74c03fb0ca1dd91f0723c54acb18645b1153318e
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46         return path;
47 }
48
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55         int i;
56         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57                 if (!p->nodes[i] || !p->locks[i])
58                         continue;
59                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60                 if (p->locks[i] == BTRFS_READ_LOCK)
61                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64         }
65 }
66
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76                                         struct extent_buffer *held, int held_rw)
77 {
78         int i;
79
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81         /* lockdep really cares that we take all of these spinlocks
82          * in the right order.  If any of the locks in the path are not
83          * currently blocking, it is going to complain.  So, make really
84          * really sure by forcing the path to blocking before we clear
85          * the path blocking.
86          */
87         if (held) {
88                 btrfs_set_lock_blocking_rw(held, held_rw);
89                 if (held_rw == BTRFS_WRITE_LOCK)
90                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91                 else if (held_rw == BTRFS_READ_LOCK)
92                         held_rw = BTRFS_READ_LOCK_BLOCKING;
93         }
94         btrfs_set_path_blocking(p);
95 #endif
96
97         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98                 if (p->nodes[i] && p->locks[i]) {
99                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101                                 p->locks[i] = BTRFS_WRITE_LOCK;
102                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103                                 p->locks[i] = BTRFS_READ_LOCK;
104                 }
105         }
106
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108         if (held)
109                 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116         if (!p)
117                 return;
118         btrfs_release_path(p);
119         kmem_cache_free(btrfs_path_cachep, p);
120 }
121
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130         int i;
131
132         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133                 p->slots[i] = 0;
134                 if (!p->nodes[i])
135                         continue;
136                 if (p->locks[i]) {
137                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138                         p->locks[i] = 0;
139                 }
140                 free_extent_buffer(p->nodes[i]);
141                 p->nodes[i] = NULL;
142         }
143 }
144
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157         struct extent_buffer *eb;
158
159         while (1) {
160                 rcu_read_lock();
161                 eb = rcu_dereference(root->node);
162
163                 /*
164                  * RCU really hurts here, we could free up the root node because
165                  * it was cow'ed but we may not get the new root node yet so do
166                  * the inc_not_zero dance and if it doesn't work then
167                  * synchronize_rcu and try again.
168                  */
169                 if (atomic_inc_not_zero(&eb->refs)) {
170                         rcu_read_unlock();
171                         break;
172                 }
173                 rcu_read_unlock();
174                 synchronize_rcu();
175         }
176         return eb;
177 }
178
179 /* loop around taking references on and locking the root node of the
180  * tree until you end up with a lock on the root.  A locked buffer
181  * is returned, with a reference held.
182  */
183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
184 {
185         struct extent_buffer *eb;
186
187         while (1) {
188                 eb = btrfs_root_node(root);
189                 btrfs_tree_lock(eb);
190                 if (eb == root->node)
191                         break;
192                 btrfs_tree_unlock(eb);
193                 free_extent_buffer(eb);
194         }
195         return eb;
196 }
197
198 /* loop around taking references on and locking the root node of the
199  * tree until you end up with a lock on the root.  A locked buffer
200  * is returned, with a reference held.
201  */
202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
203 {
204         struct extent_buffer *eb;
205
206         while (1) {
207                 eb = btrfs_root_node(root);
208                 btrfs_tree_read_lock(eb);
209                 if (eb == root->node)
210                         break;
211                 btrfs_tree_read_unlock(eb);
212                 free_extent_buffer(eb);
213         }
214         return eb;
215 }
216
217 /* cowonly root (everything not a reference counted cow subvolume), just get
218  * put onto a simple dirty list.  transaction.c walks this to make sure they
219  * get properly updated on disk.
220  */
221 static void add_root_to_dirty_list(struct btrfs_root *root)
222 {
223         if (root->track_dirty && list_empty(&root->dirty_list)) {
224                 list_add(&root->dirty_list,
225                          &root->fs_info->dirty_cowonly_roots);
226         }
227 }
228
229 /*
230  * used by snapshot creation to make a copy of a root for a tree with
231  * a given objectid.  The buffer with the new root node is returned in
232  * cow_ret, and this func returns zero on success or a negative error code.
233  */
234 int btrfs_copy_root(struct btrfs_trans_handle *trans,
235                       struct btrfs_root *root,
236                       struct extent_buffer *buf,
237                       struct extent_buffer **cow_ret, u64 new_root_objectid)
238 {
239         struct extent_buffer *cow;
240         int ret = 0;
241         int level;
242         struct btrfs_disk_key disk_key;
243
244         WARN_ON(root->ref_cows && trans->transid !=
245                 root->fs_info->running_transaction->transid);
246         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
247
248         level = btrfs_header_level(buf);
249         if (level == 0)
250                 btrfs_item_key(buf, &disk_key, 0);
251         else
252                 btrfs_node_key(buf, &disk_key, 0);
253
254         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
255                                      new_root_objectid, &disk_key, level,
256                                      buf->start, 0, 1);
257         if (IS_ERR(cow))
258                 return PTR_ERR(cow);
259
260         copy_extent_buffer(cow, buf, 0, 0, cow->len);
261         btrfs_set_header_bytenr(cow, cow->start);
262         btrfs_set_header_generation(cow, trans->transid);
263         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
264         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
265                                      BTRFS_HEADER_FLAG_RELOC);
266         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
268         else
269                 btrfs_set_header_owner(cow, new_root_objectid);
270
271         write_extent_buffer(cow, root->fs_info->fsid,
272                             (unsigned long)btrfs_header_fsid(cow),
273                             BTRFS_FSID_SIZE);
274
275         WARN_ON(btrfs_header_generation(buf) > trans->transid);
276         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
277                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
278         else
279                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
280
281         if (ret)
282                 return ret;
283
284         btrfs_mark_buffer_dirty(cow);
285         *cow_ret = cow;
286         return 0;
287 }
288
289 /*
290  * check if the tree block can be shared by multiple trees
291  */
292 int btrfs_block_can_be_shared(struct btrfs_root *root,
293                               struct extent_buffer *buf)
294 {
295         /*
296          * Tree blocks not in refernece counted trees and tree roots
297          * are never shared. If a block was allocated after the last
298          * snapshot and the block was not allocated by tree relocation,
299          * we know the block is not shared.
300          */
301         if (root->ref_cows &&
302             buf != root->node && buf != root->commit_root &&
303             (btrfs_header_generation(buf) <=
304              btrfs_root_last_snapshot(&root->root_item) ||
305              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
306                 return 1;
307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
308         if (root->ref_cows &&
309             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
310                 return 1;
311 #endif
312         return 0;
313 }
314
315 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
316                                        struct btrfs_root *root,
317                                        struct extent_buffer *buf,
318                                        struct extent_buffer *cow,
319                                        int *last_ref)
320 {
321         u64 refs;
322         u64 owner;
323         u64 flags;
324         u64 new_flags = 0;
325         int ret;
326
327         /*
328          * Backrefs update rules:
329          *
330          * Always use full backrefs for extent pointers in tree block
331          * allocated by tree relocation.
332          *
333          * If a shared tree block is no longer referenced by its owner
334          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
335          * use full backrefs for extent pointers in tree block.
336          *
337          * If a tree block is been relocating
338          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
339          * use full backrefs for extent pointers in tree block.
340          * The reason for this is some operations (such as drop tree)
341          * are only allowed for blocks use full backrefs.
342          */
343
344         if (btrfs_block_can_be_shared(root, buf)) {
345                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
346                                                buf->len, &refs, &flags);
347                 BUG_ON(ret);
348                 BUG_ON(refs == 0);
349         } else {
350                 refs = 1;
351                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
352                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
353                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
354                 else
355                         flags = 0;
356         }
357
358         owner = btrfs_header_owner(buf);
359         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
360                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
361
362         if (refs > 1) {
363                 if ((owner == root->root_key.objectid ||
364                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
365                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
366                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
367                         BUG_ON(ret);
368
369                         if (root->root_key.objectid ==
370                             BTRFS_TREE_RELOC_OBJECTID) {
371                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
372                                 BUG_ON(ret);
373                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
374                                 BUG_ON(ret);
375                         }
376                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
377                 } else {
378
379                         if (root->root_key.objectid ==
380                             BTRFS_TREE_RELOC_OBJECTID)
381                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
382                         else
383                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
384                         BUG_ON(ret);
385                 }
386                 if (new_flags != 0) {
387                         ret = btrfs_set_disk_extent_flags(trans, root,
388                                                           buf->start,
389                                                           buf->len,
390                                                           new_flags, 0);
391                         BUG_ON(ret);
392                 }
393         } else {
394                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
395                         if (root->root_key.objectid ==
396                             BTRFS_TREE_RELOC_OBJECTID)
397                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
398                         else
399                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
400                         BUG_ON(ret);
401                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
402                         BUG_ON(ret);
403                 }
404                 clean_tree_block(trans, root, buf);
405                 *last_ref = 1;
406         }
407         return 0;
408 }
409
410 /*
411  * does the dirty work in cow of a single block.  The parent block (if
412  * supplied) is updated to point to the new cow copy.  The new buffer is marked
413  * dirty and returned locked.  If you modify the block it needs to be marked
414  * dirty again.
415  *
416  * search_start -- an allocation hint for the new block
417  *
418  * empty_size -- a hint that you plan on doing more cow.  This is the size in
419  * bytes the allocator should try to find free next to the block it returns.
420  * This is just a hint and may be ignored by the allocator.
421  */
422 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
423                              struct btrfs_root *root,
424                              struct extent_buffer *buf,
425                              struct extent_buffer *parent, int parent_slot,
426                              struct extent_buffer **cow_ret,
427                              u64 search_start, u64 empty_size)
428 {
429         struct btrfs_disk_key disk_key;
430         struct extent_buffer *cow;
431         int level;
432         int last_ref = 0;
433         int unlock_orig = 0;
434         u64 parent_start;
435
436         if (*cow_ret == buf)
437                 unlock_orig = 1;
438
439         btrfs_assert_tree_locked(buf);
440
441         WARN_ON(root->ref_cows && trans->transid !=
442                 root->fs_info->running_transaction->transid);
443         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
444
445         level = btrfs_header_level(buf);
446
447         if (level == 0)
448                 btrfs_item_key(buf, &disk_key, 0);
449         else
450                 btrfs_node_key(buf, &disk_key, 0);
451
452         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
453                 if (parent)
454                         parent_start = parent->start;
455                 else
456                         parent_start = 0;
457         } else
458                 parent_start = 0;
459
460         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
461                                      root->root_key.objectid, &disk_key,
462                                      level, search_start, empty_size, 1);
463         if (IS_ERR(cow))
464                 return PTR_ERR(cow);
465
466         /* cow is set to blocking by btrfs_init_new_buffer */
467
468         copy_extent_buffer(cow, buf, 0, 0, cow->len);
469         btrfs_set_header_bytenr(cow, cow->start);
470         btrfs_set_header_generation(cow, trans->transid);
471         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
472         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
473                                      BTRFS_HEADER_FLAG_RELOC);
474         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
475                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
476         else
477                 btrfs_set_header_owner(cow, root->root_key.objectid);
478
479         write_extent_buffer(cow, root->fs_info->fsid,
480                             (unsigned long)btrfs_header_fsid(cow),
481                             BTRFS_FSID_SIZE);
482
483         update_ref_for_cow(trans, root, buf, cow, &last_ref);
484
485         if (root->ref_cows)
486                 btrfs_reloc_cow_block(trans, root, buf, cow);
487
488         if (buf == root->node) {
489                 WARN_ON(parent && parent != buf);
490                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
491                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
492                         parent_start = buf->start;
493                 else
494                         parent_start = 0;
495
496                 extent_buffer_get(cow);
497                 rcu_assign_pointer(root->node, cow);
498
499                 btrfs_free_tree_block(trans, root, buf, parent_start,
500                                       last_ref, 1);
501                 free_extent_buffer(buf);
502                 add_root_to_dirty_list(root);
503         } else {
504                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
505                         parent_start = parent->start;
506                 else
507                         parent_start = 0;
508
509                 WARN_ON(trans->transid != btrfs_header_generation(parent));
510                 btrfs_set_node_blockptr(parent, parent_slot,
511                                         cow->start);
512                 btrfs_set_node_ptr_generation(parent, parent_slot,
513                                               trans->transid);
514                 btrfs_mark_buffer_dirty(parent);
515                 btrfs_free_tree_block(trans, root, buf, parent_start,
516                                       last_ref, 1);
517         }
518         if (unlock_orig)
519                 btrfs_tree_unlock(buf);
520         free_extent_buffer_stale(buf);
521         btrfs_mark_buffer_dirty(cow);
522         *cow_ret = cow;
523         return 0;
524 }
525
526 static inline int should_cow_block(struct btrfs_trans_handle *trans,
527                                    struct btrfs_root *root,
528                                    struct extent_buffer *buf)
529 {
530         /* ensure we can see the force_cow */
531         smp_rmb();
532
533         /*
534          * We do not need to cow a block if
535          * 1) this block is not created or changed in this transaction;
536          * 2) this block does not belong to TREE_RELOC tree;
537          * 3) the root is not forced COW.
538          *
539          * What is forced COW:
540          *    when we create snapshot during commiting the transaction,
541          *    after we've finished coping src root, we must COW the shared
542          *    block to ensure the metadata consistency.
543          */
544         if (btrfs_header_generation(buf) == trans->transid &&
545             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
546             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
547               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
548             !root->force_cow)
549                 return 0;
550         return 1;
551 }
552
553 /*
554  * cows a single block, see __btrfs_cow_block for the real work.
555  * This version of it has extra checks so that a block isn't cow'd more than
556  * once per transaction, as long as it hasn't been written yet
557  */
558 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
559                     struct btrfs_root *root, struct extent_buffer *buf,
560                     struct extent_buffer *parent, int parent_slot,
561                     struct extent_buffer **cow_ret)
562 {
563         u64 search_start;
564         int ret;
565
566         if (trans->transaction != root->fs_info->running_transaction) {
567                 printk(KERN_CRIT "trans %llu running %llu\n",
568                        (unsigned long long)trans->transid,
569                        (unsigned long long)
570                        root->fs_info->running_transaction->transid);
571                 WARN_ON(1);
572         }
573         if (trans->transid != root->fs_info->generation) {
574                 printk(KERN_CRIT "trans %llu running %llu\n",
575                        (unsigned long long)trans->transid,
576                        (unsigned long long)root->fs_info->generation);
577                 WARN_ON(1);
578         }
579
580         if (!should_cow_block(trans, root, buf)) {
581                 *cow_ret = buf;
582                 return 0;
583         }
584
585         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
586
587         if (parent)
588                 btrfs_set_lock_blocking(parent);
589         btrfs_set_lock_blocking(buf);
590
591         ret = __btrfs_cow_block(trans, root, buf, parent,
592                                  parent_slot, cow_ret, search_start, 0);
593
594         trace_btrfs_cow_block(root, buf, *cow_ret);
595
596         return ret;
597 }
598
599 /*
600  * helper function for defrag to decide if two blocks pointed to by a
601  * node are actually close by
602  */
603 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
604 {
605         if (blocknr < other && other - (blocknr + blocksize) < 32768)
606                 return 1;
607         if (blocknr > other && blocknr - (other + blocksize) < 32768)
608                 return 1;
609         return 0;
610 }
611
612 /*
613  * compare two keys in a memcmp fashion
614  */
615 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
616 {
617         struct btrfs_key k1;
618
619         btrfs_disk_key_to_cpu(&k1, disk);
620
621         return btrfs_comp_cpu_keys(&k1, k2);
622 }
623
624 /*
625  * same as comp_keys only with two btrfs_key's
626  */
627 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
628 {
629         if (k1->objectid > k2->objectid)
630                 return 1;
631         if (k1->objectid < k2->objectid)
632                 return -1;
633         if (k1->type > k2->type)
634                 return 1;
635         if (k1->type < k2->type)
636                 return -1;
637         if (k1->offset > k2->offset)
638                 return 1;
639         if (k1->offset < k2->offset)
640                 return -1;
641         return 0;
642 }
643
644 /*
645  * this is used by the defrag code to go through all the
646  * leaves pointed to by a node and reallocate them so that
647  * disk order is close to key order
648  */
649 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
650                        struct btrfs_root *root, struct extent_buffer *parent,
651                        int start_slot, int cache_only, u64 *last_ret,
652                        struct btrfs_key *progress)
653 {
654         struct extent_buffer *cur;
655         u64 blocknr;
656         u64 gen;
657         u64 search_start = *last_ret;
658         u64 last_block = 0;
659         u64 other;
660         u32 parent_nritems;
661         int end_slot;
662         int i;
663         int err = 0;
664         int parent_level;
665         int uptodate;
666         u32 blocksize;
667         int progress_passed = 0;
668         struct btrfs_disk_key disk_key;
669
670         parent_level = btrfs_header_level(parent);
671         if (cache_only && parent_level != 1)
672                 return 0;
673
674         if (trans->transaction != root->fs_info->running_transaction)
675                 WARN_ON(1);
676         if (trans->transid != root->fs_info->generation)
677                 WARN_ON(1);
678
679         parent_nritems = btrfs_header_nritems(parent);
680         blocksize = btrfs_level_size(root, parent_level - 1);
681         end_slot = parent_nritems;
682
683         if (parent_nritems == 1)
684                 return 0;
685
686         btrfs_set_lock_blocking(parent);
687
688         for (i = start_slot; i < end_slot; i++) {
689                 int close = 1;
690
691                 btrfs_node_key(parent, &disk_key, i);
692                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
693                         continue;
694
695                 progress_passed = 1;
696                 blocknr = btrfs_node_blockptr(parent, i);
697                 gen = btrfs_node_ptr_generation(parent, i);
698                 if (last_block == 0)
699                         last_block = blocknr;
700
701                 if (i > 0) {
702                         other = btrfs_node_blockptr(parent, i - 1);
703                         close = close_blocks(blocknr, other, blocksize);
704                 }
705                 if (!close && i < end_slot - 2) {
706                         other = btrfs_node_blockptr(parent, i + 1);
707                         close = close_blocks(blocknr, other, blocksize);
708                 }
709                 if (close) {
710                         last_block = blocknr;
711                         continue;
712                 }
713
714                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
715                 if (cur)
716                         uptodate = btrfs_buffer_uptodate(cur, gen);
717                 else
718                         uptodate = 0;
719                 if (!cur || !uptodate) {
720                         if (cache_only) {
721                                 free_extent_buffer(cur);
722                                 continue;
723                         }
724                         if (!cur) {
725                                 cur = read_tree_block(root, blocknr,
726                                                          blocksize, gen);
727                                 if (!cur)
728                                         return -EIO;
729                         } else if (!uptodate) {
730                                 btrfs_read_buffer(cur, gen);
731                         }
732                 }
733                 if (search_start == 0)
734                         search_start = last_block;
735
736                 btrfs_tree_lock(cur);
737                 btrfs_set_lock_blocking(cur);
738                 err = __btrfs_cow_block(trans, root, cur, parent, i,
739                                         &cur, search_start,
740                                         min(16 * blocksize,
741                                             (end_slot - i) * blocksize));
742                 if (err) {
743                         btrfs_tree_unlock(cur);
744                         free_extent_buffer(cur);
745                         break;
746                 }
747                 search_start = cur->start;
748                 last_block = cur->start;
749                 *last_ret = search_start;
750                 btrfs_tree_unlock(cur);
751                 free_extent_buffer(cur);
752         }
753         return err;
754 }
755
756 /*
757  * The leaf data grows from end-to-front in the node.
758  * this returns the address of the start of the last item,
759  * which is the stop of the leaf data stack
760  */
761 static inline unsigned int leaf_data_end(struct btrfs_root *root,
762                                          struct extent_buffer *leaf)
763 {
764         u32 nr = btrfs_header_nritems(leaf);
765         if (nr == 0)
766                 return BTRFS_LEAF_DATA_SIZE(root);
767         return btrfs_item_offset_nr(leaf, nr - 1);
768 }
769
770
771 /*
772  * search for key in the extent_buffer.  The items start at offset p,
773  * and they are item_size apart.  There are 'max' items in p.
774  *
775  * the slot in the array is returned via slot, and it points to
776  * the place where you would insert key if it is not found in
777  * the array.
778  *
779  * slot may point to max if the key is bigger than all of the keys
780  */
781 static noinline int generic_bin_search(struct extent_buffer *eb,
782                                        unsigned long p,
783                                        int item_size, struct btrfs_key *key,
784                                        int max, int *slot)
785 {
786         int low = 0;
787         int high = max;
788         int mid;
789         int ret;
790         struct btrfs_disk_key *tmp = NULL;
791         struct btrfs_disk_key unaligned;
792         unsigned long offset;
793         char *kaddr = NULL;
794         unsigned long map_start = 0;
795         unsigned long map_len = 0;
796         int err;
797
798         while (low < high) {
799                 mid = (low + high) / 2;
800                 offset = p + mid * item_size;
801
802                 if (!kaddr || offset < map_start ||
803                     (offset + sizeof(struct btrfs_disk_key)) >
804                     map_start + map_len) {
805
806                         err = map_private_extent_buffer(eb, offset,
807                                                 sizeof(struct btrfs_disk_key),
808                                                 &kaddr, &map_start, &map_len);
809
810                         if (!err) {
811                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
812                                                         map_start);
813                         } else {
814                                 read_extent_buffer(eb, &unaligned,
815                                                    offset, sizeof(unaligned));
816                                 tmp = &unaligned;
817                         }
818
819                 } else {
820                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
821                                                         map_start);
822                 }
823                 ret = comp_keys(tmp, key);
824
825                 if (ret < 0)
826                         low = mid + 1;
827                 else if (ret > 0)
828                         high = mid;
829                 else {
830                         *slot = mid;
831                         return 0;
832                 }
833         }
834         *slot = low;
835         return 1;
836 }
837
838 /*
839  * simple bin_search frontend that does the right thing for
840  * leaves vs nodes
841  */
842 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
843                       int level, int *slot)
844 {
845         if (level == 0) {
846                 return generic_bin_search(eb,
847                                           offsetof(struct btrfs_leaf, items),
848                                           sizeof(struct btrfs_item),
849                                           key, btrfs_header_nritems(eb),
850                                           slot);
851         } else {
852                 return generic_bin_search(eb,
853                                           offsetof(struct btrfs_node, ptrs),
854                                           sizeof(struct btrfs_key_ptr),
855                                           key, btrfs_header_nritems(eb),
856                                           slot);
857         }
858         return -1;
859 }
860
861 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
862                      int level, int *slot)
863 {
864         return bin_search(eb, key, level, slot);
865 }
866
867 static void root_add_used(struct btrfs_root *root, u32 size)
868 {
869         spin_lock(&root->accounting_lock);
870         btrfs_set_root_used(&root->root_item,
871                             btrfs_root_used(&root->root_item) + size);
872         spin_unlock(&root->accounting_lock);
873 }
874
875 static void root_sub_used(struct btrfs_root *root, u32 size)
876 {
877         spin_lock(&root->accounting_lock);
878         btrfs_set_root_used(&root->root_item,
879                             btrfs_root_used(&root->root_item) - size);
880         spin_unlock(&root->accounting_lock);
881 }
882
883 /* given a node and slot number, this reads the blocks it points to.  The
884  * extent buffer is returned with a reference taken (but unlocked).
885  * NULL is returned on error.
886  */
887 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
888                                    struct extent_buffer *parent, int slot)
889 {
890         int level = btrfs_header_level(parent);
891         if (slot < 0)
892                 return NULL;
893         if (slot >= btrfs_header_nritems(parent))
894                 return NULL;
895
896         BUG_ON(level == 0);
897
898         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
899                        btrfs_level_size(root, level - 1),
900                        btrfs_node_ptr_generation(parent, slot));
901 }
902
903 /*
904  * node level balancing, used to make sure nodes are in proper order for
905  * item deletion.  We balance from the top down, so we have to make sure
906  * that a deletion won't leave an node completely empty later on.
907  */
908 static noinline int balance_level(struct btrfs_trans_handle *trans,
909                          struct btrfs_root *root,
910                          struct btrfs_path *path, int level)
911 {
912         struct extent_buffer *right = NULL;
913         struct extent_buffer *mid;
914         struct extent_buffer *left = NULL;
915         struct extent_buffer *parent = NULL;
916         int ret = 0;
917         int wret;
918         int pslot;
919         int orig_slot = path->slots[level];
920         u64 orig_ptr;
921
922         if (level == 0)
923                 return 0;
924
925         mid = path->nodes[level];
926
927         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
928                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
929         WARN_ON(btrfs_header_generation(mid) != trans->transid);
930
931         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
932
933         if (level < BTRFS_MAX_LEVEL - 1) {
934                 parent = path->nodes[level + 1];
935                 pslot = path->slots[level + 1];
936         }
937
938         /*
939          * deal with the case where there is only one pointer in the root
940          * by promoting the node below to a root
941          */
942         if (!parent) {
943                 struct extent_buffer *child;
944
945                 if (btrfs_header_nritems(mid) != 1)
946                         return 0;
947
948                 /* promote the child to a root */
949                 child = read_node_slot(root, mid, 0);
950                 BUG_ON(!child);
951                 btrfs_tree_lock(child);
952                 btrfs_set_lock_blocking(child);
953                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
954                 if (ret) {
955                         btrfs_tree_unlock(child);
956                         free_extent_buffer(child);
957                         goto enospc;
958                 }
959
960                 rcu_assign_pointer(root->node, child);
961
962                 add_root_to_dirty_list(root);
963                 btrfs_tree_unlock(child);
964
965                 path->locks[level] = 0;
966                 path->nodes[level] = NULL;
967                 clean_tree_block(trans, root, mid);
968                 btrfs_tree_unlock(mid);
969                 /* once for the path */
970                 free_extent_buffer(mid);
971
972                 root_sub_used(root, mid->len);
973                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
974                 /* once for the root ptr */
975                 free_extent_buffer_stale(mid);
976                 return 0;
977         }
978         if (btrfs_header_nritems(mid) >
979             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
980                 return 0;
981
982         btrfs_header_nritems(mid);
983
984         left = read_node_slot(root, parent, pslot - 1);
985         if (left) {
986                 btrfs_tree_lock(left);
987                 btrfs_set_lock_blocking(left);
988                 wret = btrfs_cow_block(trans, root, left,
989                                        parent, pslot - 1, &left);
990                 if (wret) {
991                         ret = wret;
992                         goto enospc;
993                 }
994         }
995         right = read_node_slot(root, parent, pslot + 1);
996         if (right) {
997                 btrfs_tree_lock(right);
998                 btrfs_set_lock_blocking(right);
999                 wret = btrfs_cow_block(trans, root, right,
1000                                        parent, pslot + 1, &right);
1001                 if (wret) {
1002                         ret = wret;
1003                         goto enospc;
1004                 }
1005         }
1006
1007         /* first, try to make some room in the middle buffer */
1008         if (left) {
1009                 orig_slot += btrfs_header_nritems(left);
1010                 wret = push_node_left(trans, root, left, mid, 1);
1011                 if (wret < 0)
1012                         ret = wret;
1013                 btrfs_header_nritems(mid);
1014         }
1015
1016         /*
1017          * then try to empty the right most buffer into the middle
1018          */
1019         if (right) {
1020                 wret = push_node_left(trans, root, mid, right, 1);
1021                 if (wret < 0 && wret != -ENOSPC)
1022                         ret = wret;
1023                 if (btrfs_header_nritems(right) == 0) {
1024                         clean_tree_block(trans, root, right);
1025                         btrfs_tree_unlock(right);
1026                         wret = del_ptr(trans, root, path, level + 1, pslot +
1027                                        1);
1028                         if (wret)
1029                                 ret = wret;
1030                         root_sub_used(root, right->len);
1031                         btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1032                         free_extent_buffer_stale(right);
1033                         right = NULL;
1034                 } else {
1035                         struct btrfs_disk_key right_key;
1036                         btrfs_node_key(right, &right_key, 0);
1037                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1038                         btrfs_mark_buffer_dirty(parent);
1039                 }
1040         }
1041         if (btrfs_header_nritems(mid) == 1) {
1042                 /*
1043                  * we're not allowed to leave a node with one item in the
1044                  * tree during a delete.  A deletion from lower in the tree
1045                  * could try to delete the only pointer in this node.
1046                  * So, pull some keys from the left.
1047                  * There has to be a left pointer at this point because
1048                  * otherwise we would have pulled some pointers from the
1049                  * right
1050                  */
1051                 BUG_ON(!left);
1052                 wret = balance_node_right(trans, root, mid, left);
1053                 if (wret < 0) {
1054                         ret = wret;
1055                         goto enospc;
1056                 }
1057                 if (wret == 1) {
1058                         wret = push_node_left(trans, root, left, mid, 1);
1059                         if (wret < 0)
1060                                 ret = wret;
1061                 }
1062                 BUG_ON(wret == 1);
1063         }
1064         if (btrfs_header_nritems(mid) == 0) {
1065                 clean_tree_block(trans, root, mid);
1066                 btrfs_tree_unlock(mid);
1067                 wret = del_ptr(trans, root, path, level + 1, pslot);
1068                 if (wret)
1069                         ret = wret;
1070                 root_sub_used(root, mid->len);
1071                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1072                 free_extent_buffer_stale(mid);
1073                 mid = NULL;
1074         } else {
1075                 /* update the parent key to reflect our changes */
1076                 struct btrfs_disk_key mid_key;
1077                 btrfs_node_key(mid, &mid_key, 0);
1078                 btrfs_set_node_key(parent, &mid_key, pslot);
1079                 btrfs_mark_buffer_dirty(parent);
1080         }
1081
1082         /* update the path */
1083         if (left) {
1084                 if (btrfs_header_nritems(left) > orig_slot) {
1085                         extent_buffer_get(left);
1086                         /* left was locked after cow */
1087                         path->nodes[level] = left;
1088                         path->slots[level + 1] -= 1;
1089                         path->slots[level] = orig_slot;
1090                         if (mid) {
1091                                 btrfs_tree_unlock(mid);
1092                                 free_extent_buffer(mid);
1093                         }
1094                 } else {
1095                         orig_slot -= btrfs_header_nritems(left);
1096                         path->slots[level] = orig_slot;
1097                 }
1098         }
1099         /* double check we haven't messed things up */
1100         if (orig_ptr !=
1101             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1102                 BUG();
1103 enospc:
1104         if (right) {
1105                 btrfs_tree_unlock(right);
1106                 free_extent_buffer(right);
1107         }
1108         if (left) {
1109                 if (path->nodes[level] != left)
1110                         btrfs_tree_unlock(left);
1111                 free_extent_buffer(left);
1112         }
1113         return ret;
1114 }
1115
1116 /* Node balancing for insertion.  Here we only split or push nodes around
1117  * when they are completely full.  This is also done top down, so we
1118  * have to be pessimistic.
1119  */
1120 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1121                                           struct btrfs_root *root,
1122                                           struct btrfs_path *path, int level)
1123 {
1124         struct extent_buffer *right = NULL;
1125         struct extent_buffer *mid;
1126         struct extent_buffer *left = NULL;
1127         struct extent_buffer *parent = NULL;
1128         int ret = 0;
1129         int wret;
1130         int pslot;
1131         int orig_slot = path->slots[level];
1132
1133         if (level == 0)
1134                 return 1;
1135
1136         mid = path->nodes[level];
1137         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1138
1139         if (level < BTRFS_MAX_LEVEL - 1) {
1140                 parent = path->nodes[level + 1];
1141                 pslot = path->slots[level + 1];
1142         }
1143
1144         if (!parent)
1145                 return 1;
1146
1147         left = read_node_slot(root, parent, pslot - 1);
1148
1149         /* first, try to make some room in the middle buffer */
1150         if (left) {
1151                 u32 left_nr;
1152
1153                 btrfs_tree_lock(left);
1154                 btrfs_set_lock_blocking(left);
1155
1156                 left_nr = btrfs_header_nritems(left);
1157                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1158                         wret = 1;
1159                 } else {
1160                         ret = btrfs_cow_block(trans, root, left, parent,
1161                                               pslot - 1, &left);
1162                         if (ret)
1163                                 wret = 1;
1164                         else {
1165                                 wret = push_node_left(trans, root,
1166                                                       left, mid, 0);
1167                         }
1168                 }
1169                 if (wret < 0)
1170                         ret = wret;
1171                 if (wret == 0) {
1172                         struct btrfs_disk_key disk_key;
1173                         orig_slot += left_nr;
1174                         btrfs_node_key(mid, &disk_key, 0);
1175                         btrfs_set_node_key(parent, &disk_key, pslot);
1176                         btrfs_mark_buffer_dirty(parent);
1177                         if (btrfs_header_nritems(left) > orig_slot) {
1178                                 path->nodes[level] = left;
1179                                 path->slots[level + 1] -= 1;
1180                                 path->slots[level] = orig_slot;
1181                                 btrfs_tree_unlock(mid);
1182                                 free_extent_buffer(mid);
1183                         } else {
1184                                 orig_slot -=
1185                                         btrfs_header_nritems(left);
1186                                 path->slots[level] = orig_slot;
1187                                 btrfs_tree_unlock(left);
1188                                 free_extent_buffer(left);
1189                         }
1190                         return 0;
1191                 }
1192                 btrfs_tree_unlock(left);
1193                 free_extent_buffer(left);
1194         }
1195         right = read_node_slot(root, parent, pslot + 1);
1196
1197         /*
1198          * then try to empty the right most buffer into the middle
1199          */
1200         if (right) {
1201                 u32 right_nr;
1202
1203                 btrfs_tree_lock(right);
1204                 btrfs_set_lock_blocking(right);
1205
1206                 right_nr = btrfs_header_nritems(right);
1207                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1208                         wret = 1;
1209                 } else {
1210                         ret = btrfs_cow_block(trans, root, right,
1211                                               parent, pslot + 1,
1212                                               &right);
1213                         if (ret)
1214                                 wret = 1;
1215                         else {
1216                                 wret = balance_node_right(trans, root,
1217                                                           right, mid);
1218                         }
1219                 }
1220                 if (wret < 0)
1221                         ret = wret;
1222                 if (wret == 0) {
1223                         struct btrfs_disk_key disk_key;
1224
1225                         btrfs_node_key(right, &disk_key, 0);
1226                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1227                         btrfs_mark_buffer_dirty(parent);
1228
1229                         if (btrfs_header_nritems(mid) <= orig_slot) {
1230                                 path->nodes[level] = right;
1231                                 path->slots[level + 1] += 1;
1232                                 path->slots[level] = orig_slot -
1233                                         btrfs_header_nritems(mid);
1234                                 btrfs_tree_unlock(mid);
1235                                 free_extent_buffer(mid);
1236                         } else {
1237                                 btrfs_tree_unlock(right);
1238                                 free_extent_buffer(right);
1239                         }
1240                         return 0;
1241                 }
1242                 btrfs_tree_unlock(right);
1243                 free_extent_buffer(right);
1244         }
1245         return 1;
1246 }
1247
1248 /*
1249  * readahead one full node of leaves, finding things that are close
1250  * to the block in 'slot', and triggering ra on them.
1251  */
1252 static void reada_for_search(struct btrfs_root *root,
1253                              struct btrfs_path *path,
1254                              int level, int slot, u64 objectid)
1255 {
1256         struct extent_buffer *node;
1257         struct btrfs_disk_key disk_key;
1258         u32 nritems;
1259         u64 search;
1260         u64 target;
1261         u64 nread = 0;
1262         u64 gen;
1263         int direction = path->reada;
1264         struct extent_buffer *eb;
1265         u32 nr;
1266         u32 blocksize;
1267         u32 nscan = 0;
1268
1269         if (level != 1)
1270                 return;
1271
1272         if (!path->nodes[level])
1273                 return;
1274
1275         node = path->nodes[level];
1276
1277         search = btrfs_node_blockptr(node, slot);
1278         blocksize = btrfs_level_size(root, level - 1);
1279         eb = btrfs_find_tree_block(root, search, blocksize);
1280         if (eb) {
1281                 free_extent_buffer(eb);
1282                 return;
1283         }
1284
1285         target = search;
1286
1287         nritems = btrfs_header_nritems(node);
1288         nr = slot;
1289
1290         while (1) {
1291                 if (direction < 0) {
1292                         if (nr == 0)
1293                                 break;
1294                         nr--;
1295                 } else if (direction > 0) {
1296                         nr++;
1297                         if (nr >= nritems)
1298                                 break;
1299                 }
1300                 if (path->reada < 0 && objectid) {
1301                         btrfs_node_key(node, &disk_key, nr);
1302                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1303                                 break;
1304                 }
1305                 search = btrfs_node_blockptr(node, nr);
1306                 if ((search <= target && target - search <= 65536) ||
1307                     (search > target && search - target <= 65536)) {
1308                         gen = btrfs_node_ptr_generation(node, nr);
1309                         readahead_tree_block(root, search, blocksize, gen);
1310                         nread += blocksize;
1311                 }
1312                 nscan++;
1313                 if ((nread > 65536 || nscan > 32))
1314                         break;
1315         }
1316 }
1317
1318 /*
1319  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1320  * cache
1321  */
1322 static noinline int reada_for_balance(struct btrfs_root *root,
1323                                       struct btrfs_path *path, int level)
1324 {
1325         int slot;
1326         int nritems;
1327         struct extent_buffer *parent;
1328         struct extent_buffer *eb;
1329         u64 gen;
1330         u64 block1 = 0;
1331         u64 block2 = 0;
1332         int ret = 0;
1333         int blocksize;
1334
1335         parent = path->nodes[level + 1];
1336         if (!parent)
1337                 return 0;
1338
1339         nritems = btrfs_header_nritems(parent);
1340         slot = path->slots[level + 1];
1341         blocksize = btrfs_level_size(root, level);
1342
1343         if (slot > 0) {
1344                 block1 = btrfs_node_blockptr(parent, slot - 1);
1345                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1346                 eb = btrfs_find_tree_block(root, block1, blocksize);
1347                 if (eb && btrfs_buffer_uptodate(eb, gen))
1348                         block1 = 0;
1349                 free_extent_buffer(eb);
1350         }
1351         if (slot + 1 < nritems) {
1352                 block2 = btrfs_node_blockptr(parent, slot + 1);
1353                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1354                 eb = btrfs_find_tree_block(root, block2, blocksize);
1355                 if (eb && btrfs_buffer_uptodate(eb, gen))
1356                         block2 = 0;
1357                 free_extent_buffer(eb);
1358         }
1359         if (block1 || block2) {
1360                 ret = -EAGAIN;
1361
1362                 /* release the whole path */
1363                 btrfs_release_path(path);
1364
1365                 /* read the blocks */
1366                 if (block1)
1367                         readahead_tree_block(root, block1, blocksize, 0);
1368                 if (block2)
1369                         readahead_tree_block(root, block2, blocksize, 0);
1370
1371                 if (block1) {
1372                         eb = read_tree_block(root, block1, blocksize, 0);
1373                         free_extent_buffer(eb);
1374                 }
1375                 if (block2) {
1376                         eb = read_tree_block(root, block2, blocksize, 0);
1377                         free_extent_buffer(eb);
1378                 }
1379         }
1380         return ret;
1381 }
1382
1383
1384 /*
1385  * when we walk down the tree, it is usually safe to unlock the higher layers
1386  * in the tree.  The exceptions are when our path goes through slot 0, because
1387  * operations on the tree might require changing key pointers higher up in the
1388  * tree.
1389  *
1390  * callers might also have set path->keep_locks, which tells this code to keep
1391  * the lock if the path points to the last slot in the block.  This is part of
1392  * walking through the tree, and selecting the next slot in the higher block.
1393  *
1394  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1395  * if lowest_unlock is 1, level 0 won't be unlocked
1396  */
1397 static noinline void unlock_up(struct btrfs_path *path, int level,
1398                                int lowest_unlock)
1399 {
1400         int i;
1401         int skip_level = level;
1402         int no_skips = 0;
1403         struct extent_buffer *t;
1404
1405         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1406                 if (!path->nodes[i])
1407                         break;
1408                 if (!path->locks[i])
1409                         break;
1410                 if (!no_skips && path->slots[i] == 0) {
1411                         skip_level = i + 1;
1412                         continue;
1413                 }
1414                 if (!no_skips && path->keep_locks) {
1415                         u32 nritems;
1416                         t = path->nodes[i];
1417                         nritems = btrfs_header_nritems(t);
1418                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1419                                 skip_level = i + 1;
1420                                 continue;
1421                         }
1422                 }
1423                 if (skip_level < i && i >= lowest_unlock)
1424                         no_skips = 1;
1425
1426                 t = path->nodes[i];
1427                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1428                         btrfs_tree_unlock_rw(t, path->locks[i]);
1429                         path->locks[i] = 0;
1430                 }
1431         }
1432 }
1433
1434 /*
1435  * This releases any locks held in the path starting at level and
1436  * going all the way up to the root.
1437  *
1438  * btrfs_search_slot will keep the lock held on higher nodes in a few
1439  * corner cases, such as COW of the block at slot zero in the node.  This
1440  * ignores those rules, and it should only be called when there are no
1441  * more updates to be done higher up in the tree.
1442  */
1443 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1444 {
1445         int i;
1446
1447         if (path->keep_locks)
1448                 return;
1449
1450         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1451                 if (!path->nodes[i])
1452                         continue;
1453                 if (!path->locks[i])
1454                         continue;
1455                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1456                 path->locks[i] = 0;
1457         }
1458 }
1459
1460 /*
1461  * helper function for btrfs_search_slot.  The goal is to find a block
1462  * in cache without setting the path to blocking.  If we find the block
1463  * we return zero and the path is unchanged.
1464  *
1465  * If we can't find the block, we set the path blocking and do some
1466  * reada.  -EAGAIN is returned and the search must be repeated.
1467  */
1468 static int
1469 read_block_for_search(struct btrfs_trans_handle *trans,
1470                        struct btrfs_root *root, struct btrfs_path *p,
1471                        struct extent_buffer **eb_ret, int level, int slot,
1472                        struct btrfs_key *key)
1473 {
1474         u64 blocknr;
1475         u64 gen;
1476         u32 blocksize;
1477         struct extent_buffer *b = *eb_ret;
1478         struct extent_buffer *tmp;
1479         int ret;
1480
1481         blocknr = btrfs_node_blockptr(b, slot);
1482         gen = btrfs_node_ptr_generation(b, slot);
1483         blocksize = btrfs_level_size(root, level - 1);
1484
1485         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1486         if (tmp) {
1487                 if (btrfs_buffer_uptodate(tmp, 0)) {
1488                         if (btrfs_buffer_uptodate(tmp, gen)) {
1489                                 /*
1490                                  * we found an up to date block without
1491                                  * sleeping, return
1492                                  * right away
1493                                  */
1494                                 *eb_ret = tmp;
1495                                 return 0;
1496                         }
1497                         /* the pages were up to date, but we failed
1498                          * the generation number check.  Do a full
1499                          * read for the generation number that is correct.
1500                          * We must do this without dropping locks so
1501                          * we can trust our generation number
1502                          */
1503                         free_extent_buffer(tmp);
1504                         btrfs_set_path_blocking(p);
1505
1506                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1507                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1508                                 *eb_ret = tmp;
1509                                 return 0;
1510                         }
1511                         free_extent_buffer(tmp);
1512                         btrfs_release_path(p);
1513                         return -EIO;
1514                 }
1515         }
1516
1517         /*
1518          * reduce lock contention at high levels
1519          * of the btree by dropping locks before
1520          * we read.  Don't release the lock on the current
1521          * level because we need to walk this node to figure
1522          * out which blocks to read.
1523          */
1524         btrfs_unlock_up_safe(p, level + 1);
1525         btrfs_set_path_blocking(p);
1526
1527         free_extent_buffer(tmp);
1528         if (p->reada)
1529                 reada_for_search(root, p, level, slot, key->objectid);
1530
1531         btrfs_release_path(p);
1532
1533         ret = -EAGAIN;
1534         tmp = read_tree_block(root, blocknr, blocksize, 0);
1535         if (tmp) {
1536                 /*
1537                  * If the read above didn't mark this buffer up to date,
1538                  * it will never end up being up to date.  Set ret to EIO now
1539                  * and give up so that our caller doesn't loop forever
1540                  * on our EAGAINs.
1541                  */
1542                 if (!btrfs_buffer_uptodate(tmp, 0))
1543                         ret = -EIO;
1544                 free_extent_buffer(tmp);
1545         }
1546         return ret;
1547 }
1548
1549 /*
1550  * helper function for btrfs_search_slot.  This does all of the checks
1551  * for node-level blocks and does any balancing required based on
1552  * the ins_len.
1553  *
1554  * If no extra work was required, zero is returned.  If we had to
1555  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1556  * start over
1557  */
1558 static int
1559 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1560                        struct btrfs_root *root, struct btrfs_path *p,
1561                        struct extent_buffer *b, int level, int ins_len,
1562                        int *write_lock_level)
1563 {
1564         int ret;
1565         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1566             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1567                 int sret;
1568
1569                 if (*write_lock_level < level + 1) {
1570                         *write_lock_level = level + 1;
1571                         btrfs_release_path(p);
1572                         goto again;
1573                 }
1574
1575                 sret = reada_for_balance(root, p, level);
1576                 if (sret)
1577                         goto again;
1578
1579                 btrfs_set_path_blocking(p);
1580                 sret = split_node(trans, root, p, level);
1581                 btrfs_clear_path_blocking(p, NULL, 0);
1582
1583                 BUG_ON(sret > 0);
1584                 if (sret) {
1585                         ret = sret;
1586                         goto done;
1587                 }
1588                 b = p->nodes[level];
1589         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1590                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1591                 int sret;
1592
1593                 if (*write_lock_level < level + 1) {
1594                         *write_lock_level = level + 1;
1595                         btrfs_release_path(p);
1596                         goto again;
1597                 }
1598
1599                 sret = reada_for_balance(root, p, level);
1600                 if (sret)
1601                         goto again;
1602
1603                 btrfs_set_path_blocking(p);
1604                 sret = balance_level(trans, root, p, level);
1605                 btrfs_clear_path_blocking(p, NULL, 0);
1606
1607                 if (sret) {
1608                         ret = sret;
1609                         goto done;
1610                 }
1611                 b = p->nodes[level];
1612                 if (!b) {
1613                         btrfs_release_path(p);
1614                         goto again;
1615                 }
1616                 BUG_ON(btrfs_header_nritems(b) == 1);
1617         }
1618         return 0;
1619
1620 again:
1621         ret = -EAGAIN;
1622 done:
1623         return ret;
1624 }
1625
1626 /*
1627  * look for key in the tree.  path is filled in with nodes along the way
1628  * if key is found, we return zero and you can find the item in the leaf
1629  * level of the path (level 0)
1630  *
1631  * If the key isn't found, the path points to the slot where it should
1632  * be inserted, and 1 is returned.  If there are other errors during the
1633  * search a negative error number is returned.
1634  *
1635  * if ins_len > 0, nodes and leaves will be split as we walk down the
1636  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1637  * possible)
1638  */
1639 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1640                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1641                       ins_len, int cow)
1642 {
1643         struct extent_buffer *b;
1644         int slot;
1645         int ret;
1646         int err;
1647         int level;
1648         int lowest_unlock = 1;
1649         int root_lock;
1650         /* everything at write_lock_level or lower must be write locked */
1651         int write_lock_level = 0;
1652         u8 lowest_level = 0;
1653
1654         lowest_level = p->lowest_level;
1655         WARN_ON(lowest_level && ins_len > 0);
1656         WARN_ON(p->nodes[0] != NULL);
1657
1658         if (ins_len < 0) {
1659                 lowest_unlock = 2;
1660
1661                 /* when we are removing items, we might have to go up to level
1662                  * two as we update tree pointers  Make sure we keep write
1663                  * for those levels as well
1664                  */
1665                 write_lock_level = 2;
1666         } else if (ins_len > 0) {
1667                 /*
1668                  * for inserting items, make sure we have a write lock on
1669                  * level 1 so we can update keys
1670                  */
1671                 write_lock_level = 1;
1672         }
1673
1674         if (!cow)
1675                 write_lock_level = -1;
1676
1677         if (cow && (p->keep_locks || p->lowest_level))
1678                 write_lock_level = BTRFS_MAX_LEVEL;
1679
1680 again:
1681         /*
1682          * we try very hard to do read locks on the root
1683          */
1684         root_lock = BTRFS_READ_LOCK;
1685         level = 0;
1686         if (p->search_commit_root) {
1687                 /*
1688                  * the commit roots are read only
1689                  * so we always do read locks
1690                  */
1691                 b = root->commit_root;
1692                 extent_buffer_get(b);
1693                 level = btrfs_header_level(b);
1694                 if (!p->skip_locking)
1695                         btrfs_tree_read_lock(b);
1696         } else {
1697                 if (p->skip_locking) {
1698                         b = btrfs_root_node(root);
1699                         level = btrfs_header_level(b);
1700                 } else {
1701                         /* we don't know the level of the root node
1702                          * until we actually have it read locked
1703                          */
1704                         b = btrfs_read_lock_root_node(root);
1705                         level = btrfs_header_level(b);
1706                         if (level <= write_lock_level) {
1707                                 /* whoops, must trade for write lock */
1708                                 btrfs_tree_read_unlock(b);
1709                                 free_extent_buffer(b);
1710                                 b = btrfs_lock_root_node(root);
1711                                 root_lock = BTRFS_WRITE_LOCK;
1712
1713                                 /* the level might have changed, check again */
1714                                 level = btrfs_header_level(b);
1715                         }
1716                 }
1717         }
1718         p->nodes[level] = b;
1719         if (!p->skip_locking)
1720                 p->locks[level] = root_lock;
1721
1722         while (b) {
1723                 level = btrfs_header_level(b);
1724
1725                 /*
1726                  * setup the path here so we can release it under lock
1727                  * contention with the cow code
1728                  */
1729                 if (cow) {
1730                         /*
1731                          * if we don't really need to cow this block
1732                          * then we don't want to set the path blocking,
1733                          * so we test it here
1734                          */
1735                         if (!should_cow_block(trans, root, b))
1736                                 goto cow_done;
1737
1738                         btrfs_set_path_blocking(p);
1739
1740                         /*
1741                          * must have write locks on this node and the
1742                          * parent
1743                          */
1744                         if (level + 1 > write_lock_level) {
1745                                 write_lock_level = level + 1;
1746                                 btrfs_release_path(p);
1747                                 goto again;
1748                         }
1749
1750                         err = btrfs_cow_block(trans, root, b,
1751                                               p->nodes[level + 1],
1752                                               p->slots[level + 1], &b);
1753                         if (err) {
1754                                 ret = err;
1755                                 goto done;
1756                         }
1757                 }
1758 cow_done:
1759                 BUG_ON(!cow && ins_len);
1760
1761                 p->nodes[level] = b;
1762                 btrfs_clear_path_blocking(p, NULL, 0);
1763
1764                 /*
1765                  * we have a lock on b and as long as we aren't changing
1766                  * the tree, there is no way to for the items in b to change.
1767                  * It is safe to drop the lock on our parent before we
1768                  * go through the expensive btree search on b.
1769                  *
1770                  * If cow is true, then we might be changing slot zero,
1771                  * which may require changing the parent.  So, we can't
1772                  * drop the lock until after we know which slot we're
1773                  * operating on.
1774                  */
1775                 if (!cow)
1776                         btrfs_unlock_up_safe(p, level + 1);
1777
1778                 ret = bin_search(b, key, level, &slot);
1779
1780                 if (level != 0) {
1781                         int dec = 0;
1782                         if (ret && slot > 0) {
1783                                 dec = 1;
1784                                 slot -= 1;
1785                         }
1786                         p->slots[level] = slot;
1787                         err = setup_nodes_for_search(trans, root, p, b, level,
1788                                              ins_len, &write_lock_level);
1789                         if (err == -EAGAIN)
1790                                 goto again;
1791                         if (err) {
1792                                 ret = err;
1793                                 goto done;
1794                         }
1795                         b = p->nodes[level];
1796                         slot = p->slots[level];
1797
1798                         /*
1799                          * slot 0 is special, if we change the key
1800                          * we have to update the parent pointer
1801                          * which means we must have a write lock
1802                          * on the parent
1803                          */
1804                         if (slot == 0 && cow &&
1805                             write_lock_level < level + 1) {
1806                                 write_lock_level = level + 1;
1807                                 btrfs_release_path(p);
1808                                 goto again;
1809                         }
1810
1811                         unlock_up(p, level, lowest_unlock);
1812
1813                         if (level == lowest_level) {
1814                                 if (dec)
1815                                         p->slots[level]++;
1816                                 goto done;
1817                         }
1818
1819                         err = read_block_for_search(trans, root, p,
1820                                                     &b, level, slot, key);
1821                         if (err == -EAGAIN)
1822                                 goto again;
1823                         if (err) {
1824                                 ret = err;
1825                                 goto done;
1826                         }
1827
1828                         if (!p->skip_locking) {
1829                                 level = btrfs_header_level(b);
1830                                 if (level <= write_lock_level) {
1831                                         err = btrfs_try_tree_write_lock(b);
1832                                         if (!err) {
1833                                                 btrfs_set_path_blocking(p);
1834                                                 btrfs_tree_lock(b);
1835                                                 btrfs_clear_path_blocking(p, b,
1836                                                                   BTRFS_WRITE_LOCK);
1837                                         }
1838                                         p->locks[level] = BTRFS_WRITE_LOCK;
1839                                 } else {
1840                                         err = btrfs_try_tree_read_lock(b);
1841                                         if (!err) {
1842                                                 btrfs_set_path_blocking(p);
1843                                                 btrfs_tree_read_lock(b);
1844                                                 btrfs_clear_path_blocking(p, b,
1845                                                                   BTRFS_READ_LOCK);
1846                                         }
1847                                         p->locks[level] = BTRFS_READ_LOCK;
1848                                 }
1849                                 p->nodes[level] = b;
1850                         }
1851                 } else {
1852                         p->slots[level] = slot;
1853                         if (ins_len > 0 &&
1854                             btrfs_leaf_free_space(root, b) < ins_len) {
1855                                 if (write_lock_level < 1) {
1856                                         write_lock_level = 1;
1857                                         btrfs_release_path(p);
1858                                         goto again;
1859                                 }
1860
1861                                 btrfs_set_path_blocking(p);
1862                                 err = split_leaf(trans, root, key,
1863                                                  p, ins_len, ret == 0);
1864                                 btrfs_clear_path_blocking(p, NULL, 0);
1865
1866                                 BUG_ON(err > 0);
1867                                 if (err) {
1868                                         ret = err;
1869                                         goto done;
1870                                 }
1871                         }
1872                         if (!p->search_for_split)
1873                                 unlock_up(p, level, lowest_unlock);
1874                         goto done;
1875                 }
1876         }
1877         ret = 1;
1878 done:
1879         /*
1880          * we don't really know what they plan on doing with the path
1881          * from here on, so for now just mark it as blocking
1882          */
1883         if (!p->leave_spinning)
1884                 btrfs_set_path_blocking(p);
1885         if (ret < 0)
1886                 btrfs_release_path(p);
1887         return ret;
1888 }
1889
1890 /*
1891  * adjust the pointers going up the tree, starting at level
1892  * making sure the right key of each node is points to 'key'.
1893  * This is used after shifting pointers to the left, so it stops
1894  * fixing up pointers when a given leaf/node is not in slot 0 of the
1895  * higher levels
1896  *
1897  * If this fails to write a tree block, it returns -1, but continues
1898  * fixing up the blocks in ram so the tree is consistent.
1899  */
1900 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1901                           struct btrfs_root *root, struct btrfs_path *path,
1902                           struct btrfs_disk_key *key, int level)
1903 {
1904         int i;
1905         int ret = 0;
1906         struct extent_buffer *t;
1907
1908         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1909                 int tslot = path->slots[i];
1910                 if (!path->nodes[i])
1911                         break;
1912                 t = path->nodes[i];
1913                 btrfs_set_node_key(t, key, tslot);
1914                 btrfs_mark_buffer_dirty(path->nodes[i]);
1915                 if (tslot != 0)
1916                         break;
1917         }
1918         return ret;
1919 }
1920
1921 /*
1922  * update item key.
1923  *
1924  * This function isn't completely safe. It's the caller's responsibility
1925  * that the new key won't break the order
1926  */
1927 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1928                             struct btrfs_root *root, struct btrfs_path *path,
1929                             struct btrfs_key *new_key)
1930 {
1931         struct btrfs_disk_key disk_key;
1932         struct extent_buffer *eb;
1933         int slot;
1934
1935         eb = path->nodes[0];
1936         slot = path->slots[0];
1937         if (slot > 0) {
1938                 btrfs_item_key(eb, &disk_key, slot - 1);
1939                 if (comp_keys(&disk_key, new_key) >= 0)
1940                         return -1;
1941         }
1942         if (slot < btrfs_header_nritems(eb) - 1) {
1943                 btrfs_item_key(eb, &disk_key, slot + 1);
1944                 if (comp_keys(&disk_key, new_key) <= 0)
1945                         return -1;
1946         }
1947
1948         btrfs_cpu_key_to_disk(&disk_key, new_key);
1949         btrfs_set_item_key(eb, &disk_key, slot);
1950         btrfs_mark_buffer_dirty(eb);
1951         if (slot == 0)
1952                 fixup_low_keys(trans, root, path, &disk_key, 1);
1953         return 0;
1954 }
1955
1956 /*
1957  * try to push data from one node into the next node left in the
1958  * tree.
1959  *
1960  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1961  * error, and > 0 if there was no room in the left hand block.
1962  */
1963 static int push_node_left(struct btrfs_trans_handle *trans,
1964                           struct btrfs_root *root, struct extent_buffer *dst,
1965                           struct extent_buffer *src, int empty)
1966 {
1967         int push_items = 0;
1968         int src_nritems;
1969         int dst_nritems;
1970         int ret = 0;
1971
1972         src_nritems = btrfs_header_nritems(src);
1973         dst_nritems = btrfs_header_nritems(dst);
1974         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1975         WARN_ON(btrfs_header_generation(src) != trans->transid);
1976         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1977
1978         if (!empty && src_nritems <= 8)
1979                 return 1;
1980
1981         if (push_items <= 0)
1982                 return 1;
1983
1984         if (empty) {
1985                 push_items = min(src_nritems, push_items);
1986                 if (push_items < src_nritems) {
1987                         /* leave at least 8 pointers in the node if
1988                          * we aren't going to empty it
1989                          */
1990                         if (src_nritems - push_items < 8) {
1991                                 if (push_items <= 8)
1992                                         return 1;
1993                                 push_items -= 8;
1994                         }
1995                 }
1996         } else
1997                 push_items = min(src_nritems - 8, push_items);
1998
1999         copy_extent_buffer(dst, src,
2000                            btrfs_node_key_ptr_offset(dst_nritems),
2001                            btrfs_node_key_ptr_offset(0),
2002                            push_items * sizeof(struct btrfs_key_ptr));
2003
2004         if (push_items < src_nritems) {
2005                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2006                                       btrfs_node_key_ptr_offset(push_items),
2007                                       (src_nritems - push_items) *
2008                                       sizeof(struct btrfs_key_ptr));
2009         }
2010         btrfs_set_header_nritems(src, src_nritems - push_items);
2011         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2012         btrfs_mark_buffer_dirty(src);
2013         btrfs_mark_buffer_dirty(dst);
2014
2015         return ret;
2016 }
2017
2018 /*
2019  * try to push data from one node into the next node right in the
2020  * tree.
2021  *
2022  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2023  * error, and > 0 if there was no room in the right hand block.
2024  *
2025  * this will  only push up to 1/2 the contents of the left node over
2026  */
2027 static int balance_node_right(struct btrfs_trans_handle *trans,
2028                               struct btrfs_root *root,
2029                               struct extent_buffer *dst,
2030                               struct extent_buffer *src)
2031 {
2032         int push_items = 0;
2033         int max_push;
2034         int src_nritems;
2035         int dst_nritems;
2036         int ret = 0;
2037
2038         WARN_ON(btrfs_header_generation(src) != trans->transid);
2039         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2040
2041         src_nritems = btrfs_header_nritems(src);
2042         dst_nritems = btrfs_header_nritems(dst);
2043         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2044         if (push_items <= 0)
2045                 return 1;
2046
2047         if (src_nritems < 4)
2048                 return 1;
2049
2050         max_push = src_nritems / 2 + 1;
2051         /* don't try to empty the node */
2052         if (max_push >= src_nritems)
2053                 return 1;
2054
2055         if (max_push < push_items)
2056                 push_items = max_push;
2057
2058         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2059                                       btrfs_node_key_ptr_offset(0),
2060                                       (dst_nritems) *
2061                                       sizeof(struct btrfs_key_ptr));
2062
2063         copy_extent_buffer(dst, src,
2064                            btrfs_node_key_ptr_offset(0),
2065                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2066                            push_items * sizeof(struct btrfs_key_ptr));
2067
2068         btrfs_set_header_nritems(src, src_nritems - push_items);
2069         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2070
2071         btrfs_mark_buffer_dirty(src);
2072         btrfs_mark_buffer_dirty(dst);
2073
2074         return ret;
2075 }
2076
2077 /*
2078  * helper function to insert a new root level in the tree.
2079  * A new node is allocated, and a single item is inserted to
2080  * point to the existing root
2081  *
2082  * returns zero on success or < 0 on failure.
2083  */
2084 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2085                            struct btrfs_root *root,
2086                            struct btrfs_path *path, int level)
2087 {
2088         u64 lower_gen;
2089         struct extent_buffer *lower;
2090         struct extent_buffer *c;
2091         struct extent_buffer *old;
2092         struct btrfs_disk_key lower_key;
2093
2094         BUG_ON(path->nodes[level]);
2095         BUG_ON(path->nodes[level-1] != root->node);
2096
2097         lower = path->nodes[level-1];
2098         if (level == 1)
2099                 btrfs_item_key(lower, &lower_key, 0);
2100         else
2101                 btrfs_node_key(lower, &lower_key, 0);
2102
2103         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2104                                    root->root_key.objectid, &lower_key,
2105                                    level, root->node->start, 0, 0);
2106         if (IS_ERR(c))
2107                 return PTR_ERR(c);
2108
2109         root_add_used(root, root->nodesize);
2110
2111         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2112         btrfs_set_header_nritems(c, 1);
2113         btrfs_set_header_level(c, level);
2114         btrfs_set_header_bytenr(c, c->start);
2115         btrfs_set_header_generation(c, trans->transid);
2116         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2117         btrfs_set_header_owner(c, root->root_key.objectid);
2118
2119         write_extent_buffer(c, root->fs_info->fsid,
2120                             (unsigned long)btrfs_header_fsid(c),
2121                             BTRFS_FSID_SIZE);
2122
2123         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2124                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2125                             BTRFS_UUID_SIZE);
2126
2127         btrfs_set_node_key(c, &lower_key, 0);
2128         btrfs_set_node_blockptr(c, 0, lower->start);
2129         lower_gen = btrfs_header_generation(lower);
2130         WARN_ON(lower_gen != trans->transid);
2131
2132         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2133
2134         btrfs_mark_buffer_dirty(c);
2135
2136         old = root->node;
2137         rcu_assign_pointer(root->node, c);
2138
2139         /* the super has an extra ref to root->node */
2140         free_extent_buffer(old);
2141
2142         add_root_to_dirty_list(root);
2143         extent_buffer_get(c);
2144         path->nodes[level] = c;
2145         path->locks[level] = BTRFS_WRITE_LOCK;
2146         path->slots[level] = 0;
2147         return 0;
2148 }
2149
2150 /*
2151  * worker function to insert a single pointer in a node.
2152  * the node should have enough room for the pointer already
2153  *
2154  * slot and level indicate where you want the key to go, and
2155  * blocknr is the block the key points to.
2156  *
2157  * returns zero on success and < 0 on any error
2158  */
2159 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2160                       *root, struct btrfs_path *path, struct btrfs_disk_key
2161                       *key, u64 bytenr, int slot, int level)
2162 {
2163         struct extent_buffer *lower;
2164         int nritems;
2165
2166         BUG_ON(!path->nodes[level]);
2167         btrfs_assert_tree_locked(path->nodes[level]);
2168         lower = path->nodes[level];
2169         nritems = btrfs_header_nritems(lower);
2170         BUG_ON(slot > nritems);
2171         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2172                 BUG();
2173         if (slot != nritems) {
2174                 memmove_extent_buffer(lower,
2175                               btrfs_node_key_ptr_offset(slot + 1),
2176                               btrfs_node_key_ptr_offset(slot),
2177                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2178         }
2179         btrfs_set_node_key(lower, key, slot);
2180         btrfs_set_node_blockptr(lower, slot, bytenr);
2181         WARN_ON(trans->transid == 0);
2182         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2183         btrfs_set_header_nritems(lower, nritems + 1);
2184         btrfs_mark_buffer_dirty(lower);
2185         return 0;
2186 }
2187
2188 /*
2189  * split the node at the specified level in path in two.
2190  * The path is corrected to point to the appropriate node after the split
2191  *
2192  * Before splitting this tries to make some room in the node by pushing
2193  * left and right, if either one works, it returns right away.
2194  *
2195  * returns 0 on success and < 0 on failure
2196  */
2197 static noinline int split_node(struct btrfs_trans_handle *trans,
2198                                struct btrfs_root *root,
2199                                struct btrfs_path *path, int level)
2200 {
2201         struct extent_buffer *c;
2202         struct extent_buffer *split;
2203         struct btrfs_disk_key disk_key;
2204         int mid;
2205         int ret;
2206         int wret;
2207         u32 c_nritems;
2208
2209         c = path->nodes[level];
2210         WARN_ON(btrfs_header_generation(c) != trans->transid);
2211         if (c == root->node) {
2212                 /* trying to split the root, lets make a new one */
2213                 ret = insert_new_root(trans, root, path, level + 1);
2214                 if (ret)
2215                         return ret;
2216         } else {
2217                 ret = push_nodes_for_insert(trans, root, path, level);
2218                 c = path->nodes[level];
2219                 if (!ret && btrfs_header_nritems(c) <
2220                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2221                         return 0;
2222                 if (ret < 0)
2223                         return ret;
2224         }
2225
2226         c_nritems = btrfs_header_nritems(c);
2227         mid = (c_nritems + 1) / 2;
2228         btrfs_node_key(c, &disk_key, mid);
2229
2230         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2231                                         root->root_key.objectid,
2232                                         &disk_key, level, c->start, 0, 0);
2233         if (IS_ERR(split))
2234                 return PTR_ERR(split);
2235
2236         root_add_used(root, root->nodesize);
2237
2238         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2239         btrfs_set_header_level(split, btrfs_header_level(c));
2240         btrfs_set_header_bytenr(split, split->start);
2241         btrfs_set_header_generation(split, trans->transid);
2242         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2243         btrfs_set_header_owner(split, root->root_key.objectid);
2244         write_extent_buffer(split, root->fs_info->fsid,
2245                             (unsigned long)btrfs_header_fsid(split),
2246                             BTRFS_FSID_SIZE);
2247         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2248                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2249                             BTRFS_UUID_SIZE);
2250
2251
2252         copy_extent_buffer(split, c,
2253                            btrfs_node_key_ptr_offset(0),
2254                            btrfs_node_key_ptr_offset(mid),
2255                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2256         btrfs_set_header_nritems(split, c_nritems - mid);
2257         btrfs_set_header_nritems(c, mid);
2258         ret = 0;
2259
2260         btrfs_mark_buffer_dirty(c);
2261         btrfs_mark_buffer_dirty(split);
2262
2263         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2264                           path->slots[level + 1] + 1,
2265                           level + 1);
2266         if (wret)
2267                 ret = wret;
2268
2269         if (path->slots[level] >= mid) {
2270                 path->slots[level] -= mid;
2271                 btrfs_tree_unlock(c);
2272                 free_extent_buffer(c);
2273                 path->nodes[level] = split;
2274                 path->slots[level + 1] += 1;
2275         } else {
2276                 btrfs_tree_unlock(split);
2277                 free_extent_buffer(split);
2278         }
2279         return ret;
2280 }
2281
2282 /*
2283  * how many bytes are required to store the items in a leaf.  start
2284  * and nr indicate which items in the leaf to check.  This totals up the
2285  * space used both by the item structs and the item data
2286  */
2287 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2288 {
2289         int data_len;
2290         int nritems = btrfs_header_nritems(l);
2291         int end = min(nritems, start + nr) - 1;
2292
2293         if (!nr)
2294                 return 0;
2295         data_len = btrfs_item_end_nr(l, start);
2296         data_len = data_len - btrfs_item_offset_nr(l, end);
2297         data_len += sizeof(struct btrfs_item) * nr;
2298         WARN_ON(data_len < 0);
2299         return data_len;
2300 }
2301
2302 /*
2303  * The space between the end of the leaf items and
2304  * the start of the leaf data.  IOW, how much room
2305  * the leaf has left for both items and data
2306  */
2307 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2308                                    struct extent_buffer *leaf)
2309 {
2310         int nritems = btrfs_header_nritems(leaf);
2311         int ret;
2312         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2313         if (ret < 0) {
2314                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2315                        "used %d nritems %d\n",
2316                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2317                        leaf_space_used(leaf, 0, nritems), nritems);
2318         }
2319         return ret;
2320 }
2321
2322 /*
2323  * min slot controls the lowest index we're willing to push to the
2324  * right.  We'll push up to and including min_slot, but no lower
2325  */
2326 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2327                                       struct btrfs_root *root,
2328                                       struct btrfs_path *path,
2329                                       int data_size, int empty,
2330                                       struct extent_buffer *right,
2331                                       int free_space, u32 left_nritems,
2332                                       u32 min_slot)
2333 {
2334         struct extent_buffer *left = path->nodes[0];
2335         struct extent_buffer *upper = path->nodes[1];
2336         struct btrfs_disk_key disk_key;
2337         int slot;
2338         u32 i;
2339         int push_space = 0;
2340         int push_items = 0;
2341         struct btrfs_item *item;
2342         u32 nr;
2343         u32 right_nritems;
2344         u32 data_end;
2345         u32 this_item_size;
2346
2347         if (empty)
2348                 nr = 0;
2349         else
2350                 nr = max_t(u32, 1, min_slot);
2351
2352         if (path->slots[0] >= left_nritems)
2353                 push_space += data_size;
2354
2355         slot = path->slots[1];
2356         i = left_nritems - 1;
2357         while (i >= nr) {
2358                 item = btrfs_item_nr(left, i);
2359
2360                 if (!empty && push_items > 0) {
2361                         if (path->slots[0] > i)
2362                                 break;
2363                         if (path->slots[0] == i) {
2364                                 int space = btrfs_leaf_free_space(root, left);
2365                                 if (space + push_space * 2 > free_space)
2366                                         break;
2367                         }
2368                 }
2369
2370                 if (path->slots[0] == i)
2371                         push_space += data_size;
2372
2373                 this_item_size = btrfs_item_size(left, item);
2374                 if (this_item_size + sizeof(*item) + push_space > free_space)
2375                         break;
2376
2377                 push_items++;
2378                 push_space += this_item_size + sizeof(*item);
2379                 if (i == 0)
2380                         break;
2381                 i--;
2382         }
2383
2384         if (push_items == 0)
2385                 goto out_unlock;
2386
2387         if (!empty && push_items == left_nritems)
2388                 WARN_ON(1);
2389
2390         /* push left to right */
2391         right_nritems = btrfs_header_nritems(right);
2392
2393         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2394         push_space -= leaf_data_end(root, left);
2395
2396         /* make room in the right data area */
2397         data_end = leaf_data_end(root, right);
2398         memmove_extent_buffer(right,
2399                               btrfs_leaf_data(right) + data_end - push_space,
2400                               btrfs_leaf_data(right) + data_end,
2401                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2402
2403         /* copy from the left data area */
2404         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2405                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2406                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2407                      push_space);
2408
2409         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2410                               btrfs_item_nr_offset(0),
2411                               right_nritems * sizeof(struct btrfs_item));
2412
2413         /* copy the items from left to right */
2414         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2415                    btrfs_item_nr_offset(left_nritems - push_items),
2416                    push_items * sizeof(struct btrfs_item));
2417
2418         /* update the item pointers */
2419         right_nritems += push_items;
2420         btrfs_set_header_nritems(right, right_nritems);
2421         push_space = BTRFS_LEAF_DATA_SIZE(root);
2422         for (i = 0; i < right_nritems; i++) {
2423                 item = btrfs_item_nr(right, i);
2424                 push_space -= btrfs_item_size(right, item);
2425                 btrfs_set_item_offset(right, item, push_space);
2426         }
2427
2428         left_nritems -= push_items;
2429         btrfs_set_header_nritems(left, left_nritems);
2430
2431         if (left_nritems)
2432                 btrfs_mark_buffer_dirty(left);
2433         else
2434                 clean_tree_block(trans, root, left);
2435
2436         btrfs_mark_buffer_dirty(right);
2437
2438         btrfs_item_key(right, &disk_key, 0);
2439         btrfs_set_node_key(upper, &disk_key, slot + 1);
2440         btrfs_mark_buffer_dirty(upper);
2441
2442         /* then fixup the leaf pointer in the path */
2443         if (path->slots[0] >= left_nritems) {
2444                 path->slots[0] -= left_nritems;
2445                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2446                         clean_tree_block(trans, root, path->nodes[0]);
2447                 btrfs_tree_unlock(path->nodes[0]);
2448                 free_extent_buffer(path->nodes[0]);
2449                 path->nodes[0] = right;
2450                 path->slots[1] += 1;
2451         } else {
2452                 btrfs_tree_unlock(right);
2453                 free_extent_buffer(right);
2454         }
2455         return 0;
2456
2457 out_unlock:
2458         btrfs_tree_unlock(right);
2459         free_extent_buffer(right);
2460         return 1;
2461 }
2462
2463 /*
2464  * push some data in the path leaf to the right, trying to free up at
2465  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2466  *
2467  * returns 1 if the push failed because the other node didn't have enough
2468  * room, 0 if everything worked out and < 0 if there were major errors.
2469  *
2470  * this will push starting from min_slot to the end of the leaf.  It won't
2471  * push any slot lower than min_slot
2472  */
2473 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2474                            *root, struct btrfs_path *path,
2475                            int min_data_size, int data_size,
2476                            int empty, u32 min_slot)
2477 {
2478         struct extent_buffer *left = path->nodes[0];
2479         struct extent_buffer *right;
2480         struct extent_buffer *upper;
2481         int slot;
2482         int free_space;
2483         u32 left_nritems;
2484         int ret;
2485
2486         if (!path->nodes[1])
2487                 return 1;
2488
2489         slot = path->slots[1];
2490         upper = path->nodes[1];
2491         if (slot >= btrfs_header_nritems(upper) - 1)
2492                 return 1;
2493
2494         btrfs_assert_tree_locked(path->nodes[1]);
2495
2496         right = read_node_slot(root, upper, slot + 1);
2497         if (right == NULL)
2498                 return 1;
2499
2500         btrfs_tree_lock(right);
2501         btrfs_set_lock_blocking(right);
2502
2503         free_space = btrfs_leaf_free_space(root, right);
2504         if (free_space < data_size)
2505                 goto out_unlock;
2506
2507         /* cow and double check */
2508         ret = btrfs_cow_block(trans, root, right, upper,
2509                               slot + 1, &right);
2510         if (ret)
2511                 goto out_unlock;
2512
2513         free_space = btrfs_leaf_free_space(root, right);
2514         if (free_space < data_size)
2515                 goto out_unlock;
2516
2517         left_nritems = btrfs_header_nritems(left);
2518         if (left_nritems == 0)
2519                 goto out_unlock;
2520
2521         return __push_leaf_right(trans, root, path, min_data_size, empty,
2522                                 right, free_space, left_nritems, min_slot);
2523 out_unlock:
2524         btrfs_tree_unlock(right);
2525         free_extent_buffer(right);
2526         return 1;
2527 }
2528
2529 /*
2530  * push some data in the path leaf to the left, trying to free up at
2531  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2532  *
2533  * max_slot can put a limit on how far into the leaf we'll push items.  The
2534  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2535  * items
2536  */
2537 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2538                                      struct btrfs_root *root,
2539                                      struct btrfs_path *path, int data_size,
2540                                      int empty, struct extent_buffer *left,
2541                                      int free_space, u32 right_nritems,
2542                                      u32 max_slot)
2543 {
2544         struct btrfs_disk_key disk_key;
2545         struct extent_buffer *right = path->nodes[0];
2546         int i;
2547         int push_space = 0;
2548         int push_items = 0;
2549         struct btrfs_item *item;
2550         u32 old_left_nritems;
2551         u32 nr;
2552         int ret = 0;
2553         int wret;
2554         u32 this_item_size;
2555         u32 old_left_item_size;
2556
2557         if (empty)
2558                 nr = min(right_nritems, max_slot);
2559         else
2560                 nr = min(right_nritems - 1, max_slot);
2561
2562         for (i = 0; i < nr; i++) {
2563                 item = btrfs_item_nr(right, i);
2564
2565                 if (!empty && push_items > 0) {
2566                         if (path->slots[0] < i)
2567                                 break;
2568                         if (path->slots[0] == i) {
2569                                 int space = btrfs_leaf_free_space(root, right);
2570                                 if (space + push_space * 2 > free_space)
2571                                         break;
2572                         }
2573                 }
2574
2575                 if (path->slots[0] == i)
2576                         push_space += data_size;
2577
2578                 this_item_size = btrfs_item_size(right, item);
2579                 if (this_item_size + sizeof(*item) + push_space > free_space)
2580                         break;
2581
2582                 push_items++;
2583                 push_space += this_item_size + sizeof(*item);
2584         }
2585
2586         if (push_items == 0) {
2587                 ret = 1;
2588                 goto out;
2589         }
2590         if (!empty && push_items == btrfs_header_nritems(right))
2591                 WARN_ON(1);
2592
2593         /* push data from right to left */
2594         copy_extent_buffer(left, right,
2595                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2596                            btrfs_item_nr_offset(0),
2597                            push_items * sizeof(struct btrfs_item));
2598
2599         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2600                      btrfs_item_offset_nr(right, push_items - 1);
2601
2602         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2603                      leaf_data_end(root, left) - push_space,
2604                      btrfs_leaf_data(right) +
2605                      btrfs_item_offset_nr(right, push_items - 1),
2606                      push_space);
2607         old_left_nritems = btrfs_header_nritems(left);
2608         BUG_ON(old_left_nritems <= 0);
2609
2610         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2611         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2612                 u32 ioff;
2613
2614                 item = btrfs_item_nr(left, i);
2615
2616                 ioff = btrfs_item_offset(left, item);
2617                 btrfs_set_item_offset(left, item,
2618                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2619         }
2620         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2621
2622         /* fixup right node */
2623         if (push_items > right_nritems) {
2624                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2625                        right_nritems);
2626                 WARN_ON(1);
2627         }
2628
2629         if (push_items < right_nritems) {
2630                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2631                                                   leaf_data_end(root, right);
2632                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2633                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2634                                       btrfs_leaf_data(right) +
2635                                       leaf_data_end(root, right), push_space);
2636
2637                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2638                               btrfs_item_nr_offset(push_items),
2639                              (btrfs_header_nritems(right) - push_items) *
2640                              sizeof(struct btrfs_item));
2641         }
2642         right_nritems -= push_items;
2643         btrfs_set_header_nritems(right, right_nritems);
2644         push_space = BTRFS_LEAF_DATA_SIZE(root);
2645         for (i = 0; i < right_nritems; i++) {
2646                 item = btrfs_item_nr(right, i);
2647
2648                 push_space = push_space - btrfs_item_size(right, item);
2649                 btrfs_set_item_offset(right, item, push_space);
2650         }
2651
2652         btrfs_mark_buffer_dirty(left);
2653         if (right_nritems)
2654                 btrfs_mark_buffer_dirty(right);
2655         else
2656                 clean_tree_block(trans, root, right);
2657
2658         btrfs_item_key(right, &disk_key, 0);
2659         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2660         if (wret)
2661                 ret = wret;
2662
2663         /* then fixup the leaf pointer in the path */
2664         if (path->slots[0] < push_items) {
2665                 path->slots[0] += old_left_nritems;
2666                 btrfs_tree_unlock(path->nodes[0]);
2667                 free_extent_buffer(path->nodes[0]);
2668                 path->nodes[0] = left;
2669                 path->slots[1] -= 1;
2670         } else {
2671                 btrfs_tree_unlock(left);
2672                 free_extent_buffer(left);
2673                 path->slots[0] -= push_items;
2674         }
2675         BUG_ON(path->slots[0] < 0);
2676         return ret;
2677 out:
2678         btrfs_tree_unlock(left);
2679         free_extent_buffer(left);
2680         return ret;
2681 }
2682
2683 /*
2684  * push some data in the path leaf to the left, trying to free up at
2685  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2686  *
2687  * max_slot can put a limit on how far into the leaf we'll push items.  The
2688  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2689  * items
2690  */
2691 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2692                           *root, struct btrfs_path *path, int min_data_size,
2693                           int data_size, int empty, u32 max_slot)
2694 {
2695         struct extent_buffer *right = path->nodes[0];
2696         struct extent_buffer *left;
2697         int slot;
2698         int free_space;
2699         u32 right_nritems;
2700         int ret = 0;
2701
2702         slot = path->slots[1];
2703         if (slot == 0)
2704                 return 1;
2705         if (!path->nodes[1])
2706                 return 1;
2707
2708         right_nritems = btrfs_header_nritems(right);
2709         if (right_nritems == 0)
2710                 return 1;
2711
2712         btrfs_assert_tree_locked(path->nodes[1]);
2713
2714         left = read_node_slot(root, path->nodes[1], slot - 1);
2715         if (left == NULL)
2716                 return 1;
2717
2718         btrfs_tree_lock(left);
2719         btrfs_set_lock_blocking(left);
2720
2721         free_space = btrfs_leaf_free_space(root, left);
2722         if (free_space < data_size) {
2723                 ret = 1;
2724                 goto out;
2725         }
2726
2727         /* cow and double check */
2728         ret = btrfs_cow_block(trans, root, left,
2729                               path->nodes[1], slot - 1, &left);
2730         if (ret) {
2731                 /* we hit -ENOSPC, but it isn't fatal here */
2732                 ret = 1;
2733                 goto out;
2734         }
2735
2736         free_space = btrfs_leaf_free_space(root, left);
2737         if (free_space < data_size) {
2738                 ret = 1;
2739                 goto out;
2740         }
2741
2742         return __push_leaf_left(trans, root, path, min_data_size,
2743                                empty, left, free_space, right_nritems,
2744                                max_slot);
2745 out:
2746         btrfs_tree_unlock(left);
2747         free_extent_buffer(left);
2748         return ret;
2749 }
2750
2751 /*
2752  * split the path's leaf in two, making sure there is at least data_size
2753  * available for the resulting leaf level of the path.
2754  *
2755  * returns 0 if all went well and < 0 on failure.
2756  */
2757 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2758                                struct btrfs_root *root,
2759                                struct btrfs_path *path,
2760                                struct extent_buffer *l,
2761                                struct extent_buffer *right,
2762                                int slot, int mid, int nritems)
2763 {
2764         int data_copy_size;
2765         int rt_data_off;
2766         int i;
2767         int ret = 0;
2768         int wret;
2769         struct btrfs_disk_key disk_key;
2770
2771         nritems = nritems - mid;
2772         btrfs_set_header_nritems(right, nritems);
2773         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2774
2775         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2776                            btrfs_item_nr_offset(mid),
2777                            nritems * sizeof(struct btrfs_item));
2778
2779         copy_extent_buffer(right, l,
2780                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2781                      data_copy_size, btrfs_leaf_data(l) +
2782                      leaf_data_end(root, l), data_copy_size);
2783
2784         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2785                       btrfs_item_end_nr(l, mid);
2786
2787         for (i = 0; i < nritems; i++) {
2788                 struct btrfs_item *item = btrfs_item_nr(right, i);
2789                 u32 ioff;
2790
2791                 ioff = btrfs_item_offset(right, item);
2792                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2793         }
2794
2795         btrfs_set_header_nritems(l, mid);
2796         ret = 0;
2797         btrfs_item_key(right, &disk_key, 0);
2798         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2799                           path->slots[1] + 1, 1);
2800         if (wret)
2801                 ret = wret;
2802
2803         btrfs_mark_buffer_dirty(right);
2804         btrfs_mark_buffer_dirty(l);
2805         BUG_ON(path->slots[0] != slot);
2806
2807         if (mid <= slot) {
2808                 btrfs_tree_unlock(path->nodes[0]);
2809                 free_extent_buffer(path->nodes[0]);
2810                 path->nodes[0] = right;
2811                 path->slots[0] -= mid;
2812                 path->slots[1] += 1;
2813         } else {
2814                 btrfs_tree_unlock(right);
2815                 free_extent_buffer(right);
2816         }
2817
2818         BUG_ON(path->slots[0] < 0);
2819
2820         return ret;
2821 }
2822
2823 /*
2824  * double splits happen when we need to insert a big item in the middle
2825  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2826  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2827  *          A                 B                 C
2828  *
2829  * We avoid this by trying to push the items on either side of our target
2830  * into the adjacent leaves.  If all goes well we can avoid the double split
2831  * completely.
2832  */
2833 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2834                                           struct btrfs_root *root,
2835                                           struct btrfs_path *path,
2836                                           int data_size)
2837 {
2838         int ret;
2839         int progress = 0;
2840         int slot;
2841         u32 nritems;
2842
2843         slot = path->slots[0];
2844
2845         /*
2846          * try to push all the items after our slot into the
2847          * right leaf
2848          */
2849         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2850         if (ret < 0)
2851                 return ret;
2852
2853         if (ret == 0)
2854                 progress++;
2855
2856         nritems = btrfs_header_nritems(path->nodes[0]);
2857         /*
2858          * our goal is to get our slot at the start or end of a leaf.  If
2859          * we've done so we're done
2860          */
2861         if (path->slots[0] == 0 || path->slots[0] == nritems)
2862                 return 0;
2863
2864         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2865                 return 0;
2866
2867         /* try to push all the items before our slot into the next leaf */
2868         slot = path->slots[0];
2869         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2870         if (ret < 0)
2871                 return ret;
2872
2873         if (ret == 0)
2874                 progress++;
2875
2876         if (progress)
2877                 return 0;
2878         return 1;
2879 }
2880
2881 /*
2882  * split the path's leaf in two, making sure there is at least data_size
2883  * available for the resulting leaf level of the path.
2884  *
2885  * returns 0 if all went well and < 0 on failure.
2886  */
2887 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2888                                struct btrfs_root *root,
2889                                struct btrfs_key *ins_key,
2890                                struct btrfs_path *path, int data_size,
2891                                int extend)
2892 {
2893         struct btrfs_disk_key disk_key;
2894         struct extent_buffer *l;
2895         u32 nritems;
2896         int mid;
2897         int slot;
2898         struct extent_buffer *right;
2899         int ret = 0;
2900         int wret;
2901         int split;
2902         int num_doubles = 0;
2903         int tried_avoid_double = 0;
2904
2905         l = path->nodes[0];
2906         slot = path->slots[0];
2907         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2908             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2909                 return -EOVERFLOW;
2910
2911         /* first try to make some room by pushing left and right */
2912         if (data_size) {
2913                 wret = push_leaf_right(trans, root, path, data_size,
2914                                        data_size, 0, 0);
2915                 if (wret < 0)
2916                         return wret;
2917                 if (wret) {
2918                         wret = push_leaf_left(trans, root, path, data_size,
2919                                               data_size, 0, (u32)-1);
2920                         if (wret < 0)
2921                                 return wret;
2922                 }
2923                 l = path->nodes[0];
2924
2925                 /* did the pushes work? */
2926                 if (btrfs_leaf_free_space(root, l) >= data_size)
2927                         return 0;
2928         }
2929
2930         if (!path->nodes[1]) {
2931                 ret = insert_new_root(trans, root, path, 1);
2932                 if (ret)
2933                         return ret;
2934         }
2935 again:
2936         split = 1;
2937         l = path->nodes[0];
2938         slot = path->slots[0];
2939         nritems = btrfs_header_nritems(l);
2940         mid = (nritems + 1) / 2;
2941
2942         if (mid <= slot) {
2943                 if (nritems == 1 ||
2944                     leaf_space_used(l, mid, nritems - mid) + data_size >
2945                         BTRFS_LEAF_DATA_SIZE(root)) {
2946                         if (slot >= nritems) {
2947                                 split = 0;
2948                         } else {
2949                                 mid = slot;
2950                                 if (mid != nritems &&
2951                                     leaf_space_used(l, mid, nritems - mid) +
2952                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2953                                         if (data_size && !tried_avoid_double)
2954                                                 goto push_for_double;
2955                                         split = 2;
2956                                 }
2957                         }
2958                 }
2959         } else {
2960                 if (leaf_space_used(l, 0, mid) + data_size >
2961                         BTRFS_LEAF_DATA_SIZE(root)) {
2962                         if (!extend && data_size && slot == 0) {
2963                                 split = 0;
2964                         } else if ((extend || !data_size) && slot == 0) {
2965                                 mid = 1;
2966                         } else {
2967                                 mid = slot;
2968                                 if (mid != nritems &&
2969                                     leaf_space_used(l, mid, nritems - mid) +
2970                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2971                                         if (data_size && !tried_avoid_double)
2972                                                 goto push_for_double;
2973                                         split = 2 ;
2974                                 }
2975                         }
2976                 }
2977         }
2978
2979         if (split == 0)
2980                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2981         else
2982                 btrfs_item_key(l, &disk_key, mid);
2983
2984         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2985                                         root->root_key.objectid,
2986                                         &disk_key, 0, l->start, 0, 0);
2987         if (IS_ERR(right))
2988                 return PTR_ERR(right);
2989
2990         root_add_used(root, root->leafsize);
2991
2992         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2993         btrfs_set_header_bytenr(right, right->start);
2994         btrfs_set_header_generation(right, trans->transid);
2995         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2996         btrfs_set_header_owner(right, root->root_key.objectid);
2997         btrfs_set_header_level(right, 0);
2998         write_extent_buffer(right, root->fs_info->fsid,
2999                             (unsigned long)btrfs_header_fsid(right),
3000                             BTRFS_FSID_SIZE);
3001
3002         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3003                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3004                             BTRFS_UUID_SIZE);
3005
3006         if (split == 0) {
3007                 if (mid <= slot) {
3008                         btrfs_set_header_nritems(right, 0);
3009                         wret = insert_ptr(trans, root, path,
3010                                           &disk_key, right->start,
3011                                           path->slots[1] + 1, 1);
3012                         if (wret)
3013                                 ret = wret;
3014
3015                         btrfs_tree_unlock(path->nodes[0]);
3016                         free_extent_buffer(path->nodes[0]);
3017                         path->nodes[0] = right;
3018                         path->slots[0] = 0;
3019                         path->slots[1] += 1;
3020                 } else {
3021                         btrfs_set_header_nritems(right, 0);
3022                         wret = insert_ptr(trans, root, path,
3023                                           &disk_key,
3024                                           right->start,
3025                                           path->slots[1], 1);
3026                         if (wret)
3027                                 ret = wret;
3028                         btrfs_tree_unlock(path->nodes[0]);
3029                         free_extent_buffer(path->nodes[0]);
3030                         path->nodes[0] = right;
3031                         path->slots[0] = 0;
3032                         if (path->slots[1] == 0) {
3033                                 wret = fixup_low_keys(trans, root,
3034                                                 path, &disk_key, 1);
3035                                 if (wret)
3036                                         ret = wret;
3037                         }
3038                 }
3039                 btrfs_mark_buffer_dirty(right);
3040                 return ret;
3041         }
3042
3043         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3044         BUG_ON(ret);
3045
3046         if (split == 2) {
3047                 BUG_ON(num_doubles != 0);
3048                 num_doubles++;
3049                 goto again;
3050         }
3051
3052         return ret;
3053
3054 push_for_double:
3055         push_for_double_split(trans, root, path, data_size);
3056         tried_avoid_double = 1;
3057         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3058                 return 0;
3059         goto again;
3060 }
3061
3062 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3063                                          struct btrfs_root *root,
3064                                          struct btrfs_path *path, int ins_len)
3065 {
3066         struct btrfs_key key;
3067         struct extent_buffer *leaf;
3068         struct btrfs_file_extent_item *fi;
3069         u64 extent_len = 0;
3070         u32 item_size;
3071         int ret;
3072
3073         leaf = path->nodes[0];
3074         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3075
3076         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3077                key.type != BTRFS_EXTENT_CSUM_KEY);
3078
3079         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3080                 return 0;
3081
3082         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3083         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3084                 fi = btrfs_item_ptr(leaf, path->slots[0],
3085                                     struct btrfs_file_extent_item);
3086                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3087         }
3088         btrfs_release_path(path);
3089
3090         path->keep_locks = 1;
3091         path->search_for_split = 1;
3092         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3093         path->search_for_split = 0;
3094         if (ret < 0)
3095                 goto err;
3096
3097         ret = -EAGAIN;
3098         leaf = path->nodes[0];
3099         /* if our item isn't there or got smaller, return now */
3100         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3101                 goto err;
3102
3103         /* the leaf has  changed, it now has room.  return now */
3104         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3105                 goto err;
3106
3107         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3108                 fi = btrfs_item_ptr(leaf, path->slots[0],
3109                                     struct btrfs_file_extent_item);
3110                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3111                         goto err;
3112         }
3113
3114         btrfs_set_path_blocking(path);
3115         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3116         if (ret)
3117                 goto err;
3118
3119         path->keep_locks = 0;
3120         btrfs_unlock_up_safe(path, 1);
3121         return 0;
3122 err:
3123         path->keep_locks = 0;
3124         return ret;
3125 }
3126
3127 static noinline int split_item(struct btrfs_trans_handle *trans,
3128                                struct btrfs_root *root,
3129                                struct btrfs_path *path,
3130                                struct btrfs_key *new_key,
3131                                unsigned long split_offset)
3132 {
3133         struct extent_buffer *leaf;
3134         struct btrfs_item *item;
3135         struct btrfs_item *new_item;
3136         int slot;
3137         char *buf;
3138         u32 nritems;
3139         u32 item_size;
3140         u32 orig_offset;
3141         struct btrfs_disk_key disk_key;
3142
3143         leaf = path->nodes[0];
3144         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3145
3146         btrfs_set_path_blocking(path);
3147
3148         item = btrfs_item_nr(leaf, path->slots[0]);
3149         orig_offset = btrfs_item_offset(leaf, item);
3150         item_size = btrfs_item_size(leaf, item);
3151
3152         buf = kmalloc(item_size, GFP_NOFS);
3153         if (!buf)
3154                 return -ENOMEM;
3155
3156         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3157                             path->slots[0]), item_size);
3158
3159         slot = path->slots[0] + 1;
3160         nritems = btrfs_header_nritems(leaf);
3161         if (slot != nritems) {
3162                 /* shift the items */
3163                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3164                                 btrfs_item_nr_offset(slot),
3165                                 (nritems - slot) * sizeof(struct btrfs_item));
3166         }
3167
3168         btrfs_cpu_key_to_disk(&disk_key, new_key);
3169         btrfs_set_item_key(leaf, &disk_key, slot);
3170
3171         new_item = btrfs_item_nr(leaf, slot);
3172
3173         btrfs_set_item_offset(leaf, new_item, orig_offset);
3174         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3175
3176         btrfs_set_item_offset(leaf, item,
3177                               orig_offset + item_size - split_offset);
3178         btrfs_set_item_size(leaf, item, split_offset);
3179
3180         btrfs_set_header_nritems(leaf, nritems + 1);
3181
3182         /* write the data for the start of the original item */
3183         write_extent_buffer(leaf, buf,
3184                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3185                             split_offset);
3186
3187         /* write the data for the new item */
3188         write_extent_buffer(leaf, buf + split_offset,
3189                             btrfs_item_ptr_offset(leaf, slot),
3190                             item_size - split_offset);
3191         btrfs_mark_buffer_dirty(leaf);
3192
3193         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3194         kfree(buf);
3195         return 0;
3196 }
3197
3198 /*
3199  * This function splits a single item into two items,
3200  * giving 'new_key' to the new item and splitting the
3201  * old one at split_offset (from the start of the item).
3202  *
3203  * The path may be released by this operation.  After
3204  * the split, the path is pointing to the old item.  The
3205  * new item is going to be in the same node as the old one.
3206  *
3207  * Note, the item being split must be smaller enough to live alone on
3208  * a tree block with room for one extra struct btrfs_item
3209  *
3210  * This allows us to split the item in place, keeping a lock on the
3211  * leaf the entire time.
3212  */
3213 int btrfs_split_item(struct btrfs_trans_handle *trans,
3214                      struct btrfs_root *root,
3215                      struct btrfs_path *path,
3216                      struct btrfs_key *new_key,
3217                      unsigned long split_offset)
3218 {
3219         int ret;
3220         ret = setup_leaf_for_split(trans, root, path,
3221                                    sizeof(struct btrfs_item));
3222         if (ret)
3223                 return ret;
3224
3225         ret = split_item(trans, root, path, new_key, split_offset);
3226         return ret;
3227 }
3228
3229 /*
3230  * This function duplicate a item, giving 'new_key' to the new item.
3231  * It guarantees both items live in the same tree leaf and the new item
3232  * is contiguous with the original item.
3233  *
3234  * This allows us to split file extent in place, keeping a lock on the
3235  * leaf the entire time.
3236  */
3237 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3238                          struct btrfs_root *root,
3239                          struct btrfs_path *path,
3240                          struct btrfs_key *new_key)
3241 {
3242         struct extent_buffer *leaf;
3243         int ret;
3244         u32 item_size;
3245
3246         leaf = path->nodes[0];
3247         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3248         ret = setup_leaf_for_split(trans, root, path,
3249                                    item_size + sizeof(struct btrfs_item));
3250         if (ret)
3251                 return ret;
3252
3253         path->slots[0]++;
3254         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3255                                      item_size, item_size +
3256                                      sizeof(struct btrfs_item), 1);
3257         BUG_ON(ret);
3258
3259         leaf = path->nodes[0];
3260         memcpy_extent_buffer(leaf,
3261                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3262                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3263                              item_size);
3264         return 0;
3265 }
3266
3267 /*
3268  * make the item pointed to by the path smaller.  new_size indicates
3269  * how small to make it, and from_end tells us if we just chop bytes
3270  * off the end of the item or if we shift the item to chop bytes off
3271  * the front.
3272  */
3273 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3274                         struct btrfs_root *root,
3275                         struct btrfs_path *path,
3276                         u32 new_size, int from_end)
3277 {
3278         int slot;
3279         struct extent_buffer *leaf;
3280         struct btrfs_item *item;
3281         u32 nritems;
3282         unsigned int data_end;
3283         unsigned int old_data_start;
3284         unsigned int old_size;
3285         unsigned int size_diff;
3286         int i;
3287
3288         leaf = path->nodes[0];
3289         slot = path->slots[0];
3290
3291         old_size = btrfs_item_size_nr(leaf, slot);
3292         if (old_size == new_size)
3293                 return 0;
3294
3295         nritems = btrfs_header_nritems(leaf);
3296         data_end = leaf_data_end(root, leaf);
3297
3298         old_data_start = btrfs_item_offset_nr(leaf, slot);
3299
3300         size_diff = old_size - new_size;
3301
3302         BUG_ON(slot < 0);
3303         BUG_ON(slot >= nritems);
3304
3305         /*
3306          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3307          */
3308         /* first correct the data pointers */
3309         for (i = slot; i < nritems; i++) {
3310                 u32 ioff;
3311                 item = btrfs_item_nr(leaf, i);
3312
3313                 ioff = btrfs_item_offset(leaf, item);
3314                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3315         }
3316
3317         /* shift the data */
3318         if (from_end) {
3319                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3320                               data_end + size_diff, btrfs_leaf_data(leaf) +
3321                               data_end, old_data_start + new_size - data_end);
3322         } else {
3323                 struct btrfs_disk_key disk_key;
3324                 u64 offset;
3325
3326                 btrfs_item_key(leaf, &disk_key, slot);
3327
3328                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3329                         unsigned long ptr;
3330                         struct btrfs_file_extent_item *fi;
3331
3332                         fi = btrfs_item_ptr(leaf, slot,
3333                                             struct btrfs_file_extent_item);
3334                         fi = (struct btrfs_file_extent_item *)(
3335                              (unsigned long)fi - size_diff);
3336
3337                         if (btrfs_file_extent_type(leaf, fi) ==
3338                             BTRFS_FILE_EXTENT_INLINE) {
3339                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3340                                 memmove_extent_buffer(leaf, ptr,
3341                                       (unsigned long)fi,
3342                                       offsetof(struct btrfs_file_extent_item,
3343                                                  disk_bytenr));
3344                         }
3345                 }
3346
3347                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3348                               data_end + size_diff, btrfs_leaf_data(leaf) +
3349                               data_end, old_data_start - data_end);
3350
3351                 offset = btrfs_disk_key_offset(&disk_key);
3352                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3353                 btrfs_set_item_key(leaf, &disk_key, slot);
3354                 if (slot == 0)
3355                         fixup_low_keys(trans, root, path, &disk_key, 1);
3356         }
3357
3358         item = btrfs_item_nr(leaf, slot);
3359         btrfs_set_item_size(leaf, item, new_size);
3360         btrfs_mark_buffer_dirty(leaf);
3361
3362         if (btrfs_leaf_free_space(root, leaf) < 0) {
3363                 btrfs_print_leaf(root, leaf);
3364                 BUG();
3365         }
3366         return 0;
3367 }
3368
3369 /*
3370  * make the item pointed to by the path bigger, data_size is the new size.
3371  */
3372 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3373                       struct btrfs_root *root, struct btrfs_path *path,
3374                       u32 data_size)
3375 {
3376         int slot;
3377         struct extent_buffer *leaf;
3378         struct btrfs_item *item;
3379         u32 nritems;
3380         unsigned int data_end;
3381         unsigned int old_data;
3382         unsigned int old_size;
3383         int i;
3384
3385         leaf = path->nodes[0];
3386
3387         nritems = btrfs_header_nritems(leaf);
3388         data_end = leaf_data_end(root, leaf);
3389
3390         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3391                 btrfs_print_leaf(root, leaf);
3392                 BUG();
3393         }
3394         slot = path->slots[0];
3395         old_data = btrfs_item_end_nr(leaf, slot);
3396
3397         BUG_ON(slot < 0);
3398         if (slot >= nritems) {
3399                 btrfs_print_leaf(root, leaf);
3400                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3401                        slot, nritems);
3402                 BUG_ON(1);
3403         }
3404
3405         /*
3406          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3407          */
3408         /* first correct the data pointers */
3409         for (i = slot; i < nritems; i++) {
3410                 u32 ioff;
3411                 item = btrfs_item_nr(leaf, i);
3412
3413                 ioff = btrfs_item_offset(leaf, item);
3414                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3415         }
3416
3417         /* shift the data */
3418         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3419                       data_end - data_size, btrfs_leaf_data(leaf) +
3420                       data_end, old_data - data_end);
3421
3422         data_end = old_data;
3423         old_size = btrfs_item_size_nr(leaf, slot);
3424         item = btrfs_item_nr(leaf, slot);
3425         btrfs_set_item_size(leaf, item, old_size + data_size);
3426         btrfs_mark_buffer_dirty(leaf);
3427
3428         if (btrfs_leaf_free_space(root, leaf) < 0) {
3429                 btrfs_print_leaf(root, leaf);
3430                 BUG();
3431         }
3432         return 0;
3433 }
3434
3435 /*
3436  * Given a key and some data, insert items into the tree.
3437  * This does all the path init required, making room in the tree if needed.
3438  * Returns the number of keys that were inserted.
3439  */
3440 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3441                             struct btrfs_root *root,
3442                             struct btrfs_path *path,
3443                             struct btrfs_key *cpu_key, u32 *data_size,
3444                             int nr)
3445 {
3446         struct extent_buffer *leaf;
3447         struct btrfs_item *item;
3448         int ret = 0;
3449         int slot;
3450         int i;
3451         u32 nritems;
3452         u32 total_data = 0;
3453         u32 total_size = 0;
3454         unsigned int data_end;
3455         struct btrfs_disk_key disk_key;
3456         struct btrfs_key found_key;
3457
3458         for (i = 0; i < nr; i++) {
3459                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3460                     BTRFS_LEAF_DATA_SIZE(root)) {
3461                         break;
3462                         nr = i;
3463                 }
3464                 total_data += data_size[i];
3465                 total_size += data_size[i] + sizeof(struct btrfs_item);
3466         }
3467         BUG_ON(nr == 0);
3468
3469         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3470         if (ret == 0)
3471                 return -EEXIST;
3472         if (ret < 0)
3473                 goto out;
3474
3475         leaf = path->nodes[0];
3476
3477         nritems = btrfs_header_nritems(leaf);
3478         data_end = leaf_data_end(root, leaf);
3479
3480         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3481                 for (i = nr; i >= 0; i--) {
3482                         total_data -= data_size[i];
3483                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3484                         if (total_size < btrfs_leaf_free_space(root, leaf))
3485                                 break;
3486                 }
3487                 nr = i;
3488         }
3489
3490         slot = path->slots[0];
3491         BUG_ON(slot < 0);
3492
3493         if (slot != nritems) {
3494                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3495
3496                 item = btrfs_item_nr(leaf, slot);
3497                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3498
3499                 /* figure out how many keys we can insert in here */
3500                 total_data = data_size[0];
3501                 for (i = 1; i < nr; i++) {
3502                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3503                                 break;
3504                         total_data += data_size[i];
3505                 }
3506                 nr = i;
3507
3508                 if (old_data < data_end) {
3509                         btrfs_print_leaf(root, leaf);
3510                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3511                                slot, old_data, data_end);
3512                         BUG_ON(1);
3513                 }
3514                 /*
3515                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3516                  */
3517                 /* first correct the data pointers */
3518                 for (i = slot; i < nritems; i++) {
3519                         u32 ioff;
3520
3521                         item = btrfs_item_nr(leaf, i);
3522                         ioff = btrfs_item_offset(leaf, item);
3523                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3524                 }
3525                 /* shift the items */
3526                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3527                               btrfs_item_nr_offset(slot),
3528                               (nritems - slot) * sizeof(struct btrfs_item));
3529
3530                 /* shift the data */
3531                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3532                               data_end - total_data, btrfs_leaf_data(leaf) +
3533                               data_end, old_data - data_end);
3534                 data_end = old_data;
3535         } else {
3536                 /*
3537                  * this sucks but it has to be done, if we are inserting at
3538                  * the end of the leaf only insert 1 of the items, since we
3539                  * have no way of knowing whats on the next leaf and we'd have
3540                  * to drop our current locks to figure it out
3541                  */
3542                 nr = 1;
3543         }
3544
3545         /* setup the item for the new data */
3546         for (i = 0; i < nr; i++) {
3547                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3548                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3549                 item = btrfs_item_nr(leaf, slot + i);
3550                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3551                 data_end -= data_size[i];
3552                 btrfs_set_item_size(leaf, item, data_size[i]);
3553         }
3554         btrfs_set_header_nritems(leaf, nritems + nr);
3555         btrfs_mark_buffer_dirty(leaf);
3556
3557         ret = 0;
3558         if (slot == 0) {
3559                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3560                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3561         }
3562
3563         if (btrfs_leaf_free_space(root, leaf) < 0) {
3564                 btrfs_print_leaf(root, leaf);
3565                 BUG();
3566         }
3567 out:
3568         if (!ret)
3569                 ret = nr;
3570         return ret;
3571 }
3572
3573 /*
3574  * this is a helper for btrfs_insert_empty_items, the main goal here is
3575  * to save stack depth by doing the bulk of the work in a function
3576  * that doesn't call btrfs_search_slot
3577  */
3578 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3579                            struct btrfs_root *root, struct btrfs_path *path,
3580                            struct btrfs_key *cpu_key, u32 *data_size,
3581                            u32 total_data, u32 total_size, int nr)
3582 {
3583         struct btrfs_item *item;
3584         int i;
3585         u32 nritems;
3586         unsigned int data_end;
3587         struct btrfs_disk_key disk_key;
3588         int ret;
3589         struct extent_buffer *leaf;
3590         int slot;
3591
3592         leaf = path->nodes[0];
3593         slot = path->slots[0];
3594
3595         nritems = btrfs_header_nritems(leaf);
3596         data_end = leaf_data_end(root, leaf);
3597
3598         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3599                 btrfs_print_leaf(root, leaf);
3600                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3601                        total_size, btrfs_leaf_free_space(root, leaf));
3602                 BUG();
3603         }
3604
3605         if (slot != nritems) {
3606                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3607
3608                 if (old_data < data_end) {
3609                         btrfs_print_leaf(root, leaf);
3610                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3611                                slot, old_data, data_end);
3612                         BUG_ON(1);
3613                 }
3614                 /*
3615                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3616                  */
3617                 /* first correct the data pointers */
3618                 for (i = slot; i < nritems; i++) {
3619                         u32 ioff;
3620
3621                         item = btrfs_item_nr(leaf, i);
3622                         ioff = btrfs_item_offset(leaf, item);
3623                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3624                 }
3625                 /* shift the items */
3626                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3627                               btrfs_item_nr_offset(slot),
3628                               (nritems - slot) * sizeof(struct btrfs_item));
3629
3630                 /* shift the data */
3631                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3632                               data_end - total_data, btrfs_leaf_data(leaf) +
3633                               data_end, old_data - data_end);
3634                 data_end = old_data;
3635         }
3636
3637         /* setup the item for the new data */
3638         for (i = 0; i < nr; i++) {
3639                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3640                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3641                 item = btrfs_item_nr(leaf, slot + i);
3642                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3643                 data_end -= data_size[i];
3644                 btrfs_set_item_size(leaf, item, data_size[i]);
3645         }
3646
3647         btrfs_set_header_nritems(leaf, nritems + nr);
3648
3649         ret = 0;
3650         if (slot == 0) {
3651                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3652                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3653         }
3654         btrfs_unlock_up_safe(path, 1);
3655         btrfs_mark_buffer_dirty(leaf);
3656
3657         if (btrfs_leaf_free_space(root, leaf) < 0) {
3658                 btrfs_print_leaf(root, leaf);
3659                 BUG();
3660         }
3661         return ret;
3662 }
3663
3664 /*
3665  * Given a key and some data, insert items into the tree.
3666  * This does all the path init required, making room in the tree if needed.
3667  */
3668 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3669                             struct btrfs_root *root,
3670                             struct btrfs_path *path,
3671                             struct btrfs_key *cpu_key, u32 *data_size,
3672                             int nr)
3673 {
3674         int ret = 0;
3675         int slot;
3676         int i;
3677         u32 total_size = 0;
3678         u32 total_data = 0;
3679
3680         for (i = 0; i < nr; i++)
3681                 total_data += data_size[i];
3682
3683         total_size = total_data + (nr * sizeof(struct btrfs_item));
3684         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3685         if (ret == 0)
3686                 return -EEXIST;
3687         if (ret < 0)
3688                 goto out;
3689
3690         slot = path->slots[0];
3691         BUG_ON(slot < 0);
3692
3693         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3694                                total_data, total_size, nr);
3695
3696 out:
3697         return ret;
3698 }
3699
3700 /*
3701  * Given a key and some data, insert an item into the tree.
3702  * This does all the path init required, making room in the tree if needed.
3703  */
3704 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3705                       *root, struct btrfs_key *cpu_key, void *data, u32
3706                       data_size)
3707 {
3708         int ret = 0;
3709         struct btrfs_path *path;
3710         struct extent_buffer *leaf;
3711         unsigned long ptr;
3712
3713         path = btrfs_alloc_path();
3714         if (!path)
3715                 return -ENOMEM;
3716         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3717         if (!ret) {
3718                 leaf = path->nodes[0];
3719                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720                 write_extent_buffer(leaf, data, ptr, data_size);
3721                 btrfs_mark_buffer_dirty(leaf);
3722         }
3723         btrfs_free_path(path);
3724         return ret;
3725 }
3726
3727 /*
3728  * delete the pointer from a given node.
3729  *
3730  * the tree should have been previously balanced so the deletion does not
3731  * empty a node.
3732  */
3733 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3734                    struct btrfs_path *path, int level, int slot)
3735 {
3736         struct extent_buffer *parent = path->nodes[level];
3737         u32 nritems;
3738         int ret = 0;
3739         int wret;
3740
3741         nritems = btrfs_header_nritems(parent);
3742         if (slot != nritems - 1) {
3743                 memmove_extent_buffer(parent,
3744                               btrfs_node_key_ptr_offset(slot),
3745                               btrfs_node_key_ptr_offset(slot + 1),
3746                               sizeof(struct btrfs_key_ptr) *
3747                               (nritems - slot - 1));
3748         }
3749         nritems--;
3750         btrfs_set_header_nritems(parent, nritems);
3751         if (nritems == 0 && parent == root->node) {
3752                 BUG_ON(btrfs_header_level(root->node) != 1);
3753                 /* just turn the root into a leaf and break */
3754                 btrfs_set_header_level(root->node, 0);
3755         } else if (slot == 0) {
3756                 struct btrfs_disk_key disk_key;
3757
3758                 btrfs_node_key(parent, &disk_key, 0);
3759                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3760                 if (wret)
3761                         ret = wret;
3762         }
3763         btrfs_mark_buffer_dirty(parent);
3764         return ret;
3765 }
3766
3767 /*
3768  * a helper function to delete the leaf pointed to by path->slots[1] and
3769  * path->nodes[1].
3770  *
3771  * This deletes the pointer in path->nodes[1] and frees the leaf
3772  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3773  *
3774  * The path must have already been setup for deleting the leaf, including
3775  * all the proper balancing.  path->nodes[1] must be locked.
3776  */
3777 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3778                                    struct btrfs_root *root,
3779                                    struct btrfs_path *path,
3780                                    struct extent_buffer *leaf)
3781 {
3782         int ret;
3783
3784         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3785         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3786         if (ret)
3787                 return ret;
3788
3789         /*
3790          * btrfs_free_extent is expensive, we want to make sure we
3791          * aren't holding any locks when we call it
3792          */
3793         btrfs_unlock_up_safe(path, 0);
3794
3795         root_sub_used(root, leaf->len);
3796
3797         extent_buffer_get(leaf);
3798         btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3799         free_extent_buffer_stale(leaf);
3800         return 0;
3801 }
3802 /*
3803  * delete the item at the leaf level in path.  If that empties
3804  * the leaf, remove it from the tree
3805  */
3806 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3807                     struct btrfs_path *path, int slot, int nr)
3808 {
3809         struct extent_buffer *leaf;
3810         struct btrfs_item *item;
3811         int last_off;
3812         int dsize = 0;
3813         int ret = 0;
3814         int wret;
3815         int i;
3816         u32 nritems;
3817
3818         leaf = path->nodes[0];
3819         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3820
3821         for (i = 0; i < nr; i++)
3822                 dsize += btrfs_item_size_nr(leaf, slot + i);
3823
3824         nritems = btrfs_header_nritems(leaf);
3825
3826         if (slot + nr != nritems) {
3827                 int data_end = leaf_data_end(root, leaf);
3828
3829                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3830                               data_end + dsize,
3831                               btrfs_leaf_data(leaf) + data_end,
3832                               last_off - data_end);
3833
3834                 for (i = slot + nr; i < nritems; i++) {
3835                         u32 ioff;
3836
3837                         item = btrfs_item_nr(leaf, i);
3838                         ioff = btrfs_item_offset(leaf, item);
3839                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3840                 }
3841
3842                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3843                               btrfs_item_nr_offset(slot + nr),
3844                               sizeof(struct btrfs_item) *
3845                               (nritems - slot - nr));
3846         }
3847         btrfs_set_header_nritems(leaf, nritems - nr);
3848         nritems -= nr;
3849
3850         /* delete the leaf if we've emptied it */
3851         if (nritems == 0) {
3852                 if (leaf == root->node) {
3853                         btrfs_set_header_level(leaf, 0);
3854                 } else {
3855                         btrfs_set_path_blocking(path);
3856                         clean_tree_block(trans, root, leaf);
3857                         ret = btrfs_del_leaf(trans, root, path, leaf);
3858                         BUG_ON(ret);
3859                 }
3860         } else {
3861                 int used = leaf_space_used(leaf, 0, nritems);
3862                 if (slot == 0) {
3863                         struct btrfs_disk_key disk_key;
3864
3865                         btrfs_item_key(leaf, &disk_key, 0);
3866                         wret = fixup_low_keys(trans, root, path,
3867                                               &disk_key, 1);
3868                         if (wret)
3869                                 ret = wret;
3870                 }
3871
3872                 /* delete the leaf if it is mostly empty */
3873                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3874                         /* push_leaf_left fixes the path.
3875                          * make sure the path still points to our leaf
3876                          * for possible call to del_ptr below
3877                          */
3878                         slot = path->slots[1];
3879                         extent_buffer_get(leaf);
3880
3881                         btrfs_set_path_blocking(path);
3882                         wret = push_leaf_left(trans, root, path, 1, 1,
3883                                               1, (u32)-1);
3884                         if (wret < 0 && wret != -ENOSPC)
3885                                 ret = wret;
3886
3887                         if (path->nodes[0] == leaf &&
3888                             btrfs_header_nritems(leaf)) {
3889                                 wret = push_leaf_right(trans, root, path, 1,
3890                                                        1, 1, 0);
3891                                 if (wret < 0 && wret != -ENOSPC)
3892                                         ret = wret;
3893                         }
3894
3895                         if (btrfs_header_nritems(leaf) == 0) {
3896                                 path->slots[1] = slot;
3897                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3898                                 BUG_ON(ret);
3899                                 free_extent_buffer(leaf);
3900                         } else {
3901                                 /* if we're still in the path, make sure
3902                                  * we're dirty.  Otherwise, one of the
3903                                  * push_leaf functions must have already
3904                                  * dirtied this buffer
3905                                  */
3906                                 if (path->nodes[0] == leaf)
3907                                         btrfs_mark_buffer_dirty(leaf);
3908                                 free_extent_buffer(leaf);
3909                         }
3910                 } else {
3911                         btrfs_mark_buffer_dirty(leaf);
3912                 }
3913         }
3914         return ret;
3915 }
3916
3917 /*
3918  * search the tree again to find a leaf with lesser keys
3919  * returns 0 if it found something or 1 if there are no lesser leaves.
3920  * returns < 0 on io errors.
3921  *
3922  * This may release the path, and so you may lose any locks held at the
3923  * time you call it.
3924  */
3925 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3926 {
3927         struct btrfs_key key;
3928         struct btrfs_disk_key found_key;
3929         int ret;
3930
3931         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3932
3933         if (key.offset > 0)
3934                 key.offset--;
3935         else if (key.type > 0)
3936                 key.type--;
3937         else if (key.objectid > 0)
3938                 key.objectid--;
3939         else
3940                 return 1;
3941
3942         btrfs_release_path(path);
3943         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3944         if (ret < 0)
3945                 return ret;
3946         btrfs_item_key(path->nodes[0], &found_key, 0);
3947         ret = comp_keys(&found_key, &key);
3948         if (ret < 0)
3949                 return 0;
3950         return 1;
3951 }
3952
3953 /*
3954  * A helper function to walk down the tree starting at min_key, and looking
3955  * for nodes or leaves that are either in cache or have a minimum
3956  * transaction id.  This is used by the btree defrag code, and tree logging
3957  *
3958  * This does not cow, but it does stuff the starting key it finds back
3959  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3960  * key and get a writable path.
3961  *
3962  * This does lock as it descends, and path->keep_locks should be set
3963  * to 1 by the caller.
3964  *
3965  * This honors path->lowest_level to prevent descent past a given level
3966  * of the tree.
3967  *
3968  * min_trans indicates the oldest transaction that you are interested
3969  * in walking through.  Any nodes or leaves older than min_trans are
3970  * skipped over (without reading them).
3971  *
3972  * returns zero if something useful was found, < 0 on error and 1 if there
3973  * was nothing in the tree that matched the search criteria.
3974  */
3975 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3976                          struct btrfs_key *max_key,
3977                          struct btrfs_path *path, int cache_only,
3978                          u64 min_trans)
3979 {
3980         struct extent_buffer *cur;
3981         struct btrfs_key found_key;
3982         int slot;
3983         int sret;
3984         u32 nritems;
3985         int level;
3986         int ret = 1;
3987
3988         WARN_ON(!path->keep_locks);
3989 again:
3990         cur = btrfs_read_lock_root_node(root);
3991         level = btrfs_header_level(cur);
3992         WARN_ON(path->nodes[level]);
3993         path->nodes[level] = cur;
3994         path->locks[level] = BTRFS_READ_LOCK;
3995
3996         if (btrfs_header_generation(cur) < min_trans) {
3997                 ret = 1;
3998                 goto out;
3999         }
4000         while (1) {
4001                 nritems = btrfs_header_nritems(cur);
4002                 level = btrfs_header_level(cur);
4003                 sret = bin_search(cur, min_key, level, &slot);
4004
4005                 /* at the lowest level, we're done, setup the path and exit */
4006                 if (level == path->lowest_level) {
4007                         if (slot >= nritems)
4008                                 goto find_next_key;
4009                         ret = 0;
4010                         path->slots[level] = slot;
4011                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4012                         goto out;
4013                 }
4014                 if (sret && slot > 0)
4015                         slot--;
4016                 /*
4017                  * check this node pointer against the cache_only and
4018                  * min_trans parameters.  If it isn't in cache or is too
4019                  * old, skip to the next one.
4020                  */
4021                 while (slot < nritems) {
4022                         u64 blockptr;
4023                         u64 gen;
4024                         struct extent_buffer *tmp;
4025                         struct btrfs_disk_key disk_key;
4026
4027                         blockptr = btrfs_node_blockptr(cur, slot);
4028                         gen = btrfs_node_ptr_generation(cur, slot);
4029                         if (gen < min_trans) {
4030                                 slot++;
4031                                 continue;
4032                         }
4033                         if (!cache_only)
4034                                 break;
4035
4036                         if (max_key) {
4037                                 btrfs_node_key(cur, &disk_key, slot);
4038                                 if (comp_keys(&disk_key, max_key) >= 0) {
4039                                         ret = 1;
4040                                         goto out;
4041                                 }
4042                         }
4043
4044                         tmp = btrfs_find_tree_block(root, blockptr,
4045                                             btrfs_level_size(root, level - 1));
4046
4047                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4048                                 free_extent_buffer(tmp);
4049                                 break;
4050                         }
4051                         if (tmp)
4052                                 free_extent_buffer(tmp);
4053                         slot++;
4054                 }
4055 find_next_key:
4056                 /*
4057                  * we didn't find a candidate key in this node, walk forward
4058                  * and find another one
4059                  */
4060                 if (slot >= nritems) {
4061                         path->slots[level] = slot;
4062                         btrfs_set_path_blocking(path);
4063                         sret = btrfs_find_next_key(root, path, min_key, level,
4064                                                   cache_only, min_trans);
4065                         if (sret == 0) {
4066                                 btrfs_release_path(path);
4067                                 goto again;
4068                         } else {
4069                                 goto out;
4070                         }
4071                 }
4072                 /* save our key for returning back */
4073                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4074                 path->slots[level] = slot;
4075                 if (level == path->lowest_level) {
4076                         ret = 0;
4077                         unlock_up(path, level, 1);
4078                         goto out;
4079                 }
4080                 btrfs_set_path_blocking(path);
4081                 cur = read_node_slot(root, cur, slot);
4082                 BUG_ON(!cur);
4083
4084                 btrfs_tree_read_lock(cur);
4085
4086                 path->locks[level - 1] = BTRFS_READ_LOCK;
4087                 path->nodes[level - 1] = cur;
4088                 unlock_up(path, level, 1);
4089                 btrfs_clear_path_blocking(path, NULL, 0);
4090         }
4091 out:
4092         if (ret == 0)
4093                 memcpy(min_key, &found_key, sizeof(found_key));
4094         btrfs_set_path_blocking(path);
4095         return ret;
4096 }
4097
4098 /*
4099  * this is similar to btrfs_next_leaf, but does not try to preserve
4100  * and fixup the path.  It looks for and returns the next key in the
4101  * tree based on the current path and the cache_only and min_trans
4102  * parameters.
4103  *
4104  * 0 is returned if another key is found, < 0 if there are any errors
4105  * and 1 is returned if there are no higher keys in the tree
4106  *
4107  * path->keep_locks should be set to 1 on the search made before
4108  * calling this function.
4109  */
4110 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4111                         struct btrfs_key *key, int level,
4112                         int cache_only, u64 min_trans)
4113 {
4114         int slot;
4115         struct extent_buffer *c;
4116
4117         WARN_ON(!path->keep_locks);
4118         while (level < BTRFS_MAX_LEVEL) {
4119                 if (!path->nodes[level])
4120                         return 1;
4121
4122                 slot = path->slots[level] + 1;
4123                 c = path->nodes[level];
4124 next:
4125                 if (slot >= btrfs_header_nritems(c)) {
4126                         int ret;
4127                         int orig_lowest;
4128                         struct btrfs_key cur_key;
4129                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4130                             !path->nodes[level + 1])
4131                                 return 1;
4132
4133                         if (path->locks[level + 1]) {
4134                                 level++;
4135                                 continue;
4136                         }
4137
4138                         slot = btrfs_header_nritems(c) - 1;
4139                         if (level == 0)
4140                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4141                         else
4142                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4143
4144                         orig_lowest = path->lowest_level;
4145                         btrfs_release_path(path);
4146                         path->lowest_level = level;
4147                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4148                                                 0, 0);
4149                         path->lowest_level = orig_lowest;
4150                         if (ret < 0)
4151                                 return ret;
4152
4153                         c = path->nodes[level];
4154                         slot = path->slots[level];
4155                         if (ret == 0)
4156                                 slot++;
4157                         goto next;
4158                 }
4159
4160                 if (level == 0)
4161                         btrfs_item_key_to_cpu(c, key, slot);
4162                 else {
4163                         u64 blockptr = btrfs_node_blockptr(c, slot);
4164                         u64 gen = btrfs_node_ptr_generation(c, slot);
4165
4166                         if (cache_only) {
4167                                 struct extent_buffer *cur;
4168                                 cur = btrfs_find_tree_block(root, blockptr,
4169                                             btrfs_level_size(root, level - 1));
4170                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4171                                         slot++;
4172                                         if (cur)
4173                                                 free_extent_buffer(cur);
4174                                         goto next;
4175                                 }
4176                                 free_extent_buffer(cur);
4177                         }
4178                         if (gen < min_trans) {
4179                                 slot++;
4180                                 goto next;
4181                         }
4182                         btrfs_node_key_to_cpu(c, key, slot);
4183                 }
4184                 return 0;
4185         }
4186         return 1;
4187 }
4188
4189 /*
4190  * search the tree again to find a leaf with greater keys
4191  * returns 0 if it found something or 1 if there are no greater leaves.
4192  * returns < 0 on io errors.
4193  */
4194 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4195 {
4196         int slot;
4197         int level;
4198         struct extent_buffer *c;
4199         struct extent_buffer *next;
4200         struct btrfs_key key;
4201         u32 nritems;
4202         int ret;
4203         int old_spinning = path->leave_spinning;
4204         int next_rw_lock = 0;
4205
4206         nritems = btrfs_header_nritems(path->nodes[0]);
4207         if (nritems == 0)
4208                 return 1;
4209
4210         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4211 again:
4212         level = 1;
4213         next = NULL;
4214         next_rw_lock = 0;
4215         btrfs_release_path(path);
4216
4217         path->keep_locks = 1;
4218         path->leave_spinning = 1;
4219
4220         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4221         path->keep_locks = 0;
4222
4223         if (ret < 0)
4224                 return ret;
4225
4226         nritems = btrfs_header_nritems(path->nodes[0]);
4227         /*
4228          * by releasing the path above we dropped all our locks.  A balance
4229          * could have added more items next to the key that used to be
4230          * at the very end of the block.  So, check again here and
4231          * advance the path if there are now more items available.
4232          */
4233         if (nritems > 0 && path->slots[0] < nritems - 1) {
4234                 if (ret == 0)
4235                         path->slots[0]++;
4236                 ret = 0;
4237                 goto done;
4238         }
4239
4240         while (level < BTRFS_MAX_LEVEL) {
4241                 if (!path->nodes[level]) {
4242                         ret = 1;
4243                         goto done;
4244                 }
4245
4246                 slot = path->slots[level] + 1;
4247                 c = path->nodes[level];
4248                 if (slot >= btrfs_header_nritems(c)) {
4249                         level++;
4250                         if (level == BTRFS_MAX_LEVEL) {
4251                                 ret = 1;
4252                                 goto done;
4253                         }
4254                         continue;
4255                 }
4256
4257                 if (next) {
4258                         btrfs_tree_unlock_rw(next, next_rw_lock);
4259                         free_extent_buffer(next);
4260                 }
4261
4262                 next = c;
4263                 next_rw_lock = path->locks[level];
4264                 ret = read_block_for_search(NULL, root, path, &next, level,
4265                                             slot, &key);
4266                 if (ret == -EAGAIN)
4267                         goto again;
4268
4269                 if (ret < 0) {
4270                         btrfs_release_path(path);
4271                         goto done;
4272                 }
4273
4274                 if (!path->skip_locking) {
4275                         ret = btrfs_try_tree_read_lock(next);
4276                         if (!ret) {
4277                                 btrfs_set_path_blocking(path);
4278                                 btrfs_tree_read_lock(next);
4279                                 btrfs_clear_path_blocking(path, next,
4280                                                           BTRFS_READ_LOCK);
4281                         }
4282                         next_rw_lock = BTRFS_READ_LOCK;
4283                 }
4284                 break;
4285         }
4286         path->slots[level] = slot;
4287         while (1) {
4288                 level--;
4289                 c = path->nodes[level];
4290                 if (path->locks[level])
4291                         btrfs_tree_unlock_rw(c, path->locks[level]);
4292
4293                 free_extent_buffer(c);
4294                 path->nodes[level] = next;
4295                 path->slots[level] = 0;
4296                 if (!path->skip_locking)
4297                         path->locks[level] = next_rw_lock;
4298                 if (!level)
4299                         break;
4300
4301                 ret = read_block_for_search(NULL, root, path, &next, level,
4302                                             0, &key);
4303                 if (ret == -EAGAIN)
4304                         goto again;
4305
4306                 if (ret < 0) {
4307                         btrfs_release_path(path);
4308                         goto done;
4309                 }
4310
4311                 if (!path->skip_locking) {
4312                         ret = btrfs_try_tree_read_lock(next);
4313                         if (!ret) {
4314                                 btrfs_set_path_blocking(path);
4315                                 btrfs_tree_read_lock(next);
4316                                 btrfs_clear_path_blocking(path, next,
4317                                                           BTRFS_READ_LOCK);
4318                         }
4319                         next_rw_lock = BTRFS_READ_LOCK;
4320                 }
4321         }
4322         ret = 0;
4323 done:
4324         unlock_up(path, 0, 1);
4325         path->leave_spinning = old_spinning;
4326         if (!old_spinning)
4327                 btrfs_set_path_blocking(path);
4328
4329         return ret;
4330 }
4331
4332 /*
4333  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4334  * searching until it gets past min_objectid or finds an item of 'type'
4335  *
4336  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4337  */
4338 int btrfs_previous_item(struct btrfs_root *root,
4339                         struct btrfs_path *path, u64 min_objectid,
4340                         int type)
4341 {
4342         struct btrfs_key found_key;
4343         struct extent_buffer *leaf;
4344         u32 nritems;
4345         int ret;
4346
4347         while (1) {
4348                 if (path->slots[0] == 0) {
4349                         btrfs_set_path_blocking(path);
4350                         ret = btrfs_prev_leaf(root, path);
4351                         if (ret != 0)
4352                                 return ret;
4353                 } else {
4354                         path->slots[0]--;
4355                 }
4356                 leaf = path->nodes[0];
4357                 nritems = btrfs_header_nritems(leaf);
4358                 if (nritems == 0)
4359                         return 1;
4360                 if (path->slots[0] == nritems)
4361                         path->slots[0]--;
4362
4363                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4364                 if (found_key.objectid < min_objectid)
4365                         break;
4366                 if (found_key.type == type)
4367                         return 0;
4368                 if (found_key.objectid == min_objectid &&
4369                     found_key.type < type)
4370                         break;
4371         }
4372         return 1;
4373 }