Btrfs: add the ability to cache a pointer into the eb
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46         return path;
47 }
48
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55         int i;
56         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57                 if (!p->nodes[i] || !p->locks[i])
58                         continue;
59                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60                 if (p->locks[i] == BTRFS_READ_LOCK)
61                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64         }
65 }
66
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76                                         struct extent_buffer *held, int held_rw)
77 {
78         int i;
79
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81         /* lockdep really cares that we take all of these spinlocks
82          * in the right order.  If any of the locks in the path are not
83          * currently blocking, it is going to complain.  So, make really
84          * really sure by forcing the path to blocking before we clear
85          * the path blocking.
86          */
87         if (held) {
88                 btrfs_set_lock_blocking_rw(held, held_rw);
89                 if (held_rw == BTRFS_WRITE_LOCK)
90                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91                 else if (held_rw == BTRFS_READ_LOCK)
92                         held_rw = BTRFS_READ_LOCK_BLOCKING;
93         }
94         btrfs_set_path_blocking(p);
95 #endif
96
97         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98                 if (p->nodes[i] && p->locks[i]) {
99                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101                                 p->locks[i] = BTRFS_WRITE_LOCK;
102                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103                                 p->locks[i] = BTRFS_READ_LOCK;
104                 }
105         }
106
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108         if (held)
109                 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116         if (!p)
117                 return;
118         btrfs_release_path(p);
119         kmem_cache_free(btrfs_path_cachep, p);
120 }
121
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130         int i;
131
132         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133                 p->slots[i] = 0;
134                 if (!p->nodes[i])
135                         continue;
136                 if (p->locks[i]) {
137                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138                         p->locks[i] = 0;
139                 }
140                 free_extent_buffer(p->nodes[i]);
141                 p->nodes[i] = NULL;
142         }
143 }
144
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157         struct extent_buffer *eb;
158
159         while (1) {
160                 rcu_read_lock();
161                 eb = rcu_dereference(root->node);
162
163                 /*
164                  * RCU really hurts here, we could free up the root node because
165                  * it was cow'ed but we may not get the new root node yet so do
166                  * the inc_not_zero dance and if it doesn't work then
167                  * synchronize_rcu and try again.
168                  */
169                 if (atomic_inc_not_zero(&eb->refs)) {
170                         rcu_read_unlock();
171                         break;
172                 }
173                 rcu_read_unlock();
174                 synchronize_rcu();
175         }
176         return eb;
177 }
178
179 /* loop around taking references on and locking the root node of the
180  * tree until you end up with a lock on the root.  A locked buffer
181  * is returned, with a reference held.
182  */
183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
184 {
185         struct extent_buffer *eb;
186
187         while (1) {
188                 eb = btrfs_root_node(root);
189                 btrfs_tree_lock(eb);
190                 if (eb == root->node)
191                         break;
192                 btrfs_tree_unlock(eb);
193                 free_extent_buffer(eb);
194         }
195         return eb;
196 }
197
198 /* loop around taking references on and locking the root node of the
199  * tree until you end up with a lock on the root.  A locked buffer
200  * is returned, with a reference held.
201  */
202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
203 {
204         struct extent_buffer *eb;
205
206         while (1) {
207                 eb = btrfs_root_node(root);
208                 btrfs_tree_read_lock(eb);
209                 if (eb == root->node)
210                         break;
211                 btrfs_tree_read_unlock(eb);
212                 free_extent_buffer(eb);
213         }
214         return eb;
215 }
216
217 /* cowonly root (everything not a reference counted cow subvolume), just get
218  * put onto a simple dirty list.  transaction.c walks this to make sure they
219  * get properly updated on disk.
220  */
221 static void add_root_to_dirty_list(struct btrfs_root *root)
222 {
223         if (root->track_dirty && list_empty(&root->dirty_list)) {
224                 list_add(&root->dirty_list,
225                          &root->fs_info->dirty_cowonly_roots);
226         }
227 }
228
229 /*
230  * used by snapshot creation to make a copy of a root for a tree with
231  * a given objectid.  The buffer with the new root node is returned in
232  * cow_ret, and this func returns zero on success or a negative error code.
233  */
234 int btrfs_copy_root(struct btrfs_trans_handle *trans,
235                       struct btrfs_root *root,
236                       struct extent_buffer *buf,
237                       struct extent_buffer **cow_ret, u64 new_root_objectid)
238 {
239         struct extent_buffer *cow;
240         int ret = 0;
241         int level;
242         struct btrfs_disk_key disk_key;
243
244         WARN_ON(root->ref_cows && trans->transid !=
245                 root->fs_info->running_transaction->transid);
246         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
247
248         level = btrfs_header_level(buf);
249         if (level == 0)
250                 btrfs_item_key(buf, &disk_key, 0);
251         else
252                 btrfs_node_key(buf, &disk_key, 0);
253
254         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
255                                      new_root_objectid, &disk_key, level,
256                                      buf->start, 0, 1);
257         if (IS_ERR(cow))
258                 return PTR_ERR(cow);
259
260         copy_extent_buffer(cow, buf, 0, 0, cow->len);
261         btrfs_set_header_bytenr(cow, cow->start);
262         btrfs_set_header_generation(cow, trans->transid);
263         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
264         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
265                                      BTRFS_HEADER_FLAG_RELOC);
266         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
268         else
269                 btrfs_set_header_owner(cow, new_root_objectid);
270
271         write_extent_buffer(cow, root->fs_info->fsid,
272                             (unsigned long)btrfs_header_fsid(cow),
273                             BTRFS_FSID_SIZE);
274
275         WARN_ON(btrfs_header_generation(buf) > trans->transid);
276         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
277                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
278         else
279                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
280
281         if (ret)
282                 return ret;
283
284         btrfs_mark_buffer_dirty(cow);
285         *cow_ret = cow;
286         return 0;
287 }
288
289 /*
290  * check if the tree block can be shared by multiple trees
291  */
292 int btrfs_block_can_be_shared(struct btrfs_root *root,
293                               struct extent_buffer *buf)
294 {
295         /*
296          * Tree blocks not in refernece counted trees and tree roots
297          * are never shared. If a block was allocated after the last
298          * snapshot and the block was not allocated by tree relocation,
299          * we know the block is not shared.
300          */
301         if (root->ref_cows &&
302             buf != root->node && buf != root->commit_root &&
303             (btrfs_header_generation(buf) <=
304              btrfs_root_last_snapshot(&root->root_item) ||
305              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
306                 return 1;
307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
308         if (root->ref_cows &&
309             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
310                 return 1;
311 #endif
312         return 0;
313 }
314
315 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
316                                        struct btrfs_root *root,
317                                        struct extent_buffer *buf,
318                                        struct extent_buffer *cow,
319                                        int *last_ref)
320 {
321         u64 refs;
322         u64 owner;
323         u64 flags;
324         u64 new_flags = 0;
325         int ret;
326
327         /*
328          * Backrefs update rules:
329          *
330          * Always use full backrefs for extent pointers in tree block
331          * allocated by tree relocation.
332          *
333          * If a shared tree block is no longer referenced by its owner
334          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
335          * use full backrefs for extent pointers in tree block.
336          *
337          * If a tree block is been relocating
338          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
339          * use full backrefs for extent pointers in tree block.
340          * The reason for this is some operations (such as drop tree)
341          * are only allowed for blocks use full backrefs.
342          */
343
344         if (btrfs_block_can_be_shared(root, buf)) {
345                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
346                                                buf->len, &refs, &flags);
347                 BUG_ON(ret);
348                 BUG_ON(refs == 0);
349         } else {
350                 refs = 1;
351                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
352                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
353                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
354                 else
355                         flags = 0;
356         }
357
358         owner = btrfs_header_owner(buf);
359         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
360                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
361
362         if (refs > 1) {
363                 if ((owner == root->root_key.objectid ||
364                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
365                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
366                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
367                         BUG_ON(ret);
368
369                         if (root->root_key.objectid ==
370                             BTRFS_TREE_RELOC_OBJECTID) {
371                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
372                                 BUG_ON(ret);
373                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
374                                 BUG_ON(ret);
375                         }
376                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
377                 } else {
378
379                         if (root->root_key.objectid ==
380                             BTRFS_TREE_RELOC_OBJECTID)
381                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
382                         else
383                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
384                         BUG_ON(ret);
385                 }
386                 if (new_flags != 0) {
387                         ret = btrfs_set_disk_extent_flags(trans, root,
388                                                           buf->start,
389                                                           buf->len,
390                                                           new_flags, 0);
391                         BUG_ON(ret);
392                 }
393         } else {
394                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
395                         if (root->root_key.objectid ==
396                             BTRFS_TREE_RELOC_OBJECTID)
397                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
398                         else
399                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
400                         BUG_ON(ret);
401                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
402                         BUG_ON(ret);
403                 }
404                 clean_tree_block(trans, root, buf);
405                 *last_ref = 1;
406         }
407         return 0;
408 }
409
410 /*
411  * does the dirty work in cow of a single block.  The parent block (if
412  * supplied) is updated to point to the new cow copy.  The new buffer is marked
413  * dirty and returned locked.  If you modify the block it needs to be marked
414  * dirty again.
415  *
416  * search_start -- an allocation hint for the new block
417  *
418  * empty_size -- a hint that you plan on doing more cow.  This is the size in
419  * bytes the allocator should try to find free next to the block it returns.
420  * This is just a hint and may be ignored by the allocator.
421  */
422 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
423                              struct btrfs_root *root,
424                              struct extent_buffer *buf,
425                              struct extent_buffer *parent, int parent_slot,
426                              struct extent_buffer **cow_ret,
427                              u64 search_start, u64 empty_size)
428 {
429         struct btrfs_disk_key disk_key;
430         struct extent_buffer *cow;
431         int level;
432         int last_ref = 0;
433         int unlock_orig = 0;
434         u64 parent_start;
435
436         if (*cow_ret == buf)
437                 unlock_orig = 1;
438
439         btrfs_assert_tree_locked(buf);
440
441         WARN_ON(root->ref_cows && trans->transid !=
442                 root->fs_info->running_transaction->transid);
443         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
444
445         level = btrfs_header_level(buf);
446
447         if (level == 0)
448                 btrfs_item_key(buf, &disk_key, 0);
449         else
450                 btrfs_node_key(buf, &disk_key, 0);
451
452         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
453                 if (parent)
454                         parent_start = parent->start;
455                 else
456                         parent_start = 0;
457         } else
458                 parent_start = 0;
459
460         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
461                                      root->root_key.objectid, &disk_key,
462                                      level, search_start, empty_size, 1);
463         if (IS_ERR(cow))
464                 return PTR_ERR(cow);
465
466         /* cow is set to blocking by btrfs_init_new_buffer */
467
468         copy_extent_buffer(cow, buf, 0, 0, cow->len);
469         btrfs_set_header_bytenr(cow, cow->start);
470         btrfs_set_header_generation(cow, trans->transid);
471         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
472         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
473                                      BTRFS_HEADER_FLAG_RELOC);
474         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
475                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
476         else
477                 btrfs_set_header_owner(cow, root->root_key.objectid);
478
479         write_extent_buffer(cow, root->fs_info->fsid,
480                             (unsigned long)btrfs_header_fsid(cow),
481                             BTRFS_FSID_SIZE);
482
483         update_ref_for_cow(trans, root, buf, cow, &last_ref);
484
485         if (root->ref_cows)
486                 btrfs_reloc_cow_block(trans, root, buf, cow);
487
488         if (buf == root->node) {
489                 WARN_ON(parent && parent != buf);
490                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
491                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
492                         parent_start = buf->start;
493                 else
494                         parent_start = 0;
495
496                 extent_buffer_get(cow);
497                 rcu_assign_pointer(root->node, cow);
498
499                 btrfs_free_tree_block(trans, root, buf, parent_start,
500                                       last_ref, 1);
501                 free_extent_buffer(buf);
502                 add_root_to_dirty_list(root);
503         } else {
504                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
505                         parent_start = parent->start;
506                 else
507                         parent_start = 0;
508
509                 WARN_ON(trans->transid != btrfs_header_generation(parent));
510                 btrfs_set_node_blockptr(parent, parent_slot,
511                                         cow->start);
512                 btrfs_set_node_ptr_generation(parent, parent_slot,
513                                               trans->transid);
514                 btrfs_mark_buffer_dirty(parent);
515                 btrfs_free_tree_block(trans, root, buf, parent_start,
516                                       last_ref, 1);
517         }
518         if (unlock_orig)
519                 btrfs_tree_unlock(buf);
520         free_extent_buffer_stale(buf);
521         btrfs_mark_buffer_dirty(cow);
522         *cow_ret = cow;
523         return 0;
524 }
525
526 static inline int should_cow_block(struct btrfs_trans_handle *trans,
527                                    struct btrfs_root *root,
528                                    struct extent_buffer *buf)
529 {
530         /* ensure we can see the force_cow */
531         smp_rmb();
532
533         /*
534          * We do not need to cow a block if
535          * 1) this block is not created or changed in this transaction;
536          * 2) this block does not belong to TREE_RELOC tree;
537          * 3) the root is not forced COW.
538          *
539          * What is forced COW:
540          *    when we create snapshot during commiting the transaction,
541          *    after we've finished coping src root, we must COW the shared
542          *    block to ensure the metadata consistency.
543          */
544         if (btrfs_header_generation(buf) == trans->transid &&
545             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
546             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
547               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
548             !root->force_cow)
549                 return 0;
550         return 1;
551 }
552
553 /*
554  * cows a single block, see __btrfs_cow_block for the real work.
555  * This version of it has extra checks so that a block isn't cow'd more than
556  * once per transaction, as long as it hasn't been written yet
557  */
558 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
559                     struct btrfs_root *root, struct extent_buffer *buf,
560                     struct extent_buffer *parent, int parent_slot,
561                     struct extent_buffer **cow_ret)
562 {
563         u64 search_start;
564         int ret;
565
566         if (trans->transaction != root->fs_info->running_transaction) {
567                 printk(KERN_CRIT "trans %llu running %llu\n",
568                        (unsigned long long)trans->transid,
569                        (unsigned long long)
570                        root->fs_info->running_transaction->transid);
571                 WARN_ON(1);
572         }
573         if (trans->transid != root->fs_info->generation) {
574                 printk(KERN_CRIT "trans %llu running %llu\n",
575                        (unsigned long long)trans->transid,
576                        (unsigned long long)root->fs_info->generation);
577                 WARN_ON(1);
578         }
579
580         if (!should_cow_block(trans, root, buf)) {
581                 *cow_ret = buf;
582                 return 0;
583         }
584
585         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
586
587         if (parent)
588                 btrfs_set_lock_blocking(parent);
589         btrfs_set_lock_blocking(buf);
590
591         ret = __btrfs_cow_block(trans, root, buf, parent,
592                                  parent_slot, cow_ret, search_start, 0);
593
594         trace_btrfs_cow_block(root, buf, *cow_ret);
595
596         return ret;
597 }
598
599 /*
600  * helper function for defrag to decide if two blocks pointed to by a
601  * node are actually close by
602  */
603 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
604 {
605         if (blocknr < other && other - (blocknr + blocksize) < 32768)
606                 return 1;
607         if (blocknr > other && blocknr - (other + blocksize) < 32768)
608                 return 1;
609         return 0;
610 }
611
612 /*
613  * compare two keys in a memcmp fashion
614  */
615 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
616 {
617         struct btrfs_key k1;
618
619         btrfs_disk_key_to_cpu(&k1, disk);
620
621         return btrfs_comp_cpu_keys(&k1, k2);
622 }
623
624 /*
625  * same as comp_keys only with two btrfs_key's
626  */
627 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
628 {
629         if (k1->objectid > k2->objectid)
630                 return 1;
631         if (k1->objectid < k2->objectid)
632                 return -1;
633         if (k1->type > k2->type)
634                 return 1;
635         if (k1->type < k2->type)
636                 return -1;
637         if (k1->offset > k2->offset)
638                 return 1;
639         if (k1->offset < k2->offset)
640                 return -1;
641         return 0;
642 }
643
644 /*
645  * this is used by the defrag code to go through all the
646  * leaves pointed to by a node and reallocate them so that
647  * disk order is close to key order
648  */
649 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
650                        struct btrfs_root *root, struct extent_buffer *parent,
651                        int start_slot, int cache_only, u64 *last_ret,
652                        struct btrfs_key *progress)
653 {
654         struct extent_buffer *cur;
655         u64 blocknr;
656         u64 gen;
657         u64 search_start = *last_ret;
658         u64 last_block = 0;
659         u64 other;
660         u32 parent_nritems;
661         int end_slot;
662         int i;
663         int err = 0;
664         int parent_level;
665         int uptodate;
666         u32 blocksize;
667         int progress_passed = 0;
668         struct btrfs_disk_key disk_key;
669
670         parent_level = btrfs_header_level(parent);
671         if (cache_only && parent_level != 1)
672                 return 0;
673
674         if (trans->transaction != root->fs_info->running_transaction)
675                 WARN_ON(1);
676         if (trans->transid != root->fs_info->generation)
677                 WARN_ON(1);
678
679         parent_nritems = btrfs_header_nritems(parent);
680         blocksize = btrfs_level_size(root, parent_level - 1);
681         end_slot = parent_nritems;
682
683         if (parent_nritems == 1)
684                 return 0;
685
686         btrfs_set_lock_blocking(parent);
687
688         for (i = start_slot; i < end_slot; i++) {
689                 int close = 1;
690
691                 btrfs_node_key(parent, &disk_key, i);
692                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
693                         continue;
694
695                 progress_passed = 1;
696                 blocknr = btrfs_node_blockptr(parent, i);
697                 gen = btrfs_node_ptr_generation(parent, i);
698                 if (last_block == 0)
699                         last_block = blocknr;
700
701                 if (i > 0) {
702                         other = btrfs_node_blockptr(parent, i - 1);
703                         close = close_blocks(blocknr, other, blocksize);
704                 }
705                 if (!close && i < end_slot - 2) {
706                         other = btrfs_node_blockptr(parent, i + 1);
707                         close = close_blocks(blocknr, other, blocksize);
708                 }
709                 if (close) {
710                         last_block = blocknr;
711                         continue;
712                 }
713
714                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
715                 if (cur)
716                         uptodate = btrfs_buffer_uptodate(cur, gen);
717                 else
718                         uptodate = 0;
719                 if (!cur || !uptodate) {
720                         if (cache_only) {
721                                 free_extent_buffer(cur);
722                                 continue;
723                         }
724                         if (!cur) {
725                                 cur = read_tree_block(root, blocknr,
726                                                          blocksize, gen);
727                                 if (!cur)
728                                         return -EIO;
729                         } else if (!uptodate) {
730                                 btrfs_read_buffer(cur, gen);
731                         }
732                 }
733                 if (search_start == 0)
734                         search_start = last_block;
735
736                 btrfs_tree_lock(cur);
737                 btrfs_set_lock_blocking(cur);
738                 err = __btrfs_cow_block(trans, root, cur, parent, i,
739                                         &cur, search_start,
740                                         min(16 * blocksize,
741                                             (end_slot - i) * blocksize));
742                 if (err) {
743                         btrfs_tree_unlock(cur);
744                         free_extent_buffer(cur);
745                         break;
746                 }
747                 search_start = cur->start;
748                 last_block = cur->start;
749                 *last_ret = search_start;
750                 btrfs_tree_unlock(cur);
751                 free_extent_buffer(cur);
752         }
753         return err;
754 }
755
756 /*
757  * The leaf data grows from end-to-front in the node.
758  * this returns the address of the start of the last item,
759  * which is the stop of the leaf data stack
760  */
761 static inline unsigned int leaf_data_end(struct btrfs_root *root,
762                                          struct extent_buffer *leaf)
763 {
764         u32 nr = btrfs_header_nritems(leaf);
765         if (nr == 0)
766                 return BTRFS_LEAF_DATA_SIZE(root);
767         return btrfs_item_offset_nr(leaf, nr - 1);
768 }
769
770
771 /*
772  * search for key in the extent_buffer.  The items start at offset p,
773  * and they are item_size apart.  There are 'max' items in p.
774  *
775  * the slot in the array is returned via slot, and it points to
776  * the place where you would insert key if it is not found in
777  * the array.
778  *
779  * slot may point to max if the key is bigger than all of the keys
780  */
781 static noinline int generic_bin_search(struct extent_buffer *eb,
782                                        unsigned long p,
783                                        int item_size, struct btrfs_key *key,
784                                        int max, int *slot)
785 {
786         int low = 0;
787         int high = max;
788         int mid;
789         int ret;
790         struct btrfs_disk_key *tmp = NULL;
791         struct btrfs_disk_key unaligned;
792         unsigned long offset;
793         char *kaddr = NULL;
794         unsigned long map_start = 0;
795         unsigned long map_len = 0;
796         int err;
797
798         while (low < high) {
799                 mid = (low + high) / 2;
800                 offset = p + mid * item_size;
801
802                 if (!kaddr || offset < map_start ||
803                     (offset + sizeof(struct btrfs_disk_key)) >
804                     map_start + map_len) {
805
806                         err = map_private_extent_buffer(eb, offset,
807                                                 sizeof(struct btrfs_disk_key),
808                                                 &kaddr, &map_start, &map_len);
809
810                         if (!err) {
811                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
812                                                         map_start);
813                         } else {
814                                 read_extent_buffer(eb, &unaligned,
815                                                    offset, sizeof(unaligned));
816                                 tmp = &unaligned;
817                         }
818
819                 } else {
820                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
821                                                         map_start);
822                 }
823                 ret = comp_keys(tmp, key);
824
825                 if (ret < 0)
826                         low = mid + 1;
827                 else if (ret > 0)
828                         high = mid;
829                 else {
830                         *slot = mid;
831                         return 0;
832                 }
833         }
834         *slot = low;
835         return 1;
836 }
837
838 /*
839  * simple bin_search frontend that does the right thing for
840  * leaves vs nodes
841  */
842 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
843                       int level, int *slot)
844 {
845         if (level == 0) {
846                 return generic_bin_search(eb,
847                                           offsetof(struct btrfs_leaf, items),
848                                           sizeof(struct btrfs_item),
849                                           key, btrfs_header_nritems(eb),
850                                           slot);
851         } else {
852                 return generic_bin_search(eb,
853                                           offsetof(struct btrfs_node, ptrs),
854                                           sizeof(struct btrfs_key_ptr),
855                                           key, btrfs_header_nritems(eb),
856                                           slot);
857         }
858         return -1;
859 }
860
861 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
862                      int level, int *slot)
863 {
864         return bin_search(eb, key, level, slot);
865 }
866
867 static void root_add_used(struct btrfs_root *root, u32 size)
868 {
869         spin_lock(&root->accounting_lock);
870         btrfs_set_root_used(&root->root_item,
871                             btrfs_root_used(&root->root_item) + size);
872         spin_unlock(&root->accounting_lock);
873 }
874
875 static void root_sub_used(struct btrfs_root *root, u32 size)
876 {
877         spin_lock(&root->accounting_lock);
878         btrfs_set_root_used(&root->root_item,
879                             btrfs_root_used(&root->root_item) - size);
880         spin_unlock(&root->accounting_lock);
881 }
882
883 /* given a node and slot number, this reads the blocks it points to.  The
884  * extent buffer is returned with a reference taken (but unlocked).
885  * NULL is returned on error.
886  */
887 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
888                                    struct extent_buffer *parent, int slot)
889 {
890         int level = btrfs_header_level(parent);
891         if (slot < 0)
892                 return NULL;
893         if (slot >= btrfs_header_nritems(parent))
894                 return NULL;
895
896         BUG_ON(level == 0);
897
898         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
899                        btrfs_level_size(root, level - 1),
900                        btrfs_node_ptr_generation(parent, slot));
901 }
902
903 /*
904  * node level balancing, used to make sure nodes are in proper order for
905  * item deletion.  We balance from the top down, so we have to make sure
906  * that a deletion won't leave an node completely empty later on.
907  */
908 static noinline int balance_level(struct btrfs_trans_handle *trans,
909                          struct btrfs_root *root,
910                          struct btrfs_path *path, int level)
911 {
912         struct extent_buffer *right = NULL;
913         struct extent_buffer *mid;
914         struct extent_buffer *left = NULL;
915         struct extent_buffer *parent = NULL;
916         int ret = 0;
917         int wret;
918         int pslot;
919         int orig_slot = path->slots[level];
920         u64 orig_ptr;
921
922         if (level == 0)
923                 return 0;
924
925         mid = path->nodes[level];
926
927         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
928                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
929         WARN_ON(btrfs_header_generation(mid) != trans->transid);
930
931         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
932
933         if (level < BTRFS_MAX_LEVEL - 1) {
934                 parent = path->nodes[level + 1];
935                 pslot = path->slots[level + 1];
936         }
937
938         /*
939          * deal with the case where there is only one pointer in the root
940          * by promoting the node below to a root
941          */
942         if (!parent) {
943                 struct extent_buffer *child;
944
945                 if (btrfs_header_nritems(mid) != 1)
946                         return 0;
947
948                 /* promote the child to a root */
949                 child = read_node_slot(root, mid, 0);
950                 BUG_ON(!child);
951                 btrfs_tree_lock(child);
952                 btrfs_set_lock_blocking(child);
953                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
954                 if (ret) {
955                         btrfs_tree_unlock(child);
956                         free_extent_buffer(child);
957                         goto enospc;
958                 }
959
960                 rcu_assign_pointer(root->node, child);
961
962                 add_root_to_dirty_list(root);
963                 btrfs_tree_unlock(child);
964
965                 path->locks[level] = 0;
966                 path->nodes[level] = NULL;
967                 clean_tree_block(trans, root, mid);
968                 btrfs_tree_unlock(mid);
969                 /* once for the path */
970                 free_extent_buffer(mid);
971
972                 root_sub_used(root, mid->len);
973                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
974                 /* once for the root ptr */
975                 free_extent_buffer_stale(mid);
976                 return 0;
977         }
978         if (btrfs_header_nritems(mid) >
979             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
980                 return 0;
981
982         btrfs_header_nritems(mid);
983
984         left = read_node_slot(root, parent, pslot - 1);
985         if (left) {
986                 btrfs_tree_lock(left);
987                 btrfs_set_lock_blocking(left);
988                 wret = btrfs_cow_block(trans, root, left,
989                                        parent, pslot - 1, &left);
990                 if (wret) {
991                         ret = wret;
992                         goto enospc;
993                 }
994         }
995         right = read_node_slot(root, parent, pslot + 1);
996         if (right) {
997                 btrfs_tree_lock(right);
998                 btrfs_set_lock_blocking(right);
999                 wret = btrfs_cow_block(trans, root, right,
1000                                        parent, pslot + 1, &right);
1001                 if (wret) {
1002                         ret = wret;
1003                         goto enospc;
1004                 }
1005         }
1006
1007         /* first, try to make some room in the middle buffer */
1008         if (left) {
1009                 orig_slot += btrfs_header_nritems(left);
1010                 wret = push_node_left(trans, root, left, mid, 1);
1011                 if (wret < 0)
1012                         ret = wret;
1013                 btrfs_header_nritems(mid);
1014         }
1015
1016         /*
1017          * then try to empty the right most buffer into the middle
1018          */
1019         if (right) {
1020                 wret = push_node_left(trans, root, mid, right, 1);
1021                 if (wret < 0 && wret != -ENOSPC)
1022                         ret = wret;
1023                 if (btrfs_header_nritems(right) == 0) {
1024                         clean_tree_block(trans, root, right);
1025                         btrfs_tree_unlock(right);
1026                         wret = del_ptr(trans, root, path, level + 1, pslot +
1027                                        1);
1028                         if (wret)
1029                                 ret = wret;
1030                         root_sub_used(root, right->len);
1031                         btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1032                         free_extent_buffer_stale(right);
1033                         right = NULL;
1034                 } else {
1035                         struct btrfs_disk_key right_key;
1036                         btrfs_node_key(right, &right_key, 0);
1037                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1038                         btrfs_mark_buffer_dirty(parent);
1039                 }
1040         }
1041         if (btrfs_header_nritems(mid) == 1) {
1042                 /*
1043                  * we're not allowed to leave a node with one item in the
1044                  * tree during a delete.  A deletion from lower in the tree
1045                  * could try to delete the only pointer in this node.
1046                  * So, pull some keys from the left.
1047                  * There has to be a left pointer at this point because
1048                  * otherwise we would have pulled some pointers from the
1049                  * right
1050                  */
1051                 BUG_ON(!left);
1052                 wret = balance_node_right(trans, root, mid, left);
1053                 if (wret < 0) {
1054                         ret = wret;
1055                         goto enospc;
1056                 }
1057                 if (wret == 1) {
1058                         wret = push_node_left(trans, root, left, mid, 1);
1059                         if (wret < 0)
1060                                 ret = wret;
1061                 }
1062                 BUG_ON(wret == 1);
1063         }
1064         if (btrfs_header_nritems(mid) == 0) {
1065                 clean_tree_block(trans, root, mid);
1066                 btrfs_tree_unlock(mid);
1067                 wret = del_ptr(trans, root, path, level + 1, pslot);
1068                 if (wret)
1069                         ret = wret;
1070                 root_sub_used(root, mid->len);
1071                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1072                 free_extent_buffer_stale(mid);
1073                 mid = NULL;
1074         } else {
1075                 /* update the parent key to reflect our changes */
1076                 struct btrfs_disk_key mid_key;
1077                 btrfs_node_key(mid, &mid_key, 0);
1078                 btrfs_set_node_key(parent, &mid_key, pslot);
1079                 btrfs_mark_buffer_dirty(parent);
1080         }
1081
1082         /* update the path */
1083         if (left) {
1084                 if (btrfs_header_nritems(left) > orig_slot) {
1085                         extent_buffer_get(left);
1086                         /* left was locked after cow */
1087                         path->nodes[level] = left;
1088                         path->slots[level + 1] -= 1;
1089                         path->slots[level] = orig_slot;
1090                         if (mid) {
1091                                 btrfs_tree_unlock(mid);
1092                                 free_extent_buffer(mid);
1093                         }
1094                 } else {
1095                         orig_slot -= btrfs_header_nritems(left);
1096                         path->slots[level] = orig_slot;
1097                 }
1098         }
1099         /* double check we haven't messed things up */
1100         if (orig_ptr !=
1101             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1102                 BUG();
1103 enospc:
1104         if (right) {
1105                 btrfs_tree_unlock(right);
1106                 free_extent_buffer(right);
1107         }
1108         if (left) {
1109                 if (path->nodes[level] != left)
1110                         btrfs_tree_unlock(left);
1111                 free_extent_buffer(left);
1112         }
1113         return ret;
1114 }
1115
1116 /* Node balancing for insertion.  Here we only split or push nodes around
1117  * when they are completely full.  This is also done top down, so we
1118  * have to be pessimistic.
1119  */
1120 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1121                                           struct btrfs_root *root,
1122                                           struct btrfs_path *path, int level)
1123 {
1124         struct extent_buffer *right = NULL;
1125         struct extent_buffer *mid;
1126         struct extent_buffer *left = NULL;
1127         struct extent_buffer *parent = NULL;
1128         int ret = 0;
1129         int wret;
1130         int pslot;
1131         int orig_slot = path->slots[level];
1132
1133         if (level == 0)
1134                 return 1;
1135
1136         mid = path->nodes[level];
1137         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1138
1139         if (level < BTRFS_MAX_LEVEL - 1) {
1140                 parent = path->nodes[level + 1];
1141                 pslot = path->slots[level + 1];
1142         }
1143
1144         if (!parent)
1145                 return 1;
1146
1147         left = read_node_slot(root, parent, pslot - 1);
1148
1149         /* first, try to make some room in the middle buffer */
1150         if (left) {
1151                 u32 left_nr;
1152
1153                 btrfs_tree_lock(left);
1154                 btrfs_set_lock_blocking(left);
1155
1156                 left_nr = btrfs_header_nritems(left);
1157                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1158                         wret = 1;
1159                 } else {
1160                         ret = btrfs_cow_block(trans, root, left, parent,
1161                                               pslot - 1, &left);
1162                         if (ret)
1163                                 wret = 1;
1164                         else {
1165                                 wret = push_node_left(trans, root,
1166                                                       left, mid, 0);
1167                         }
1168                 }
1169                 if (wret < 0)
1170                         ret = wret;
1171                 if (wret == 0) {
1172                         struct btrfs_disk_key disk_key;
1173                         orig_slot += left_nr;
1174                         btrfs_node_key(mid, &disk_key, 0);
1175                         btrfs_set_node_key(parent, &disk_key, pslot);
1176                         btrfs_mark_buffer_dirty(parent);
1177                         if (btrfs_header_nritems(left) > orig_slot) {
1178                                 path->nodes[level] = left;
1179                                 path->slots[level + 1] -= 1;
1180                                 path->slots[level] = orig_slot;
1181                                 btrfs_tree_unlock(mid);
1182                                 free_extent_buffer(mid);
1183                         } else {
1184                                 orig_slot -=
1185                                         btrfs_header_nritems(left);
1186                                 path->slots[level] = orig_slot;
1187                                 btrfs_tree_unlock(left);
1188                                 free_extent_buffer(left);
1189                         }
1190                         return 0;
1191                 }
1192                 btrfs_tree_unlock(left);
1193                 free_extent_buffer(left);
1194         }
1195         right = read_node_slot(root, parent, pslot + 1);
1196
1197         /*
1198          * then try to empty the right most buffer into the middle
1199          */
1200         if (right) {
1201                 u32 right_nr;
1202
1203                 btrfs_tree_lock(right);
1204                 btrfs_set_lock_blocking(right);
1205
1206                 right_nr = btrfs_header_nritems(right);
1207                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1208                         wret = 1;
1209                 } else {
1210                         ret = btrfs_cow_block(trans, root, right,
1211                                               parent, pslot + 1,
1212                                               &right);
1213                         if (ret)
1214                                 wret = 1;
1215                         else {
1216                                 wret = balance_node_right(trans, root,
1217                                                           right, mid);
1218                         }
1219                 }
1220                 if (wret < 0)
1221                         ret = wret;
1222                 if (wret == 0) {
1223                         struct btrfs_disk_key disk_key;
1224
1225                         btrfs_node_key(right, &disk_key, 0);
1226                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1227                         btrfs_mark_buffer_dirty(parent);
1228
1229                         if (btrfs_header_nritems(mid) <= orig_slot) {
1230                                 path->nodes[level] = right;
1231                                 path->slots[level + 1] += 1;
1232                                 path->slots[level] = orig_slot -
1233                                         btrfs_header_nritems(mid);
1234                                 btrfs_tree_unlock(mid);
1235                                 free_extent_buffer(mid);
1236                         } else {
1237                                 btrfs_tree_unlock(right);
1238                                 free_extent_buffer(right);
1239                         }
1240                         return 0;
1241                 }
1242                 btrfs_tree_unlock(right);
1243                 free_extent_buffer(right);
1244         }
1245         return 1;
1246 }
1247
1248 /*
1249  * readahead one full node of leaves, finding things that are close
1250  * to the block in 'slot', and triggering ra on them.
1251  */
1252 static void reada_for_search(struct btrfs_root *root,
1253                              struct btrfs_path *path,
1254                              int level, int slot, u64 objectid)
1255 {
1256         struct extent_buffer *node;
1257         struct btrfs_disk_key disk_key;
1258         u32 nritems;
1259         u64 search;
1260         u64 target;
1261         u64 nread = 0;
1262         u64 gen;
1263         int direction = path->reada;
1264         struct extent_buffer *eb;
1265         u32 nr;
1266         u32 blocksize;
1267         u32 nscan = 0;
1268
1269         if (level != 1)
1270                 return;
1271
1272         if (!path->nodes[level])
1273                 return;
1274
1275         node = path->nodes[level];
1276
1277         search = btrfs_node_blockptr(node, slot);
1278         blocksize = btrfs_level_size(root, level - 1);
1279         eb = btrfs_find_tree_block(root, search, blocksize);
1280         if (eb) {
1281                 free_extent_buffer(eb);
1282                 return;
1283         }
1284
1285         target = search;
1286
1287         nritems = btrfs_header_nritems(node);
1288         nr = slot;
1289
1290         while (1) {
1291                 if (direction < 0) {
1292                         if (nr == 0)
1293                                 break;
1294                         nr--;
1295                 } else if (direction > 0) {
1296                         nr++;
1297                         if (nr >= nritems)
1298                                 break;
1299                 }
1300                 if (path->reada < 0 && objectid) {
1301                         btrfs_node_key(node, &disk_key, nr);
1302                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1303                                 break;
1304                 }
1305                 search = btrfs_node_blockptr(node, nr);
1306                 if ((search <= target && target - search <= 65536) ||
1307                     (search > target && search - target <= 65536)) {
1308                         gen = btrfs_node_ptr_generation(node, nr);
1309                         readahead_tree_block(root, search, blocksize, gen);
1310                         nread += blocksize;
1311                 }
1312                 nscan++;
1313                 if ((nread > 65536 || nscan > 32))
1314                         break;
1315         }
1316 }
1317
1318 /*
1319  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1320  * cache
1321  */
1322 static noinline int reada_for_balance(struct btrfs_root *root,
1323                                       struct btrfs_path *path, int level)
1324 {
1325         int slot;
1326         int nritems;
1327         struct extent_buffer *parent;
1328         struct extent_buffer *eb;
1329         u64 gen;
1330         u64 block1 = 0;
1331         u64 block2 = 0;
1332         int ret = 0;
1333         int blocksize;
1334
1335         parent = path->nodes[level + 1];
1336         if (!parent)
1337                 return 0;
1338
1339         nritems = btrfs_header_nritems(parent);
1340         slot = path->slots[level + 1];
1341         blocksize = btrfs_level_size(root, level);
1342
1343         if (slot > 0) {
1344                 block1 = btrfs_node_blockptr(parent, slot - 1);
1345                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1346                 eb = btrfs_find_tree_block(root, block1, blocksize);
1347                 if (eb && btrfs_buffer_uptodate(eb, gen))
1348                         block1 = 0;
1349                 free_extent_buffer(eb);
1350         }
1351         if (slot + 1 < nritems) {
1352                 block2 = btrfs_node_blockptr(parent, slot + 1);
1353                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1354                 eb = btrfs_find_tree_block(root, block2, blocksize);
1355                 if (eb && btrfs_buffer_uptodate(eb, gen))
1356                         block2 = 0;
1357                 free_extent_buffer(eb);
1358         }
1359         if (block1 || block2) {
1360                 ret = -EAGAIN;
1361
1362                 /* release the whole path */
1363                 btrfs_release_path(path);
1364
1365                 /* read the blocks */
1366                 if (block1)
1367                         readahead_tree_block(root, block1, blocksize, 0);
1368                 if (block2)
1369                         readahead_tree_block(root, block2, blocksize, 0);
1370
1371                 if (block1) {
1372                         eb = read_tree_block(root, block1, blocksize, 0);
1373                         free_extent_buffer(eb);
1374                 }
1375                 if (block2) {
1376                         eb = read_tree_block(root, block2, blocksize, 0);
1377                         free_extent_buffer(eb);
1378                 }
1379         }
1380         return ret;
1381 }
1382
1383
1384 /*
1385  * when we walk down the tree, it is usually safe to unlock the higher layers
1386  * in the tree.  The exceptions are when our path goes through slot 0, because
1387  * operations on the tree might require changing key pointers higher up in the
1388  * tree.
1389  *
1390  * callers might also have set path->keep_locks, which tells this code to keep
1391  * the lock if the path points to the last slot in the block.  This is part of
1392  * walking through the tree, and selecting the next slot in the higher block.
1393  *
1394  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1395  * if lowest_unlock is 1, level 0 won't be unlocked
1396  */
1397 static noinline void unlock_up(struct btrfs_path *path, int level,
1398                                int lowest_unlock)
1399 {
1400         int i;
1401         int skip_level = level;
1402         int no_skips = 0;
1403         struct extent_buffer *t;
1404
1405         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1406                 if (!path->nodes[i])
1407                         break;
1408                 if (!path->locks[i])
1409                         break;
1410                 if (!no_skips && path->slots[i] == 0) {
1411                         skip_level = i + 1;
1412                         continue;
1413                 }
1414                 if (!no_skips && path->keep_locks) {
1415                         u32 nritems;
1416                         t = path->nodes[i];
1417                         nritems = btrfs_header_nritems(t);
1418                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1419                                 skip_level = i + 1;
1420                                 continue;
1421                         }
1422                 }
1423                 if (skip_level < i && i >= lowest_unlock)
1424                         no_skips = 1;
1425
1426                 t = path->nodes[i];
1427                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1428                         btrfs_tree_unlock_rw(t, path->locks[i]);
1429                         path->locks[i] = 0;
1430                 }
1431         }
1432 }
1433
1434 /*
1435  * This releases any locks held in the path starting at level and
1436  * going all the way up to the root.
1437  *
1438  * btrfs_search_slot will keep the lock held on higher nodes in a few
1439  * corner cases, such as COW of the block at slot zero in the node.  This
1440  * ignores those rules, and it should only be called when there are no
1441  * more updates to be done higher up in the tree.
1442  */
1443 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1444 {
1445         int i;
1446
1447         if (path->keep_locks)
1448                 return;
1449
1450         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1451                 if (!path->nodes[i])
1452                         continue;
1453                 if (!path->locks[i])
1454                         continue;
1455                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1456                 path->locks[i] = 0;
1457         }
1458 }
1459
1460 /*
1461  * helper function for btrfs_search_slot.  The goal is to find a block
1462  * in cache without setting the path to blocking.  If we find the block
1463  * we return zero and the path is unchanged.
1464  *
1465  * If we can't find the block, we set the path blocking and do some
1466  * reada.  -EAGAIN is returned and the search must be repeated.
1467  */
1468 static int
1469 read_block_for_search(struct btrfs_trans_handle *trans,
1470                        struct btrfs_root *root, struct btrfs_path *p,
1471                        struct extent_buffer **eb_ret, int level, int slot,
1472                        struct btrfs_key *key)
1473 {
1474         u64 blocknr;
1475         u64 gen;
1476         u32 blocksize;
1477         struct extent_buffer *b = *eb_ret;
1478         struct extent_buffer *tmp;
1479         int ret;
1480
1481         blocknr = btrfs_node_blockptr(b, slot);
1482         gen = btrfs_node_ptr_generation(b, slot);
1483         blocksize = btrfs_level_size(root, level - 1);
1484
1485         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1486         if (tmp) {
1487                 if (btrfs_buffer_uptodate(tmp, 0)) {
1488                         if (btrfs_buffer_uptodate(tmp, gen)) {
1489                                 /*
1490                                  * we found an up to date block without
1491                                  * sleeping, return
1492                                  * right away
1493                                  */
1494                                 *eb_ret = tmp;
1495                                 return 0;
1496                         }
1497                         /* the pages were up to date, but we failed
1498                          * the generation number check.  Do a full
1499                          * read for the generation number that is correct.
1500                          * We must do this without dropping locks so
1501                          * we can trust our generation number
1502                          */
1503                         free_extent_buffer(tmp);
1504                         btrfs_set_path_blocking(p);
1505
1506                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1507                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1508                                 *eb_ret = tmp;
1509                                 return 0;
1510                         }
1511                         free_extent_buffer(tmp);
1512                         btrfs_release_path(p);
1513                         return -EIO;
1514                 }
1515         }
1516
1517         /*
1518          * reduce lock contention at high levels
1519          * of the btree by dropping locks before
1520          * we read.  Don't release the lock on the current
1521          * level because we need to walk this node to figure
1522          * out which blocks to read.
1523          */
1524         btrfs_unlock_up_safe(p, level + 1);
1525         btrfs_set_path_blocking(p);
1526
1527         free_extent_buffer(tmp);
1528         if (p->reada)
1529                 reada_for_search(root, p, level, slot, key->objectid);
1530
1531         btrfs_release_path(p);
1532
1533         ret = -EAGAIN;
1534         tmp = read_tree_block(root, blocknr, blocksize, 0);
1535         if (tmp) {
1536                 /*
1537                  * If the read above didn't mark this buffer up to date,
1538                  * it will never end up being up to date.  Set ret to EIO now
1539                  * and give up so that our caller doesn't loop forever
1540                  * on our EAGAINs.
1541                  */
1542                 if (!btrfs_buffer_uptodate(tmp, 0))
1543                         ret = -EIO;
1544                 free_extent_buffer(tmp);
1545         }
1546         return ret;
1547 }
1548
1549 /*
1550  * helper function for btrfs_search_slot.  This does all of the checks
1551  * for node-level blocks and does any balancing required based on
1552  * the ins_len.
1553  *
1554  * If no extra work was required, zero is returned.  If we had to
1555  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1556  * start over
1557  */
1558 static int
1559 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1560                        struct btrfs_root *root, struct btrfs_path *p,
1561                        struct extent_buffer *b, int level, int ins_len,
1562                        int *write_lock_level)
1563 {
1564         int ret;
1565         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1566             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1567                 int sret;
1568
1569                 if (*write_lock_level < level + 1) {
1570                         *write_lock_level = level + 1;
1571                         btrfs_release_path(p);
1572                         goto again;
1573                 }
1574
1575                 sret = reada_for_balance(root, p, level);
1576                 if (sret)
1577                         goto again;
1578
1579                 btrfs_set_path_blocking(p);
1580                 sret = split_node(trans, root, p, level);
1581                 btrfs_clear_path_blocking(p, NULL, 0);
1582
1583                 BUG_ON(sret > 0);
1584                 if (sret) {
1585                         ret = sret;
1586                         goto done;
1587                 }
1588                 b = p->nodes[level];
1589         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1590                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1591                 int sret;
1592
1593                 if (*write_lock_level < level + 1) {
1594                         *write_lock_level = level + 1;
1595                         btrfs_release_path(p);
1596                         goto again;
1597                 }
1598
1599                 sret = reada_for_balance(root, p, level);
1600                 if (sret)
1601                         goto again;
1602
1603                 btrfs_set_path_blocking(p);
1604                 sret = balance_level(trans, root, p, level);
1605                 btrfs_clear_path_blocking(p, NULL, 0);
1606
1607                 if (sret) {
1608                         ret = sret;
1609                         goto done;
1610                 }
1611                 b = p->nodes[level];
1612                 if (!b) {
1613                         btrfs_release_path(p);
1614                         goto again;
1615                 }
1616                 BUG_ON(btrfs_header_nritems(b) == 1);
1617         }
1618         return 0;
1619
1620 again:
1621         ret = -EAGAIN;
1622 done:
1623         return ret;
1624 }
1625
1626 /*
1627  * look for key in the tree.  path is filled in with nodes along the way
1628  * if key is found, we return zero and you can find the item in the leaf
1629  * level of the path (level 0)
1630  *
1631  * If the key isn't found, the path points to the slot where it should
1632  * be inserted, and 1 is returned.  If there are other errors during the
1633  * search a negative error number is returned.
1634  *
1635  * if ins_len > 0, nodes and leaves will be split as we walk down the
1636  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1637  * possible)
1638  */
1639 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1640                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1641                       ins_len, int cow)
1642 {
1643         struct extent_buffer *b;
1644         int slot;
1645         int ret;
1646         int err;
1647         int level;
1648         int lowest_unlock = 1;
1649         int root_lock;
1650         /* everything at write_lock_level or lower must be write locked */
1651         int write_lock_level = 0;
1652         u8 lowest_level = 0;
1653
1654         lowest_level = p->lowest_level;
1655         WARN_ON(lowest_level && ins_len > 0);
1656         WARN_ON(p->nodes[0] != NULL);
1657
1658         if (ins_len < 0) {
1659                 lowest_unlock = 2;
1660
1661                 /* when we are removing items, we might have to go up to level
1662                  * two as we update tree pointers  Make sure we keep write
1663                  * for those levels as well
1664                  */
1665                 write_lock_level = 2;
1666         } else if (ins_len > 0) {
1667                 /*
1668                  * for inserting items, make sure we have a write lock on
1669                  * level 1 so we can update keys
1670                  */
1671                 write_lock_level = 1;
1672         }
1673
1674         if (!cow)
1675                 write_lock_level = -1;
1676
1677         if (cow && (p->keep_locks || p->lowest_level))
1678                 write_lock_level = BTRFS_MAX_LEVEL;
1679
1680 again:
1681         /*
1682          * we try very hard to do read locks on the root
1683          */
1684         root_lock = BTRFS_READ_LOCK;
1685         level = 0;
1686         if (p->search_commit_root) {
1687                 /*
1688                  * the commit roots are read only
1689                  * so we always do read locks
1690                  */
1691                 b = root->commit_root;
1692                 extent_buffer_get(b);
1693                 level = btrfs_header_level(b);
1694                 if (!p->skip_locking)
1695                         btrfs_tree_read_lock(b);
1696         } else {
1697                 if (p->skip_locking) {
1698                         b = btrfs_root_node(root);
1699                         level = btrfs_header_level(b);
1700                 } else {
1701                         /* we don't know the level of the root node
1702                          * until we actually have it read locked
1703                          */
1704                         b = btrfs_read_lock_root_node(root);
1705                         level = btrfs_header_level(b);
1706                         if (level <= write_lock_level) {
1707                                 /* whoops, must trade for write lock */
1708                                 btrfs_tree_read_unlock(b);
1709                                 free_extent_buffer(b);
1710                                 b = btrfs_lock_root_node(root);
1711                                 root_lock = BTRFS_WRITE_LOCK;
1712
1713                                 /* the level might have changed, check again */
1714                                 level = btrfs_header_level(b);
1715                         }
1716                 }
1717         }
1718         p->nodes[level] = b;
1719         if (!p->skip_locking)
1720                 p->locks[level] = root_lock;
1721
1722         while (b) {
1723                 level = btrfs_header_level(b);
1724
1725                 /*
1726                  * setup the path here so we can release it under lock
1727                  * contention with the cow code
1728                  */
1729                 if (cow) {
1730                         /*
1731                          * if we don't really need to cow this block
1732                          * then we don't want to set the path blocking,
1733                          * so we test it here
1734                          */
1735                         if (!should_cow_block(trans, root, b))
1736                                 goto cow_done;
1737
1738                         btrfs_set_path_blocking(p);
1739
1740                         /*
1741                          * must have write locks on this node and the
1742                          * parent
1743                          */
1744                         if (level + 1 > write_lock_level) {
1745                                 write_lock_level = level + 1;
1746                                 btrfs_release_path(p);
1747                                 goto again;
1748                         }
1749
1750                         err = btrfs_cow_block(trans, root, b,
1751                                               p->nodes[level + 1],
1752                                               p->slots[level + 1], &b);
1753                         if (err) {
1754                                 ret = err;
1755                                 goto done;
1756                         }
1757                 }
1758 cow_done:
1759                 BUG_ON(!cow && ins_len);
1760
1761                 p->nodes[level] = b;
1762                 btrfs_clear_path_blocking(p, NULL, 0);
1763
1764                 /*
1765                  * we have a lock on b and as long as we aren't changing
1766                  * the tree, there is no way to for the items in b to change.
1767                  * It is safe to drop the lock on our parent before we
1768                  * go through the expensive btree search on b.
1769                  *
1770                  * If cow is true, then we might be changing slot zero,
1771                  * which may require changing the parent.  So, we can't
1772                  * drop the lock until after we know which slot we're
1773                  * operating on.
1774                  */
1775                 if (!cow)
1776                         btrfs_unlock_up_safe(p, level + 1);
1777
1778                 ret = bin_search(b, key, level, &slot);
1779
1780                 if (level != 0) {
1781                         int dec = 0;
1782                         if (ret && slot > 0) {
1783                                 dec = 1;
1784                                 slot -= 1;
1785                         }
1786                         p->slots[level] = slot;
1787                         err = setup_nodes_for_search(trans, root, p, b, level,
1788                                              ins_len, &write_lock_level);
1789                         if (err == -EAGAIN)
1790                                 goto again;
1791                         if (err) {
1792                                 ret = err;
1793                                 goto done;
1794                         }
1795                         b = p->nodes[level];
1796                         slot = p->slots[level];
1797
1798                         /*
1799                          * slot 0 is special, if we change the key
1800                          * we have to update the parent pointer
1801                          * which means we must have a write lock
1802                          * on the parent
1803                          */
1804                         if (slot == 0 && cow &&
1805                             write_lock_level < level + 1) {
1806                                 write_lock_level = level + 1;
1807                                 btrfs_release_path(p);
1808                                 goto again;
1809                         }
1810
1811                         unlock_up(p, level, lowest_unlock);
1812
1813                         if (level == lowest_level) {
1814                                 if (dec)
1815                                         p->slots[level]++;
1816                                 goto done;
1817                         }
1818
1819                         err = read_block_for_search(trans, root, p,
1820                                                     &b, level, slot, key);
1821                         if (err == -EAGAIN)
1822                                 goto again;
1823                         if (err) {
1824                                 ret = err;
1825                                 goto done;
1826                         }
1827
1828                         if (!p->skip_locking) {
1829                                 level = btrfs_header_level(b);
1830                                 if (level <= write_lock_level) {
1831                                         err = btrfs_try_tree_write_lock(b);
1832                                         if (!err) {
1833                                                 btrfs_set_path_blocking(p);
1834                                                 btrfs_tree_lock(b);
1835                                                 btrfs_clear_path_blocking(p, b,
1836                                                                   BTRFS_WRITE_LOCK);
1837                                         }
1838                                         p->locks[level] = BTRFS_WRITE_LOCK;
1839                                 } else {
1840                                         err = btrfs_try_tree_read_lock(b);
1841                                         if (!err) {
1842                                                 btrfs_set_path_blocking(p);
1843                                                 btrfs_tree_read_lock(b);
1844                                                 btrfs_clear_path_blocking(p, b,
1845                                                                   BTRFS_READ_LOCK);
1846                                         }
1847                                         p->locks[level] = BTRFS_READ_LOCK;
1848                                 }
1849                                 p->nodes[level] = b;
1850                         }
1851                 } else {
1852                         p->slots[level] = slot;
1853                         if (ins_len > 0 &&
1854                             btrfs_leaf_free_space(root, b) < ins_len) {
1855                                 if (write_lock_level < 1) {
1856                                         write_lock_level = 1;
1857                                         btrfs_release_path(p);
1858                                         goto again;
1859                                 }
1860
1861                                 btrfs_set_path_blocking(p);
1862                                 err = split_leaf(trans, root, key,
1863                                                  p, ins_len, ret == 0);
1864                                 btrfs_clear_path_blocking(p, NULL, 0);
1865
1866                                 BUG_ON(err > 0);
1867                                 if (err) {
1868                                         ret = err;
1869                                         goto done;
1870                                 }
1871                         }
1872                         if (!p->search_for_split)
1873                                 unlock_up(p, level, lowest_unlock);
1874                         goto done;
1875                 }
1876         }
1877         ret = 1;
1878 done:
1879         /*
1880          * we don't really know what they plan on doing with the path
1881          * from here on, so for now just mark it as blocking
1882          */
1883         if (!p->leave_spinning)
1884                 btrfs_set_path_blocking(p);
1885         if (ret < 0)
1886                 btrfs_release_path(p);
1887         return ret;
1888 }
1889
1890 /*
1891  * adjust the pointers going up the tree, starting at level
1892  * making sure the right key of each node is points to 'key'.
1893  * This is used after shifting pointers to the left, so it stops
1894  * fixing up pointers when a given leaf/node is not in slot 0 of the
1895  * higher levels
1896  *
1897  * If this fails to write a tree block, it returns -1, but continues
1898  * fixing up the blocks in ram so the tree is consistent.
1899  */
1900 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1901                           struct btrfs_root *root, struct btrfs_path *path,
1902                           struct btrfs_disk_key *key, int level)
1903 {
1904         int i;
1905         int ret = 0;
1906         struct extent_buffer *t;
1907
1908         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1909                 int tslot = path->slots[i];
1910                 if (!path->nodes[i])
1911                         break;
1912                 t = path->nodes[i];
1913                 btrfs_set_node_key(t, key, tslot);
1914                 btrfs_mark_buffer_dirty(path->nodes[i]);
1915                 if (tslot != 0)
1916                         break;
1917         }
1918         return ret;
1919 }
1920
1921 /*
1922  * update item key.
1923  *
1924  * This function isn't completely safe. It's the caller's responsibility
1925  * that the new key won't break the order
1926  */
1927 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1928                             struct btrfs_root *root, struct btrfs_path *path,
1929                             struct btrfs_key *new_key)
1930 {
1931         struct btrfs_disk_key disk_key;
1932         struct extent_buffer *eb;
1933         int slot;
1934
1935         eb = path->nodes[0];
1936         slot = path->slots[0];
1937         if (slot > 0) {
1938                 btrfs_item_key(eb, &disk_key, slot - 1);
1939                 if (comp_keys(&disk_key, new_key) >= 0)
1940                         return -1;
1941         }
1942         if (slot < btrfs_header_nritems(eb) - 1) {
1943                 btrfs_item_key(eb, &disk_key, slot + 1);
1944                 if (comp_keys(&disk_key, new_key) <= 0)
1945                         return -1;
1946         }
1947
1948         btrfs_cpu_key_to_disk(&disk_key, new_key);
1949         btrfs_set_item_key(eb, &disk_key, slot);
1950         btrfs_mark_buffer_dirty(eb);
1951         if (slot == 0)
1952                 fixup_low_keys(trans, root, path, &disk_key, 1);
1953         return 0;
1954 }
1955
1956 /*
1957  * try to push data from one node into the next node left in the
1958  * tree.
1959  *
1960  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1961  * error, and > 0 if there was no room in the left hand block.
1962  */
1963 static int push_node_left(struct btrfs_trans_handle *trans,
1964                           struct btrfs_root *root, struct extent_buffer *dst,
1965                           struct extent_buffer *src, int empty)
1966 {
1967         int push_items = 0;
1968         int src_nritems;
1969         int dst_nritems;
1970         int ret = 0;
1971
1972         src_nritems = btrfs_header_nritems(src);
1973         dst_nritems = btrfs_header_nritems(dst);
1974         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1975         WARN_ON(btrfs_header_generation(src) != trans->transid);
1976         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1977
1978         if (!empty && src_nritems <= 8)
1979                 return 1;
1980
1981         if (push_items <= 0)
1982                 return 1;
1983
1984         if (empty) {
1985                 push_items = min(src_nritems, push_items);
1986                 if (push_items < src_nritems) {
1987                         /* leave at least 8 pointers in the node if
1988                          * we aren't going to empty it
1989                          */
1990                         if (src_nritems - push_items < 8) {
1991                                 if (push_items <= 8)
1992                                         return 1;
1993                                 push_items -= 8;
1994                         }
1995                 }
1996         } else
1997                 push_items = min(src_nritems - 8, push_items);
1998
1999         copy_extent_buffer(dst, src,
2000                            btrfs_node_key_ptr_offset(dst_nritems),
2001                            btrfs_node_key_ptr_offset(0),
2002                            push_items * sizeof(struct btrfs_key_ptr));
2003
2004         if (push_items < src_nritems) {
2005                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2006                                       btrfs_node_key_ptr_offset(push_items),
2007                                       (src_nritems - push_items) *
2008                                       sizeof(struct btrfs_key_ptr));
2009         }
2010         btrfs_set_header_nritems(src, src_nritems - push_items);
2011         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2012         btrfs_mark_buffer_dirty(src);
2013         btrfs_mark_buffer_dirty(dst);
2014
2015         return ret;
2016 }
2017
2018 /*
2019  * try to push data from one node into the next node right in the
2020  * tree.
2021  *
2022  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2023  * error, and > 0 if there was no room in the right hand block.
2024  *
2025  * this will  only push up to 1/2 the contents of the left node over
2026  */
2027 static int balance_node_right(struct btrfs_trans_handle *trans,
2028                               struct btrfs_root *root,
2029                               struct extent_buffer *dst,
2030                               struct extent_buffer *src)
2031 {
2032         int push_items = 0;
2033         int max_push;
2034         int src_nritems;
2035         int dst_nritems;
2036         int ret = 0;
2037
2038         WARN_ON(btrfs_header_generation(src) != trans->transid);
2039         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2040
2041         src_nritems = btrfs_header_nritems(src);
2042         dst_nritems = btrfs_header_nritems(dst);
2043         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2044         if (push_items <= 0)
2045                 return 1;
2046
2047         if (src_nritems < 4)
2048                 return 1;
2049
2050         max_push = src_nritems / 2 + 1;
2051         /* don't try to empty the node */
2052         if (max_push >= src_nritems)
2053                 return 1;
2054
2055         if (max_push < push_items)
2056                 push_items = max_push;
2057
2058         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2059                                       btrfs_node_key_ptr_offset(0),
2060                                       (dst_nritems) *
2061                                       sizeof(struct btrfs_key_ptr));
2062
2063         copy_extent_buffer(dst, src,
2064                            btrfs_node_key_ptr_offset(0),
2065                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2066                            push_items * sizeof(struct btrfs_key_ptr));
2067
2068         btrfs_set_header_nritems(src, src_nritems - push_items);
2069         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2070
2071         btrfs_mark_buffer_dirty(src);
2072         btrfs_mark_buffer_dirty(dst);
2073
2074         return ret;
2075 }
2076
2077 /*
2078  * helper function to insert a new root level in the tree.
2079  * A new node is allocated, and a single item is inserted to
2080  * point to the existing root
2081  *
2082  * returns zero on success or < 0 on failure.
2083  */
2084 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2085                            struct btrfs_root *root,
2086                            struct btrfs_path *path, int level)
2087 {
2088         u64 lower_gen;
2089         struct extent_buffer *lower;
2090         struct extent_buffer *c;
2091         struct extent_buffer *old;
2092         struct btrfs_disk_key lower_key;
2093
2094         BUG_ON(path->nodes[level]);
2095         BUG_ON(path->nodes[level-1] != root->node);
2096
2097         lower = path->nodes[level-1];
2098         if (level == 1)
2099                 btrfs_item_key(lower, &lower_key, 0);
2100         else
2101                 btrfs_node_key(lower, &lower_key, 0);
2102
2103         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2104                                    root->root_key.objectid, &lower_key,
2105                                    level, root->node->start, 0, 0);
2106         if (IS_ERR(c))
2107                 return PTR_ERR(c);
2108
2109         root_add_used(root, root->nodesize);
2110
2111         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2112         btrfs_set_header_nritems(c, 1);
2113         btrfs_set_header_level(c, level);
2114         btrfs_set_header_bytenr(c, c->start);
2115         btrfs_set_header_generation(c, trans->transid);
2116         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2117         btrfs_set_header_owner(c, root->root_key.objectid);
2118
2119         write_extent_buffer(c, root->fs_info->fsid,
2120                             (unsigned long)btrfs_header_fsid(c),
2121                             BTRFS_FSID_SIZE);
2122
2123         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2124                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2125                             BTRFS_UUID_SIZE);
2126
2127         btrfs_set_node_key(c, &lower_key, 0);
2128         btrfs_set_node_blockptr(c, 0, lower->start);
2129         lower_gen = btrfs_header_generation(lower);
2130         WARN_ON(lower_gen != trans->transid);
2131
2132         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2133
2134         btrfs_mark_buffer_dirty(c);
2135
2136         old = root->node;
2137         rcu_assign_pointer(root->node, c);
2138
2139         /* the super has an extra ref to root->node */
2140         free_extent_buffer(old);
2141
2142         add_root_to_dirty_list(root);
2143         extent_buffer_get(c);
2144         path->nodes[level] = c;
2145         path->locks[level] = BTRFS_WRITE_LOCK;
2146         path->slots[level] = 0;
2147         return 0;
2148 }
2149
2150 /*
2151  * worker function to insert a single pointer in a node.
2152  * the node should have enough room for the pointer already
2153  *
2154  * slot and level indicate where you want the key to go, and
2155  * blocknr is the block the key points to.
2156  *
2157  * returns zero on success and < 0 on any error
2158  */
2159 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2160                       *root, struct btrfs_path *path, struct btrfs_disk_key
2161                       *key, u64 bytenr, int slot, int level)
2162 {
2163         struct extent_buffer *lower;
2164         int nritems;
2165
2166         BUG_ON(!path->nodes[level]);
2167         btrfs_assert_tree_locked(path->nodes[level]);
2168         lower = path->nodes[level];
2169         nritems = btrfs_header_nritems(lower);
2170         BUG_ON(slot > nritems);
2171         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2172                 BUG();
2173         if (slot != nritems) {
2174                 memmove_extent_buffer(lower,
2175                               btrfs_node_key_ptr_offset(slot + 1),
2176                               btrfs_node_key_ptr_offset(slot),
2177                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2178         }
2179         btrfs_set_node_key(lower, key, slot);
2180         btrfs_set_node_blockptr(lower, slot, bytenr);
2181         WARN_ON(trans->transid == 0);
2182         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2183         btrfs_set_header_nritems(lower, nritems + 1);
2184         btrfs_mark_buffer_dirty(lower);
2185         return 0;
2186 }
2187
2188 /*
2189  * split the node at the specified level in path in two.
2190  * The path is corrected to point to the appropriate node after the split
2191  *
2192  * Before splitting this tries to make some room in the node by pushing
2193  * left and right, if either one works, it returns right away.
2194  *
2195  * returns 0 on success and < 0 on failure
2196  */
2197 static noinline int split_node(struct btrfs_trans_handle *trans,
2198                                struct btrfs_root *root,
2199                                struct btrfs_path *path, int level)
2200 {
2201         struct extent_buffer *c;
2202         struct extent_buffer *split;
2203         struct btrfs_disk_key disk_key;
2204         int mid;
2205         int ret;
2206         int wret;
2207         u32 c_nritems;
2208
2209         c = path->nodes[level];
2210         WARN_ON(btrfs_header_generation(c) != trans->transid);
2211         if (c == root->node) {
2212                 /* trying to split the root, lets make a new one */
2213                 ret = insert_new_root(trans, root, path, level + 1);
2214                 if (ret)
2215                         return ret;
2216         } else {
2217                 ret = push_nodes_for_insert(trans, root, path, level);
2218                 c = path->nodes[level];
2219                 if (!ret && btrfs_header_nritems(c) <
2220                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2221                         return 0;
2222                 if (ret < 0)
2223                         return ret;
2224         }
2225
2226         c_nritems = btrfs_header_nritems(c);
2227         mid = (c_nritems + 1) / 2;
2228         btrfs_node_key(c, &disk_key, mid);
2229
2230         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2231                                         root->root_key.objectid,
2232                                         &disk_key, level, c->start, 0, 0);
2233         if (IS_ERR(split))
2234                 return PTR_ERR(split);
2235
2236         root_add_used(root, root->nodesize);
2237
2238         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2239         btrfs_set_header_level(split, btrfs_header_level(c));
2240         btrfs_set_header_bytenr(split, split->start);
2241         btrfs_set_header_generation(split, trans->transid);
2242         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2243         btrfs_set_header_owner(split, root->root_key.objectid);
2244         write_extent_buffer(split, root->fs_info->fsid,
2245                             (unsigned long)btrfs_header_fsid(split),
2246                             BTRFS_FSID_SIZE);
2247         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2248                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2249                             BTRFS_UUID_SIZE);
2250
2251
2252         copy_extent_buffer(split, c,
2253                            btrfs_node_key_ptr_offset(0),
2254                            btrfs_node_key_ptr_offset(mid),
2255                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2256         btrfs_set_header_nritems(split, c_nritems - mid);
2257         btrfs_set_header_nritems(c, mid);
2258         ret = 0;
2259
2260         btrfs_mark_buffer_dirty(c);
2261         btrfs_mark_buffer_dirty(split);
2262
2263         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2264                           path->slots[level + 1] + 1,
2265                           level + 1);
2266         if (wret)
2267                 ret = wret;
2268
2269         if (path->slots[level] >= mid) {
2270                 path->slots[level] -= mid;
2271                 btrfs_tree_unlock(c);
2272                 free_extent_buffer(c);
2273                 path->nodes[level] = split;
2274                 path->slots[level + 1] += 1;
2275         } else {
2276                 btrfs_tree_unlock(split);
2277                 free_extent_buffer(split);
2278         }
2279         return ret;
2280 }
2281
2282 /*
2283  * how many bytes are required to store the items in a leaf.  start
2284  * and nr indicate which items in the leaf to check.  This totals up the
2285  * space used both by the item structs and the item data
2286  */
2287 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2288 {
2289         int data_len;
2290         int nritems = btrfs_header_nritems(l);
2291         int end = min(nritems, start + nr) - 1;
2292
2293         if (!nr)
2294                 return 0;
2295         data_len = btrfs_item_end_nr(l, start);
2296         data_len = data_len - btrfs_item_offset_nr(l, end);
2297         data_len += sizeof(struct btrfs_item) * nr;
2298         WARN_ON(data_len < 0);
2299         return data_len;
2300 }
2301
2302 /*
2303  * The space between the end of the leaf items and
2304  * the start of the leaf data.  IOW, how much room
2305  * the leaf has left for both items and data
2306  */
2307 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2308                                    struct extent_buffer *leaf)
2309 {
2310         int nritems = btrfs_header_nritems(leaf);
2311         int ret;
2312         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2313         if (ret < 0) {
2314                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2315                        "used %d nritems %d\n",
2316                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2317                        leaf_space_used(leaf, 0, nritems), nritems);
2318         }
2319         return ret;
2320 }
2321
2322 /*
2323  * min slot controls the lowest index we're willing to push to the
2324  * right.  We'll push up to and including min_slot, but no lower
2325  */
2326 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2327                                       struct btrfs_root *root,
2328                                       struct btrfs_path *path,
2329                                       int data_size, int empty,
2330                                       struct extent_buffer *right,
2331                                       int free_space, u32 left_nritems,
2332                                       u32 min_slot)
2333 {
2334         struct extent_buffer *left = path->nodes[0];
2335         struct extent_buffer *upper = path->nodes[1];
2336         struct btrfs_map_token token;
2337         struct btrfs_disk_key disk_key;
2338         int slot;
2339         u32 i;
2340         int push_space = 0;
2341         int push_items = 0;
2342         struct btrfs_item *item;
2343         u32 nr;
2344         u32 right_nritems;
2345         u32 data_end;
2346         u32 this_item_size;
2347
2348         btrfs_init_map_token(&token);
2349
2350         if (empty)
2351                 nr = 0;
2352         else
2353                 nr = max_t(u32, 1, min_slot);
2354
2355         if (path->slots[0] >= left_nritems)
2356                 push_space += data_size;
2357
2358         slot = path->slots[1];
2359         i = left_nritems - 1;
2360         while (i >= nr) {
2361                 item = btrfs_item_nr(left, i);
2362
2363                 if (!empty && push_items > 0) {
2364                         if (path->slots[0] > i)
2365                                 break;
2366                         if (path->slots[0] == i) {
2367                                 int space = btrfs_leaf_free_space(root, left);
2368                                 if (space + push_space * 2 > free_space)
2369                                         break;
2370                         }
2371                 }
2372
2373                 if (path->slots[0] == i)
2374                         push_space += data_size;
2375
2376                 this_item_size = btrfs_item_size(left, item);
2377                 if (this_item_size + sizeof(*item) + push_space > free_space)
2378                         break;
2379
2380                 push_items++;
2381                 push_space += this_item_size + sizeof(*item);
2382                 if (i == 0)
2383                         break;
2384                 i--;
2385         }
2386
2387         if (push_items == 0)
2388                 goto out_unlock;
2389
2390         if (!empty && push_items == left_nritems)
2391                 WARN_ON(1);
2392
2393         /* push left to right */
2394         right_nritems = btrfs_header_nritems(right);
2395
2396         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2397         push_space -= leaf_data_end(root, left);
2398
2399         /* make room in the right data area */
2400         data_end = leaf_data_end(root, right);
2401         memmove_extent_buffer(right,
2402                               btrfs_leaf_data(right) + data_end - push_space,
2403                               btrfs_leaf_data(right) + data_end,
2404                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2405
2406         /* copy from the left data area */
2407         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2408                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2409                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2410                      push_space);
2411
2412         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2413                               btrfs_item_nr_offset(0),
2414                               right_nritems * sizeof(struct btrfs_item));
2415
2416         /* copy the items from left to right */
2417         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2418                    btrfs_item_nr_offset(left_nritems - push_items),
2419                    push_items * sizeof(struct btrfs_item));
2420
2421         /* update the item pointers */
2422         right_nritems += push_items;
2423         btrfs_set_header_nritems(right, right_nritems);
2424         push_space = BTRFS_LEAF_DATA_SIZE(root);
2425         for (i = 0; i < right_nritems; i++) {
2426                 item = btrfs_item_nr(right, i);
2427                 push_space -= btrfs_token_item_size(right, item, &token);
2428                 btrfs_set_token_item_offset(right, item, push_space, &token);
2429         }
2430
2431         left_nritems -= push_items;
2432         btrfs_set_header_nritems(left, left_nritems);
2433
2434         if (left_nritems)
2435                 btrfs_mark_buffer_dirty(left);
2436         else
2437                 clean_tree_block(trans, root, left);
2438
2439         btrfs_mark_buffer_dirty(right);
2440
2441         btrfs_item_key(right, &disk_key, 0);
2442         btrfs_set_node_key(upper, &disk_key, slot + 1);
2443         btrfs_mark_buffer_dirty(upper);
2444
2445         /* then fixup the leaf pointer in the path */
2446         if (path->slots[0] >= left_nritems) {
2447                 path->slots[0] -= left_nritems;
2448                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2449                         clean_tree_block(trans, root, path->nodes[0]);
2450                 btrfs_tree_unlock(path->nodes[0]);
2451                 free_extent_buffer(path->nodes[0]);
2452                 path->nodes[0] = right;
2453                 path->slots[1] += 1;
2454         } else {
2455                 btrfs_tree_unlock(right);
2456                 free_extent_buffer(right);
2457         }
2458         return 0;
2459
2460 out_unlock:
2461         btrfs_tree_unlock(right);
2462         free_extent_buffer(right);
2463         return 1;
2464 }
2465
2466 /*
2467  * push some data in the path leaf to the right, trying to free up at
2468  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2469  *
2470  * returns 1 if the push failed because the other node didn't have enough
2471  * room, 0 if everything worked out and < 0 if there were major errors.
2472  *
2473  * this will push starting from min_slot to the end of the leaf.  It won't
2474  * push any slot lower than min_slot
2475  */
2476 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2477                            *root, struct btrfs_path *path,
2478                            int min_data_size, int data_size,
2479                            int empty, u32 min_slot)
2480 {
2481         struct extent_buffer *left = path->nodes[0];
2482         struct extent_buffer *right;
2483         struct extent_buffer *upper;
2484         int slot;
2485         int free_space;
2486         u32 left_nritems;
2487         int ret;
2488
2489         if (!path->nodes[1])
2490                 return 1;
2491
2492         slot = path->slots[1];
2493         upper = path->nodes[1];
2494         if (slot >= btrfs_header_nritems(upper) - 1)
2495                 return 1;
2496
2497         btrfs_assert_tree_locked(path->nodes[1]);
2498
2499         right = read_node_slot(root, upper, slot + 1);
2500         if (right == NULL)
2501                 return 1;
2502
2503         btrfs_tree_lock(right);
2504         btrfs_set_lock_blocking(right);
2505
2506         free_space = btrfs_leaf_free_space(root, right);
2507         if (free_space < data_size)
2508                 goto out_unlock;
2509
2510         /* cow and double check */
2511         ret = btrfs_cow_block(trans, root, right, upper,
2512                               slot + 1, &right);
2513         if (ret)
2514                 goto out_unlock;
2515
2516         free_space = btrfs_leaf_free_space(root, right);
2517         if (free_space < data_size)
2518                 goto out_unlock;
2519
2520         left_nritems = btrfs_header_nritems(left);
2521         if (left_nritems == 0)
2522                 goto out_unlock;
2523
2524         return __push_leaf_right(trans, root, path, min_data_size, empty,
2525                                 right, free_space, left_nritems, min_slot);
2526 out_unlock:
2527         btrfs_tree_unlock(right);
2528         free_extent_buffer(right);
2529         return 1;
2530 }
2531
2532 /*
2533  * push some data in the path leaf to the left, trying to free up at
2534  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2535  *
2536  * max_slot can put a limit on how far into the leaf we'll push items.  The
2537  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2538  * items
2539  */
2540 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2541                                      struct btrfs_root *root,
2542                                      struct btrfs_path *path, int data_size,
2543                                      int empty, struct extent_buffer *left,
2544                                      int free_space, u32 right_nritems,
2545                                      u32 max_slot)
2546 {
2547         struct btrfs_disk_key disk_key;
2548         struct extent_buffer *right = path->nodes[0];
2549         int i;
2550         int push_space = 0;
2551         int push_items = 0;
2552         struct btrfs_item *item;
2553         u32 old_left_nritems;
2554         u32 nr;
2555         int ret = 0;
2556         int wret;
2557         u32 this_item_size;
2558         u32 old_left_item_size;
2559         struct btrfs_map_token token;
2560
2561         btrfs_init_map_token(&token);
2562
2563         if (empty)
2564                 nr = min(right_nritems, max_slot);
2565         else
2566                 nr = min(right_nritems - 1, max_slot);
2567
2568         for (i = 0; i < nr; i++) {
2569                 item = btrfs_item_nr(right, i);
2570
2571                 if (!empty && push_items > 0) {
2572                         if (path->slots[0] < i)
2573                                 break;
2574                         if (path->slots[0] == i) {
2575                                 int space = btrfs_leaf_free_space(root, right);
2576                                 if (space + push_space * 2 > free_space)
2577                                         break;
2578                         }
2579                 }
2580
2581                 if (path->slots[0] == i)
2582                         push_space += data_size;
2583
2584                 this_item_size = btrfs_item_size(right, item);
2585                 if (this_item_size + sizeof(*item) + push_space > free_space)
2586                         break;
2587
2588                 push_items++;
2589                 push_space += this_item_size + sizeof(*item);
2590         }
2591
2592         if (push_items == 0) {
2593                 ret = 1;
2594                 goto out;
2595         }
2596         if (!empty && push_items == btrfs_header_nritems(right))
2597                 WARN_ON(1);
2598
2599         /* push data from right to left */
2600         copy_extent_buffer(left, right,
2601                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2602                            btrfs_item_nr_offset(0),
2603                            push_items * sizeof(struct btrfs_item));
2604
2605         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2606                      btrfs_item_offset_nr(right, push_items - 1);
2607
2608         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2609                      leaf_data_end(root, left) - push_space,
2610                      btrfs_leaf_data(right) +
2611                      btrfs_item_offset_nr(right, push_items - 1),
2612                      push_space);
2613         old_left_nritems = btrfs_header_nritems(left);
2614         BUG_ON(old_left_nritems <= 0);
2615
2616         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2617         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2618                 u32 ioff;
2619
2620                 item = btrfs_item_nr(left, i);
2621
2622                 ioff = btrfs_token_item_offset(left, item, &token);
2623                 btrfs_set_token_item_offset(left, item,
2624                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
2625                       &token);
2626         }
2627         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2628
2629         /* fixup right node */
2630         if (push_items > right_nritems) {
2631                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2632                        right_nritems);
2633                 WARN_ON(1);
2634         }
2635
2636         if (push_items < right_nritems) {
2637                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2638                                                   leaf_data_end(root, right);
2639                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2640                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2641                                       btrfs_leaf_data(right) +
2642                                       leaf_data_end(root, right), push_space);
2643
2644                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2645                               btrfs_item_nr_offset(push_items),
2646                              (btrfs_header_nritems(right) - push_items) *
2647                              sizeof(struct btrfs_item));
2648         }
2649         right_nritems -= push_items;
2650         btrfs_set_header_nritems(right, right_nritems);
2651         push_space = BTRFS_LEAF_DATA_SIZE(root);
2652         for (i = 0; i < right_nritems; i++) {
2653                 item = btrfs_item_nr(right, i);
2654
2655                 push_space = push_space - btrfs_token_item_size(right,
2656                                                                 item, &token);
2657                 btrfs_set_token_item_offset(right, item, push_space, &token);
2658         }
2659
2660         btrfs_mark_buffer_dirty(left);
2661         if (right_nritems)
2662                 btrfs_mark_buffer_dirty(right);
2663         else
2664                 clean_tree_block(trans, root, right);
2665
2666         btrfs_item_key(right, &disk_key, 0);
2667         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2668         if (wret)
2669                 ret = wret;
2670
2671         /* then fixup the leaf pointer in the path */
2672         if (path->slots[0] < push_items) {
2673                 path->slots[0] += old_left_nritems;
2674                 btrfs_tree_unlock(path->nodes[0]);
2675                 free_extent_buffer(path->nodes[0]);
2676                 path->nodes[0] = left;
2677                 path->slots[1] -= 1;
2678         } else {
2679                 btrfs_tree_unlock(left);
2680                 free_extent_buffer(left);
2681                 path->slots[0] -= push_items;
2682         }
2683         BUG_ON(path->slots[0] < 0);
2684         return ret;
2685 out:
2686         btrfs_tree_unlock(left);
2687         free_extent_buffer(left);
2688         return ret;
2689 }
2690
2691 /*
2692  * push some data in the path leaf to the left, trying to free up at
2693  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2694  *
2695  * max_slot can put a limit on how far into the leaf we'll push items.  The
2696  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2697  * items
2698  */
2699 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2700                           *root, struct btrfs_path *path, int min_data_size,
2701                           int data_size, int empty, u32 max_slot)
2702 {
2703         struct extent_buffer *right = path->nodes[0];
2704         struct extent_buffer *left;
2705         int slot;
2706         int free_space;
2707         u32 right_nritems;
2708         int ret = 0;
2709
2710         slot = path->slots[1];
2711         if (slot == 0)
2712                 return 1;
2713         if (!path->nodes[1])
2714                 return 1;
2715
2716         right_nritems = btrfs_header_nritems(right);
2717         if (right_nritems == 0)
2718                 return 1;
2719
2720         btrfs_assert_tree_locked(path->nodes[1]);
2721
2722         left = read_node_slot(root, path->nodes[1], slot - 1);
2723         if (left == NULL)
2724                 return 1;
2725
2726         btrfs_tree_lock(left);
2727         btrfs_set_lock_blocking(left);
2728
2729         free_space = btrfs_leaf_free_space(root, left);
2730         if (free_space < data_size) {
2731                 ret = 1;
2732                 goto out;
2733         }
2734
2735         /* cow and double check */
2736         ret = btrfs_cow_block(trans, root, left,
2737                               path->nodes[1], slot - 1, &left);
2738         if (ret) {
2739                 /* we hit -ENOSPC, but it isn't fatal here */
2740                 ret = 1;
2741                 goto out;
2742         }
2743
2744         free_space = btrfs_leaf_free_space(root, left);
2745         if (free_space < data_size) {
2746                 ret = 1;
2747                 goto out;
2748         }
2749
2750         return __push_leaf_left(trans, root, path, min_data_size,
2751                                empty, left, free_space, right_nritems,
2752                                max_slot);
2753 out:
2754         btrfs_tree_unlock(left);
2755         free_extent_buffer(left);
2756         return ret;
2757 }
2758
2759 /*
2760  * split the path's leaf in two, making sure there is at least data_size
2761  * available for the resulting leaf level of the path.
2762  *
2763  * returns 0 if all went well and < 0 on failure.
2764  */
2765 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2766                                struct btrfs_root *root,
2767                                struct btrfs_path *path,
2768                                struct extent_buffer *l,
2769                                struct extent_buffer *right,
2770                                int slot, int mid, int nritems)
2771 {
2772         int data_copy_size;
2773         int rt_data_off;
2774         int i;
2775         int ret = 0;
2776         int wret;
2777         struct btrfs_disk_key disk_key;
2778         struct btrfs_map_token token;
2779
2780         btrfs_init_map_token(&token);
2781
2782         nritems = nritems - mid;
2783         btrfs_set_header_nritems(right, nritems);
2784         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2785
2786         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2787                            btrfs_item_nr_offset(mid),
2788                            nritems * sizeof(struct btrfs_item));
2789
2790         copy_extent_buffer(right, l,
2791                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2792                      data_copy_size, btrfs_leaf_data(l) +
2793                      leaf_data_end(root, l), data_copy_size);
2794
2795         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2796                       btrfs_item_end_nr(l, mid);
2797
2798         for (i = 0; i < nritems; i++) {
2799                 struct btrfs_item *item = btrfs_item_nr(right, i);
2800                 u32 ioff;
2801
2802                 ioff = btrfs_token_item_offset(right, item, &token);
2803                 btrfs_set_token_item_offset(right, item,
2804                                             ioff + rt_data_off, &token);
2805         }
2806
2807         btrfs_set_header_nritems(l, mid);
2808         ret = 0;
2809         btrfs_item_key(right, &disk_key, 0);
2810         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2811                           path->slots[1] + 1, 1);
2812         if (wret)
2813                 ret = wret;
2814
2815         btrfs_mark_buffer_dirty(right);
2816         btrfs_mark_buffer_dirty(l);
2817         BUG_ON(path->slots[0] != slot);
2818
2819         if (mid <= slot) {
2820                 btrfs_tree_unlock(path->nodes[0]);
2821                 free_extent_buffer(path->nodes[0]);
2822                 path->nodes[0] = right;
2823                 path->slots[0] -= mid;
2824                 path->slots[1] += 1;
2825         } else {
2826                 btrfs_tree_unlock(right);
2827                 free_extent_buffer(right);
2828         }
2829
2830         BUG_ON(path->slots[0] < 0);
2831
2832         return ret;
2833 }
2834
2835 /*
2836  * double splits happen when we need to insert a big item in the middle
2837  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2838  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2839  *          A                 B                 C
2840  *
2841  * We avoid this by trying to push the items on either side of our target
2842  * into the adjacent leaves.  If all goes well we can avoid the double split
2843  * completely.
2844  */
2845 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2846                                           struct btrfs_root *root,
2847                                           struct btrfs_path *path,
2848                                           int data_size)
2849 {
2850         int ret;
2851         int progress = 0;
2852         int slot;
2853         u32 nritems;
2854
2855         slot = path->slots[0];
2856
2857         /*
2858          * try to push all the items after our slot into the
2859          * right leaf
2860          */
2861         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2862         if (ret < 0)
2863                 return ret;
2864
2865         if (ret == 0)
2866                 progress++;
2867
2868         nritems = btrfs_header_nritems(path->nodes[0]);
2869         /*
2870          * our goal is to get our slot at the start or end of a leaf.  If
2871          * we've done so we're done
2872          */
2873         if (path->slots[0] == 0 || path->slots[0] == nritems)
2874                 return 0;
2875
2876         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2877                 return 0;
2878
2879         /* try to push all the items before our slot into the next leaf */
2880         slot = path->slots[0];
2881         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2882         if (ret < 0)
2883                 return ret;
2884
2885         if (ret == 0)
2886                 progress++;
2887
2888         if (progress)
2889                 return 0;
2890         return 1;
2891 }
2892
2893 /*
2894  * split the path's leaf in two, making sure there is at least data_size
2895  * available for the resulting leaf level of the path.
2896  *
2897  * returns 0 if all went well and < 0 on failure.
2898  */
2899 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2900                                struct btrfs_root *root,
2901                                struct btrfs_key *ins_key,
2902                                struct btrfs_path *path, int data_size,
2903                                int extend)
2904 {
2905         struct btrfs_disk_key disk_key;
2906         struct extent_buffer *l;
2907         u32 nritems;
2908         int mid;
2909         int slot;
2910         struct extent_buffer *right;
2911         int ret = 0;
2912         int wret;
2913         int split;
2914         int num_doubles = 0;
2915         int tried_avoid_double = 0;
2916
2917         l = path->nodes[0];
2918         slot = path->slots[0];
2919         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2920             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2921                 return -EOVERFLOW;
2922
2923         /* first try to make some room by pushing left and right */
2924         if (data_size) {
2925                 wret = push_leaf_right(trans, root, path, data_size,
2926                                        data_size, 0, 0);
2927                 if (wret < 0)
2928                         return wret;
2929                 if (wret) {
2930                         wret = push_leaf_left(trans, root, path, data_size,
2931                                               data_size, 0, (u32)-1);
2932                         if (wret < 0)
2933                                 return wret;
2934                 }
2935                 l = path->nodes[0];
2936
2937                 /* did the pushes work? */
2938                 if (btrfs_leaf_free_space(root, l) >= data_size)
2939                         return 0;
2940         }
2941
2942         if (!path->nodes[1]) {
2943                 ret = insert_new_root(trans, root, path, 1);
2944                 if (ret)
2945                         return ret;
2946         }
2947 again:
2948         split = 1;
2949         l = path->nodes[0];
2950         slot = path->slots[0];
2951         nritems = btrfs_header_nritems(l);
2952         mid = (nritems + 1) / 2;
2953
2954         if (mid <= slot) {
2955                 if (nritems == 1 ||
2956                     leaf_space_used(l, mid, nritems - mid) + data_size >
2957                         BTRFS_LEAF_DATA_SIZE(root)) {
2958                         if (slot >= nritems) {
2959                                 split = 0;
2960                         } else {
2961                                 mid = slot;
2962                                 if (mid != nritems &&
2963                                     leaf_space_used(l, mid, nritems - mid) +
2964                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2965                                         if (data_size && !tried_avoid_double)
2966                                                 goto push_for_double;
2967                                         split = 2;
2968                                 }
2969                         }
2970                 }
2971         } else {
2972                 if (leaf_space_used(l, 0, mid) + data_size >
2973                         BTRFS_LEAF_DATA_SIZE(root)) {
2974                         if (!extend && data_size && slot == 0) {
2975                                 split = 0;
2976                         } else if ((extend || !data_size) && slot == 0) {
2977                                 mid = 1;
2978                         } else {
2979                                 mid = slot;
2980                                 if (mid != nritems &&
2981                                     leaf_space_used(l, mid, nritems - mid) +
2982                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2983                                         if (data_size && !tried_avoid_double)
2984                                                 goto push_for_double;
2985                                         split = 2 ;
2986                                 }
2987                         }
2988                 }
2989         }
2990
2991         if (split == 0)
2992                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2993         else
2994                 btrfs_item_key(l, &disk_key, mid);
2995
2996         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2997                                         root->root_key.objectid,
2998                                         &disk_key, 0, l->start, 0, 0);
2999         if (IS_ERR(right))
3000                 return PTR_ERR(right);
3001
3002         root_add_used(root, root->leafsize);
3003
3004         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3005         btrfs_set_header_bytenr(right, right->start);
3006         btrfs_set_header_generation(right, trans->transid);
3007         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3008         btrfs_set_header_owner(right, root->root_key.objectid);
3009         btrfs_set_header_level(right, 0);
3010         write_extent_buffer(right, root->fs_info->fsid,
3011                             (unsigned long)btrfs_header_fsid(right),
3012                             BTRFS_FSID_SIZE);
3013
3014         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3015                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3016                             BTRFS_UUID_SIZE);
3017
3018         if (split == 0) {
3019                 if (mid <= slot) {
3020                         btrfs_set_header_nritems(right, 0);
3021                         wret = insert_ptr(trans, root, path,
3022                                           &disk_key, right->start,
3023                                           path->slots[1] + 1, 1);
3024                         if (wret)
3025                                 ret = wret;
3026
3027                         btrfs_tree_unlock(path->nodes[0]);
3028                         free_extent_buffer(path->nodes[0]);
3029                         path->nodes[0] = right;
3030                         path->slots[0] = 0;
3031                         path->slots[1] += 1;
3032                 } else {
3033                         btrfs_set_header_nritems(right, 0);
3034                         wret = insert_ptr(trans, root, path,
3035                                           &disk_key,
3036                                           right->start,
3037                                           path->slots[1], 1);
3038                         if (wret)
3039                                 ret = wret;
3040                         btrfs_tree_unlock(path->nodes[0]);
3041                         free_extent_buffer(path->nodes[0]);
3042                         path->nodes[0] = right;
3043                         path->slots[0] = 0;
3044                         if (path->slots[1] == 0) {
3045                                 wret = fixup_low_keys(trans, root,
3046                                                 path, &disk_key, 1);
3047                                 if (wret)
3048                                         ret = wret;
3049                         }
3050                 }
3051                 btrfs_mark_buffer_dirty(right);
3052                 return ret;
3053         }
3054
3055         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3056         BUG_ON(ret);
3057
3058         if (split == 2) {
3059                 BUG_ON(num_doubles != 0);
3060                 num_doubles++;
3061                 goto again;
3062         }
3063
3064         return ret;
3065
3066 push_for_double:
3067         push_for_double_split(trans, root, path, data_size);
3068         tried_avoid_double = 1;
3069         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3070                 return 0;
3071         goto again;
3072 }
3073
3074 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3075                                          struct btrfs_root *root,
3076                                          struct btrfs_path *path, int ins_len)
3077 {
3078         struct btrfs_key key;
3079         struct extent_buffer *leaf;
3080         struct btrfs_file_extent_item *fi;
3081         u64 extent_len = 0;
3082         u32 item_size;
3083         int ret;
3084
3085         leaf = path->nodes[0];
3086         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3087
3088         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3089                key.type != BTRFS_EXTENT_CSUM_KEY);
3090
3091         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3092                 return 0;
3093
3094         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3095         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3096                 fi = btrfs_item_ptr(leaf, path->slots[0],
3097                                     struct btrfs_file_extent_item);
3098                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3099         }
3100         btrfs_release_path(path);
3101
3102         path->keep_locks = 1;
3103         path->search_for_split = 1;
3104         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3105         path->search_for_split = 0;
3106         if (ret < 0)
3107                 goto err;
3108
3109         ret = -EAGAIN;
3110         leaf = path->nodes[0];
3111         /* if our item isn't there or got smaller, return now */
3112         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3113                 goto err;
3114
3115         /* the leaf has  changed, it now has room.  return now */
3116         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3117                 goto err;
3118
3119         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3120                 fi = btrfs_item_ptr(leaf, path->slots[0],
3121                                     struct btrfs_file_extent_item);
3122                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3123                         goto err;
3124         }
3125
3126         btrfs_set_path_blocking(path);
3127         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3128         if (ret)
3129                 goto err;
3130
3131         path->keep_locks = 0;
3132         btrfs_unlock_up_safe(path, 1);
3133         return 0;
3134 err:
3135         path->keep_locks = 0;
3136         return ret;
3137 }
3138
3139 static noinline int split_item(struct btrfs_trans_handle *trans,
3140                                struct btrfs_root *root,
3141                                struct btrfs_path *path,
3142                                struct btrfs_key *new_key,
3143                                unsigned long split_offset)
3144 {
3145         struct extent_buffer *leaf;
3146         struct btrfs_item *item;
3147         struct btrfs_item *new_item;
3148         int slot;
3149         char *buf;
3150         u32 nritems;
3151         u32 item_size;
3152         u32 orig_offset;
3153         struct btrfs_disk_key disk_key;
3154
3155         leaf = path->nodes[0];
3156         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3157
3158         btrfs_set_path_blocking(path);
3159
3160         item = btrfs_item_nr(leaf, path->slots[0]);
3161         orig_offset = btrfs_item_offset(leaf, item);
3162         item_size = btrfs_item_size(leaf, item);
3163
3164         buf = kmalloc(item_size, GFP_NOFS);
3165         if (!buf)
3166                 return -ENOMEM;
3167
3168         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3169                             path->slots[0]), item_size);
3170
3171         slot = path->slots[0] + 1;
3172         nritems = btrfs_header_nritems(leaf);
3173         if (slot != nritems) {
3174                 /* shift the items */
3175                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3176                                 btrfs_item_nr_offset(slot),
3177                                 (nritems - slot) * sizeof(struct btrfs_item));
3178         }
3179
3180         btrfs_cpu_key_to_disk(&disk_key, new_key);
3181         btrfs_set_item_key(leaf, &disk_key, slot);
3182
3183         new_item = btrfs_item_nr(leaf, slot);
3184
3185         btrfs_set_item_offset(leaf, new_item, orig_offset);
3186         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3187
3188         btrfs_set_item_offset(leaf, item,
3189                               orig_offset + item_size - split_offset);
3190         btrfs_set_item_size(leaf, item, split_offset);
3191
3192         btrfs_set_header_nritems(leaf, nritems + 1);
3193
3194         /* write the data for the start of the original item */
3195         write_extent_buffer(leaf, buf,
3196                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3197                             split_offset);
3198
3199         /* write the data for the new item */
3200         write_extent_buffer(leaf, buf + split_offset,
3201                             btrfs_item_ptr_offset(leaf, slot),
3202                             item_size - split_offset);
3203         btrfs_mark_buffer_dirty(leaf);
3204
3205         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3206         kfree(buf);
3207         return 0;
3208 }
3209
3210 /*
3211  * This function splits a single item into two items,
3212  * giving 'new_key' to the new item and splitting the
3213  * old one at split_offset (from the start of the item).
3214  *
3215  * The path may be released by this operation.  After
3216  * the split, the path is pointing to the old item.  The
3217  * new item is going to be in the same node as the old one.
3218  *
3219  * Note, the item being split must be smaller enough to live alone on
3220  * a tree block with room for one extra struct btrfs_item
3221  *
3222  * This allows us to split the item in place, keeping a lock on the
3223  * leaf the entire time.
3224  */
3225 int btrfs_split_item(struct btrfs_trans_handle *trans,
3226                      struct btrfs_root *root,
3227                      struct btrfs_path *path,
3228                      struct btrfs_key *new_key,
3229                      unsigned long split_offset)
3230 {
3231         int ret;
3232         ret = setup_leaf_for_split(trans, root, path,
3233                                    sizeof(struct btrfs_item));
3234         if (ret)
3235                 return ret;
3236
3237         ret = split_item(trans, root, path, new_key, split_offset);
3238         return ret;
3239 }
3240
3241 /*
3242  * This function duplicate a item, giving 'new_key' to the new item.
3243  * It guarantees both items live in the same tree leaf and the new item
3244  * is contiguous with the original item.
3245  *
3246  * This allows us to split file extent in place, keeping a lock on the
3247  * leaf the entire time.
3248  */
3249 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3250                          struct btrfs_root *root,
3251                          struct btrfs_path *path,
3252                          struct btrfs_key *new_key)
3253 {
3254         struct extent_buffer *leaf;
3255         int ret;
3256         u32 item_size;
3257
3258         leaf = path->nodes[0];
3259         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3260         ret = setup_leaf_for_split(trans, root, path,
3261                                    item_size + sizeof(struct btrfs_item));
3262         if (ret)
3263                 return ret;
3264
3265         path->slots[0]++;
3266         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3267                                      item_size, item_size +
3268                                      sizeof(struct btrfs_item), 1);
3269         BUG_ON(ret);
3270
3271         leaf = path->nodes[0];
3272         memcpy_extent_buffer(leaf,
3273                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3274                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3275                              item_size);
3276         return 0;
3277 }
3278
3279 /*
3280  * make the item pointed to by the path smaller.  new_size indicates
3281  * how small to make it, and from_end tells us if we just chop bytes
3282  * off the end of the item or if we shift the item to chop bytes off
3283  * the front.
3284  */
3285 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3286                         struct btrfs_root *root,
3287                         struct btrfs_path *path,
3288                         u32 new_size, int from_end)
3289 {
3290         int slot;
3291         struct extent_buffer *leaf;
3292         struct btrfs_item *item;
3293         u32 nritems;
3294         unsigned int data_end;
3295         unsigned int old_data_start;
3296         unsigned int old_size;
3297         unsigned int size_diff;
3298         int i;
3299         struct btrfs_map_token token;
3300
3301         btrfs_init_map_token(&token);
3302
3303         leaf = path->nodes[0];
3304         slot = path->slots[0];
3305
3306         old_size = btrfs_item_size_nr(leaf, slot);
3307         if (old_size == new_size)
3308                 return 0;
3309
3310         nritems = btrfs_header_nritems(leaf);
3311         data_end = leaf_data_end(root, leaf);
3312
3313         old_data_start = btrfs_item_offset_nr(leaf, slot);
3314
3315         size_diff = old_size - new_size;
3316
3317         BUG_ON(slot < 0);
3318         BUG_ON(slot >= nritems);
3319
3320         /*
3321          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3322          */
3323         /* first correct the data pointers */
3324         for (i = slot; i < nritems; i++) {
3325                 u32 ioff;
3326                 item = btrfs_item_nr(leaf, i);
3327
3328                 ioff = btrfs_token_item_offset(leaf, item, &token);
3329                 btrfs_set_token_item_offset(leaf, item,
3330                                             ioff + size_diff, &token);
3331         }
3332
3333         /* shift the data */
3334         if (from_end) {
3335                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3336                               data_end + size_diff, btrfs_leaf_data(leaf) +
3337                               data_end, old_data_start + new_size - data_end);
3338         } else {
3339                 struct btrfs_disk_key disk_key;
3340                 u64 offset;
3341
3342                 btrfs_item_key(leaf, &disk_key, slot);
3343
3344                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3345                         unsigned long ptr;
3346                         struct btrfs_file_extent_item *fi;
3347
3348                         fi = btrfs_item_ptr(leaf, slot,
3349                                             struct btrfs_file_extent_item);
3350                         fi = (struct btrfs_file_extent_item *)(
3351                              (unsigned long)fi - size_diff);
3352
3353                         if (btrfs_file_extent_type(leaf, fi) ==
3354                             BTRFS_FILE_EXTENT_INLINE) {
3355                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3356                                 memmove_extent_buffer(leaf, ptr,
3357                                       (unsigned long)fi,
3358                                       offsetof(struct btrfs_file_extent_item,
3359                                                  disk_bytenr));
3360                         }
3361                 }
3362
3363                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3364                               data_end + size_diff, btrfs_leaf_data(leaf) +
3365                               data_end, old_data_start - data_end);
3366
3367                 offset = btrfs_disk_key_offset(&disk_key);
3368                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3369                 btrfs_set_item_key(leaf, &disk_key, slot);
3370                 if (slot == 0)
3371                         fixup_low_keys(trans, root, path, &disk_key, 1);
3372         }
3373
3374         item = btrfs_item_nr(leaf, slot);
3375         btrfs_set_item_size(leaf, item, new_size);
3376         btrfs_mark_buffer_dirty(leaf);
3377
3378         if (btrfs_leaf_free_space(root, leaf) < 0) {
3379                 btrfs_print_leaf(root, leaf);
3380                 BUG();
3381         }
3382         return 0;
3383 }
3384
3385 /*
3386  * make the item pointed to by the path bigger, data_size is the new size.
3387  */
3388 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3389                       struct btrfs_root *root, struct btrfs_path *path,
3390                       u32 data_size)
3391 {
3392         int slot;
3393         struct extent_buffer *leaf;
3394         struct btrfs_item *item;
3395         u32 nritems;
3396         unsigned int data_end;
3397         unsigned int old_data;
3398         unsigned int old_size;
3399         int i;
3400         struct btrfs_map_token token;
3401
3402         btrfs_init_map_token(&token);
3403
3404         leaf = path->nodes[0];
3405
3406         nritems = btrfs_header_nritems(leaf);
3407         data_end = leaf_data_end(root, leaf);
3408
3409         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3410                 btrfs_print_leaf(root, leaf);
3411                 BUG();
3412         }
3413         slot = path->slots[0];
3414         old_data = btrfs_item_end_nr(leaf, slot);
3415
3416         BUG_ON(slot < 0);
3417         if (slot >= nritems) {
3418                 btrfs_print_leaf(root, leaf);
3419                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3420                        slot, nritems);
3421                 BUG_ON(1);
3422         }
3423
3424         /*
3425          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3426          */
3427         /* first correct the data pointers */
3428         for (i = slot; i < nritems; i++) {
3429                 u32 ioff;
3430                 item = btrfs_item_nr(leaf, i);
3431
3432                 ioff = btrfs_token_item_offset(leaf, item, &token);
3433                 btrfs_set_token_item_offset(leaf, item,
3434                                             ioff - data_size, &token);
3435         }
3436
3437         /* shift the data */
3438         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3439                       data_end - data_size, btrfs_leaf_data(leaf) +
3440                       data_end, old_data - data_end);
3441
3442         data_end = old_data;
3443         old_size = btrfs_item_size_nr(leaf, slot);
3444         item = btrfs_item_nr(leaf, slot);
3445         btrfs_set_item_size(leaf, item, old_size + data_size);
3446         btrfs_mark_buffer_dirty(leaf);
3447
3448         if (btrfs_leaf_free_space(root, leaf) < 0) {
3449                 btrfs_print_leaf(root, leaf);
3450                 BUG();
3451         }
3452         return 0;
3453 }
3454
3455 /*
3456  * Given a key and some data, insert items into the tree.
3457  * This does all the path init required, making room in the tree if needed.
3458  * Returns the number of keys that were inserted.
3459  */
3460 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3461                             struct btrfs_root *root,
3462                             struct btrfs_path *path,
3463                             struct btrfs_key *cpu_key, u32 *data_size,
3464                             int nr)
3465 {
3466         struct extent_buffer *leaf;
3467         struct btrfs_item *item;
3468         int ret = 0;
3469         int slot;
3470         int i;
3471         u32 nritems;
3472         u32 total_data = 0;
3473         u32 total_size = 0;
3474         unsigned int data_end;
3475         struct btrfs_disk_key disk_key;
3476         struct btrfs_key found_key;
3477         struct btrfs_map_token token;
3478
3479         btrfs_init_map_token(&token);
3480
3481         for (i = 0; i < nr; i++) {
3482                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3483                     BTRFS_LEAF_DATA_SIZE(root)) {
3484                         break;
3485                         nr = i;
3486                 }
3487                 total_data += data_size[i];
3488                 total_size += data_size[i] + sizeof(struct btrfs_item);
3489         }
3490         BUG_ON(nr == 0);
3491
3492         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3493         if (ret == 0)
3494                 return -EEXIST;
3495         if (ret < 0)
3496                 goto out;
3497
3498         leaf = path->nodes[0];
3499
3500         nritems = btrfs_header_nritems(leaf);
3501         data_end = leaf_data_end(root, leaf);
3502
3503         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3504                 for (i = nr; i >= 0; i--) {
3505                         total_data -= data_size[i];
3506                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3507                         if (total_size < btrfs_leaf_free_space(root, leaf))
3508                                 break;
3509                 }
3510                 nr = i;
3511         }
3512
3513         slot = path->slots[0];
3514         BUG_ON(slot < 0);
3515
3516         if (slot != nritems) {
3517                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3518
3519                 item = btrfs_item_nr(leaf, slot);
3520                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3521
3522                 /* figure out how many keys we can insert in here */
3523                 total_data = data_size[0];
3524                 for (i = 1; i < nr; i++) {
3525                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3526                                 break;
3527                         total_data += data_size[i];
3528                 }
3529                 nr = i;
3530
3531                 if (old_data < data_end) {
3532                         btrfs_print_leaf(root, leaf);
3533                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3534                                slot, old_data, data_end);
3535                         BUG_ON(1);
3536                 }
3537                 /*
3538                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3539                  */
3540                 /* first correct the data pointers */
3541                 for (i = slot; i < nritems; i++) {
3542                         u32 ioff;
3543
3544                         item = btrfs_item_nr(leaf, i);
3545                         ioff = btrfs_token_item_offset(leaf, item, &token);
3546                         btrfs_set_token_item_offset(leaf, item,
3547                                                     ioff - total_data, &token);
3548                 }
3549                 /* shift the items */
3550                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3551                               btrfs_item_nr_offset(slot),
3552                               (nritems - slot) * sizeof(struct btrfs_item));
3553
3554                 /* shift the data */
3555                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3556                               data_end - total_data, btrfs_leaf_data(leaf) +
3557                               data_end, old_data - data_end);
3558                 data_end = old_data;
3559         } else {
3560                 /*
3561                  * this sucks but it has to be done, if we are inserting at
3562                  * the end of the leaf only insert 1 of the items, since we
3563                  * have no way of knowing whats on the next leaf and we'd have
3564                  * to drop our current locks to figure it out
3565                  */
3566                 nr = 1;
3567         }
3568
3569         /* setup the item for the new data */
3570         for (i = 0; i < nr; i++) {
3571                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3572                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3573                 item = btrfs_item_nr(leaf, slot + i);
3574                 btrfs_set_token_item_offset(leaf, item,
3575                                             data_end - data_size[i], &token);
3576                 data_end -= data_size[i];
3577                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3578         }
3579         btrfs_set_header_nritems(leaf, nritems + nr);
3580         btrfs_mark_buffer_dirty(leaf);
3581
3582         ret = 0;
3583         if (slot == 0) {
3584                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3585                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3586         }
3587
3588         if (btrfs_leaf_free_space(root, leaf) < 0) {
3589                 btrfs_print_leaf(root, leaf);
3590                 BUG();
3591         }
3592 out:
3593         if (!ret)
3594                 ret = nr;
3595         return ret;
3596 }
3597
3598 /*
3599  * this is a helper for btrfs_insert_empty_items, the main goal here is
3600  * to save stack depth by doing the bulk of the work in a function
3601  * that doesn't call btrfs_search_slot
3602  */
3603 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3604                            struct btrfs_root *root, struct btrfs_path *path,
3605                            struct btrfs_key *cpu_key, u32 *data_size,
3606                            u32 total_data, u32 total_size, int nr)
3607 {
3608         struct btrfs_item *item;
3609         int i;
3610         u32 nritems;
3611         unsigned int data_end;
3612         struct btrfs_disk_key disk_key;
3613         int ret;
3614         struct extent_buffer *leaf;
3615         int slot;
3616         struct btrfs_map_token token;
3617
3618         btrfs_init_map_token(&token);
3619
3620         leaf = path->nodes[0];
3621         slot = path->slots[0];
3622
3623         nritems = btrfs_header_nritems(leaf);
3624         data_end = leaf_data_end(root, leaf);
3625
3626         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3627                 btrfs_print_leaf(root, leaf);
3628                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3629                        total_size, btrfs_leaf_free_space(root, leaf));
3630                 BUG();
3631         }
3632
3633         if (slot != nritems) {
3634                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3635
3636                 if (old_data < data_end) {
3637                         btrfs_print_leaf(root, leaf);
3638                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3639                                slot, old_data, data_end);
3640                         BUG_ON(1);
3641                 }
3642                 /*
3643                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3644                  */
3645                 /* first correct the data pointers */
3646                 for (i = slot; i < nritems; i++) {
3647                         u32 ioff;
3648
3649                         item = btrfs_item_nr(leaf, i);
3650                         ioff = btrfs_token_item_offset(leaf, item, &token);
3651                         btrfs_set_token_item_offset(leaf, item,
3652                                                     ioff - total_data, &token);
3653                 }
3654                 /* shift the items */
3655                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3656                               btrfs_item_nr_offset(slot),
3657                               (nritems - slot) * sizeof(struct btrfs_item));
3658
3659                 /* shift the data */
3660                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3661                               data_end - total_data, btrfs_leaf_data(leaf) +
3662                               data_end, old_data - data_end);
3663                 data_end = old_data;
3664         }
3665
3666         /* setup the item for the new data */
3667         for (i = 0; i < nr; i++) {
3668                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3669                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3670                 item = btrfs_item_nr(leaf, slot + i);
3671                 btrfs_set_token_item_offset(leaf, item,
3672                                             data_end - data_size[i], &token);
3673                 data_end -= data_size[i];
3674                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3675         }
3676
3677         btrfs_set_header_nritems(leaf, nritems + nr);
3678
3679         ret = 0;
3680         if (slot == 0) {
3681                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3682                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3683         }
3684         btrfs_unlock_up_safe(path, 1);
3685         btrfs_mark_buffer_dirty(leaf);
3686
3687         if (btrfs_leaf_free_space(root, leaf) < 0) {
3688                 btrfs_print_leaf(root, leaf);
3689                 BUG();
3690         }
3691         return ret;
3692 }
3693
3694 /*
3695  * Given a key and some data, insert items into the tree.
3696  * This does all the path init required, making room in the tree if needed.
3697  */
3698 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3699                             struct btrfs_root *root,
3700                             struct btrfs_path *path,
3701                             struct btrfs_key *cpu_key, u32 *data_size,
3702                             int nr)
3703 {
3704         int ret = 0;
3705         int slot;
3706         int i;
3707         u32 total_size = 0;
3708         u32 total_data = 0;
3709
3710         for (i = 0; i < nr; i++)
3711                 total_data += data_size[i];
3712
3713         total_size = total_data + (nr * sizeof(struct btrfs_item));
3714         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3715         if (ret == 0)
3716                 return -EEXIST;
3717         if (ret < 0)
3718                 goto out;
3719
3720         slot = path->slots[0];
3721         BUG_ON(slot < 0);
3722
3723         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3724                                total_data, total_size, nr);
3725
3726 out:
3727         return ret;
3728 }
3729
3730 /*
3731  * Given a key and some data, insert an item into the tree.
3732  * This does all the path init required, making room in the tree if needed.
3733  */
3734 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3735                       *root, struct btrfs_key *cpu_key, void *data, u32
3736                       data_size)
3737 {
3738         int ret = 0;
3739         struct btrfs_path *path;
3740         struct extent_buffer *leaf;
3741         unsigned long ptr;
3742
3743         path = btrfs_alloc_path();
3744         if (!path)
3745                 return -ENOMEM;
3746         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3747         if (!ret) {
3748                 leaf = path->nodes[0];
3749                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3750                 write_extent_buffer(leaf, data, ptr, data_size);
3751                 btrfs_mark_buffer_dirty(leaf);
3752         }
3753         btrfs_free_path(path);
3754         return ret;
3755 }
3756
3757 /*
3758  * delete the pointer from a given node.
3759  *
3760  * the tree should have been previously balanced so the deletion does not
3761  * empty a node.
3762  */
3763 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3764                    struct btrfs_path *path, int level, int slot)
3765 {
3766         struct extent_buffer *parent = path->nodes[level];
3767         u32 nritems;
3768         int ret = 0;
3769         int wret;
3770
3771         nritems = btrfs_header_nritems(parent);
3772         if (slot != nritems - 1) {
3773                 memmove_extent_buffer(parent,
3774                               btrfs_node_key_ptr_offset(slot),
3775                               btrfs_node_key_ptr_offset(slot + 1),
3776                               sizeof(struct btrfs_key_ptr) *
3777                               (nritems - slot - 1));
3778         }
3779         nritems--;
3780         btrfs_set_header_nritems(parent, nritems);
3781         if (nritems == 0 && parent == root->node) {
3782                 BUG_ON(btrfs_header_level(root->node) != 1);
3783                 /* just turn the root into a leaf and break */
3784                 btrfs_set_header_level(root->node, 0);
3785         } else if (slot == 0) {
3786                 struct btrfs_disk_key disk_key;
3787
3788                 btrfs_node_key(parent, &disk_key, 0);
3789                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3790                 if (wret)
3791                         ret = wret;
3792         }
3793         btrfs_mark_buffer_dirty(parent);
3794         return ret;
3795 }
3796
3797 /*
3798  * a helper function to delete the leaf pointed to by path->slots[1] and
3799  * path->nodes[1].
3800  *
3801  * This deletes the pointer in path->nodes[1] and frees the leaf
3802  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3803  *
3804  * The path must have already been setup for deleting the leaf, including
3805  * all the proper balancing.  path->nodes[1] must be locked.
3806  */
3807 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3808                                    struct btrfs_root *root,
3809                                    struct btrfs_path *path,
3810                                    struct extent_buffer *leaf)
3811 {
3812         int ret;
3813
3814         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3815         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3816         if (ret)
3817                 return ret;
3818
3819         /*
3820          * btrfs_free_extent is expensive, we want to make sure we
3821          * aren't holding any locks when we call it
3822          */
3823         btrfs_unlock_up_safe(path, 0);
3824
3825         root_sub_used(root, leaf->len);
3826
3827         extent_buffer_get(leaf);
3828         btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3829         free_extent_buffer_stale(leaf);
3830         return 0;
3831 }
3832 /*
3833  * delete the item at the leaf level in path.  If that empties
3834  * the leaf, remove it from the tree
3835  */
3836 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3837                     struct btrfs_path *path, int slot, int nr)
3838 {
3839         struct extent_buffer *leaf;
3840         struct btrfs_item *item;
3841         int last_off;
3842         int dsize = 0;
3843         int ret = 0;
3844         int wret;
3845         int i;
3846         u32 nritems;
3847         struct btrfs_map_token token;
3848
3849         btrfs_init_map_token(&token);
3850
3851         leaf = path->nodes[0];
3852         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3853
3854         for (i = 0; i < nr; i++)
3855                 dsize += btrfs_item_size_nr(leaf, slot + i);
3856
3857         nritems = btrfs_header_nritems(leaf);
3858
3859         if (slot + nr != nritems) {
3860                 int data_end = leaf_data_end(root, leaf);
3861
3862                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3863                               data_end + dsize,
3864                               btrfs_leaf_data(leaf) + data_end,
3865                               last_off - data_end);
3866
3867                 for (i = slot + nr; i < nritems; i++) {
3868                         u32 ioff;
3869
3870                         item = btrfs_item_nr(leaf, i);
3871                         ioff = btrfs_token_item_offset(leaf, item, &token);
3872                         btrfs_set_token_item_offset(leaf, item,
3873                                                     ioff + dsize, &token);
3874                 }
3875
3876                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3877                               btrfs_item_nr_offset(slot + nr),
3878                               sizeof(struct btrfs_item) *
3879                               (nritems - slot - nr));
3880         }
3881         btrfs_set_header_nritems(leaf, nritems - nr);
3882         nritems -= nr;
3883
3884         /* delete the leaf if we've emptied it */
3885         if (nritems == 0) {
3886                 if (leaf == root->node) {
3887                         btrfs_set_header_level(leaf, 0);
3888                 } else {
3889                         btrfs_set_path_blocking(path);
3890                         clean_tree_block(trans, root, leaf);
3891                         ret = btrfs_del_leaf(trans, root, path, leaf);
3892                         BUG_ON(ret);
3893                 }
3894         } else {
3895                 int used = leaf_space_used(leaf, 0, nritems);
3896                 if (slot == 0) {
3897                         struct btrfs_disk_key disk_key;
3898
3899                         btrfs_item_key(leaf, &disk_key, 0);
3900                         wret = fixup_low_keys(trans, root, path,
3901                                               &disk_key, 1);
3902                         if (wret)
3903                                 ret = wret;
3904                 }
3905
3906                 /* delete the leaf if it is mostly empty */
3907                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3908                         /* push_leaf_left fixes the path.
3909                          * make sure the path still points to our leaf
3910                          * for possible call to del_ptr below
3911                          */
3912                         slot = path->slots[1];
3913                         extent_buffer_get(leaf);
3914
3915                         btrfs_set_path_blocking(path);
3916                         wret = push_leaf_left(trans, root, path, 1, 1,
3917                                               1, (u32)-1);
3918                         if (wret < 0 && wret != -ENOSPC)
3919                                 ret = wret;
3920
3921                         if (path->nodes[0] == leaf &&
3922                             btrfs_header_nritems(leaf)) {
3923                                 wret = push_leaf_right(trans, root, path, 1,
3924                                                        1, 1, 0);
3925                                 if (wret < 0 && wret != -ENOSPC)
3926                                         ret = wret;
3927                         }
3928
3929                         if (btrfs_header_nritems(leaf) == 0) {
3930                                 path->slots[1] = slot;
3931                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3932                                 BUG_ON(ret);
3933                                 free_extent_buffer(leaf);
3934                         } else {
3935                                 /* if we're still in the path, make sure
3936                                  * we're dirty.  Otherwise, one of the
3937                                  * push_leaf functions must have already
3938                                  * dirtied this buffer
3939                                  */
3940                                 if (path->nodes[0] == leaf)
3941                                         btrfs_mark_buffer_dirty(leaf);
3942                                 free_extent_buffer(leaf);
3943                         }
3944                 } else {
3945                         btrfs_mark_buffer_dirty(leaf);
3946                 }
3947         }
3948         return ret;
3949 }
3950
3951 /*
3952  * search the tree again to find a leaf with lesser keys
3953  * returns 0 if it found something or 1 if there are no lesser leaves.
3954  * returns < 0 on io errors.
3955  *
3956  * This may release the path, and so you may lose any locks held at the
3957  * time you call it.
3958  */
3959 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3960 {
3961         struct btrfs_key key;
3962         struct btrfs_disk_key found_key;
3963         int ret;
3964
3965         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3966
3967         if (key.offset > 0)
3968                 key.offset--;
3969         else if (key.type > 0)
3970                 key.type--;
3971         else if (key.objectid > 0)
3972                 key.objectid--;
3973         else
3974                 return 1;
3975
3976         btrfs_release_path(path);
3977         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3978         if (ret < 0)
3979                 return ret;
3980         btrfs_item_key(path->nodes[0], &found_key, 0);
3981         ret = comp_keys(&found_key, &key);
3982         if (ret < 0)
3983                 return 0;
3984         return 1;
3985 }
3986
3987 /*
3988  * A helper function to walk down the tree starting at min_key, and looking
3989  * for nodes or leaves that are either in cache or have a minimum
3990  * transaction id.  This is used by the btree defrag code, and tree logging
3991  *
3992  * This does not cow, but it does stuff the starting key it finds back
3993  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3994  * key and get a writable path.
3995  *
3996  * This does lock as it descends, and path->keep_locks should be set
3997  * to 1 by the caller.
3998  *
3999  * This honors path->lowest_level to prevent descent past a given level
4000  * of the tree.
4001  *
4002  * min_trans indicates the oldest transaction that you are interested
4003  * in walking through.  Any nodes or leaves older than min_trans are
4004  * skipped over (without reading them).
4005  *
4006  * returns zero if something useful was found, < 0 on error and 1 if there
4007  * was nothing in the tree that matched the search criteria.
4008  */
4009 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4010                          struct btrfs_key *max_key,
4011                          struct btrfs_path *path, int cache_only,
4012                          u64 min_trans)
4013 {
4014         struct extent_buffer *cur;
4015         struct btrfs_key found_key;
4016         int slot;
4017         int sret;
4018         u32 nritems;
4019         int level;
4020         int ret = 1;
4021
4022         WARN_ON(!path->keep_locks);
4023 again:
4024         cur = btrfs_read_lock_root_node(root);
4025         level = btrfs_header_level(cur);
4026         WARN_ON(path->nodes[level]);
4027         path->nodes[level] = cur;
4028         path->locks[level] = BTRFS_READ_LOCK;
4029
4030         if (btrfs_header_generation(cur) < min_trans) {
4031                 ret = 1;
4032                 goto out;
4033         }
4034         while (1) {
4035                 nritems = btrfs_header_nritems(cur);
4036                 level = btrfs_header_level(cur);
4037                 sret = bin_search(cur, min_key, level, &slot);
4038
4039                 /* at the lowest level, we're done, setup the path and exit */
4040                 if (level == path->lowest_level) {
4041                         if (slot >= nritems)
4042                                 goto find_next_key;
4043                         ret = 0;
4044                         path->slots[level] = slot;
4045                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4046                         goto out;
4047                 }
4048                 if (sret && slot > 0)
4049                         slot--;
4050                 /*
4051                  * check this node pointer against the cache_only and
4052                  * min_trans parameters.  If it isn't in cache or is too
4053                  * old, skip to the next one.
4054                  */
4055                 while (slot < nritems) {
4056                         u64 blockptr;
4057                         u64 gen;
4058                         struct extent_buffer *tmp;
4059                         struct btrfs_disk_key disk_key;
4060
4061                         blockptr = btrfs_node_blockptr(cur, slot);
4062                         gen = btrfs_node_ptr_generation(cur, slot);
4063                         if (gen < min_trans) {
4064                                 slot++;
4065                                 continue;
4066                         }
4067                         if (!cache_only)
4068                                 break;
4069
4070                         if (max_key) {
4071                                 btrfs_node_key(cur, &disk_key, slot);
4072                                 if (comp_keys(&disk_key, max_key) >= 0) {
4073                                         ret = 1;
4074                                         goto out;
4075                                 }
4076                         }
4077
4078                         tmp = btrfs_find_tree_block(root, blockptr,
4079                                             btrfs_level_size(root, level - 1));
4080
4081                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4082                                 free_extent_buffer(tmp);
4083                                 break;
4084                         }
4085                         if (tmp)
4086                                 free_extent_buffer(tmp);
4087                         slot++;
4088                 }
4089 find_next_key:
4090                 /*
4091                  * we didn't find a candidate key in this node, walk forward
4092                  * and find another one
4093                  */
4094                 if (slot >= nritems) {
4095                         path->slots[level] = slot;
4096                         btrfs_set_path_blocking(path);
4097                         sret = btrfs_find_next_key(root, path, min_key, level,
4098                                                   cache_only, min_trans);
4099                         if (sret == 0) {
4100                                 btrfs_release_path(path);
4101                                 goto again;
4102                         } else {
4103                                 goto out;
4104                         }
4105                 }
4106                 /* save our key for returning back */
4107                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4108                 path->slots[level] = slot;
4109                 if (level == path->lowest_level) {
4110                         ret = 0;
4111                         unlock_up(path, level, 1);
4112                         goto out;
4113                 }
4114                 btrfs_set_path_blocking(path);
4115                 cur = read_node_slot(root, cur, slot);
4116                 BUG_ON(!cur);
4117
4118                 btrfs_tree_read_lock(cur);
4119
4120                 path->locks[level - 1] = BTRFS_READ_LOCK;
4121                 path->nodes[level - 1] = cur;
4122                 unlock_up(path, level, 1);
4123                 btrfs_clear_path_blocking(path, NULL, 0);
4124         }
4125 out:
4126         if (ret == 0)
4127                 memcpy(min_key, &found_key, sizeof(found_key));
4128         btrfs_set_path_blocking(path);
4129         return ret;
4130 }
4131
4132 /*
4133  * this is similar to btrfs_next_leaf, but does not try to preserve
4134  * and fixup the path.  It looks for and returns the next key in the
4135  * tree based on the current path and the cache_only and min_trans
4136  * parameters.
4137  *
4138  * 0 is returned if another key is found, < 0 if there are any errors
4139  * and 1 is returned if there are no higher keys in the tree
4140  *
4141  * path->keep_locks should be set to 1 on the search made before
4142  * calling this function.
4143  */
4144 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4145                         struct btrfs_key *key, int level,
4146                         int cache_only, u64 min_trans)
4147 {
4148         int slot;
4149         struct extent_buffer *c;
4150
4151         WARN_ON(!path->keep_locks);
4152         while (level < BTRFS_MAX_LEVEL) {
4153                 if (!path->nodes[level])
4154                         return 1;
4155
4156                 slot = path->slots[level] + 1;
4157                 c = path->nodes[level];
4158 next:
4159                 if (slot >= btrfs_header_nritems(c)) {
4160                         int ret;
4161                         int orig_lowest;
4162                         struct btrfs_key cur_key;
4163                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4164                             !path->nodes[level + 1])
4165                                 return 1;
4166
4167                         if (path->locks[level + 1]) {
4168                                 level++;
4169                                 continue;
4170                         }
4171
4172                         slot = btrfs_header_nritems(c) - 1;
4173                         if (level == 0)
4174                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4175                         else
4176                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4177
4178                         orig_lowest = path->lowest_level;
4179                         btrfs_release_path(path);
4180                         path->lowest_level = level;
4181                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4182                                                 0, 0);
4183                         path->lowest_level = orig_lowest;
4184                         if (ret < 0)
4185                                 return ret;
4186
4187                         c = path->nodes[level];
4188                         slot = path->slots[level];
4189                         if (ret == 0)
4190                                 slot++;
4191                         goto next;
4192                 }
4193
4194                 if (level == 0)
4195                         btrfs_item_key_to_cpu(c, key, slot);
4196                 else {
4197                         u64 blockptr = btrfs_node_blockptr(c, slot);
4198                         u64 gen = btrfs_node_ptr_generation(c, slot);
4199
4200                         if (cache_only) {
4201                                 struct extent_buffer *cur;
4202                                 cur = btrfs_find_tree_block(root, blockptr,
4203                                             btrfs_level_size(root, level - 1));
4204                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4205                                         slot++;
4206                                         if (cur)
4207                                                 free_extent_buffer(cur);
4208                                         goto next;
4209                                 }
4210                                 free_extent_buffer(cur);
4211                         }
4212                         if (gen < min_trans) {
4213                                 slot++;
4214                                 goto next;
4215                         }
4216                         btrfs_node_key_to_cpu(c, key, slot);
4217                 }
4218                 return 0;
4219         }
4220         return 1;
4221 }
4222
4223 /*
4224  * search the tree again to find a leaf with greater keys
4225  * returns 0 if it found something or 1 if there are no greater leaves.
4226  * returns < 0 on io errors.
4227  */
4228 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4229 {
4230         int slot;
4231         int level;
4232         struct extent_buffer *c;
4233         struct extent_buffer *next;
4234         struct btrfs_key key;
4235         u32 nritems;
4236         int ret;
4237         int old_spinning = path->leave_spinning;
4238         int next_rw_lock = 0;
4239
4240         nritems = btrfs_header_nritems(path->nodes[0]);
4241         if (nritems == 0)
4242                 return 1;
4243
4244         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4245 again:
4246         level = 1;
4247         next = NULL;
4248         next_rw_lock = 0;
4249         btrfs_release_path(path);
4250
4251         path->keep_locks = 1;
4252         path->leave_spinning = 1;
4253
4254         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4255         path->keep_locks = 0;
4256
4257         if (ret < 0)
4258                 return ret;
4259
4260         nritems = btrfs_header_nritems(path->nodes[0]);
4261         /*
4262          * by releasing the path above we dropped all our locks.  A balance
4263          * could have added more items next to the key that used to be
4264          * at the very end of the block.  So, check again here and
4265          * advance the path if there are now more items available.
4266          */
4267         if (nritems > 0 && path->slots[0] < nritems - 1) {
4268                 if (ret == 0)
4269                         path->slots[0]++;
4270                 ret = 0;
4271                 goto done;
4272         }
4273
4274         while (level < BTRFS_MAX_LEVEL) {
4275                 if (!path->nodes[level]) {
4276                         ret = 1;
4277                         goto done;
4278                 }
4279
4280                 slot = path->slots[level] + 1;
4281                 c = path->nodes[level];
4282                 if (slot >= btrfs_header_nritems(c)) {
4283                         level++;
4284                         if (level == BTRFS_MAX_LEVEL) {
4285                                 ret = 1;
4286                                 goto done;
4287                         }
4288                         continue;
4289                 }
4290
4291                 if (next) {
4292                         btrfs_tree_unlock_rw(next, next_rw_lock);
4293                         free_extent_buffer(next);
4294                 }
4295
4296                 next = c;
4297                 next_rw_lock = path->locks[level];
4298                 ret = read_block_for_search(NULL, root, path, &next, level,
4299                                             slot, &key);
4300                 if (ret == -EAGAIN)
4301                         goto again;
4302
4303                 if (ret < 0) {
4304                         btrfs_release_path(path);
4305                         goto done;
4306                 }
4307
4308                 if (!path->skip_locking) {
4309                         ret = btrfs_try_tree_read_lock(next);
4310                         if (!ret) {
4311                                 btrfs_set_path_blocking(path);
4312                                 btrfs_tree_read_lock(next);
4313                                 btrfs_clear_path_blocking(path, next,
4314                                                           BTRFS_READ_LOCK);
4315                         }
4316                         next_rw_lock = BTRFS_READ_LOCK;
4317                 }
4318                 break;
4319         }
4320         path->slots[level] = slot;
4321         while (1) {
4322                 level--;
4323                 c = path->nodes[level];
4324                 if (path->locks[level])
4325                         btrfs_tree_unlock_rw(c, path->locks[level]);
4326
4327                 free_extent_buffer(c);
4328                 path->nodes[level] = next;
4329                 path->slots[level] = 0;
4330                 if (!path->skip_locking)
4331                         path->locks[level] = next_rw_lock;
4332                 if (!level)
4333                         break;
4334
4335                 ret = read_block_for_search(NULL, root, path, &next, level,
4336                                             0, &key);
4337                 if (ret == -EAGAIN)
4338                         goto again;
4339
4340                 if (ret < 0) {
4341                         btrfs_release_path(path);
4342                         goto done;
4343                 }
4344
4345                 if (!path->skip_locking) {
4346                         ret = btrfs_try_tree_read_lock(next);
4347                         if (!ret) {
4348                                 btrfs_set_path_blocking(path);
4349                                 btrfs_tree_read_lock(next);
4350                                 btrfs_clear_path_blocking(path, next,
4351                                                           BTRFS_READ_LOCK);
4352                         }
4353                         next_rw_lock = BTRFS_READ_LOCK;
4354                 }
4355         }
4356         ret = 0;
4357 done:
4358         unlock_up(path, 0, 1);
4359         path->leave_spinning = old_spinning;
4360         if (!old_spinning)
4361                 btrfs_set_path_blocking(path);
4362
4363         return ret;
4364 }
4365
4366 /*
4367  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4368  * searching until it gets past min_objectid or finds an item of 'type'
4369  *
4370  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4371  */
4372 int btrfs_previous_item(struct btrfs_root *root,
4373                         struct btrfs_path *path, u64 min_objectid,
4374                         int type)
4375 {
4376         struct btrfs_key found_key;
4377         struct extent_buffer *leaf;
4378         u32 nritems;
4379         int ret;
4380
4381         while (1) {
4382                 if (path->slots[0] == 0) {
4383                         btrfs_set_path_blocking(path);
4384                         ret = btrfs_prev_leaf(root, path);
4385                         if (ret != 0)
4386                                 return ret;
4387                 } else {
4388                         path->slots[0]--;
4389                 }
4390                 leaf = path->nodes[0];
4391                 nritems = btrfs_header_nritems(leaf);
4392                 if (nritems == 0)
4393                         return 1;
4394                 if (path->slots[0] == nritems)
4395                         path->slots[0]--;
4396
4397                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4398                 if (found_key.objectid < min_objectid)
4399                         break;
4400                 if (found_key.type == type)
4401                         return 0;
4402                 if (found_key.objectid == min_objectid &&
4403                     found_key.type < type)
4404                         break;
4405         }
4406         return 1;
4407 }