d99d9651dd58dc2e04ba9b2fdefc8b309bf31943
[platform/kernel/linux-rpi.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84         /* lockdep really cares that we take all of these spinlocks
85          * in the right order.  If any of the locks in the path are not
86          * currently blocking, it is going to complain.  So, make really
87          * really sure by forcing the path to blocking before we clear
88          * the path blocking.
89          */
90         if (held) {
91                 btrfs_set_lock_blocking_rw(held, held_rw);
92                 if (held_rw == BTRFS_WRITE_LOCK)
93                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94                 else if (held_rw == BTRFS_READ_LOCK)
95                         held_rw = BTRFS_READ_LOCK_BLOCKING;
96         }
97         btrfs_set_path_blocking(p);
98 #endif
99
100         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101                 if (p->nodes[i] && p->locks[i]) {
102                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104                                 p->locks[i] = BTRFS_WRITE_LOCK;
105                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106                                 p->locks[i] = BTRFS_READ_LOCK;
107                 }
108         }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111         if (held)
112                 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119         if (!p)
120                 return;
121         btrfs_release_path(p);
122         kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126  * path release drops references on the extent buffers in the path
127  * and it drops any locks held by this path
128  *
129  * It is safe to call this on paths that no locks or extent buffers held.
130  */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133         int i;
134
135         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136                 p->slots[i] = 0;
137                 if (!p->nodes[i])
138                         continue;
139                 if (p->locks[i]) {
140                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141                         p->locks[i] = 0;
142                 }
143                 free_extent_buffer(p->nodes[i]);
144                 p->nodes[i] = NULL;
145         }
146 }
147
148 /*
149  * safely gets a reference on the root node of a tree.  A lock
150  * is not taken, so a concurrent writer may put a different node
151  * at the root of the tree.  See btrfs_lock_root_node for the
152  * looping required.
153  *
154  * The extent buffer returned by this has a reference taken, so
155  * it won't disappear.  It may stop being the root of the tree
156  * at any time because there are no locks held.
157  */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 rcu_read_lock();
164                 eb = rcu_dereference(root->node);
165
166                 /*
167                  * RCU really hurts here, we could free up the root node because
168                  * it was cow'ed but we may not get the new root node yet so do
169                  * the inc_not_zero dance and if it doesn't work then
170                  * synchronize_rcu and try again.
171                  */
172                 if (atomic_inc_not_zero(&eb->refs)) {
173                         rcu_read_unlock();
174                         break;
175                 }
176                 rcu_read_unlock();
177                 synchronize_rcu();
178         }
179         return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183  * tree until you end up with a lock on the root.  A locked buffer
184  * is returned, with a reference held.
185  */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188         struct extent_buffer *eb;
189
190         while (1) {
191                 eb = btrfs_root_node(root);
192                 btrfs_tree_lock(eb);
193                 if (eb == root->node)
194                         break;
195                 btrfs_tree_unlock(eb);
196                 free_extent_buffer(eb);
197         }
198         return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202  * tree until you end up with a lock on the root.  A locked buffer
203  * is returned, with a reference held.
204  */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207         struct extent_buffer *eb;
208
209         while (1) {
210                 eb = btrfs_root_node(root);
211                 btrfs_tree_read_lock(eb);
212                 if (eb == root->node)
213                         break;
214                 btrfs_tree_read_unlock(eb);
215                 free_extent_buffer(eb);
216         }
217         return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221  * put onto a simple dirty list.  transaction.c walks this to make sure they
222  * get properly updated on disk.
223  */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226         spin_lock(&root->fs_info->trans_lock);
227         if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228             list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251                 trans->transid != root->fs_info->running_transaction->transid);
252         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253                 trans->transid != root->last_trans);
254
255         level = btrfs_header_level(buf);
256         if (level == 0)
257                 btrfs_item_key(buf, &disk_key, 0);
258         else
259                 btrfs_node_key(buf, &disk_key, 0);
260
261         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
262                                      new_root_objectid, &disk_key, level,
263                                      buf->start, 0);
264         if (IS_ERR(cow))
265                 return PTR_ERR(cow);
266
267         copy_extent_buffer(cow, buf, 0, 0, cow->len);
268         btrfs_set_header_bytenr(cow, cow->start);
269         btrfs_set_header_generation(cow, trans->transid);
270         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272                                      BTRFS_HEADER_FLAG_RELOC);
273         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275         else
276                 btrfs_set_header_owner(cow, new_root_objectid);
277
278         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
279                             BTRFS_FSID_SIZE);
280
281         WARN_ON(btrfs_header_generation(buf) > trans->transid);
282         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284         else
285                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287         if (ret)
288                 return ret;
289
290         btrfs_mark_buffer_dirty(cow);
291         *cow_ret = cow;
292         return 0;
293 }
294
295 enum mod_log_op {
296         MOD_LOG_KEY_REPLACE,
297         MOD_LOG_KEY_ADD,
298         MOD_LOG_KEY_REMOVE,
299         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301         MOD_LOG_MOVE_KEYS,
302         MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306         int dst_slot;
307         int nr_items;
308 };
309
310 struct tree_mod_root {
311         u64 logical;
312         u8 level;
313 };
314
315 struct tree_mod_elem {
316         struct rb_node node;
317         u64 index;              /* shifted logical */
318         u64 seq;
319         enum mod_log_op op;
320
321         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322         int slot;
323
324         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325         u64 generation;
326
327         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328         struct btrfs_disk_key key;
329         u64 blockptr;
330
331         /* this is used for op == MOD_LOG_MOVE_KEYS */
332         struct tree_mod_move move;
333
334         /* this is used for op == MOD_LOG_ROOT_REPLACE */
335         struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340         read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345         read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350         write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355         write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359  * Pull a new tree mod seq number for our operation.
360  */
361 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
362 {
363         return atomic64_inc_return(&fs_info->tree_mod_seq);
364 }
365
366 /*
367  * This adds a new blocker to the tree mod log's blocker list if the @elem
368  * passed does not already have a sequence number set. So when a caller expects
369  * to record tree modifications, it should ensure to set elem->seq to zero
370  * before calling btrfs_get_tree_mod_seq.
371  * Returns a fresh, unused tree log modification sequence number, even if no new
372  * blocker was added.
373  */
374 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
375                            struct seq_list *elem)
376 {
377         tree_mod_log_write_lock(fs_info);
378         spin_lock(&fs_info->tree_mod_seq_lock);
379         if (!elem->seq) {
380                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382         }
383         spin_unlock(&fs_info->tree_mod_seq_lock);
384         tree_mod_log_write_unlock(fs_info);
385
386         return elem->seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390                             struct seq_list *elem)
391 {
392         struct rb_root *tm_root;
393         struct rb_node *node;
394         struct rb_node *next;
395         struct seq_list *cur_elem;
396         struct tree_mod_elem *tm;
397         u64 min_seq = (u64)-1;
398         u64 seq_putting = elem->seq;
399
400         if (!seq_putting)
401                 return;
402
403         spin_lock(&fs_info->tree_mod_seq_lock);
404         list_del(&elem->list);
405         elem->seq = 0;
406
407         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408                 if (cur_elem->seq < min_seq) {
409                         if (seq_putting > cur_elem->seq) {
410                                 /*
411                                  * blocker with lower sequence number exists, we
412                                  * cannot remove anything from the log
413                                  */
414                                 spin_unlock(&fs_info->tree_mod_seq_lock);
415                                 return;
416                         }
417                         min_seq = cur_elem->seq;
418                 }
419         }
420         spin_unlock(&fs_info->tree_mod_seq_lock);
421
422         /*
423          * anything that's lower than the lowest existing (read: blocked)
424          * sequence number can be removed from the tree.
425          */
426         tree_mod_log_write_lock(fs_info);
427         tm_root = &fs_info->tree_mod_log;
428         for (node = rb_first(tm_root); node; node = next) {
429                 next = rb_next(node);
430                 tm = container_of(node, struct tree_mod_elem, node);
431                 if (tm->seq > min_seq)
432                         continue;
433                 rb_erase(node, tm_root);
434                 kfree(tm);
435         }
436         tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  *
447  * Note: must be called with write lock (tree_mod_log_write_lock).
448  */
449 static noinline int
450 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
451 {
452         struct rb_root *tm_root;
453         struct rb_node **new;
454         struct rb_node *parent = NULL;
455         struct tree_mod_elem *cur;
456
457         BUG_ON(!tm);
458
459         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
460
461         tm_root = &fs_info->tree_mod_log;
462         new = &tm_root->rb_node;
463         while (*new) {
464                 cur = container_of(*new, struct tree_mod_elem, node);
465                 parent = *new;
466                 if (cur->index < tm->index)
467                         new = &((*new)->rb_left);
468                 else if (cur->index > tm->index)
469                         new = &((*new)->rb_right);
470                 else if (cur->seq < tm->seq)
471                         new = &((*new)->rb_left);
472                 else if (cur->seq > tm->seq)
473                         new = &((*new)->rb_right);
474                 else
475                         return -EEXIST;
476         }
477
478         rb_link_node(&tm->node, parent, new);
479         rb_insert_color(&tm->node, tm_root);
480         return 0;
481 }
482
483 /*
484  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
485  * returns zero with the tree_mod_log_lock acquired. The caller must hold
486  * this until all tree mod log insertions are recorded in the rb tree and then
487  * call tree_mod_log_write_unlock() to release.
488  */
489 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
490                                     struct extent_buffer *eb) {
491         smp_mb();
492         if (list_empty(&(fs_info)->tree_mod_seq_list))
493                 return 1;
494         if (eb && btrfs_header_level(eb) == 0)
495                 return 1;
496
497         tree_mod_log_write_lock(fs_info);
498         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
499                 tree_mod_log_write_unlock(fs_info);
500                 return 1;
501         }
502
503         return 0;
504 }
505
506 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
507 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
508                                     struct extent_buffer *eb)
509 {
510         smp_mb();
511         if (list_empty(&(fs_info)->tree_mod_seq_list))
512                 return 0;
513         if (eb && btrfs_header_level(eb) == 0)
514                 return 0;
515
516         return 1;
517 }
518
519 static struct tree_mod_elem *
520 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
521                     enum mod_log_op op, gfp_t flags)
522 {
523         struct tree_mod_elem *tm;
524
525         tm = kzalloc(sizeof(*tm), flags);
526         if (!tm)
527                 return NULL;
528
529         tm->index = eb->start >> PAGE_CACHE_SHIFT;
530         if (op != MOD_LOG_KEY_ADD) {
531                 btrfs_node_key(eb, &tm->key, slot);
532                 tm->blockptr = btrfs_node_blockptr(eb, slot);
533         }
534         tm->op = op;
535         tm->slot = slot;
536         tm->generation = btrfs_node_ptr_generation(eb, slot);
537         RB_CLEAR_NODE(&tm->node);
538
539         return tm;
540 }
541
542 static noinline int
543 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
544                         struct extent_buffer *eb, int slot,
545                         enum mod_log_op op, gfp_t flags)
546 {
547         struct tree_mod_elem *tm;
548         int ret;
549
550         if (!tree_mod_need_log(fs_info, eb))
551                 return 0;
552
553         tm = alloc_tree_mod_elem(eb, slot, op, flags);
554         if (!tm)
555                 return -ENOMEM;
556
557         if (tree_mod_dont_log(fs_info, eb)) {
558                 kfree(tm);
559                 return 0;
560         }
561
562         ret = __tree_mod_log_insert(fs_info, tm);
563         tree_mod_log_write_unlock(fs_info);
564         if (ret)
565                 kfree(tm);
566
567         return ret;
568 }
569
570 static noinline int
571 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
572                          struct extent_buffer *eb, int dst_slot, int src_slot,
573                          int nr_items, gfp_t flags)
574 {
575         struct tree_mod_elem *tm = NULL;
576         struct tree_mod_elem **tm_list = NULL;
577         int ret = 0;
578         int i;
579         int locked = 0;
580
581         if (!tree_mod_need_log(fs_info, eb))
582                 return 0;
583
584         tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
585         if (!tm_list)
586                 return -ENOMEM;
587
588         tm = kzalloc(sizeof(*tm), flags);
589         if (!tm) {
590                 ret = -ENOMEM;
591                 goto free_tms;
592         }
593
594         tm->index = eb->start >> PAGE_CACHE_SHIFT;
595         tm->slot = src_slot;
596         tm->move.dst_slot = dst_slot;
597         tm->move.nr_items = nr_items;
598         tm->op = MOD_LOG_MOVE_KEYS;
599
600         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
601                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
602                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
603                 if (!tm_list[i]) {
604                         ret = -ENOMEM;
605                         goto free_tms;
606                 }
607         }
608
609         if (tree_mod_dont_log(fs_info, eb))
610                 goto free_tms;
611         locked = 1;
612
613         /*
614          * When we override something during the move, we log these removals.
615          * This can only happen when we move towards the beginning of the
616          * buffer, i.e. dst_slot < src_slot.
617          */
618         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
619                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
620                 if (ret)
621                         goto free_tms;
622         }
623
624         ret = __tree_mod_log_insert(fs_info, tm);
625         if (ret)
626                 goto free_tms;
627         tree_mod_log_write_unlock(fs_info);
628         kfree(tm_list);
629
630         return 0;
631 free_tms:
632         for (i = 0; i < nr_items; i++) {
633                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
634                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
635                 kfree(tm_list[i]);
636         }
637         if (locked)
638                 tree_mod_log_write_unlock(fs_info);
639         kfree(tm_list);
640         kfree(tm);
641
642         return ret;
643 }
644
645 static inline int
646 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
647                        struct tree_mod_elem **tm_list,
648                        int nritems)
649 {
650         int i, j;
651         int ret;
652
653         for (i = nritems - 1; i >= 0; i--) {
654                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
655                 if (ret) {
656                         for (j = nritems - 1; j > i; j--)
657                                 rb_erase(&tm_list[j]->node,
658                                          &fs_info->tree_mod_log);
659                         return ret;
660                 }
661         }
662
663         return 0;
664 }
665
666 static noinline int
667 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
668                          struct extent_buffer *old_root,
669                          struct extent_buffer *new_root, gfp_t flags,
670                          int log_removal)
671 {
672         struct tree_mod_elem *tm = NULL;
673         struct tree_mod_elem **tm_list = NULL;
674         int nritems = 0;
675         int ret = 0;
676         int i;
677
678         if (!tree_mod_need_log(fs_info, NULL))
679                 return 0;
680
681         if (log_removal && btrfs_header_level(old_root) > 0) {
682                 nritems = btrfs_header_nritems(old_root);
683                 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
684                                   flags);
685                 if (!tm_list) {
686                         ret = -ENOMEM;
687                         goto free_tms;
688                 }
689                 for (i = 0; i < nritems; i++) {
690                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
691                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
692                         if (!tm_list[i]) {
693                                 ret = -ENOMEM;
694                                 goto free_tms;
695                         }
696                 }
697         }
698
699         tm = kzalloc(sizeof(*tm), flags);
700         if (!tm) {
701                 ret = -ENOMEM;
702                 goto free_tms;
703         }
704
705         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
706         tm->old_root.logical = old_root->start;
707         tm->old_root.level = btrfs_header_level(old_root);
708         tm->generation = btrfs_header_generation(old_root);
709         tm->op = MOD_LOG_ROOT_REPLACE;
710
711         if (tree_mod_dont_log(fs_info, NULL))
712                 goto free_tms;
713
714         if (tm_list)
715                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
716         if (!ret)
717                 ret = __tree_mod_log_insert(fs_info, tm);
718
719         tree_mod_log_write_unlock(fs_info);
720         if (ret)
721                 goto free_tms;
722         kfree(tm_list);
723
724         return ret;
725
726 free_tms:
727         if (tm_list) {
728                 for (i = 0; i < nritems; i++)
729                         kfree(tm_list[i]);
730                 kfree(tm_list);
731         }
732         kfree(tm);
733
734         return ret;
735 }
736
737 static struct tree_mod_elem *
738 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
739                       int smallest)
740 {
741         struct rb_root *tm_root;
742         struct rb_node *node;
743         struct tree_mod_elem *cur = NULL;
744         struct tree_mod_elem *found = NULL;
745         u64 index = start >> PAGE_CACHE_SHIFT;
746
747         tree_mod_log_read_lock(fs_info);
748         tm_root = &fs_info->tree_mod_log;
749         node = tm_root->rb_node;
750         while (node) {
751                 cur = container_of(node, struct tree_mod_elem, node);
752                 if (cur->index < index) {
753                         node = node->rb_left;
754                 } else if (cur->index > index) {
755                         node = node->rb_right;
756                 } else if (cur->seq < min_seq) {
757                         node = node->rb_left;
758                 } else if (!smallest) {
759                         /* we want the node with the highest seq */
760                         if (found)
761                                 BUG_ON(found->seq > cur->seq);
762                         found = cur;
763                         node = node->rb_left;
764                 } else if (cur->seq > min_seq) {
765                         /* we want the node with the smallest seq */
766                         if (found)
767                                 BUG_ON(found->seq < cur->seq);
768                         found = cur;
769                         node = node->rb_right;
770                 } else {
771                         found = cur;
772                         break;
773                 }
774         }
775         tree_mod_log_read_unlock(fs_info);
776
777         return found;
778 }
779
780 /*
781  * this returns the element from the log with the smallest time sequence
782  * value that's in the log (the oldest log item). any element with a time
783  * sequence lower than min_seq will be ignored.
784  */
785 static struct tree_mod_elem *
786 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
787                            u64 min_seq)
788 {
789         return __tree_mod_log_search(fs_info, start, min_seq, 1);
790 }
791
792 /*
793  * this returns the element from the log with the largest time sequence
794  * value that's in the log (the most recent log item). any element with
795  * a time sequence lower than min_seq will be ignored.
796  */
797 static struct tree_mod_elem *
798 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
799 {
800         return __tree_mod_log_search(fs_info, start, min_seq, 0);
801 }
802
803 static noinline int
804 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
805                      struct extent_buffer *src, unsigned long dst_offset,
806                      unsigned long src_offset, int nr_items)
807 {
808         int ret = 0;
809         struct tree_mod_elem **tm_list = NULL;
810         struct tree_mod_elem **tm_list_add, **tm_list_rem;
811         int i;
812         int locked = 0;
813
814         if (!tree_mod_need_log(fs_info, NULL))
815                 return 0;
816
817         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
818                 return 0;
819
820         tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
821                           GFP_NOFS);
822         if (!tm_list)
823                 return -ENOMEM;
824
825         tm_list_add = tm_list;
826         tm_list_rem = tm_list + nr_items;
827         for (i = 0; i < nr_items; i++) {
828                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
829                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
830                 if (!tm_list_rem[i]) {
831                         ret = -ENOMEM;
832                         goto free_tms;
833                 }
834
835                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
836                     MOD_LOG_KEY_ADD, GFP_NOFS);
837                 if (!tm_list_add[i]) {
838                         ret = -ENOMEM;
839                         goto free_tms;
840                 }
841         }
842
843         if (tree_mod_dont_log(fs_info, NULL))
844                 goto free_tms;
845         locked = 1;
846
847         for (i = 0; i < nr_items; i++) {
848                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
849                 if (ret)
850                         goto free_tms;
851                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
852                 if (ret)
853                         goto free_tms;
854         }
855
856         tree_mod_log_write_unlock(fs_info);
857         kfree(tm_list);
858
859         return 0;
860
861 free_tms:
862         for (i = 0; i < nr_items * 2; i++) {
863                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
864                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
865                 kfree(tm_list[i]);
866         }
867         if (locked)
868                 tree_mod_log_write_unlock(fs_info);
869         kfree(tm_list);
870
871         return ret;
872 }
873
874 static inline void
875 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
876                      int dst_offset, int src_offset, int nr_items)
877 {
878         int ret;
879         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
880                                        nr_items, GFP_NOFS);
881         BUG_ON(ret < 0);
882 }
883
884 static noinline void
885 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
886                           struct extent_buffer *eb, int slot, int atomic)
887 {
888         int ret;
889
890         ret = tree_mod_log_insert_key(fs_info, eb, slot,
891                                         MOD_LOG_KEY_REPLACE,
892                                         atomic ? GFP_ATOMIC : GFP_NOFS);
893         BUG_ON(ret < 0);
894 }
895
896 static noinline int
897 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
898 {
899         struct tree_mod_elem **tm_list = NULL;
900         int nritems = 0;
901         int i;
902         int ret = 0;
903
904         if (btrfs_header_level(eb) == 0)
905                 return 0;
906
907         if (!tree_mod_need_log(fs_info, NULL))
908                 return 0;
909
910         nritems = btrfs_header_nritems(eb);
911         tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
912                           GFP_NOFS);
913         if (!tm_list)
914                 return -ENOMEM;
915
916         for (i = 0; i < nritems; i++) {
917                 tm_list[i] = alloc_tree_mod_elem(eb, i,
918                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
919                 if (!tm_list[i]) {
920                         ret = -ENOMEM;
921                         goto free_tms;
922                 }
923         }
924
925         if (tree_mod_dont_log(fs_info, eb))
926                 goto free_tms;
927
928         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
929         tree_mod_log_write_unlock(fs_info);
930         if (ret)
931                 goto free_tms;
932         kfree(tm_list);
933
934         return 0;
935
936 free_tms:
937         for (i = 0; i < nritems; i++)
938                 kfree(tm_list[i]);
939         kfree(tm_list);
940
941         return ret;
942 }
943
944 static noinline void
945 tree_mod_log_set_root_pointer(struct btrfs_root *root,
946                               struct extent_buffer *new_root_node,
947                               int log_removal)
948 {
949         int ret;
950         ret = tree_mod_log_insert_root(root->fs_info, root->node,
951                                        new_root_node, GFP_NOFS, log_removal);
952         BUG_ON(ret < 0);
953 }
954
955 /*
956  * check if the tree block can be shared by multiple trees
957  */
958 int btrfs_block_can_be_shared(struct btrfs_root *root,
959                               struct extent_buffer *buf)
960 {
961         /*
962          * Tree blocks not in refernece counted trees and tree roots
963          * are never shared. If a block was allocated after the last
964          * snapshot and the block was not allocated by tree relocation,
965          * we know the block is not shared.
966          */
967         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
968             buf != root->node && buf != root->commit_root &&
969             (btrfs_header_generation(buf) <=
970              btrfs_root_last_snapshot(&root->root_item) ||
971              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
972                 return 1;
973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
974         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
975             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
976                 return 1;
977 #endif
978         return 0;
979 }
980
981 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
982                                        struct btrfs_root *root,
983                                        struct extent_buffer *buf,
984                                        struct extent_buffer *cow,
985                                        int *last_ref)
986 {
987         u64 refs;
988         u64 owner;
989         u64 flags;
990         u64 new_flags = 0;
991         int ret;
992
993         /*
994          * Backrefs update rules:
995          *
996          * Always use full backrefs for extent pointers in tree block
997          * allocated by tree relocation.
998          *
999          * If a shared tree block is no longer referenced by its owner
1000          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1001          * use full backrefs for extent pointers in tree block.
1002          *
1003          * If a tree block is been relocating
1004          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1005          * use full backrefs for extent pointers in tree block.
1006          * The reason for this is some operations (such as drop tree)
1007          * are only allowed for blocks use full backrefs.
1008          */
1009
1010         if (btrfs_block_can_be_shared(root, buf)) {
1011                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1012                                                btrfs_header_level(buf), 1,
1013                                                &refs, &flags);
1014                 if (ret)
1015                         return ret;
1016                 if (refs == 0) {
1017                         ret = -EROFS;
1018                         btrfs_std_error(root->fs_info, ret);
1019                         return ret;
1020                 }
1021         } else {
1022                 refs = 1;
1023                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026                 else
1027                         flags = 0;
1028         }
1029
1030         owner = btrfs_header_owner(buf);
1031         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1032                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1033
1034         if (refs > 1) {
1035                 if ((owner == root->root_key.objectid ||
1036                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1037                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1038                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1039                         BUG_ON(ret); /* -ENOMEM */
1040
1041                         if (root->root_key.objectid ==
1042                             BTRFS_TREE_RELOC_OBJECTID) {
1043                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1044                                 BUG_ON(ret); /* -ENOMEM */
1045                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1046                                 BUG_ON(ret); /* -ENOMEM */
1047                         }
1048                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1049                 } else {
1050
1051                         if (root->root_key.objectid ==
1052                             BTRFS_TREE_RELOC_OBJECTID)
1053                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1054                         else
1055                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1056                         BUG_ON(ret); /* -ENOMEM */
1057                 }
1058                 if (new_flags != 0) {
1059                         int level = btrfs_header_level(buf);
1060
1061                         ret = btrfs_set_disk_extent_flags(trans, root,
1062                                                           buf->start,
1063                                                           buf->len,
1064                                                           new_flags, level, 0);
1065                         if (ret)
1066                                 return ret;
1067                 }
1068         } else {
1069                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070                         if (root->root_key.objectid ==
1071                             BTRFS_TREE_RELOC_OBJECTID)
1072                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1073                         else
1074                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1075                         BUG_ON(ret); /* -ENOMEM */
1076                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1077                         BUG_ON(ret); /* -ENOMEM */
1078                 }
1079                 clean_tree_block(trans, root, buf);
1080                 *last_ref = 1;
1081         }
1082         return 0;
1083 }
1084
1085 /*
1086  * does the dirty work in cow of a single block.  The parent block (if
1087  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1088  * dirty and returned locked.  If you modify the block it needs to be marked
1089  * dirty again.
1090  *
1091  * search_start -- an allocation hint for the new block
1092  *
1093  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1094  * bytes the allocator should try to find free next to the block it returns.
1095  * This is just a hint and may be ignored by the allocator.
1096  */
1097 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1098                              struct btrfs_root *root,
1099                              struct extent_buffer *buf,
1100                              struct extent_buffer *parent, int parent_slot,
1101                              struct extent_buffer **cow_ret,
1102                              u64 search_start, u64 empty_size)
1103 {
1104         struct btrfs_disk_key disk_key;
1105         struct extent_buffer *cow;
1106         int level, ret;
1107         int last_ref = 0;
1108         int unlock_orig = 0;
1109         u64 parent_start;
1110
1111         if (*cow_ret == buf)
1112                 unlock_orig = 1;
1113
1114         btrfs_assert_tree_locked(buf);
1115
1116         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1117                 trans->transid != root->fs_info->running_transaction->transid);
1118         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1119                 trans->transid != root->last_trans);
1120
1121         level = btrfs_header_level(buf);
1122
1123         if (level == 0)
1124                 btrfs_item_key(buf, &disk_key, 0);
1125         else
1126                 btrfs_node_key(buf, &disk_key, 0);
1127
1128         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1129                 if (parent)
1130                         parent_start = parent->start;
1131                 else
1132                         parent_start = 0;
1133         } else
1134                 parent_start = 0;
1135
1136         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1137                                      root->root_key.objectid, &disk_key,
1138                                      level, search_start, empty_size);
1139         if (IS_ERR(cow))
1140                 return PTR_ERR(cow);
1141
1142         /* cow is set to blocking by btrfs_init_new_buffer */
1143
1144         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1145         btrfs_set_header_bytenr(cow, cow->start);
1146         btrfs_set_header_generation(cow, trans->transid);
1147         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1148         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1149                                      BTRFS_HEADER_FLAG_RELOC);
1150         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1151                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1152         else
1153                 btrfs_set_header_owner(cow, root->root_key.objectid);
1154
1155         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1156                             BTRFS_FSID_SIZE);
1157
1158         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1159         if (ret) {
1160                 btrfs_abort_transaction(trans, root, ret);
1161                 return ret;
1162         }
1163
1164         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1165                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1166                 if (ret)
1167                         return ret;
1168         }
1169
1170         if (buf == root->node) {
1171                 WARN_ON(parent && parent != buf);
1172                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1173                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1174                         parent_start = buf->start;
1175                 else
1176                         parent_start = 0;
1177
1178                 extent_buffer_get(cow);
1179                 tree_mod_log_set_root_pointer(root, cow, 1);
1180                 rcu_assign_pointer(root->node, cow);
1181
1182                 btrfs_free_tree_block(trans, root, buf, parent_start,
1183                                       last_ref);
1184                 free_extent_buffer(buf);
1185                 add_root_to_dirty_list(root);
1186         } else {
1187                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1188                         parent_start = parent->start;
1189                 else
1190                         parent_start = 0;
1191
1192                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1193                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1194                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1195                 btrfs_set_node_blockptr(parent, parent_slot,
1196                                         cow->start);
1197                 btrfs_set_node_ptr_generation(parent, parent_slot,
1198                                               trans->transid);
1199                 btrfs_mark_buffer_dirty(parent);
1200                 if (last_ref) {
1201                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1202                         if (ret) {
1203                                 btrfs_abort_transaction(trans, root, ret);
1204                                 return ret;
1205                         }
1206                 }
1207                 btrfs_free_tree_block(trans, root, buf, parent_start,
1208                                       last_ref);
1209         }
1210         if (unlock_orig)
1211                 btrfs_tree_unlock(buf);
1212         free_extent_buffer_stale(buf);
1213         btrfs_mark_buffer_dirty(cow);
1214         *cow_ret = cow;
1215         return 0;
1216 }
1217
1218 /*
1219  * returns the logical address of the oldest predecessor of the given root.
1220  * entries older than time_seq are ignored.
1221  */
1222 static struct tree_mod_elem *
1223 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1224                            struct extent_buffer *eb_root, u64 time_seq)
1225 {
1226         struct tree_mod_elem *tm;
1227         struct tree_mod_elem *found = NULL;
1228         u64 root_logical = eb_root->start;
1229         int looped = 0;
1230
1231         if (!time_seq)
1232                 return NULL;
1233
1234         /*
1235          * the very last operation that's logged for a root is the replacement
1236          * operation (if it is replaced at all). this has the index of the *new*
1237          * root, making it the very first operation that's logged for this root.
1238          */
1239         while (1) {
1240                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1241                                                 time_seq);
1242                 if (!looped && !tm)
1243                         return NULL;
1244                 /*
1245                  * if there are no tree operation for the oldest root, we simply
1246                  * return it. this should only happen if that (old) root is at
1247                  * level 0.
1248                  */
1249                 if (!tm)
1250                         break;
1251
1252                 /*
1253                  * if there's an operation that's not a root replacement, we
1254                  * found the oldest version of our root. normally, we'll find a
1255                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256                  */
1257                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1258                         break;
1259
1260                 found = tm;
1261                 root_logical = tm->old_root.logical;
1262                 looped = 1;
1263         }
1264
1265         /* if there's no old root to return, return what we found instead */
1266         if (!found)
1267                 found = tm;
1268
1269         return found;
1270 }
1271
1272 /*
1273  * tm is a pointer to the first operation to rewind within eb. then, all
1274  * previous operations will be rewinded (until we reach something older than
1275  * time_seq).
1276  */
1277 static void
1278 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1279                       u64 time_seq, struct tree_mod_elem *first_tm)
1280 {
1281         u32 n;
1282         struct rb_node *next;
1283         struct tree_mod_elem *tm = first_tm;
1284         unsigned long o_dst;
1285         unsigned long o_src;
1286         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287
1288         n = btrfs_header_nritems(eb);
1289         tree_mod_log_read_lock(fs_info);
1290         while (tm && tm->seq >= time_seq) {
1291                 /*
1292                  * all the operations are recorded with the operator used for
1293                  * the modification. as we're going backwards, we do the
1294                  * opposite of each operation here.
1295                  */
1296                 switch (tm->op) {
1297                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1298                         BUG_ON(tm->slot < n);
1299                         /* Fallthrough */
1300                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1301                 case MOD_LOG_KEY_REMOVE:
1302                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1303                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1304                         btrfs_set_node_ptr_generation(eb, tm->slot,
1305                                                       tm->generation);
1306                         n++;
1307                         break;
1308                 case MOD_LOG_KEY_REPLACE:
1309                         BUG_ON(tm->slot >= n);
1310                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1311                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1312                         btrfs_set_node_ptr_generation(eb, tm->slot,
1313                                                       tm->generation);
1314                         break;
1315                 case MOD_LOG_KEY_ADD:
1316                         /* if a move operation is needed it's in the log */
1317                         n--;
1318                         break;
1319                 case MOD_LOG_MOVE_KEYS:
1320                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1321                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1322                         memmove_extent_buffer(eb, o_dst, o_src,
1323                                               tm->move.nr_items * p_size);
1324                         break;
1325                 case MOD_LOG_ROOT_REPLACE:
1326                         /*
1327                          * this operation is special. for roots, this must be
1328                          * handled explicitly before rewinding.
1329                          * for non-roots, this operation may exist if the node
1330                          * was a root: root A -> child B; then A gets empty and
1331                          * B is promoted to the new root. in the mod log, we'll
1332                          * have a root-replace operation for B, a tree block
1333                          * that is no root. we simply ignore that operation.
1334                          */
1335                         break;
1336                 }
1337                 next = rb_next(&tm->node);
1338                 if (!next)
1339                         break;
1340                 tm = container_of(next, struct tree_mod_elem, node);
1341                 if (tm->index != first_tm->index)
1342                         break;
1343         }
1344         tree_mod_log_read_unlock(fs_info);
1345         btrfs_set_header_nritems(eb, n);
1346 }
1347
1348 /*
1349  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1350  * is returned. If rewind operations happen, a fresh buffer is returned. The
1351  * returned buffer is always read-locked. If the returned buffer is not the
1352  * input buffer, the lock on the input buffer is released and the input buffer
1353  * is freed (its refcount is decremented).
1354  */
1355 static struct extent_buffer *
1356 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1357                     struct extent_buffer *eb, u64 time_seq)
1358 {
1359         struct extent_buffer *eb_rewin;
1360         struct tree_mod_elem *tm;
1361
1362         if (!time_seq)
1363                 return eb;
1364
1365         if (btrfs_header_level(eb) == 0)
1366                 return eb;
1367
1368         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1369         if (!tm)
1370                 return eb;
1371
1372         btrfs_set_path_blocking(path);
1373         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374
1375         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376                 BUG_ON(tm->slot != 0);
1377                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1378                                                 fs_info->tree_root->nodesize);
1379                 if (!eb_rewin) {
1380                         btrfs_tree_read_unlock_blocking(eb);
1381                         free_extent_buffer(eb);
1382                         return NULL;
1383                 }
1384                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1385                 btrfs_set_header_backref_rev(eb_rewin,
1386                                              btrfs_header_backref_rev(eb));
1387                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1388                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1389         } else {
1390                 eb_rewin = btrfs_clone_extent_buffer(eb);
1391                 if (!eb_rewin) {
1392                         btrfs_tree_read_unlock_blocking(eb);
1393                         free_extent_buffer(eb);
1394                         return NULL;
1395                 }
1396         }
1397
1398         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1399         btrfs_tree_read_unlock_blocking(eb);
1400         free_extent_buffer(eb);
1401
1402         extent_buffer_get(eb_rewin);
1403         btrfs_tree_read_lock(eb_rewin);
1404         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1405         WARN_ON(btrfs_header_nritems(eb_rewin) >
1406                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1407
1408         return eb_rewin;
1409 }
1410
1411 /*
1412  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1413  * value. If there are no changes, the current root->root_node is returned. If
1414  * anything changed in between, there's a fresh buffer allocated on which the
1415  * rewind operations are done. In any case, the returned buffer is read locked.
1416  * Returns NULL on error (with no locks held).
1417  */
1418 static inline struct extent_buffer *
1419 get_old_root(struct btrfs_root *root, u64 time_seq)
1420 {
1421         struct tree_mod_elem *tm;
1422         struct extent_buffer *eb = NULL;
1423         struct extent_buffer *eb_root;
1424         struct extent_buffer *old;
1425         struct tree_mod_root *old_root = NULL;
1426         u64 old_generation = 0;
1427         u64 logical;
1428         u32 blocksize;
1429
1430         eb_root = btrfs_read_lock_root_node(root);
1431         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1432         if (!tm)
1433                 return eb_root;
1434
1435         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1436                 old_root = &tm->old_root;
1437                 old_generation = tm->generation;
1438                 logical = old_root->logical;
1439         } else {
1440                 logical = eb_root->start;
1441         }
1442
1443         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1444         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1445                 btrfs_tree_read_unlock(eb_root);
1446                 free_extent_buffer(eb_root);
1447                 blocksize = btrfs_level_size(root, old_root->level);
1448                 old = read_tree_block(root, logical, blocksize, 0);
1449                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1450                         free_extent_buffer(old);
1451                         btrfs_warn(root->fs_info,
1452                                 "failed to read tree block %llu from get_old_root", logical);
1453                 } else {
1454                         eb = btrfs_clone_extent_buffer(old);
1455                         free_extent_buffer(old);
1456                 }
1457         } else if (old_root) {
1458                 btrfs_tree_read_unlock(eb_root);
1459                 free_extent_buffer(eb_root);
1460                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1461         } else {
1462                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1463                 eb = btrfs_clone_extent_buffer(eb_root);
1464                 btrfs_tree_read_unlock_blocking(eb_root);
1465                 free_extent_buffer(eb_root);
1466         }
1467
1468         if (!eb)
1469                 return NULL;
1470         extent_buffer_get(eb);
1471         btrfs_tree_read_lock(eb);
1472         if (old_root) {
1473                 btrfs_set_header_bytenr(eb, eb->start);
1474                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1475                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1476                 btrfs_set_header_level(eb, old_root->level);
1477                 btrfs_set_header_generation(eb, old_generation);
1478         }
1479         if (tm)
1480                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1481         else
1482                 WARN_ON(btrfs_header_level(eb) != 0);
1483         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1484
1485         return eb;
1486 }
1487
1488 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1489 {
1490         struct tree_mod_elem *tm;
1491         int level;
1492         struct extent_buffer *eb_root = btrfs_root_node(root);
1493
1494         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1495         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1496                 level = tm->old_root.level;
1497         } else {
1498                 level = btrfs_header_level(eb_root);
1499         }
1500         free_extent_buffer(eb_root);
1501
1502         return level;
1503 }
1504
1505 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1506                                    struct btrfs_root *root,
1507                                    struct extent_buffer *buf)
1508 {
1509 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1510         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1511                 return 0;
1512 #endif
1513         /* ensure we can see the force_cow */
1514         smp_rmb();
1515
1516         /*
1517          * We do not need to cow a block if
1518          * 1) this block is not created or changed in this transaction;
1519          * 2) this block does not belong to TREE_RELOC tree;
1520          * 3) the root is not forced COW.
1521          *
1522          * What is forced COW:
1523          *    when we create snapshot during commiting the transaction,
1524          *    after we've finished coping src root, we must COW the shared
1525          *    block to ensure the metadata consistency.
1526          */
1527         if (btrfs_header_generation(buf) == trans->transid &&
1528             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1529             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1530               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1531             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1532                 return 0;
1533         return 1;
1534 }
1535
1536 /*
1537  * cows a single block, see __btrfs_cow_block for the real work.
1538  * This version of it has extra checks so that a block isn't cow'd more than
1539  * once per transaction, as long as it hasn't been written yet
1540  */
1541 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1542                     struct btrfs_root *root, struct extent_buffer *buf,
1543                     struct extent_buffer *parent, int parent_slot,
1544                     struct extent_buffer **cow_ret)
1545 {
1546         u64 search_start;
1547         int ret;
1548
1549         if (trans->transaction != root->fs_info->running_transaction)
1550                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1551                        trans->transid,
1552                        root->fs_info->running_transaction->transid);
1553
1554         if (trans->transid != root->fs_info->generation)
1555                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1556                        trans->transid, root->fs_info->generation);
1557
1558         if (!should_cow_block(trans, root, buf)) {
1559                 *cow_ret = buf;
1560                 return 0;
1561         }
1562
1563         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1564
1565         if (parent)
1566                 btrfs_set_lock_blocking(parent);
1567         btrfs_set_lock_blocking(buf);
1568
1569         ret = __btrfs_cow_block(trans, root, buf, parent,
1570                                  parent_slot, cow_ret, search_start, 0);
1571
1572         trace_btrfs_cow_block(root, buf, *cow_ret);
1573
1574         return ret;
1575 }
1576
1577 /*
1578  * helper function for defrag to decide if two blocks pointed to by a
1579  * node are actually close by
1580  */
1581 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1582 {
1583         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1584                 return 1;
1585         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1586                 return 1;
1587         return 0;
1588 }
1589
1590 /*
1591  * compare two keys in a memcmp fashion
1592  */
1593 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1594 {
1595         struct btrfs_key k1;
1596
1597         btrfs_disk_key_to_cpu(&k1, disk);
1598
1599         return btrfs_comp_cpu_keys(&k1, k2);
1600 }
1601
1602 /*
1603  * same as comp_keys only with two btrfs_key's
1604  */
1605 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1606 {
1607         if (k1->objectid > k2->objectid)
1608                 return 1;
1609         if (k1->objectid < k2->objectid)
1610                 return -1;
1611         if (k1->type > k2->type)
1612                 return 1;
1613         if (k1->type < k2->type)
1614                 return -1;
1615         if (k1->offset > k2->offset)
1616                 return 1;
1617         if (k1->offset < k2->offset)
1618                 return -1;
1619         return 0;
1620 }
1621
1622 /*
1623  * this is used by the defrag code to go through all the
1624  * leaves pointed to by a node and reallocate them so that
1625  * disk order is close to key order
1626  */
1627 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1628                        struct btrfs_root *root, struct extent_buffer *parent,
1629                        int start_slot, u64 *last_ret,
1630                        struct btrfs_key *progress)
1631 {
1632         struct extent_buffer *cur;
1633         u64 blocknr;
1634         u64 gen;
1635         u64 search_start = *last_ret;
1636         u64 last_block = 0;
1637         u64 other;
1638         u32 parent_nritems;
1639         int end_slot;
1640         int i;
1641         int err = 0;
1642         int parent_level;
1643         int uptodate;
1644         u32 blocksize;
1645         int progress_passed = 0;
1646         struct btrfs_disk_key disk_key;
1647
1648         parent_level = btrfs_header_level(parent);
1649
1650         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1651         WARN_ON(trans->transid != root->fs_info->generation);
1652
1653         parent_nritems = btrfs_header_nritems(parent);
1654         blocksize = btrfs_level_size(root, parent_level - 1);
1655         end_slot = parent_nritems;
1656
1657         if (parent_nritems == 1)
1658                 return 0;
1659
1660         btrfs_set_lock_blocking(parent);
1661
1662         for (i = start_slot; i < end_slot; i++) {
1663                 int close = 1;
1664
1665                 btrfs_node_key(parent, &disk_key, i);
1666                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1667                         continue;
1668
1669                 progress_passed = 1;
1670                 blocknr = btrfs_node_blockptr(parent, i);
1671                 gen = btrfs_node_ptr_generation(parent, i);
1672                 if (last_block == 0)
1673                         last_block = blocknr;
1674
1675                 if (i > 0) {
1676                         other = btrfs_node_blockptr(parent, i - 1);
1677                         close = close_blocks(blocknr, other, blocksize);
1678                 }
1679                 if (!close && i < end_slot - 2) {
1680                         other = btrfs_node_blockptr(parent, i + 1);
1681                         close = close_blocks(blocknr, other, blocksize);
1682                 }
1683                 if (close) {
1684                         last_block = blocknr;
1685                         continue;
1686                 }
1687
1688                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1689                 if (cur)
1690                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1691                 else
1692                         uptodate = 0;
1693                 if (!cur || !uptodate) {
1694                         if (!cur) {
1695                                 cur = read_tree_block(root, blocknr,
1696                                                          blocksize, gen);
1697                                 if (!cur || !extent_buffer_uptodate(cur)) {
1698                                         free_extent_buffer(cur);
1699                                         return -EIO;
1700                                 }
1701                         } else if (!uptodate) {
1702                                 err = btrfs_read_buffer(cur, gen);
1703                                 if (err) {
1704                                         free_extent_buffer(cur);
1705                                         return err;
1706                                 }
1707                         }
1708                 }
1709                 if (search_start == 0)
1710                         search_start = last_block;
1711
1712                 btrfs_tree_lock(cur);
1713                 btrfs_set_lock_blocking(cur);
1714                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1715                                         &cur, search_start,
1716                                         min(16 * blocksize,
1717                                             (end_slot - i) * blocksize));
1718                 if (err) {
1719                         btrfs_tree_unlock(cur);
1720                         free_extent_buffer(cur);
1721                         break;
1722                 }
1723                 search_start = cur->start;
1724                 last_block = cur->start;
1725                 *last_ret = search_start;
1726                 btrfs_tree_unlock(cur);
1727                 free_extent_buffer(cur);
1728         }
1729         return err;
1730 }
1731
1732 /*
1733  * The leaf data grows from end-to-front in the node.
1734  * this returns the address of the start of the last item,
1735  * which is the stop of the leaf data stack
1736  */
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738                                          struct extent_buffer *leaf)
1739 {
1740         u32 nr = btrfs_header_nritems(leaf);
1741         if (nr == 0)
1742                 return BTRFS_LEAF_DATA_SIZE(root);
1743         return btrfs_item_offset_nr(leaf, nr - 1);
1744 }
1745
1746
1747 /*
1748  * search for key in the extent_buffer.  The items start at offset p,
1749  * and they are item_size apart.  There are 'max' items in p.
1750  *
1751  * the slot in the array is returned via slot, and it points to
1752  * the place where you would insert key if it is not found in
1753  * the array.
1754  *
1755  * slot may point to max if the key is bigger than all of the keys
1756  */
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1758                                        unsigned long p,
1759                                        int item_size, struct btrfs_key *key,
1760                                        int max, int *slot)
1761 {
1762         int low = 0;
1763         int high = max;
1764         int mid;
1765         int ret;
1766         struct btrfs_disk_key *tmp = NULL;
1767         struct btrfs_disk_key unaligned;
1768         unsigned long offset;
1769         char *kaddr = NULL;
1770         unsigned long map_start = 0;
1771         unsigned long map_len = 0;
1772         int err;
1773
1774         while (low < high) {
1775                 mid = (low + high) / 2;
1776                 offset = p + mid * item_size;
1777
1778                 if (!kaddr || offset < map_start ||
1779                     (offset + sizeof(struct btrfs_disk_key)) >
1780                     map_start + map_len) {
1781
1782                         err = map_private_extent_buffer(eb, offset,
1783                                                 sizeof(struct btrfs_disk_key),
1784                                                 &kaddr, &map_start, &map_len);
1785
1786                         if (!err) {
1787                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788                                                         map_start);
1789                         } else {
1790                                 read_extent_buffer(eb, &unaligned,
1791                                                    offset, sizeof(unaligned));
1792                                 tmp = &unaligned;
1793                         }
1794
1795                 } else {
1796                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1797                                                         map_start);
1798                 }
1799                 ret = comp_keys(tmp, key);
1800
1801                 if (ret < 0)
1802                         low = mid + 1;
1803                 else if (ret > 0)
1804                         high = mid;
1805                 else {
1806                         *slot = mid;
1807                         return 0;
1808                 }
1809         }
1810         *slot = low;
1811         return 1;
1812 }
1813
1814 /*
1815  * simple bin_search frontend that does the right thing for
1816  * leaves vs nodes
1817  */
1818 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1819                       int level, int *slot)
1820 {
1821         if (level == 0)
1822                 return generic_bin_search(eb,
1823                                           offsetof(struct btrfs_leaf, items),
1824                                           sizeof(struct btrfs_item),
1825                                           key, btrfs_header_nritems(eb),
1826                                           slot);
1827         else
1828                 return generic_bin_search(eb,
1829                                           offsetof(struct btrfs_node, ptrs),
1830                                           sizeof(struct btrfs_key_ptr),
1831                                           key, btrfs_header_nritems(eb),
1832                                           slot);
1833 }
1834
1835 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1836                      int level, int *slot)
1837 {
1838         return bin_search(eb, key, level, slot);
1839 }
1840
1841 static void root_add_used(struct btrfs_root *root, u32 size)
1842 {
1843         spin_lock(&root->accounting_lock);
1844         btrfs_set_root_used(&root->root_item,
1845                             btrfs_root_used(&root->root_item) + size);
1846         spin_unlock(&root->accounting_lock);
1847 }
1848
1849 static void root_sub_used(struct btrfs_root *root, u32 size)
1850 {
1851         spin_lock(&root->accounting_lock);
1852         btrfs_set_root_used(&root->root_item,
1853                             btrfs_root_used(&root->root_item) - size);
1854         spin_unlock(&root->accounting_lock);
1855 }
1856
1857 /* given a node and slot number, this reads the blocks it points to.  The
1858  * extent buffer is returned with a reference taken (but unlocked).
1859  * NULL is returned on error.
1860  */
1861 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1862                                    struct extent_buffer *parent, int slot)
1863 {
1864         int level = btrfs_header_level(parent);
1865         struct extent_buffer *eb;
1866
1867         if (slot < 0)
1868                 return NULL;
1869         if (slot >= btrfs_header_nritems(parent))
1870                 return NULL;
1871
1872         BUG_ON(level == 0);
1873
1874         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1875                              btrfs_level_size(root, level - 1),
1876                              btrfs_node_ptr_generation(parent, slot));
1877         if (eb && !extent_buffer_uptodate(eb)) {
1878                 free_extent_buffer(eb);
1879                 eb = NULL;
1880         }
1881
1882         return eb;
1883 }
1884
1885 /*
1886  * node level balancing, used to make sure nodes are in proper order for
1887  * item deletion.  We balance from the top down, so we have to make sure
1888  * that a deletion won't leave an node completely empty later on.
1889  */
1890 static noinline int balance_level(struct btrfs_trans_handle *trans,
1891                          struct btrfs_root *root,
1892                          struct btrfs_path *path, int level)
1893 {
1894         struct extent_buffer *right = NULL;
1895         struct extent_buffer *mid;
1896         struct extent_buffer *left = NULL;
1897         struct extent_buffer *parent = NULL;
1898         int ret = 0;
1899         int wret;
1900         int pslot;
1901         int orig_slot = path->slots[level];
1902         u64 orig_ptr;
1903
1904         if (level == 0)
1905                 return 0;
1906
1907         mid = path->nodes[level];
1908
1909         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1910                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1911         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1912
1913         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1914
1915         if (level < BTRFS_MAX_LEVEL - 1) {
1916                 parent = path->nodes[level + 1];
1917                 pslot = path->slots[level + 1];
1918         }
1919
1920         /*
1921          * deal with the case where there is only one pointer in the root
1922          * by promoting the node below to a root
1923          */
1924         if (!parent) {
1925                 struct extent_buffer *child;
1926
1927                 if (btrfs_header_nritems(mid) != 1)
1928                         return 0;
1929
1930                 /* promote the child to a root */
1931                 child = read_node_slot(root, mid, 0);
1932                 if (!child) {
1933                         ret = -EROFS;
1934                         btrfs_std_error(root->fs_info, ret);
1935                         goto enospc;
1936                 }
1937
1938                 btrfs_tree_lock(child);
1939                 btrfs_set_lock_blocking(child);
1940                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1941                 if (ret) {
1942                         btrfs_tree_unlock(child);
1943                         free_extent_buffer(child);
1944                         goto enospc;
1945                 }
1946
1947                 tree_mod_log_set_root_pointer(root, child, 1);
1948                 rcu_assign_pointer(root->node, child);
1949
1950                 add_root_to_dirty_list(root);
1951                 btrfs_tree_unlock(child);
1952
1953                 path->locks[level] = 0;
1954                 path->nodes[level] = NULL;
1955                 clean_tree_block(trans, root, mid);
1956                 btrfs_tree_unlock(mid);
1957                 /* once for the path */
1958                 free_extent_buffer(mid);
1959
1960                 root_sub_used(root, mid->len);
1961                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1962                 /* once for the root ptr */
1963                 free_extent_buffer_stale(mid);
1964                 return 0;
1965         }
1966         if (btrfs_header_nritems(mid) >
1967             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1968                 return 0;
1969
1970         left = read_node_slot(root, parent, pslot - 1);
1971         if (left) {
1972                 btrfs_tree_lock(left);
1973                 btrfs_set_lock_blocking(left);
1974                 wret = btrfs_cow_block(trans, root, left,
1975                                        parent, pslot - 1, &left);
1976                 if (wret) {
1977                         ret = wret;
1978                         goto enospc;
1979                 }
1980         }
1981         right = read_node_slot(root, parent, pslot + 1);
1982         if (right) {
1983                 btrfs_tree_lock(right);
1984                 btrfs_set_lock_blocking(right);
1985                 wret = btrfs_cow_block(trans, root, right,
1986                                        parent, pslot + 1, &right);
1987                 if (wret) {
1988                         ret = wret;
1989                         goto enospc;
1990                 }
1991         }
1992
1993         /* first, try to make some room in the middle buffer */
1994         if (left) {
1995                 orig_slot += btrfs_header_nritems(left);
1996                 wret = push_node_left(trans, root, left, mid, 1);
1997                 if (wret < 0)
1998                         ret = wret;
1999         }
2000
2001         /*
2002          * then try to empty the right most buffer into the middle
2003          */
2004         if (right) {
2005                 wret = push_node_left(trans, root, mid, right, 1);
2006                 if (wret < 0 && wret != -ENOSPC)
2007                         ret = wret;
2008                 if (btrfs_header_nritems(right) == 0) {
2009                         clean_tree_block(trans, root, right);
2010                         btrfs_tree_unlock(right);
2011                         del_ptr(root, path, level + 1, pslot + 1);
2012                         root_sub_used(root, right->len);
2013                         btrfs_free_tree_block(trans, root, right, 0, 1);
2014                         free_extent_buffer_stale(right);
2015                         right = NULL;
2016                 } else {
2017                         struct btrfs_disk_key right_key;
2018                         btrfs_node_key(right, &right_key, 0);
2019                         tree_mod_log_set_node_key(root->fs_info, parent,
2020                                                   pslot + 1, 0);
2021                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2022                         btrfs_mark_buffer_dirty(parent);
2023                 }
2024         }
2025         if (btrfs_header_nritems(mid) == 1) {
2026                 /*
2027                  * we're not allowed to leave a node with one item in the
2028                  * tree during a delete.  A deletion from lower in the tree
2029                  * could try to delete the only pointer in this node.
2030                  * So, pull some keys from the left.
2031                  * There has to be a left pointer at this point because
2032                  * otherwise we would have pulled some pointers from the
2033                  * right
2034                  */
2035                 if (!left) {
2036                         ret = -EROFS;
2037                         btrfs_std_error(root->fs_info, ret);
2038                         goto enospc;
2039                 }
2040                 wret = balance_node_right(trans, root, mid, left);
2041                 if (wret < 0) {
2042                         ret = wret;
2043                         goto enospc;
2044                 }
2045                 if (wret == 1) {
2046                         wret = push_node_left(trans, root, left, mid, 1);
2047                         if (wret < 0)
2048                                 ret = wret;
2049                 }
2050                 BUG_ON(wret == 1);
2051         }
2052         if (btrfs_header_nritems(mid) == 0) {
2053                 clean_tree_block(trans, root, mid);
2054                 btrfs_tree_unlock(mid);
2055                 del_ptr(root, path, level + 1, pslot);
2056                 root_sub_used(root, mid->len);
2057                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2058                 free_extent_buffer_stale(mid);
2059                 mid = NULL;
2060         } else {
2061                 /* update the parent key to reflect our changes */
2062                 struct btrfs_disk_key mid_key;
2063                 btrfs_node_key(mid, &mid_key, 0);
2064                 tree_mod_log_set_node_key(root->fs_info, parent,
2065                                           pslot, 0);
2066                 btrfs_set_node_key(parent, &mid_key, pslot);
2067                 btrfs_mark_buffer_dirty(parent);
2068         }
2069
2070         /* update the path */
2071         if (left) {
2072                 if (btrfs_header_nritems(left) > orig_slot) {
2073                         extent_buffer_get(left);
2074                         /* left was locked after cow */
2075                         path->nodes[level] = left;
2076                         path->slots[level + 1] -= 1;
2077                         path->slots[level] = orig_slot;
2078                         if (mid) {
2079                                 btrfs_tree_unlock(mid);
2080                                 free_extent_buffer(mid);
2081                         }
2082                 } else {
2083                         orig_slot -= btrfs_header_nritems(left);
2084                         path->slots[level] = orig_slot;
2085                 }
2086         }
2087         /* double check we haven't messed things up */
2088         if (orig_ptr !=
2089             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2090                 BUG();
2091 enospc:
2092         if (right) {
2093                 btrfs_tree_unlock(right);
2094                 free_extent_buffer(right);
2095         }
2096         if (left) {
2097                 if (path->nodes[level] != left)
2098                         btrfs_tree_unlock(left);
2099                 free_extent_buffer(left);
2100         }
2101         return ret;
2102 }
2103
2104 /* Node balancing for insertion.  Here we only split or push nodes around
2105  * when they are completely full.  This is also done top down, so we
2106  * have to be pessimistic.
2107  */
2108 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2109                                           struct btrfs_root *root,
2110                                           struct btrfs_path *path, int level)
2111 {
2112         struct extent_buffer *right = NULL;
2113         struct extent_buffer *mid;
2114         struct extent_buffer *left = NULL;
2115         struct extent_buffer *parent = NULL;
2116         int ret = 0;
2117         int wret;
2118         int pslot;
2119         int orig_slot = path->slots[level];
2120
2121         if (level == 0)
2122                 return 1;
2123
2124         mid = path->nodes[level];
2125         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2126
2127         if (level < BTRFS_MAX_LEVEL - 1) {
2128                 parent = path->nodes[level + 1];
2129                 pslot = path->slots[level + 1];
2130         }
2131
2132         if (!parent)
2133                 return 1;
2134
2135         left = read_node_slot(root, parent, pslot - 1);
2136
2137         /* first, try to make some room in the middle buffer */
2138         if (left) {
2139                 u32 left_nr;
2140
2141                 btrfs_tree_lock(left);
2142                 btrfs_set_lock_blocking(left);
2143
2144                 left_nr = btrfs_header_nritems(left);
2145                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2146                         wret = 1;
2147                 } else {
2148                         ret = btrfs_cow_block(trans, root, left, parent,
2149                                               pslot - 1, &left);
2150                         if (ret)
2151                                 wret = 1;
2152                         else {
2153                                 wret = push_node_left(trans, root,
2154                                                       left, mid, 0);
2155                         }
2156                 }
2157                 if (wret < 0)
2158                         ret = wret;
2159                 if (wret == 0) {
2160                         struct btrfs_disk_key disk_key;
2161                         orig_slot += left_nr;
2162                         btrfs_node_key(mid, &disk_key, 0);
2163                         tree_mod_log_set_node_key(root->fs_info, parent,
2164                                                   pslot, 0);
2165                         btrfs_set_node_key(parent, &disk_key, pslot);
2166                         btrfs_mark_buffer_dirty(parent);
2167                         if (btrfs_header_nritems(left) > orig_slot) {
2168                                 path->nodes[level] = left;
2169                                 path->slots[level + 1] -= 1;
2170                                 path->slots[level] = orig_slot;
2171                                 btrfs_tree_unlock(mid);
2172                                 free_extent_buffer(mid);
2173                         } else {
2174                                 orig_slot -=
2175                                         btrfs_header_nritems(left);
2176                                 path->slots[level] = orig_slot;
2177                                 btrfs_tree_unlock(left);
2178                                 free_extent_buffer(left);
2179                         }
2180                         return 0;
2181                 }
2182                 btrfs_tree_unlock(left);
2183                 free_extent_buffer(left);
2184         }
2185         right = read_node_slot(root, parent, pslot + 1);
2186
2187         /*
2188          * then try to empty the right most buffer into the middle
2189          */
2190         if (right) {
2191                 u32 right_nr;
2192
2193                 btrfs_tree_lock(right);
2194                 btrfs_set_lock_blocking(right);
2195
2196                 right_nr = btrfs_header_nritems(right);
2197                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2198                         wret = 1;
2199                 } else {
2200                         ret = btrfs_cow_block(trans, root, right,
2201                                               parent, pslot + 1,
2202                                               &right);
2203                         if (ret)
2204                                 wret = 1;
2205                         else {
2206                                 wret = balance_node_right(trans, root,
2207                                                           right, mid);
2208                         }
2209                 }
2210                 if (wret < 0)
2211                         ret = wret;
2212                 if (wret == 0) {
2213                         struct btrfs_disk_key disk_key;
2214
2215                         btrfs_node_key(right, &disk_key, 0);
2216                         tree_mod_log_set_node_key(root->fs_info, parent,
2217                                                   pslot + 1, 0);
2218                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2219                         btrfs_mark_buffer_dirty(parent);
2220
2221                         if (btrfs_header_nritems(mid) <= orig_slot) {
2222                                 path->nodes[level] = right;
2223                                 path->slots[level + 1] += 1;
2224                                 path->slots[level] = orig_slot -
2225                                         btrfs_header_nritems(mid);
2226                                 btrfs_tree_unlock(mid);
2227                                 free_extent_buffer(mid);
2228                         } else {
2229                                 btrfs_tree_unlock(right);
2230                                 free_extent_buffer(right);
2231                         }
2232                         return 0;
2233                 }
2234                 btrfs_tree_unlock(right);
2235                 free_extent_buffer(right);
2236         }
2237         return 1;
2238 }
2239
2240 /*
2241  * readahead one full node of leaves, finding things that are close
2242  * to the block in 'slot', and triggering ra on them.
2243  */
2244 static void reada_for_search(struct btrfs_root *root,
2245                              struct btrfs_path *path,
2246                              int level, int slot, u64 objectid)
2247 {
2248         struct extent_buffer *node;
2249         struct btrfs_disk_key disk_key;
2250         u32 nritems;
2251         u64 search;
2252         u64 target;
2253         u64 nread = 0;
2254         u64 gen;
2255         int direction = path->reada;
2256         struct extent_buffer *eb;
2257         u32 nr;
2258         u32 blocksize;
2259         u32 nscan = 0;
2260
2261         if (level != 1)
2262                 return;
2263
2264         if (!path->nodes[level])
2265                 return;
2266
2267         node = path->nodes[level];
2268
2269         search = btrfs_node_blockptr(node, slot);
2270         blocksize = btrfs_level_size(root, level - 1);
2271         eb = btrfs_find_tree_block(root, search, blocksize);
2272         if (eb) {
2273                 free_extent_buffer(eb);
2274                 return;
2275         }
2276
2277         target = search;
2278
2279         nritems = btrfs_header_nritems(node);
2280         nr = slot;
2281
2282         while (1) {
2283                 if (direction < 0) {
2284                         if (nr == 0)
2285                                 break;
2286                         nr--;
2287                 } else if (direction > 0) {
2288                         nr++;
2289                         if (nr >= nritems)
2290                                 break;
2291                 }
2292                 if (path->reada < 0 && objectid) {
2293                         btrfs_node_key(node, &disk_key, nr);
2294                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2295                                 break;
2296                 }
2297                 search = btrfs_node_blockptr(node, nr);
2298                 if ((search <= target && target - search <= 65536) ||
2299                     (search > target && search - target <= 65536)) {
2300                         gen = btrfs_node_ptr_generation(node, nr);
2301                         readahead_tree_block(root, search, blocksize, gen);
2302                         nread += blocksize;
2303                 }
2304                 nscan++;
2305                 if ((nread > 65536 || nscan > 32))
2306                         break;
2307         }
2308 }
2309
2310 static noinline void reada_for_balance(struct btrfs_root *root,
2311                                        struct btrfs_path *path, int level)
2312 {
2313         int slot;
2314         int nritems;
2315         struct extent_buffer *parent;
2316         struct extent_buffer *eb;
2317         u64 gen;
2318         u64 block1 = 0;
2319         u64 block2 = 0;
2320         int blocksize;
2321
2322         parent = path->nodes[level + 1];
2323         if (!parent)
2324                 return;
2325
2326         nritems = btrfs_header_nritems(parent);
2327         slot = path->slots[level + 1];
2328         blocksize = btrfs_level_size(root, level);
2329
2330         if (slot > 0) {
2331                 block1 = btrfs_node_blockptr(parent, slot - 1);
2332                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2333                 eb = btrfs_find_tree_block(root, block1, blocksize);
2334                 /*
2335                  * if we get -eagain from btrfs_buffer_uptodate, we
2336                  * don't want to return eagain here.  That will loop
2337                  * forever
2338                  */
2339                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2340                         block1 = 0;
2341                 free_extent_buffer(eb);
2342         }
2343         if (slot + 1 < nritems) {
2344                 block2 = btrfs_node_blockptr(parent, slot + 1);
2345                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2346                 eb = btrfs_find_tree_block(root, block2, blocksize);
2347                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2348                         block2 = 0;
2349                 free_extent_buffer(eb);
2350         }
2351
2352         if (block1)
2353                 readahead_tree_block(root, block1, blocksize, 0);
2354         if (block2)
2355                 readahead_tree_block(root, block2, blocksize, 0);
2356 }
2357
2358
2359 /*
2360  * when we walk down the tree, it is usually safe to unlock the higher layers
2361  * in the tree.  The exceptions are when our path goes through slot 0, because
2362  * operations on the tree might require changing key pointers higher up in the
2363  * tree.
2364  *
2365  * callers might also have set path->keep_locks, which tells this code to keep
2366  * the lock if the path points to the last slot in the block.  This is part of
2367  * walking through the tree, and selecting the next slot in the higher block.
2368  *
2369  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2370  * if lowest_unlock is 1, level 0 won't be unlocked
2371  */
2372 static noinline void unlock_up(struct btrfs_path *path, int level,
2373                                int lowest_unlock, int min_write_lock_level,
2374                                int *write_lock_level)
2375 {
2376         int i;
2377         int skip_level = level;
2378         int no_skips = 0;
2379         struct extent_buffer *t;
2380
2381         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2382                 if (!path->nodes[i])
2383                         break;
2384                 if (!path->locks[i])
2385                         break;
2386                 if (!no_skips && path->slots[i] == 0) {
2387                         skip_level = i + 1;
2388                         continue;
2389                 }
2390                 if (!no_skips && path->keep_locks) {
2391                         u32 nritems;
2392                         t = path->nodes[i];
2393                         nritems = btrfs_header_nritems(t);
2394                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2395                                 skip_level = i + 1;
2396                                 continue;
2397                         }
2398                 }
2399                 if (skip_level < i && i >= lowest_unlock)
2400                         no_skips = 1;
2401
2402                 t = path->nodes[i];
2403                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2404                         btrfs_tree_unlock_rw(t, path->locks[i]);
2405                         path->locks[i] = 0;
2406                         if (write_lock_level &&
2407                             i > min_write_lock_level &&
2408                             i <= *write_lock_level) {
2409                                 *write_lock_level = i - 1;
2410                         }
2411                 }
2412         }
2413 }
2414
2415 /*
2416  * This releases any locks held in the path starting at level and
2417  * going all the way up to the root.
2418  *
2419  * btrfs_search_slot will keep the lock held on higher nodes in a few
2420  * corner cases, such as COW of the block at slot zero in the node.  This
2421  * ignores those rules, and it should only be called when there are no
2422  * more updates to be done higher up in the tree.
2423  */
2424 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2425 {
2426         int i;
2427
2428         if (path->keep_locks)
2429                 return;
2430
2431         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2432                 if (!path->nodes[i])
2433                         continue;
2434                 if (!path->locks[i])
2435                         continue;
2436                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2437                 path->locks[i] = 0;
2438         }
2439 }
2440
2441 /*
2442  * helper function for btrfs_search_slot.  The goal is to find a block
2443  * in cache without setting the path to blocking.  If we find the block
2444  * we return zero and the path is unchanged.
2445  *
2446  * If we can't find the block, we set the path blocking and do some
2447  * reada.  -EAGAIN is returned and the search must be repeated.
2448  */
2449 static int
2450 read_block_for_search(struct btrfs_trans_handle *trans,
2451                        struct btrfs_root *root, struct btrfs_path *p,
2452                        struct extent_buffer **eb_ret, int level, int slot,
2453                        struct btrfs_key *key, u64 time_seq)
2454 {
2455         u64 blocknr;
2456         u64 gen;
2457         u32 blocksize;
2458         struct extent_buffer *b = *eb_ret;
2459         struct extent_buffer *tmp;
2460         int ret;
2461
2462         blocknr = btrfs_node_blockptr(b, slot);
2463         gen = btrfs_node_ptr_generation(b, slot);
2464         blocksize = btrfs_level_size(root, level - 1);
2465
2466         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2467         if (tmp) {
2468                 /* first we do an atomic uptodate check */
2469                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2470                         *eb_ret = tmp;
2471                         return 0;
2472                 }
2473
2474                 /* the pages were up to date, but we failed
2475                  * the generation number check.  Do a full
2476                  * read for the generation number that is correct.
2477                  * We must do this without dropping locks so
2478                  * we can trust our generation number
2479                  */
2480                 btrfs_set_path_blocking(p);
2481
2482                 /* now we're allowed to do a blocking uptodate check */
2483                 ret = btrfs_read_buffer(tmp, gen);
2484                 if (!ret) {
2485                         *eb_ret = tmp;
2486                         return 0;
2487                 }
2488                 free_extent_buffer(tmp);
2489                 btrfs_release_path(p);
2490                 return -EIO;
2491         }
2492
2493         /*
2494          * reduce lock contention at high levels
2495          * of the btree by dropping locks before
2496          * we read.  Don't release the lock on the current
2497          * level because we need to walk this node to figure
2498          * out which blocks to read.
2499          */
2500         btrfs_unlock_up_safe(p, level + 1);
2501         btrfs_set_path_blocking(p);
2502
2503         free_extent_buffer(tmp);
2504         if (p->reada)
2505                 reada_for_search(root, p, level, slot, key->objectid);
2506
2507         btrfs_release_path(p);
2508
2509         ret = -EAGAIN;
2510         tmp = read_tree_block(root, blocknr, blocksize, 0);
2511         if (tmp) {
2512                 /*
2513                  * If the read above didn't mark this buffer up to date,
2514                  * it will never end up being up to date.  Set ret to EIO now
2515                  * and give up so that our caller doesn't loop forever
2516                  * on our EAGAINs.
2517                  */
2518                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2519                         ret = -EIO;
2520                 free_extent_buffer(tmp);
2521         }
2522         return ret;
2523 }
2524
2525 /*
2526  * helper function for btrfs_search_slot.  This does all of the checks
2527  * for node-level blocks and does any balancing required based on
2528  * the ins_len.
2529  *
2530  * If no extra work was required, zero is returned.  If we had to
2531  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2532  * start over
2533  */
2534 static int
2535 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2536                        struct btrfs_root *root, struct btrfs_path *p,
2537                        struct extent_buffer *b, int level, int ins_len,
2538                        int *write_lock_level)
2539 {
2540         int ret;
2541         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2542             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2543                 int sret;
2544
2545                 if (*write_lock_level < level + 1) {
2546                         *write_lock_level = level + 1;
2547                         btrfs_release_path(p);
2548                         goto again;
2549                 }
2550
2551                 btrfs_set_path_blocking(p);
2552                 reada_for_balance(root, p, level);
2553                 sret = split_node(trans, root, p, level);
2554                 btrfs_clear_path_blocking(p, NULL, 0);
2555
2556                 BUG_ON(sret > 0);
2557                 if (sret) {
2558                         ret = sret;
2559                         goto done;
2560                 }
2561                 b = p->nodes[level];
2562         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2563                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2564                 int sret;
2565
2566                 if (*write_lock_level < level + 1) {
2567                         *write_lock_level = level + 1;
2568                         btrfs_release_path(p);
2569                         goto again;
2570                 }
2571
2572                 btrfs_set_path_blocking(p);
2573                 reada_for_balance(root, p, level);
2574                 sret = balance_level(trans, root, p, level);
2575                 btrfs_clear_path_blocking(p, NULL, 0);
2576
2577                 if (sret) {
2578                         ret = sret;
2579                         goto done;
2580                 }
2581                 b = p->nodes[level];
2582                 if (!b) {
2583                         btrfs_release_path(p);
2584                         goto again;
2585                 }
2586                 BUG_ON(btrfs_header_nritems(b) == 1);
2587         }
2588         return 0;
2589
2590 again:
2591         ret = -EAGAIN;
2592 done:
2593         return ret;
2594 }
2595
2596 static void key_search_validate(struct extent_buffer *b,
2597                                 struct btrfs_key *key,
2598                                 int level)
2599 {
2600 #ifdef CONFIG_BTRFS_ASSERT
2601         struct btrfs_disk_key disk_key;
2602
2603         btrfs_cpu_key_to_disk(&disk_key, key);
2604
2605         if (level == 0)
2606                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2607                     offsetof(struct btrfs_leaf, items[0].key),
2608                     sizeof(disk_key)));
2609         else
2610                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2611                     offsetof(struct btrfs_node, ptrs[0].key),
2612                     sizeof(disk_key)));
2613 #endif
2614 }
2615
2616 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2617                       int level, int *prev_cmp, int *slot)
2618 {
2619         if (*prev_cmp != 0) {
2620                 *prev_cmp = bin_search(b, key, level, slot);
2621                 return *prev_cmp;
2622         }
2623
2624         key_search_validate(b, key, level);
2625         *slot = 0;
2626
2627         return 0;
2628 }
2629
2630 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2631                 u64 iobjectid, u64 ioff, u8 key_type,
2632                 struct btrfs_key *found_key)
2633 {
2634         int ret;
2635         struct btrfs_key key;
2636         struct extent_buffer *eb;
2637         struct btrfs_path *path;
2638
2639         key.type = key_type;
2640         key.objectid = iobjectid;
2641         key.offset = ioff;
2642
2643         if (found_path == NULL) {
2644                 path = btrfs_alloc_path();
2645                 if (!path)
2646                         return -ENOMEM;
2647         } else
2648                 path = found_path;
2649
2650         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2651         if ((ret < 0) || (found_key == NULL)) {
2652                 if (path != found_path)
2653                         btrfs_free_path(path);
2654                 return ret;
2655         }
2656
2657         eb = path->nodes[0];
2658         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2659                 ret = btrfs_next_leaf(fs_root, path);
2660                 if (ret)
2661                         return ret;
2662                 eb = path->nodes[0];
2663         }
2664
2665         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2666         if (found_key->type != key.type ||
2667                         found_key->objectid != key.objectid)
2668                 return 1;
2669
2670         return 0;
2671 }
2672
2673 /*
2674  * look for key in the tree.  path is filled in with nodes along the way
2675  * if key is found, we return zero and you can find the item in the leaf
2676  * level of the path (level 0)
2677  *
2678  * If the key isn't found, the path points to the slot where it should
2679  * be inserted, and 1 is returned.  If there are other errors during the
2680  * search a negative error number is returned.
2681  *
2682  * if ins_len > 0, nodes and leaves will be split as we walk down the
2683  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2684  * possible)
2685  */
2686 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2687                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2688                       ins_len, int cow)
2689 {
2690         struct extent_buffer *b;
2691         int slot;
2692         int ret;
2693         int err;
2694         int level;
2695         int lowest_unlock = 1;
2696         int root_lock;
2697         /* everything at write_lock_level or lower must be write locked */
2698         int write_lock_level = 0;
2699         u8 lowest_level = 0;
2700         int min_write_lock_level;
2701         int prev_cmp;
2702
2703         lowest_level = p->lowest_level;
2704         WARN_ON(lowest_level && ins_len > 0);
2705         WARN_ON(p->nodes[0] != NULL);
2706         BUG_ON(!cow && ins_len);
2707
2708         if (ins_len < 0) {
2709                 lowest_unlock = 2;
2710
2711                 /* when we are removing items, we might have to go up to level
2712                  * two as we update tree pointers  Make sure we keep write
2713                  * for those levels as well
2714                  */
2715                 write_lock_level = 2;
2716         } else if (ins_len > 0) {
2717                 /*
2718                  * for inserting items, make sure we have a write lock on
2719                  * level 1 so we can update keys
2720                  */
2721                 write_lock_level = 1;
2722         }
2723
2724         if (!cow)
2725                 write_lock_level = -1;
2726
2727         if (cow && (p->keep_locks || p->lowest_level))
2728                 write_lock_level = BTRFS_MAX_LEVEL;
2729
2730         min_write_lock_level = write_lock_level;
2731
2732 again:
2733         prev_cmp = -1;
2734         /*
2735          * we try very hard to do read locks on the root
2736          */
2737         root_lock = BTRFS_READ_LOCK;
2738         level = 0;
2739         if (p->search_commit_root) {
2740                 /*
2741                  * the commit roots are read only
2742                  * so we always do read locks
2743                  */
2744                 if (p->need_commit_sem)
2745                         down_read(&root->fs_info->commit_root_sem);
2746                 b = root->commit_root;
2747                 extent_buffer_get(b);
2748                 level = btrfs_header_level(b);
2749                 if (p->need_commit_sem)
2750                         up_read(&root->fs_info->commit_root_sem);
2751                 if (!p->skip_locking)
2752                         btrfs_tree_read_lock(b);
2753         } else {
2754                 if (p->skip_locking) {
2755                         b = btrfs_root_node(root);
2756                         level = btrfs_header_level(b);
2757                 } else {
2758                         /* we don't know the level of the root node
2759                          * until we actually have it read locked
2760                          */
2761                         b = btrfs_read_lock_root_node(root);
2762                         level = btrfs_header_level(b);
2763                         if (level <= write_lock_level) {
2764                                 /* whoops, must trade for write lock */
2765                                 btrfs_tree_read_unlock(b);
2766                                 free_extent_buffer(b);
2767                                 b = btrfs_lock_root_node(root);
2768                                 root_lock = BTRFS_WRITE_LOCK;
2769
2770                                 /* the level might have changed, check again */
2771                                 level = btrfs_header_level(b);
2772                         }
2773                 }
2774         }
2775         p->nodes[level] = b;
2776         if (!p->skip_locking)
2777                 p->locks[level] = root_lock;
2778
2779         while (b) {
2780                 level = btrfs_header_level(b);
2781
2782                 /*
2783                  * setup the path here so we can release it under lock
2784                  * contention with the cow code
2785                  */
2786                 if (cow) {
2787                         /*
2788                          * if we don't really need to cow this block
2789                          * then we don't want to set the path blocking,
2790                          * so we test it here
2791                          */
2792                         if (!should_cow_block(trans, root, b))
2793                                 goto cow_done;
2794
2795                         btrfs_set_path_blocking(p);
2796
2797                         /*
2798                          * must have write locks on this node and the
2799                          * parent
2800                          */
2801                         if (level > write_lock_level ||
2802                             (level + 1 > write_lock_level &&
2803                             level + 1 < BTRFS_MAX_LEVEL &&
2804                             p->nodes[level + 1])) {
2805                                 write_lock_level = level + 1;
2806                                 btrfs_release_path(p);
2807                                 goto again;
2808                         }
2809
2810                         err = btrfs_cow_block(trans, root, b,
2811                                               p->nodes[level + 1],
2812                                               p->slots[level + 1], &b);
2813                         if (err) {
2814                                 ret = err;
2815                                 goto done;
2816                         }
2817                 }
2818 cow_done:
2819                 p->nodes[level] = b;
2820                 btrfs_clear_path_blocking(p, NULL, 0);
2821
2822                 /*
2823                  * we have a lock on b and as long as we aren't changing
2824                  * the tree, there is no way to for the items in b to change.
2825                  * It is safe to drop the lock on our parent before we
2826                  * go through the expensive btree search on b.
2827                  *
2828                  * If we're inserting or deleting (ins_len != 0), then we might
2829                  * be changing slot zero, which may require changing the parent.
2830                  * So, we can't drop the lock until after we know which slot
2831                  * we're operating on.
2832                  */
2833                 if (!ins_len && !p->keep_locks) {
2834                         int u = level + 1;
2835
2836                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2837                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2838                                 p->locks[u] = 0;
2839                         }
2840                 }
2841
2842                 ret = key_search(b, key, level, &prev_cmp, &slot);
2843
2844                 if (level != 0) {
2845                         int dec = 0;
2846                         if (ret && slot > 0) {
2847                                 dec = 1;
2848                                 slot -= 1;
2849                         }
2850                         p->slots[level] = slot;
2851                         err = setup_nodes_for_search(trans, root, p, b, level,
2852                                              ins_len, &write_lock_level);
2853                         if (err == -EAGAIN)
2854                                 goto again;
2855                         if (err) {
2856                                 ret = err;
2857                                 goto done;
2858                         }
2859                         b = p->nodes[level];
2860                         slot = p->slots[level];
2861
2862                         /*
2863                          * slot 0 is special, if we change the key
2864                          * we have to update the parent pointer
2865                          * which means we must have a write lock
2866                          * on the parent
2867                          */
2868                         if (slot == 0 && ins_len &&
2869                             write_lock_level < level + 1) {
2870                                 write_lock_level = level + 1;
2871                                 btrfs_release_path(p);
2872                                 goto again;
2873                         }
2874
2875                         unlock_up(p, level, lowest_unlock,
2876                                   min_write_lock_level, &write_lock_level);
2877
2878                         if (level == lowest_level) {
2879                                 if (dec)
2880                                         p->slots[level]++;
2881                                 goto done;
2882                         }
2883
2884                         err = read_block_for_search(trans, root, p,
2885                                                     &b, level, slot, key, 0);
2886                         if (err == -EAGAIN)
2887                                 goto again;
2888                         if (err) {
2889                                 ret = err;
2890                                 goto done;
2891                         }
2892
2893                         if (!p->skip_locking) {
2894                                 level = btrfs_header_level(b);
2895                                 if (level <= write_lock_level) {
2896                                         err = btrfs_try_tree_write_lock(b);
2897                                         if (!err) {
2898                                                 btrfs_set_path_blocking(p);
2899                                                 btrfs_tree_lock(b);
2900                                                 btrfs_clear_path_blocking(p, b,
2901                                                                   BTRFS_WRITE_LOCK);
2902                                         }
2903                                         p->locks[level] = BTRFS_WRITE_LOCK;
2904                                 } else {
2905                                         err = btrfs_try_tree_read_lock(b);
2906                                         if (!err) {
2907                                                 btrfs_set_path_blocking(p);
2908                                                 btrfs_tree_read_lock(b);
2909                                                 btrfs_clear_path_blocking(p, b,
2910                                                                   BTRFS_READ_LOCK);
2911                                         }
2912                                         p->locks[level] = BTRFS_READ_LOCK;
2913                                 }
2914                                 p->nodes[level] = b;
2915                         }
2916                 } else {
2917                         p->slots[level] = slot;
2918                         if (ins_len > 0 &&
2919                             btrfs_leaf_free_space(root, b) < ins_len) {
2920                                 if (write_lock_level < 1) {
2921                                         write_lock_level = 1;
2922                                         btrfs_release_path(p);
2923                                         goto again;
2924                                 }
2925
2926                                 btrfs_set_path_blocking(p);
2927                                 err = split_leaf(trans, root, key,
2928                                                  p, ins_len, ret == 0);
2929                                 btrfs_clear_path_blocking(p, NULL, 0);
2930
2931                                 BUG_ON(err > 0);
2932                                 if (err) {
2933                                         ret = err;
2934                                         goto done;
2935                                 }
2936                         }
2937                         if (!p->search_for_split)
2938                                 unlock_up(p, level, lowest_unlock,
2939                                           min_write_lock_level, &write_lock_level);
2940                         goto done;
2941                 }
2942         }
2943         ret = 1;
2944 done:
2945         /*
2946          * we don't really know what they plan on doing with the path
2947          * from here on, so for now just mark it as blocking
2948          */
2949         if (!p->leave_spinning)
2950                 btrfs_set_path_blocking(p);
2951         if (ret < 0)
2952                 btrfs_release_path(p);
2953         return ret;
2954 }
2955
2956 /*
2957  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2958  * current state of the tree together with the operations recorded in the tree
2959  * modification log to search for the key in a previous version of this tree, as
2960  * denoted by the time_seq parameter.
2961  *
2962  * Naturally, there is no support for insert, delete or cow operations.
2963  *
2964  * The resulting path and return value will be set up as if we called
2965  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2966  */
2967 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2968                           struct btrfs_path *p, u64 time_seq)
2969 {
2970         struct extent_buffer *b;
2971         int slot;
2972         int ret;
2973         int err;
2974         int level;
2975         int lowest_unlock = 1;
2976         u8 lowest_level = 0;
2977         int prev_cmp = -1;
2978
2979         lowest_level = p->lowest_level;
2980         WARN_ON(p->nodes[0] != NULL);
2981
2982         if (p->search_commit_root) {
2983                 BUG_ON(time_seq);
2984                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2985         }
2986
2987 again:
2988         b = get_old_root(root, time_seq);
2989         level = btrfs_header_level(b);
2990         p->locks[level] = BTRFS_READ_LOCK;
2991
2992         while (b) {
2993                 level = btrfs_header_level(b);
2994                 p->nodes[level] = b;
2995                 btrfs_clear_path_blocking(p, NULL, 0);
2996
2997                 /*
2998                  * we have a lock on b and as long as we aren't changing
2999                  * the tree, there is no way to for the items in b to change.
3000                  * It is safe to drop the lock on our parent before we
3001                  * go through the expensive btree search on b.
3002                  */
3003                 btrfs_unlock_up_safe(p, level + 1);
3004
3005                 /*
3006                  * Since we can unwind eb's we want to do a real search every
3007                  * time.
3008                  */
3009                 prev_cmp = -1;
3010                 ret = key_search(b, key, level, &prev_cmp, &slot);
3011
3012                 if (level != 0) {
3013                         int dec = 0;
3014                         if (ret && slot > 0) {
3015                                 dec = 1;
3016                                 slot -= 1;
3017                         }
3018                         p->slots[level] = slot;
3019                         unlock_up(p, level, lowest_unlock, 0, NULL);
3020
3021                         if (level == lowest_level) {
3022                                 if (dec)
3023                                         p->slots[level]++;
3024                                 goto done;
3025                         }
3026
3027                         err = read_block_for_search(NULL, root, p, &b, level,
3028                                                     slot, key, time_seq);
3029                         if (err == -EAGAIN)
3030                                 goto again;
3031                         if (err) {
3032                                 ret = err;
3033                                 goto done;
3034                         }
3035
3036                         level = btrfs_header_level(b);
3037                         err = btrfs_try_tree_read_lock(b);
3038                         if (!err) {
3039                                 btrfs_set_path_blocking(p);
3040                                 btrfs_tree_read_lock(b);
3041                                 btrfs_clear_path_blocking(p, b,
3042                                                           BTRFS_READ_LOCK);
3043                         }
3044                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3045                         if (!b) {
3046                                 ret = -ENOMEM;
3047                                 goto done;
3048                         }
3049                         p->locks[level] = BTRFS_READ_LOCK;
3050                         p->nodes[level] = b;
3051                 } else {
3052                         p->slots[level] = slot;
3053                         unlock_up(p, level, lowest_unlock, 0, NULL);
3054                         goto done;
3055                 }
3056         }
3057         ret = 1;
3058 done:
3059         if (!p->leave_spinning)
3060                 btrfs_set_path_blocking(p);
3061         if (ret < 0)
3062                 btrfs_release_path(p);
3063
3064         return ret;
3065 }
3066
3067 /*
3068  * helper to use instead of search slot if no exact match is needed but
3069  * instead the next or previous item should be returned.
3070  * When find_higher is true, the next higher item is returned, the next lower
3071  * otherwise.
3072  * When return_any and find_higher are both true, and no higher item is found,
3073  * return the next lower instead.
3074  * When return_any is true and find_higher is false, and no lower item is found,
3075  * return the next higher instead.
3076  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3077  * < 0 on error
3078  */
3079 int btrfs_search_slot_for_read(struct btrfs_root *root,
3080                                struct btrfs_key *key, struct btrfs_path *p,
3081                                int find_higher, int return_any)
3082 {
3083         int ret;
3084         struct extent_buffer *leaf;
3085
3086 again:
3087         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3088         if (ret <= 0)
3089                 return ret;
3090         /*
3091          * a return value of 1 means the path is at the position where the
3092          * item should be inserted. Normally this is the next bigger item,
3093          * but in case the previous item is the last in a leaf, path points
3094          * to the first free slot in the previous leaf, i.e. at an invalid
3095          * item.
3096          */
3097         leaf = p->nodes[0];
3098
3099         if (find_higher) {
3100                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3101                         ret = btrfs_next_leaf(root, p);
3102                         if (ret <= 0)
3103                                 return ret;
3104                         if (!return_any)
3105                                 return 1;
3106                         /*
3107                          * no higher item found, return the next
3108                          * lower instead
3109                          */
3110                         return_any = 0;
3111                         find_higher = 0;
3112                         btrfs_release_path(p);
3113                         goto again;
3114                 }
3115         } else {
3116                 if (p->slots[0] == 0) {
3117                         ret = btrfs_prev_leaf(root, p);
3118                         if (ret < 0)
3119                                 return ret;
3120                         if (!ret) {
3121                                 leaf = p->nodes[0];
3122                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3123                                         p->slots[0]--;
3124                                 return 0;
3125                         }
3126                         if (!return_any)
3127                                 return 1;
3128                         /*
3129                          * no lower item found, return the next
3130                          * higher instead
3131                          */
3132                         return_any = 0;
3133                         find_higher = 1;
3134                         btrfs_release_path(p);
3135                         goto again;
3136                 } else {
3137                         --p->slots[0];
3138                 }
3139         }
3140         return 0;
3141 }
3142
3143 /*
3144  * adjust the pointers going up the tree, starting at level
3145  * making sure the right key of each node is points to 'key'.
3146  * This is used after shifting pointers to the left, so it stops
3147  * fixing up pointers when a given leaf/node is not in slot 0 of the
3148  * higher levels
3149  *
3150  */
3151 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3152                            struct btrfs_disk_key *key, int level)
3153 {
3154         int i;
3155         struct extent_buffer *t;
3156
3157         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3158                 int tslot = path->slots[i];
3159                 if (!path->nodes[i])
3160                         break;
3161                 t = path->nodes[i];
3162                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3163                 btrfs_set_node_key(t, key, tslot);
3164                 btrfs_mark_buffer_dirty(path->nodes[i]);
3165                 if (tslot != 0)
3166                         break;
3167         }
3168 }
3169
3170 /*
3171  * update item key.
3172  *
3173  * This function isn't completely safe. It's the caller's responsibility
3174  * that the new key won't break the order
3175  */
3176 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3177                              struct btrfs_key *new_key)
3178 {
3179         struct btrfs_disk_key disk_key;
3180         struct extent_buffer *eb;
3181         int slot;
3182
3183         eb = path->nodes[0];
3184         slot = path->slots[0];
3185         if (slot > 0) {
3186                 btrfs_item_key(eb, &disk_key, slot - 1);
3187                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3188         }
3189         if (slot < btrfs_header_nritems(eb) - 1) {
3190                 btrfs_item_key(eb, &disk_key, slot + 1);
3191                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3192         }
3193
3194         btrfs_cpu_key_to_disk(&disk_key, new_key);
3195         btrfs_set_item_key(eb, &disk_key, slot);
3196         btrfs_mark_buffer_dirty(eb);
3197         if (slot == 0)
3198                 fixup_low_keys(root, path, &disk_key, 1);
3199 }
3200
3201 /*
3202  * try to push data from one node into the next node left in the
3203  * tree.
3204  *
3205  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3206  * error, and > 0 if there was no room in the left hand block.
3207  */
3208 static int push_node_left(struct btrfs_trans_handle *trans,
3209                           struct btrfs_root *root, struct extent_buffer *dst,
3210                           struct extent_buffer *src, int empty)
3211 {
3212         int push_items = 0;
3213         int src_nritems;
3214         int dst_nritems;
3215         int ret = 0;
3216
3217         src_nritems = btrfs_header_nritems(src);
3218         dst_nritems = btrfs_header_nritems(dst);
3219         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3220         WARN_ON(btrfs_header_generation(src) != trans->transid);
3221         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3222
3223         if (!empty && src_nritems <= 8)
3224                 return 1;
3225
3226         if (push_items <= 0)
3227                 return 1;
3228
3229         if (empty) {
3230                 push_items = min(src_nritems, push_items);
3231                 if (push_items < src_nritems) {
3232                         /* leave at least 8 pointers in the node if
3233                          * we aren't going to empty it
3234                          */
3235                         if (src_nritems - push_items < 8) {
3236                                 if (push_items <= 8)
3237                                         return 1;
3238                                 push_items -= 8;
3239                         }
3240                 }
3241         } else
3242                 push_items = min(src_nritems - 8, push_items);
3243
3244         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3245                                    push_items);
3246         if (ret) {
3247                 btrfs_abort_transaction(trans, root, ret);
3248                 return ret;
3249         }
3250         copy_extent_buffer(dst, src,
3251                            btrfs_node_key_ptr_offset(dst_nritems),
3252                            btrfs_node_key_ptr_offset(0),
3253                            push_items * sizeof(struct btrfs_key_ptr));
3254
3255         if (push_items < src_nritems) {
3256                 /*
3257                  * don't call tree_mod_log_eb_move here, key removal was already
3258                  * fully logged by tree_mod_log_eb_copy above.
3259                  */
3260                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3261                                       btrfs_node_key_ptr_offset(push_items),
3262                                       (src_nritems - push_items) *
3263                                       sizeof(struct btrfs_key_ptr));
3264         }
3265         btrfs_set_header_nritems(src, src_nritems - push_items);
3266         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3267         btrfs_mark_buffer_dirty(src);
3268         btrfs_mark_buffer_dirty(dst);
3269
3270         return ret;
3271 }
3272
3273 /*
3274  * try to push data from one node into the next node right in the
3275  * tree.
3276  *
3277  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3278  * error, and > 0 if there was no room in the right hand block.
3279  *
3280  * this will  only push up to 1/2 the contents of the left node over
3281  */
3282 static int balance_node_right(struct btrfs_trans_handle *trans,
3283                               struct btrfs_root *root,
3284                               struct extent_buffer *dst,
3285                               struct extent_buffer *src)
3286 {
3287         int push_items = 0;
3288         int max_push;
3289         int src_nritems;
3290         int dst_nritems;
3291         int ret = 0;
3292
3293         WARN_ON(btrfs_header_generation(src) != trans->transid);
3294         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3295
3296         src_nritems = btrfs_header_nritems(src);
3297         dst_nritems = btrfs_header_nritems(dst);
3298         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3299         if (push_items <= 0)
3300                 return 1;
3301
3302         if (src_nritems < 4)
3303                 return 1;
3304
3305         max_push = src_nritems / 2 + 1;
3306         /* don't try to empty the node */
3307         if (max_push >= src_nritems)
3308                 return 1;
3309
3310         if (max_push < push_items)
3311                 push_items = max_push;
3312
3313         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3314         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3315                                       btrfs_node_key_ptr_offset(0),
3316                                       (dst_nritems) *
3317                                       sizeof(struct btrfs_key_ptr));
3318
3319         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3320                                    src_nritems - push_items, push_items);
3321         if (ret) {
3322                 btrfs_abort_transaction(trans, root, ret);
3323                 return ret;
3324         }
3325         copy_extent_buffer(dst, src,
3326                            btrfs_node_key_ptr_offset(0),
3327                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3328                            push_items * sizeof(struct btrfs_key_ptr));
3329
3330         btrfs_set_header_nritems(src, src_nritems - push_items);
3331         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3332
3333         btrfs_mark_buffer_dirty(src);
3334         btrfs_mark_buffer_dirty(dst);
3335
3336         return ret;
3337 }
3338
3339 /*
3340  * helper function to insert a new root level in the tree.
3341  * A new node is allocated, and a single item is inserted to
3342  * point to the existing root
3343  *
3344  * returns zero on success or < 0 on failure.
3345  */
3346 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3347                            struct btrfs_root *root,
3348                            struct btrfs_path *path, int level)
3349 {
3350         u64 lower_gen;
3351         struct extent_buffer *lower;
3352         struct extent_buffer *c;
3353         struct extent_buffer *old;
3354         struct btrfs_disk_key lower_key;
3355
3356         BUG_ON(path->nodes[level]);
3357         BUG_ON(path->nodes[level-1] != root->node);
3358
3359         lower = path->nodes[level-1];
3360         if (level == 1)
3361                 btrfs_item_key(lower, &lower_key, 0);
3362         else
3363                 btrfs_node_key(lower, &lower_key, 0);
3364
3365         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3366                                    root->root_key.objectid, &lower_key,
3367                                    level, root->node->start, 0);
3368         if (IS_ERR(c))
3369                 return PTR_ERR(c);
3370
3371         root_add_used(root, root->nodesize);
3372
3373         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3374         btrfs_set_header_nritems(c, 1);
3375         btrfs_set_header_level(c, level);
3376         btrfs_set_header_bytenr(c, c->start);
3377         btrfs_set_header_generation(c, trans->transid);
3378         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3379         btrfs_set_header_owner(c, root->root_key.objectid);
3380
3381         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3382                             BTRFS_FSID_SIZE);
3383
3384         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3385                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3386
3387         btrfs_set_node_key(c, &lower_key, 0);
3388         btrfs_set_node_blockptr(c, 0, lower->start);
3389         lower_gen = btrfs_header_generation(lower);
3390         WARN_ON(lower_gen != trans->transid);
3391
3392         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3393
3394         btrfs_mark_buffer_dirty(c);
3395
3396         old = root->node;
3397         tree_mod_log_set_root_pointer(root, c, 0);
3398         rcu_assign_pointer(root->node, c);
3399
3400         /* the super has an extra ref to root->node */
3401         free_extent_buffer(old);
3402
3403         add_root_to_dirty_list(root);
3404         extent_buffer_get(c);
3405         path->nodes[level] = c;
3406         path->locks[level] = BTRFS_WRITE_LOCK;
3407         path->slots[level] = 0;
3408         return 0;
3409 }
3410
3411 /*
3412  * worker function to insert a single pointer in a node.
3413  * the node should have enough room for the pointer already
3414  *
3415  * slot and level indicate where you want the key to go, and
3416  * blocknr is the block the key points to.
3417  */
3418 static void insert_ptr(struct btrfs_trans_handle *trans,
3419                        struct btrfs_root *root, struct btrfs_path *path,
3420                        struct btrfs_disk_key *key, u64 bytenr,
3421                        int slot, int level)
3422 {
3423         struct extent_buffer *lower;
3424         int nritems;
3425         int ret;
3426
3427         BUG_ON(!path->nodes[level]);
3428         btrfs_assert_tree_locked(path->nodes[level]);
3429         lower = path->nodes[level];
3430         nritems = btrfs_header_nritems(lower);
3431         BUG_ON(slot > nritems);
3432         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3433         if (slot != nritems) {
3434                 if (level)
3435                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3436                                              slot, nritems - slot);
3437                 memmove_extent_buffer(lower,
3438                               btrfs_node_key_ptr_offset(slot + 1),
3439                               btrfs_node_key_ptr_offset(slot),
3440                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3441         }
3442         if (level) {
3443                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3444                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3445                 BUG_ON(ret < 0);
3446         }
3447         btrfs_set_node_key(lower, key, slot);
3448         btrfs_set_node_blockptr(lower, slot, bytenr);
3449         WARN_ON(trans->transid == 0);
3450         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3451         btrfs_set_header_nritems(lower, nritems + 1);
3452         btrfs_mark_buffer_dirty(lower);
3453 }
3454
3455 /*
3456  * split the node at the specified level in path in two.
3457  * The path is corrected to point to the appropriate node after the split
3458  *
3459  * Before splitting this tries to make some room in the node by pushing
3460  * left and right, if either one works, it returns right away.
3461  *
3462  * returns 0 on success and < 0 on failure
3463  */
3464 static noinline int split_node(struct btrfs_trans_handle *trans,
3465                                struct btrfs_root *root,
3466                                struct btrfs_path *path, int level)
3467 {
3468         struct extent_buffer *c;
3469         struct extent_buffer *split;
3470         struct btrfs_disk_key disk_key;
3471         int mid;
3472         int ret;
3473         u32 c_nritems;
3474
3475         c = path->nodes[level];
3476         WARN_ON(btrfs_header_generation(c) != trans->transid);
3477         if (c == root->node) {
3478                 /*
3479                  * trying to split the root, lets make a new one
3480                  *
3481                  * tree mod log: We don't log_removal old root in
3482                  * insert_new_root, because that root buffer will be kept as a
3483                  * normal node. We are going to log removal of half of the
3484                  * elements below with tree_mod_log_eb_copy. We're holding a
3485                  * tree lock on the buffer, which is why we cannot race with
3486                  * other tree_mod_log users.
3487                  */
3488                 ret = insert_new_root(trans, root, path, level + 1);
3489                 if (ret)
3490                         return ret;
3491         } else {
3492                 ret = push_nodes_for_insert(trans, root, path, level);
3493                 c = path->nodes[level];
3494                 if (!ret && btrfs_header_nritems(c) <
3495                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3496                         return 0;
3497                 if (ret < 0)
3498                         return ret;
3499         }
3500
3501         c_nritems = btrfs_header_nritems(c);
3502         mid = (c_nritems + 1) / 2;
3503         btrfs_node_key(c, &disk_key, mid);
3504
3505         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3506                                         root->root_key.objectid,
3507                                         &disk_key, level, c->start, 0);
3508         if (IS_ERR(split))
3509                 return PTR_ERR(split);
3510
3511         root_add_used(root, root->nodesize);
3512
3513         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3514         btrfs_set_header_level(split, btrfs_header_level(c));
3515         btrfs_set_header_bytenr(split, split->start);
3516         btrfs_set_header_generation(split, trans->transid);
3517         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3518         btrfs_set_header_owner(split, root->root_key.objectid);
3519         write_extent_buffer(split, root->fs_info->fsid,
3520                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3521         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3522                             btrfs_header_chunk_tree_uuid(split),
3523                             BTRFS_UUID_SIZE);
3524
3525         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3526                                    mid, c_nritems - mid);
3527         if (ret) {
3528                 btrfs_abort_transaction(trans, root, ret);
3529                 return ret;
3530         }
3531         copy_extent_buffer(split, c,
3532                            btrfs_node_key_ptr_offset(0),
3533                            btrfs_node_key_ptr_offset(mid),
3534                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3535         btrfs_set_header_nritems(split, c_nritems - mid);
3536         btrfs_set_header_nritems(c, mid);
3537         ret = 0;
3538
3539         btrfs_mark_buffer_dirty(c);
3540         btrfs_mark_buffer_dirty(split);
3541
3542         insert_ptr(trans, root, path, &disk_key, split->start,
3543                    path->slots[level + 1] + 1, level + 1);
3544
3545         if (path->slots[level] >= mid) {
3546                 path->slots[level] -= mid;
3547                 btrfs_tree_unlock(c);
3548                 free_extent_buffer(c);
3549                 path->nodes[level] = split;
3550                 path->slots[level + 1] += 1;
3551         } else {
3552                 btrfs_tree_unlock(split);
3553                 free_extent_buffer(split);
3554         }
3555         return ret;
3556 }
3557
3558 /*
3559  * how many bytes are required to store the items in a leaf.  start
3560  * and nr indicate which items in the leaf to check.  This totals up the
3561  * space used both by the item structs and the item data
3562  */
3563 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3564 {
3565         struct btrfs_item *start_item;
3566         struct btrfs_item *end_item;
3567         struct btrfs_map_token token;
3568         int data_len;
3569         int nritems = btrfs_header_nritems(l);
3570         int end = min(nritems, start + nr) - 1;
3571
3572         if (!nr)
3573                 return 0;
3574         btrfs_init_map_token(&token);
3575         start_item = btrfs_item_nr(start);
3576         end_item = btrfs_item_nr(end);
3577         data_len = btrfs_token_item_offset(l, start_item, &token) +
3578                 btrfs_token_item_size(l, start_item, &token);
3579         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3580         data_len += sizeof(struct btrfs_item) * nr;
3581         WARN_ON(data_len < 0);
3582         return data_len;
3583 }
3584
3585 /*
3586  * The space between the end of the leaf items and
3587  * the start of the leaf data.  IOW, how much room
3588  * the leaf has left for both items and data
3589  */
3590 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3591                                    struct extent_buffer *leaf)
3592 {
3593         int nritems = btrfs_header_nritems(leaf);
3594         int ret;
3595         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3596         if (ret < 0) {
3597                 btrfs_crit(root->fs_info,
3598                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3599                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3600                        leaf_space_used(leaf, 0, nritems), nritems);
3601         }
3602         return ret;
3603 }
3604
3605 /*
3606  * min slot controls the lowest index we're willing to push to the
3607  * right.  We'll push up to and including min_slot, but no lower
3608  */
3609 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3610                                       struct btrfs_root *root,
3611                                       struct btrfs_path *path,
3612                                       int data_size, int empty,
3613                                       struct extent_buffer *right,
3614                                       int free_space, u32 left_nritems,
3615                                       u32 min_slot)
3616 {
3617         struct extent_buffer *left = path->nodes[0];
3618         struct extent_buffer *upper = path->nodes[1];
3619         struct btrfs_map_token token;
3620         struct btrfs_disk_key disk_key;
3621         int slot;
3622         u32 i;
3623         int push_space = 0;
3624         int push_items = 0;
3625         struct btrfs_item *item;
3626         u32 nr;
3627         u32 right_nritems;
3628         u32 data_end;
3629         u32 this_item_size;
3630
3631         btrfs_init_map_token(&token);
3632
3633         if (empty)
3634                 nr = 0;
3635         else
3636                 nr = max_t(u32, 1, min_slot);
3637
3638         if (path->slots[0] >= left_nritems)
3639                 push_space += data_size;
3640
3641         slot = path->slots[1];
3642         i = left_nritems - 1;
3643         while (i >= nr) {
3644                 item = btrfs_item_nr(i);
3645
3646                 if (!empty && push_items > 0) {
3647                         if (path->slots[0] > i)
3648                                 break;
3649                         if (path->slots[0] == i) {
3650                                 int space = btrfs_leaf_free_space(root, left);
3651                                 if (space + push_space * 2 > free_space)
3652                                         break;
3653                         }
3654                 }
3655
3656                 if (path->slots[0] == i)
3657                         push_space += data_size;
3658
3659                 this_item_size = btrfs_item_size(left, item);
3660                 if (this_item_size + sizeof(*item) + push_space > free_space)
3661                         break;
3662
3663                 push_items++;
3664                 push_space += this_item_size + sizeof(*item);
3665                 if (i == 0)
3666                         break;
3667                 i--;
3668         }
3669
3670         if (push_items == 0)
3671                 goto out_unlock;
3672
3673         WARN_ON(!empty && push_items == left_nritems);
3674
3675         /* push left to right */
3676         right_nritems = btrfs_header_nritems(right);
3677
3678         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3679         push_space -= leaf_data_end(root, left);
3680
3681         /* make room in the right data area */
3682         data_end = leaf_data_end(root, right);
3683         memmove_extent_buffer(right,
3684                               btrfs_leaf_data(right) + data_end - push_space,
3685                               btrfs_leaf_data(right) + data_end,
3686                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3687
3688         /* copy from the left data area */
3689         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3690                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3691                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3692                      push_space);
3693
3694         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3695                               btrfs_item_nr_offset(0),
3696                               right_nritems * sizeof(struct btrfs_item));
3697
3698         /* copy the items from left to right */
3699         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3700                    btrfs_item_nr_offset(left_nritems - push_items),
3701                    push_items * sizeof(struct btrfs_item));
3702
3703         /* update the item pointers */
3704         right_nritems += push_items;
3705         btrfs_set_header_nritems(right, right_nritems);
3706         push_space = BTRFS_LEAF_DATA_SIZE(root);
3707         for (i = 0; i < right_nritems; i++) {
3708                 item = btrfs_item_nr(i);
3709                 push_space -= btrfs_token_item_size(right, item, &token);
3710                 btrfs_set_token_item_offset(right, item, push_space, &token);
3711         }
3712
3713         left_nritems -= push_items;
3714         btrfs_set_header_nritems(left, left_nritems);
3715
3716         if (left_nritems)
3717                 btrfs_mark_buffer_dirty(left);
3718         else
3719                 clean_tree_block(trans, root, left);
3720
3721         btrfs_mark_buffer_dirty(right);
3722
3723         btrfs_item_key(right, &disk_key, 0);
3724         btrfs_set_node_key(upper, &disk_key, slot + 1);
3725         btrfs_mark_buffer_dirty(upper);
3726
3727         /* then fixup the leaf pointer in the path */
3728         if (path->slots[0] >= left_nritems) {
3729                 path->slots[0] -= left_nritems;
3730                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3731                         clean_tree_block(trans, root, path->nodes[0]);
3732                 btrfs_tree_unlock(path->nodes[0]);
3733                 free_extent_buffer(path->nodes[0]);
3734                 path->nodes[0] = right;
3735                 path->slots[1] += 1;
3736         } else {
3737                 btrfs_tree_unlock(right);
3738                 free_extent_buffer(right);
3739         }
3740         return 0;
3741
3742 out_unlock:
3743         btrfs_tree_unlock(right);
3744         free_extent_buffer(right);
3745         return 1;
3746 }
3747
3748 /*
3749  * push some data in the path leaf to the right, trying to free up at
3750  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3751  *
3752  * returns 1 if the push failed because the other node didn't have enough
3753  * room, 0 if everything worked out and < 0 if there were major errors.
3754  *
3755  * this will push starting from min_slot to the end of the leaf.  It won't
3756  * push any slot lower than min_slot
3757  */
3758 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3759                            *root, struct btrfs_path *path,
3760                            int min_data_size, int data_size,
3761                            int empty, u32 min_slot)
3762 {
3763         struct extent_buffer *left = path->nodes[0];
3764         struct extent_buffer *right;
3765         struct extent_buffer *upper;
3766         int slot;
3767         int free_space;
3768         u32 left_nritems;
3769         int ret;
3770
3771         if (!path->nodes[1])
3772                 return 1;
3773
3774         slot = path->slots[1];
3775         upper = path->nodes[1];
3776         if (slot >= btrfs_header_nritems(upper) - 1)
3777                 return 1;
3778
3779         btrfs_assert_tree_locked(path->nodes[1]);
3780
3781         right = read_node_slot(root, upper, slot + 1);
3782         if (right == NULL)
3783                 return 1;
3784
3785         btrfs_tree_lock(right);
3786         btrfs_set_lock_blocking(right);
3787
3788         free_space = btrfs_leaf_free_space(root, right);
3789         if (free_space < data_size)
3790                 goto out_unlock;
3791
3792         /* cow and double check */
3793         ret = btrfs_cow_block(trans, root, right, upper,
3794                               slot + 1, &right);
3795         if (ret)
3796                 goto out_unlock;
3797
3798         free_space = btrfs_leaf_free_space(root, right);
3799         if (free_space < data_size)
3800                 goto out_unlock;
3801
3802         left_nritems = btrfs_header_nritems(left);
3803         if (left_nritems == 0)
3804                 goto out_unlock;
3805
3806         if (path->slots[0] == left_nritems && !empty) {
3807                 /* Key greater than all keys in the leaf, right neighbor has
3808                  * enough room for it and we're not emptying our leaf to delete
3809                  * it, therefore use right neighbor to insert the new item and
3810                  * no need to touch/dirty our left leaft. */
3811                 btrfs_tree_unlock(left);
3812                 free_extent_buffer(left);
3813                 path->nodes[0] = right;
3814                 path->slots[0] = 0;
3815                 path->slots[1]++;
3816                 return 0;
3817         }
3818
3819         return __push_leaf_right(trans, root, path, min_data_size, empty,
3820                                 right, free_space, left_nritems, min_slot);
3821 out_unlock:
3822         btrfs_tree_unlock(right);
3823         free_extent_buffer(right);
3824         return 1;
3825 }
3826
3827 /*
3828  * push some data in the path leaf to the left, trying to free up at
3829  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3830  *
3831  * max_slot can put a limit on how far into the leaf we'll push items.  The
3832  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3833  * items
3834  */
3835 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3836                                      struct btrfs_root *root,
3837                                      struct btrfs_path *path, int data_size,
3838                                      int empty, struct extent_buffer *left,
3839                                      int free_space, u32 right_nritems,
3840                                      u32 max_slot)
3841 {
3842         struct btrfs_disk_key disk_key;
3843         struct extent_buffer *right = path->nodes[0];
3844         int i;
3845         int push_space = 0;
3846         int push_items = 0;
3847         struct btrfs_item *item;
3848         u32 old_left_nritems;
3849         u32 nr;
3850         int ret = 0;
3851         u32 this_item_size;
3852         u32 old_left_item_size;
3853         struct btrfs_map_token token;
3854
3855         btrfs_init_map_token(&token);
3856
3857         if (empty)
3858                 nr = min(right_nritems, max_slot);
3859         else
3860                 nr = min(right_nritems - 1, max_slot);
3861
3862         for (i = 0; i < nr; i++) {
3863                 item = btrfs_item_nr(i);
3864
3865                 if (!empty && push_items > 0) {
3866                         if (path->slots[0] < i)
3867                                 break;
3868                         if (path->slots[0] == i) {
3869                                 int space = btrfs_leaf_free_space(root, right);
3870                                 if (space + push_space * 2 > free_space)
3871                                         break;
3872                         }
3873                 }
3874
3875                 if (path->slots[0] == i)
3876                         push_space += data_size;
3877
3878                 this_item_size = btrfs_item_size(right, item);
3879                 if (this_item_size + sizeof(*item) + push_space > free_space)
3880                         break;
3881
3882                 push_items++;
3883                 push_space += this_item_size + sizeof(*item);
3884         }
3885
3886         if (push_items == 0) {
3887                 ret = 1;
3888                 goto out;
3889         }
3890         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3891
3892         /* push data from right to left */
3893         copy_extent_buffer(left, right,
3894                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3895                            btrfs_item_nr_offset(0),
3896                            push_items * sizeof(struct btrfs_item));
3897
3898         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3899                      btrfs_item_offset_nr(right, push_items - 1);
3900
3901         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3902                      leaf_data_end(root, left) - push_space,
3903                      btrfs_leaf_data(right) +
3904                      btrfs_item_offset_nr(right, push_items - 1),
3905                      push_space);
3906         old_left_nritems = btrfs_header_nritems(left);
3907         BUG_ON(old_left_nritems <= 0);
3908
3909         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3910         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3911                 u32 ioff;
3912
3913                 item = btrfs_item_nr(i);
3914
3915                 ioff = btrfs_token_item_offset(left, item, &token);
3916                 btrfs_set_token_item_offset(left, item,
3917                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3918                       &token);
3919         }
3920         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3921
3922         /* fixup right node */
3923         if (push_items > right_nritems)
3924                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3925                        right_nritems);
3926
3927         if (push_items < right_nritems) {
3928                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3929                                                   leaf_data_end(root, right);
3930                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3931                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3932                                       btrfs_leaf_data(right) +
3933                                       leaf_data_end(root, right), push_space);
3934
3935                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3936                               btrfs_item_nr_offset(push_items),
3937                              (btrfs_header_nritems(right) - push_items) *
3938                              sizeof(struct btrfs_item));
3939         }
3940         right_nritems -= push_items;
3941         btrfs_set_header_nritems(right, right_nritems);
3942         push_space = BTRFS_LEAF_DATA_SIZE(root);
3943         for (i = 0; i < right_nritems; i++) {
3944                 item = btrfs_item_nr(i);
3945
3946                 push_space = push_space - btrfs_token_item_size(right,
3947                                                                 item, &token);
3948                 btrfs_set_token_item_offset(right, item, push_space, &token);
3949         }
3950
3951         btrfs_mark_buffer_dirty(left);
3952         if (right_nritems)
3953                 btrfs_mark_buffer_dirty(right);
3954         else
3955                 clean_tree_block(trans, root, right);
3956
3957         btrfs_item_key(right, &disk_key, 0);
3958         fixup_low_keys(root, path, &disk_key, 1);
3959
3960         /* then fixup the leaf pointer in the path */
3961         if (path->slots[0] < push_items) {
3962                 path->slots[0] += old_left_nritems;
3963                 btrfs_tree_unlock(path->nodes[0]);
3964                 free_extent_buffer(path->nodes[0]);
3965                 path->nodes[0] = left;
3966                 path->slots[1] -= 1;
3967         } else {
3968                 btrfs_tree_unlock(left);
3969                 free_extent_buffer(left);
3970                 path->slots[0] -= push_items;
3971         }
3972         BUG_ON(path->slots[0] < 0);
3973         return ret;
3974 out:
3975         btrfs_tree_unlock(left);
3976         free_extent_buffer(left);
3977         return ret;
3978 }
3979
3980 /*
3981  * push some data in the path leaf to the left, trying to free up at
3982  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3983  *
3984  * max_slot can put a limit on how far into the leaf we'll push items.  The
3985  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3986  * items
3987  */
3988 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3989                           *root, struct btrfs_path *path, int min_data_size,
3990                           int data_size, int empty, u32 max_slot)
3991 {
3992         struct extent_buffer *right = path->nodes[0];
3993         struct extent_buffer *left;
3994         int slot;
3995         int free_space;
3996         u32 right_nritems;
3997         int ret = 0;
3998
3999         slot = path->slots[1];
4000         if (slot == 0)
4001                 return 1;
4002         if (!path->nodes[1])
4003                 return 1;
4004
4005         right_nritems = btrfs_header_nritems(right);
4006         if (right_nritems == 0)
4007                 return 1;
4008
4009         btrfs_assert_tree_locked(path->nodes[1]);
4010
4011         left = read_node_slot(root, path->nodes[1], slot - 1);
4012         if (left == NULL)
4013                 return 1;
4014
4015         btrfs_tree_lock(left);
4016         btrfs_set_lock_blocking(left);
4017
4018         free_space = btrfs_leaf_free_space(root, left);
4019         if (free_space < data_size) {
4020                 ret = 1;
4021                 goto out;
4022         }
4023
4024         /* cow and double check */
4025         ret = btrfs_cow_block(trans, root, left,
4026                               path->nodes[1], slot - 1, &left);
4027         if (ret) {
4028                 /* we hit -ENOSPC, but it isn't fatal here */
4029                 if (ret == -ENOSPC)
4030                         ret = 1;
4031                 goto out;
4032         }
4033
4034         free_space = btrfs_leaf_free_space(root, left);
4035         if (free_space < data_size) {
4036                 ret = 1;
4037                 goto out;
4038         }
4039
4040         return __push_leaf_left(trans, root, path, min_data_size,
4041                                empty, left, free_space, right_nritems,
4042                                max_slot);
4043 out:
4044         btrfs_tree_unlock(left);
4045         free_extent_buffer(left);
4046         return ret;
4047 }
4048
4049 /*
4050  * split the path's leaf in two, making sure there is at least data_size
4051  * available for the resulting leaf level of the path.
4052  */
4053 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4054                                     struct btrfs_root *root,
4055                                     struct btrfs_path *path,
4056                                     struct extent_buffer *l,
4057                                     struct extent_buffer *right,
4058                                     int slot, int mid, int nritems)
4059 {
4060         int data_copy_size;
4061         int rt_data_off;
4062         int i;
4063         struct btrfs_disk_key disk_key;
4064         struct btrfs_map_token token;
4065
4066         btrfs_init_map_token(&token);
4067
4068         nritems = nritems - mid;
4069         btrfs_set_header_nritems(right, nritems);
4070         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4071
4072         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4073                            btrfs_item_nr_offset(mid),
4074                            nritems * sizeof(struct btrfs_item));
4075
4076         copy_extent_buffer(right, l,
4077                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4078                      data_copy_size, btrfs_leaf_data(l) +
4079                      leaf_data_end(root, l), data_copy_size);
4080
4081         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4082                       btrfs_item_end_nr(l, mid);
4083
4084         for (i = 0; i < nritems; i++) {
4085                 struct btrfs_item *item = btrfs_item_nr(i);
4086                 u32 ioff;
4087
4088                 ioff = btrfs_token_item_offset(right, item, &token);
4089                 btrfs_set_token_item_offset(right, item,
4090                                             ioff + rt_data_off, &token);
4091         }
4092
4093         btrfs_set_header_nritems(l, mid);
4094         btrfs_item_key(right, &disk_key, 0);
4095         insert_ptr(trans, root, path, &disk_key, right->start,
4096                    path->slots[1] + 1, 1);
4097
4098         btrfs_mark_buffer_dirty(right);
4099         btrfs_mark_buffer_dirty(l);
4100         BUG_ON(path->slots[0] != slot);
4101
4102         if (mid <= slot) {
4103                 btrfs_tree_unlock(path->nodes[0]);
4104                 free_extent_buffer(path->nodes[0]);
4105                 path->nodes[0] = right;
4106                 path->slots[0] -= mid;
4107                 path->slots[1] += 1;
4108         } else {
4109                 btrfs_tree_unlock(right);
4110                 free_extent_buffer(right);
4111         }
4112
4113         BUG_ON(path->slots[0] < 0);
4114 }
4115
4116 /*
4117  * double splits happen when we need to insert a big item in the middle
4118  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4119  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4120  *          A                 B                 C
4121  *
4122  * We avoid this by trying to push the items on either side of our target
4123  * into the adjacent leaves.  If all goes well we can avoid the double split
4124  * completely.
4125  */
4126 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4127                                           struct btrfs_root *root,
4128                                           struct btrfs_path *path,
4129                                           int data_size)
4130 {
4131         int ret;
4132         int progress = 0;
4133         int slot;
4134         u32 nritems;
4135         int space_needed = data_size;
4136
4137         slot = path->slots[0];
4138         if (slot < btrfs_header_nritems(path->nodes[0]))
4139                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4140
4141         /*
4142          * try to push all the items after our slot into the
4143          * right leaf
4144          */
4145         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4146         if (ret < 0)
4147                 return ret;
4148
4149         if (ret == 0)
4150                 progress++;
4151
4152         nritems = btrfs_header_nritems(path->nodes[0]);
4153         /*
4154          * our goal is to get our slot at the start or end of a leaf.  If
4155          * we've done so we're done
4156          */
4157         if (path->slots[0] == 0 || path->slots[0] == nritems)
4158                 return 0;
4159
4160         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4161                 return 0;
4162
4163         /* try to push all the items before our slot into the next leaf */
4164         slot = path->slots[0];
4165         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4166         if (ret < 0)
4167                 return ret;
4168
4169         if (ret == 0)
4170                 progress++;
4171
4172         if (progress)
4173                 return 0;
4174         return 1;
4175 }
4176
4177 /*
4178  * split the path's leaf in two, making sure there is at least data_size
4179  * available for the resulting leaf level of the path.
4180  *
4181  * returns 0 if all went well and < 0 on failure.
4182  */
4183 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4184                                struct btrfs_root *root,
4185                                struct btrfs_key *ins_key,
4186                                struct btrfs_path *path, int data_size,
4187                                int extend)
4188 {
4189         struct btrfs_disk_key disk_key;
4190         struct extent_buffer *l;
4191         u32 nritems;
4192         int mid;
4193         int slot;
4194         struct extent_buffer *right;
4195         int ret = 0;
4196         int wret;
4197         int split;
4198         int num_doubles = 0;
4199         int tried_avoid_double = 0;
4200
4201         l = path->nodes[0];
4202         slot = path->slots[0];
4203         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4204             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4205                 return -EOVERFLOW;
4206
4207         /* first try to make some room by pushing left and right */
4208         if (data_size && path->nodes[1]) {
4209                 int space_needed = data_size;
4210
4211                 if (slot < btrfs_header_nritems(l))
4212                         space_needed -= btrfs_leaf_free_space(root, l);
4213
4214                 wret = push_leaf_right(trans, root, path, space_needed,
4215                                        space_needed, 0, 0);
4216                 if (wret < 0)
4217                         return wret;
4218                 if (wret) {
4219                         wret = push_leaf_left(trans, root, path, space_needed,
4220                                               space_needed, 0, (u32)-1);
4221                         if (wret < 0)
4222                                 return wret;
4223                 }
4224                 l = path->nodes[0];
4225
4226                 /* did the pushes work? */
4227                 if (btrfs_leaf_free_space(root, l) >= data_size)
4228                         return 0;
4229         }
4230
4231         if (!path->nodes[1]) {
4232                 ret = insert_new_root(trans, root, path, 1);
4233                 if (ret)
4234                         return ret;
4235         }
4236 again:
4237         split = 1;
4238         l = path->nodes[0];
4239         slot = path->slots[0];
4240         nritems = btrfs_header_nritems(l);
4241         mid = (nritems + 1) / 2;
4242
4243         if (mid <= slot) {
4244                 if (nritems == 1 ||
4245                     leaf_space_used(l, mid, nritems - mid) + data_size >
4246                         BTRFS_LEAF_DATA_SIZE(root)) {
4247                         if (slot >= nritems) {
4248                                 split = 0;
4249                         } else {
4250                                 mid = slot;
4251                                 if (mid != nritems &&
4252                                     leaf_space_used(l, mid, nritems - mid) +
4253                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4254                                         if (data_size && !tried_avoid_double)
4255                                                 goto push_for_double;
4256                                         split = 2;
4257                                 }
4258                         }
4259                 }
4260         } else {
4261                 if (leaf_space_used(l, 0, mid) + data_size >
4262                         BTRFS_LEAF_DATA_SIZE(root)) {
4263                         if (!extend && data_size && slot == 0) {
4264                                 split = 0;
4265                         } else if ((extend || !data_size) && slot == 0) {
4266                                 mid = 1;
4267                         } else {
4268                                 mid = slot;
4269                                 if (mid != nritems &&
4270                                     leaf_space_used(l, mid, nritems - mid) +
4271                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4272                                         if (data_size && !tried_avoid_double)
4273                                                 goto push_for_double;
4274                                         split = 2;
4275                                 }
4276                         }
4277                 }
4278         }
4279
4280         if (split == 0)
4281                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4282         else
4283                 btrfs_item_key(l, &disk_key, mid);
4284
4285         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4286                                         root->root_key.objectid,
4287                                         &disk_key, 0, l->start, 0);
4288         if (IS_ERR(right))
4289                 return PTR_ERR(right);
4290
4291         root_add_used(root, root->leafsize);
4292
4293         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4294         btrfs_set_header_bytenr(right, right->start);
4295         btrfs_set_header_generation(right, trans->transid);
4296         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4297         btrfs_set_header_owner(right, root->root_key.objectid);
4298         btrfs_set_header_level(right, 0);
4299         write_extent_buffer(right, root->fs_info->fsid,
4300                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4301
4302         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4303                             btrfs_header_chunk_tree_uuid(right),
4304                             BTRFS_UUID_SIZE);
4305
4306         if (split == 0) {
4307                 if (mid <= slot) {
4308                         btrfs_set_header_nritems(right, 0);
4309                         insert_ptr(trans, root, path, &disk_key, right->start,
4310                                    path->slots[1] + 1, 1);
4311                         btrfs_tree_unlock(path->nodes[0]);
4312                         free_extent_buffer(path->nodes[0]);
4313                         path->nodes[0] = right;
4314                         path->slots[0] = 0;
4315                         path->slots[1] += 1;
4316                 } else {
4317                         btrfs_set_header_nritems(right, 0);
4318                         insert_ptr(trans, root, path, &disk_key, right->start,
4319                                           path->slots[1], 1);
4320                         btrfs_tree_unlock(path->nodes[0]);
4321                         free_extent_buffer(path->nodes[0]);
4322                         path->nodes[0] = right;
4323                         path->slots[0] = 0;
4324                         if (path->slots[1] == 0)
4325                                 fixup_low_keys(root, path, &disk_key, 1);
4326                 }
4327                 btrfs_mark_buffer_dirty(right);
4328                 return ret;
4329         }
4330
4331         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4332
4333         if (split == 2) {
4334                 BUG_ON(num_doubles != 0);
4335                 num_doubles++;
4336                 goto again;
4337         }
4338
4339         return 0;
4340
4341 push_for_double:
4342         push_for_double_split(trans, root, path, data_size);
4343         tried_avoid_double = 1;
4344         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4345                 return 0;
4346         goto again;
4347 }
4348
4349 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4350                                          struct btrfs_root *root,
4351                                          struct btrfs_path *path, int ins_len)
4352 {
4353         struct btrfs_key key;
4354         struct extent_buffer *leaf;
4355         struct btrfs_file_extent_item *fi;
4356         u64 extent_len = 0;
4357         u32 item_size;
4358         int ret;
4359
4360         leaf = path->nodes[0];
4361         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4362
4363         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4364                key.type != BTRFS_EXTENT_CSUM_KEY);
4365
4366         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4367                 return 0;
4368
4369         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4370         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4371                 fi = btrfs_item_ptr(leaf, path->slots[0],
4372                                     struct btrfs_file_extent_item);
4373                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4374         }
4375         btrfs_release_path(path);
4376
4377         path->keep_locks = 1;
4378         path->search_for_split = 1;
4379         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4380         path->search_for_split = 0;
4381         if (ret < 0)
4382                 goto err;
4383
4384         ret = -EAGAIN;
4385         leaf = path->nodes[0];
4386         /* if our item isn't there or got smaller, return now */
4387         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4388                 goto err;
4389
4390         /* the leaf has  changed, it now has room.  return now */
4391         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4392                 goto err;
4393
4394         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395                 fi = btrfs_item_ptr(leaf, path->slots[0],
4396                                     struct btrfs_file_extent_item);
4397                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4398                         goto err;
4399         }
4400
4401         btrfs_set_path_blocking(path);
4402         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4403         if (ret)
4404                 goto err;
4405
4406         path->keep_locks = 0;
4407         btrfs_unlock_up_safe(path, 1);
4408         return 0;
4409 err:
4410         path->keep_locks = 0;
4411         return ret;
4412 }
4413
4414 static noinline int split_item(struct btrfs_trans_handle *trans,
4415                                struct btrfs_root *root,
4416                                struct btrfs_path *path,
4417                                struct btrfs_key *new_key,
4418                                unsigned long split_offset)
4419 {
4420         struct extent_buffer *leaf;
4421         struct btrfs_item *item;
4422         struct btrfs_item *new_item;
4423         int slot;
4424         char *buf;
4425         u32 nritems;
4426         u32 item_size;
4427         u32 orig_offset;
4428         struct btrfs_disk_key disk_key;
4429
4430         leaf = path->nodes[0];
4431         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4432
4433         btrfs_set_path_blocking(path);
4434
4435         item = btrfs_item_nr(path->slots[0]);
4436         orig_offset = btrfs_item_offset(leaf, item);
4437         item_size = btrfs_item_size(leaf, item);
4438
4439         buf = kmalloc(item_size, GFP_NOFS);
4440         if (!buf)
4441                 return -ENOMEM;
4442
4443         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4444                             path->slots[0]), item_size);
4445
4446         slot = path->slots[0] + 1;
4447         nritems = btrfs_header_nritems(leaf);
4448         if (slot != nritems) {
4449                 /* shift the items */
4450                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4451                                 btrfs_item_nr_offset(slot),
4452                                 (nritems - slot) * sizeof(struct btrfs_item));
4453         }
4454
4455         btrfs_cpu_key_to_disk(&disk_key, new_key);
4456         btrfs_set_item_key(leaf, &disk_key, slot);
4457
4458         new_item = btrfs_item_nr(slot);
4459
4460         btrfs_set_item_offset(leaf, new_item, orig_offset);
4461         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4462
4463         btrfs_set_item_offset(leaf, item,
4464                               orig_offset + item_size - split_offset);
4465         btrfs_set_item_size(leaf, item, split_offset);
4466
4467         btrfs_set_header_nritems(leaf, nritems + 1);
4468
4469         /* write the data for the start of the original item */
4470         write_extent_buffer(leaf, buf,
4471                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4472                             split_offset);
4473
4474         /* write the data for the new item */
4475         write_extent_buffer(leaf, buf + split_offset,
4476                             btrfs_item_ptr_offset(leaf, slot),
4477                             item_size - split_offset);
4478         btrfs_mark_buffer_dirty(leaf);
4479
4480         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4481         kfree(buf);
4482         return 0;
4483 }
4484
4485 /*
4486  * This function splits a single item into two items,
4487  * giving 'new_key' to the new item and splitting the
4488  * old one at split_offset (from the start of the item).
4489  *
4490  * The path may be released by this operation.  After
4491  * the split, the path is pointing to the old item.  The
4492  * new item is going to be in the same node as the old one.
4493  *
4494  * Note, the item being split must be smaller enough to live alone on
4495  * a tree block with room for one extra struct btrfs_item
4496  *
4497  * This allows us to split the item in place, keeping a lock on the
4498  * leaf the entire time.
4499  */
4500 int btrfs_split_item(struct btrfs_trans_handle *trans,
4501                      struct btrfs_root *root,
4502                      struct btrfs_path *path,
4503                      struct btrfs_key *new_key,
4504                      unsigned long split_offset)
4505 {
4506         int ret;
4507         ret = setup_leaf_for_split(trans, root, path,
4508                                    sizeof(struct btrfs_item));
4509         if (ret)
4510                 return ret;
4511
4512         ret = split_item(trans, root, path, new_key, split_offset);
4513         return ret;
4514 }
4515
4516 /*
4517  * This function duplicate a item, giving 'new_key' to the new item.
4518  * It guarantees both items live in the same tree leaf and the new item
4519  * is contiguous with the original item.
4520  *
4521  * This allows us to split file extent in place, keeping a lock on the
4522  * leaf the entire time.
4523  */
4524 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4525                          struct btrfs_root *root,
4526                          struct btrfs_path *path,
4527                          struct btrfs_key *new_key)
4528 {
4529         struct extent_buffer *leaf;
4530         int ret;
4531         u32 item_size;
4532
4533         leaf = path->nodes[0];
4534         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4535         ret = setup_leaf_for_split(trans, root, path,
4536                                    item_size + sizeof(struct btrfs_item));
4537         if (ret)
4538                 return ret;
4539
4540         path->slots[0]++;
4541         setup_items_for_insert(root, path, new_key, &item_size,
4542                                item_size, item_size +
4543                                sizeof(struct btrfs_item), 1);
4544         leaf = path->nodes[0];
4545         memcpy_extent_buffer(leaf,
4546                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4547                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4548                              item_size);
4549         return 0;
4550 }
4551
4552 /*
4553  * make the item pointed to by the path smaller.  new_size indicates
4554  * how small to make it, and from_end tells us if we just chop bytes
4555  * off the end of the item or if we shift the item to chop bytes off
4556  * the front.
4557  */
4558 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4559                          u32 new_size, int from_end)
4560 {
4561         int slot;
4562         struct extent_buffer *leaf;
4563         struct btrfs_item *item;
4564         u32 nritems;
4565         unsigned int data_end;
4566         unsigned int old_data_start;
4567         unsigned int old_size;
4568         unsigned int size_diff;
4569         int i;
4570         struct btrfs_map_token token;
4571
4572         btrfs_init_map_token(&token);
4573
4574         leaf = path->nodes[0];
4575         slot = path->slots[0];
4576
4577         old_size = btrfs_item_size_nr(leaf, slot);
4578         if (old_size == new_size)
4579                 return;
4580
4581         nritems = btrfs_header_nritems(leaf);
4582         data_end = leaf_data_end(root, leaf);
4583
4584         old_data_start = btrfs_item_offset_nr(leaf, slot);
4585
4586         size_diff = old_size - new_size;
4587
4588         BUG_ON(slot < 0);
4589         BUG_ON(slot >= nritems);
4590
4591         /*
4592          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4593          */
4594         /* first correct the data pointers */
4595         for (i = slot; i < nritems; i++) {
4596                 u32 ioff;
4597                 item = btrfs_item_nr(i);
4598
4599                 ioff = btrfs_token_item_offset(leaf, item, &token);
4600                 btrfs_set_token_item_offset(leaf, item,
4601                                             ioff + size_diff, &token);
4602         }
4603
4604         /* shift the data */
4605         if (from_end) {
4606                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4607                               data_end + size_diff, btrfs_leaf_data(leaf) +
4608                               data_end, old_data_start + new_size - data_end);
4609         } else {
4610                 struct btrfs_disk_key disk_key;
4611                 u64 offset;
4612
4613                 btrfs_item_key(leaf, &disk_key, slot);
4614
4615                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4616                         unsigned long ptr;
4617                         struct btrfs_file_extent_item *fi;
4618
4619                         fi = btrfs_item_ptr(leaf, slot,
4620                                             struct btrfs_file_extent_item);
4621                         fi = (struct btrfs_file_extent_item *)(
4622                              (unsigned long)fi - size_diff);
4623
4624                         if (btrfs_file_extent_type(leaf, fi) ==
4625                             BTRFS_FILE_EXTENT_INLINE) {
4626                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4627                                 memmove_extent_buffer(leaf, ptr,
4628                                       (unsigned long)fi,
4629                                       offsetof(struct btrfs_file_extent_item,
4630                                                  disk_bytenr));
4631                         }
4632                 }
4633
4634                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635                               data_end + size_diff, btrfs_leaf_data(leaf) +
4636                               data_end, old_data_start - data_end);
4637
4638                 offset = btrfs_disk_key_offset(&disk_key);
4639                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640                 btrfs_set_item_key(leaf, &disk_key, slot);
4641                 if (slot == 0)
4642                         fixup_low_keys(root, path, &disk_key, 1);
4643         }
4644
4645         item = btrfs_item_nr(slot);
4646         btrfs_set_item_size(leaf, item, new_size);
4647         btrfs_mark_buffer_dirty(leaf);
4648
4649         if (btrfs_leaf_free_space(root, leaf) < 0) {
4650                 btrfs_print_leaf(root, leaf);
4651                 BUG();
4652         }
4653 }
4654
4655 /*
4656  * make the item pointed to by the path bigger, data_size is the added size.
4657  */
4658 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4659                        u32 data_size)
4660 {
4661         int slot;
4662         struct extent_buffer *leaf;
4663         struct btrfs_item *item;
4664         u32 nritems;
4665         unsigned int data_end;
4666         unsigned int old_data;
4667         unsigned int old_size;
4668         int i;
4669         struct btrfs_map_token token;
4670
4671         btrfs_init_map_token(&token);
4672
4673         leaf = path->nodes[0];
4674
4675         nritems = btrfs_header_nritems(leaf);
4676         data_end = leaf_data_end(root, leaf);
4677
4678         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4679                 btrfs_print_leaf(root, leaf);
4680                 BUG();
4681         }
4682         slot = path->slots[0];
4683         old_data = btrfs_item_end_nr(leaf, slot);
4684
4685         BUG_ON(slot < 0);
4686         if (slot >= nritems) {
4687                 btrfs_print_leaf(root, leaf);
4688                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4689                        slot, nritems);
4690                 BUG_ON(1);
4691         }
4692
4693         /*
4694          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695          */
4696         /* first correct the data pointers */
4697         for (i = slot; i < nritems; i++) {
4698                 u32 ioff;
4699                 item = btrfs_item_nr(i);
4700
4701                 ioff = btrfs_token_item_offset(leaf, item, &token);
4702                 btrfs_set_token_item_offset(leaf, item,
4703                                             ioff - data_size, &token);
4704         }
4705
4706         /* shift the data */
4707         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708                       data_end - data_size, btrfs_leaf_data(leaf) +
4709                       data_end, old_data - data_end);
4710
4711         data_end = old_data;
4712         old_size = btrfs_item_size_nr(leaf, slot);
4713         item = btrfs_item_nr(slot);
4714         btrfs_set_item_size(leaf, item, old_size + data_size);
4715         btrfs_mark_buffer_dirty(leaf);
4716
4717         if (btrfs_leaf_free_space(root, leaf) < 0) {
4718                 btrfs_print_leaf(root, leaf);
4719                 BUG();
4720         }
4721 }
4722
4723 /*
4724  * this is a helper for btrfs_insert_empty_items, the main goal here is
4725  * to save stack depth by doing the bulk of the work in a function
4726  * that doesn't call btrfs_search_slot
4727  */
4728 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729                             struct btrfs_key *cpu_key, u32 *data_size,
4730                             u32 total_data, u32 total_size, int nr)
4731 {
4732         struct btrfs_item *item;
4733         int i;
4734         u32 nritems;
4735         unsigned int data_end;
4736         struct btrfs_disk_key disk_key;
4737         struct extent_buffer *leaf;
4738         int slot;
4739         struct btrfs_map_token token;
4740
4741         btrfs_init_map_token(&token);
4742
4743         leaf = path->nodes[0];
4744         slot = path->slots[0];
4745
4746         nritems = btrfs_header_nritems(leaf);
4747         data_end = leaf_data_end(root, leaf);
4748
4749         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4750                 btrfs_print_leaf(root, leaf);
4751                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4752                        total_size, btrfs_leaf_free_space(root, leaf));
4753                 BUG();
4754         }
4755
4756         if (slot != nritems) {
4757                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4758
4759                 if (old_data < data_end) {
4760                         btrfs_print_leaf(root, leaf);
4761                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4762                                slot, old_data, data_end);
4763                         BUG_ON(1);
4764                 }
4765                 /*
4766                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4767                  */
4768                 /* first correct the data pointers */
4769                 for (i = slot; i < nritems; i++) {
4770                         u32 ioff;
4771
4772                         item = btrfs_item_nr( i);
4773                         ioff = btrfs_token_item_offset(leaf, item, &token);
4774                         btrfs_set_token_item_offset(leaf, item,
4775                                                     ioff - total_data, &token);
4776                 }
4777                 /* shift the items */
4778                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4779                               btrfs_item_nr_offset(slot),
4780                               (nritems - slot) * sizeof(struct btrfs_item));
4781
4782                 /* shift the data */
4783                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4784                               data_end - total_data, btrfs_leaf_data(leaf) +
4785                               data_end, old_data - data_end);
4786                 data_end = old_data;
4787         }
4788
4789         /* setup the item for the new data */
4790         for (i = 0; i < nr; i++) {
4791                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4792                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4793                 item = btrfs_item_nr(slot + i);
4794                 btrfs_set_token_item_offset(leaf, item,
4795                                             data_end - data_size[i], &token);
4796                 data_end -= data_size[i];
4797                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4798         }
4799
4800         btrfs_set_header_nritems(leaf, nritems + nr);
4801
4802         if (slot == 0) {
4803                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4804                 fixup_low_keys(root, path, &disk_key, 1);
4805         }
4806         btrfs_unlock_up_safe(path, 1);
4807         btrfs_mark_buffer_dirty(leaf);
4808
4809         if (btrfs_leaf_free_space(root, leaf) < 0) {
4810                 btrfs_print_leaf(root, leaf);
4811                 BUG();
4812         }
4813 }
4814
4815 /*
4816  * Given a key and some data, insert items into the tree.
4817  * This does all the path init required, making room in the tree if needed.
4818  */
4819 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4820                             struct btrfs_root *root,
4821                             struct btrfs_path *path,
4822                             struct btrfs_key *cpu_key, u32 *data_size,
4823                             int nr)
4824 {
4825         int ret = 0;
4826         int slot;
4827         int i;
4828         u32 total_size = 0;
4829         u32 total_data = 0;
4830
4831         for (i = 0; i < nr; i++)
4832                 total_data += data_size[i];
4833
4834         total_size = total_data + (nr * sizeof(struct btrfs_item));
4835         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4836         if (ret == 0)
4837                 return -EEXIST;
4838         if (ret < 0)
4839                 return ret;
4840
4841         slot = path->slots[0];
4842         BUG_ON(slot < 0);
4843
4844         setup_items_for_insert(root, path, cpu_key, data_size,
4845                                total_data, total_size, nr);
4846         return 0;
4847 }
4848
4849 /*
4850  * Given a key and some data, insert an item into the tree.
4851  * This does all the path init required, making room in the tree if needed.
4852  */
4853 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4854                       *root, struct btrfs_key *cpu_key, void *data, u32
4855                       data_size)
4856 {
4857         int ret = 0;
4858         struct btrfs_path *path;
4859         struct extent_buffer *leaf;
4860         unsigned long ptr;
4861
4862         path = btrfs_alloc_path();
4863         if (!path)
4864                 return -ENOMEM;
4865         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4866         if (!ret) {
4867                 leaf = path->nodes[0];
4868                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4869                 write_extent_buffer(leaf, data, ptr, data_size);
4870                 btrfs_mark_buffer_dirty(leaf);
4871         }
4872         btrfs_free_path(path);
4873         return ret;
4874 }
4875
4876 /*
4877  * delete the pointer from a given node.
4878  *
4879  * the tree should have been previously balanced so the deletion does not
4880  * empty a node.
4881  */
4882 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4883                     int level, int slot)
4884 {
4885         struct extent_buffer *parent = path->nodes[level];
4886         u32 nritems;
4887         int ret;
4888
4889         nritems = btrfs_header_nritems(parent);
4890         if (slot != nritems - 1) {
4891                 if (level)
4892                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4893                                              slot + 1, nritems - slot - 1);
4894                 memmove_extent_buffer(parent,
4895                               btrfs_node_key_ptr_offset(slot),
4896                               btrfs_node_key_ptr_offset(slot + 1),
4897                               sizeof(struct btrfs_key_ptr) *
4898                               (nritems - slot - 1));
4899         } else if (level) {
4900                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4901                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4902                 BUG_ON(ret < 0);
4903         }
4904
4905         nritems--;
4906         btrfs_set_header_nritems(parent, nritems);
4907         if (nritems == 0 && parent == root->node) {
4908                 BUG_ON(btrfs_header_level(root->node) != 1);
4909                 /* just turn the root into a leaf and break */
4910                 btrfs_set_header_level(root->node, 0);
4911         } else if (slot == 0) {
4912                 struct btrfs_disk_key disk_key;
4913
4914                 btrfs_node_key(parent, &disk_key, 0);
4915                 fixup_low_keys(root, path, &disk_key, level + 1);
4916         }
4917         btrfs_mark_buffer_dirty(parent);
4918 }
4919
4920 /*
4921  * a helper function to delete the leaf pointed to by path->slots[1] and
4922  * path->nodes[1].
4923  *
4924  * This deletes the pointer in path->nodes[1] and frees the leaf
4925  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4926  *
4927  * The path must have already been setup for deleting the leaf, including
4928  * all the proper balancing.  path->nodes[1] must be locked.
4929  */
4930 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4931                                     struct btrfs_root *root,
4932                                     struct btrfs_path *path,
4933                                     struct extent_buffer *leaf)
4934 {
4935         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4936         del_ptr(root, path, 1, path->slots[1]);
4937
4938         /*
4939          * btrfs_free_extent is expensive, we want to make sure we
4940          * aren't holding any locks when we call it
4941          */
4942         btrfs_unlock_up_safe(path, 0);
4943
4944         root_sub_used(root, leaf->len);
4945
4946         extent_buffer_get(leaf);
4947         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4948         free_extent_buffer_stale(leaf);
4949 }
4950 /*
4951  * delete the item at the leaf level in path.  If that empties
4952  * the leaf, remove it from the tree
4953  */
4954 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4955                     struct btrfs_path *path, int slot, int nr)
4956 {
4957         struct extent_buffer *leaf;
4958         struct btrfs_item *item;
4959         int last_off;
4960         int dsize = 0;
4961         int ret = 0;
4962         int wret;
4963         int i;
4964         u32 nritems;
4965         struct btrfs_map_token token;
4966
4967         btrfs_init_map_token(&token);
4968
4969         leaf = path->nodes[0];
4970         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4971
4972         for (i = 0; i < nr; i++)
4973                 dsize += btrfs_item_size_nr(leaf, slot + i);
4974
4975         nritems = btrfs_header_nritems(leaf);
4976
4977         if (slot + nr != nritems) {
4978                 int data_end = leaf_data_end(root, leaf);
4979
4980                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4981                               data_end + dsize,
4982                               btrfs_leaf_data(leaf) + data_end,
4983                               last_off - data_end);
4984
4985                 for (i = slot + nr; i < nritems; i++) {
4986                         u32 ioff;
4987
4988                         item = btrfs_item_nr(i);
4989                         ioff = btrfs_token_item_offset(leaf, item, &token);
4990                         btrfs_set_token_item_offset(leaf, item,
4991                                                     ioff + dsize, &token);
4992                 }
4993
4994                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4995                               btrfs_item_nr_offset(slot + nr),
4996                               sizeof(struct btrfs_item) *
4997                               (nritems - slot - nr));
4998         }
4999         btrfs_set_header_nritems(leaf, nritems - nr);
5000         nritems -= nr;
5001
5002         /* delete the leaf if we've emptied it */
5003         if (nritems == 0) {
5004                 if (leaf == root->node) {
5005                         btrfs_set_header_level(leaf, 0);
5006                 } else {
5007                         btrfs_set_path_blocking(path);
5008                         clean_tree_block(trans, root, leaf);
5009                         btrfs_del_leaf(trans, root, path, leaf);
5010                 }
5011         } else {
5012                 int used = leaf_space_used(leaf, 0, nritems);
5013                 if (slot == 0) {
5014                         struct btrfs_disk_key disk_key;
5015
5016                         btrfs_item_key(leaf, &disk_key, 0);
5017                         fixup_low_keys(root, path, &disk_key, 1);
5018                 }
5019
5020                 /* delete the leaf if it is mostly empty */
5021                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5022                         /* push_leaf_left fixes the path.
5023                          * make sure the path still points to our leaf
5024                          * for possible call to del_ptr below
5025                          */
5026                         slot = path->slots[1];
5027                         extent_buffer_get(leaf);
5028
5029                         btrfs_set_path_blocking(path);
5030                         wret = push_leaf_left(trans, root, path, 1, 1,
5031                                               1, (u32)-1);
5032                         if (wret < 0 && wret != -ENOSPC)
5033                                 ret = wret;
5034
5035                         if (path->nodes[0] == leaf &&
5036                             btrfs_header_nritems(leaf)) {
5037                                 wret = push_leaf_right(trans, root, path, 1,
5038                                                        1, 1, 0);
5039                                 if (wret < 0 && wret != -ENOSPC)
5040                                         ret = wret;
5041                         }
5042
5043                         if (btrfs_header_nritems(leaf) == 0) {
5044                                 path->slots[1] = slot;
5045                                 btrfs_del_leaf(trans, root, path, leaf);
5046                                 free_extent_buffer(leaf);
5047                                 ret = 0;
5048                         } else {
5049                                 /* if we're still in the path, make sure
5050                                  * we're dirty.  Otherwise, one of the
5051                                  * push_leaf functions must have already
5052                                  * dirtied this buffer
5053                                  */
5054                                 if (path->nodes[0] == leaf)
5055                                         btrfs_mark_buffer_dirty(leaf);
5056                                 free_extent_buffer(leaf);
5057                         }
5058                 } else {
5059                         btrfs_mark_buffer_dirty(leaf);
5060                 }
5061         }
5062         return ret;
5063 }
5064
5065 /*
5066  * search the tree again to find a leaf with lesser keys
5067  * returns 0 if it found something or 1 if there are no lesser leaves.
5068  * returns < 0 on io errors.
5069  *
5070  * This may release the path, and so you may lose any locks held at the
5071  * time you call it.
5072  */
5073 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5074 {
5075         struct btrfs_key key;
5076         struct btrfs_disk_key found_key;
5077         int ret;
5078
5079         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5080
5081         if (key.offset > 0) {
5082                 key.offset--;
5083         } else if (key.type > 0) {
5084                 key.type--;
5085                 key.offset = (u64)-1;
5086         } else if (key.objectid > 0) {
5087                 key.objectid--;
5088                 key.type = (u8)-1;
5089                 key.offset = (u64)-1;
5090         } else {
5091                 return 1;
5092         }
5093
5094         btrfs_release_path(path);
5095         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5096         if (ret < 0)
5097                 return ret;
5098         btrfs_item_key(path->nodes[0], &found_key, 0);
5099         ret = comp_keys(&found_key, &key);
5100         if (ret < 0)
5101                 return 0;
5102         return 1;
5103 }
5104
5105 /*
5106  * A helper function to walk down the tree starting at min_key, and looking
5107  * for nodes or leaves that are have a minimum transaction id.
5108  * This is used by the btree defrag code, and tree logging
5109  *
5110  * This does not cow, but it does stuff the starting key it finds back
5111  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5112  * key and get a writable path.
5113  *
5114  * This does lock as it descends, and path->keep_locks should be set
5115  * to 1 by the caller.
5116  *
5117  * This honors path->lowest_level to prevent descent past a given level
5118  * of the tree.
5119  *
5120  * min_trans indicates the oldest transaction that you are interested
5121  * in walking through.  Any nodes or leaves older than min_trans are
5122  * skipped over (without reading them).
5123  *
5124  * returns zero if something useful was found, < 0 on error and 1 if there
5125  * was nothing in the tree that matched the search criteria.
5126  */
5127 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5128                          struct btrfs_path *path,
5129                          u64 min_trans)
5130 {
5131         struct extent_buffer *cur;
5132         struct btrfs_key found_key;
5133         int slot;
5134         int sret;
5135         u32 nritems;
5136         int level;
5137         int ret = 1;
5138
5139         WARN_ON(!path->keep_locks);
5140 again:
5141         cur = btrfs_read_lock_root_node(root);
5142         level = btrfs_header_level(cur);
5143         WARN_ON(path->nodes[level]);
5144         path->nodes[level] = cur;
5145         path->locks[level] = BTRFS_READ_LOCK;
5146
5147         if (btrfs_header_generation(cur) < min_trans) {
5148                 ret = 1;
5149                 goto out;
5150         }
5151         while (1) {
5152                 nritems = btrfs_header_nritems(cur);
5153                 level = btrfs_header_level(cur);
5154                 sret = bin_search(cur, min_key, level, &slot);
5155
5156                 /* at the lowest level, we're done, setup the path and exit */
5157                 if (level == path->lowest_level) {
5158                         if (slot >= nritems)
5159                                 goto find_next_key;
5160                         ret = 0;
5161                         path->slots[level] = slot;
5162                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5163                         goto out;
5164                 }
5165                 if (sret && slot > 0)
5166                         slot--;
5167                 /*
5168                  * check this node pointer against the min_trans parameters.
5169                  * If it is too old, old, skip to the next one.
5170                  */
5171                 while (slot < nritems) {
5172                         u64 gen;
5173
5174                         gen = btrfs_node_ptr_generation(cur, slot);
5175                         if (gen < min_trans) {
5176                                 slot++;
5177                                 continue;
5178                         }
5179                         break;
5180                 }
5181 find_next_key:
5182                 /*
5183                  * we didn't find a candidate key in this node, walk forward
5184                  * and find another one
5185                  */
5186                 if (slot >= nritems) {
5187                         path->slots[level] = slot;
5188                         btrfs_set_path_blocking(path);
5189                         sret = btrfs_find_next_key(root, path, min_key, level,
5190                                                   min_trans);
5191                         if (sret == 0) {
5192                                 btrfs_release_path(path);
5193                                 goto again;
5194                         } else {
5195                                 goto out;
5196                         }
5197                 }
5198                 /* save our key for returning back */
5199                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5200                 path->slots[level] = slot;
5201                 if (level == path->lowest_level) {
5202                         ret = 0;
5203                         unlock_up(path, level, 1, 0, NULL);
5204                         goto out;
5205                 }
5206                 btrfs_set_path_blocking(path);
5207                 cur = read_node_slot(root, cur, slot);
5208                 BUG_ON(!cur); /* -ENOMEM */
5209
5210                 btrfs_tree_read_lock(cur);
5211
5212                 path->locks[level - 1] = BTRFS_READ_LOCK;
5213                 path->nodes[level - 1] = cur;
5214                 unlock_up(path, level, 1, 0, NULL);
5215                 btrfs_clear_path_blocking(path, NULL, 0);
5216         }
5217 out:
5218         if (ret == 0)
5219                 memcpy(min_key, &found_key, sizeof(found_key));
5220         btrfs_set_path_blocking(path);
5221         return ret;
5222 }
5223
5224 static void tree_move_down(struct btrfs_root *root,
5225                            struct btrfs_path *path,
5226                            int *level, int root_level)
5227 {
5228         BUG_ON(*level == 0);
5229         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5230                                         path->slots[*level]);
5231         path->slots[*level - 1] = 0;
5232         (*level)--;
5233 }
5234
5235 static int tree_move_next_or_upnext(struct btrfs_root *root,
5236                                     struct btrfs_path *path,
5237                                     int *level, int root_level)
5238 {
5239         int ret = 0;
5240         int nritems;
5241         nritems = btrfs_header_nritems(path->nodes[*level]);
5242
5243         path->slots[*level]++;
5244
5245         while (path->slots[*level] >= nritems) {
5246                 if (*level == root_level)
5247                         return -1;
5248
5249                 /* move upnext */
5250                 path->slots[*level] = 0;
5251                 free_extent_buffer(path->nodes[*level]);
5252                 path->nodes[*level] = NULL;
5253                 (*level)++;
5254                 path->slots[*level]++;
5255
5256                 nritems = btrfs_header_nritems(path->nodes[*level]);
5257                 ret = 1;
5258         }
5259         return ret;
5260 }
5261
5262 /*
5263  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5264  * or down.
5265  */
5266 static int tree_advance(struct btrfs_root *root,
5267                         struct btrfs_path *path,
5268                         int *level, int root_level,
5269                         int allow_down,
5270                         struct btrfs_key *key)
5271 {
5272         int ret;
5273
5274         if (*level == 0 || !allow_down) {
5275                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5276         } else {
5277                 tree_move_down(root, path, level, root_level);
5278                 ret = 0;
5279         }
5280         if (ret >= 0) {
5281                 if (*level == 0)
5282                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5283                                         path->slots[*level]);
5284                 else
5285                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5286                                         path->slots[*level]);
5287         }
5288         return ret;
5289 }
5290
5291 static int tree_compare_item(struct btrfs_root *left_root,
5292                              struct btrfs_path *left_path,
5293                              struct btrfs_path *right_path,
5294                              char *tmp_buf)
5295 {
5296         int cmp;
5297         int len1, len2;
5298         unsigned long off1, off2;
5299
5300         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5301         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5302         if (len1 != len2)
5303                 return 1;
5304
5305         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5306         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5307                                 right_path->slots[0]);
5308
5309         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5310
5311         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5312         if (cmp)
5313                 return 1;
5314         return 0;
5315 }
5316
5317 #define ADVANCE 1
5318 #define ADVANCE_ONLY_NEXT -1
5319
5320 /*
5321  * This function compares two trees and calls the provided callback for
5322  * every changed/new/deleted item it finds.
5323  * If shared tree blocks are encountered, whole subtrees are skipped, making
5324  * the compare pretty fast on snapshotted subvolumes.
5325  *
5326  * This currently works on commit roots only. As commit roots are read only,
5327  * we don't do any locking. The commit roots are protected with transactions.
5328  * Transactions are ended and rejoined when a commit is tried in between.
5329  *
5330  * This function checks for modifications done to the trees while comparing.
5331  * If it detects a change, it aborts immediately.
5332  */
5333 int btrfs_compare_trees(struct btrfs_root *left_root,
5334                         struct btrfs_root *right_root,
5335                         btrfs_changed_cb_t changed_cb, void *ctx)
5336 {
5337         int ret;
5338         int cmp;
5339         struct btrfs_path *left_path = NULL;
5340         struct btrfs_path *right_path = NULL;
5341         struct btrfs_key left_key;
5342         struct btrfs_key right_key;
5343         char *tmp_buf = NULL;
5344         int left_root_level;
5345         int right_root_level;
5346         int left_level;
5347         int right_level;
5348         int left_end_reached;
5349         int right_end_reached;
5350         int advance_left;
5351         int advance_right;
5352         u64 left_blockptr;
5353         u64 right_blockptr;
5354         u64 left_gen;
5355         u64 right_gen;
5356
5357         left_path = btrfs_alloc_path();
5358         if (!left_path) {
5359                 ret = -ENOMEM;
5360                 goto out;
5361         }
5362         right_path = btrfs_alloc_path();
5363         if (!right_path) {
5364                 ret = -ENOMEM;
5365                 goto out;
5366         }
5367
5368         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5369         if (!tmp_buf) {
5370                 ret = -ENOMEM;
5371                 goto out;
5372         }
5373
5374         left_path->search_commit_root = 1;
5375         left_path->skip_locking = 1;
5376         right_path->search_commit_root = 1;
5377         right_path->skip_locking = 1;
5378
5379         /*
5380          * Strategy: Go to the first items of both trees. Then do
5381          *
5382          * If both trees are at level 0
5383          *   Compare keys of current items
5384          *     If left < right treat left item as new, advance left tree
5385          *       and repeat
5386          *     If left > right treat right item as deleted, advance right tree
5387          *       and repeat
5388          *     If left == right do deep compare of items, treat as changed if
5389          *       needed, advance both trees and repeat
5390          * If both trees are at the same level but not at level 0
5391          *   Compare keys of current nodes/leafs
5392          *     If left < right advance left tree and repeat
5393          *     If left > right advance right tree and repeat
5394          *     If left == right compare blockptrs of the next nodes/leafs
5395          *       If they match advance both trees but stay at the same level
5396          *         and repeat
5397          *       If they don't match advance both trees while allowing to go
5398          *         deeper and repeat
5399          * If tree levels are different
5400          *   Advance the tree that needs it and repeat
5401          *
5402          * Advancing a tree means:
5403          *   If we are at level 0, try to go to the next slot. If that's not
5404          *   possible, go one level up and repeat. Stop when we found a level
5405          *   where we could go to the next slot. We may at this point be on a
5406          *   node or a leaf.
5407          *
5408          *   If we are not at level 0 and not on shared tree blocks, go one
5409          *   level deeper.
5410          *
5411          *   If we are not at level 0 and on shared tree blocks, go one slot to
5412          *   the right if possible or go up and right.
5413          */
5414
5415         down_read(&left_root->fs_info->commit_root_sem);
5416         left_level = btrfs_header_level(left_root->commit_root);
5417         left_root_level = left_level;
5418         left_path->nodes[left_level] = left_root->commit_root;
5419         extent_buffer_get(left_path->nodes[left_level]);
5420
5421         right_level = btrfs_header_level(right_root->commit_root);
5422         right_root_level = right_level;
5423         right_path->nodes[right_level] = right_root->commit_root;
5424         extent_buffer_get(right_path->nodes[right_level]);
5425         up_read(&left_root->fs_info->commit_root_sem);
5426
5427         if (left_level == 0)
5428                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429                                 &left_key, left_path->slots[left_level]);
5430         else
5431                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432                                 &left_key, left_path->slots[left_level]);
5433         if (right_level == 0)
5434                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435                                 &right_key, right_path->slots[right_level]);
5436         else
5437                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438                                 &right_key, right_path->slots[right_level]);
5439
5440         left_end_reached = right_end_reached = 0;
5441         advance_left = advance_right = 0;
5442
5443         while (1) {
5444                 if (advance_left && !left_end_reached) {
5445                         ret = tree_advance(left_root, left_path, &left_level,
5446                                         left_root_level,
5447                                         advance_left != ADVANCE_ONLY_NEXT,
5448                                         &left_key);
5449                         if (ret < 0)
5450                                 left_end_reached = ADVANCE;
5451                         advance_left = 0;
5452                 }
5453                 if (advance_right && !right_end_reached) {
5454                         ret = tree_advance(right_root, right_path, &right_level,
5455                                         right_root_level,
5456                                         advance_right != ADVANCE_ONLY_NEXT,
5457                                         &right_key);
5458                         if (ret < 0)
5459                                 right_end_reached = ADVANCE;
5460                         advance_right = 0;
5461                 }
5462
5463                 if (left_end_reached && right_end_reached) {
5464                         ret = 0;
5465                         goto out;
5466                 } else if (left_end_reached) {
5467                         if (right_level == 0) {
5468                                 ret = changed_cb(left_root, right_root,
5469                                                 left_path, right_path,
5470                                                 &right_key,
5471                                                 BTRFS_COMPARE_TREE_DELETED,
5472                                                 ctx);
5473                                 if (ret < 0)
5474                                         goto out;
5475                         }
5476                         advance_right = ADVANCE;
5477                         continue;
5478                 } else if (right_end_reached) {
5479                         if (left_level == 0) {
5480                                 ret = changed_cb(left_root, right_root,
5481                                                 left_path, right_path,
5482                                                 &left_key,
5483                                                 BTRFS_COMPARE_TREE_NEW,
5484                                                 ctx);
5485                                 if (ret < 0)
5486                                         goto out;
5487                         }
5488                         advance_left = ADVANCE;
5489                         continue;
5490                 }
5491
5492                 if (left_level == 0 && right_level == 0) {
5493                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494                         if (cmp < 0) {
5495                                 ret = changed_cb(left_root, right_root,
5496                                                 left_path, right_path,
5497                                                 &left_key,
5498                                                 BTRFS_COMPARE_TREE_NEW,
5499                                                 ctx);
5500                                 if (ret < 0)
5501                                         goto out;
5502                                 advance_left = ADVANCE;
5503                         } else if (cmp > 0) {
5504                                 ret = changed_cb(left_root, right_root,
5505                                                 left_path, right_path,
5506                                                 &right_key,
5507                                                 BTRFS_COMPARE_TREE_DELETED,
5508                                                 ctx);
5509                                 if (ret < 0)
5510                                         goto out;
5511                                 advance_right = ADVANCE;
5512                         } else {
5513                                 enum btrfs_compare_tree_result cmp;
5514
5515                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516                                 ret = tree_compare_item(left_root, left_path,
5517                                                 right_path, tmp_buf);
5518                                 if (ret)
5519                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5520                                 else
5521                                         cmp = BTRFS_COMPARE_TREE_SAME;
5522                                 ret = changed_cb(left_root, right_root,
5523                                                  left_path, right_path,
5524                                                  &left_key, cmp, ctx);
5525                                 if (ret < 0)
5526                                         goto out;
5527                                 advance_left = ADVANCE;
5528                                 advance_right = ADVANCE;
5529                         }
5530                 } else if (left_level == right_level) {
5531                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532                         if (cmp < 0) {
5533                                 advance_left = ADVANCE;
5534                         } else if (cmp > 0) {
5535                                 advance_right = ADVANCE;
5536                         } else {
5537                                 left_blockptr = btrfs_node_blockptr(
5538                                                 left_path->nodes[left_level],
5539                                                 left_path->slots[left_level]);
5540                                 right_blockptr = btrfs_node_blockptr(
5541                                                 right_path->nodes[right_level],
5542                                                 right_path->slots[right_level]);
5543                                 left_gen = btrfs_node_ptr_generation(
5544                                                 left_path->nodes[left_level],
5545                                                 left_path->slots[left_level]);
5546                                 right_gen = btrfs_node_ptr_generation(
5547                                                 right_path->nodes[right_level],
5548                                                 right_path->slots[right_level]);
5549                                 if (left_blockptr == right_blockptr &&
5550                                     left_gen == right_gen) {
5551                                         /*
5552                                          * As we're on a shared block, don't
5553                                          * allow to go deeper.
5554                                          */
5555                                         advance_left = ADVANCE_ONLY_NEXT;
5556                                         advance_right = ADVANCE_ONLY_NEXT;
5557                                 } else {
5558                                         advance_left = ADVANCE;
5559                                         advance_right = ADVANCE;
5560                                 }
5561                         }
5562                 } else if (left_level < right_level) {
5563                         advance_right = ADVANCE;
5564                 } else {
5565                         advance_left = ADVANCE;
5566                 }
5567         }
5568
5569 out:
5570         btrfs_free_path(left_path);
5571         btrfs_free_path(right_path);
5572         kfree(tmp_buf);
5573         return ret;
5574 }
5575
5576 /*
5577  * this is similar to btrfs_next_leaf, but does not try to preserve
5578  * and fixup the path.  It looks for and returns the next key in the
5579  * tree based on the current path and the min_trans parameters.
5580  *
5581  * 0 is returned if another key is found, < 0 if there are any errors
5582  * and 1 is returned if there are no higher keys in the tree
5583  *
5584  * path->keep_locks should be set to 1 on the search made before
5585  * calling this function.
5586  */
5587 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588                         struct btrfs_key *key, int level, u64 min_trans)
5589 {
5590         int slot;
5591         struct extent_buffer *c;
5592
5593         WARN_ON(!path->keep_locks);
5594         while (level < BTRFS_MAX_LEVEL) {
5595                 if (!path->nodes[level])
5596                         return 1;
5597
5598                 slot = path->slots[level] + 1;
5599                 c = path->nodes[level];
5600 next:
5601                 if (slot >= btrfs_header_nritems(c)) {
5602                         int ret;
5603                         int orig_lowest;
5604                         struct btrfs_key cur_key;
5605                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5606                             !path->nodes[level + 1])
5607                                 return 1;
5608
5609                         if (path->locks[level + 1]) {
5610                                 level++;
5611                                 continue;
5612                         }
5613
5614                         slot = btrfs_header_nritems(c) - 1;
5615                         if (level == 0)
5616                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5617                         else
5618                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5619
5620                         orig_lowest = path->lowest_level;
5621                         btrfs_release_path(path);
5622                         path->lowest_level = level;
5623                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624                                                 0, 0);
5625                         path->lowest_level = orig_lowest;
5626                         if (ret < 0)
5627                                 return ret;
5628
5629                         c = path->nodes[level];
5630                         slot = path->slots[level];
5631                         if (ret == 0)
5632                                 slot++;
5633                         goto next;
5634                 }
5635
5636                 if (level == 0)
5637                         btrfs_item_key_to_cpu(c, key, slot);
5638                 else {
5639                         u64 gen = btrfs_node_ptr_generation(c, slot);
5640
5641                         if (gen < min_trans) {
5642                                 slot++;
5643                                 goto next;
5644                         }
5645                         btrfs_node_key_to_cpu(c, key, slot);
5646                 }
5647                 return 0;
5648         }
5649         return 1;
5650 }
5651
5652 /*
5653  * search the tree again to find a leaf with greater keys
5654  * returns 0 if it found something or 1 if there are no greater leaves.
5655  * returns < 0 on io errors.
5656  */
5657 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658 {
5659         return btrfs_next_old_leaf(root, path, 0);
5660 }
5661
5662 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663                         u64 time_seq)
5664 {
5665         int slot;
5666         int level;
5667         struct extent_buffer *c;
5668         struct extent_buffer *next;
5669         struct btrfs_key key;
5670         u32 nritems;
5671         int ret;
5672         int old_spinning = path->leave_spinning;
5673         int next_rw_lock = 0;
5674
5675         nritems = btrfs_header_nritems(path->nodes[0]);
5676         if (nritems == 0)
5677                 return 1;
5678
5679         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680 again:
5681         level = 1;
5682         next = NULL;
5683         next_rw_lock = 0;
5684         btrfs_release_path(path);
5685
5686         path->keep_locks = 1;
5687         path->leave_spinning = 1;
5688
5689         if (time_seq)
5690                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691         else
5692                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693         path->keep_locks = 0;
5694
5695         if (ret < 0)
5696                 return ret;
5697
5698         nritems = btrfs_header_nritems(path->nodes[0]);
5699         /*
5700          * by releasing the path above we dropped all our locks.  A balance
5701          * could have added more items next to the key that used to be
5702          * at the very end of the block.  So, check again here and
5703          * advance the path if there are now more items available.
5704          */
5705         if (nritems > 0 && path->slots[0] < nritems - 1) {
5706                 if (ret == 0)
5707                         path->slots[0]++;
5708                 ret = 0;
5709                 goto done;
5710         }
5711
5712         while (level < BTRFS_MAX_LEVEL) {
5713                 if (!path->nodes[level]) {
5714                         ret = 1;
5715                         goto done;
5716                 }
5717
5718                 slot = path->slots[level] + 1;
5719                 c = path->nodes[level];
5720                 if (slot >= btrfs_header_nritems(c)) {
5721                         level++;
5722                         if (level == BTRFS_MAX_LEVEL) {
5723                                 ret = 1;
5724                                 goto done;
5725                         }
5726                         continue;
5727                 }
5728
5729                 if (next) {
5730                         btrfs_tree_unlock_rw(next, next_rw_lock);
5731                         free_extent_buffer(next);
5732                 }
5733
5734                 next = c;
5735                 next_rw_lock = path->locks[level];
5736                 ret = read_block_for_search(NULL, root, path, &next, level,
5737                                             slot, &key, 0);
5738                 if (ret == -EAGAIN)
5739                         goto again;
5740
5741                 if (ret < 0) {
5742                         btrfs_release_path(path);
5743                         goto done;
5744                 }
5745
5746                 if (!path->skip_locking) {
5747                         ret = btrfs_try_tree_read_lock(next);
5748                         if (!ret && time_seq) {
5749                                 /*
5750                                  * If we don't get the lock, we may be racing
5751                                  * with push_leaf_left, holding that lock while
5752                                  * itself waiting for the leaf we've currently
5753                                  * locked. To solve this situation, we give up
5754                                  * on our lock and cycle.
5755                                  */
5756                                 free_extent_buffer(next);
5757                                 btrfs_release_path(path);
5758                                 cond_resched();
5759                                 goto again;
5760                         }
5761                         if (!ret) {
5762                                 btrfs_set_path_blocking(path);
5763                                 btrfs_tree_read_lock(next);
5764                                 btrfs_clear_path_blocking(path, next,
5765                                                           BTRFS_READ_LOCK);
5766                         }
5767                         next_rw_lock = BTRFS_READ_LOCK;
5768                 }
5769                 break;
5770         }
5771         path->slots[level] = slot;
5772         while (1) {
5773                 level--;
5774                 c = path->nodes[level];
5775                 if (path->locks[level])
5776                         btrfs_tree_unlock_rw(c, path->locks[level]);
5777
5778                 free_extent_buffer(c);
5779                 path->nodes[level] = next;
5780                 path->slots[level] = 0;
5781                 if (!path->skip_locking)
5782                         path->locks[level] = next_rw_lock;
5783                 if (!level)
5784                         break;
5785
5786                 ret = read_block_for_search(NULL, root, path, &next, level,
5787                                             0, &key, 0);
5788                 if (ret == -EAGAIN)
5789                         goto again;
5790
5791                 if (ret < 0) {
5792                         btrfs_release_path(path);
5793                         goto done;
5794                 }
5795
5796                 if (!path->skip_locking) {
5797                         ret = btrfs_try_tree_read_lock(next);
5798                         if (!ret) {
5799                                 btrfs_set_path_blocking(path);
5800                                 btrfs_tree_read_lock(next);
5801                                 btrfs_clear_path_blocking(path, next,
5802                                                           BTRFS_READ_LOCK);
5803                         }
5804                         next_rw_lock = BTRFS_READ_LOCK;
5805                 }
5806         }
5807         ret = 0;
5808 done:
5809         unlock_up(path, 0, 1, 0, NULL);
5810         path->leave_spinning = old_spinning;
5811         if (!old_spinning)
5812                 btrfs_set_path_blocking(path);
5813
5814         return ret;
5815 }
5816
5817 /*
5818  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5819  * searching until it gets past min_objectid or finds an item of 'type'
5820  *
5821  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5822  */
5823 int btrfs_previous_item(struct btrfs_root *root,
5824                         struct btrfs_path *path, u64 min_objectid,
5825                         int type)
5826 {
5827         struct btrfs_key found_key;
5828         struct extent_buffer *leaf;
5829         u32 nritems;
5830         int ret;
5831
5832         while (1) {
5833                 if (path->slots[0] == 0) {
5834                         btrfs_set_path_blocking(path);
5835                         ret = btrfs_prev_leaf(root, path);
5836                         if (ret != 0)
5837                                 return ret;
5838                 } else {
5839                         path->slots[0]--;
5840                 }
5841                 leaf = path->nodes[0];
5842                 nritems = btrfs_header_nritems(leaf);
5843                 if (nritems == 0)
5844                         return 1;
5845                 if (path->slots[0] == nritems)
5846                         path->slots[0]--;
5847
5848                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5849                 if (found_key.objectid < min_objectid)
5850                         break;
5851                 if (found_key.type == type)
5852                         return 0;
5853                 if (found_key.objectid == min_objectid &&
5854                     found_key.type < type)
5855                         break;
5856         }
5857         return 1;
5858 }
5859
5860 /*
5861  * search in extent tree to find a previous Metadata/Data extent item with
5862  * min objecitd.
5863  *
5864  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5865  */
5866 int btrfs_previous_extent_item(struct btrfs_root *root,
5867                         struct btrfs_path *path, u64 min_objectid)
5868 {
5869         struct btrfs_key found_key;
5870         struct extent_buffer *leaf;
5871         u32 nritems;
5872         int ret;
5873
5874         while (1) {
5875                 if (path->slots[0] == 0) {
5876                         btrfs_set_path_blocking(path);
5877                         ret = btrfs_prev_leaf(root, path);
5878                         if (ret != 0)
5879                                 return ret;
5880                 } else {
5881                         path->slots[0]--;
5882                 }
5883                 leaf = path->nodes[0];
5884                 nritems = btrfs_header_nritems(leaf);
5885                 if (nritems == 0)
5886                         return 1;
5887                 if (path->slots[0] == nritems)
5888                         path->slots[0]--;
5889
5890                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5891                 if (found_key.objectid < min_objectid)
5892                         break;
5893                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5894                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5895                         return 0;
5896                 if (found_key.objectid == min_objectid &&
5897                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5898                         break;
5899         }
5900         return 1;
5901 }