Merge tag '6.6-rc4-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[platform/kernel/linux-starfive.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
33                       int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42         u16             size;
43         const char      name[10];
44         const char      driver[12];
45 } btrfs_csums[] = {
46         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50                                      .driver = "blake2b-256" },
51 };
52
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59         u32 nr = btrfs_header_nritems(leaf);
60
61         if (nr == 0)
62                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63         return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:       leaf that we're doing a memmove on
70  * @dst_offset: item data offset we're moving to
71  * @src_offset: item data offset were' moving from
72  * @len:        length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80                                      unsigned long dst_offset,
81                                      unsigned long src_offset,
82                                      unsigned long len)
83 {
84         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:        destination leaf that we're copying into
92  * @src:        source leaf that we're copying from
93  * @dst_offset: item data offset we're copying to
94  * @src_offset: item data offset were' copying from
95  * @len:        length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103                                   const struct extent_buffer *src,
104                                   unsigned long dst_offset,
105                                   unsigned long src_offset, unsigned long len)
106 {
107         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108                            btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:        destination leaf for the items
115  * @dst_item:   the item nr we're copying into
116  * @src_item:   the item nr we're copying from
117  * @nr_items:   the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123                                       int dst_item, int src_item, int nr_items)
124 {
125         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126                               btrfs_item_nr_offset(leaf, src_item),
127                               nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:        destination leaf for the items
134  * @src:        source leaf for the items
135  * @dst_item:   the item nr we're copying into
136  * @src_item:   the item nr we're copying from
137  * @nr_items:   the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143                                    const struct extent_buffer *src,
144                                    int dst_item, int src_item, int nr_items)
145 {
146         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147                               btrfs_item_nr_offset(src, src_item),
148                               nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154         return btrfs_csums[type].size;
155 }
156
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159         u16 t = btrfs_super_csum_type(s);
160         /*
161          * csum type is validated at mount time
162          */
163         return btrfs_csum_type_size(t);
164 }
165
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168         /* csum type is validated at mount time */
169         return btrfs_csums[csum_type].name;
170 }
171
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178         /* csum type is validated at mount time */
179         return btrfs_csums[csum_type].driver[0] ?
180                 btrfs_csums[csum_type].driver :
181                 btrfs_csums[csum_type].name;
182 }
183
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186         return ARRAY_SIZE(btrfs_csums);
187 }
188
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191         might_sleep();
192
193         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199         if (!p)
200                 return;
201         btrfs_release_path(p);
202         kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213         int i;
214
215         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216                 p->slots[i] = 0;
217                 if (!p->nodes[i])
218                         continue;
219                 if (p->locks[i]) {
220                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221                         p->locks[i] = 0;
222                 }
223                 free_extent_buffer(p->nodes[i]);
224                 p->nodes[i] = NULL;
225         }
226 }
227
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int errno)
234 {
235         switch (errno) {
236         case -EIO:
237         case -EROFS:
238         case -ENOMEM:
239                 return false;
240         }
241         return true;
242 }
243
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256         struct extent_buffer *eb;
257
258         while (1) {
259                 rcu_read_lock();
260                 eb = rcu_dereference(root->node);
261
262                 /*
263                  * RCU really hurts here, we could free up the root node because
264                  * it was COWed but we may not get the new root node yet so do
265                  * the inc_not_zero dance and if it doesn't work then
266                  * synchronize_rcu and try again.
267                  */
268                 if (atomic_inc_not_zero(&eb->refs)) {
269                         rcu_read_unlock();
270                         break;
271                 }
272                 rcu_read_unlock();
273                 synchronize_rcu();
274         }
275         return eb;
276 }
277
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285         struct btrfs_fs_info *fs_info = root->fs_info;
286
287         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289                 return;
290
291         spin_lock(&fs_info->trans_lock);
292         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293                 /* Want the extent tree to be the last on the list */
294                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295                         list_move_tail(&root->dirty_list,
296                                        &fs_info->dirty_cowonly_roots);
297                 else
298                         list_move(&root->dirty_list,
299                                   &fs_info->dirty_cowonly_roots);
300         }
301         spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310                       struct btrfs_root *root,
311                       struct extent_buffer *buf,
312                       struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314         struct btrfs_fs_info *fs_info = root->fs_info;
315         struct extent_buffer *cow;
316         int ret = 0;
317         int level;
318         struct btrfs_disk_key disk_key;
319
320         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321                 trans->transid != fs_info->running_transaction->transid);
322         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323                 trans->transid != root->last_trans);
324
325         level = btrfs_header_level(buf);
326         if (level == 0)
327                 btrfs_item_key(buf, &disk_key, 0);
328         else
329                 btrfs_node_key(buf, &disk_key, 0);
330
331         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332                                      &disk_key, level, buf->start, 0,
333                                      BTRFS_NESTING_NEW_ROOT);
334         if (IS_ERR(cow))
335                 return PTR_ERR(cow);
336
337         copy_extent_buffer_full(cow, buf);
338         btrfs_set_header_bytenr(cow, cow->start);
339         btrfs_set_header_generation(cow, trans->transid);
340         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342                                      BTRFS_HEADER_FLAG_RELOC);
343         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345         else
346                 btrfs_set_header_owner(cow, new_root_objectid);
347
348         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349
350         WARN_ON(btrfs_header_generation(buf) > trans->transid);
351         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352                 ret = btrfs_inc_ref(trans, root, cow, 1);
353         else
354                 ret = btrfs_inc_ref(trans, root, cow, 0);
355         if (ret) {
356                 btrfs_tree_unlock(cow);
357                 free_extent_buffer(cow);
358                 btrfs_abort_transaction(trans, ret);
359                 return ret;
360         }
361
362         btrfs_mark_buffer_dirty(cow);
363         *cow_ret = cow;
364         return 0;
365 }
366
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
370 int btrfs_block_can_be_shared(struct btrfs_root *root,
371                               struct extent_buffer *buf)
372 {
373         /*
374          * Tree blocks not in shareable trees and tree roots are never shared.
375          * If a block was allocated after the last snapshot and the block was
376          * not allocated by tree relocation, we know the block is not shared.
377          */
378         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
379             buf != root->node && buf != root->commit_root &&
380             (btrfs_header_generation(buf) <=
381              btrfs_root_last_snapshot(&root->root_item) ||
382              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
383                 return 1;
384
385         return 0;
386 }
387
388 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
389                                        struct btrfs_root *root,
390                                        struct extent_buffer *buf,
391                                        struct extent_buffer *cow,
392                                        int *last_ref)
393 {
394         struct btrfs_fs_info *fs_info = root->fs_info;
395         u64 refs;
396         u64 owner;
397         u64 flags;
398         u64 new_flags = 0;
399         int ret;
400
401         /*
402          * Backrefs update rules:
403          *
404          * Always use full backrefs for extent pointers in tree block
405          * allocated by tree relocation.
406          *
407          * If a shared tree block is no longer referenced by its owner
408          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
409          * use full backrefs for extent pointers in tree block.
410          *
411          * If a tree block is been relocating
412          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
413          * use full backrefs for extent pointers in tree block.
414          * The reason for this is some operations (such as drop tree)
415          * are only allowed for blocks use full backrefs.
416          */
417
418         if (btrfs_block_can_be_shared(root, buf)) {
419                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
420                                                btrfs_header_level(buf), 1,
421                                                &refs, &flags);
422                 if (ret)
423                         return ret;
424                 if (unlikely(refs == 0)) {
425                         btrfs_crit(fs_info,
426                 "found 0 references for tree block at bytenr %llu level %d root %llu",
427                                    buf->start, btrfs_header_level(buf),
428                                    btrfs_root_id(root));
429                         ret = -EUCLEAN;
430                         btrfs_abort_transaction(trans, ret);
431                         return ret;
432                 }
433         } else {
434                 refs = 1;
435                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
436                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
437                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
438                 else
439                         flags = 0;
440         }
441
442         owner = btrfs_header_owner(buf);
443         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
444                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
445
446         if (refs > 1) {
447                 if ((owner == root->root_key.objectid ||
448                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
449                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
450                         ret = btrfs_inc_ref(trans, root, buf, 1);
451                         if (ret)
452                                 return ret;
453
454                         if (root->root_key.objectid ==
455                             BTRFS_TREE_RELOC_OBJECTID) {
456                                 ret = btrfs_dec_ref(trans, root, buf, 0);
457                                 if (ret)
458                                         return ret;
459                                 ret = btrfs_inc_ref(trans, root, cow, 1);
460                                 if (ret)
461                                         return ret;
462                         }
463                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
464                 } else {
465
466                         if (root->root_key.objectid ==
467                             BTRFS_TREE_RELOC_OBJECTID)
468                                 ret = btrfs_inc_ref(trans, root, cow, 1);
469                         else
470                                 ret = btrfs_inc_ref(trans, root, cow, 0);
471                         if (ret)
472                                 return ret;
473                 }
474                 if (new_flags != 0) {
475                         ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
476                         if (ret)
477                                 return ret;
478                 }
479         } else {
480                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
481                         if (root->root_key.objectid ==
482                             BTRFS_TREE_RELOC_OBJECTID)
483                                 ret = btrfs_inc_ref(trans, root, cow, 1);
484                         else
485                                 ret = btrfs_inc_ref(trans, root, cow, 0);
486                         if (ret)
487                                 return ret;
488                         ret = btrfs_dec_ref(trans, root, buf, 1);
489                         if (ret)
490                                 return ret;
491                 }
492                 btrfs_clear_buffer_dirty(trans, buf);
493                 *last_ref = 1;
494         }
495         return 0;
496 }
497
498 /*
499  * does the dirty work in cow of a single block.  The parent block (if
500  * supplied) is updated to point to the new cow copy.  The new buffer is marked
501  * dirty and returned locked.  If you modify the block it needs to be marked
502  * dirty again.
503  *
504  * search_start -- an allocation hint for the new block
505  *
506  * empty_size -- a hint that you plan on doing more cow.  This is the size in
507  * bytes the allocator should try to find free next to the block it returns.
508  * This is just a hint and may be ignored by the allocator.
509  */
510 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
511                              struct btrfs_root *root,
512                              struct extent_buffer *buf,
513                              struct extent_buffer *parent, int parent_slot,
514                              struct extent_buffer **cow_ret,
515                              u64 search_start, u64 empty_size,
516                              enum btrfs_lock_nesting nest)
517 {
518         struct btrfs_fs_info *fs_info = root->fs_info;
519         struct btrfs_disk_key disk_key;
520         struct extent_buffer *cow;
521         int level, ret;
522         int last_ref = 0;
523         int unlock_orig = 0;
524         u64 parent_start = 0;
525
526         if (*cow_ret == buf)
527                 unlock_orig = 1;
528
529         btrfs_assert_tree_write_locked(buf);
530
531         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
532                 trans->transid != fs_info->running_transaction->transid);
533         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
534                 trans->transid != root->last_trans);
535
536         level = btrfs_header_level(buf);
537
538         if (level == 0)
539                 btrfs_item_key(buf, &disk_key, 0);
540         else
541                 btrfs_node_key(buf, &disk_key, 0);
542
543         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
544                 parent_start = parent->start;
545
546         cow = btrfs_alloc_tree_block(trans, root, parent_start,
547                                      root->root_key.objectid, &disk_key, level,
548                                      search_start, empty_size, nest);
549         if (IS_ERR(cow))
550                 return PTR_ERR(cow);
551
552         /* cow is set to blocking by btrfs_init_new_buffer */
553
554         copy_extent_buffer_full(cow, buf);
555         btrfs_set_header_bytenr(cow, cow->start);
556         btrfs_set_header_generation(cow, trans->transid);
557         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
558         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
559                                      BTRFS_HEADER_FLAG_RELOC);
560         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
561                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
562         else
563                 btrfs_set_header_owner(cow, root->root_key.objectid);
564
565         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
566
567         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
568         if (ret) {
569                 btrfs_tree_unlock(cow);
570                 free_extent_buffer(cow);
571                 btrfs_abort_transaction(trans, ret);
572                 return ret;
573         }
574
575         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
576                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
577                 if (ret) {
578                         btrfs_tree_unlock(cow);
579                         free_extent_buffer(cow);
580                         btrfs_abort_transaction(trans, ret);
581                         return ret;
582                 }
583         }
584
585         if (buf == root->node) {
586                 WARN_ON(parent && parent != buf);
587                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
588                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
589                         parent_start = buf->start;
590
591                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
592                 if (ret < 0) {
593                         btrfs_tree_unlock(cow);
594                         free_extent_buffer(cow);
595                         btrfs_abort_transaction(trans, ret);
596                         return ret;
597                 }
598                 atomic_inc(&cow->refs);
599                 rcu_assign_pointer(root->node, cow);
600
601                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
602                                       parent_start, last_ref);
603                 free_extent_buffer(buf);
604                 add_root_to_dirty_list(root);
605         } else {
606                 WARN_ON(trans->transid != btrfs_header_generation(parent));
607                 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
608                                                     BTRFS_MOD_LOG_KEY_REPLACE);
609                 if (ret) {
610                         btrfs_tree_unlock(cow);
611                         free_extent_buffer(cow);
612                         btrfs_abort_transaction(trans, ret);
613                         return ret;
614                 }
615                 btrfs_set_node_blockptr(parent, parent_slot,
616                                         cow->start);
617                 btrfs_set_node_ptr_generation(parent, parent_slot,
618                                               trans->transid);
619                 btrfs_mark_buffer_dirty(parent);
620                 if (last_ref) {
621                         ret = btrfs_tree_mod_log_free_eb(buf);
622                         if (ret) {
623                                 btrfs_tree_unlock(cow);
624                                 free_extent_buffer(cow);
625                                 btrfs_abort_transaction(trans, ret);
626                                 return ret;
627                         }
628                 }
629                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
630                                       parent_start, last_ref);
631         }
632         if (unlock_orig)
633                 btrfs_tree_unlock(buf);
634         free_extent_buffer_stale(buf);
635         btrfs_mark_buffer_dirty(cow);
636         *cow_ret = cow;
637         return 0;
638 }
639
640 static inline int should_cow_block(struct btrfs_trans_handle *trans,
641                                    struct btrfs_root *root,
642                                    struct extent_buffer *buf)
643 {
644         if (btrfs_is_testing(root->fs_info))
645                 return 0;
646
647         /* Ensure we can see the FORCE_COW bit */
648         smp_mb__before_atomic();
649
650         /*
651          * We do not need to cow a block if
652          * 1) this block is not created or changed in this transaction;
653          * 2) this block does not belong to TREE_RELOC tree;
654          * 3) the root is not forced COW.
655          *
656          * What is forced COW:
657          *    when we create snapshot during committing the transaction,
658          *    after we've finished copying src root, we must COW the shared
659          *    block to ensure the metadata consistency.
660          */
661         if (btrfs_header_generation(buf) == trans->transid &&
662             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
663             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
664               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
665             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
666                 return 0;
667         return 1;
668 }
669
670 /*
671  * cows a single block, see __btrfs_cow_block for the real work.
672  * This version of it has extra checks so that a block isn't COWed more than
673  * once per transaction, as long as it hasn't been written yet
674  */
675 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
676                     struct btrfs_root *root, struct extent_buffer *buf,
677                     struct extent_buffer *parent, int parent_slot,
678                     struct extent_buffer **cow_ret,
679                     enum btrfs_lock_nesting nest)
680 {
681         struct btrfs_fs_info *fs_info = root->fs_info;
682         u64 search_start;
683         int ret;
684
685         if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
686                 btrfs_abort_transaction(trans, -EUCLEAN);
687                 btrfs_crit(fs_info,
688                    "attempt to COW block %llu on root %llu that is being deleted",
689                            buf->start, btrfs_root_id(root));
690                 return -EUCLEAN;
691         }
692
693         /*
694          * COWing must happen through a running transaction, which always
695          * matches the current fs generation (it's a transaction with a state
696          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
697          * into error state to prevent the commit of any transaction.
698          */
699         if (unlikely(trans->transaction != fs_info->running_transaction ||
700                      trans->transid != fs_info->generation)) {
701                 btrfs_abort_transaction(trans, -EUCLEAN);
702                 btrfs_crit(fs_info,
703 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
704                            buf->start, btrfs_root_id(root), trans->transid,
705                            fs_info->running_transaction->transid,
706                            fs_info->generation);
707                 return -EUCLEAN;
708         }
709
710         if (!should_cow_block(trans, root, buf)) {
711                 *cow_ret = buf;
712                 return 0;
713         }
714
715         search_start = buf->start & ~((u64)SZ_1G - 1);
716
717         /*
718          * Before CoWing this block for later modification, check if it's
719          * the subtree root and do the delayed subtree trace if needed.
720          *
721          * Also We don't care about the error, as it's handled internally.
722          */
723         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
724         ret = __btrfs_cow_block(trans, root, buf, parent,
725                                  parent_slot, cow_ret, search_start, 0, nest);
726
727         trace_btrfs_cow_block(root, buf, *cow_ret);
728
729         return ret;
730 }
731 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
732
733 /*
734  * helper function for defrag to decide if two blocks pointed to by a
735  * node are actually close by
736  */
737 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
738 {
739         if (blocknr < other && other - (blocknr + blocksize) < 32768)
740                 return 1;
741         if (blocknr > other && blocknr - (other + blocksize) < 32768)
742                 return 1;
743         return 0;
744 }
745
746 #ifdef __LITTLE_ENDIAN
747
748 /*
749  * Compare two keys, on little-endian the disk order is same as CPU order and
750  * we can avoid the conversion.
751  */
752 static int comp_keys(const struct btrfs_disk_key *disk_key,
753                      const struct btrfs_key *k2)
754 {
755         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
756
757         return btrfs_comp_cpu_keys(k1, k2);
758 }
759
760 #else
761
762 /*
763  * compare two keys in a memcmp fashion
764  */
765 static int comp_keys(const struct btrfs_disk_key *disk,
766                      const struct btrfs_key *k2)
767 {
768         struct btrfs_key k1;
769
770         btrfs_disk_key_to_cpu(&k1, disk);
771
772         return btrfs_comp_cpu_keys(&k1, k2);
773 }
774 #endif
775
776 /*
777  * same as comp_keys only with two btrfs_key's
778  */
779 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
780 {
781         if (k1->objectid > k2->objectid)
782                 return 1;
783         if (k1->objectid < k2->objectid)
784                 return -1;
785         if (k1->type > k2->type)
786                 return 1;
787         if (k1->type < k2->type)
788                 return -1;
789         if (k1->offset > k2->offset)
790                 return 1;
791         if (k1->offset < k2->offset)
792                 return -1;
793         return 0;
794 }
795
796 /*
797  * this is used by the defrag code to go through all the
798  * leaves pointed to by a node and reallocate them so that
799  * disk order is close to key order
800  */
801 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
802                        struct btrfs_root *root, struct extent_buffer *parent,
803                        int start_slot, u64 *last_ret,
804                        struct btrfs_key *progress)
805 {
806         struct btrfs_fs_info *fs_info = root->fs_info;
807         struct extent_buffer *cur;
808         u64 blocknr;
809         u64 search_start = *last_ret;
810         u64 last_block = 0;
811         u64 other;
812         u32 parent_nritems;
813         int end_slot;
814         int i;
815         int err = 0;
816         u32 blocksize;
817         int progress_passed = 0;
818         struct btrfs_disk_key disk_key;
819
820         /*
821          * COWing must happen through a running transaction, which always
822          * matches the current fs generation (it's a transaction with a state
823          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
824          * into error state to prevent the commit of any transaction.
825          */
826         if (unlikely(trans->transaction != fs_info->running_transaction ||
827                      trans->transid != fs_info->generation)) {
828                 btrfs_abort_transaction(trans, -EUCLEAN);
829                 btrfs_crit(fs_info,
830 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
831                            parent->start, btrfs_root_id(root), trans->transid,
832                            fs_info->running_transaction->transid,
833                            fs_info->generation);
834                 return -EUCLEAN;
835         }
836
837         parent_nritems = btrfs_header_nritems(parent);
838         blocksize = fs_info->nodesize;
839         end_slot = parent_nritems - 1;
840
841         if (parent_nritems <= 1)
842                 return 0;
843
844         for (i = start_slot; i <= end_slot; i++) {
845                 int close = 1;
846
847                 btrfs_node_key(parent, &disk_key, i);
848                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
849                         continue;
850
851                 progress_passed = 1;
852                 blocknr = btrfs_node_blockptr(parent, i);
853                 if (last_block == 0)
854                         last_block = blocknr;
855
856                 if (i > 0) {
857                         other = btrfs_node_blockptr(parent, i - 1);
858                         close = close_blocks(blocknr, other, blocksize);
859                 }
860                 if (!close && i < end_slot) {
861                         other = btrfs_node_blockptr(parent, i + 1);
862                         close = close_blocks(blocknr, other, blocksize);
863                 }
864                 if (close) {
865                         last_block = blocknr;
866                         continue;
867                 }
868
869                 cur = btrfs_read_node_slot(parent, i);
870                 if (IS_ERR(cur))
871                         return PTR_ERR(cur);
872                 if (search_start == 0)
873                         search_start = last_block;
874
875                 btrfs_tree_lock(cur);
876                 err = __btrfs_cow_block(trans, root, cur, parent, i,
877                                         &cur, search_start,
878                                         min(16 * blocksize,
879                                             (end_slot - i) * blocksize),
880                                         BTRFS_NESTING_COW);
881                 if (err) {
882                         btrfs_tree_unlock(cur);
883                         free_extent_buffer(cur);
884                         break;
885                 }
886                 search_start = cur->start;
887                 last_block = cur->start;
888                 *last_ret = search_start;
889                 btrfs_tree_unlock(cur);
890                 free_extent_buffer(cur);
891         }
892         return err;
893 }
894
895 /*
896  * Search for a key in the given extent_buffer.
897  *
898  * The lower boundary for the search is specified by the slot number @first_slot.
899  * Use a value of 0 to search over the whole extent buffer. Works for both
900  * leaves and nodes.
901  *
902  * The slot in the extent buffer is returned via @slot. If the key exists in the
903  * extent buffer, then @slot will point to the slot where the key is, otherwise
904  * it points to the slot where you would insert the key.
905  *
906  * Slot may point to the total number of items (i.e. one position beyond the last
907  * key) if the key is bigger than the last key in the extent buffer.
908  */
909 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
910                      const struct btrfs_key *key, int *slot)
911 {
912         unsigned long p;
913         int item_size;
914         /*
915          * Use unsigned types for the low and high slots, so that we get a more
916          * efficient division in the search loop below.
917          */
918         u32 low = first_slot;
919         u32 high = btrfs_header_nritems(eb);
920         int ret;
921         const int key_size = sizeof(struct btrfs_disk_key);
922
923         if (unlikely(low > high)) {
924                 btrfs_err(eb->fs_info,
925                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
926                           __func__, low, high, eb->start,
927                           btrfs_header_owner(eb), btrfs_header_level(eb));
928                 return -EINVAL;
929         }
930
931         if (btrfs_header_level(eb) == 0) {
932                 p = offsetof(struct btrfs_leaf, items);
933                 item_size = sizeof(struct btrfs_item);
934         } else {
935                 p = offsetof(struct btrfs_node, ptrs);
936                 item_size = sizeof(struct btrfs_key_ptr);
937         }
938
939         while (low < high) {
940                 unsigned long oip;
941                 unsigned long offset;
942                 struct btrfs_disk_key *tmp;
943                 struct btrfs_disk_key unaligned;
944                 int mid;
945
946                 mid = (low + high) / 2;
947                 offset = p + mid * item_size;
948                 oip = offset_in_page(offset);
949
950                 if (oip + key_size <= PAGE_SIZE) {
951                         const unsigned long idx = get_eb_page_index(offset);
952                         char *kaddr = page_address(eb->pages[idx]);
953
954                         oip = get_eb_offset_in_page(eb, offset);
955                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
956                 } else {
957                         read_extent_buffer(eb, &unaligned, offset, key_size);
958                         tmp = &unaligned;
959                 }
960
961                 ret = comp_keys(tmp, key);
962
963                 if (ret < 0)
964                         low = mid + 1;
965                 else if (ret > 0)
966                         high = mid;
967                 else {
968                         *slot = mid;
969                         return 0;
970                 }
971         }
972         *slot = low;
973         return 1;
974 }
975
976 static void root_add_used(struct btrfs_root *root, u32 size)
977 {
978         spin_lock(&root->accounting_lock);
979         btrfs_set_root_used(&root->root_item,
980                             btrfs_root_used(&root->root_item) + size);
981         spin_unlock(&root->accounting_lock);
982 }
983
984 static void root_sub_used(struct btrfs_root *root, u32 size)
985 {
986         spin_lock(&root->accounting_lock);
987         btrfs_set_root_used(&root->root_item,
988                             btrfs_root_used(&root->root_item) - size);
989         spin_unlock(&root->accounting_lock);
990 }
991
992 /* given a node and slot number, this reads the blocks it points to.  The
993  * extent buffer is returned with a reference taken (but unlocked).
994  */
995 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
996                                            int slot)
997 {
998         int level = btrfs_header_level(parent);
999         struct btrfs_tree_parent_check check = { 0 };
1000         struct extent_buffer *eb;
1001
1002         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1003                 return ERR_PTR(-ENOENT);
1004
1005         ASSERT(level);
1006
1007         check.level = level - 1;
1008         check.transid = btrfs_node_ptr_generation(parent, slot);
1009         check.owner_root = btrfs_header_owner(parent);
1010         check.has_first_key = true;
1011         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1012
1013         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1014                              &check);
1015         if (IS_ERR(eb))
1016                 return eb;
1017         if (!extent_buffer_uptodate(eb)) {
1018                 free_extent_buffer(eb);
1019                 return ERR_PTR(-EIO);
1020         }
1021
1022         return eb;
1023 }
1024
1025 /*
1026  * node level balancing, used to make sure nodes are in proper order for
1027  * item deletion.  We balance from the top down, so we have to make sure
1028  * that a deletion won't leave an node completely empty later on.
1029  */
1030 static noinline int balance_level(struct btrfs_trans_handle *trans,
1031                          struct btrfs_root *root,
1032                          struct btrfs_path *path, int level)
1033 {
1034         struct btrfs_fs_info *fs_info = root->fs_info;
1035         struct extent_buffer *right = NULL;
1036         struct extent_buffer *mid;
1037         struct extent_buffer *left = NULL;
1038         struct extent_buffer *parent = NULL;
1039         int ret = 0;
1040         int wret;
1041         int pslot;
1042         int orig_slot = path->slots[level];
1043         u64 orig_ptr;
1044
1045         ASSERT(level > 0);
1046
1047         mid = path->nodes[level];
1048
1049         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1050         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1051
1052         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1053
1054         if (level < BTRFS_MAX_LEVEL - 1) {
1055                 parent = path->nodes[level + 1];
1056                 pslot = path->slots[level + 1];
1057         }
1058
1059         /*
1060          * deal with the case where there is only one pointer in the root
1061          * by promoting the node below to a root
1062          */
1063         if (!parent) {
1064                 struct extent_buffer *child;
1065
1066                 if (btrfs_header_nritems(mid) != 1)
1067                         return 0;
1068
1069                 /* promote the child to a root */
1070                 child = btrfs_read_node_slot(mid, 0);
1071                 if (IS_ERR(child)) {
1072                         ret = PTR_ERR(child);
1073                         goto out;
1074                 }
1075
1076                 btrfs_tree_lock(child);
1077                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1078                                       BTRFS_NESTING_COW);
1079                 if (ret) {
1080                         btrfs_tree_unlock(child);
1081                         free_extent_buffer(child);
1082                         goto out;
1083                 }
1084
1085                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1086                 if (ret < 0) {
1087                         btrfs_tree_unlock(child);
1088                         free_extent_buffer(child);
1089                         btrfs_abort_transaction(trans, ret);
1090                         goto out;
1091                 }
1092                 rcu_assign_pointer(root->node, child);
1093
1094                 add_root_to_dirty_list(root);
1095                 btrfs_tree_unlock(child);
1096
1097                 path->locks[level] = 0;
1098                 path->nodes[level] = NULL;
1099                 btrfs_clear_buffer_dirty(trans, mid);
1100                 btrfs_tree_unlock(mid);
1101                 /* once for the path */
1102                 free_extent_buffer(mid);
1103
1104                 root_sub_used(root, mid->len);
1105                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1106                 /* once for the root ptr */
1107                 free_extent_buffer_stale(mid);
1108                 return 0;
1109         }
1110         if (btrfs_header_nritems(mid) >
1111             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1112                 return 0;
1113
1114         if (pslot) {
1115                 left = btrfs_read_node_slot(parent, pslot - 1);
1116                 if (IS_ERR(left)) {
1117                         ret = PTR_ERR(left);
1118                         left = NULL;
1119                         goto out;
1120                 }
1121
1122                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1123                 wret = btrfs_cow_block(trans, root, left,
1124                                        parent, pslot - 1, &left,
1125                                        BTRFS_NESTING_LEFT_COW);
1126                 if (wret) {
1127                         ret = wret;
1128                         goto out;
1129                 }
1130         }
1131
1132         if (pslot + 1 < btrfs_header_nritems(parent)) {
1133                 right = btrfs_read_node_slot(parent, pslot + 1);
1134                 if (IS_ERR(right)) {
1135                         ret = PTR_ERR(right);
1136                         right = NULL;
1137                         goto out;
1138                 }
1139
1140                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1141                 wret = btrfs_cow_block(trans, root, right,
1142                                        parent, pslot + 1, &right,
1143                                        BTRFS_NESTING_RIGHT_COW);
1144                 if (wret) {
1145                         ret = wret;
1146                         goto out;
1147                 }
1148         }
1149
1150         /* first, try to make some room in the middle buffer */
1151         if (left) {
1152                 orig_slot += btrfs_header_nritems(left);
1153                 wret = push_node_left(trans, left, mid, 1);
1154                 if (wret < 0)
1155                         ret = wret;
1156         }
1157
1158         /*
1159          * then try to empty the right most buffer into the middle
1160          */
1161         if (right) {
1162                 wret = push_node_left(trans, mid, right, 1);
1163                 if (wret < 0 && wret != -ENOSPC)
1164                         ret = wret;
1165                 if (btrfs_header_nritems(right) == 0) {
1166                         btrfs_clear_buffer_dirty(trans, right);
1167                         btrfs_tree_unlock(right);
1168                         ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1169                         if (ret < 0) {
1170                                 free_extent_buffer_stale(right);
1171                                 right = NULL;
1172                                 goto out;
1173                         }
1174                         root_sub_used(root, right->len);
1175                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1176                                               0, 1);
1177                         free_extent_buffer_stale(right);
1178                         right = NULL;
1179                 } else {
1180                         struct btrfs_disk_key right_key;
1181                         btrfs_node_key(right, &right_key, 0);
1182                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1183                                         BTRFS_MOD_LOG_KEY_REPLACE);
1184                         if (ret < 0) {
1185                                 btrfs_abort_transaction(trans, ret);
1186                                 goto out;
1187                         }
1188                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1189                         btrfs_mark_buffer_dirty(parent);
1190                 }
1191         }
1192         if (btrfs_header_nritems(mid) == 1) {
1193                 /*
1194                  * we're not allowed to leave a node with one item in the
1195                  * tree during a delete.  A deletion from lower in the tree
1196                  * could try to delete the only pointer in this node.
1197                  * So, pull some keys from the left.
1198                  * There has to be a left pointer at this point because
1199                  * otherwise we would have pulled some pointers from the
1200                  * right
1201                  */
1202                 if (unlikely(!left)) {
1203                         btrfs_crit(fs_info,
1204 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1205                                    parent->start, btrfs_header_level(parent),
1206                                    mid->start, btrfs_root_id(root));
1207                         ret = -EUCLEAN;
1208                         btrfs_abort_transaction(trans, ret);
1209                         goto out;
1210                 }
1211                 wret = balance_node_right(trans, mid, left);
1212                 if (wret < 0) {
1213                         ret = wret;
1214                         goto out;
1215                 }
1216                 if (wret == 1) {
1217                         wret = push_node_left(trans, left, mid, 1);
1218                         if (wret < 0)
1219                                 ret = wret;
1220                 }
1221                 BUG_ON(wret == 1);
1222         }
1223         if (btrfs_header_nritems(mid) == 0) {
1224                 btrfs_clear_buffer_dirty(trans, mid);
1225                 btrfs_tree_unlock(mid);
1226                 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1227                 if (ret < 0) {
1228                         free_extent_buffer_stale(mid);
1229                         mid = NULL;
1230                         goto out;
1231                 }
1232                 root_sub_used(root, mid->len);
1233                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1234                 free_extent_buffer_stale(mid);
1235                 mid = NULL;
1236         } else {
1237                 /* update the parent key to reflect our changes */
1238                 struct btrfs_disk_key mid_key;
1239                 btrfs_node_key(mid, &mid_key, 0);
1240                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1241                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1242                 if (ret < 0) {
1243                         btrfs_abort_transaction(trans, ret);
1244                         goto out;
1245                 }
1246                 btrfs_set_node_key(parent, &mid_key, pslot);
1247                 btrfs_mark_buffer_dirty(parent);
1248         }
1249
1250         /* update the path */
1251         if (left) {
1252                 if (btrfs_header_nritems(left) > orig_slot) {
1253                         atomic_inc(&left->refs);
1254                         /* left was locked after cow */
1255                         path->nodes[level] = left;
1256                         path->slots[level + 1] -= 1;
1257                         path->slots[level] = orig_slot;
1258                         if (mid) {
1259                                 btrfs_tree_unlock(mid);
1260                                 free_extent_buffer(mid);
1261                         }
1262                 } else {
1263                         orig_slot -= btrfs_header_nritems(left);
1264                         path->slots[level] = orig_slot;
1265                 }
1266         }
1267         /* double check we haven't messed things up */
1268         if (orig_ptr !=
1269             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1270                 BUG();
1271 out:
1272         if (right) {
1273                 btrfs_tree_unlock(right);
1274                 free_extent_buffer(right);
1275         }
1276         if (left) {
1277                 if (path->nodes[level] != left)
1278                         btrfs_tree_unlock(left);
1279                 free_extent_buffer(left);
1280         }
1281         return ret;
1282 }
1283
1284 /* Node balancing for insertion.  Here we only split or push nodes around
1285  * when they are completely full.  This is also done top down, so we
1286  * have to be pessimistic.
1287  */
1288 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1289                                           struct btrfs_root *root,
1290                                           struct btrfs_path *path, int level)
1291 {
1292         struct btrfs_fs_info *fs_info = root->fs_info;
1293         struct extent_buffer *right = NULL;
1294         struct extent_buffer *mid;
1295         struct extent_buffer *left = NULL;
1296         struct extent_buffer *parent = NULL;
1297         int ret = 0;
1298         int wret;
1299         int pslot;
1300         int orig_slot = path->slots[level];
1301
1302         if (level == 0)
1303                 return 1;
1304
1305         mid = path->nodes[level];
1306         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1307
1308         if (level < BTRFS_MAX_LEVEL - 1) {
1309                 parent = path->nodes[level + 1];
1310                 pslot = path->slots[level + 1];
1311         }
1312
1313         if (!parent)
1314                 return 1;
1315
1316         /* first, try to make some room in the middle buffer */
1317         if (pslot) {
1318                 u32 left_nr;
1319
1320                 left = btrfs_read_node_slot(parent, pslot - 1);
1321                 if (IS_ERR(left))
1322                         return PTR_ERR(left);
1323
1324                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1325
1326                 left_nr = btrfs_header_nritems(left);
1327                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1328                         wret = 1;
1329                 } else {
1330                         ret = btrfs_cow_block(trans, root, left, parent,
1331                                               pslot - 1, &left,
1332                                               BTRFS_NESTING_LEFT_COW);
1333                         if (ret)
1334                                 wret = 1;
1335                         else {
1336                                 wret = push_node_left(trans, left, mid, 0);
1337                         }
1338                 }
1339                 if (wret < 0)
1340                         ret = wret;
1341                 if (wret == 0) {
1342                         struct btrfs_disk_key disk_key;
1343                         orig_slot += left_nr;
1344                         btrfs_node_key(mid, &disk_key, 0);
1345                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1346                                         BTRFS_MOD_LOG_KEY_REPLACE);
1347                         if (ret < 0) {
1348                                 btrfs_tree_unlock(left);
1349                                 free_extent_buffer(left);
1350                                 btrfs_abort_transaction(trans, ret);
1351                                 return ret;
1352                         }
1353                         btrfs_set_node_key(parent, &disk_key, pslot);
1354                         btrfs_mark_buffer_dirty(parent);
1355                         if (btrfs_header_nritems(left) > orig_slot) {
1356                                 path->nodes[level] = left;
1357                                 path->slots[level + 1] -= 1;
1358                                 path->slots[level] = orig_slot;
1359                                 btrfs_tree_unlock(mid);
1360                                 free_extent_buffer(mid);
1361                         } else {
1362                                 orig_slot -=
1363                                         btrfs_header_nritems(left);
1364                                 path->slots[level] = orig_slot;
1365                                 btrfs_tree_unlock(left);
1366                                 free_extent_buffer(left);
1367                         }
1368                         return 0;
1369                 }
1370                 btrfs_tree_unlock(left);
1371                 free_extent_buffer(left);
1372         }
1373
1374         /*
1375          * then try to empty the right most buffer into the middle
1376          */
1377         if (pslot + 1 < btrfs_header_nritems(parent)) {
1378                 u32 right_nr;
1379
1380                 right = btrfs_read_node_slot(parent, pslot + 1);
1381                 if (IS_ERR(right))
1382                         return PTR_ERR(right);
1383
1384                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1385
1386                 right_nr = btrfs_header_nritems(right);
1387                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1388                         wret = 1;
1389                 } else {
1390                         ret = btrfs_cow_block(trans, root, right,
1391                                               parent, pslot + 1,
1392                                               &right, BTRFS_NESTING_RIGHT_COW);
1393                         if (ret)
1394                                 wret = 1;
1395                         else {
1396                                 wret = balance_node_right(trans, right, mid);
1397                         }
1398                 }
1399                 if (wret < 0)
1400                         ret = wret;
1401                 if (wret == 0) {
1402                         struct btrfs_disk_key disk_key;
1403
1404                         btrfs_node_key(right, &disk_key, 0);
1405                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1406                                         BTRFS_MOD_LOG_KEY_REPLACE);
1407                         if (ret < 0) {
1408                                 btrfs_tree_unlock(right);
1409                                 free_extent_buffer(right);
1410                                 btrfs_abort_transaction(trans, ret);
1411                                 return ret;
1412                         }
1413                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1414                         btrfs_mark_buffer_dirty(parent);
1415
1416                         if (btrfs_header_nritems(mid) <= orig_slot) {
1417                                 path->nodes[level] = right;
1418                                 path->slots[level + 1] += 1;
1419                                 path->slots[level] = orig_slot -
1420                                         btrfs_header_nritems(mid);
1421                                 btrfs_tree_unlock(mid);
1422                                 free_extent_buffer(mid);
1423                         } else {
1424                                 btrfs_tree_unlock(right);
1425                                 free_extent_buffer(right);
1426                         }
1427                         return 0;
1428                 }
1429                 btrfs_tree_unlock(right);
1430                 free_extent_buffer(right);
1431         }
1432         return 1;
1433 }
1434
1435 /*
1436  * readahead one full node of leaves, finding things that are close
1437  * to the block in 'slot', and triggering ra on them.
1438  */
1439 static void reada_for_search(struct btrfs_fs_info *fs_info,
1440                              struct btrfs_path *path,
1441                              int level, int slot, u64 objectid)
1442 {
1443         struct extent_buffer *node;
1444         struct btrfs_disk_key disk_key;
1445         u32 nritems;
1446         u64 search;
1447         u64 target;
1448         u64 nread = 0;
1449         u64 nread_max;
1450         u32 nr;
1451         u32 blocksize;
1452         u32 nscan = 0;
1453
1454         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1455                 return;
1456
1457         if (!path->nodes[level])
1458                 return;
1459
1460         node = path->nodes[level];
1461
1462         /*
1463          * Since the time between visiting leaves is much shorter than the time
1464          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1465          * much IO at once (possibly random).
1466          */
1467         if (path->reada == READA_FORWARD_ALWAYS) {
1468                 if (level > 1)
1469                         nread_max = node->fs_info->nodesize;
1470                 else
1471                         nread_max = SZ_128K;
1472         } else {
1473                 nread_max = SZ_64K;
1474         }
1475
1476         search = btrfs_node_blockptr(node, slot);
1477         blocksize = fs_info->nodesize;
1478         if (path->reada != READA_FORWARD_ALWAYS) {
1479                 struct extent_buffer *eb;
1480
1481                 eb = find_extent_buffer(fs_info, search);
1482                 if (eb) {
1483                         free_extent_buffer(eb);
1484                         return;
1485                 }
1486         }
1487
1488         target = search;
1489
1490         nritems = btrfs_header_nritems(node);
1491         nr = slot;
1492
1493         while (1) {
1494                 if (path->reada == READA_BACK) {
1495                         if (nr == 0)
1496                                 break;
1497                         nr--;
1498                 } else if (path->reada == READA_FORWARD ||
1499                            path->reada == READA_FORWARD_ALWAYS) {
1500                         nr++;
1501                         if (nr >= nritems)
1502                                 break;
1503                 }
1504                 if (path->reada == READA_BACK && objectid) {
1505                         btrfs_node_key(node, &disk_key, nr);
1506                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1507                                 break;
1508                 }
1509                 search = btrfs_node_blockptr(node, nr);
1510                 if (path->reada == READA_FORWARD_ALWAYS ||
1511                     (search <= target && target - search <= 65536) ||
1512                     (search > target && search - target <= 65536)) {
1513                         btrfs_readahead_node_child(node, nr);
1514                         nread += blocksize;
1515                 }
1516                 nscan++;
1517                 if (nread > nread_max || nscan > 32)
1518                         break;
1519         }
1520 }
1521
1522 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1523 {
1524         struct extent_buffer *parent;
1525         int slot;
1526         int nritems;
1527
1528         parent = path->nodes[level + 1];
1529         if (!parent)
1530                 return;
1531
1532         nritems = btrfs_header_nritems(parent);
1533         slot = path->slots[level + 1];
1534
1535         if (slot > 0)
1536                 btrfs_readahead_node_child(parent, slot - 1);
1537         if (slot + 1 < nritems)
1538                 btrfs_readahead_node_child(parent, slot + 1);
1539 }
1540
1541
1542 /*
1543  * when we walk down the tree, it is usually safe to unlock the higher layers
1544  * in the tree.  The exceptions are when our path goes through slot 0, because
1545  * operations on the tree might require changing key pointers higher up in the
1546  * tree.
1547  *
1548  * callers might also have set path->keep_locks, which tells this code to keep
1549  * the lock if the path points to the last slot in the block.  This is part of
1550  * walking through the tree, and selecting the next slot in the higher block.
1551  *
1552  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1553  * if lowest_unlock is 1, level 0 won't be unlocked
1554  */
1555 static noinline void unlock_up(struct btrfs_path *path, int level,
1556                                int lowest_unlock, int min_write_lock_level,
1557                                int *write_lock_level)
1558 {
1559         int i;
1560         int skip_level = level;
1561         bool check_skip = true;
1562
1563         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1564                 if (!path->nodes[i])
1565                         break;
1566                 if (!path->locks[i])
1567                         break;
1568
1569                 if (check_skip) {
1570                         if (path->slots[i] == 0) {
1571                                 skip_level = i + 1;
1572                                 continue;
1573                         }
1574
1575                         if (path->keep_locks) {
1576                                 u32 nritems;
1577
1578                                 nritems = btrfs_header_nritems(path->nodes[i]);
1579                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1580                                         skip_level = i + 1;
1581                                         continue;
1582                                 }
1583                         }
1584                 }
1585
1586                 if (i >= lowest_unlock && i > skip_level) {
1587                         check_skip = false;
1588                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1589                         path->locks[i] = 0;
1590                         if (write_lock_level &&
1591                             i > min_write_lock_level &&
1592                             i <= *write_lock_level) {
1593                                 *write_lock_level = i - 1;
1594                         }
1595                 }
1596         }
1597 }
1598
1599 /*
1600  * Helper function for btrfs_search_slot() and other functions that do a search
1601  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1602  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1603  * its pages from disk.
1604  *
1605  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1606  * whole btree search, starting again from the current root node.
1607  */
1608 static int
1609 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1610                       struct extent_buffer **eb_ret, int level, int slot,
1611                       const struct btrfs_key *key)
1612 {
1613         struct btrfs_fs_info *fs_info = root->fs_info;
1614         struct btrfs_tree_parent_check check = { 0 };
1615         u64 blocknr;
1616         u64 gen;
1617         struct extent_buffer *tmp;
1618         int ret;
1619         int parent_level;
1620         bool unlock_up;
1621
1622         unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1623         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1624         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1625         parent_level = btrfs_header_level(*eb_ret);
1626         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1627         check.has_first_key = true;
1628         check.level = parent_level - 1;
1629         check.transid = gen;
1630         check.owner_root = root->root_key.objectid;
1631
1632         /*
1633          * If we need to read an extent buffer from disk and we are holding locks
1634          * on upper level nodes, we unlock all the upper nodes before reading the
1635          * extent buffer, and then return -EAGAIN to the caller as it needs to
1636          * restart the search. We don't release the lock on the current level
1637          * because we need to walk this node to figure out which blocks to read.
1638          */
1639         tmp = find_extent_buffer(fs_info, blocknr);
1640         if (tmp) {
1641                 if (p->reada == READA_FORWARD_ALWAYS)
1642                         reada_for_search(fs_info, p, level, slot, key->objectid);
1643
1644                 /* first we do an atomic uptodate check */
1645                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1646                         /*
1647                          * Do extra check for first_key, eb can be stale due to
1648                          * being cached, read from scrub, or have multiple
1649                          * parents (shared tree blocks).
1650                          */
1651                         if (btrfs_verify_level_key(tmp,
1652                                         parent_level - 1, &check.first_key, gen)) {
1653                                 free_extent_buffer(tmp);
1654                                 return -EUCLEAN;
1655                         }
1656                         *eb_ret = tmp;
1657                         return 0;
1658                 }
1659
1660                 if (p->nowait) {
1661                         free_extent_buffer(tmp);
1662                         return -EAGAIN;
1663                 }
1664
1665                 if (unlock_up)
1666                         btrfs_unlock_up_safe(p, level + 1);
1667
1668                 /* now we're allowed to do a blocking uptodate check */
1669                 ret = btrfs_read_extent_buffer(tmp, &check);
1670                 if (ret) {
1671                         free_extent_buffer(tmp);
1672                         btrfs_release_path(p);
1673                         return -EIO;
1674                 }
1675                 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1676                         free_extent_buffer(tmp);
1677                         btrfs_release_path(p);
1678                         return -EUCLEAN;
1679                 }
1680
1681                 if (unlock_up)
1682                         ret = -EAGAIN;
1683
1684                 goto out;
1685         } else if (p->nowait) {
1686                 return -EAGAIN;
1687         }
1688
1689         if (unlock_up) {
1690                 btrfs_unlock_up_safe(p, level + 1);
1691                 ret = -EAGAIN;
1692         } else {
1693                 ret = 0;
1694         }
1695
1696         if (p->reada != READA_NONE)
1697                 reada_for_search(fs_info, p, level, slot, key->objectid);
1698
1699         tmp = read_tree_block(fs_info, blocknr, &check);
1700         if (IS_ERR(tmp)) {
1701                 btrfs_release_path(p);
1702                 return PTR_ERR(tmp);
1703         }
1704         /*
1705          * If the read above didn't mark this buffer up to date,
1706          * it will never end up being up to date.  Set ret to EIO now
1707          * and give up so that our caller doesn't loop forever
1708          * on our EAGAINs.
1709          */
1710         if (!extent_buffer_uptodate(tmp))
1711                 ret = -EIO;
1712
1713 out:
1714         if (ret == 0) {
1715                 *eb_ret = tmp;
1716         } else {
1717                 free_extent_buffer(tmp);
1718                 btrfs_release_path(p);
1719         }
1720
1721         return ret;
1722 }
1723
1724 /*
1725  * helper function for btrfs_search_slot.  This does all of the checks
1726  * for node-level blocks and does any balancing required based on
1727  * the ins_len.
1728  *
1729  * If no extra work was required, zero is returned.  If we had to
1730  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1731  * start over
1732  */
1733 static int
1734 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1735                        struct btrfs_root *root, struct btrfs_path *p,
1736                        struct extent_buffer *b, int level, int ins_len,
1737                        int *write_lock_level)
1738 {
1739         struct btrfs_fs_info *fs_info = root->fs_info;
1740         int ret = 0;
1741
1742         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1743             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1744
1745                 if (*write_lock_level < level + 1) {
1746                         *write_lock_level = level + 1;
1747                         btrfs_release_path(p);
1748                         return -EAGAIN;
1749                 }
1750
1751                 reada_for_balance(p, level);
1752                 ret = split_node(trans, root, p, level);
1753
1754                 b = p->nodes[level];
1755         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1756                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1757
1758                 if (*write_lock_level < level + 1) {
1759                         *write_lock_level = level + 1;
1760                         btrfs_release_path(p);
1761                         return -EAGAIN;
1762                 }
1763
1764                 reada_for_balance(p, level);
1765                 ret = balance_level(trans, root, p, level);
1766                 if (ret)
1767                         return ret;
1768
1769                 b = p->nodes[level];
1770                 if (!b) {
1771                         btrfs_release_path(p);
1772                         return -EAGAIN;
1773                 }
1774                 BUG_ON(btrfs_header_nritems(b) == 1);
1775         }
1776         return ret;
1777 }
1778
1779 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1780                 u64 iobjectid, u64 ioff, u8 key_type,
1781                 struct btrfs_key *found_key)
1782 {
1783         int ret;
1784         struct btrfs_key key;
1785         struct extent_buffer *eb;
1786
1787         ASSERT(path);
1788         ASSERT(found_key);
1789
1790         key.type = key_type;
1791         key.objectid = iobjectid;
1792         key.offset = ioff;
1793
1794         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1795         if (ret < 0)
1796                 return ret;
1797
1798         eb = path->nodes[0];
1799         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1800                 ret = btrfs_next_leaf(fs_root, path);
1801                 if (ret)
1802                         return ret;
1803                 eb = path->nodes[0];
1804         }
1805
1806         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1807         if (found_key->type != key.type ||
1808                         found_key->objectid != key.objectid)
1809                 return 1;
1810
1811         return 0;
1812 }
1813
1814 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1815                                                         struct btrfs_path *p,
1816                                                         int write_lock_level)
1817 {
1818         struct extent_buffer *b;
1819         int root_lock = 0;
1820         int level = 0;
1821
1822         if (p->search_commit_root) {
1823                 b = root->commit_root;
1824                 atomic_inc(&b->refs);
1825                 level = btrfs_header_level(b);
1826                 /*
1827                  * Ensure that all callers have set skip_locking when
1828                  * p->search_commit_root = 1.
1829                  */
1830                 ASSERT(p->skip_locking == 1);
1831
1832                 goto out;
1833         }
1834
1835         if (p->skip_locking) {
1836                 b = btrfs_root_node(root);
1837                 level = btrfs_header_level(b);
1838                 goto out;
1839         }
1840
1841         /* We try very hard to do read locks on the root */
1842         root_lock = BTRFS_READ_LOCK;
1843
1844         /*
1845          * If the level is set to maximum, we can skip trying to get the read
1846          * lock.
1847          */
1848         if (write_lock_level < BTRFS_MAX_LEVEL) {
1849                 /*
1850                  * We don't know the level of the root node until we actually
1851                  * have it read locked
1852                  */
1853                 if (p->nowait) {
1854                         b = btrfs_try_read_lock_root_node(root);
1855                         if (IS_ERR(b))
1856                                 return b;
1857                 } else {
1858                         b = btrfs_read_lock_root_node(root);
1859                 }
1860                 level = btrfs_header_level(b);
1861                 if (level > write_lock_level)
1862                         goto out;
1863
1864                 /* Whoops, must trade for write lock */
1865                 btrfs_tree_read_unlock(b);
1866                 free_extent_buffer(b);
1867         }
1868
1869         b = btrfs_lock_root_node(root);
1870         root_lock = BTRFS_WRITE_LOCK;
1871
1872         /* The level might have changed, check again */
1873         level = btrfs_header_level(b);
1874
1875 out:
1876         /*
1877          * The root may have failed to write out at some point, and thus is no
1878          * longer valid, return an error in this case.
1879          */
1880         if (!extent_buffer_uptodate(b)) {
1881                 if (root_lock)
1882                         btrfs_tree_unlock_rw(b, root_lock);
1883                 free_extent_buffer(b);
1884                 return ERR_PTR(-EIO);
1885         }
1886
1887         p->nodes[level] = b;
1888         if (!p->skip_locking)
1889                 p->locks[level] = root_lock;
1890         /*
1891          * Callers are responsible for dropping b's references.
1892          */
1893         return b;
1894 }
1895
1896 /*
1897  * Replace the extent buffer at the lowest level of the path with a cloned
1898  * version. The purpose is to be able to use it safely, after releasing the
1899  * commit root semaphore, even if relocation is happening in parallel, the
1900  * transaction used for relocation is committed and the extent buffer is
1901  * reallocated in the next transaction.
1902  *
1903  * This is used in a context where the caller does not prevent transaction
1904  * commits from happening, either by holding a transaction handle or holding
1905  * some lock, while it's doing searches through a commit root.
1906  * At the moment it's only used for send operations.
1907  */
1908 static int finish_need_commit_sem_search(struct btrfs_path *path)
1909 {
1910         const int i = path->lowest_level;
1911         const int slot = path->slots[i];
1912         struct extent_buffer *lowest = path->nodes[i];
1913         struct extent_buffer *clone;
1914
1915         ASSERT(path->need_commit_sem);
1916
1917         if (!lowest)
1918                 return 0;
1919
1920         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1921
1922         clone = btrfs_clone_extent_buffer(lowest);
1923         if (!clone)
1924                 return -ENOMEM;
1925
1926         btrfs_release_path(path);
1927         path->nodes[i] = clone;
1928         path->slots[i] = slot;
1929
1930         return 0;
1931 }
1932
1933 static inline int search_for_key_slot(struct extent_buffer *eb,
1934                                       int search_low_slot,
1935                                       const struct btrfs_key *key,
1936                                       int prev_cmp,
1937                                       int *slot)
1938 {
1939         /*
1940          * If a previous call to btrfs_bin_search() on a parent node returned an
1941          * exact match (prev_cmp == 0), we can safely assume the target key will
1942          * always be at slot 0 on lower levels, since each key pointer
1943          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1944          * subtree it points to. Thus we can skip searching lower levels.
1945          */
1946         if (prev_cmp == 0) {
1947                 *slot = 0;
1948                 return 0;
1949         }
1950
1951         return btrfs_bin_search(eb, search_low_slot, key, slot);
1952 }
1953
1954 static int search_leaf(struct btrfs_trans_handle *trans,
1955                        struct btrfs_root *root,
1956                        const struct btrfs_key *key,
1957                        struct btrfs_path *path,
1958                        int ins_len,
1959                        int prev_cmp)
1960 {
1961         struct extent_buffer *leaf = path->nodes[0];
1962         int leaf_free_space = -1;
1963         int search_low_slot = 0;
1964         int ret;
1965         bool do_bin_search = true;
1966
1967         /*
1968          * If we are doing an insertion, the leaf has enough free space and the
1969          * destination slot for the key is not slot 0, then we can unlock our
1970          * write lock on the parent, and any other upper nodes, before doing the
1971          * binary search on the leaf (with search_for_key_slot()), allowing other
1972          * tasks to lock the parent and any other upper nodes.
1973          */
1974         if (ins_len > 0) {
1975                 /*
1976                  * Cache the leaf free space, since we will need it later and it
1977                  * will not change until then.
1978                  */
1979                 leaf_free_space = btrfs_leaf_free_space(leaf);
1980
1981                 /*
1982                  * !path->locks[1] means we have a single node tree, the leaf is
1983                  * the root of the tree.
1984                  */
1985                 if (path->locks[1] && leaf_free_space >= ins_len) {
1986                         struct btrfs_disk_key first_key;
1987
1988                         ASSERT(btrfs_header_nritems(leaf) > 0);
1989                         btrfs_item_key(leaf, &first_key, 0);
1990
1991                         /*
1992                          * Doing the extra comparison with the first key is cheap,
1993                          * taking into account that the first key is very likely
1994                          * already in a cache line because it immediately follows
1995                          * the extent buffer's header and we have recently accessed
1996                          * the header's level field.
1997                          */
1998                         ret = comp_keys(&first_key, key);
1999                         if (ret < 0) {
2000                                 /*
2001                                  * The first key is smaller than the key we want
2002                                  * to insert, so we are safe to unlock all upper
2003                                  * nodes and we have to do the binary search.
2004                                  *
2005                                  * We do use btrfs_unlock_up_safe() and not
2006                                  * unlock_up() because the later does not unlock
2007                                  * nodes with a slot of 0 - we can safely unlock
2008                                  * any node even if its slot is 0 since in this
2009                                  * case the key does not end up at slot 0 of the
2010                                  * leaf and there's no need to split the leaf.
2011                                  */
2012                                 btrfs_unlock_up_safe(path, 1);
2013                                 search_low_slot = 1;
2014                         } else {
2015                                 /*
2016                                  * The first key is >= then the key we want to
2017                                  * insert, so we can skip the binary search as
2018                                  * the target key will be at slot 0.
2019                                  *
2020                                  * We can not unlock upper nodes when the key is
2021                                  * less than the first key, because we will need
2022                                  * to update the key at slot 0 of the parent node
2023                                  * and possibly of other upper nodes too.
2024                                  * If the key matches the first key, then we can
2025                                  * unlock all the upper nodes, using
2026                                  * btrfs_unlock_up_safe() instead of unlock_up()
2027                                  * as stated above.
2028                                  */
2029                                 if (ret == 0)
2030                                         btrfs_unlock_up_safe(path, 1);
2031                                 /*
2032                                  * ret is already 0 or 1, matching the result of
2033                                  * a btrfs_bin_search() call, so there is no need
2034                                  * to adjust it.
2035                                  */
2036                                 do_bin_search = false;
2037                                 path->slots[0] = 0;
2038                         }
2039                 }
2040         }
2041
2042         if (do_bin_search) {
2043                 ret = search_for_key_slot(leaf, search_low_slot, key,
2044                                           prev_cmp, &path->slots[0]);
2045                 if (ret < 0)
2046                         return ret;
2047         }
2048
2049         if (ins_len > 0) {
2050                 /*
2051                  * Item key already exists. In this case, if we are allowed to
2052                  * insert the item (for example, in dir_item case, item key
2053                  * collision is allowed), it will be merged with the original
2054                  * item. Only the item size grows, no new btrfs item will be
2055                  * added. If search_for_extension is not set, ins_len already
2056                  * accounts the size btrfs_item, deduct it here so leaf space
2057                  * check will be correct.
2058                  */
2059                 if (ret == 0 && !path->search_for_extension) {
2060                         ASSERT(ins_len >= sizeof(struct btrfs_item));
2061                         ins_len -= sizeof(struct btrfs_item);
2062                 }
2063
2064                 ASSERT(leaf_free_space >= 0);
2065
2066                 if (leaf_free_space < ins_len) {
2067                         int err;
2068
2069                         err = split_leaf(trans, root, key, path, ins_len,
2070                                          (ret == 0));
2071                         ASSERT(err <= 0);
2072                         if (WARN_ON(err > 0))
2073                                 err = -EUCLEAN;
2074                         if (err)
2075                                 ret = err;
2076                 }
2077         }
2078
2079         return ret;
2080 }
2081
2082 /*
2083  * btrfs_search_slot - look for a key in a tree and perform necessary
2084  * modifications to preserve tree invariants.
2085  *
2086  * @trans:      Handle of transaction, used when modifying the tree
2087  * @p:          Holds all btree nodes along the search path
2088  * @root:       The root node of the tree
2089  * @key:        The key we are looking for
2090  * @ins_len:    Indicates purpose of search:
2091  *              >0  for inserts it's size of item inserted (*)
2092  *              <0  for deletions
2093  *               0  for plain searches, not modifying the tree
2094  *
2095  *              (*) If size of item inserted doesn't include
2096  *              sizeof(struct btrfs_item), then p->search_for_extension must
2097  *              be set.
2098  * @cow:        boolean should CoW operations be performed. Must always be 1
2099  *              when modifying the tree.
2100  *
2101  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2102  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2103  *
2104  * If @key is found, 0 is returned and you can find the item in the leaf level
2105  * of the path (level 0)
2106  *
2107  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2108  * points to the slot where it should be inserted
2109  *
2110  * If an error is encountered while searching the tree a negative error number
2111  * is returned
2112  */
2113 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2114                       const struct btrfs_key *key, struct btrfs_path *p,
2115                       int ins_len, int cow)
2116 {
2117         struct btrfs_fs_info *fs_info = root->fs_info;
2118         struct extent_buffer *b;
2119         int slot;
2120         int ret;
2121         int err;
2122         int level;
2123         int lowest_unlock = 1;
2124         /* everything at write_lock_level or lower must be write locked */
2125         int write_lock_level = 0;
2126         u8 lowest_level = 0;
2127         int min_write_lock_level;
2128         int prev_cmp;
2129
2130         might_sleep();
2131
2132         lowest_level = p->lowest_level;
2133         WARN_ON(lowest_level && ins_len > 0);
2134         WARN_ON(p->nodes[0] != NULL);
2135         BUG_ON(!cow && ins_len);
2136
2137         /*
2138          * For now only allow nowait for read only operations.  There's no
2139          * strict reason why we can't, we just only need it for reads so it's
2140          * only implemented for reads.
2141          */
2142         ASSERT(!p->nowait || !cow);
2143
2144         if (ins_len < 0) {
2145                 lowest_unlock = 2;
2146
2147                 /* when we are removing items, we might have to go up to level
2148                  * two as we update tree pointers  Make sure we keep write
2149                  * for those levels as well
2150                  */
2151                 write_lock_level = 2;
2152         } else if (ins_len > 0) {
2153                 /*
2154                  * for inserting items, make sure we have a write lock on
2155                  * level 1 so we can update keys
2156                  */
2157                 write_lock_level = 1;
2158         }
2159
2160         if (!cow)
2161                 write_lock_level = -1;
2162
2163         if (cow && (p->keep_locks || p->lowest_level))
2164                 write_lock_level = BTRFS_MAX_LEVEL;
2165
2166         min_write_lock_level = write_lock_level;
2167
2168         if (p->need_commit_sem) {
2169                 ASSERT(p->search_commit_root);
2170                 if (p->nowait) {
2171                         if (!down_read_trylock(&fs_info->commit_root_sem))
2172                                 return -EAGAIN;
2173                 } else {
2174                         down_read(&fs_info->commit_root_sem);
2175                 }
2176         }
2177
2178 again:
2179         prev_cmp = -1;
2180         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2181         if (IS_ERR(b)) {
2182                 ret = PTR_ERR(b);
2183                 goto done;
2184         }
2185
2186         while (b) {
2187                 int dec = 0;
2188
2189                 level = btrfs_header_level(b);
2190
2191                 if (cow) {
2192                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2193
2194                         /*
2195                          * if we don't really need to cow this block
2196                          * then we don't want to set the path blocking,
2197                          * so we test it here
2198                          */
2199                         if (!should_cow_block(trans, root, b))
2200                                 goto cow_done;
2201
2202                         /*
2203                          * must have write locks on this node and the
2204                          * parent
2205                          */
2206                         if (level > write_lock_level ||
2207                             (level + 1 > write_lock_level &&
2208                             level + 1 < BTRFS_MAX_LEVEL &&
2209                             p->nodes[level + 1])) {
2210                                 write_lock_level = level + 1;
2211                                 btrfs_release_path(p);
2212                                 goto again;
2213                         }
2214
2215                         if (last_level)
2216                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2217                                                       &b,
2218                                                       BTRFS_NESTING_COW);
2219                         else
2220                                 err = btrfs_cow_block(trans, root, b,
2221                                                       p->nodes[level + 1],
2222                                                       p->slots[level + 1], &b,
2223                                                       BTRFS_NESTING_COW);
2224                         if (err) {
2225                                 ret = err;
2226                                 goto done;
2227                         }
2228                 }
2229 cow_done:
2230                 p->nodes[level] = b;
2231
2232                 /*
2233                  * we have a lock on b and as long as we aren't changing
2234                  * the tree, there is no way to for the items in b to change.
2235                  * It is safe to drop the lock on our parent before we
2236                  * go through the expensive btree search on b.
2237                  *
2238                  * If we're inserting or deleting (ins_len != 0), then we might
2239                  * be changing slot zero, which may require changing the parent.
2240                  * So, we can't drop the lock until after we know which slot
2241                  * we're operating on.
2242                  */
2243                 if (!ins_len && !p->keep_locks) {
2244                         int u = level + 1;
2245
2246                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2247                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2248                                 p->locks[u] = 0;
2249                         }
2250                 }
2251
2252                 if (level == 0) {
2253                         if (ins_len > 0)
2254                                 ASSERT(write_lock_level >= 1);
2255
2256                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2257                         if (!p->search_for_split)
2258                                 unlock_up(p, level, lowest_unlock,
2259                                           min_write_lock_level, NULL);
2260                         goto done;
2261                 }
2262
2263                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2264                 if (ret < 0)
2265                         goto done;
2266                 prev_cmp = ret;
2267
2268                 if (ret && slot > 0) {
2269                         dec = 1;
2270                         slot--;
2271                 }
2272                 p->slots[level] = slot;
2273                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2274                                              &write_lock_level);
2275                 if (err == -EAGAIN)
2276                         goto again;
2277                 if (err) {
2278                         ret = err;
2279                         goto done;
2280                 }
2281                 b = p->nodes[level];
2282                 slot = p->slots[level];
2283
2284                 /*
2285                  * Slot 0 is special, if we change the key we have to update
2286                  * the parent pointer which means we must have a write lock on
2287                  * the parent
2288                  */
2289                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2290                         write_lock_level = level + 1;
2291                         btrfs_release_path(p);
2292                         goto again;
2293                 }
2294
2295                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2296                           &write_lock_level);
2297
2298                 if (level == lowest_level) {
2299                         if (dec)
2300                                 p->slots[level]++;
2301                         goto done;
2302                 }
2303
2304                 err = read_block_for_search(root, p, &b, level, slot, key);
2305                 if (err == -EAGAIN)
2306                         goto again;
2307                 if (err) {
2308                         ret = err;
2309                         goto done;
2310                 }
2311
2312                 if (!p->skip_locking) {
2313                         level = btrfs_header_level(b);
2314
2315                         btrfs_maybe_reset_lockdep_class(root, b);
2316
2317                         if (level <= write_lock_level) {
2318                                 btrfs_tree_lock(b);
2319                                 p->locks[level] = BTRFS_WRITE_LOCK;
2320                         } else {
2321                                 if (p->nowait) {
2322                                         if (!btrfs_try_tree_read_lock(b)) {
2323                                                 free_extent_buffer(b);
2324                                                 ret = -EAGAIN;
2325                                                 goto done;
2326                                         }
2327                                 } else {
2328                                         btrfs_tree_read_lock(b);
2329                                 }
2330                                 p->locks[level] = BTRFS_READ_LOCK;
2331                         }
2332                         p->nodes[level] = b;
2333                 }
2334         }
2335         ret = 1;
2336 done:
2337         if (ret < 0 && !p->skip_release_on_error)
2338                 btrfs_release_path(p);
2339
2340         if (p->need_commit_sem) {
2341                 int ret2;
2342
2343                 ret2 = finish_need_commit_sem_search(p);
2344                 up_read(&fs_info->commit_root_sem);
2345                 if (ret2)
2346                         ret = ret2;
2347         }
2348
2349         return ret;
2350 }
2351 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2352
2353 /*
2354  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2355  * current state of the tree together with the operations recorded in the tree
2356  * modification log to search for the key in a previous version of this tree, as
2357  * denoted by the time_seq parameter.
2358  *
2359  * Naturally, there is no support for insert, delete or cow operations.
2360  *
2361  * The resulting path and return value will be set up as if we called
2362  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2363  */
2364 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2365                           struct btrfs_path *p, u64 time_seq)
2366 {
2367         struct btrfs_fs_info *fs_info = root->fs_info;
2368         struct extent_buffer *b;
2369         int slot;
2370         int ret;
2371         int err;
2372         int level;
2373         int lowest_unlock = 1;
2374         u8 lowest_level = 0;
2375
2376         lowest_level = p->lowest_level;
2377         WARN_ON(p->nodes[0] != NULL);
2378         ASSERT(!p->nowait);
2379
2380         if (p->search_commit_root) {
2381                 BUG_ON(time_seq);
2382                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2383         }
2384
2385 again:
2386         b = btrfs_get_old_root(root, time_seq);
2387         if (!b) {
2388                 ret = -EIO;
2389                 goto done;
2390         }
2391         level = btrfs_header_level(b);
2392         p->locks[level] = BTRFS_READ_LOCK;
2393
2394         while (b) {
2395                 int dec = 0;
2396
2397                 level = btrfs_header_level(b);
2398                 p->nodes[level] = b;
2399
2400                 /*
2401                  * we have a lock on b and as long as we aren't changing
2402                  * the tree, there is no way to for the items in b to change.
2403                  * It is safe to drop the lock on our parent before we
2404                  * go through the expensive btree search on b.
2405                  */
2406                 btrfs_unlock_up_safe(p, level + 1);
2407
2408                 ret = btrfs_bin_search(b, 0, key, &slot);
2409                 if (ret < 0)
2410                         goto done;
2411
2412                 if (level == 0) {
2413                         p->slots[level] = slot;
2414                         unlock_up(p, level, lowest_unlock, 0, NULL);
2415                         goto done;
2416                 }
2417
2418                 if (ret && slot > 0) {
2419                         dec = 1;
2420                         slot--;
2421                 }
2422                 p->slots[level] = slot;
2423                 unlock_up(p, level, lowest_unlock, 0, NULL);
2424
2425                 if (level == lowest_level) {
2426                         if (dec)
2427                                 p->slots[level]++;
2428                         goto done;
2429                 }
2430
2431                 err = read_block_for_search(root, p, &b, level, slot, key);
2432                 if (err == -EAGAIN)
2433                         goto again;
2434                 if (err) {
2435                         ret = err;
2436                         goto done;
2437                 }
2438
2439                 level = btrfs_header_level(b);
2440                 btrfs_tree_read_lock(b);
2441                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2442                 if (!b) {
2443                         ret = -ENOMEM;
2444                         goto done;
2445                 }
2446                 p->locks[level] = BTRFS_READ_LOCK;
2447                 p->nodes[level] = b;
2448         }
2449         ret = 1;
2450 done:
2451         if (ret < 0)
2452                 btrfs_release_path(p);
2453
2454         return ret;
2455 }
2456
2457 /*
2458  * Search the tree again to find a leaf with smaller keys.
2459  * Returns 0 if it found something.
2460  * Returns 1 if there are no smaller keys.
2461  * Returns < 0 on error.
2462  *
2463  * This may release the path, and so you may lose any locks held at the
2464  * time you call it.
2465  */
2466 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2467 {
2468         struct btrfs_key key;
2469         struct btrfs_key orig_key;
2470         struct btrfs_disk_key found_key;
2471         int ret;
2472
2473         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2474         orig_key = key;
2475
2476         if (key.offset > 0) {
2477                 key.offset--;
2478         } else if (key.type > 0) {
2479                 key.type--;
2480                 key.offset = (u64)-1;
2481         } else if (key.objectid > 0) {
2482                 key.objectid--;
2483                 key.type = (u8)-1;
2484                 key.offset = (u64)-1;
2485         } else {
2486                 return 1;
2487         }
2488
2489         btrfs_release_path(path);
2490         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2491         if (ret <= 0)
2492                 return ret;
2493
2494         /*
2495          * Previous key not found. Even if we were at slot 0 of the leaf we had
2496          * before releasing the path and calling btrfs_search_slot(), we now may
2497          * be in a slot pointing to the same original key - this can happen if
2498          * after we released the path, one of more items were moved from a
2499          * sibling leaf into the front of the leaf we had due to an insertion
2500          * (see push_leaf_right()).
2501          * If we hit this case and our slot is > 0 and just decrement the slot
2502          * so that the caller does not process the same key again, which may or
2503          * may not break the caller, depending on its logic.
2504          */
2505         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2506                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2507                 ret = comp_keys(&found_key, &orig_key);
2508                 if (ret == 0) {
2509                         if (path->slots[0] > 0) {
2510                                 path->slots[0]--;
2511                                 return 0;
2512                         }
2513                         /*
2514                          * At slot 0, same key as before, it means orig_key is
2515                          * the lowest, leftmost, key in the tree. We're done.
2516                          */
2517                         return 1;
2518                 }
2519         }
2520
2521         btrfs_item_key(path->nodes[0], &found_key, 0);
2522         ret = comp_keys(&found_key, &key);
2523         /*
2524          * We might have had an item with the previous key in the tree right
2525          * before we released our path. And after we released our path, that
2526          * item might have been pushed to the first slot (0) of the leaf we
2527          * were holding due to a tree balance. Alternatively, an item with the
2528          * previous key can exist as the only element of a leaf (big fat item).
2529          * Therefore account for these 2 cases, so that our callers (like
2530          * btrfs_previous_item) don't miss an existing item with a key matching
2531          * the previous key we computed above.
2532          */
2533         if (ret <= 0)
2534                 return 0;
2535         return 1;
2536 }
2537
2538 /*
2539  * helper to use instead of search slot if no exact match is needed but
2540  * instead the next or previous item should be returned.
2541  * When find_higher is true, the next higher item is returned, the next lower
2542  * otherwise.
2543  * When return_any and find_higher are both true, and no higher item is found,
2544  * return the next lower instead.
2545  * When return_any is true and find_higher is false, and no lower item is found,
2546  * return the next higher instead.
2547  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2548  * < 0 on error
2549  */
2550 int btrfs_search_slot_for_read(struct btrfs_root *root,
2551                                const struct btrfs_key *key,
2552                                struct btrfs_path *p, int find_higher,
2553                                int return_any)
2554 {
2555         int ret;
2556         struct extent_buffer *leaf;
2557
2558 again:
2559         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2560         if (ret <= 0)
2561                 return ret;
2562         /*
2563          * a return value of 1 means the path is at the position where the
2564          * item should be inserted. Normally this is the next bigger item,
2565          * but in case the previous item is the last in a leaf, path points
2566          * to the first free slot in the previous leaf, i.e. at an invalid
2567          * item.
2568          */
2569         leaf = p->nodes[0];
2570
2571         if (find_higher) {
2572                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2573                         ret = btrfs_next_leaf(root, p);
2574                         if (ret <= 0)
2575                                 return ret;
2576                         if (!return_any)
2577                                 return 1;
2578                         /*
2579                          * no higher item found, return the next
2580                          * lower instead
2581                          */
2582                         return_any = 0;
2583                         find_higher = 0;
2584                         btrfs_release_path(p);
2585                         goto again;
2586                 }
2587         } else {
2588                 if (p->slots[0] == 0) {
2589                         ret = btrfs_prev_leaf(root, p);
2590                         if (ret < 0)
2591                                 return ret;
2592                         if (!ret) {
2593                                 leaf = p->nodes[0];
2594                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2595                                         p->slots[0]--;
2596                                 return 0;
2597                         }
2598                         if (!return_any)
2599                                 return 1;
2600                         /*
2601                          * no lower item found, return the next
2602                          * higher instead
2603                          */
2604                         return_any = 0;
2605                         find_higher = 1;
2606                         btrfs_release_path(p);
2607                         goto again;
2608                 } else {
2609                         --p->slots[0];
2610                 }
2611         }
2612         return 0;
2613 }
2614
2615 /*
2616  * Execute search and call btrfs_previous_item to traverse backwards if the item
2617  * was not found.
2618  *
2619  * Return 0 if found, 1 if not found and < 0 if error.
2620  */
2621 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2622                            struct btrfs_path *path)
2623 {
2624         int ret;
2625
2626         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2627         if (ret > 0)
2628                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2629
2630         if (ret == 0)
2631                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2632
2633         return ret;
2634 }
2635
2636 /*
2637  * Search for a valid slot for the given path.
2638  *
2639  * @root:       The root node of the tree.
2640  * @key:        Will contain a valid item if found.
2641  * @path:       The starting point to validate the slot.
2642  *
2643  * Return: 0  if the item is valid
2644  *         1  if not found
2645  *         <0 if error.
2646  */
2647 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2648                               struct btrfs_path *path)
2649 {
2650         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2651                 int ret;
2652
2653                 ret = btrfs_next_leaf(root, path);
2654                 if (ret)
2655                         return ret;
2656         }
2657
2658         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2659         return 0;
2660 }
2661
2662 /*
2663  * adjust the pointers going up the tree, starting at level
2664  * making sure the right key of each node is points to 'key'.
2665  * This is used after shifting pointers to the left, so it stops
2666  * fixing up pointers when a given leaf/node is not in slot 0 of the
2667  * higher levels
2668  *
2669  */
2670 static void fixup_low_keys(struct btrfs_path *path,
2671                            struct btrfs_disk_key *key, int level)
2672 {
2673         int i;
2674         struct extent_buffer *t;
2675         int ret;
2676
2677         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2678                 int tslot = path->slots[i];
2679
2680                 if (!path->nodes[i])
2681                         break;
2682                 t = path->nodes[i];
2683                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2684                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2685                 BUG_ON(ret < 0);
2686                 btrfs_set_node_key(t, key, tslot);
2687                 btrfs_mark_buffer_dirty(path->nodes[i]);
2688                 if (tslot != 0)
2689                         break;
2690         }
2691 }
2692
2693 /*
2694  * update item key.
2695  *
2696  * This function isn't completely safe. It's the caller's responsibility
2697  * that the new key won't break the order
2698  */
2699 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2700                              struct btrfs_path *path,
2701                              const struct btrfs_key *new_key)
2702 {
2703         struct btrfs_disk_key disk_key;
2704         struct extent_buffer *eb;
2705         int slot;
2706
2707         eb = path->nodes[0];
2708         slot = path->slots[0];
2709         if (slot > 0) {
2710                 btrfs_item_key(eb, &disk_key, slot - 1);
2711                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2712                         btrfs_print_leaf(eb);
2713                         btrfs_crit(fs_info,
2714                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2715                                    slot, btrfs_disk_key_objectid(&disk_key),
2716                                    btrfs_disk_key_type(&disk_key),
2717                                    btrfs_disk_key_offset(&disk_key),
2718                                    new_key->objectid, new_key->type,
2719                                    new_key->offset);
2720                         BUG();
2721                 }
2722         }
2723         if (slot < btrfs_header_nritems(eb) - 1) {
2724                 btrfs_item_key(eb, &disk_key, slot + 1);
2725                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2726                         btrfs_print_leaf(eb);
2727                         btrfs_crit(fs_info,
2728                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2729                                    slot, btrfs_disk_key_objectid(&disk_key),
2730                                    btrfs_disk_key_type(&disk_key),
2731                                    btrfs_disk_key_offset(&disk_key),
2732                                    new_key->objectid, new_key->type,
2733                                    new_key->offset);
2734                         BUG();
2735                 }
2736         }
2737
2738         btrfs_cpu_key_to_disk(&disk_key, new_key);
2739         btrfs_set_item_key(eb, &disk_key, slot);
2740         btrfs_mark_buffer_dirty(eb);
2741         if (slot == 0)
2742                 fixup_low_keys(path, &disk_key, 1);
2743 }
2744
2745 /*
2746  * Check key order of two sibling extent buffers.
2747  *
2748  * Return true if something is wrong.
2749  * Return false if everything is fine.
2750  *
2751  * Tree-checker only works inside one tree block, thus the following
2752  * corruption can not be detected by tree-checker:
2753  *
2754  * Leaf @left                   | Leaf @right
2755  * --------------------------------------------------------------
2756  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2757  *
2758  * Key f6 in leaf @left itself is valid, but not valid when the next
2759  * key in leaf @right is 7.
2760  * This can only be checked at tree block merge time.
2761  * And since tree checker has ensured all key order in each tree block
2762  * is correct, we only need to bother the last key of @left and the first
2763  * key of @right.
2764  */
2765 static bool check_sibling_keys(struct extent_buffer *left,
2766                                struct extent_buffer *right)
2767 {
2768         struct btrfs_key left_last;
2769         struct btrfs_key right_first;
2770         int level = btrfs_header_level(left);
2771         int nr_left = btrfs_header_nritems(left);
2772         int nr_right = btrfs_header_nritems(right);
2773
2774         /* No key to check in one of the tree blocks */
2775         if (!nr_left || !nr_right)
2776                 return false;
2777
2778         if (level) {
2779                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2780                 btrfs_node_key_to_cpu(right, &right_first, 0);
2781         } else {
2782                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2783                 btrfs_item_key_to_cpu(right, &right_first, 0);
2784         }
2785
2786         if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2787                 btrfs_crit(left->fs_info, "left extent buffer:");
2788                 btrfs_print_tree(left, false);
2789                 btrfs_crit(left->fs_info, "right extent buffer:");
2790                 btrfs_print_tree(right, false);
2791                 btrfs_crit(left->fs_info,
2792 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2793                            left_last.objectid, left_last.type,
2794                            left_last.offset, right_first.objectid,
2795                            right_first.type, right_first.offset);
2796                 return true;
2797         }
2798         return false;
2799 }
2800
2801 /*
2802  * try to push data from one node into the next node left in the
2803  * tree.
2804  *
2805  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2806  * error, and > 0 if there was no room in the left hand block.
2807  */
2808 static int push_node_left(struct btrfs_trans_handle *trans,
2809                           struct extent_buffer *dst,
2810                           struct extent_buffer *src, int empty)
2811 {
2812         struct btrfs_fs_info *fs_info = trans->fs_info;
2813         int push_items = 0;
2814         int src_nritems;
2815         int dst_nritems;
2816         int ret = 0;
2817
2818         src_nritems = btrfs_header_nritems(src);
2819         dst_nritems = btrfs_header_nritems(dst);
2820         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2821         WARN_ON(btrfs_header_generation(src) != trans->transid);
2822         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2823
2824         if (!empty && src_nritems <= 8)
2825                 return 1;
2826
2827         if (push_items <= 0)
2828                 return 1;
2829
2830         if (empty) {
2831                 push_items = min(src_nritems, push_items);
2832                 if (push_items < src_nritems) {
2833                         /* leave at least 8 pointers in the node if
2834                          * we aren't going to empty it
2835                          */
2836                         if (src_nritems - push_items < 8) {
2837                                 if (push_items <= 8)
2838                                         return 1;
2839                                 push_items -= 8;
2840                         }
2841                 }
2842         } else
2843                 push_items = min(src_nritems - 8, push_items);
2844
2845         /* dst is the left eb, src is the middle eb */
2846         if (check_sibling_keys(dst, src)) {
2847                 ret = -EUCLEAN;
2848                 btrfs_abort_transaction(trans, ret);
2849                 return ret;
2850         }
2851         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2852         if (ret) {
2853                 btrfs_abort_transaction(trans, ret);
2854                 return ret;
2855         }
2856         copy_extent_buffer(dst, src,
2857                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2858                            btrfs_node_key_ptr_offset(src, 0),
2859                            push_items * sizeof(struct btrfs_key_ptr));
2860
2861         if (push_items < src_nritems) {
2862                 /*
2863                  * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2864                  * don't need to do an explicit tree mod log operation for it.
2865                  */
2866                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2867                                       btrfs_node_key_ptr_offset(src, push_items),
2868                                       (src_nritems - push_items) *
2869                                       sizeof(struct btrfs_key_ptr));
2870         }
2871         btrfs_set_header_nritems(src, src_nritems - push_items);
2872         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2873         btrfs_mark_buffer_dirty(src);
2874         btrfs_mark_buffer_dirty(dst);
2875
2876         return ret;
2877 }
2878
2879 /*
2880  * try to push data from one node into the next node right in the
2881  * tree.
2882  *
2883  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2884  * error, and > 0 if there was no room in the right hand block.
2885  *
2886  * this will  only push up to 1/2 the contents of the left node over
2887  */
2888 static int balance_node_right(struct btrfs_trans_handle *trans,
2889                               struct extent_buffer *dst,
2890                               struct extent_buffer *src)
2891 {
2892         struct btrfs_fs_info *fs_info = trans->fs_info;
2893         int push_items = 0;
2894         int max_push;
2895         int src_nritems;
2896         int dst_nritems;
2897         int ret = 0;
2898
2899         WARN_ON(btrfs_header_generation(src) != trans->transid);
2900         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2901
2902         src_nritems = btrfs_header_nritems(src);
2903         dst_nritems = btrfs_header_nritems(dst);
2904         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2905         if (push_items <= 0)
2906                 return 1;
2907
2908         if (src_nritems < 4)
2909                 return 1;
2910
2911         max_push = src_nritems / 2 + 1;
2912         /* don't try to empty the node */
2913         if (max_push >= src_nritems)
2914                 return 1;
2915
2916         if (max_push < push_items)
2917                 push_items = max_push;
2918
2919         /* dst is the right eb, src is the middle eb */
2920         if (check_sibling_keys(src, dst)) {
2921                 ret = -EUCLEAN;
2922                 btrfs_abort_transaction(trans, ret);
2923                 return ret;
2924         }
2925
2926         /*
2927          * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2928          * need to do an explicit tree mod log operation for it.
2929          */
2930         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2931                                       btrfs_node_key_ptr_offset(dst, 0),
2932                                       (dst_nritems) *
2933                                       sizeof(struct btrfs_key_ptr));
2934
2935         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2936                                          push_items);
2937         if (ret) {
2938                 btrfs_abort_transaction(trans, ret);
2939                 return ret;
2940         }
2941         copy_extent_buffer(dst, src,
2942                            btrfs_node_key_ptr_offset(dst, 0),
2943                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2944                            push_items * sizeof(struct btrfs_key_ptr));
2945
2946         btrfs_set_header_nritems(src, src_nritems - push_items);
2947         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2948
2949         btrfs_mark_buffer_dirty(src);
2950         btrfs_mark_buffer_dirty(dst);
2951
2952         return ret;
2953 }
2954
2955 /*
2956  * helper function to insert a new root level in the tree.
2957  * A new node is allocated, and a single item is inserted to
2958  * point to the existing root
2959  *
2960  * returns zero on success or < 0 on failure.
2961  */
2962 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2963                            struct btrfs_root *root,
2964                            struct btrfs_path *path, int level)
2965 {
2966         struct btrfs_fs_info *fs_info = root->fs_info;
2967         u64 lower_gen;
2968         struct extent_buffer *lower;
2969         struct extent_buffer *c;
2970         struct extent_buffer *old;
2971         struct btrfs_disk_key lower_key;
2972         int ret;
2973
2974         BUG_ON(path->nodes[level]);
2975         BUG_ON(path->nodes[level-1] != root->node);
2976
2977         lower = path->nodes[level-1];
2978         if (level == 1)
2979                 btrfs_item_key(lower, &lower_key, 0);
2980         else
2981                 btrfs_node_key(lower, &lower_key, 0);
2982
2983         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2984                                    &lower_key, level, root->node->start, 0,
2985                                    BTRFS_NESTING_NEW_ROOT);
2986         if (IS_ERR(c))
2987                 return PTR_ERR(c);
2988
2989         root_add_used(root, fs_info->nodesize);
2990
2991         btrfs_set_header_nritems(c, 1);
2992         btrfs_set_node_key(c, &lower_key, 0);
2993         btrfs_set_node_blockptr(c, 0, lower->start);
2994         lower_gen = btrfs_header_generation(lower);
2995         WARN_ON(lower_gen != trans->transid);
2996
2997         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2998
2999         btrfs_mark_buffer_dirty(c);
3000
3001         old = root->node;
3002         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3003         if (ret < 0) {
3004                 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3005                 btrfs_tree_unlock(c);
3006                 free_extent_buffer(c);
3007                 return ret;
3008         }
3009         rcu_assign_pointer(root->node, c);
3010
3011         /* the super has an extra ref to root->node */
3012         free_extent_buffer(old);
3013
3014         add_root_to_dirty_list(root);
3015         atomic_inc(&c->refs);
3016         path->nodes[level] = c;
3017         path->locks[level] = BTRFS_WRITE_LOCK;
3018         path->slots[level] = 0;
3019         return 0;
3020 }
3021
3022 /*
3023  * worker function to insert a single pointer in a node.
3024  * the node should have enough room for the pointer already
3025  *
3026  * slot and level indicate where you want the key to go, and
3027  * blocknr is the block the key points to.
3028  */
3029 static int insert_ptr(struct btrfs_trans_handle *trans,
3030                       struct btrfs_path *path,
3031                       struct btrfs_disk_key *key, u64 bytenr,
3032                       int slot, int level)
3033 {
3034         struct extent_buffer *lower;
3035         int nritems;
3036         int ret;
3037
3038         BUG_ON(!path->nodes[level]);
3039         btrfs_assert_tree_write_locked(path->nodes[level]);
3040         lower = path->nodes[level];
3041         nritems = btrfs_header_nritems(lower);
3042         BUG_ON(slot > nritems);
3043         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3044         if (slot != nritems) {
3045                 if (level) {
3046                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3047                                         slot, nritems - slot);
3048                         if (ret < 0) {
3049                                 btrfs_abort_transaction(trans, ret);
3050                                 return ret;
3051                         }
3052                 }
3053                 memmove_extent_buffer(lower,
3054                               btrfs_node_key_ptr_offset(lower, slot + 1),
3055                               btrfs_node_key_ptr_offset(lower, slot),
3056                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3057         }
3058         if (level) {
3059                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
3060                                                     BTRFS_MOD_LOG_KEY_ADD);
3061                 if (ret < 0) {
3062                         btrfs_abort_transaction(trans, ret);
3063                         return ret;
3064                 }
3065         }
3066         btrfs_set_node_key(lower, key, slot);
3067         btrfs_set_node_blockptr(lower, slot, bytenr);
3068         WARN_ON(trans->transid == 0);
3069         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3070         btrfs_set_header_nritems(lower, nritems + 1);
3071         btrfs_mark_buffer_dirty(lower);
3072
3073         return 0;
3074 }
3075
3076 /*
3077  * split the node at the specified level in path in two.
3078  * The path is corrected to point to the appropriate node after the split
3079  *
3080  * Before splitting this tries to make some room in the node by pushing
3081  * left and right, if either one works, it returns right away.
3082  *
3083  * returns 0 on success and < 0 on failure
3084  */
3085 static noinline int split_node(struct btrfs_trans_handle *trans,
3086                                struct btrfs_root *root,
3087                                struct btrfs_path *path, int level)
3088 {
3089         struct btrfs_fs_info *fs_info = root->fs_info;
3090         struct extent_buffer *c;
3091         struct extent_buffer *split;
3092         struct btrfs_disk_key disk_key;
3093         int mid;
3094         int ret;
3095         u32 c_nritems;
3096
3097         c = path->nodes[level];
3098         WARN_ON(btrfs_header_generation(c) != trans->transid);
3099         if (c == root->node) {
3100                 /*
3101                  * trying to split the root, lets make a new one
3102                  *
3103                  * tree mod log: We don't log_removal old root in
3104                  * insert_new_root, because that root buffer will be kept as a
3105                  * normal node. We are going to log removal of half of the
3106                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
3107                  * holding a tree lock on the buffer, which is why we cannot
3108                  * race with other tree_mod_log users.
3109                  */
3110                 ret = insert_new_root(trans, root, path, level + 1);
3111                 if (ret)
3112                         return ret;
3113         } else {
3114                 ret = push_nodes_for_insert(trans, root, path, level);
3115                 c = path->nodes[level];
3116                 if (!ret && btrfs_header_nritems(c) <
3117                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3118                         return 0;
3119                 if (ret < 0)
3120                         return ret;
3121         }
3122
3123         c_nritems = btrfs_header_nritems(c);
3124         mid = (c_nritems + 1) / 2;
3125         btrfs_node_key(c, &disk_key, mid);
3126
3127         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3128                                        &disk_key, level, c->start, 0,
3129                                        BTRFS_NESTING_SPLIT);
3130         if (IS_ERR(split))
3131                 return PTR_ERR(split);
3132
3133         root_add_used(root, fs_info->nodesize);
3134         ASSERT(btrfs_header_level(c) == level);
3135
3136         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3137         if (ret) {
3138                 btrfs_tree_unlock(split);
3139                 free_extent_buffer(split);
3140                 btrfs_abort_transaction(trans, ret);
3141                 return ret;
3142         }
3143         copy_extent_buffer(split, c,
3144                            btrfs_node_key_ptr_offset(split, 0),
3145                            btrfs_node_key_ptr_offset(c, mid),
3146                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3147         btrfs_set_header_nritems(split, c_nritems - mid);
3148         btrfs_set_header_nritems(c, mid);
3149
3150         btrfs_mark_buffer_dirty(c);
3151         btrfs_mark_buffer_dirty(split);
3152
3153         ret = insert_ptr(trans, path, &disk_key, split->start,
3154                          path->slots[level + 1] + 1, level + 1);
3155         if (ret < 0) {
3156                 btrfs_tree_unlock(split);
3157                 free_extent_buffer(split);
3158                 return ret;
3159         }
3160
3161         if (path->slots[level] >= mid) {
3162                 path->slots[level] -= mid;
3163                 btrfs_tree_unlock(c);
3164                 free_extent_buffer(c);
3165                 path->nodes[level] = split;
3166                 path->slots[level + 1] += 1;
3167         } else {
3168                 btrfs_tree_unlock(split);
3169                 free_extent_buffer(split);
3170         }
3171         return 0;
3172 }
3173
3174 /*
3175  * how many bytes are required to store the items in a leaf.  start
3176  * and nr indicate which items in the leaf to check.  This totals up the
3177  * space used both by the item structs and the item data
3178  */
3179 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3180 {
3181         int data_len;
3182         int nritems = btrfs_header_nritems(l);
3183         int end = min(nritems, start + nr) - 1;
3184
3185         if (!nr)
3186                 return 0;
3187         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3188         data_len = data_len - btrfs_item_offset(l, end);
3189         data_len += sizeof(struct btrfs_item) * nr;
3190         WARN_ON(data_len < 0);
3191         return data_len;
3192 }
3193
3194 /*
3195  * The space between the end of the leaf items and
3196  * the start of the leaf data.  IOW, how much room
3197  * the leaf has left for both items and data
3198  */
3199 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3200 {
3201         struct btrfs_fs_info *fs_info = leaf->fs_info;
3202         int nritems = btrfs_header_nritems(leaf);
3203         int ret;
3204
3205         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3206         if (ret < 0) {
3207                 btrfs_crit(fs_info,
3208                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3209                            ret,
3210                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3211                            leaf_space_used(leaf, 0, nritems), nritems);
3212         }
3213         return ret;
3214 }
3215
3216 /*
3217  * min slot controls the lowest index we're willing to push to the
3218  * right.  We'll push up to and including min_slot, but no lower
3219  */
3220 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3221                                       struct btrfs_path *path,
3222                                       int data_size, int empty,
3223                                       struct extent_buffer *right,
3224                                       int free_space, u32 left_nritems,
3225                                       u32 min_slot)
3226 {
3227         struct btrfs_fs_info *fs_info = right->fs_info;
3228         struct extent_buffer *left = path->nodes[0];
3229         struct extent_buffer *upper = path->nodes[1];
3230         struct btrfs_map_token token;
3231         struct btrfs_disk_key disk_key;
3232         int slot;
3233         u32 i;
3234         int push_space = 0;
3235         int push_items = 0;
3236         u32 nr;
3237         u32 right_nritems;
3238         u32 data_end;
3239         u32 this_item_size;
3240
3241         if (empty)
3242                 nr = 0;
3243         else
3244                 nr = max_t(u32, 1, min_slot);
3245
3246         if (path->slots[0] >= left_nritems)
3247                 push_space += data_size;
3248
3249         slot = path->slots[1];
3250         i = left_nritems - 1;
3251         while (i >= nr) {
3252                 if (!empty && push_items > 0) {
3253                         if (path->slots[0] > i)
3254                                 break;
3255                         if (path->slots[0] == i) {
3256                                 int space = btrfs_leaf_free_space(left);
3257
3258                                 if (space + push_space * 2 > free_space)
3259                                         break;
3260                         }
3261                 }
3262
3263                 if (path->slots[0] == i)
3264                         push_space += data_size;
3265
3266                 this_item_size = btrfs_item_size(left, i);
3267                 if (this_item_size + sizeof(struct btrfs_item) +
3268                     push_space > free_space)
3269                         break;
3270
3271                 push_items++;
3272                 push_space += this_item_size + sizeof(struct btrfs_item);
3273                 if (i == 0)
3274                         break;
3275                 i--;
3276         }
3277
3278         if (push_items == 0)
3279                 goto out_unlock;
3280
3281         WARN_ON(!empty && push_items == left_nritems);
3282
3283         /* push left to right */
3284         right_nritems = btrfs_header_nritems(right);
3285
3286         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3287         push_space -= leaf_data_end(left);
3288
3289         /* make room in the right data area */
3290         data_end = leaf_data_end(right);
3291         memmove_leaf_data(right, data_end - push_space, data_end,
3292                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3293
3294         /* copy from the left data area */
3295         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3296                        leaf_data_end(left), push_space);
3297
3298         memmove_leaf_items(right, push_items, 0, right_nritems);
3299
3300         /* copy the items from left to right */
3301         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3302
3303         /* update the item pointers */
3304         btrfs_init_map_token(&token, right);
3305         right_nritems += push_items;
3306         btrfs_set_header_nritems(right, right_nritems);
3307         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3308         for (i = 0; i < right_nritems; i++) {
3309                 push_space -= btrfs_token_item_size(&token, i);
3310                 btrfs_set_token_item_offset(&token, i, push_space);
3311         }
3312
3313         left_nritems -= push_items;
3314         btrfs_set_header_nritems(left, left_nritems);
3315
3316         if (left_nritems)
3317                 btrfs_mark_buffer_dirty(left);
3318         else
3319                 btrfs_clear_buffer_dirty(trans, left);
3320
3321         btrfs_mark_buffer_dirty(right);
3322
3323         btrfs_item_key(right, &disk_key, 0);
3324         btrfs_set_node_key(upper, &disk_key, slot + 1);
3325         btrfs_mark_buffer_dirty(upper);
3326
3327         /* then fixup the leaf pointer in the path */
3328         if (path->slots[0] >= left_nritems) {
3329                 path->slots[0] -= left_nritems;
3330                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3331                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3332                 btrfs_tree_unlock(path->nodes[0]);
3333                 free_extent_buffer(path->nodes[0]);
3334                 path->nodes[0] = right;
3335                 path->slots[1] += 1;
3336         } else {
3337                 btrfs_tree_unlock(right);
3338                 free_extent_buffer(right);
3339         }
3340         return 0;
3341
3342 out_unlock:
3343         btrfs_tree_unlock(right);
3344         free_extent_buffer(right);
3345         return 1;
3346 }
3347
3348 /*
3349  * push some data in the path leaf to the right, trying to free up at
3350  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3351  *
3352  * returns 1 if the push failed because the other node didn't have enough
3353  * room, 0 if everything worked out and < 0 if there were major errors.
3354  *
3355  * this will push starting from min_slot to the end of the leaf.  It won't
3356  * push any slot lower than min_slot
3357  */
3358 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3359                            *root, struct btrfs_path *path,
3360                            int min_data_size, int data_size,
3361                            int empty, u32 min_slot)
3362 {
3363         struct extent_buffer *left = path->nodes[0];
3364         struct extent_buffer *right;
3365         struct extent_buffer *upper;
3366         int slot;
3367         int free_space;
3368         u32 left_nritems;
3369         int ret;
3370
3371         if (!path->nodes[1])
3372                 return 1;
3373
3374         slot = path->slots[1];
3375         upper = path->nodes[1];
3376         if (slot >= btrfs_header_nritems(upper) - 1)
3377                 return 1;
3378
3379         btrfs_assert_tree_write_locked(path->nodes[1]);
3380
3381         right = btrfs_read_node_slot(upper, slot + 1);
3382         if (IS_ERR(right))
3383                 return PTR_ERR(right);
3384
3385         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3386
3387         free_space = btrfs_leaf_free_space(right);
3388         if (free_space < data_size)
3389                 goto out_unlock;
3390
3391         ret = btrfs_cow_block(trans, root, right, upper,
3392                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3393         if (ret)
3394                 goto out_unlock;
3395
3396         left_nritems = btrfs_header_nritems(left);
3397         if (left_nritems == 0)
3398                 goto out_unlock;
3399
3400         if (check_sibling_keys(left, right)) {
3401                 ret = -EUCLEAN;
3402                 btrfs_abort_transaction(trans, ret);
3403                 btrfs_tree_unlock(right);
3404                 free_extent_buffer(right);
3405                 return ret;
3406         }
3407         if (path->slots[0] == left_nritems && !empty) {
3408                 /* Key greater than all keys in the leaf, right neighbor has
3409                  * enough room for it and we're not emptying our leaf to delete
3410                  * it, therefore use right neighbor to insert the new item and
3411                  * no need to touch/dirty our left leaf. */
3412                 btrfs_tree_unlock(left);
3413                 free_extent_buffer(left);
3414                 path->nodes[0] = right;
3415                 path->slots[0] = 0;
3416                 path->slots[1]++;
3417                 return 0;
3418         }
3419
3420         return __push_leaf_right(trans, path, min_data_size, empty, right,
3421                                  free_space, left_nritems, min_slot);
3422 out_unlock:
3423         btrfs_tree_unlock(right);
3424         free_extent_buffer(right);
3425         return 1;
3426 }
3427
3428 /*
3429  * push some data in the path leaf to the left, trying to free up at
3430  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3431  *
3432  * max_slot can put a limit on how far into the leaf we'll push items.  The
3433  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3434  * items
3435  */
3436 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3437                                      struct btrfs_path *path, int data_size,
3438                                      int empty, struct extent_buffer *left,
3439                                      int free_space, u32 right_nritems,
3440                                      u32 max_slot)
3441 {
3442         struct btrfs_fs_info *fs_info = left->fs_info;
3443         struct btrfs_disk_key disk_key;
3444         struct extent_buffer *right = path->nodes[0];
3445         int i;
3446         int push_space = 0;
3447         int push_items = 0;
3448         u32 old_left_nritems;
3449         u32 nr;
3450         int ret = 0;
3451         u32 this_item_size;
3452         u32 old_left_item_size;
3453         struct btrfs_map_token token;
3454
3455         if (empty)
3456                 nr = min(right_nritems, max_slot);
3457         else
3458                 nr = min(right_nritems - 1, max_slot);
3459
3460         for (i = 0; i < nr; i++) {
3461                 if (!empty && push_items > 0) {
3462                         if (path->slots[0] < i)
3463                                 break;
3464                         if (path->slots[0] == i) {
3465                                 int space = btrfs_leaf_free_space(right);
3466
3467                                 if (space + push_space * 2 > free_space)
3468                                         break;
3469                         }
3470                 }
3471
3472                 if (path->slots[0] == i)
3473                         push_space += data_size;
3474
3475                 this_item_size = btrfs_item_size(right, i);
3476                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3477                     free_space)
3478                         break;
3479
3480                 push_items++;
3481                 push_space += this_item_size + sizeof(struct btrfs_item);
3482         }
3483
3484         if (push_items == 0) {
3485                 ret = 1;
3486                 goto out;
3487         }
3488         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3489
3490         /* push data from right to left */
3491         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3492
3493         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3494                      btrfs_item_offset(right, push_items - 1);
3495
3496         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3497                        btrfs_item_offset(right, push_items - 1), push_space);
3498         old_left_nritems = btrfs_header_nritems(left);
3499         BUG_ON(old_left_nritems <= 0);
3500
3501         btrfs_init_map_token(&token, left);
3502         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3503         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3504                 u32 ioff;
3505
3506                 ioff = btrfs_token_item_offset(&token, i);
3507                 btrfs_set_token_item_offset(&token, i,
3508                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3509         }
3510         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3511
3512         /* fixup right node */
3513         if (push_items > right_nritems)
3514                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3515                        right_nritems);
3516
3517         if (push_items < right_nritems) {
3518                 push_space = btrfs_item_offset(right, push_items - 1) -
3519                                                   leaf_data_end(right);
3520                 memmove_leaf_data(right,
3521                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3522                                   leaf_data_end(right), push_space);
3523
3524                 memmove_leaf_items(right, 0, push_items,
3525                                    btrfs_header_nritems(right) - push_items);
3526         }
3527
3528         btrfs_init_map_token(&token, right);
3529         right_nritems -= push_items;
3530         btrfs_set_header_nritems(right, right_nritems);
3531         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3532         for (i = 0; i < right_nritems; i++) {
3533                 push_space = push_space - btrfs_token_item_size(&token, i);
3534                 btrfs_set_token_item_offset(&token, i, push_space);
3535         }
3536
3537         btrfs_mark_buffer_dirty(left);
3538         if (right_nritems)
3539                 btrfs_mark_buffer_dirty(right);
3540         else
3541                 btrfs_clear_buffer_dirty(trans, right);
3542
3543         btrfs_item_key(right, &disk_key, 0);
3544         fixup_low_keys(path, &disk_key, 1);
3545
3546         /* then fixup the leaf pointer in the path */
3547         if (path->slots[0] < push_items) {
3548                 path->slots[0] += old_left_nritems;
3549                 btrfs_tree_unlock(path->nodes[0]);
3550                 free_extent_buffer(path->nodes[0]);
3551                 path->nodes[0] = left;
3552                 path->slots[1] -= 1;
3553         } else {
3554                 btrfs_tree_unlock(left);
3555                 free_extent_buffer(left);
3556                 path->slots[0] -= push_items;
3557         }
3558         BUG_ON(path->slots[0] < 0);
3559         return ret;
3560 out:
3561         btrfs_tree_unlock(left);
3562         free_extent_buffer(left);
3563         return ret;
3564 }
3565
3566 /*
3567  * push some data in the path leaf to the left, trying to free up at
3568  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3569  *
3570  * max_slot can put a limit on how far into the leaf we'll push items.  The
3571  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3572  * items
3573  */
3574 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3575                           *root, struct btrfs_path *path, int min_data_size,
3576                           int data_size, int empty, u32 max_slot)
3577 {
3578         struct extent_buffer *right = path->nodes[0];
3579         struct extent_buffer *left;
3580         int slot;
3581         int free_space;
3582         u32 right_nritems;
3583         int ret = 0;
3584
3585         slot = path->slots[1];
3586         if (slot == 0)
3587                 return 1;
3588         if (!path->nodes[1])
3589                 return 1;
3590
3591         right_nritems = btrfs_header_nritems(right);
3592         if (right_nritems == 0)
3593                 return 1;
3594
3595         btrfs_assert_tree_write_locked(path->nodes[1]);
3596
3597         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3598         if (IS_ERR(left))
3599                 return PTR_ERR(left);
3600
3601         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3602
3603         free_space = btrfs_leaf_free_space(left);
3604         if (free_space < data_size) {
3605                 ret = 1;
3606                 goto out;
3607         }
3608
3609         ret = btrfs_cow_block(trans, root, left,
3610                               path->nodes[1], slot - 1, &left,
3611                               BTRFS_NESTING_LEFT_COW);
3612         if (ret) {
3613                 /* we hit -ENOSPC, but it isn't fatal here */
3614                 if (ret == -ENOSPC)
3615                         ret = 1;
3616                 goto out;
3617         }
3618
3619         if (check_sibling_keys(left, right)) {
3620                 ret = -EUCLEAN;
3621                 btrfs_abort_transaction(trans, ret);
3622                 goto out;
3623         }
3624         return __push_leaf_left(trans, path, min_data_size, empty, left,
3625                                 free_space, right_nritems, max_slot);
3626 out:
3627         btrfs_tree_unlock(left);
3628         free_extent_buffer(left);
3629         return ret;
3630 }
3631
3632 /*
3633  * split the path's leaf in two, making sure there is at least data_size
3634  * available for the resulting leaf level of the path.
3635  */
3636 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3637                                    struct btrfs_path *path,
3638                                    struct extent_buffer *l,
3639                                    struct extent_buffer *right,
3640                                    int slot, int mid, int nritems)
3641 {
3642         struct btrfs_fs_info *fs_info = trans->fs_info;
3643         int data_copy_size;
3644         int rt_data_off;
3645         int i;
3646         int ret;
3647         struct btrfs_disk_key disk_key;
3648         struct btrfs_map_token token;
3649
3650         nritems = nritems - mid;
3651         btrfs_set_header_nritems(right, nritems);
3652         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3653
3654         copy_leaf_items(right, l, 0, mid, nritems);
3655
3656         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3657                        leaf_data_end(l), data_copy_size);
3658
3659         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3660
3661         btrfs_init_map_token(&token, right);
3662         for (i = 0; i < nritems; i++) {
3663                 u32 ioff;
3664
3665                 ioff = btrfs_token_item_offset(&token, i);
3666                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3667         }
3668
3669         btrfs_set_header_nritems(l, mid);
3670         btrfs_item_key(right, &disk_key, 0);
3671         ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3672         if (ret < 0)
3673                 return ret;
3674
3675         btrfs_mark_buffer_dirty(right);
3676         btrfs_mark_buffer_dirty(l);
3677         BUG_ON(path->slots[0] != slot);
3678
3679         if (mid <= slot) {
3680                 btrfs_tree_unlock(path->nodes[0]);
3681                 free_extent_buffer(path->nodes[0]);
3682                 path->nodes[0] = right;
3683                 path->slots[0] -= mid;
3684                 path->slots[1] += 1;
3685         } else {
3686                 btrfs_tree_unlock(right);
3687                 free_extent_buffer(right);
3688         }
3689
3690         BUG_ON(path->slots[0] < 0);
3691
3692         return 0;
3693 }
3694
3695 /*
3696  * double splits happen when we need to insert a big item in the middle
3697  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3698  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3699  *          A                 B                 C
3700  *
3701  * We avoid this by trying to push the items on either side of our target
3702  * into the adjacent leaves.  If all goes well we can avoid the double split
3703  * completely.
3704  */
3705 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3706                                           struct btrfs_root *root,
3707                                           struct btrfs_path *path,
3708                                           int data_size)
3709 {
3710         int ret;
3711         int progress = 0;
3712         int slot;
3713         u32 nritems;
3714         int space_needed = data_size;
3715
3716         slot = path->slots[0];
3717         if (slot < btrfs_header_nritems(path->nodes[0]))
3718                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3719
3720         /*
3721          * try to push all the items after our slot into the
3722          * right leaf
3723          */
3724         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3725         if (ret < 0)
3726                 return ret;
3727
3728         if (ret == 0)
3729                 progress++;
3730
3731         nritems = btrfs_header_nritems(path->nodes[0]);
3732         /*
3733          * our goal is to get our slot at the start or end of a leaf.  If
3734          * we've done so we're done
3735          */
3736         if (path->slots[0] == 0 || path->slots[0] == nritems)
3737                 return 0;
3738
3739         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3740                 return 0;
3741
3742         /* try to push all the items before our slot into the next leaf */
3743         slot = path->slots[0];
3744         space_needed = data_size;
3745         if (slot > 0)
3746                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3747         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3748         if (ret < 0)
3749                 return ret;
3750
3751         if (ret == 0)
3752                 progress++;
3753
3754         if (progress)
3755                 return 0;
3756         return 1;
3757 }
3758
3759 /*
3760  * split the path's leaf in two, making sure there is at least data_size
3761  * available for the resulting leaf level of the path.
3762  *
3763  * returns 0 if all went well and < 0 on failure.
3764  */
3765 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3766                                struct btrfs_root *root,
3767                                const struct btrfs_key *ins_key,
3768                                struct btrfs_path *path, int data_size,
3769                                int extend)
3770 {
3771         struct btrfs_disk_key disk_key;
3772         struct extent_buffer *l;
3773         u32 nritems;
3774         int mid;
3775         int slot;
3776         struct extent_buffer *right;
3777         struct btrfs_fs_info *fs_info = root->fs_info;
3778         int ret = 0;
3779         int wret;
3780         int split;
3781         int num_doubles = 0;
3782         int tried_avoid_double = 0;
3783
3784         l = path->nodes[0];
3785         slot = path->slots[0];
3786         if (extend && data_size + btrfs_item_size(l, slot) +
3787             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3788                 return -EOVERFLOW;
3789
3790         /* first try to make some room by pushing left and right */
3791         if (data_size && path->nodes[1]) {
3792                 int space_needed = data_size;
3793
3794                 if (slot < btrfs_header_nritems(l))
3795                         space_needed -= btrfs_leaf_free_space(l);
3796
3797                 wret = push_leaf_right(trans, root, path, space_needed,
3798                                        space_needed, 0, 0);
3799                 if (wret < 0)
3800                         return wret;
3801                 if (wret) {
3802                         space_needed = data_size;
3803                         if (slot > 0)
3804                                 space_needed -= btrfs_leaf_free_space(l);
3805                         wret = push_leaf_left(trans, root, path, space_needed,
3806                                               space_needed, 0, (u32)-1);
3807                         if (wret < 0)
3808                                 return wret;
3809                 }
3810                 l = path->nodes[0];
3811
3812                 /* did the pushes work? */
3813                 if (btrfs_leaf_free_space(l) >= data_size)
3814                         return 0;
3815         }
3816
3817         if (!path->nodes[1]) {
3818                 ret = insert_new_root(trans, root, path, 1);
3819                 if (ret)
3820                         return ret;
3821         }
3822 again:
3823         split = 1;
3824         l = path->nodes[0];
3825         slot = path->slots[0];
3826         nritems = btrfs_header_nritems(l);
3827         mid = (nritems + 1) / 2;
3828
3829         if (mid <= slot) {
3830                 if (nritems == 1 ||
3831                     leaf_space_used(l, mid, nritems - mid) + data_size >
3832                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3833                         if (slot >= nritems) {
3834                                 split = 0;
3835                         } else {
3836                                 mid = slot;
3837                                 if (mid != nritems &&
3838                                     leaf_space_used(l, mid, nritems - mid) +
3839                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3840                                         if (data_size && !tried_avoid_double)
3841                                                 goto push_for_double;
3842                                         split = 2;
3843                                 }
3844                         }
3845                 }
3846         } else {
3847                 if (leaf_space_used(l, 0, mid) + data_size >
3848                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3849                         if (!extend && data_size && slot == 0) {
3850                                 split = 0;
3851                         } else if ((extend || !data_size) && slot == 0) {
3852                                 mid = 1;
3853                         } else {
3854                                 mid = slot;
3855                                 if (mid != nritems &&
3856                                     leaf_space_used(l, mid, nritems - mid) +
3857                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3858                                         if (data_size && !tried_avoid_double)
3859                                                 goto push_for_double;
3860                                         split = 2;
3861                                 }
3862                         }
3863                 }
3864         }
3865
3866         if (split == 0)
3867                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3868         else
3869                 btrfs_item_key(l, &disk_key, mid);
3870
3871         /*
3872          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3873          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3874          * subclasses, which is 8 at the time of this patch, and we've maxed it
3875          * out.  In the future we could add a
3876          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3877          * use BTRFS_NESTING_NEW_ROOT.
3878          */
3879         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3880                                        &disk_key, 0, l->start, 0,
3881                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3882                                        BTRFS_NESTING_SPLIT);
3883         if (IS_ERR(right))
3884                 return PTR_ERR(right);
3885
3886         root_add_used(root, fs_info->nodesize);
3887
3888         if (split == 0) {
3889                 if (mid <= slot) {
3890                         btrfs_set_header_nritems(right, 0);
3891                         ret = insert_ptr(trans, path, &disk_key,
3892                                          right->start, path->slots[1] + 1, 1);
3893                         if (ret < 0) {
3894                                 btrfs_tree_unlock(right);
3895                                 free_extent_buffer(right);
3896                                 return ret;
3897                         }
3898                         btrfs_tree_unlock(path->nodes[0]);
3899                         free_extent_buffer(path->nodes[0]);
3900                         path->nodes[0] = right;
3901                         path->slots[0] = 0;
3902                         path->slots[1] += 1;
3903                 } else {
3904                         btrfs_set_header_nritems(right, 0);
3905                         ret = insert_ptr(trans, path, &disk_key,
3906                                          right->start, path->slots[1], 1);
3907                         if (ret < 0) {
3908                                 btrfs_tree_unlock(right);
3909                                 free_extent_buffer(right);
3910                                 return ret;
3911                         }
3912                         btrfs_tree_unlock(path->nodes[0]);
3913                         free_extent_buffer(path->nodes[0]);
3914                         path->nodes[0] = right;
3915                         path->slots[0] = 0;
3916                         if (path->slots[1] == 0)
3917                                 fixup_low_keys(path, &disk_key, 1);
3918                 }
3919                 /*
3920                  * We create a new leaf 'right' for the required ins_len and
3921                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3922                  * the content of ins_len to 'right'.
3923                  */
3924                 return ret;
3925         }
3926
3927         ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3928         if (ret < 0) {
3929                 btrfs_tree_unlock(right);
3930                 free_extent_buffer(right);
3931                 return ret;
3932         }
3933
3934         if (split == 2) {
3935                 BUG_ON(num_doubles != 0);
3936                 num_doubles++;
3937                 goto again;
3938         }
3939
3940         return 0;
3941
3942 push_for_double:
3943         push_for_double_split(trans, root, path, data_size);
3944         tried_avoid_double = 1;
3945         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3946                 return 0;
3947         goto again;
3948 }
3949
3950 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3951                                          struct btrfs_root *root,
3952                                          struct btrfs_path *path, int ins_len)
3953 {
3954         struct btrfs_key key;
3955         struct extent_buffer *leaf;
3956         struct btrfs_file_extent_item *fi;
3957         u64 extent_len = 0;
3958         u32 item_size;
3959         int ret;
3960
3961         leaf = path->nodes[0];
3962         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3963
3964         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3965                key.type != BTRFS_EXTENT_CSUM_KEY);
3966
3967         if (btrfs_leaf_free_space(leaf) >= ins_len)
3968                 return 0;
3969
3970         item_size = btrfs_item_size(leaf, path->slots[0]);
3971         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3972                 fi = btrfs_item_ptr(leaf, path->slots[0],
3973                                     struct btrfs_file_extent_item);
3974                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3975         }
3976         btrfs_release_path(path);
3977
3978         path->keep_locks = 1;
3979         path->search_for_split = 1;
3980         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3981         path->search_for_split = 0;
3982         if (ret > 0)
3983                 ret = -EAGAIN;
3984         if (ret < 0)
3985                 goto err;
3986
3987         ret = -EAGAIN;
3988         leaf = path->nodes[0];
3989         /* if our item isn't there, return now */
3990         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3991                 goto err;
3992
3993         /* the leaf has  changed, it now has room.  return now */
3994         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3995                 goto err;
3996
3997         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3998                 fi = btrfs_item_ptr(leaf, path->slots[0],
3999                                     struct btrfs_file_extent_item);
4000                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4001                         goto err;
4002         }
4003
4004         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4005         if (ret)
4006                 goto err;
4007
4008         path->keep_locks = 0;
4009         btrfs_unlock_up_safe(path, 1);
4010         return 0;
4011 err:
4012         path->keep_locks = 0;
4013         return ret;
4014 }
4015
4016 static noinline int split_item(struct btrfs_path *path,
4017                                const struct btrfs_key *new_key,
4018                                unsigned long split_offset)
4019 {
4020         struct extent_buffer *leaf;
4021         int orig_slot, slot;
4022         char *buf;
4023         u32 nritems;
4024         u32 item_size;
4025         u32 orig_offset;
4026         struct btrfs_disk_key disk_key;
4027
4028         leaf = path->nodes[0];
4029         /*
4030          * Shouldn't happen because the caller must have previously called
4031          * setup_leaf_for_split() to make room for the new item in the leaf.
4032          */
4033         if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4034                 return -ENOSPC;
4035
4036         orig_slot = path->slots[0];
4037         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4038         item_size = btrfs_item_size(leaf, path->slots[0]);
4039
4040         buf = kmalloc(item_size, GFP_NOFS);
4041         if (!buf)
4042                 return -ENOMEM;
4043
4044         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4045                             path->slots[0]), item_size);
4046
4047         slot = path->slots[0] + 1;
4048         nritems = btrfs_header_nritems(leaf);
4049         if (slot != nritems) {
4050                 /* shift the items */
4051                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4052         }
4053
4054         btrfs_cpu_key_to_disk(&disk_key, new_key);
4055         btrfs_set_item_key(leaf, &disk_key, slot);
4056
4057         btrfs_set_item_offset(leaf, slot, orig_offset);
4058         btrfs_set_item_size(leaf, slot, item_size - split_offset);
4059
4060         btrfs_set_item_offset(leaf, orig_slot,
4061                                  orig_offset + item_size - split_offset);
4062         btrfs_set_item_size(leaf, orig_slot, split_offset);
4063
4064         btrfs_set_header_nritems(leaf, nritems + 1);
4065
4066         /* write the data for the start of the original item */
4067         write_extent_buffer(leaf, buf,
4068                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4069                             split_offset);
4070
4071         /* write the data for the new item */
4072         write_extent_buffer(leaf, buf + split_offset,
4073                             btrfs_item_ptr_offset(leaf, slot),
4074                             item_size - split_offset);
4075         btrfs_mark_buffer_dirty(leaf);
4076
4077         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4078         kfree(buf);
4079         return 0;
4080 }
4081
4082 /*
4083  * This function splits a single item into two items,
4084  * giving 'new_key' to the new item and splitting the
4085  * old one at split_offset (from the start of the item).
4086  *
4087  * The path may be released by this operation.  After
4088  * the split, the path is pointing to the old item.  The
4089  * new item is going to be in the same node as the old one.
4090  *
4091  * Note, the item being split must be smaller enough to live alone on
4092  * a tree block with room for one extra struct btrfs_item
4093  *
4094  * This allows us to split the item in place, keeping a lock on the
4095  * leaf the entire time.
4096  */
4097 int btrfs_split_item(struct btrfs_trans_handle *trans,
4098                      struct btrfs_root *root,
4099                      struct btrfs_path *path,
4100                      const struct btrfs_key *new_key,
4101                      unsigned long split_offset)
4102 {
4103         int ret;
4104         ret = setup_leaf_for_split(trans, root, path,
4105                                    sizeof(struct btrfs_item));
4106         if (ret)
4107                 return ret;
4108
4109         ret = split_item(path, new_key, split_offset);
4110         return ret;
4111 }
4112
4113 /*
4114  * make the item pointed to by the path smaller.  new_size indicates
4115  * how small to make it, and from_end tells us if we just chop bytes
4116  * off the end of the item or if we shift the item to chop bytes off
4117  * the front.
4118  */
4119 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4120 {
4121         int slot;
4122         struct extent_buffer *leaf;
4123         u32 nritems;
4124         unsigned int data_end;
4125         unsigned int old_data_start;
4126         unsigned int old_size;
4127         unsigned int size_diff;
4128         int i;
4129         struct btrfs_map_token token;
4130
4131         leaf = path->nodes[0];
4132         slot = path->slots[0];
4133
4134         old_size = btrfs_item_size(leaf, slot);
4135         if (old_size == new_size)
4136                 return;
4137
4138         nritems = btrfs_header_nritems(leaf);
4139         data_end = leaf_data_end(leaf);
4140
4141         old_data_start = btrfs_item_offset(leaf, slot);
4142
4143         size_diff = old_size - new_size;
4144
4145         BUG_ON(slot < 0);
4146         BUG_ON(slot >= nritems);
4147
4148         /*
4149          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4150          */
4151         /* first correct the data pointers */
4152         btrfs_init_map_token(&token, leaf);
4153         for (i = slot; i < nritems; i++) {
4154                 u32 ioff;
4155
4156                 ioff = btrfs_token_item_offset(&token, i);
4157                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4158         }
4159
4160         /* shift the data */
4161         if (from_end) {
4162                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4163                                   old_data_start + new_size - data_end);
4164         } else {
4165                 struct btrfs_disk_key disk_key;
4166                 u64 offset;
4167
4168                 btrfs_item_key(leaf, &disk_key, slot);
4169
4170                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4171                         unsigned long ptr;
4172                         struct btrfs_file_extent_item *fi;
4173
4174                         fi = btrfs_item_ptr(leaf, slot,
4175                                             struct btrfs_file_extent_item);
4176                         fi = (struct btrfs_file_extent_item *)(
4177                              (unsigned long)fi - size_diff);
4178
4179                         if (btrfs_file_extent_type(leaf, fi) ==
4180                             BTRFS_FILE_EXTENT_INLINE) {
4181                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4182                                 memmove_extent_buffer(leaf, ptr,
4183                                       (unsigned long)fi,
4184                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4185                         }
4186                 }
4187
4188                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4189                                   old_data_start - data_end);
4190
4191                 offset = btrfs_disk_key_offset(&disk_key);
4192                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4193                 btrfs_set_item_key(leaf, &disk_key, slot);
4194                 if (slot == 0)
4195                         fixup_low_keys(path, &disk_key, 1);
4196         }
4197
4198         btrfs_set_item_size(leaf, slot, new_size);
4199         btrfs_mark_buffer_dirty(leaf);
4200
4201         if (btrfs_leaf_free_space(leaf) < 0) {
4202                 btrfs_print_leaf(leaf);
4203                 BUG();
4204         }
4205 }
4206
4207 /*
4208  * make the item pointed to by the path bigger, data_size is the added size.
4209  */
4210 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4211 {
4212         int slot;
4213         struct extent_buffer *leaf;
4214         u32 nritems;
4215         unsigned int data_end;
4216         unsigned int old_data;
4217         unsigned int old_size;
4218         int i;
4219         struct btrfs_map_token token;
4220
4221         leaf = path->nodes[0];
4222
4223         nritems = btrfs_header_nritems(leaf);
4224         data_end = leaf_data_end(leaf);
4225
4226         if (btrfs_leaf_free_space(leaf) < data_size) {
4227                 btrfs_print_leaf(leaf);
4228                 BUG();
4229         }
4230         slot = path->slots[0];
4231         old_data = btrfs_item_data_end(leaf, slot);
4232
4233         BUG_ON(slot < 0);
4234         if (slot >= nritems) {
4235                 btrfs_print_leaf(leaf);
4236                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4237                            slot, nritems);
4238                 BUG();
4239         }
4240
4241         /*
4242          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4243          */
4244         /* first correct the data pointers */
4245         btrfs_init_map_token(&token, leaf);
4246         for (i = slot; i < nritems; i++) {
4247                 u32 ioff;
4248
4249                 ioff = btrfs_token_item_offset(&token, i);
4250                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4251         }
4252
4253         /* shift the data */
4254         memmove_leaf_data(leaf, data_end - data_size, data_end,
4255                           old_data - data_end);
4256
4257         data_end = old_data;
4258         old_size = btrfs_item_size(leaf, slot);
4259         btrfs_set_item_size(leaf, slot, old_size + data_size);
4260         btrfs_mark_buffer_dirty(leaf);
4261
4262         if (btrfs_leaf_free_space(leaf) < 0) {
4263                 btrfs_print_leaf(leaf);
4264                 BUG();
4265         }
4266 }
4267
4268 /*
4269  * Make space in the node before inserting one or more items.
4270  *
4271  * @root:       root we are inserting items to
4272  * @path:       points to the leaf/slot where we are going to insert new items
4273  * @batch:      information about the batch of items to insert
4274  *
4275  * Main purpose is to save stack depth by doing the bulk of the work in a
4276  * function that doesn't call btrfs_search_slot
4277  */
4278 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4279                                    const struct btrfs_item_batch *batch)
4280 {
4281         struct btrfs_fs_info *fs_info = root->fs_info;
4282         int i;
4283         u32 nritems;
4284         unsigned int data_end;
4285         struct btrfs_disk_key disk_key;
4286         struct extent_buffer *leaf;
4287         int slot;
4288         struct btrfs_map_token token;
4289         u32 total_size;
4290
4291         /*
4292          * Before anything else, update keys in the parent and other ancestors
4293          * if needed, then release the write locks on them, so that other tasks
4294          * can use them while we modify the leaf.
4295          */
4296         if (path->slots[0] == 0) {
4297                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4298                 fixup_low_keys(path, &disk_key, 1);
4299         }
4300         btrfs_unlock_up_safe(path, 1);
4301
4302         leaf = path->nodes[0];
4303         slot = path->slots[0];
4304
4305         nritems = btrfs_header_nritems(leaf);
4306         data_end = leaf_data_end(leaf);
4307         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4308
4309         if (btrfs_leaf_free_space(leaf) < total_size) {
4310                 btrfs_print_leaf(leaf);
4311                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4312                            total_size, btrfs_leaf_free_space(leaf));
4313                 BUG();
4314         }
4315
4316         btrfs_init_map_token(&token, leaf);
4317         if (slot != nritems) {
4318                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4319
4320                 if (old_data < data_end) {
4321                         btrfs_print_leaf(leaf);
4322                         btrfs_crit(fs_info,
4323                 "item at slot %d with data offset %u beyond data end of leaf %u",
4324                                    slot, old_data, data_end);
4325                         BUG();
4326                 }
4327                 /*
4328                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4329                  */
4330                 /* first correct the data pointers */
4331                 for (i = slot; i < nritems; i++) {
4332                         u32 ioff;
4333
4334                         ioff = btrfs_token_item_offset(&token, i);
4335                         btrfs_set_token_item_offset(&token, i,
4336                                                        ioff - batch->total_data_size);
4337                 }
4338                 /* shift the items */
4339                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4340
4341                 /* shift the data */
4342                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4343                                   data_end, old_data - data_end);
4344                 data_end = old_data;
4345         }
4346
4347         /* setup the item for the new data */
4348         for (i = 0; i < batch->nr; i++) {
4349                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4350                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4351                 data_end -= batch->data_sizes[i];
4352                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4353                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4354         }
4355
4356         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4357         btrfs_mark_buffer_dirty(leaf);
4358
4359         if (btrfs_leaf_free_space(leaf) < 0) {
4360                 btrfs_print_leaf(leaf);
4361                 BUG();
4362         }
4363 }
4364
4365 /*
4366  * Insert a new item into a leaf.
4367  *
4368  * @root:      The root of the btree.
4369  * @path:      A path pointing to the target leaf and slot.
4370  * @key:       The key of the new item.
4371  * @data_size: The size of the data associated with the new key.
4372  */
4373 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4374                                  struct btrfs_path *path,
4375                                  const struct btrfs_key *key,
4376                                  u32 data_size)
4377 {
4378         struct btrfs_item_batch batch;
4379
4380         batch.keys = key;
4381         batch.data_sizes = &data_size;
4382         batch.total_data_size = data_size;
4383         batch.nr = 1;
4384
4385         setup_items_for_insert(root, path, &batch);
4386 }
4387
4388 /*
4389  * Given a key and some data, insert items into the tree.
4390  * This does all the path init required, making room in the tree if needed.
4391  */
4392 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4393                             struct btrfs_root *root,
4394                             struct btrfs_path *path,
4395                             const struct btrfs_item_batch *batch)
4396 {
4397         int ret = 0;
4398         int slot;
4399         u32 total_size;
4400
4401         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4402         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4403         if (ret == 0)
4404                 return -EEXIST;
4405         if (ret < 0)
4406                 return ret;
4407
4408         slot = path->slots[0];
4409         BUG_ON(slot < 0);
4410
4411         setup_items_for_insert(root, path, batch);
4412         return 0;
4413 }
4414
4415 /*
4416  * Given a key and some data, insert an item into the tree.
4417  * This does all the path init required, making room in the tree if needed.
4418  */
4419 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4420                       const struct btrfs_key *cpu_key, void *data,
4421                       u32 data_size)
4422 {
4423         int ret = 0;
4424         struct btrfs_path *path;
4425         struct extent_buffer *leaf;
4426         unsigned long ptr;
4427
4428         path = btrfs_alloc_path();
4429         if (!path)
4430                 return -ENOMEM;
4431         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4432         if (!ret) {
4433                 leaf = path->nodes[0];
4434                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4435                 write_extent_buffer(leaf, data, ptr, data_size);
4436                 btrfs_mark_buffer_dirty(leaf);
4437         }
4438         btrfs_free_path(path);
4439         return ret;
4440 }
4441
4442 /*
4443  * This function duplicates an item, giving 'new_key' to the new item.
4444  * It guarantees both items live in the same tree leaf and the new item is
4445  * contiguous with the original item.
4446  *
4447  * This allows us to split a file extent in place, keeping a lock on the leaf
4448  * the entire time.
4449  */
4450 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4451                          struct btrfs_root *root,
4452                          struct btrfs_path *path,
4453                          const struct btrfs_key *new_key)
4454 {
4455         struct extent_buffer *leaf;
4456         int ret;
4457         u32 item_size;
4458
4459         leaf = path->nodes[0];
4460         item_size = btrfs_item_size(leaf, path->slots[0]);
4461         ret = setup_leaf_for_split(trans, root, path,
4462                                    item_size + sizeof(struct btrfs_item));
4463         if (ret)
4464                 return ret;
4465
4466         path->slots[0]++;
4467         btrfs_setup_item_for_insert(root, path, new_key, item_size);
4468         leaf = path->nodes[0];
4469         memcpy_extent_buffer(leaf,
4470                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4471                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4472                              item_size);
4473         return 0;
4474 }
4475
4476 /*
4477  * delete the pointer from a given node.
4478  *
4479  * the tree should have been previously balanced so the deletion does not
4480  * empty a node.
4481  *
4482  * This is exported for use inside btrfs-progs, don't un-export it.
4483  */
4484 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4485                   struct btrfs_path *path, int level, int slot)
4486 {
4487         struct extent_buffer *parent = path->nodes[level];
4488         u32 nritems;
4489         int ret;
4490
4491         nritems = btrfs_header_nritems(parent);
4492         if (slot != nritems - 1) {
4493                 if (level) {
4494                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4495                                         slot + 1, nritems - slot - 1);
4496                         if (ret < 0) {
4497                                 btrfs_abort_transaction(trans, ret);
4498                                 return ret;
4499                         }
4500                 }
4501                 memmove_extent_buffer(parent,
4502                               btrfs_node_key_ptr_offset(parent, slot),
4503                               btrfs_node_key_ptr_offset(parent, slot + 1),
4504                               sizeof(struct btrfs_key_ptr) *
4505                               (nritems - slot - 1));
4506         } else if (level) {
4507                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4508                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4509                 if (ret < 0) {
4510                         btrfs_abort_transaction(trans, ret);
4511                         return ret;
4512                 }
4513         }
4514
4515         nritems--;
4516         btrfs_set_header_nritems(parent, nritems);
4517         if (nritems == 0 && parent == root->node) {
4518                 BUG_ON(btrfs_header_level(root->node) != 1);
4519                 /* just turn the root into a leaf and break */
4520                 btrfs_set_header_level(root->node, 0);
4521         } else if (slot == 0) {
4522                 struct btrfs_disk_key disk_key;
4523
4524                 btrfs_node_key(parent, &disk_key, 0);
4525                 fixup_low_keys(path, &disk_key, level + 1);
4526         }
4527         btrfs_mark_buffer_dirty(parent);
4528         return 0;
4529 }
4530
4531 /*
4532  * a helper function to delete the leaf pointed to by path->slots[1] and
4533  * path->nodes[1].
4534  *
4535  * This deletes the pointer in path->nodes[1] and frees the leaf
4536  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4537  *
4538  * The path must have already been setup for deleting the leaf, including
4539  * all the proper balancing.  path->nodes[1] must be locked.
4540  */
4541 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4542                                    struct btrfs_root *root,
4543                                    struct btrfs_path *path,
4544                                    struct extent_buffer *leaf)
4545 {
4546         int ret;
4547
4548         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4549         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4550         if (ret < 0)
4551                 return ret;
4552
4553         /*
4554          * btrfs_free_extent is expensive, we want to make sure we
4555          * aren't holding any locks when we call it
4556          */
4557         btrfs_unlock_up_safe(path, 0);
4558
4559         root_sub_used(root, leaf->len);
4560
4561         atomic_inc(&leaf->refs);
4562         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4563         free_extent_buffer_stale(leaf);
4564         return 0;
4565 }
4566 /*
4567  * delete the item at the leaf level in path.  If that empties
4568  * the leaf, remove it from the tree
4569  */
4570 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4571                     struct btrfs_path *path, int slot, int nr)
4572 {
4573         struct btrfs_fs_info *fs_info = root->fs_info;
4574         struct extent_buffer *leaf;
4575         int ret = 0;
4576         int wret;
4577         u32 nritems;
4578
4579         leaf = path->nodes[0];
4580         nritems = btrfs_header_nritems(leaf);
4581
4582         if (slot + nr != nritems) {
4583                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4584                 const int data_end = leaf_data_end(leaf);
4585                 struct btrfs_map_token token;
4586                 u32 dsize = 0;
4587                 int i;
4588
4589                 for (i = 0; i < nr; i++)
4590                         dsize += btrfs_item_size(leaf, slot + i);
4591
4592                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4593                                   last_off - data_end);
4594
4595                 btrfs_init_map_token(&token, leaf);
4596                 for (i = slot + nr; i < nritems; i++) {
4597                         u32 ioff;
4598
4599                         ioff = btrfs_token_item_offset(&token, i);
4600                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4601                 }
4602
4603                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4604         }
4605         btrfs_set_header_nritems(leaf, nritems - nr);
4606         nritems -= nr;
4607
4608         /* delete the leaf if we've emptied it */
4609         if (nritems == 0) {
4610                 if (leaf == root->node) {
4611                         btrfs_set_header_level(leaf, 0);
4612                 } else {
4613                         btrfs_clear_buffer_dirty(trans, leaf);
4614                         ret = btrfs_del_leaf(trans, root, path, leaf);
4615                         if (ret < 0)
4616                                 return ret;
4617                 }
4618         } else {
4619                 int used = leaf_space_used(leaf, 0, nritems);
4620                 if (slot == 0) {
4621                         struct btrfs_disk_key disk_key;
4622
4623                         btrfs_item_key(leaf, &disk_key, 0);
4624                         fixup_low_keys(path, &disk_key, 1);
4625                 }
4626
4627                 /*
4628                  * Try to delete the leaf if it is mostly empty. We do this by
4629                  * trying to move all its items into its left and right neighbours.
4630                  * If we can't move all the items, then we don't delete it - it's
4631                  * not ideal, but future insertions might fill the leaf with more
4632                  * items, or items from other leaves might be moved later into our
4633                  * leaf due to deletions on those leaves.
4634                  */
4635                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4636                         u32 min_push_space;
4637
4638                         /* push_leaf_left fixes the path.
4639                          * make sure the path still points to our leaf
4640                          * for possible call to btrfs_del_ptr below
4641                          */
4642                         slot = path->slots[1];
4643                         atomic_inc(&leaf->refs);
4644                         /*
4645                          * We want to be able to at least push one item to the
4646                          * left neighbour leaf, and that's the first item.
4647                          */
4648                         min_push_space = sizeof(struct btrfs_item) +
4649                                 btrfs_item_size(leaf, 0);
4650                         wret = push_leaf_left(trans, root, path, 0,
4651                                               min_push_space, 1, (u32)-1);
4652                         if (wret < 0 && wret != -ENOSPC)
4653                                 ret = wret;
4654
4655                         if (path->nodes[0] == leaf &&
4656                             btrfs_header_nritems(leaf)) {
4657                                 /*
4658                                  * If we were not able to push all items from our
4659                                  * leaf to its left neighbour, then attempt to
4660                                  * either push all the remaining items to the
4661                                  * right neighbour or none. There's no advantage
4662                                  * in pushing only some items, instead of all, as
4663                                  * it's pointless to end up with a leaf having
4664                                  * too few items while the neighbours can be full
4665                                  * or nearly full.
4666                                  */
4667                                 nritems = btrfs_header_nritems(leaf);
4668                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4669                                 wret = push_leaf_right(trans, root, path, 0,
4670                                                        min_push_space, 1, 0);
4671                                 if (wret < 0 && wret != -ENOSPC)
4672                                         ret = wret;
4673                         }
4674
4675                         if (btrfs_header_nritems(leaf) == 0) {
4676                                 path->slots[1] = slot;
4677                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4678                                 if (ret < 0)
4679                                         return ret;
4680                                 free_extent_buffer(leaf);
4681                                 ret = 0;
4682                         } else {
4683                                 /* if we're still in the path, make sure
4684                                  * we're dirty.  Otherwise, one of the
4685                                  * push_leaf functions must have already
4686                                  * dirtied this buffer
4687                                  */
4688                                 if (path->nodes[0] == leaf)
4689                                         btrfs_mark_buffer_dirty(leaf);
4690                                 free_extent_buffer(leaf);
4691                         }
4692                 } else {
4693                         btrfs_mark_buffer_dirty(leaf);
4694                 }
4695         }
4696         return ret;
4697 }
4698
4699 /*
4700  * A helper function to walk down the tree starting at min_key, and looking
4701  * for nodes or leaves that are have a minimum transaction id.
4702  * This is used by the btree defrag code, and tree logging
4703  *
4704  * This does not cow, but it does stuff the starting key it finds back
4705  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4706  * key and get a writable path.
4707  *
4708  * This honors path->lowest_level to prevent descent past a given level
4709  * of the tree.
4710  *
4711  * min_trans indicates the oldest transaction that you are interested
4712  * in walking through.  Any nodes or leaves older than min_trans are
4713  * skipped over (without reading them).
4714  *
4715  * returns zero if something useful was found, < 0 on error and 1 if there
4716  * was nothing in the tree that matched the search criteria.
4717  */
4718 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4719                          struct btrfs_path *path,
4720                          u64 min_trans)
4721 {
4722         struct extent_buffer *cur;
4723         struct btrfs_key found_key;
4724         int slot;
4725         int sret;
4726         u32 nritems;
4727         int level;
4728         int ret = 1;
4729         int keep_locks = path->keep_locks;
4730
4731         ASSERT(!path->nowait);
4732         path->keep_locks = 1;
4733 again:
4734         cur = btrfs_read_lock_root_node(root);
4735         level = btrfs_header_level(cur);
4736         WARN_ON(path->nodes[level]);
4737         path->nodes[level] = cur;
4738         path->locks[level] = BTRFS_READ_LOCK;
4739
4740         if (btrfs_header_generation(cur) < min_trans) {
4741                 ret = 1;
4742                 goto out;
4743         }
4744         while (1) {
4745                 nritems = btrfs_header_nritems(cur);
4746                 level = btrfs_header_level(cur);
4747                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4748                 if (sret < 0) {
4749                         ret = sret;
4750                         goto out;
4751                 }
4752
4753                 /* at the lowest level, we're done, setup the path and exit */
4754                 if (level == path->lowest_level) {
4755                         if (slot >= nritems)
4756                                 goto find_next_key;
4757                         ret = 0;
4758                         path->slots[level] = slot;
4759                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4760                         goto out;
4761                 }
4762                 if (sret && slot > 0)
4763                         slot--;
4764                 /*
4765                  * check this node pointer against the min_trans parameters.
4766                  * If it is too old, skip to the next one.
4767                  */
4768                 while (slot < nritems) {
4769                         u64 gen;
4770
4771                         gen = btrfs_node_ptr_generation(cur, slot);
4772                         if (gen < min_trans) {
4773                                 slot++;
4774                                 continue;
4775                         }
4776                         break;
4777                 }
4778 find_next_key:
4779                 /*
4780                  * we didn't find a candidate key in this node, walk forward
4781                  * and find another one
4782                  */
4783                 if (slot >= nritems) {
4784                         path->slots[level] = slot;
4785                         sret = btrfs_find_next_key(root, path, min_key, level,
4786                                                   min_trans);
4787                         if (sret == 0) {
4788                                 btrfs_release_path(path);
4789                                 goto again;
4790                         } else {
4791                                 goto out;
4792                         }
4793                 }
4794                 /* save our key for returning back */
4795                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4796                 path->slots[level] = slot;
4797                 if (level == path->lowest_level) {
4798                         ret = 0;
4799                         goto out;
4800                 }
4801                 cur = btrfs_read_node_slot(cur, slot);
4802                 if (IS_ERR(cur)) {
4803                         ret = PTR_ERR(cur);
4804                         goto out;
4805                 }
4806
4807                 btrfs_tree_read_lock(cur);
4808
4809                 path->locks[level - 1] = BTRFS_READ_LOCK;
4810                 path->nodes[level - 1] = cur;
4811                 unlock_up(path, level, 1, 0, NULL);
4812         }
4813 out:
4814         path->keep_locks = keep_locks;
4815         if (ret == 0) {
4816                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4817                 memcpy(min_key, &found_key, sizeof(found_key));
4818         }
4819         return ret;
4820 }
4821
4822 /*
4823  * this is similar to btrfs_next_leaf, but does not try to preserve
4824  * and fixup the path.  It looks for and returns the next key in the
4825  * tree based on the current path and the min_trans parameters.
4826  *
4827  * 0 is returned if another key is found, < 0 if there are any errors
4828  * and 1 is returned if there are no higher keys in the tree
4829  *
4830  * path->keep_locks should be set to 1 on the search made before
4831  * calling this function.
4832  */
4833 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4834                         struct btrfs_key *key, int level, u64 min_trans)
4835 {
4836         int slot;
4837         struct extent_buffer *c;
4838
4839         WARN_ON(!path->keep_locks && !path->skip_locking);
4840         while (level < BTRFS_MAX_LEVEL) {
4841                 if (!path->nodes[level])
4842                         return 1;
4843
4844                 slot = path->slots[level] + 1;
4845                 c = path->nodes[level];
4846 next:
4847                 if (slot >= btrfs_header_nritems(c)) {
4848                         int ret;
4849                         int orig_lowest;
4850                         struct btrfs_key cur_key;
4851                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4852                             !path->nodes[level + 1])
4853                                 return 1;
4854
4855                         if (path->locks[level + 1] || path->skip_locking) {
4856                                 level++;
4857                                 continue;
4858                         }
4859
4860                         slot = btrfs_header_nritems(c) - 1;
4861                         if (level == 0)
4862                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4863                         else
4864                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4865
4866                         orig_lowest = path->lowest_level;
4867                         btrfs_release_path(path);
4868                         path->lowest_level = level;
4869                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4870                                                 0, 0);
4871                         path->lowest_level = orig_lowest;
4872                         if (ret < 0)
4873                                 return ret;
4874
4875                         c = path->nodes[level];
4876                         slot = path->slots[level];
4877                         if (ret == 0)
4878                                 slot++;
4879                         goto next;
4880                 }
4881
4882                 if (level == 0)
4883                         btrfs_item_key_to_cpu(c, key, slot);
4884                 else {
4885                         u64 gen = btrfs_node_ptr_generation(c, slot);
4886
4887                         if (gen < min_trans) {
4888                                 slot++;
4889                                 goto next;
4890                         }
4891                         btrfs_node_key_to_cpu(c, key, slot);
4892                 }
4893                 return 0;
4894         }
4895         return 1;
4896 }
4897
4898 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4899                         u64 time_seq)
4900 {
4901         int slot;
4902         int level;
4903         struct extent_buffer *c;
4904         struct extent_buffer *next;
4905         struct btrfs_fs_info *fs_info = root->fs_info;
4906         struct btrfs_key key;
4907         bool need_commit_sem = false;
4908         u32 nritems;
4909         int ret;
4910         int i;
4911
4912         /*
4913          * The nowait semantics are used only for write paths, where we don't
4914          * use the tree mod log and sequence numbers.
4915          */
4916         if (time_seq)
4917                 ASSERT(!path->nowait);
4918
4919         nritems = btrfs_header_nritems(path->nodes[0]);
4920         if (nritems == 0)
4921                 return 1;
4922
4923         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4924 again:
4925         level = 1;
4926         next = NULL;
4927         btrfs_release_path(path);
4928
4929         path->keep_locks = 1;
4930
4931         if (time_seq) {
4932                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4933         } else {
4934                 if (path->need_commit_sem) {
4935                         path->need_commit_sem = 0;
4936                         need_commit_sem = true;
4937                         if (path->nowait) {
4938                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4939                                         ret = -EAGAIN;
4940                                         goto done;
4941                                 }
4942                         } else {
4943                                 down_read(&fs_info->commit_root_sem);
4944                         }
4945                 }
4946                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947         }
4948         path->keep_locks = 0;
4949
4950         if (ret < 0)
4951                 goto done;
4952
4953         nritems = btrfs_header_nritems(path->nodes[0]);
4954         /*
4955          * by releasing the path above we dropped all our locks.  A balance
4956          * could have added more items next to the key that used to be
4957          * at the very end of the block.  So, check again here and
4958          * advance the path if there are now more items available.
4959          */
4960         if (nritems > 0 && path->slots[0] < nritems - 1) {
4961                 if (ret == 0)
4962                         path->slots[0]++;
4963                 ret = 0;
4964                 goto done;
4965         }
4966         /*
4967          * So the above check misses one case:
4968          * - after releasing the path above, someone has removed the item that
4969          *   used to be at the very end of the block, and balance between leafs
4970          *   gets another one with bigger key.offset to replace it.
4971          *
4972          * This one should be returned as well, or we can get leaf corruption
4973          * later(esp. in __btrfs_drop_extents()).
4974          *
4975          * And a bit more explanation about this check,
4976          * with ret > 0, the key isn't found, the path points to the slot
4977          * where it should be inserted, so the path->slots[0] item must be the
4978          * bigger one.
4979          */
4980         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4981                 ret = 0;
4982                 goto done;
4983         }
4984
4985         while (level < BTRFS_MAX_LEVEL) {
4986                 if (!path->nodes[level]) {
4987                         ret = 1;
4988                         goto done;
4989                 }
4990
4991                 slot = path->slots[level] + 1;
4992                 c = path->nodes[level];
4993                 if (slot >= btrfs_header_nritems(c)) {
4994                         level++;
4995                         if (level == BTRFS_MAX_LEVEL) {
4996                                 ret = 1;
4997                                 goto done;
4998                         }
4999                         continue;
5000                 }
5001
5002
5003                 /*
5004                  * Our current level is where we're going to start from, and to
5005                  * make sure lockdep doesn't complain we need to drop our locks
5006                  * and nodes from 0 to our current level.
5007                  */
5008                 for (i = 0; i < level; i++) {
5009                         if (path->locks[level]) {
5010                                 btrfs_tree_read_unlock(path->nodes[i]);
5011                                 path->locks[i] = 0;
5012                         }
5013                         free_extent_buffer(path->nodes[i]);
5014                         path->nodes[i] = NULL;
5015                 }
5016
5017                 next = c;
5018                 ret = read_block_for_search(root, path, &next, level,
5019                                             slot, &key);
5020                 if (ret == -EAGAIN && !path->nowait)
5021                         goto again;
5022
5023                 if (ret < 0) {
5024                         btrfs_release_path(path);
5025                         goto done;
5026                 }
5027
5028                 if (!path->skip_locking) {
5029                         ret = btrfs_try_tree_read_lock(next);
5030                         if (!ret && path->nowait) {
5031                                 ret = -EAGAIN;
5032                                 goto done;
5033                         }
5034                         if (!ret && time_seq) {
5035                                 /*
5036                                  * If we don't get the lock, we may be racing
5037                                  * with push_leaf_left, holding that lock while
5038                                  * itself waiting for the leaf we've currently
5039                                  * locked. To solve this situation, we give up
5040                                  * on our lock and cycle.
5041                                  */
5042                                 free_extent_buffer(next);
5043                                 btrfs_release_path(path);
5044                                 cond_resched();
5045                                 goto again;
5046                         }
5047                         if (!ret)
5048                                 btrfs_tree_read_lock(next);
5049                 }
5050                 break;
5051         }
5052         path->slots[level] = slot;
5053         while (1) {
5054                 level--;
5055                 path->nodes[level] = next;
5056                 path->slots[level] = 0;
5057                 if (!path->skip_locking)
5058                         path->locks[level] = BTRFS_READ_LOCK;
5059                 if (!level)
5060                         break;
5061
5062                 ret = read_block_for_search(root, path, &next, level,
5063                                             0, &key);
5064                 if (ret == -EAGAIN && !path->nowait)
5065                         goto again;
5066
5067                 if (ret < 0) {
5068                         btrfs_release_path(path);
5069                         goto done;
5070                 }
5071
5072                 if (!path->skip_locking) {
5073                         if (path->nowait) {
5074                                 if (!btrfs_try_tree_read_lock(next)) {
5075                                         ret = -EAGAIN;
5076                                         goto done;
5077                                 }
5078                         } else {
5079                                 btrfs_tree_read_lock(next);
5080                         }
5081                 }
5082         }
5083         ret = 0;
5084 done:
5085         unlock_up(path, 0, 1, 0, NULL);
5086         if (need_commit_sem) {
5087                 int ret2;
5088
5089                 path->need_commit_sem = 1;
5090                 ret2 = finish_need_commit_sem_search(path);
5091                 up_read(&fs_info->commit_root_sem);
5092                 if (ret2)
5093                         ret = ret2;
5094         }
5095
5096         return ret;
5097 }
5098
5099 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5100 {
5101         path->slots[0]++;
5102         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5103                 return btrfs_next_old_leaf(root, path, time_seq);
5104         return 0;
5105 }
5106
5107 /*
5108  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5109  * searching until it gets past min_objectid or finds an item of 'type'
5110  *
5111  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5112  */
5113 int btrfs_previous_item(struct btrfs_root *root,
5114                         struct btrfs_path *path, u64 min_objectid,
5115                         int type)
5116 {
5117         struct btrfs_key found_key;
5118         struct extent_buffer *leaf;
5119         u32 nritems;
5120         int ret;
5121
5122         while (1) {
5123                 if (path->slots[0] == 0) {
5124                         ret = btrfs_prev_leaf(root, path);
5125                         if (ret != 0)
5126                                 return ret;
5127                 } else {
5128                         path->slots[0]--;
5129                 }
5130                 leaf = path->nodes[0];
5131                 nritems = btrfs_header_nritems(leaf);
5132                 if (nritems == 0)
5133                         return 1;
5134                 if (path->slots[0] == nritems)
5135                         path->slots[0]--;
5136
5137                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5138                 if (found_key.objectid < min_objectid)
5139                         break;
5140                 if (found_key.type == type)
5141                         return 0;
5142                 if (found_key.objectid == min_objectid &&
5143                     found_key.type < type)
5144                         break;
5145         }
5146         return 1;
5147 }
5148
5149 /*
5150  * search in extent tree to find a previous Metadata/Data extent item with
5151  * min objecitd.
5152  *
5153  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5154  */
5155 int btrfs_previous_extent_item(struct btrfs_root *root,
5156                         struct btrfs_path *path, u64 min_objectid)
5157 {
5158         struct btrfs_key found_key;
5159         struct extent_buffer *leaf;
5160         u32 nritems;
5161         int ret;
5162
5163         while (1) {
5164                 if (path->slots[0] == 0) {
5165                         ret = btrfs_prev_leaf(root, path);
5166                         if (ret != 0)
5167                                 return ret;
5168                 } else {
5169                         path->slots[0]--;
5170                 }
5171                 leaf = path->nodes[0];
5172                 nritems = btrfs_header_nritems(leaf);
5173                 if (nritems == 0)
5174                         return 1;
5175                 if (path->slots[0] == nritems)
5176                         path->slots[0]--;
5177
5178                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5179                 if (found_key.objectid < min_objectid)
5180                         break;
5181                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5182                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5183                         return 0;
5184                 if (found_key.objectid == min_objectid &&
5185                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5186                         break;
5187         }
5188         return 1;
5189 }
5190
5191 int __init btrfs_ctree_init(void)
5192 {
5193         btrfs_path_cachep = kmem_cache_create("btrfs_path",
5194                         sizeof(struct btrfs_path), 0,
5195                         SLAB_MEM_SPREAD, NULL);
5196         if (!btrfs_path_cachep)
5197                 return -ENOMEM;
5198         return 0;
5199 }
5200
5201 void __cold btrfs_ctree_exit(void)
5202 {
5203         kmem_cache_destroy(btrfs_path_cachep);
5204 }