 * The nowait semantics are used only for write paths, where we don't
4914 * use the tree mod log and sequence numbers.
4917 ASSERT(!path->nowait);
4919 nritems = btrfs_header_nritems(path->nodes[0]);
4923 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4927 btrfs_release_path(path);
4929 path->keep_locks = 1;
4932 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4934 if (path->need_commit_sem) {
4935 path->need_commit_sem = 0;
4936 need_commit_sem = true;
4938 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4943 down_read(&fs_info->commit_root_sem);
4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4948 path->keep_locks = 0;
4953 nritems = btrfs_header_nritems(path->nodes[0]);
4955 * by releasing the path above we dropped all our locks. A balance
4956 * could have added more items next to the key that used to be
4957 * at the very end of the block. So, check again here and
4958 * advance the path if there are now more items available.
4960 if (nritems > 0 && path->slots[0] < nritems - 1) {
4967 * So the above check misses one case:
4968 * - after releasing the path above, someone has removed the item that
4969 * used to be at the very end of the block, and balance between leafs
4970 * gets another one with bigger key.offset to replace it.
4972 * This one should be returned as well, or we can get leaf corruption
4973 * later(esp. in __btrfs_drop_extents()).
4975 * And a bit more explanation about this check,
4976 * with ret > 0, the key isn't found, the path points to the slot
4977 * where it should be inserted, so the path->slots[0] item must be the
4980 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4985 while (level < BTRFS_MAX_LEVEL) {
4986 if (!path->nodes[level]) {
4991 slot = path->slots[level] + 1;
4992 c = path->nodes[level];
4993 if (slot >= btrfs_header_nritems(c)) {
4995 if (level == BTRFS_MAX_LEVEL) {
5004 * Our current level is where we're going to start from, and to
5005 * make sure lockdep doesn't complain we need to drop our locks
5006 * and nodes from 0 to our current level.
5008 for (i = 0; i < level; i++) {
5009 if (path->locks[level]) {
5010 btrfs_tree_read_unlock(path->nodes[i]);
5013 free_extent_buffer(path->nodes[i]);
5014 path->nodes[i] = NULL;
5018 ret = read_block_for_search(root, path, &next, level,
5020 if (ret == -EAGAIN && !path->nowait)
5024 btrfs_release_path(path);
5028 if (!path->skip_locking) {
5029 ret = btrfs_try_tree_read_lock(next);
5030 if (!ret && path->nowait) {
5034 if (!ret && time_seq) {
5036 * If we don't get the lock, we may be racing
5037 * with push_leaf_left, holding that lock while
5038 * itself waiting for the leaf we've currently
5039 * locked. To solve this situation, we give up
5040 * on our lock and cycle.
5042 free_extent_buffer(next);
5043 btrfs_release_path(path);
5048 btrfs_tree_read_lock(next);
5052 path->slots[level] = slot;
5055 path->nodes[level] = next;
5056 path->slots[level] = 0;
5057 if (!path->skip_locking)
5058 path->locks[level] = BTRFS_READ_LOCK;
5062 ret = read_block_for_search(root, path, &next, level,
5064 if (ret == -EAGAIN && !path->nowait)
5068 btrfs_release_path(path);
5072 if (!path->skip_locking) {
5074 if (!btrfs_try_tree_read_lock(next)) {
5079 btrfs_tree_read_lock(next);
5085 unlock_up(path, 0, 1, 0, NULL);
5086 if (need_commit_sem) {
5089 path->need_commit_sem = 1;
5090 ret2 = finish_need_commit_sem_search(path);
5091 up_read(&fs_info->commit_root_sem);
5099 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5102 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5103 return btrfs_next_old_leaf(root, path, time_seq);
5108 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5109 * searching until it gets past min_objectid or finds an item of 'type'
5111 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5113 int btrfs_previous_item(struct btrfs_root *root,
5114 struct btrfs_path *path, u64 min_objectid,
5117 struct btrfs_key found_key;
5118 struct extent_buffer *leaf;
5123 if (path->slots[0] == 0) {
5124 ret = btrfs_prev_leaf(root, path);
5130 leaf = path->nodes[0];
5131 nritems = btrfs_header_nritems(leaf);
5134 if (path->slots[0] == nritems)
5137 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5138 if (found_key.objectid < min_objectid)
5140 if (found_key.type == type)
5142 if (found_key.objectid == min_objectid &&
5143 found_key.type < type)
5150 * search in extent tree to find a previous Metadata/Data extent item with
5153 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5155 int btrfs_previous_extent_item(struct btrfs_root *root,
5156 struct btrfs_path *path, u64 min_objectid)
5158 struct btrfs_key found_key;
5159 struct extent_buffer *leaf;
5164 if (path->slots[0] == 0) {
5165 ret = btrfs_prev_leaf(root, path);
5171 leaf = path->nodes[0];
5172 nritems = btrfs_header_nritems(leaf);
5175 if (path->slots[0] == nritems)
5178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5179 if (found_key.objectid < min_objectid)
5181 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5182 found_key.type == BTRFS_METADATA_ITEM_KEY)
5184 if (found_key.objectid == min_objectid &&
5185 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5191 int __init btrfs_ctree_init(void)
5193 btrfs_path_cachep = kmem_cache_create("btrfs_path",
5194 sizeof(struct btrfs_path), 0,
5195 SLAB_MEM_SPREAD, NULL);
5196 if (!btrfs_path_cachep)
5201 void __cold btrfs_ctree_exit(void)
5203 kmem_cache_destroy(btrfs_path_cachep);