1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 *root, struct btrfs_path *path, int level);
18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 const struct btrfs_key *ins_key, struct btrfs_path *path,
20 int data_size, int extend);
21 static int push_node_left(struct btrfs_trans_handle *trans,
22 struct btrfs_fs_info *fs_info,
23 struct extent_buffer *dst,
24 struct extent_buffer *src, int empty);
25 static int balance_node_right(struct btrfs_trans_handle *trans,
26 struct btrfs_fs_info *fs_info,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 struct btrfs_path *btrfs_alloc_path(void)
34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 if (!p->nodes[i] || !p->locks[i])
47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 if (p->locks[i] == BTRFS_READ_LOCK)
49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
56 * reset all the locked nodes in the patch to spinning locks.
58 * held is used to keep lockdep happy, when lockdep is enabled
59 * we set held to a blocking lock before we go around and
60 * retake all the spinlocks in the path. You can safely use NULL
63 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64 struct extent_buffer *held, int held_rw)
69 btrfs_set_lock_blocking_rw(held, held_rw);
70 if (held_rw == BTRFS_WRITE_LOCK)
71 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 else if (held_rw == BTRFS_READ_LOCK)
73 held_rw = BTRFS_READ_LOCK_BLOCKING;
75 btrfs_set_path_blocking(p);
77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 if (p->nodes[i] && p->locks[i]) {
79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 p->locks[i] = BTRFS_WRITE_LOCK;
82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 p->locks[i] = BTRFS_READ_LOCK;
88 btrfs_clear_lock_blocking_rw(held, held_rw);
91 /* this also releases the path */
92 void btrfs_free_path(struct btrfs_path *p)
96 btrfs_release_path(p);
97 kmem_cache_free(btrfs_path_cachep, p);
101 * path release drops references on the extent buffers in the path
102 * and it drops any locks held by this path
104 * It is safe to call this on paths that no locks or extent buffers held.
106 noinline void btrfs_release_path(struct btrfs_path *p)
110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
118 free_extent_buffer(p->nodes[i]);
124 * safely gets a reference on the root node of a tree. A lock
125 * is not taken, so a concurrent writer may put a different node
126 * at the root of the tree. See btrfs_lock_root_node for the
129 * The extent buffer returned by this has a reference taken, so
130 * it won't disappear. It may stop being the root of the tree
131 * at any time because there are no locks held.
133 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
135 struct extent_buffer *eb;
139 eb = rcu_dereference(root->node);
142 * RCU really hurts here, we could free up the root node because
143 * it was COWed but we may not get the new root node yet so do
144 * the inc_not_zero dance and if it doesn't work then
145 * synchronize_rcu and try again.
147 if (atomic_inc_not_zero(&eb->refs)) {
157 /* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
163 struct extent_buffer *eb;
166 eb = btrfs_root_node(root);
168 if (eb == root->node)
170 btrfs_tree_unlock(eb);
171 free_extent_buffer(eb);
176 /* loop around taking references on and locking the root node of the
177 * tree until you end up with a lock on the root. A locked buffer
178 * is returned, with a reference held.
180 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
182 struct extent_buffer *eb;
185 eb = btrfs_root_node(root);
186 btrfs_tree_read_lock(eb);
187 if (eb == root->node)
189 btrfs_tree_read_unlock(eb);
190 free_extent_buffer(eb);
195 /* cowonly root (everything not a reference counted cow subvolume), just get
196 * put onto a simple dirty list. transaction.c walks this to make sure they
197 * get properly updated on disk.
199 static void add_root_to_dirty_list(struct btrfs_root *root)
201 struct btrfs_fs_info *fs_info = root->fs_info;
203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
207 spin_lock(&fs_info->trans_lock);
208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 /* Want the extent tree to be the last on the list */
210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 list_move_tail(&root->dirty_list,
212 &fs_info->dirty_cowonly_roots);
214 list_move(&root->dirty_list,
215 &fs_info->dirty_cowonly_roots);
217 spin_unlock(&fs_info->trans_lock);
221 * used by snapshot creation to make a copy of a root for a tree with
222 * a given objectid. The buffer with the new root node is returned in
223 * cow_ret, and this func returns zero on success or a negative error code.
225 int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root,
227 struct extent_buffer *buf,
228 struct extent_buffer **cow_ret, u64 new_root_objectid)
230 struct btrfs_fs_info *fs_info = root->fs_info;
231 struct extent_buffer *cow;
234 struct btrfs_disk_key disk_key;
236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237 trans->transid != fs_info->running_transaction->transid);
238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 trans->transid != root->last_trans);
241 level = btrfs_header_level(buf);
243 btrfs_item_key(buf, &disk_key, 0);
245 btrfs_node_key(buf, &disk_key, 0);
247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 &disk_key, level, buf->start, 0);
252 copy_extent_buffer_full(cow, buf);
253 btrfs_set_header_bytenr(cow, cow->start);
254 btrfs_set_header_generation(cow, trans->transid);
255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 BTRFS_HEADER_FLAG_RELOC);
258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
261 btrfs_set_header_owner(cow, new_root_objectid);
263 write_extent_buffer_fsid(cow, fs_info->fsid);
265 WARN_ON(btrfs_header_generation(buf) > trans->transid);
266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267 ret = btrfs_inc_ref(trans, root, cow, 1);
269 ret = btrfs_inc_ref(trans, root, cow, 0);
274 btrfs_mark_buffer_dirty(cow);
283 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
286 MOD_LOG_ROOT_REPLACE,
289 struct tree_mod_root {
294 struct tree_mod_elem {
300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 struct btrfs_disk_key key;
310 /* this is used for op == MOD_LOG_MOVE_KEYS */
316 /* this is used for op == MOD_LOG_ROOT_REPLACE */
317 struct tree_mod_root old_root;
321 * Pull a new tree mod seq number for our operation.
323 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
325 return atomic64_inc_return(&fs_info->tree_mod_seq);
329 * This adds a new blocker to the tree mod log's blocker list if the @elem
330 * passed does not already have a sequence number set. So when a caller expects
331 * to record tree modifications, it should ensure to set elem->seq to zero
332 * before calling btrfs_get_tree_mod_seq.
333 * Returns a fresh, unused tree log modification sequence number, even if no new
336 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 struct seq_list *elem)
339 write_lock(&fs_info->tree_mod_log_lock);
340 spin_lock(&fs_info->tree_mod_seq_lock);
342 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
345 spin_unlock(&fs_info->tree_mod_seq_lock);
346 write_unlock(&fs_info->tree_mod_log_lock);
351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
354 struct rb_root *tm_root;
355 struct rb_node *node;
356 struct rb_node *next;
357 struct seq_list *cur_elem;
358 struct tree_mod_elem *tm;
359 u64 min_seq = (u64)-1;
360 u64 seq_putting = elem->seq;
365 spin_lock(&fs_info->tree_mod_seq_lock);
366 list_del(&elem->list);
369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370 if (cur_elem->seq < min_seq) {
371 if (seq_putting > cur_elem->seq) {
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
376 spin_unlock(&fs_info->tree_mod_seq_lock);
379 min_seq = cur_elem->seq;
382 spin_unlock(&fs_info->tree_mod_seq_lock);
385 * anything that's lower than the lowest existing (read: blocked)
386 * sequence number can be removed from the tree.
388 write_lock(&fs_info->tree_mod_log_lock);
389 tm_root = &fs_info->tree_mod_log;
390 for (node = rb_first(tm_root); node; node = next) {
391 next = rb_next(node);
392 tm = rb_entry(node, struct tree_mod_elem, node);
393 if (tm->seq > min_seq)
395 rb_erase(node, tm_root);
398 write_unlock(&fs_info->tree_mod_log_lock);
402 * key order of the log:
403 * node/leaf start address -> sequence
405 * The 'start address' is the logical address of the *new* root node
406 * for root replace operations, or the logical address of the affected
407 * block for all other operations.
409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
412 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
414 struct rb_root *tm_root;
415 struct rb_node **new;
416 struct rb_node *parent = NULL;
417 struct tree_mod_elem *cur;
419 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
421 tm_root = &fs_info->tree_mod_log;
422 new = &tm_root->rb_node;
424 cur = rb_entry(*new, struct tree_mod_elem, node);
426 if (cur->logical < tm->logical)
427 new = &((*new)->rb_left);
428 else if (cur->logical > tm->logical)
429 new = &((*new)->rb_right);
430 else if (cur->seq < tm->seq)
431 new = &((*new)->rb_left);
432 else if (cur->seq > tm->seq)
433 new = &((*new)->rb_right);
438 rb_link_node(&tm->node, parent, new);
439 rb_insert_color(&tm->node, tm_root);
444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
446 * this until all tree mod log insertions are recorded in the rb tree and then
447 * write unlock fs_info::tree_mod_log_lock.
449 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 struct extent_buffer *eb) {
452 if (list_empty(&(fs_info)->tree_mod_seq_list))
454 if (eb && btrfs_header_level(eb) == 0)
457 write_lock(&fs_info->tree_mod_log_lock);
458 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459 write_unlock(&fs_info->tree_mod_log_lock);
466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 struct extent_buffer *eb)
471 if (list_empty(&(fs_info)->tree_mod_seq_list))
473 if (eb && btrfs_header_level(eb) == 0)
479 static struct tree_mod_elem *
480 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 enum mod_log_op op, gfp_t flags)
483 struct tree_mod_elem *tm;
485 tm = kzalloc(sizeof(*tm), flags);
489 tm->logical = eb->start;
490 if (op != MOD_LOG_KEY_ADD) {
491 btrfs_node_key(eb, &tm->key, slot);
492 tm->blockptr = btrfs_node_blockptr(eb, slot);
496 tm->generation = btrfs_node_ptr_generation(eb, slot);
497 RB_CLEAR_NODE(&tm->node);
502 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 enum mod_log_op op, gfp_t flags)
505 struct tree_mod_elem *tm;
508 if (!tree_mod_need_log(eb->fs_info, eb))
511 tm = alloc_tree_mod_elem(eb, slot, op, flags);
515 if (tree_mod_dont_log(eb->fs_info, eb)) {
520 ret = __tree_mod_log_insert(eb->fs_info, tm);
521 write_unlock(&eb->fs_info->tree_mod_log_lock);
528 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 int dst_slot, int src_slot, int nr_items)
531 struct tree_mod_elem *tm = NULL;
532 struct tree_mod_elem **tm_list = NULL;
537 if (!tree_mod_need_log(eb->fs_info, eb))
540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
544 tm = kzalloc(sizeof(*tm), GFP_NOFS);
550 tm->logical = eb->start;
552 tm->move.dst_slot = dst_slot;
553 tm->move.nr_items = nr_items;
554 tm->op = MOD_LOG_MOVE_KEYS;
556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
565 if (tree_mod_dont_log(eb->fs_info, eb))
570 * When we override something during the move, we log these removals.
571 * This can only happen when we move towards the beginning of the
572 * buffer, i.e. dst_slot < src_slot.
574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
580 ret = __tree_mod_log_insert(eb->fs_info, tm);
583 write_unlock(&eb->fs_info->tree_mod_log_lock);
588 for (i = 0; i < nr_items; i++) {
589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
594 write_unlock(&eb->fs_info->tree_mod_log_lock);
602 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 struct tree_mod_elem **tm_list,
609 for (i = nritems - 1; i >= 0; i--) {
610 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
612 for (j = nritems - 1; j > i; j--)
613 rb_erase(&tm_list[j]->node,
614 &fs_info->tree_mod_log);
622 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 struct extent_buffer *new_root, int log_removal)
625 struct btrfs_fs_info *fs_info = old_root->fs_info;
626 struct tree_mod_elem *tm = NULL;
627 struct tree_mod_elem **tm_list = NULL;
632 if (!tree_mod_need_log(fs_info, NULL))
635 if (log_removal && btrfs_header_level(old_root) > 0) {
636 nritems = btrfs_header_nritems(old_root);
637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
643 for (i = 0; i < nritems; i++) {
644 tm_list[i] = alloc_tree_mod_elem(old_root, i,
645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
653 tm = kzalloc(sizeof(*tm), GFP_NOFS);
659 tm->logical = new_root->start;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
665 if (tree_mod_dont_log(fs_info, NULL))
669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
671 ret = __tree_mod_log_insert(fs_info, tm);
673 write_unlock(&fs_info->tree_mod_log_lock);
682 for (i = 0; i < nritems; i++)
691 static struct tree_mod_elem *
692 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
695 struct rb_root *tm_root;
696 struct rb_node *node;
697 struct tree_mod_elem *cur = NULL;
698 struct tree_mod_elem *found = NULL;
700 read_lock(&fs_info->tree_mod_log_lock);
701 tm_root = &fs_info->tree_mod_log;
702 node = tm_root->rb_node;
704 cur = rb_entry(node, struct tree_mod_elem, node);
705 if (cur->logical < start) {
706 node = node->rb_left;
707 } else if (cur->logical > start) {
708 node = node->rb_right;
709 } else if (cur->seq < min_seq) {
710 node = node->rb_left;
711 } else if (!smallest) {
712 /* we want the node with the highest seq */
714 BUG_ON(found->seq > cur->seq);
716 node = node->rb_left;
717 } else if (cur->seq > min_seq) {
718 /* we want the node with the smallest seq */
720 BUG_ON(found->seq < cur->seq);
722 node = node->rb_right;
728 read_unlock(&fs_info->tree_mod_log_lock);
734 * this returns the element from the log with the smallest time sequence
735 * value that's in the log (the oldest log item). any element with a time
736 * sequence lower than min_seq will be ignored.
738 static struct tree_mod_elem *
739 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
742 return __tree_mod_log_search(fs_info, start, min_seq, 1);
746 * this returns the element from the log with the largest time sequence
747 * value that's in the log (the most recent log item). any element with
748 * a time sequence lower than min_seq will be ignored.
750 static struct tree_mod_elem *
751 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
753 return __tree_mod_log_search(fs_info, start, min_seq, 0);
757 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 struct extent_buffer *src, unsigned long dst_offset,
759 unsigned long src_offset, int nr_items)
762 struct tree_mod_elem **tm_list = NULL;
763 struct tree_mod_elem **tm_list_add, **tm_list_rem;
767 if (!tree_mod_need_log(fs_info, NULL))
770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
778 tm_list_add = tm_list;
779 tm_list_rem = tm_list + nr_items;
780 for (i = 0; i < nr_items; i++) {
781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 if (!tm_list_rem[i]) {
788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 MOD_LOG_KEY_ADD, GFP_NOFS);
790 if (!tm_list_add[i]) {
796 if (tree_mod_dont_log(fs_info, NULL))
800 for (i = 0; i < nr_items; i++) {
801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
809 write_unlock(&fs_info->tree_mod_log_lock);
815 for (i = 0; i < nr_items * 2; i++) {
816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
821 write_unlock(&fs_info->tree_mod_log_lock);
827 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
829 struct tree_mod_elem **tm_list = NULL;
834 if (btrfs_header_level(eb) == 0)
837 if (!tree_mod_need_log(eb->fs_info, NULL))
840 nritems = btrfs_header_nritems(eb);
841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
845 for (i = 0; i < nritems; i++) {
846 tm_list[i] = alloc_tree_mod_elem(eb, i,
847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
854 if (tree_mod_dont_log(eb->fs_info, eb))
857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858 write_unlock(&eb->fs_info->tree_mod_log_lock);
866 for (i = 0; i < nritems; i++)
874 * check if the tree block can be shared by multiple trees
876 int btrfs_block_can_be_shared(struct btrfs_root *root,
877 struct extent_buffer *buf)
880 * Tree blocks not in reference counted trees and tree roots
881 * are never shared. If a block was allocated after the last
882 * snapshot and the block was not allocated by tree relocation,
883 * we know the block is not shared.
885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 buf != root->node && buf != root->commit_root &&
887 (btrfs_header_generation(buf) <=
888 btrfs_root_last_snapshot(&root->root_item) ||
889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
892 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
893 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
899 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root,
901 struct extent_buffer *buf,
902 struct extent_buffer *cow,
905 struct btrfs_fs_info *fs_info = root->fs_info;
913 * Backrefs update rules:
915 * Always use full backrefs for extent pointers in tree block
916 * allocated by tree relocation.
918 * If a shared tree block is no longer referenced by its owner
919 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
920 * use full backrefs for extent pointers in tree block.
922 * If a tree block is been relocating
923 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
924 * use full backrefs for extent pointers in tree block.
925 * The reason for this is some operations (such as drop tree)
926 * are only allowed for blocks use full backrefs.
929 if (btrfs_block_can_be_shared(root, buf)) {
930 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
931 btrfs_header_level(buf), 1,
937 btrfs_handle_fs_error(fs_info, ret, NULL);
942 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
943 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
944 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
949 owner = btrfs_header_owner(buf);
950 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
951 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
954 if ((owner == root->root_key.objectid ||
955 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
956 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
957 ret = btrfs_inc_ref(trans, root, buf, 1);
961 if (root->root_key.objectid ==
962 BTRFS_TREE_RELOC_OBJECTID) {
963 ret = btrfs_dec_ref(trans, root, buf, 0);
966 ret = btrfs_inc_ref(trans, root, cow, 1);
970 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
973 if (root->root_key.objectid ==
974 BTRFS_TREE_RELOC_OBJECTID)
975 ret = btrfs_inc_ref(trans, root, cow, 1);
977 ret = btrfs_inc_ref(trans, root, cow, 0);
981 if (new_flags != 0) {
982 int level = btrfs_header_level(buf);
984 ret = btrfs_set_disk_extent_flags(trans, fs_info,
987 new_flags, level, 0);
992 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
993 if (root->root_key.objectid ==
994 BTRFS_TREE_RELOC_OBJECTID)
995 ret = btrfs_inc_ref(trans, root, cow, 1);
997 ret = btrfs_inc_ref(trans, root, cow, 0);
1000 ret = btrfs_dec_ref(trans, root, buf, 1);
1004 clean_tree_block(fs_info, buf);
1011 * does the dirty work in cow of a single block. The parent block (if
1012 * supplied) is updated to point to the new cow copy. The new buffer is marked
1013 * dirty and returned locked. If you modify the block it needs to be marked
1016 * search_start -- an allocation hint for the new block
1018 * empty_size -- a hint that you plan on doing more cow. This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
1022 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023 struct btrfs_root *root,
1024 struct extent_buffer *buf,
1025 struct extent_buffer *parent, int parent_slot,
1026 struct extent_buffer **cow_ret,
1027 u64 search_start, u64 empty_size)
1029 struct btrfs_fs_info *fs_info = root->fs_info;
1030 struct btrfs_disk_key disk_key;
1031 struct extent_buffer *cow;
1034 int unlock_orig = 0;
1035 u64 parent_start = 0;
1037 if (*cow_ret == buf)
1040 btrfs_assert_tree_locked(buf);
1042 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043 trans->transid != fs_info->running_transaction->transid);
1044 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045 trans->transid != root->last_trans);
1047 level = btrfs_header_level(buf);
1050 btrfs_item_key(buf, &disk_key, 0);
1052 btrfs_node_key(buf, &disk_key, 0);
1054 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055 parent_start = parent->start;
1057 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058 root->root_key.objectid, &disk_key, level,
1059 search_start, empty_size);
1061 return PTR_ERR(cow);
1063 /* cow is set to blocking by btrfs_init_new_buffer */
1065 copy_extent_buffer_full(cow, buf);
1066 btrfs_set_header_bytenr(cow, cow->start);
1067 btrfs_set_header_generation(cow, trans->transid);
1068 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070 BTRFS_HEADER_FLAG_RELOC);
1071 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1074 btrfs_set_header_owner(cow, root->root_key.objectid);
1076 write_extent_buffer_fsid(cow, fs_info->fsid);
1078 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1080 btrfs_abort_transaction(trans, ret);
1084 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1087 btrfs_abort_transaction(trans, ret);
1092 if (buf == root->node) {
1093 WARN_ON(parent && parent != buf);
1094 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096 parent_start = buf->start;
1098 extent_buffer_get(cow);
1099 ret = tree_mod_log_insert_root(root->node, cow, 1);
1101 rcu_assign_pointer(root->node, cow);
1103 btrfs_free_tree_block(trans, root, buf, parent_start,
1105 free_extent_buffer(buf);
1106 add_root_to_dirty_list(root);
1108 WARN_ON(trans->transid != btrfs_header_generation(parent));
1109 tree_mod_log_insert_key(parent, parent_slot,
1110 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111 btrfs_set_node_blockptr(parent, parent_slot,
1113 btrfs_set_node_ptr_generation(parent, parent_slot,
1115 btrfs_mark_buffer_dirty(parent);
1117 ret = tree_mod_log_free_eb(buf);
1119 btrfs_abort_transaction(trans, ret);
1123 btrfs_free_tree_block(trans, root, buf, parent_start,
1127 btrfs_tree_unlock(buf);
1128 free_extent_buffer_stale(buf);
1129 btrfs_mark_buffer_dirty(cow);
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1138 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139 struct extent_buffer *eb_root, u64 time_seq)
1141 struct tree_mod_elem *tm;
1142 struct tree_mod_elem *found = NULL;
1143 u64 root_logical = eb_root->start;
1150 * the very last operation that's logged for a root is the
1151 * replacement operation (if it is replaced at all). this has
1152 * the logical address of the *new* root, making it the very
1153 * first operation that's logged for this root.
1156 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1161 * if there are no tree operation for the oldest root, we simply
1162 * return it. this should only happen if that (old) root is at
1169 * if there's an operation that's not a root replacement, we
1170 * found the oldest version of our root. normally, we'll find a
1171 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1173 if (tm->op != MOD_LOG_ROOT_REPLACE)
1177 root_logical = tm->old_root.logical;
1181 /* if there's no old root to return, return what we found instead */
1189 * tm is a pointer to the first operation to rewind within eb. then, all
1190 * previous operations will be rewound (until we reach something older than
1194 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 u64 time_seq, struct tree_mod_elem *first_tm)
1198 struct rb_node *next;
1199 struct tree_mod_elem *tm = first_tm;
1200 unsigned long o_dst;
1201 unsigned long o_src;
1202 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1204 n = btrfs_header_nritems(eb);
1205 read_lock(&fs_info->tree_mod_log_lock);
1206 while (tm && tm->seq >= time_seq) {
1208 * all the operations are recorded with the operator used for
1209 * the modification. as we're going backwards, we do the
1210 * opposite of each operation here.
1213 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214 BUG_ON(tm->slot < n);
1216 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217 case MOD_LOG_KEY_REMOVE:
1218 btrfs_set_node_key(eb, &tm->key, tm->slot);
1219 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220 btrfs_set_node_ptr_generation(eb, tm->slot,
1224 case MOD_LOG_KEY_REPLACE:
1225 BUG_ON(tm->slot >= n);
1226 btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 btrfs_set_node_ptr_generation(eb, tm->slot,
1231 case MOD_LOG_KEY_ADD:
1232 /* if a move operation is needed it's in the log */
1235 case MOD_LOG_MOVE_KEYS:
1236 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238 memmove_extent_buffer(eb, o_dst, o_src,
1239 tm->move.nr_items * p_size);
1241 case MOD_LOG_ROOT_REPLACE:
1243 * this operation is special. for roots, this must be
1244 * handled explicitly before rewinding.
1245 * for non-roots, this operation may exist if the node
1246 * was a root: root A -> child B; then A gets empty and
1247 * B is promoted to the new root. in the mod log, we'll
1248 * have a root-replace operation for B, a tree block
1249 * that is no root. we simply ignore that operation.
1253 next = rb_next(&tm->node);
1256 tm = rb_entry(next, struct tree_mod_elem, node);
1257 if (tm->logical != first_tm->logical)
1260 read_unlock(&fs_info->tree_mod_log_lock);
1261 btrfs_set_header_nritems(eb, n);
1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1271 static struct extent_buffer *
1272 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273 struct extent_buffer *eb, u64 time_seq)
1275 struct extent_buffer *eb_rewin;
1276 struct tree_mod_elem *tm;
1281 if (btrfs_header_level(eb) == 0)
1284 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1288 btrfs_set_path_blocking(path);
1289 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1291 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292 BUG_ON(tm->slot != 0);
1293 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1295 btrfs_tree_read_unlock_blocking(eb);
1296 free_extent_buffer(eb);
1299 btrfs_set_header_bytenr(eb_rewin, eb->start);
1300 btrfs_set_header_backref_rev(eb_rewin,
1301 btrfs_header_backref_rev(eb));
1302 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1305 eb_rewin = btrfs_clone_extent_buffer(eb);
1307 btrfs_tree_read_unlock_blocking(eb);
1308 free_extent_buffer(eb);
1313 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314 btrfs_tree_read_unlock_blocking(eb);
1315 free_extent_buffer(eb);
1317 extent_buffer_get(eb_rewin);
1318 btrfs_tree_read_lock(eb_rewin);
1319 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320 WARN_ON(btrfs_header_nritems(eb_rewin) >
1321 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1333 static inline struct extent_buffer *
1334 get_old_root(struct btrfs_root *root, u64 time_seq)
1336 struct btrfs_fs_info *fs_info = root->fs_info;
1337 struct tree_mod_elem *tm;
1338 struct extent_buffer *eb = NULL;
1339 struct extent_buffer *eb_root;
1340 struct extent_buffer *old;
1341 struct tree_mod_root *old_root = NULL;
1342 u64 old_generation = 0;
1346 eb_root = btrfs_read_lock_root_node(root);
1347 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1351 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352 old_root = &tm->old_root;
1353 old_generation = tm->generation;
1354 logical = old_root->logical;
1355 level = old_root->level;
1357 logical = eb_root->start;
1358 level = btrfs_header_level(eb_root);
1361 tm = tree_mod_log_search(fs_info, logical, time_seq);
1362 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 btrfs_tree_read_unlock(eb_root);
1364 free_extent_buffer(eb_root);
1365 old = read_tree_block(fs_info, logical, 0, level, NULL);
1366 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1368 free_extent_buffer(old);
1370 "failed to read tree block %llu from get_old_root",
1373 eb = btrfs_clone_extent_buffer(old);
1374 free_extent_buffer(old);
1376 } else if (old_root) {
1377 btrfs_tree_read_unlock(eb_root);
1378 free_extent_buffer(eb_root);
1379 eb = alloc_dummy_extent_buffer(fs_info, logical);
1381 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382 eb = btrfs_clone_extent_buffer(eb_root);
1383 btrfs_tree_read_unlock_blocking(eb_root);
1384 free_extent_buffer(eb_root);
1389 extent_buffer_get(eb);
1390 btrfs_tree_read_lock(eb);
1392 btrfs_set_header_bytenr(eb, eb->start);
1393 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395 btrfs_set_header_level(eb, old_root->level);
1396 btrfs_set_header_generation(eb, old_generation);
1399 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1401 WARN_ON(btrfs_header_level(eb) != 0);
1402 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1407 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1409 struct tree_mod_elem *tm;
1411 struct extent_buffer *eb_root = btrfs_root_node(root);
1413 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1414 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415 level = tm->old_root.level;
1417 level = btrfs_header_level(eb_root);
1419 free_extent_buffer(eb_root);
1424 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct extent_buffer *buf)
1428 if (btrfs_is_testing(root->fs_info))
1431 /* Ensure we can see the FORCE_COW bit */
1432 smp_mb__before_atomic();
1435 * We do not need to cow a block if
1436 * 1) this block is not created or changed in this transaction;
1437 * 2) this block does not belong to TREE_RELOC tree;
1438 * 3) the root is not forced COW.
1440 * What is forced COW:
1441 * when we create snapshot during committing the transaction,
1442 * after we've finished coping src root, we must COW the shared
1443 * block to ensure the metadata consistency.
1445 if (btrfs_header_generation(buf) == trans->transid &&
1446 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1455 * cows a single block, see __btrfs_cow_block for the real work.
1456 * This version of it has extra checks so that a block isn't COWed more than
1457 * once per transaction, as long as it hasn't been written yet
1459 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root, struct extent_buffer *buf,
1461 struct extent_buffer *parent, int parent_slot,
1462 struct extent_buffer **cow_ret)
1464 struct btrfs_fs_info *fs_info = root->fs_info;
1468 if (trans->transaction != fs_info->running_transaction)
1469 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471 fs_info->running_transaction->transid);
1473 if (trans->transid != fs_info->generation)
1474 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475 trans->transid, fs_info->generation);
1477 if (!should_cow_block(trans, root, buf)) {
1478 trans->dirty = true;
1483 search_start = buf->start & ~((u64)SZ_1G - 1);
1486 btrfs_set_lock_blocking(parent);
1487 btrfs_set_lock_blocking(buf);
1489 ret = __btrfs_cow_block(trans, root, buf, parent,
1490 parent_slot, cow_ret, search_start, 0);
1492 trace_btrfs_cow_block(root, buf, *cow_ret);
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1501 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1503 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1505 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1511 * compare two keys in a memcmp fashion
1513 static int comp_keys(const struct btrfs_disk_key *disk,
1514 const struct btrfs_key *k2)
1516 struct btrfs_key k1;
1518 btrfs_disk_key_to_cpu(&k1, disk);
1520 return btrfs_comp_cpu_keys(&k1, k2);
1524 * same as comp_keys only with two btrfs_key's
1526 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1528 if (k1->objectid > k2->objectid)
1530 if (k1->objectid < k2->objectid)
1532 if (k1->type > k2->type)
1534 if (k1->type < k2->type)
1536 if (k1->offset > k2->offset)
1538 if (k1->offset < k2->offset)
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1548 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549 struct btrfs_root *root, struct extent_buffer *parent,
1550 int start_slot, u64 *last_ret,
1551 struct btrfs_key *progress)
1553 struct btrfs_fs_info *fs_info = root->fs_info;
1554 struct extent_buffer *cur;
1557 u64 search_start = *last_ret;
1567 int progress_passed = 0;
1568 struct btrfs_disk_key disk_key;
1570 parent_level = btrfs_header_level(parent);
1572 WARN_ON(trans->transaction != fs_info->running_transaction);
1573 WARN_ON(trans->transid != fs_info->generation);
1575 parent_nritems = btrfs_header_nritems(parent);
1576 blocksize = fs_info->nodesize;
1577 end_slot = parent_nritems - 1;
1579 if (parent_nritems <= 1)
1582 btrfs_set_lock_blocking(parent);
1584 for (i = start_slot; i <= end_slot; i++) {
1585 struct btrfs_key first_key;
1588 btrfs_node_key(parent, &disk_key, i);
1589 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1592 progress_passed = 1;
1593 blocknr = btrfs_node_blockptr(parent, i);
1594 gen = btrfs_node_ptr_generation(parent, i);
1595 btrfs_node_key_to_cpu(parent, &first_key, i);
1596 if (last_block == 0)
1597 last_block = blocknr;
1600 other = btrfs_node_blockptr(parent, i - 1);
1601 close = close_blocks(blocknr, other, blocksize);
1603 if (!close && i < end_slot) {
1604 other = btrfs_node_blockptr(parent, i + 1);
1605 close = close_blocks(blocknr, other, blocksize);
1608 last_block = blocknr;
1612 cur = find_extent_buffer(fs_info, blocknr);
1614 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1617 if (!cur || !uptodate) {
1619 cur = read_tree_block(fs_info, blocknr, gen,
1623 return PTR_ERR(cur);
1624 } else if (!extent_buffer_uptodate(cur)) {
1625 free_extent_buffer(cur);
1628 } else if (!uptodate) {
1629 err = btrfs_read_buffer(cur, gen,
1630 parent_level - 1,&first_key);
1632 free_extent_buffer(cur);
1637 if (search_start == 0)
1638 search_start = last_block;
1640 btrfs_tree_lock(cur);
1641 btrfs_set_lock_blocking(cur);
1642 err = __btrfs_cow_block(trans, root, cur, parent, i,
1645 (end_slot - i) * blocksize));
1647 btrfs_tree_unlock(cur);
1648 free_extent_buffer(cur);
1651 search_start = cur->start;
1652 last_block = cur->start;
1653 *last_ret = search_start;
1654 btrfs_tree_unlock(cur);
1655 free_extent_buffer(cur);
1661 * search for key in the extent_buffer. The items start at offset p,
1662 * and they are item_size apart. There are 'max' items in p.
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1668 * slot may point to max if the key is bigger than all of the keys
1670 static noinline int generic_bin_search(struct extent_buffer *eb,
1671 unsigned long p, int item_size,
1672 const struct btrfs_key *key,
1679 struct btrfs_disk_key *tmp = NULL;
1680 struct btrfs_disk_key unaligned;
1681 unsigned long offset;
1683 unsigned long map_start = 0;
1684 unsigned long map_len = 0;
1688 btrfs_err(eb->fs_info,
1689 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690 __func__, low, high, eb->start,
1691 btrfs_header_owner(eb), btrfs_header_level(eb));
1695 while (low < high) {
1696 mid = (low + high) / 2;
1697 offset = p + mid * item_size;
1699 if (!kaddr || offset < map_start ||
1700 (offset + sizeof(struct btrfs_disk_key)) >
1701 map_start + map_len) {
1703 err = map_private_extent_buffer(eb, offset,
1704 sizeof(struct btrfs_disk_key),
1705 &kaddr, &map_start, &map_len);
1708 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1710 } else if (err == 1) {
1711 read_extent_buffer(eb, &unaligned,
1712 offset, sizeof(unaligned));
1719 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1722 ret = comp_keys(tmp, key);
1738 * simple bin_search frontend that does the right thing for
1741 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742 int level, int *slot)
1745 return generic_bin_search(eb,
1746 offsetof(struct btrfs_leaf, items),
1747 sizeof(struct btrfs_item),
1748 key, btrfs_header_nritems(eb),
1751 return generic_bin_search(eb,
1752 offsetof(struct btrfs_node, ptrs),
1753 sizeof(struct btrfs_key_ptr),
1754 key, btrfs_header_nritems(eb),
1758 static void root_add_used(struct btrfs_root *root, u32 size)
1760 spin_lock(&root->accounting_lock);
1761 btrfs_set_root_used(&root->root_item,
1762 btrfs_root_used(&root->root_item) + size);
1763 spin_unlock(&root->accounting_lock);
1766 static void root_sub_used(struct btrfs_root *root, u32 size)
1768 spin_lock(&root->accounting_lock);
1769 btrfs_set_root_used(&root->root_item,
1770 btrfs_root_used(&root->root_item) - size);
1771 spin_unlock(&root->accounting_lock);
1774 /* given a node and slot number, this reads the blocks it points to. The
1775 * extent buffer is returned with a reference taken (but unlocked).
1777 static noinline struct extent_buffer *
1778 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1781 int level = btrfs_header_level(parent);
1782 struct extent_buffer *eb;
1783 struct btrfs_key first_key;
1785 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786 return ERR_PTR(-ENOENT);
1790 btrfs_node_key_to_cpu(parent, &first_key, slot);
1791 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792 btrfs_node_ptr_generation(parent, slot),
1793 level - 1, &first_key);
1794 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795 free_extent_buffer(eb);
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion. We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1807 static noinline int balance_level(struct btrfs_trans_handle *trans,
1808 struct btrfs_root *root,
1809 struct btrfs_path *path, int level)
1811 struct btrfs_fs_info *fs_info = root->fs_info;
1812 struct extent_buffer *right = NULL;
1813 struct extent_buffer *mid;
1814 struct extent_buffer *left = NULL;
1815 struct extent_buffer *parent = NULL;
1819 int orig_slot = path->slots[level];
1825 mid = path->nodes[level];
1827 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1831 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1833 if (level < BTRFS_MAX_LEVEL - 1) {
1834 parent = path->nodes[level + 1];
1835 pslot = path->slots[level + 1];
1839 * deal with the case where there is only one pointer in the root
1840 * by promoting the node below to a root
1843 struct extent_buffer *child;
1845 if (btrfs_header_nritems(mid) != 1)
1848 /* promote the child to a root */
1849 child = read_node_slot(fs_info, mid, 0);
1850 if (IS_ERR(child)) {
1851 ret = PTR_ERR(child);
1852 btrfs_handle_fs_error(fs_info, ret, NULL);
1856 btrfs_tree_lock(child);
1857 btrfs_set_lock_blocking(child);
1858 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1860 btrfs_tree_unlock(child);
1861 free_extent_buffer(child);
1865 ret = tree_mod_log_insert_root(root->node, child, 1);
1867 rcu_assign_pointer(root->node, child);
1869 add_root_to_dirty_list(root);
1870 btrfs_tree_unlock(child);
1872 path->locks[level] = 0;
1873 path->nodes[level] = NULL;
1874 clean_tree_block(fs_info, mid);
1875 btrfs_tree_unlock(mid);
1876 /* once for the path */
1877 free_extent_buffer(mid);
1879 root_sub_used(root, mid->len);
1880 btrfs_free_tree_block(trans, root, mid, 0, 1);
1881 /* once for the root ptr */
1882 free_extent_buffer_stale(mid);
1885 if (btrfs_header_nritems(mid) >
1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1889 left = read_node_slot(fs_info, parent, pslot - 1);
1894 btrfs_tree_lock(left);
1895 btrfs_set_lock_blocking(left);
1896 wret = btrfs_cow_block(trans, root, left,
1897 parent, pslot - 1, &left);
1904 right = read_node_slot(fs_info, parent, pslot + 1);
1909 btrfs_tree_lock(right);
1910 btrfs_set_lock_blocking(right);
1911 wret = btrfs_cow_block(trans, root, right,
1912 parent, pslot + 1, &right);
1919 /* first, try to make some room in the middle buffer */
1921 orig_slot += btrfs_header_nritems(left);
1922 wret = push_node_left(trans, fs_info, left, mid, 1);
1928 * then try to empty the right most buffer into the middle
1931 wret = push_node_left(trans, fs_info, mid, right, 1);
1932 if (wret < 0 && wret != -ENOSPC)
1934 if (btrfs_header_nritems(right) == 0) {
1935 clean_tree_block(fs_info, right);
1936 btrfs_tree_unlock(right);
1937 del_ptr(root, path, level + 1, pslot + 1);
1938 root_sub_used(root, right->len);
1939 btrfs_free_tree_block(trans, root, right, 0, 1);
1940 free_extent_buffer_stale(right);
1943 struct btrfs_disk_key right_key;
1944 btrfs_node_key(right, &right_key, 0);
1945 ret = tree_mod_log_insert_key(parent, pslot + 1,
1946 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1948 btrfs_set_node_key(parent, &right_key, pslot + 1);
1949 btrfs_mark_buffer_dirty(parent);
1952 if (btrfs_header_nritems(mid) == 1) {
1954 * we're not allowed to leave a node with one item in the
1955 * tree during a delete. A deletion from lower in the tree
1956 * could try to delete the only pointer in this node.
1957 * So, pull some keys from the left.
1958 * There has to be a left pointer at this point because
1959 * otherwise we would have pulled some pointers from the
1964 btrfs_handle_fs_error(fs_info, ret, NULL);
1967 wret = balance_node_right(trans, fs_info, mid, left);
1973 wret = push_node_left(trans, fs_info, left, mid, 1);
1979 if (btrfs_header_nritems(mid) == 0) {
1980 clean_tree_block(fs_info, mid);
1981 btrfs_tree_unlock(mid);
1982 del_ptr(root, path, level + 1, pslot);
1983 root_sub_used(root, mid->len);
1984 btrfs_free_tree_block(trans, root, mid, 0, 1);
1985 free_extent_buffer_stale(mid);
1988 /* update the parent key to reflect our changes */
1989 struct btrfs_disk_key mid_key;
1990 btrfs_node_key(mid, &mid_key, 0);
1991 ret = tree_mod_log_insert_key(parent, pslot,
1992 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1994 btrfs_set_node_key(parent, &mid_key, pslot);
1995 btrfs_mark_buffer_dirty(parent);
1998 /* update the path */
2000 if (btrfs_header_nritems(left) > orig_slot) {
2001 extent_buffer_get(left);
2002 /* left was locked after cow */
2003 path->nodes[level] = left;
2004 path->slots[level + 1] -= 1;
2005 path->slots[level] = orig_slot;
2007 btrfs_tree_unlock(mid);
2008 free_extent_buffer(mid);
2011 orig_slot -= btrfs_header_nritems(left);
2012 path->slots[level] = orig_slot;
2015 /* double check we haven't messed things up */
2017 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2021 btrfs_tree_unlock(right);
2022 free_extent_buffer(right);
2025 if (path->nodes[level] != left)
2026 btrfs_tree_unlock(left);
2027 free_extent_buffer(left);
2032 /* Node balancing for insertion. Here we only split or push nodes around
2033 * when they are completely full. This is also done top down, so we
2034 * have to be pessimistic.
2036 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037 struct btrfs_root *root,
2038 struct btrfs_path *path, int level)
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 struct extent_buffer *right = NULL;
2042 struct extent_buffer *mid;
2043 struct extent_buffer *left = NULL;
2044 struct extent_buffer *parent = NULL;
2048 int orig_slot = path->slots[level];
2053 mid = path->nodes[level];
2054 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2056 if (level < BTRFS_MAX_LEVEL - 1) {
2057 parent = path->nodes[level + 1];
2058 pslot = path->slots[level + 1];
2064 left = read_node_slot(fs_info, parent, pslot - 1);
2068 /* first, try to make some room in the middle buffer */
2072 btrfs_tree_lock(left);
2073 btrfs_set_lock_blocking(left);
2075 left_nr = btrfs_header_nritems(left);
2076 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2079 ret = btrfs_cow_block(trans, root, left, parent,
2084 wret = push_node_left(trans, fs_info,
2091 struct btrfs_disk_key disk_key;
2092 orig_slot += left_nr;
2093 btrfs_node_key(mid, &disk_key, 0);
2094 ret = tree_mod_log_insert_key(parent, pslot,
2095 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2097 btrfs_set_node_key(parent, &disk_key, pslot);
2098 btrfs_mark_buffer_dirty(parent);
2099 if (btrfs_header_nritems(left) > orig_slot) {
2100 path->nodes[level] = left;
2101 path->slots[level + 1] -= 1;
2102 path->slots[level] = orig_slot;
2103 btrfs_tree_unlock(mid);
2104 free_extent_buffer(mid);
2107 btrfs_header_nritems(left);
2108 path->slots[level] = orig_slot;
2109 btrfs_tree_unlock(left);
2110 free_extent_buffer(left);
2114 btrfs_tree_unlock(left);
2115 free_extent_buffer(left);
2117 right = read_node_slot(fs_info, parent, pslot + 1);
2122 * then try to empty the right most buffer into the middle
2127 btrfs_tree_lock(right);
2128 btrfs_set_lock_blocking(right);
2130 right_nr = btrfs_header_nritems(right);
2131 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2134 ret = btrfs_cow_block(trans, root, right,
2140 wret = balance_node_right(trans, fs_info,
2147 struct btrfs_disk_key disk_key;
2149 btrfs_node_key(right, &disk_key, 0);
2150 ret = tree_mod_log_insert_key(parent, pslot + 1,
2151 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2153 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154 btrfs_mark_buffer_dirty(parent);
2156 if (btrfs_header_nritems(mid) <= orig_slot) {
2157 path->nodes[level] = right;
2158 path->slots[level + 1] += 1;
2159 path->slots[level] = orig_slot -
2160 btrfs_header_nritems(mid);
2161 btrfs_tree_unlock(mid);
2162 free_extent_buffer(mid);
2164 btrfs_tree_unlock(right);
2165 free_extent_buffer(right);
2169 btrfs_tree_unlock(right);
2170 free_extent_buffer(right);
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
2179 static void reada_for_search(struct btrfs_fs_info *fs_info,
2180 struct btrfs_path *path,
2181 int level, int slot, u64 objectid)
2183 struct extent_buffer *node;
2184 struct btrfs_disk_key disk_key;
2189 struct extent_buffer *eb;
2197 if (!path->nodes[level])
2200 node = path->nodes[level];
2202 search = btrfs_node_blockptr(node, slot);
2203 blocksize = fs_info->nodesize;
2204 eb = find_extent_buffer(fs_info, search);
2206 free_extent_buffer(eb);
2212 nritems = btrfs_header_nritems(node);
2216 if (path->reada == READA_BACK) {
2220 } else if (path->reada == READA_FORWARD) {
2225 if (path->reada == READA_BACK && objectid) {
2226 btrfs_node_key(node, &disk_key, nr);
2227 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2230 search = btrfs_node_blockptr(node, nr);
2231 if ((search <= target && target - search <= 65536) ||
2232 (search > target && search - target <= 65536)) {
2233 readahead_tree_block(fs_info, search);
2237 if ((nread > 65536 || nscan > 32))
2242 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2243 struct btrfs_path *path, int level)
2247 struct extent_buffer *parent;
2248 struct extent_buffer *eb;
2253 parent = path->nodes[level + 1];
2257 nritems = btrfs_header_nritems(parent);
2258 slot = path->slots[level + 1];
2261 block1 = btrfs_node_blockptr(parent, slot - 1);
2262 gen = btrfs_node_ptr_generation(parent, slot - 1);
2263 eb = find_extent_buffer(fs_info, block1);
2265 * if we get -eagain from btrfs_buffer_uptodate, we
2266 * don't want to return eagain here. That will loop
2269 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2271 free_extent_buffer(eb);
2273 if (slot + 1 < nritems) {
2274 block2 = btrfs_node_blockptr(parent, slot + 1);
2275 gen = btrfs_node_ptr_generation(parent, slot + 1);
2276 eb = find_extent_buffer(fs_info, block2);
2277 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2279 free_extent_buffer(eb);
2283 readahead_tree_block(fs_info, block1);
2285 readahead_tree_block(fs_info, block2);
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree. The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block. This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
2302 static noinline void unlock_up(struct btrfs_path *path, int level,
2303 int lowest_unlock, int min_write_lock_level,
2304 int *write_lock_level)
2307 int skip_level = level;
2309 struct extent_buffer *t;
2311 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312 if (!path->nodes[i])
2314 if (!path->locks[i])
2316 if (!no_skips && path->slots[i] == 0) {
2320 if (!no_skips && path->keep_locks) {
2323 nritems = btrfs_header_nritems(t);
2324 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2329 if (skip_level < i && i >= lowest_unlock)
2333 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2334 btrfs_tree_unlock_rw(t, path->locks[i]);
2336 if (write_lock_level &&
2337 i > min_write_lock_level &&
2338 i <= *write_lock_level) {
2339 *write_lock_level = i - 1;
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node. This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2354 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2358 if (path->keep_locks)
2361 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362 if (!path->nodes[i])
2364 if (!path->locks[i])
2366 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2372 * helper function for btrfs_search_slot. The goal is to find a block
2373 * in cache without setting the path to blocking. If we find the block
2374 * we return zero and the path is unchanged.
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada. -EAGAIN is returned and the search must be repeated.
2380 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381 struct extent_buffer **eb_ret, int level, int slot,
2382 const struct btrfs_key *key)
2384 struct btrfs_fs_info *fs_info = root->fs_info;
2387 struct extent_buffer *b = *eb_ret;
2388 struct extent_buffer *tmp;
2389 struct btrfs_key first_key;
2393 blocknr = btrfs_node_blockptr(b, slot);
2394 gen = btrfs_node_ptr_generation(b, slot);
2395 parent_level = btrfs_header_level(b);
2396 btrfs_node_key_to_cpu(b, &first_key, slot);
2398 tmp = find_extent_buffer(fs_info, blocknr);
2400 /* first we do an atomic uptodate check */
2401 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2406 /* the pages were up to date, but we failed
2407 * the generation number check. Do a full
2408 * read for the generation number that is correct.
2409 * We must do this without dropping locks so
2410 * we can trust our generation number
2412 btrfs_set_path_blocking(p);
2414 /* now we're allowed to do a blocking uptodate check */
2415 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2420 free_extent_buffer(tmp);
2421 btrfs_release_path(p);
2426 * reduce lock contention at high levels
2427 * of the btree by dropping locks before
2428 * we read. Don't release the lock on the current
2429 * level because we need to walk this node to figure
2430 * out which blocks to read.
2432 btrfs_unlock_up_safe(p, level + 1);
2433 btrfs_set_path_blocking(p);
2435 free_extent_buffer(tmp);
2436 if (p->reada != READA_NONE)
2437 reada_for_search(fs_info, p, level, slot, key->objectid);
2439 btrfs_release_path(p);
2442 tmp = read_tree_block(fs_info, blocknr, 0, parent_level - 1,
2446 * If the read above didn't mark this buffer up to date,
2447 * it will never end up being up to date. Set ret to EIO now
2448 * and give up so that our caller doesn't loop forever
2451 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2453 free_extent_buffer(tmp);
2461 * helper function for btrfs_search_slot. This does all of the checks
2462 * for node-level blocks and does any balancing required based on
2465 * If no extra work was required, zero is returned. If we had to
2466 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2470 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2471 struct btrfs_root *root, struct btrfs_path *p,
2472 struct extent_buffer *b, int level, int ins_len,
2473 int *write_lock_level)
2475 struct btrfs_fs_info *fs_info = root->fs_info;
2478 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2479 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2482 if (*write_lock_level < level + 1) {
2483 *write_lock_level = level + 1;
2484 btrfs_release_path(p);
2488 btrfs_set_path_blocking(p);
2489 reada_for_balance(fs_info, p, level);
2490 sret = split_node(trans, root, p, level);
2491 btrfs_clear_path_blocking(p, NULL, 0);
2498 b = p->nodes[level];
2499 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2500 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2503 if (*write_lock_level < level + 1) {
2504 *write_lock_level = level + 1;
2505 btrfs_release_path(p);
2509 btrfs_set_path_blocking(p);
2510 reada_for_balance(fs_info, p, level);
2511 sret = balance_level(trans, root, p, level);
2512 btrfs_clear_path_blocking(p, NULL, 0);
2518 b = p->nodes[level];
2520 btrfs_release_path(p);
2523 BUG_ON(btrfs_header_nritems(b) == 1);
2533 static void key_search_validate(struct extent_buffer *b,
2534 const struct btrfs_key *key,
2537 #ifdef CONFIG_BTRFS_ASSERT
2538 struct btrfs_disk_key disk_key;
2540 btrfs_cpu_key_to_disk(&disk_key, key);
2543 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2544 offsetof(struct btrfs_leaf, items[0].key),
2547 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2548 offsetof(struct btrfs_node, ptrs[0].key),
2553 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2554 int level, int *prev_cmp, int *slot)
2556 if (*prev_cmp != 0) {
2557 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2561 key_search_validate(b, key, level);
2567 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2568 u64 iobjectid, u64 ioff, u8 key_type,
2569 struct btrfs_key *found_key)
2572 struct btrfs_key key;
2573 struct extent_buffer *eb;
2578 key.type = key_type;
2579 key.objectid = iobjectid;
2582 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2586 eb = path->nodes[0];
2587 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2588 ret = btrfs_next_leaf(fs_root, path);
2591 eb = path->nodes[0];
2594 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2595 if (found_key->type != key.type ||
2596 found_key->objectid != key.objectid)
2603 * btrfs_search_slot - look for a key in a tree and perform necessary
2604 * modifications to preserve tree invariants.
2606 * @trans: Handle of transaction, used when modifying the tree
2607 * @p: Holds all btree nodes along the search path
2608 * @root: The root node of the tree
2609 * @key: The key we are looking for
2610 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2611 * deletions it's -1. 0 for plain searches
2612 * @cow: boolean should CoW operations be performed. Must always be 1
2613 * when modifying the tree.
2615 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2616 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2618 * If @key is found, 0 is returned and you can find the item in the leaf level
2619 * of the path (level 0)
2621 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2622 * points to the slot where it should be inserted
2624 * If an error is encountered while searching the tree a negative error number
2627 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2628 const struct btrfs_key *key, struct btrfs_path *p,
2629 int ins_len, int cow)
2631 struct btrfs_fs_info *fs_info = root->fs_info;
2632 struct extent_buffer *b;
2637 int lowest_unlock = 1;
2639 /* everything at write_lock_level or lower must be write locked */
2640 int write_lock_level = 0;
2641 u8 lowest_level = 0;
2642 int min_write_lock_level;
2645 lowest_level = p->lowest_level;
2646 WARN_ON(lowest_level && ins_len > 0);
2647 WARN_ON(p->nodes[0] != NULL);
2648 BUG_ON(!cow && ins_len);
2653 /* when we are removing items, we might have to go up to level
2654 * two as we update tree pointers Make sure we keep write
2655 * for those levels as well
2657 write_lock_level = 2;
2658 } else if (ins_len > 0) {
2660 * for inserting items, make sure we have a write lock on
2661 * level 1 so we can update keys
2663 write_lock_level = 1;
2667 write_lock_level = -1;
2669 if (cow && (p->keep_locks || p->lowest_level))
2670 write_lock_level = BTRFS_MAX_LEVEL;
2672 min_write_lock_level = write_lock_level;
2677 * we try very hard to do read locks on the root
2679 root_lock = BTRFS_READ_LOCK;
2681 if (p->search_commit_root) {
2683 * the commit roots are read only
2684 * so we always do read locks
2686 if (p->need_commit_sem)
2687 down_read(&fs_info->commit_root_sem);
2688 b = root->commit_root;
2689 extent_buffer_get(b);
2690 level = btrfs_header_level(b);
2691 if (p->need_commit_sem)
2692 up_read(&fs_info->commit_root_sem);
2693 if (!p->skip_locking)
2694 btrfs_tree_read_lock(b);
2696 if (p->skip_locking) {
2697 b = btrfs_root_node(root);
2698 level = btrfs_header_level(b);
2700 /* we don't know the level of the root node
2701 * until we actually have it read locked
2703 b = btrfs_read_lock_root_node(root);
2704 level = btrfs_header_level(b);
2705 if (level <= write_lock_level) {
2706 /* whoops, must trade for write lock */
2707 btrfs_tree_read_unlock(b);
2708 free_extent_buffer(b);
2709 b = btrfs_lock_root_node(root);
2710 root_lock = BTRFS_WRITE_LOCK;
2712 /* the level might have changed, check again */
2713 level = btrfs_header_level(b);
2717 p->nodes[level] = b;
2718 if (!p->skip_locking)
2719 p->locks[level] = root_lock;
2722 level = btrfs_header_level(b);
2725 * setup the path here so we can release it under lock
2726 * contention with the cow code
2729 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2732 * if we don't really need to cow this block
2733 * then we don't want to set the path blocking,
2734 * so we test it here
2736 if (!should_cow_block(trans, root, b)) {
2737 trans->dirty = true;
2742 * must have write locks on this node and the
2745 if (level > write_lock_level ||
2746 (level + 1 > write_lock_level &&
2747 level + 1 < BTRFS_MAX_LEVEL &&
2748 p->nodes[level + 1])) {
2749 write_lock_level = level + 1;
2750 btrfs_release_path(p);
2754 btrfs_set_path_blocking(p);
2756 err = btrfs_cow_block(trans, root, b, NULL, 0,
2759 err = btrfs_cow_block(trans, root, b,
2760 p->nodes[level + 1],
2761 p->slots[level + 1], &b);
2768 p->nodes[level] = b;
2769 btrfs_clear_path_blocking(p, NULL, 0);
2772 * we have a lock on b and as long as we aren't changing
2773 * the tree, there is no way to for the items in b to change.
2774 * It is safe to drop the lock on our parent before we
2775 * go through the expensive btree search on b.
2777 * If we're inserting or deleting (ins_len != 0), then we might
2778 * be changing slot zero, which may require changing the parent.
2779 * So, we can't drop the lock until after we know which slot
2780 * we're operating on.
2782 if (!ins_len && !p->keep_locks) {
2785 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2786 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2791 ret = key_search(b, key, level, &prev_cmp, &slot);
2797 if (ret && slot > 0) {
2801 p->slots[level] = slot;
2802 err = setup_nodes_for_search(trans, root, p, b, level,
2803 ins_len, &write_lock_level);
2810 b = p->nodes[level];
2811 slot = p->slots[level];
2814 * slot 0 is special, if we change the key
2815 * we have to update the parent pointer
2816 * which means we must have a write lock
2819 if (slot == 0 && ins_len &&
2820 write_lock_level < level + 1) {
2821 write_lock_level = level + 1;
2822 btrfs_release_path(p);
2826 unlock_up(p, level, lowest_unlock,
2827 min_write_lock_level, &write_lock_level);
2829 if (level == lowest_level) {
2835 err = read_block_for_search(root, p, &b, level,
2844 if (!p->skip_locking) {
2845 level = btrfs_header_level(b);
2846 if (level <= write_lock_level) {
2847 err = btrfs_try_tree_write_lock(b);
2849 btrfs_set_path_blocking(p);
2851 btrfs_clear_path_blocking(p, b,
2854 p->locks[level] = BTRFS_WRITE_LOCK;
2856 err = btrfs_tree_read_lock_atomic(b);
2858 btrfs_set_path_blocking(p);
2859 btrfs_tree_read_lock(b);
2860 btrfs_clear_path_blocking(p, b,
2863 p->locks[level] = BTRFS_READ_LOCK;
2865 p->nodes[level] = b;
2868 p->slots[level] = slot;
2870 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2871 if (write_lock_level < 1) {
2872 write_lock_level = 1;
2873 btrfs_release_path(p);
2877 btrfs_set_path_blocking(p);
2878 err = split_leaf(trans, root, key,
2879 p, ins_len, ret == 0);
2880 btrfs_clear_path_blocking(p, NULL, 0);
2888 if (!p->search_for_split)
2889 unlock_up(p, level, lowest_unlock,
2890 min_write_lock_level, &write_lock_level);
2897 * we don't really know what they plan on doing with the path
2898 * from here on, so for now just mark it as blocking
2900 if (!p->leave_spinning)
2901 btrfs_set_path_blocking(p);
2902 if (ret < 0 && !p->skip_release_on_error)
2903 btrfs_release_path(p);
2908 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2909 * current state of the tree together with the operations recorded in the tree
2910 * modification log to search for the key in a previous version of this tree, as
2911 * denoted by the time_seq parameter.
2913 * Naturally, there is no support for insert, delete or cow operations.
2915 * The resulting path and return value will be set up as if we called
2916 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2918 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2919 struct btrfs_path *p, u64 time_seq)
2921 struct btrfs_fs_info *fs_info = root->fs_info;
2922 struct extent_buffer *b;
2927 int lowest_unlock = 1;
2928 u8 lowest_level = 0;
2931 lowest_level = p->lowest_level;
2932 WARN_ON(p->nodes[0] != NULL);
2934 if (p->search_commit_root) {
2936 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2940 b = get_old_root(root, time_seq);
2941 level = btrfs_header_level(b);
2942 p->locks[level] = BTRFS_READ_LOCK;
2945 level = btrfs_header_level(b);
2946 p->nodes[level] = b;
2947 btrfs_clear_path_blocking(p, NULL, 0);
2950 * we have a lock on b and as long as we aren't changing
2951 * the tree, there is no way to for the items in b to change.
2952 * It is safe to drop the lock on our parent before we
2953 * go through the expensive btree search on b.
2955 btrfs_unlock_up_safe(p, level + 1);
2958 * Since we can unwind ebs we want to do a real search every
2962 ret = key_search(b, key, level, &prev_cmp, &slot);
2966 if (ret && slot > 0) {
2970 p->slots[level] = slot;
2971 unlock_up(p, level, lowest_unlock, 0, NULL);
2973 if (level == lowest_level) {
2979 err = read_block_for_search(root, p, &b, level,
2988 level = btrfs_header_level(b);
2989 err = btrfs_tree_read_lock_atomic(b);
2991 btrfs_set_path_blocking(p);
2992 btrfs_tree_read_lock(b);
2993 btrfs_clear_path_blocking(p, b,
2996 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3001 p->locks[level] = BTRFS_READ_LOCK;
3002 p->nodes[level] = b;
3004 p->slots[level] = slot;
3005 unlock_up(p, level, lowest_unlock, 0, NULL);
3011 if (!p->leave_spinning)
3012 btrfs_set_path_blocking(p);
3014 btrfs_release_path(p);
3020 * helper to use instead of search slot if no exact match is needed but
3021 * instead the next or previous item should be returned.
3022 * When find_higher is true, the next higher item is returned, the next lower
3024 * When return_any and find_higher are both true, and no higher item is found,
3025 * return the next lower instead.
3026 * When return_any is true and find_higher is false, and no lower item is found,
3027 * return the next higher instead.
3028 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3031 int btrfs_search_slot_for_read(struct btrfs_root *root,
3032 const struct btrfs_key *key,
3033 struct btrfs_path *p, int find_higher,
3037 struct extent_buffer *leaf;
3040 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3044 * a return value of 1 means the path is at the position where the
3045 * item should be inserted. Normally this is the next bigger item,
3046 * but in case the previous item is the last in a leaf, path points
3047 * to the first free slot in the previous leaf, i.e. at an invalid
3053 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3054 ret = btrfs_next_leaf(root, p);
3060 * no higher item found, return the next
3065 btrfs_release_path(p);
3069 if (p->slots[0] == 0) {
3070 ret = btrfs_prev_leaf(root, p);
3075 if (p->slots[0] == btrfs_header_nritems(leaf))
3082 * no lower item found, return the next
3087 btrfs_release_path(p);
3097 * adjust the pointers going up the tree, starting at level
3098 * making sure the right key of each node is points to 'key'.
3099 * This is used after shifting pointers to the left, so it stops
3100 * fixing up pointers when a given leaf/node is not in slot 0 of the
3104 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3105 struct btrfs_path *path,
3106 struct btrfs_disk_key *key, int level)
3109 struct extent_buffer *t;
3112 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3113 int tslot = path->slots[i];
3115 if (!path->nodes[i])
3118 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3121 btrfs_set_node_key(t, key, tslot);
3122 btrfs_mark_buffer_dirty(path->nodes[i]);
3131 * This function isn't completely safe. It's the caller's responsibility
3132 * that the new key won't break the order
3134 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3135 struct btrfs_path *path,
3136 const struct btrfs_key *new_key)
3138 struct btrfs_disk_key disk_key;
3139 struct extent_buffer *eb;
3142 eb = path->nodes[0];
3143 slot = path->slots[0];
3145 btrfs_item_key(eb, &disk_key, slot - 1);
3146 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3148 if (slot < btrfs_header_nritems(eb) - 1) {
3149 btrfs_item_key(eb, &disk_key, slot + 1);
3150 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3153 btrfs_cpu_key_to_disk(&disk_key, new_key);
3154 btrfs_set_item_key(eb, &disk_key, slot);
3155 btrfs_mark_buffer_dirty(eb);
3157 fixup_low_keys(fs_info, path, &disk_key, 1);
3161 * try to push data from one node into the next node left in the
3164 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3165 * error, and > 0 if there was no room in the left hand block.
3167 static int push_node_left(struct btrfs_trans_handle *trans,
3168 struct btrfs_fs_info *fs_info,
3169 struct extent_buffer *dst,
3170 struct extent_buffer *src, int empty)
3177 src_nritems = btrfs_header_nritems(src);
3178 dst_nritems = btrfs_header_nritems(dst);
3179 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3180 WARN_ON(btrfs_header_generation(src) != trans->transid);
3181 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3183 if (!empty && src_nritems <= 8)
3186 if (push_items <= 0)
3190 push_items = min(src_nritems, push_items);
3191 if (push_items < src_nritems) {
3192 /* leave at least 8 pointers in the node if
3193 * we aren't going to empty it
3195 if (src_nritems - push_items < 8) {
3196 if (push_items <= 8)
3202 push_items = min(src_nritems - 8, push_items);
3204 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3207 btrfs_abort_transaction(trans, ret);
3210 copy_extent_buffer(dst, src,
3211 btrfs_node_key_ptr_offset(dst_nritems),
3212 btrfs_node_key_ptr_offset(0),
3213 push_items * sizeof(struct btrfs_key_ptr));
3215 if (push_items < src_nritems) {
3217 * Don't call tree_mod_log_insert_move here, key removal was
3218 * already fully logged by tree_mod_log_eb_copy above.
3220 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3221 btrfs_node_key_ptr_offset(push_items),
3222 (src_nritems - push_items) *
3223 sizeof(struct btrfs_key_ptr));
3225 btrfs_set_header_nritems(src, src_nritems - push_items);
3226 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3227 btrfs_mark_buffer_dirty(src);
3228 btrfs_mark_buffer_dirty(dst);
3234 * try to push data from one node into the next node right in the
3237 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3238 * error, and > 0 if there was no room in the right hand block.
3240 * this will only push up to 1/2 the contents of the left node over
3242 static int balance_node_right(struct btrfs_trans_handle *trans,
3243 struct btrfs_fs_info *fs_info,
3244 struct extent_buffer *dst,
3245 struct extent_buffer *src)
3253 WARN_ON(btrfs_header_generation(src) != trans->transid);
3254 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3256 src_nritems = btrfs_header_nritems(src);
3257 dst_nritems = btrfs_header_nritems(dst);
3258 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3259 if (push_items <= 0)
3262 if (src_nritems < 4)
3265 max_push = src_nritems / 2 + 1;
3266 /* don't try to empty the node */
3267 if (max_push >= src_nritems)
3270 if (max_push < push_items)
3271 push_items = max_push;
3273 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3275 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3276 btrfs_node_key_ptr_offset(0),
3278 sizeof(struct btrfs_key_ptr));
3280 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3281 src_nritems - push_items, push_items);
3283 btrfs_abort_transaction(trans, ret);
3286 copy_extent_buffer(dst, src,
3287 btrfs_node_key_ptr_offset(0),
3288 btrfs_node_key_ptr_offset(src_nritems - push_items),
3289 push_items * sizeof(struct btrfs_key_ptr));
3291 btrfs_set_header_nritems(src, src_nritems - push_items);
3292 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3294 btrfs_mark_buffer_dirty(src);
3295 btrfs_mark_buffer_dirty(dst);
3301 * helper function to insert a new root level in the tree.
3302 * A new node is allocated, and a single item is inserted to
3303 * point to the existing root
3305 * returns zero on success or < 0 on failure.
3307 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root,
3309 struct btrfs_path *path, int level)
3311 struct btrfs_fs_info *fs_info = root->fs_info;
3313 struct extent_buffer *lower;
3314 struct extent_buffer *c;
3315 struct extent_buffer *old;
3316 struct btrfs_disk_key lower_key;
3319 BUG_ON(path->nodes[level]);
3320 BUG_ON(path->nodes[level-1] != root->node);
3322 lower = path->nodes[level-1];
3324 btrfs_item_key(lower, &lower_key, 0);
3326 btrfs_node_key(lower, &lower_key, 0);
3328 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3329 &lower_key, level, root->node->start, 0);
3333 root_add_used(root, fs_info->nodesize);
3335 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3336 btrfs_set_header_nritems(c, 1);
3337 btrfs_set_header_level(c, level);
3338 btrfs_set_header_bytenr(c, c->start);
3339 btrfs_set_header_generation(c, trans->transid);
3340 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3341 btrfs_set_header_owner(c, root->root_key.objectid);
3343 write_extent_buffer_fsid(c, fs_info->fsid);
3344 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3346 btrfs_set_node_key(c, &lower_key, 0);
3347 btrfs_set_node_blockptr(c, 0, lower->start);
3348 lower_gen = btrfs_header_generation(lower);
3349 WARN_ON(lower_gen != trans->transid);
3351 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3353 btrfs_mark_buffer_dirty(c);
3356 ret = tree_mod_log_insert_root(root->node, c, 0);
3358 rcu_assign_pointer(root->node, c);
3360 /* the super has an extra ref to root->node */
3361 free_extent_buffer(old);
3363 add_root_to_dirty_list(root);
3364 extent_buffer_get(c);
3365 path->nodes[level] = c;
3366 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3367 path->slots[level] = 0;
3372 * worker function to insert a single pointer in a node.
3373 * the node should have enough room for the pointer already
3375 * slot and level indicate where you want the key to go, and
3376 * blocknr is the block the key points to.
3378 static void insert_ptr(struct btrfs_trans_handle *trans,
3379 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3380 struct btrfs_disk_key *key, u64 bytenr,
3381 int slot, int level)
3383 struct extent_buffer *lower;
3387 BUG_ON(!path->nodes[level]);
3388 btrfs_assert_tree_locked(path->nodes[level]);
3389 lower = path->nodes[level];
3390 nritems = btrfs_header_nritems(lower);
3391 BUG_ON(slot > nritems);
3392 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3393 if (slot != nritems) {
3395 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3399 memmove_extent_buffer(lower,
3400 btrfs_node_key_ptr_offset(slot + 1),
3401 btrfs_node_key_ptr_offset(slot),
3402 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3405 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3409 btrfs_set_node_key(lower, key, slot);
3410 btrfs_set_node_blockptr(lower, slot, bytenr);
3411 WARN_ON(trans->transid == 0);
3412 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3413 btrfs_set_header_nritems(lower, nritems + 1);
3414 btrfs_mark_buffer_dirty(lower);
3418 * split the node at the specified level in path in two.
3419 * The path is corrected to point to the appropriate node after the split
3421 * Before splitting this tries to make some room in the node by pushing
3422 * left and right, if either one works, it returns right away.
3424 * returns 0 on success and < 0 on failure
3426 static noinline int split_node(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root,
3428 struct btrfs_path *path, int level)
3430 struct btrfs_fs_info *fs_info = root->fs_info;
3431 struct extent_buffer *c;
3432 struct extent_buffer *split;
3433 struct btrfs_disk_key disk_key;
3438 c = path->nodes[level];
3439 WARN_ON(btrfs_header_generation(c) != trans->transid);
3440 if (c == root->node) {
3442 * trying to split the root, lets make a new one
3444 * tree mod log: We don't log_removal old root in
3445 * insert_new_root, because that root buffer will be kept as a
3446 * normal node. We are going to log removal of half of the
3447 * elements below with tree_mod_log_eb_copy. We're holding a
3448 * tree lock on the buffer, which is why we cannot race with
3449 * other tree_mod_log users.
3451 ret = insert_new_root(trans, root, path, level + 1);
3455 ret = push_nodes_for_insert(trans, root, path, level);
3456 c = path->nodes[level];
3457 if (!ret && btrfs_header_nritems(c) <
3458 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3464 c_nritems = btrfs_header_nritems(c);
3465 mid = (c_nritems + 1) / 2;
3466 btrfs_node_key(c, &disk_key, mid);
3468 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3469 &disk_key, level, c->start, 0);
3471 return PTR_ERR(split);
3473 root_add_used(root, fs_info->nodesize);
3475 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3476 btrfs_set_header_level(split, btrfs_header_level(c));
3477 btrfs_set_header_bytenr(split, split->start);
3478 btrfs_set_header_generation(split, trans->transid);
3479 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3480 btrfs_set_header_owner(split, root->root_key.objectid);
3481 write_extent_buffer_fsid(split, fs_info->fsid);
3482 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3484 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3486 btrfs_abort_transaction(trans, ret);
3489 copy_extent_buffer(split, c,
3490 btrfs_node_key_ptr_offset(0),
3491 btrfs_node_key_ptr_offset(mid),
3492 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3493 btrfs_set_header_nritems(split, c_nritems - mid);
3494 btrfs_set_header_nritems(c, mid);
3497 btrfs_mark_buffer_dirty(c);
3498 btrfs_mark_buffer_dirty(split);
3500 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3501 path->slots[level + 1] + 1, level + 1);
3503 if (path->slots[level] >= mid) {
3504 path->slots[level] -= mid;
3505 btrfs_tree_unlock(c);
3506 free_extent_buffer(c);
3507 path->nodes[level] = split;
3508 path->slots[level + 1] += 1;
3510 btrfs_tree_unlock(split);
3511 free_extent_buffer(split);
3517 * how many bytes are required to store the items in a leaf. start
3518 * and nr indicate which items in the leaf to check. This totals up the
3519 * space used both by the item structs and the item data
3521 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3523 struct btrfs_item *start_item;
3524 struct btrfs_item *end_item;
3525 struct btrfs_map_token token;
3527 int nritems = btrfs_header_nritems(l);
3528 int end = min(nritems, start + nr) - 1;
3532 btrfs_init_map_token(&token);
3533 start_item = btrfs_item_nr(start);
3534 end_item = btrfs_item_nr(end);
3535 data_len = btrfs_token_item_offset(l, start_item, &token) +
3536 btrfs_token_item_size(l, start_item, &token);
3537 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3538 data_len += sizeof(struct btrfs_item) * nr;
3539 WARN_ON(data_len < 0);
3544 * The space between the end of the leaf items and
3545 * the start of the leaf data. IOW, how much room
3546 * the leaf has left for both items and data
3548 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3549 struct extent_buffer *leaf)
3551 int nritems = btrfs_header_nritems(leaf);
3554 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3557 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3559 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3560 leaf_space_used(leaf, 0, nritems), nritems);
3566 * min slot controls the lowest index we're willing to push to the
3567 * right. We'll push up to and including min_slot, but no lower
3569 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3570 struct btrfs_path *path,
3571 int data_size, int empty,
3572 struct extent_buffer *right,
3573 int free_space, u32 left_nritems,
3576 struct extent_buffer *left = path->nodes[0];
3577 struct extent_buffer *upper = path->nodes[1];
3578 struct btrfs_map_token token;
3579 struct btrfs_disk_key disk_key;
3584 struct btrfs_item *item;
3590 btrfs_init_map_token(&token);
3595 nr = max_t(u32, 1, min_slot);
3597 if (path->slots[0] >= left_nritems)
3598 push_space += data_size;
3600 slot = path->slots[1];
3601 i = left_nritems - 1;
3603 item = btrfs_item_nr(i);
3605 if (!empty && push_items > 0) {
3606 if (path->slots[0] > i)
3608 if (path->slots[0] == i) {
3609 int space = btrfs_leaf_free_space(fs_info, left);
3610 if (space + push_space * 2 > free_space)
3615 if (path->slots[0] == i)
3616 push_space += data_size;
3618 this_item_size = btrfs_item_size(left, item);
3619 if (this_item_size + sizeof(*item) + push_space > free_space)
3623 push_space += this_item_size + sizeof(*item);
3629 if (push_items == 0)
3632 WARN_ON(!empty && push_items == left_nritems);
3634 /* push left to right */
3635 right_nritems = btrfs_header_nritems(right);
3637 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3638 push_space -= leaf_data_end(fs_info, left);
3640 /* make room in the right data area */
3641 data_end = leaf_data_end(fs_info, right);
3642 memmove_extent_buffer(right,
3643 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3644 BTRFS_LEAF_DATA_OFFSET + data_end,
3645 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3647 /* copy from the left data area */
3648 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3649 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3650 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3653 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3654 btrfs_item_nr_offset(0),
3655 right_nritems * sizeof(struct btrfs_item));
3657 /* copy the items from left to right */
3658 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3659 btrfs_item_nr_offset(left_nritems - push_items),
3660 push_items * sizeof(struct btrfs_item));
3662 /* update the item pointers */
3663 right_nritems += push_items;
3664 btrfs_set_header_nritems(right, right_nritems);
3665 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3666 for (i = 0; i < right_nritems; i++) {
3667 item = btrfs_item_nr(i);
3668 push_space -= btrfs_token_item_size(right, item, &token);
3669 btrfs_set_token_item_offset(right, item, push_space, &token);
3672 left_nritems -= push_items;
3673 btrfs_set_header_nritems(left, left_nritems);
3676 btrfs_mark_buffer_dirty(left);
3678 clean_tree_block(fs_info, left);
3680 btrfs_mark_buffer_dirty(right);
3682 btrfs_item_key(right, &disk_key, 0);
3683 btrfs_set_node_key(upper, &disk_key, slot + 1);
3684 btrfs_mark_buffer_dirty(upper);
3686 /* then fixup the leaf pointer in the path */
3687 if (path->slots[0] >= left_nritems) {
3688 path->slots[0] -= left_nritems;
3689 if (btrfs_header_nritems(path->nodes[0]) == 0)
3690 clean_tree_block(fs_info, path->nodes[0]);
3691 btrfs_tree_unlock(path->nodes[0]);
3692 free_extent_buffer(path->nodes[0]);
3693 path->nodes[0] = right;
3694 path->slots[1] += 1;
3696 btrfs_tree_unlock(right);
3697 free_extent_buffer(right);
3702 btrfs_tree_unlock(right);
3703 free_extent_buffer(right);
3708 * push some data in the path leaf to the right, trying to free up at
3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3711 * returns 1 if the push failed because the other node didn't have enough
3712 * room, 0 if everything worked out and < 0 if there were major errors.
3714 * this will push starting from min_slot to the end of the leaf. It won't
3715 * push any slot lower than min_slot
3717 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3718 *root, struct btrfs_path *path,
3719 int min_data_size, int data_size,
3720 int empty, u32 min_slot)
3722 struct btrfs_fs_info *fs_info = root->fs_info;
3723 struct extent_buffer *left = path->nodes[0];
3724 struct extent_buffer *right;
3725 struct extent_buffer *upper;
3731 if (!path->nodes[1])
3734 slot = path->slots[1];
3735 upper = path->nodes[1];
3736 if (slot >= btrfs_header_nritems(upper) - 1)
3739 btrfs_assert_tree_locked(path->nodes[1]);
3741 right = read_node_slot(fs_info, upper, slot + 1);
3743 * slot + 1 is not valid or we fail to read the right node,
3744 * no big deal, just return.
3749 btrfs_tree_lock(right);
3750 btrfs_set_lock_blocking(right);
3752 free_space = btrfs_leaf_free_space(fs_info, right);
3753 if (free_space < data_size)
3756 /* cow and double check */
3757 ret = btrfs_cow_block(trans, root, right, upper,
3762 free_space = btrfs_leaf_free_space(fs_info, right);
3763 if (free_space < data_size)
3766 left_nritems = btrfs_header_nritems(left);
3767 if (left_nritems == 0)
3770 if (path->slots[0] == left_nritems && !empty) {
3771 /* Key greater than all keys in the leaf, right neighbor has
3772 * enough room for it and we're not emptying our leaf to delete
3773 * it, therefore use right neighbor to insert the new item and
3774 * no need to touch/dirty our left leaft. */
3775 btrfs_tree_unlock(left);
3776 free_extent_buffer(left);
3777 path->nodes[0] = right;
3783 return __push_leaf_right(fs_info, path, min_data_size, empty,
3784 right, free_space, left_nritems, min_slot);
3786 btrfs_tree_unlock(right);
3787 free_extent_buffer(right);
3792 * push some data in the path leaf to the left, trying to free up at
3793 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3795 * max_slot can put a limit on how far into the leaf we'll push items. The
3796 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3799 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3800 struct btrfs_path *path, int data_size,
3801 int empty, struct extent_buffer *left,
3802 int free_space, u32 right_nritems,
3805 struct btrfs_disk_key disk_key;
3806 struct extent_buffer *right = path->nodes[0];
3810 struct btrfs_item *item;
3811 u32 old_left_nritems;
3815 u32 old_left_item_size;
3816 struct btrfs_map_token token;
3818 btrfs_init_map_token(&token);
3821 nr = min(right_nritems, max_slot);
3823 nr = min(right_nritems - 1, max_slot);
3825 for (i = 0; i < nr; i++) {
3826 item = btrfs_item_nr(i);
3828 if (!empty && push_items > 0) {
3829 if (path->slots[0] < i)
3831 if (path->slots[0] == i) {
3832 int space = btrfs_leaf_free_space(fs_info, right);
3833 if (space + push_space * 2 > free_space)
3838 if (path->slots[0] == i)
3839 push_space += data_size;
3841 this_item_size = btrfs_item_size(right, item);
3842 if (this_item_size + sizeof(*item) + push_space > free_space)
3846 push_space += this_item_size + sizeof(*item);
3849 if (push_items == 0) {
3853 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3855 /* push data from right to left */
3856 copy_extent_buffer(left, right,
3857 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3858 btrfs_item_nr_offset(0),
3859 push_items * sizeof(struct btrfs_item));
3861 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3862 btrfs_item_offset_nr(right, push_items - 1);
3864 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3865 leaf_data_end(fs_info, left) - push_space,
3866 BTRFS_LEAF_DATA_OFFSET +
3867 btrfs_item_offset_nr(right, push_items - 1),
3869 old_left_nritems = btrfs_header_nritems(left);
3870 BUG_ON(old_left_nritems <= 0);
3872 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3873 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3876 item = btrfs_item_nr(i);
3878 ioff = btrfs_token_item_offset(left, item, &token);
3879 btrfs_set_token_item_offset(left, item,
3880 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3883 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3885 /* fixup right node */
3886 if (push_items > right_nritems)
3887 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3890 if (push_items < right_nritems) {
3891 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3892 leaf_data_end(fs_info, right);
3893 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3894 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3895 BTRFS_LEAF_DATA_OFFSET +
3896 leaf_data_end(fs_info, right), push_space);
3898 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3899 btrfs_item_nr_offset(push_items),
3900 (btrfs_header_nritems(right) - push_items) *
3901 sizeof(struct btrfs_item));
3903 right_nritems -= push_items;
3904 btrfs_set_header_nritems(right, right_nritems);
3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3906 for (i = 0; i < right_nritems; i++) {
3907 item = btrfs_item_nr(i);
3909 push_space = push_space - btrfs_token_item_size(right,
3911 btrfs_set_token_item_offset(right, item, push_space, &token);
3914 btrfs_mark_buffer_dirty(left);
3916 btrfs_mark_buffer_dirty(right);
3918 clean_tree_block(fs_info, right);
3920 btrfs_item_key(right, &disk_key, 0);
3921 fixup_low_keys(fs_info, path, &disk_key, 1);
3923 /* then fixup the leaf pointer in the path */
3924 if (path->slots[0] < push_items) {
3925 path->slots[0] += old_left_nritems;
3926 btrfs_tree_unlock(path->nodes[0]);
3927 free_extent_buffer(path->nodes[0]);
3928 path->nodes[0] = left;
3929 path->slots[1] -= 1;
3931 btrfs_tree_unlock(left);
3932 free_extent_buffer(left);
3933 path->slots[0] -= push_items;
3935 BUG_ON(path->slots[0] < 0);
3938 btrfs_tree_unlock(left);
3939 free_extent_buffer(left);
3944 * push some data in the path leaf to the left, trying to free up at
3945 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3947 * max_slot can put a limit on how far into the leaf we'll push items. The
3948 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3951 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3952 *root, struct btrfs_path *path, int min_data_size,
3953 int data_size, int empty, u32 max_slot)
3955 struct btrfs_fs_info *fs_info = root->fs_info;
3956 struct extent_buffer *right = path->nodes[0];
3957 struct extent_buffer *left;
3963 slot = path->slots[1];
3966 if (!path->nodes[1])
3969 right_nritems = btrfs_header_nritems(right);
3970 if (right_nritems == 0)
3973 btrfs_assert_tree_locked(path->nodes[1]);
3975 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3977 * slot - 1 is not valid or we fail to read the left node,
3978 * no big deal, just return.
3983 btrfs_tree_lock(left);
3984 btrfs_set_lock_blocking(left);
3986 free_space = btrfs_leaf_free_space(fs_info, left);
3987 if (free_space < data_size) {
3992 /* cow and double check */
3993 ret = btrfs_cow_block(trans, root, left,
3994 path->nodes[1], slot - 1, &left);
3996 /* we hit -ENOSPC, but it isn't fatal here */
4002 free_space = btrfs_leaf_free_space(fs_info, left);
4003 if (free_space < data_size) {
4008 return __push_leaf_left(fs_info, path, min_data_size,
4009 empty, left, free_space, right_nritems,
4012 btrfs_tree_unlock(left);
4013 free_extent_buffer(left);
4018 * split the path's leaf in two, making sure there is at least data_size
4019 * available for the resulting leaf level of the path.
4021 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4022 struct btrfs_fs_info *fs_info,
4023 struct btrfs_path *path,
4024 struct extent_buffer *l,
4025 struct extent_buffer *right,
4026 int slot, int mid, int nritems)
4031 struct btrfs_disk_key disk_key;
4032 struct btrfs_map_token token;
4034 btrfs_init_map_token(&token);
4036 nritems = nritems - mid;
4037 btrfs_set_header_nritems(right, nritems);
4038 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4040 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4041 btrfs_item_nr_offset(mid),
4042 nritems * sizeof(struct btrfs_item));
4044 copy_extent_buffer(right, l,
4045 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4046 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4047 leaf_data_end(fs_info, l), data_copy_size);
4049 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4051 for (i = 0; i < nritems; i++) {
4052 struct btrfs_item *item = btrfs_item_nr(i);
4055 ioff = btrfs_token_item_offset(right, item, &token);
4056 btrfs_set_token_item_offset(right, item,
4057 ioff + rt_data_off, &token);
4060 btrfs_set_header_nritems(l, mid);
4061 btrfs_item_key(right, &disk_key, 0);
4062 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4063 path->slots[1] + 1, 1);
4065 btrfs_mark_buffer_dirty(right);
4066 btrfs_mark_buffer_dirty(l);
4067 BUG_ON(path->slots[0] != slot);
4070 btrfs_tree_unlock(path->nodes[0]);
4071 free_extent_buffer(path->nodes[0]);
4072 path->nodes[0] = right;
4073 path->slots[0] -= mid;
4074 path->slots[1] += 1;
4076 btrfs_tree_unlock(right);
4077 free_extent_buffer(right);
4080 BUG_ON(path->slots[0] < 0);
4084 * double splits happen when we need to insert a big item in the middle
4085 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4089 * We avoid this by trying to push the items on either side of our target
4090 * into the adjacent leaves. If all goes well we can avoid the double split
4093 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4094 struct btrfs_root *root,
4095 struct btrfs_path *path,
4098 struct btrfs_fs_info *fs_info = root->fs_info;
4103 int space_needed = data_size;
4105 slot = path->slots[0];
4106 if (slot < btrfs_header_nritems(path->nodes[0]))
4107 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4110 * try to push all the items after our slot into the
4113 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4120 nritems = btrfs_header_nritems(path->nodes[0]);
4122 * our goal is to get our slot at the start or end of a leaf. If
4123 * we've done so we're done
4125 if (path->slots[0] == 0 || path->slots[0] == nritems)
4128 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4131 /* try to push all the items before our slot into the next leaf */
4132 slot = path->slots[0];
4133 space_needed = data_size;
4135 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4136 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4149 * split the path's leaf in two, making sure there is at least data_size
4150 * available for the resulting leaf level of the path.
4152 * returns 0 if all went well and < 0 on failure.
4154 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4155 struct btrfs_root *root,
4156 const struct btrfs_key *ins_key,
4157 struct btrfs_path *path, int data_size,
4160 struct btrfs_disk_key disk_key;
4161 struct extent_buffer *l;
4165 struct extent_buffer *right;
4166 struct btrfs_fs_info *fs_info = root->fs_info;
4170 int num_doubles = 0;
4171 int tried_avoid_double = 0;
4174 slot = path->slots[0];
4175 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4176 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4179 /* first try to make some room by pushing left and right */
4180 if (data_size && path->nodes[1]) {
4181 int space_needed = data_size;
4183 if (slot < btrfs_header_nritems(l))
4184 space_needed -= btrfs_leaf_free_space(fs_info, l);
4186 wret = push_leaf_right(trans, root, path, space_needed,
4187 space_needed, 0, 0);
4191 space_needed = data_size;
4193 space_needed -= btrfs_leaf_free_space(fs_info,
4195 wret = push_leaf_left(trans, root, path, space_needed,
4196 space_needed, 0, (u32)-1);
4202 /* did the pushes work? */
4203 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4207 if (!path->nodes[1]) {
4208 ret = insert_new_root(trans, root, path, 1);
4215 slot = path->slots[0];
4216 nritems = btrfs_header_nritems(l);
4217 mid = (nritems + 1) / 2;
4221 leaf_space_used(l, mid, nritems - mid) + data_size >
4222 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4223 if (slot >= nritems) {
4227 if (mid != nritems &&
4228 leaf_space_used(l, mid, nritems - mid) +
4229 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230 if (data_size && !tried_avoid_double)
4231 goto push_for_double;
4237 if (leaf_space_used(l, 0, mid) + data_size >
4238 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4239 if (!extend && data_size && slot == 0) {
4241 } else if ((extend || !data_size) && slot == 0) {
4245 if (mid != nritems &&
4246 leaf_space_used(l, mid, nritems - mid) +
4247 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4248 if (data_size && !tried_avoid_double)
4249 goto push_for_double;
4257 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4259 btrfs_item_key(l, &disk_key, mid);
4261 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4262 &disk_key, 0, l->start, 0);
4264 return PTR_ERR(right);
4266 root_add_used(root, fs_info->nodesize);
4268 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4269 btrfs_set_header_bytenr(right, right->start);
4270 btrfs_set_header_generation(right, trans->transid);
4271 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4272 btrfs_set_header_owner(right, root->root_key.objectid);
4273 btrfs_set_header_level(right, 0);
4274 write_extent_buffer_fsid(right, fs_info->fsid);
4275 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4279 btrfs_set_header_nritems(right, 0);
4280 insert_ptr(trans, fs_info, path, &disk_key,
4281 right->start, path->slots[1] + 1, 1);
4282 btrfs_tree_unlock(path->nodes[0]);
4283 free_extent_buffer(path->nodes[0]);
4284 path->nodes[0] = right;
4286 path->slots[1] += 1;
4288 btrfs_set_header_nritems(right, 0);
4289 insert_ptr(trans, fs_info, path, &disk_key,
4290 right->start, path->slots[1], 1);
4291 btrfs_tree_unlock(path->nodes[0]);
4292 free_extent_buffer(path->nodes[0]);
4293 path->nodes[0] = right;
4295 if (path->slots[1] == 0)
4296 fixup_low_keys(fs_info, path, &disk_key, 1);
4299 * We create a new leaf 'right' for the required ins_len and
4300 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4301 * the content of ins_len to 'right'.
4306 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4309 BUG_ON(num_doubles != 0);
4317 push_for_double_split(trans, root, path, data_size);
4318 tried_avoid_double = 1;
4319 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4324 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4325 struct btrfs_root *root,
4326 struct btrfs_path *path, int ins_len)
4328 struct btrfs_fs_info *fs_info = root->fs_info;
4329 struct btrfs_key key;
4330 struct extent_buffer *leaf;
4331 struct btrfs_file_extent_item *fi;
4336 leaf = path->nodes[0];
4337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4339 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4340 key.type != BTRFS_EXTENT_CSUM_KEY);
4342 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4345 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4346 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4347 fi = btrfs_item_ptr(leaf, path->slots[0],
4348 struct btrfs_file_extent_item);
4349 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4351 btrfs_release_path(path);
4353 path->keep_locks = 1;
4354 path->search_for_split = 1;
4355 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4356 path->search_for_split = 0;
4363 leaf = path->nodes[0];
4364 /* if our item isn't there, return now */
4365 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4368 /* the leaf has changed, it now has room. return now */
4369 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4372 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4373 fi = btrfs_item_ptr(leaf, path->slots[0],
4374 struct btrfs_file_extent_item);
4375 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4379 btrfs_set_path_blocking(path);
4380 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4384 path->keep_locks = 0;
4385 btrfs_unlock_up_safe(path, 1);
4388 path->keep_locks = 0;
4392 static noinline int split_item(struct btrfs_fs_info *fs_info,
4393 struct btrfs_path *path,
4394 const struct btrfs_key *new_key,
4395 unsigned long split_offset)
4397 struct extent_buffer *leaf;
4398 struct btrfs_item *item;
4399 struct btrfs_item *new_item;
4405 struct btrfs_disk_key disk_key;
4407 leaf = path->nodes[0];
4408 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4410 btrfs_set_path_blocking(path);
4412 item = btrfs_item_nr(path->slots[0]);
4413 orig_offset = btrfs_item_offset(leaf, item);
4414 item_size = btrfs_item_size(leaf, item);
4416 buf = kmalloc(item_size, GFP_NOFS);
4420 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4421 path->slots[0]), item_size);
4423 slot = path->slots[0] + 1;
4424 nritems = btrfs_header_nritems(leaf);
4425 if (slot != nritems) {
4426 /* shift the items */
4427 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4428 btrfs_item_nr_offset(slot),
4429 (nritems - slot) * sizeof(struct btrfs_item));
4432 btrfs_cpu_key_to_disk(&disk_key, new_key);
4433 btrfs_set_item_key(leaf, &disk_key, slot);
4435 new_item = btrfs_item_nr(slot);
4437 btrfs_set_item_offset(leaf, new_item, orig_offset);
4438 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4440 btrfs_set_item_offset(leaf, item,
4441 orig_offset + item_size - split_offset);
4442 btrfs_set_item_size(leaf, item, split_offset);
4444 btrfs_set_header_nritems(leaf, nritems + 1);
4446 /* write the data for the start of the original item */
4447 write_extent_buffer(leaf, buf,
4448 btrfs_item_ptr_offset(leaf, path->slots[0]),
4451 /* write the data for the new item */
4452 write_extent_buffer(leaf, buf + split_offset,
4453 btrfs_item_ptr_offset(leaf, slot),
4454 item_size - split_offset);
4455 btrfs_mark_buffer_dirty(leaf);
4457 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4463 * This function splits a single item into two items,
4464 * giving 'new_key' to the new item and splitting the
4465 * old one at split_offset (from the start of the item).
4467 * The path may be released by this operation. After
4468 * the split, the path is pointing to the old item. The
4469 * new item is going to be in the same node as the old one.
4471 * Note, the item being split must be smaller enough to live alone on
4472 * a tree block with room for one extra struct btrfs_item
4474 * This allows us to split the item in place, keeping a lock on the
4475 * leaf the entire time.
4477 int btrfs_split_item(struct btrfs_trans_handle *trans,
4478 struct btrfs_root *root,
4479 struct btrfs_path *path,
4480 const struct btrfs_key *new_key,
4481 unsigned long split_offset)
4484 ret = setup_leaf_for_split(trans, root, path,
4485 sizeof(struct btrfs_item));
4489 ret = split_item(root->fs_info, path, new_key, split_offset);
4494 * This function duplicate a item, giving 'new_key' to the new item.
4495 * It guarantees both items live in the same tree leaf and the new item
4496 * is contiguous with the original item.
4498 * This allows us to split file extent in place, keeping a lock on the
4499 * leaf the entire time.
4501 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct btrfs_path *path,
4504 const struct btrfs_key *new_key)
4506 struct extent_buffer *leaf;
4510 leaf = path->nodes[0];
4511 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4512 ret = setup_leaf_for_split(trans, root, path,
4513 item_size + sizeof(struct btrfs_item));
4518 setup_items_for_insert(root, path, new_key, &item_size,
4519 item_size, item_size +
4520 sizeof(struct btrfs_item), 1);
4521 leaf = path->nodes[0];
4522 memcpy_extent_buffer(leaf,
4523 btrfs_item_ptr_offset(leaf, path->slots[0]),
4524 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4530 * make the item pointed to by the path smaller. new_size indicates
4531 * how small to make it, and from_end tells us if we just chop bytes
4532 * off the end of the item or if we shift the item to chop bytes off
4535 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4536 struct btrfs_path *path, u32 new_size, int from_end)
4539 struct extent_buffer *leaf;
4540 struct btrfs_item *item;
4542 unsigned int data_end;
4543 unsigned int old_data_start;
4544 unsigned int old_size;
4545 unsigned int size_diff;
4547 struct btrfs_map_token token;
4549 btrfs_init_map_token(&token);
4551 leaf = path->nodes[0];
4552 slot = path->slots[0];
4554 old_size = btrfs_item_size_nr(leaf, slot);
4555 if (old_size == new_size)
4558 nritems = btrfs_header_nritems(leaf);
4559 data_end = leaf_data_end(fs_info, leaf);
4561 old_data_start = btrfs_item_offset_nr(leaf, slot);
4563 size_diff = old_size - new_size;
4566 BUG_ON(slot >= nritems);
4569 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4571 /* first correct the data pointers */
4572 for (i = slot; i < nritems; i++) {
4574 item = btrfs_item_nr(i);
4576 ioff = btrfs_token_item_offset(leaf, item, &token);
4577 btrfs_set_token_item_offset(leaf, item,
4578 ioff + size_diff, &token);
4581 /* shift the data */
4583 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4584 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4585 data_end, old_data_start + new_size - data_end);
4587 struct btrfs_disk_key disk_key;
4590 btrfs_item_key(leaf, &disk_key, slot);
4592 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4594 struct btrfs_file_extent_item *fi;
4596 fi = btrfs_item_ptr(leaf, slot,
4597 struct btrfs_file_extent_item);
4598 fi = (struct btrfs_file_extent_item *)(
4599 (unsigned long)fi - size_diff);
4601 if (btrfs_file_extent_type(leaf, fi) ==
4602 BTRFS_FILE_EXTENT_INLINE) {
4603 ptr = btrfs_item_ptr_offset(leaf, slot);
4604 memmove_extent_buffer(leaf, ptr,
4606 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4610 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612 data_end, old_data_start - data_end);
4614 offset = btrfs_disk_key_offset(&disk_key);
4615 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4616 btrfs_set_item_key(leaf, &disk_key, slot);
4618 fixup_low_keys(fs_info, path, &disk_key, 1);
4621 item = btrfs_item_nr(slot);
4622 btrfs_set_item_size(leaf, item, new_size);
4623 btrfs_mark_buffer_dirty(leaf);
4625 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4626 btrfs_print_leaf(leaf);
4632 * make the item pointed to by the path bigger, data_size is the added size.
4634 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4638 struct extent_buffer *leaf;
4639 struct btrfs_item *item;
4641 unsigned int data_end;
4642 unsigned int old_data;
4643 unsigned int old_size;
4645 struct btrfs_map_token token;
4647 btrfs_init_map_token(&token);
4649 leaf = path->nodes[0];
4651 nritems = btrfs_header_nritems(leaf);
4652 data_end = leaf_data_end(fs_info, leaf);
4654 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4655 btrfs_print_leaf(leaf);
4658 slot = path->slots[0];
4659 old_data = btrfs_item_end_nr(leaf, slot);
4662 if (slot >= nritems) {
4663 btrfs_print_leaf(leaf);
4664 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4670 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4672 /* first correct the data pointers */
4673 for (i = slot; i < nritems; i++) {
4675 item = btrfs_item_nr(i);
4677 ioff = btrfs_token_item_offset(leaf, item, &token);
4678 btrfs_set_token_item_offset(leaf, item,
4679 ioff - data_size, &token);
4682 /* shift the data */
4683 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4684 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4685 data_end, old_data - data_end);
4687 data_end = old_data;
4688 old_size = btrfs_item_size_nr(leaf, slot);
4689 item = btrfs_item_nr(slot);
4690 btrfs_set_item_size(leaf, item, old_size + data_size);
4691 btrfs_mark_buffer_dirty(leaf);
4693 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4694 btrfs_print_leaf(leaf);
4700 * this is a helper for btrfs_insert_empty_items, the main goal here is
4701 * to save stack depth by doing the bulk of the work in a function
4702 * that doesn't call btrfs_search_slot
4704 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4705 const struct btrfs_key *cpu_key, u32 *data_size,
4706 u32 total_data, u32 total_size, int nr)
4708 struct btrfs_fs_info *fs_info = root->fs_info;
4709 struct btrfs_item *item;
4712 unsigned int data_end;
4713 struct btrfs_disk_key disk_key;
4714 struct extent_buffer *leaf;
4716 struct btrfs_map_token token;
4718 if (path->slots[0] == 0) {
4719 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4720 fixup_low_keys(fs_info, path, &disk_key, 1);
4722 btrfs_unlock_up_safe(path, 1);
4724 btrfs_init_map_token(&token);
4726 leaf = path->nodes[0];
4727 slot = path->slots[0];
4729 nritems = btrfs_header_nritems(leaf);
4730 data_end = leaf_data_end(fs_info, leaf);
4732 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4733 btrfs_print_leaf(leaf);
4734 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4735 total_size, btrfs_leaf_free_space(fs_info, leaf));
4739 if (slot != nritems) {
4740 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4742 if (old_data < data_end) {
4743 btrfs_print_leaf(leaf);
4744 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4745 slot, old_data, data_end);
4749 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4751 /* first correct the data pointers */
4752 for (i = slot; i < nritems; i++) {
4755 item = btrfs_item_nr(i);
4756 ioff = btrfs_token_item_offset(leaf, item, &token);
4757 btrfs_set_token_item_offset(leaf, item,
4758 ioff - total_data, &token);
4760 /* shift the items */
4761 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4762 btrfs_item_nr_offset(slot),
4763 (nritems - slot) * sizeof(struct btrfs_item));
4765 /* shift the data */
4766 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4767 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4768 data_end, old_data - data_end);
4769 data_end = old_data;
4772 /* setup the item for the new data */
4773 for (i = 0; i < nr; i++) {
4774 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4775 btrfs_set_item_key(leaf, &disk_key, slot + i);
4776 item = btrfs_item_nr(slot + i);
4777 btrfs_set_token_item_offset(leaf, item,
4778 data_end - data_size[i], &token);
4779 data_end -= data_size[i];
4780 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4783 btrfs_set_header_nritems(leaf, nritems + nr);
4784 btrfs_mark_buffer_dirty(leaf);
4786 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4787 btrfs_print_leaf(leaf);
4793 * Given a key and some data, insert items into the tree.
4794 * This does all the path init required, making room in the tree if needed.
4796 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4797 struct btrfs_root *root,
4798 struct btrfs_path *path,
4799 const struct btrfs_key *cpu_key, u32 *data_size,
4808 for (i = 0; i < nr; i++)
4809 total_data += data_size[i];
4811 total_size = total_data + (nr * sizeof(struct btrfs_item));
4812 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4818 slot = path->slots[0];
4821 setup_items_for_insert(root, path, cpu_key, data_size,
4822 total_data, total_size, nr);
4827 * Given a key and some data, insert an item into the tree.
4828 * This does all the path init required, making room in the tree if needed.
4830 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4831 const struct btrfs_key *cpu_key, void *data,
4835 struct btrfs_path *path;
4836 struct extent_buffer *leaf;
4839 path = btrfs_alloc_path();
4842 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4844 leaf = path->nodes[0];
4845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4846 write_extent_buffer(leaf, data, ptr, data_size);
4847 btrfs_mark_buffer_dirty(leaf);
4849 btrfs_free_path(path);
4854 * delete the pointer from a given node.
4856 * the tree should have been previously balanced so the deletion does not
4859 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4860 int level, int slot)
4862 struct btrfs_fs_info *fs_info = root->fs_info;
4863 struct extent_buffer *parent = path->nodes[level];
4867 nritems = btrfs_header_nritems(parent);
4868 if (slot != nritems - 1) {
4870 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4871 nritems - slot - 1);
4874 memmove_extent_buffer(parent,
4875 btrfs_node_key_ptr_offset(slot),
4876 btrfs_node_key_ptr_offset(slot + 1),
4877 sizeof(struct btrfs_key_ptr) *
4878 (nritems - slot - 1));
4880 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4886 btrfs_set_header_nritems(parent, nritems);
4887 if (nritems == 0 && parent == root->node) {
4888 BUG_ON(btrfs_header_level(root->node) != 1);
4889 /* just turn the root into a leaf and break */
4890 btrfs_set_header_level(root->node, 0);
4891 } else if (slot == 0) {
4892 struct btrfs_disk_key disk_key;
4894 btrfs_node_key(parent, &disk_key, 0);
4895 fixup_low_keys(fs_info, path, &disk_key, level + 1);
4897 btrfs_mark_buffer_dirty(parent);
4901 * a helper function to delete the leaf pointed to by path->slots[1] and
4904 * This deletes the pointer in path->nodes[1] and frees the leaf
4905 * block extent. zero is returned if it all worked out, < 0 otherwise.
4907 * The path must have already been setup for deleting the leaf, including
4908 * all the proper balancing. path->nodes[1] must be locked.
4910 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4911 struct btrfs_root *root,
4912 struct btrfs_path *path,
4913 struct extent_buffer *leaf)
4915 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4916 del_ptr(root, path, 1, path->slots[1]);
4919 * btrfs_free_extent is expensive, we want to make sure we
4920 * aren't holding any locks when we call it
4922 btrfs_unlock_up_safe(path, 0);
4924 root_sub_used(root, leaf->len);
4926 extent_buffer_get(leaf);
4927 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4928 free_extent_buffer_stale(leaf);
4931 * delete the item at the leaf level in path. If that empties
4932 * the leaf, remove it from the tree
4934 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4935 struct btrfs_path *path, int slot, int nr)
4937 struct btrfs_fs_info *fs_info = root->fs_info;
4938 struct extent_buffer *leaf;
4939 struct btrfs_item *item;
4946 struct btrfs_map_token token;
4948 btrfs_init_map_token(&token);
4950 leaf = path->nodes[0];
4951 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4953 for (i = 0; i < nr; i++)
4954 dsize += btrfs_item_size_nr(leaf, slot + i);
4956 nritems = btrfs_header_nritems(leaf);
4958 if (slot + nr != nritems) {
4959 int data_end = leaf_data_end(fs_info, leaf);
4961 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4963 BTRFS_LEAF_DATA_OFFSET + data_end,
4964 last_off - data_end);
4966 for (i = slot + nr; i < nritems; i++) {
4969 item = btrfs_item_nr(i);
4970 ioff = btrfs_token_item_offset(leaf, item, &token);
4971 btrfs_set_token_item_offset(leaf, item,
4972 ioff + dsize, &token);
4975 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4976 btrfs_item_nr_offset(slot + nr),
4977 sizeof(struct btrfs_item) *
4978 (nritems - slot - nr));
4980 btrfs_set_header_nritems(leaf, nritems - nr);
4983 /* delete the leaf if we've emptied it */
4985 if (leaf == root->node) {
4986 btrfs_set_header_level(leaf, 0);
4988 btrfs_set_path_blocking(path);
4989 clean_tree_block(fs_info, leaf);
4990 btrfs_del_leaf(trans, root, path, leaf);
4993 int used = leaf_space_used(leaf, 0, nritems);
4995 struct btrfs_disk_key disk_key;
4997 btrfs_item_key(leaf, &disk_key, 0);
4998 fixup_low_keys(fs_info, path, &disk_key, 1);
5001 /* delete the leaf if it is mostly empty */
5002 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5003 /* push_leaf_left fixes the path.
5004 * make sure the path still points to our leaf
5005 * for possible call to del_ptr below
5007 slot = path->slots[1];
5008 extent_buffer_get(leaf);
5010 btrfs_set_path_blocking(path);
5011 wret = push_leaf_left(trans, root, path, 1, 1,
5013 if (wret < 0 && wret != -ENOSPC)
5016 if (path->nodes[0] == leaf &&
5017 btrfs_header_nritems(leaf)) {
5018 wret = push_leaf_right(trans, root, path, 1,
5020 if (wret < 0 && wret != -ENOSPC)
5024 if (btrfs_header_nritems(leaf) == 0) {
5025 path->slots[1] = slot;
5026 btrfs_del_leaf(trans, root, path, leaf);
5027 free_extent_buffer(leaf);
5030 /* if we're still in the path, make sure
5031 * we're dirty. Otherwise, one of the
5032 * push_leaf functions must have already
5033 * dirtied this buffer
5035 if (path->nodes[0] == leaf)
5036 btrfs_mark_buffer_dirty(leaf);
5037 free_extent_buffer(leaf);
5040 btrfs_mark_buffer_dirty(leaf);
5047 * search the tree again to find a leaf with lesser keys
5048 * returns 0 if it found something or 1 if there are no lesser leaves.
5049 * returns < 0 on io errors.
5051 * This may release the path, and so you may lose any locks held at the
5054 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5056 struct btrfs_key key;
5057 struct btrfs_disk_key found_key;
5060 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5062 if (key.offset > 0) {
5064 } else if (key.type > 0) {
5066 key.offset = (u64)-1;
5067 } else if (key.objectid > 0) {
5070 key.offset = (u64)-1;
5075 btrfs_release_path(path);
5076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5079 btrfs_item_key(path->nodes[0], &found_key, 0);
5080 ret = comp_keys(&found_key, &key);
5082 * We might have had an item with the previous key in the tree right
5083 * before we released our path. And after we released our path, that
5084 * item might have been pushed to the first slot (0) of the leaf we
5085 * were holding due to a tree balance. Alternatively, an item with the
5086 * previous key can exist as the only element of a leaf (big fat item).
5087 * Therefore account for these 2 cases, so that our callers (like
5088 * btrfs_previous_item) don't miss an existing item with a key matching
5089 * the previous key we computed above.
5097 * A helper function to walk down the tree starting at min_key, and looking
5098 * for nodes or leaves that are have a minimum transaction id.
5099 * This is used by the btree defrag code, and tree logging
5101 * This does not cow, but it does stuff the starting key it finds back
5102 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5103 * key and get a writable path.
5105 * This honors path->lowest_level to prevent descent past a given level
5108 * min_trans indicates the oldest transaction that you are interested
5109 * in walking through. Any nodes or leaves older than min_trans are
5110 * skipped over (without reading them).
5112 * returns zero if something useful was found, < 0 on error and 1 if there
5113 * was nothing in the tree that matched the search criteria.
5115 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116 struct btrfs_path *path,
5119 struct btrfs_fs_info *fs_info = root->fs_info;
5120 struct extent_buffer *cur;
5121 struct btrfs_key found_key;
5127 int keep_locks = path->keep_locks;
5129 path->keep_locks = 1;
5131 cur = btrfs_read_lock_root_node(root);
5132 level = btrfs_header_level(cur);
5133 WARN_ON(path->nodes[level]);
5134 path->nodes[level] = cur;
5135 path->locks[level] = BTRFS_READ_LOCK;
5137 if (btrfs_header_generation(cur) < min_trans) {
5142 nritems = btrfs_header_nritems(cur);
5143 level = btrfs_header_level(cur);
5144 sret = btrfs_bin_search(cur, min_key, level, &slot);
5146 /* at the lowest level, we're done, setup the path and exit */
5147 if (level == path->lowest_level) {
5148 if (slot >= nritems)
5151 path->slots[level] = slot;
5152 btrfs_item_key_to_cpu(cur, &found_key, slot);
5155 if (sret && slot > 0)
5158 * check this node pointer against the min_trans parameters.
5159 * If it is too old, old, skip to the next one.
5161 while (slot < nritems) {
5164 gen = btrfs_node_ptr_generation(cur, slot);
5165 if (gen < min_trans) {
5173 * we didn't find a candidate key in this node, walk forward
5174 * and find another one
5176 if (slot >= nritems) {
5177 path->slots[level] = slot;
5178 btrfs_set_path_blocking(path);
5179 sret = btrfs_find_next_key(root, path, min_key, level,
5182 btrfs_release_path(path);
5188 /* save our key for returning back */
5189 btrfs_node_key_to_cpu(cur, &found_key, slot);
5190 path->slots[level] = slot;
5191 if (level == path->lowest_level) {
5195 btrfs_set_path_blocking(path);
5196 cur = read_node_slot(fs_info, cur, slot);
5202 btrfs_tree_read_lock(cur);
5204 path->locks[level - 1] = BTRFS_READ_LOCK;
5205 path->nodes[level - 1] = cur;
5206 unlock_up(path, level, 1, 0, NULL);
5207 btrfs_clear_path_blocking(path, NULL, 0);
5210 path->keep_locks = keep_locks;
5212 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5213 btrfs_set_path_blocking(path);
5214 memcpy(min_key, &found_key, sizeof(found_key));
5219 static int tree_move_down(struct btrfs_fs_info *fs_info,
5220 struct btrfs_path *path,
5223 struct extent_buffer *eb;
5225 BUG_ON(*level == 0);
5226 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5230 path->nodes[*level - 1] = eb;
5231 path->slots[*level - 1] = 0;
5236 static int tree_move_next_or_upnext(struct btrfs_path *path,
5237 int *level, int root_level)
5241 nritems = btrfs_header_nritems(path->nodes[*level]);
5243 path->slots[*level]++;
5245 while (path->slots[*level] >= nritems) {
5246 if (*level == root_level)
5250 path->slots[*level] = 0;
5251 free_extent_buffer(path->nodes[*level]);
5252 path->nodes[*level] = NULL;
5254 path->slots[*level]++;
5256 nritems = btrfs_header_nritems(path->nodes[*level]);
5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5266 static int tree_advance(struct btrfs_fs_info *fs_info,
5267 struct btrfs_path *path,
5268 int *level, int root_level,
5270 struct btrfs_key *key)
5274 if (*level == 0 || !allow_down) {
5275 ret = tree_move_next_or_upnext(path, level, root_level);
5277 ret = tree_move_down(fs_info, path, level);
5281 btrfs_item_key_to_cpu(path->nodes[*level], key,
5282 path->slots[*level]);
5284 btrfs_node_key_to_cpu(path->nodes[*level], key,
5285 path->slots[*level]);
5290 static int tree_compare_item(struct btrfs_path *left_path,
5291 struct btrfs_path *right_path,
5296 unsigned long off1, off2;
5298 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5299 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5303 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5304 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5305 right_path->slots[0]);
5307 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5309 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5316 #define ADVANCE_ONLY_NEXT -1
5319 * This function compares two trees and calls the provided callback for
5320 * every changed/new/deleted item it finds.
5321 * If shared tree blocks are encountered, whole subtrees are skipped, making
5322 * the compare pretty fast on snapshotted subvolumes.
5324 * This currently works on commit roots only. As commit roots are read only,
5325 * we don't do any locking. The commit roots are protected with transactions.
5326 * Transactions are ended and rejoined when a commit is tried in between.
5328 * This function checks for modifications done to the trees while comparing.
5329 * If it detects a change, it aborts immediately.
5331 int btrfs_compare_trees(struct btrfs_root *left_root,
5332 struct btrfs_root *right_root,
5333 btrfs_changed_cb_t changed_cb, void *ctx)
5335 struct btrfs_fs_info *fs_info = left_root->fs_info;
5338 struct btrfs_path *left_path = NULL;
5339 struct btrfs_path *right_path = NULL;
5340 struct btrfs_key left_key;
5341 struct btrfs_key right_key;
5342 char *tmp_buf = NULL;
5343 int left_root_level;
5344 int right_root_level;
5347 int left_end_reached;
5348 int right_end_reached;
5356 left_path = btrfs_alloc_path();
5361 right_path = btrfs_alloc_path();
5367 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5373 left_path->search_commit_root = 1;
5374 left_path->skip_locking = 1;
5375 right_path->search_commit_root = 1;
5376 right_path->skip_locking = 1;
5379 * Strategy: Go to the first items of both trees. Then do
5381 * If both trees are at level 0
5382 * Compare keys of current items
5383 * If left < right treat left item as new, advance left tree
5385 * If left > right treat right item as deleted, advance right tree
5387 * If left == right do deep compare of items, treat as changed if
5388 * needed, advance both trees and repeat
5389 * If both trees are at the same level but not at level 0
5390 * Compare keys of current nodes/leafs
5391 * If left < right advance left tree and repeat
5392 * If left > right advance right tree and repeat
5393 * If left == right compare blockptrs of the next nodes/leafs
5394 * If they match advance both trees but stay at the same level
5396 * If they don't match advance both trees while allowing to go
5398 * If tree levels are different
5399 * Advance the tree that needs it and repeat
5401 * Advancing a tree means:
5402 * If we are at level 0, try to go to the next slot. If that's not
5403 * possible, go one level up and repeat. Stop when we found a level
5404 * where we could go to the next slot. We may at this point be on a
5407 * If we are not at level 0 and not on shared tree blocks, go one
5410 * If we are not at level 0 and on shared tree blocks, go one slot to
5411 * the right if possible or go up and right.
5414 down_read(&fs_info->commit_root_sem);
5415 left_level = btrfs_header_level(left_root->commit_root);
5416 left_root_level = left_level;
5417 left_path->nodes[left_level] =
5418 btrfs_clone_extent_buffer(left_root->commit_root);
5419 if (!left_path->nodes[left_level]) {
5420 up_read(&fs_info->commit_root_sem);
5424 extent_buffer_get(left_path->nodes[left_level]);
5426 right_level = btrfs_header_level(right_root->commit_root);
5427 right_root_level = right_level;
5428 right_path->nodes[right_level] =
5429 btrfs_clone_extent_buffer(right_root->commit_root);
5430 if (!right_path->nodes[right_level]) {
5431 up_read(&fs_info->commit_root_sem);
5435 extent_buffer_get(right_path->nodes[right_level]);
5436 up_read(&fs_info->commit_root_sem);
5438 if (left_level == 0)
5439 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5440 &left_key, left_path->slots[left_level]);
5442 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5443 &left_key, left_path->slots[left_level]);
5444 if (right_level == 0)
5445 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5446 &right_key, right_path->slots[right_level]);
5448 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5449 &right_key, right_path->slots[right_level]);
5451 left_end_reached = right_end_reached = 0;
5452 advance_left = advance_right = 0;
5455 if (advance_left && !left_end_reached) {
5456 ret = tree_advance(fs_info, left_path, &left_level,
5458 advance_left != ADVANCE_ONLY_NEXT,
5461 left_end_reached = ADVANCE;
5466 if (advance_right && !right_end_reached) {
5467 ret = tree_advance(fs_info, right_path, &right_level,
5469 advance_right != ADVANCE_ONLY_NEXT,
5472 right_end_reached = ADVANCE;
5478 if (left_end_reached && right_end_reached) {
5481 } else if (left_end_reached) {
5482 if (right_level == 0) {
5483 ret = changed_cb(left_path, right_path,
5485 BTRFS_COMPARE_TREE_DELETED,
5490 advance_right = ADVANCE;
5492 } else if (right_end_reached) {
5493 if (left_level == 0) {
5494 ret = changed_cb(left_path, right_path,
5496 BTRFS_COMPARE_TREE_NEW,
5501 advance_left = ADVANCE;
5505 if (left_level == 0 && right_level == 0) {
5506 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5508 ret = changed_cb(left_path, right_path,
5510 BTRFS_COMPARE_TREE_NEW,
5514 advance_left = ADVANCE;
5515 } else if (cmp > 0) {
5516 ret = changed_cb(left_path, right_path,
5518 BTRFS_COMPARE_TREE_DELETED,
5522 advance_right = ADVANCE;
5524 enum btrfs_compare_tree_result result;
5526 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527 ret = tree_compare_item(left_path, right_path,
5530 result = BTRFS_COMPARE_TREE_CHANGED;
5532 result = BTRFS_COMPARE_TREE_SAME;
5533 ret = changed_cb(left_path, right_path,
5534 &left_key, result, ctx);
5537 advance_left = ADVANCE;
5538 advance_right = ADVANCE;
5540 } else if (left_level == right_level) {
5541 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5543 advance_left = ADVANCE;
5544 } else if (cmp > 0) {
5545 advance_right = ADVANCE;
5547 left_blockptr = btrfs_node_blockptr(
5548 left_path->nodes[left_level],
5549 left_path->slots[left_level]);
5550 right_blockptr = btrfs_node_blockptr(
5551 right_path->nodes[right_level],
5552 right_path->slots[right_level]);
5553 left_gen = btrfs_node_ptr_generation(
5554 left_path->nodes[left_level],
5555 left_path->slots[left_level]);
5556 right_gen = btrfs_node_ptr_generation(
5557 right_path->nodes[right_level],
5558 right_path->slots[right_level]);
5559 if (left_blockptr == right_blockptr &&
5560 left_gen == right_gen) {
5562 * As we're on a shared block, don't
5563 * allow to go deeper.
5565 advance_left = ADVANCE_ONLY_NEXT;
5566 advance_right = ADVANCE_ONLY_NEXT;
5568 advance_left = ADVANCE;
5569 advance_right = ADVANCE;
5572 } else if (left_level < right_level) {
5573 advance_right = ADVANCE;
5575 advance_left = ADVANCE;
5580 btrfs_free_path(left_path);
5581 btrfs_free_path(right_path);
5587 * this is similar to btrfs_next_leaf, but does not try to preserve
5588 * and fixup the path. It looks for and returns the next key in the
5589 * tree based on the current path and the min_trans parameters.
5591 * 0 is returned if another key is found, < 0 if there are any errors
5592 * and 1 is returned if there are no higher keys in the tree
5594 * path->keep_locks should be set to 1 on the search made before
5595 * calling this function.
5597 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5598 struct btrfs_key *key, int level, u64 min_trans)
5601 struct extent_buffer *c;
5603 WARN_ON(!path->keep_locks);
5604 while (level < BTRFS_MAX_LEVEL) {
5605 if (!path->nodes[level])
5608 slot = path->slots[level] + 1;
5609 c = path->nodes[level];
5611 if (slot >= btrfs_header_nritems(c)) {
5614 struct btrfs_key cur_key;
5615 if (level + 1 >= BTRFS_MAX_LEVEL ||
5616 !path->nodes[level + 1])
5619 if (path->locks[level + 1]) {
5624 slot = btrfs_header_nritems(c) - 1;
5626 btrfs_item_key_to_cpu(c, &cur_key, slot);
5628 btrfs_node_key_to_cpu(c, &cur_key, slot);
5630 orig_lowest = path->lowest_level;
5631 btrfs_release_path(path);
5632 path->lowest_level = level;
5633 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5635 path->lowest_level = orig_lowest;
5639 c = path->nodes[level];
5640 slot = path->slots[level];
5647 btrfs_item_key_to_cpu(c, key, slot);
5649 u64 gen = btrfs_node_ptr_generation(c, slot);
5651 if (gen < min_trans) {
5655 btrfs_node_key_to_cpu(c, key, slot);
5663 * search the tree again to find a leaf with greater keys
5664 * returns 0 if it found something or 1 if there are no greater leaves.
5665 * returns < 0 on io errors.
5667 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5669 return btrfs_next_old_leaf(root, path, 0);
5672 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5677 struct extent_buffer *c;
5678 struct extent_buffer *next;
5679 struct btrfs_key key;
5682 int old_spinning = path->leave_spinning;
5683 int next_rw_lock = 0;
5685 nritems = btrfs_header_nritems(path->nodes[0]);
5689 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5694 btrfs_release_path(path);
5696 path->keep_locks = 1;
5697 path->leave_spinning = 1;
5700 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5703 path->keep_locks = 0;
5708 nritems = btrfs_header_nritems(path->nodes[0]);
5710 * by releasing the path above we dropped all our locks. A balance
5711 * could have added more items next to the key that used to be
5712 * at the very end of the block. So, check again here and
5713 * advance the path if there are now more items available.
5715 if (nritems > 0 && path->slots[0] < nritems - 1) {
5722 * So the above check misses one case:
5723 * - after releasing the path above, someone has removed the item that
5724 * used to be at the very end of the block, and balance between leafs
5725 * gets another one with bigger key.offset to replace it.
5727 * This one should be returned as well, or we can get leaf corruption
5728 * later(esp. in __btrfs_drop_extents()).
5730 * And a bit more explanation about this check,
5731 * with ret > 0, the key isn't found, the path points to the slot
5732 * where it should be inserted, so the path->slots[0] item must be the
5735 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5740 while (level < BTRFS_MAX_LEVEL) {
5741 if (!path->nodes[level]) {
5746 slot = path->slots[level] + 1;
5747 c = path->nodes[level];
5748 if (slot >= btrfs_header_nritems(c)) {
5750 if (level == BTRFS_MAX_LEVEL) {
5758 btrfs_tree_unlock_rw(next, next_rw_lock);
5759 free_extent_buffer(next);
5763 next_rw_lock = path->locks[level];
5764 ret = read_block_for_search(root, path, &next, level,
5770 btrfs_release_path(path);
5774 if (!path->skip_locking) {
5775 ret = btrfs_try_tree_read_lock(next);
5776 if (!ret && time_seq) {
5778 * If we don't get the lock, we may be racing
5779 * with push_leaf_left, holding that lock while
5780 * itself waiting for the leaf we've currently
5781 * locked. To solve this situation, we give up
5782 * on our lock and cycle.
5784 free_extent_buffer(next);
5785 btrfs_release_path(path);
5790 btrfs_set_path_blocking(path);
5791 btrfs_tree_read_lock(next);
5792 btrfs_clear_path_blocking(path, next,
5795 next_rw_lock = BTRFS_READ_LOCK;
5799 path->slots[level] = slot;
5802 c = path->nodes[level];
5803 if (path->locks[level])
5804 btrfs_tree_unlock_rw(c, path->locks[level]);
5806 free_extent_buffer(c);
5807 path->nodes[level] = next;
5808 path->slots[level] = 0;
5809 if (!path->skip_locking)
5810 path->locks[level] = next_rw_lock;
5814 ret = read_block_for_search(root, path, &next, level,
5820 btrfs_release_path(path);
5824 if (!path->skip_locking) {
5825 ret = btrfs_try_tree_read_lock(next);
5827 btrfs_set_path_blocking(path);
5828 btrfs_tree_read_lock(next);
5829 btrfs_clear_path_blocking(path, next,
5832 next_rw_lock = BTRFS_READ_LOCK;
5837 unlock_up(path, 0, 1, 0, NULL);
5838 path->leave_spinning = old_spinning;
5840 btrfs_set_path_blocking(path);
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5851 int btrfs_previous_item(struct btrfs_root *root,
5852 struct btrfs_path *path, u64 min_objectid,
5855 struct btrfs_key found_key;
5856 struct extent_buffer *leaf;
5861 if (path->slots[0] == 0) {
5862 btrfs_set_path_blocking(path);
5863 ret = btrfs_prev_leaf(root, path);
5869 leaf = path->nodes[0];
5870 nritems = btrfs_header_nritems(leaf);
5873 if (path->slots[0] == nritems)
5876 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877 if (found_key.objectid < min_objectid)
5879 if (found_key.type == type)
5881 if (found_key.objectid == min_objectid &&
5882 found_key.type < type)
5889 * search in extent tree to find a previous Metadata/Data extent item with
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5894 int btrfs_previous_extent_item(struct btrfs_root *root,
5895 struct btrfs_path *path, u64 min_objectid)
5897 struct btrfs_key found_key;
5898 struct extent_buffer *leaf;
5903 if (path->slots[0] == 0) {
5904 btrfs_set_path_blocking(path);
5905 ret = btrfs_prev_leaf(root, path);
5911 leaf = path->nodes[0];
5912 nritems = btrfs_header_nritems(leaf);
5915 if (path->slots[0] == nritems)
5918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919 if (found_key.objectid < min_objectid)
5921 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922 found_key.type == BTRFS_METADATA_ITEM_KEY)
5924 if (found_key.objectid == min_objectid &&
5925 found_key.type < BTRFS_EXTENT_ITEM_KEY)