2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
46 struct btrfs_path *btrfs_alloc_path(void)
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
91 btrfs_set_path_blocking(p);
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
104 btrfs_clear_lock_blocking_rw(held, held_rw);
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
112 btrfs_release_path(p);
113 kmem_cache_free(btrfs_path_cachep, p);
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
120 * It is safe to call this on paths that no locks or extent buffers held.
122 noinline void btrfs_release_path(struct btrfs_path *p)
126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
134 free_extent_buffer(p->nodes[i]);
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
151 struct extent_buffer *eb;
155 eb = rcu_dereference(root->node);
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
163 if (atomic_inc_not_zero(&eb->refs)) {
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
179 struct extent_buffer *eb;
182 eb = btrfs_root_node(root);
184 if (eb == root->node)
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
198 struct extent_buffer *eb;
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
215 static void add_root_to_dirty_list(struct btrfs_root *root)
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
221 spin_lock(&root->fs_info->trans_lock);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
231 spin_unlock(&root->fs_info->trans_lock);
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 struct extent_buffer *cow;
247 struct btrfs_disk_key disk_key;
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
254 level = btrfs_header_level(buf);
256 btrfs_item_key(buf, &disk_key, 0);
258 btrfs_node_key(buf, &disk_key, 0);
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 btrfs_set_header_owner(cow, new_root_objectid);
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1);
283 ret = btrfs_inc_ref(trans, root, cow, 0);
288 btrfs_mark_buffer_dirty(cow);
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_ROOT_REPLACE,
303 struct tree_mod_move {
308 struct tree_mod_root {
313 struct tree_mod_elem {
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 read_lock(&fs_info->tree_mod_log_lock);
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 read_unlock(&fs_info->tree_mod_log_lock);
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 write_lock(&fs_info->tree_mod_log_lock);
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 write_unlock(&fs_info->tree_mod_log_lock);
357 * Pull a new tree mod seq number for our operation.
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
375 tree_mod_log_write_lock(fs_info);
376 spin_lock(&fs_info->tree_mod_seq_lock);
378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 spin_unlock(&fs_info->tree_mod_seq_lock);
382 tree_mod_log_write_unlock(fs_info);
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 if (cur_elem->seq < min_seq) {
407 if (seq_putting > cur_elem->seq) {
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
412 spin_unlock(&fs_info->tree_mod_seq_lock);
415 min_seq = cur_elem->seq;
418 spin_unlock(&fs_info->tree_mod_seq_lock);
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
424 tree_mod_log_write_lock(fs_info);
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
429 if (tm->seq > min_seq)
431 rb_erase(node, tm_root);
434 tree_mod_log_write_unlock(fs_info);
438 * key order of the log:
439 * node/leaf start address -> sequence
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
445 * Note: must be called with write lock (tree_mod_log_write_lock).
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
462 cur = container_of(*new, struct tree_mod_elem, node);
464 if (cur->logical < tm->logical)
465 new = &((*new)->rb_left);
466 else if (cur->logical > tm->logical)
467 new = &((*new)->rb_right);
468 else if (cur->seq < tm->seq)
469 new = &((*new)->rb_left);
470 else if (cur->seq > tm->seq)
471 new = &((*new)->rb_right);
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 if (eb && btrfs_header_level(eb) == 0)
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
511 if (eb && btrfs_header_level(eb) == 0)
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
521 struct tree_mod_elem *tm;
523 tm = kzalloc(sizeof(*tm), flags);
527 tm->logical = eb->start;
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
535 RB_CLEAR_NODE(&tm->node);
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
545 struct tree_mod_elem *tm;
548 if (!tree_mod_need_log(fs_info, eb))
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
555 if (tree_mod_dont_log(fs_info, eb)) {
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
579 if (!tree_mod_need_log(fs_info, eb))
582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
586 tm = kzalloc(sizeof(*tm), flags);
592 tm->logical = eb->start;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
607 if (tree_mod_dont_log(fs_info, eb))
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
622 ret = __tree_mod_log_insert(fs_info, tm);
625 tree_mod_log_write_unlock(fs_info);
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
636 tree_mod_log_write_unlock(fs_info);
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
651 for (i = nritems - 1; i >= 0; i--) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
667 struct extent_buffer *new_root, gfp_t flags,
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
676 if (!tree_mod_need_log(fs_info, NULL))
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
697 tm = kzalloc(sizeof(*tm), flags);
703 tm->logical = new_root->start;
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
709 if (tree_mod_dont_log(fs_info, NULL))
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 ret = __tree_mod_log_insert(fs_info, tm);
717 tree_mod_log_write_unlock(fs_info);
726 for (i = 0; i < nritems; i++)
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->logical < start) {
750 node = node->rb_left;
751 } else if (cur->logical > start) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
758 BUG_ON(found->seq > cur->seq);
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
764 BUG_ON(found->seq < cur->seq);
766 node = node->rb_right;
772 tree_mod_log_read_unlock(fs_info);
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
811 if (!tree_mod_need_log(fs_info, NULL))
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
840 if (tree_mod_dont_log(fs_info, NULL))
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
853 tree_mod_log_write_unlock(fs_info);
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
865 tree_mod_log_write_unlock(fs_info);
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896 struct tree_mod_elem **tm_list = NULL;
901 if (btrfs_header_level(eb) == 0)
904 if (!tree_mod_need_log(fs_info, NULL))
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
921 if (tree_mod_dont_log(fs_info, eb))
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
933 for (i = 0; i < nritems; i++)
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1014 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1060 new_flags, level, 0);
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1075 clean_tree_block(trans, root->fs_info, buf);
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1104 int unlock_orig = 0;
1107 if (*cow_ret == buf)
1110 btrfs_assert_tree_locked(buf);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1117 level = btrfs_header_level(buf);
1120 btrfs_item_key(buf, &disk_key, 0);
1122 btrfs_node_key(buf, &disk_key, 0);
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1126 parent_start = parent->start;
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1136 return PTR_ERR(cow);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1156 btrfs_abort_transaction(trans, root, ret);
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1163 btrfs_abort_transaction(trans, root, ret);
1168 if (buf == root->node) {
1169 WARN_ON(parent && parent != buf);
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1176 extent_buffer_get(cow);
1177 tree_mod_log_set_root_pointer(root, cow, 1);
1178 rcu_assign_pointer(root->node, cow);
1180 btrfs_free_tree_block(trans, root, buf, parent_start,
1182 free_extent_buffer(buf);
1183 add_root_to_dirty_list(root);
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 btrfs_set_node_blockptr(parent, parent_slot,
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1197 btrfs_mark_buffer_dirty(parent);
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1201 btrfs_abort_transaction(trans, root, ret);
1205 btrfs_free_tree_block(trans, root, buf, parent_start,
1209 btrfs_tree_unlock(buf);
1210 free_extent_buffer_stale(buf);
1211 btrfs_mark_buffer_dirty(cow);
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 struct extent_buffer *eb_root, u64 time_seq)
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
1226 u64 root_logical = eb_root->start;
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1260 root_logical = tm->old_root.logical;
1264 /* if there's no old root to return, return what we found instead */
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) {
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1314 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */
1318 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size);
1324 case MOD_LOG_ROOT_REPLACE:
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1336 next = rb_next(&tm->node);
1339 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->logical != first_tm->logical)
1343 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n);
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1364 if (btrfs_header_level(eb) == 0)
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1379 btrfs_tree_read_unlock_blocking(eb);
1380 free_extent_buffer(eb);
1383 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1389 eb_rewin = btrfs_clone_extent_buffer(eb);
1391 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb);
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb);
1399 free_extent_buffer(eb);
1401 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin);
1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1420 struct tree_mod_elem *tm;
1421 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root;
1423 struct extent_buffer *old;
1424 struct tree_mod_root *old_root = NULL;
1425 u64 old_generation = 0;
1428 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root;
1435 old_generation = tm->generation;
1436 logical = old_root->logical;
1438 logical = eb_root->start;
1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root);
1445 old = read_tree_block(root, logical, 0);
1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1448 free_extent_buffer(old);
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
1455 } else if (old_root) {
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 eb = btrfs_clone_extent_buffer(eb_root);
1463 btrfs_tree_read_unlock_blocking(eb_root);
1464 free_extent_buffer(eb_root);
1469 extent_buffer_get(eb);
1470 btrfs_tree_read_lock(eb);
1472 btrfs_set_header_bytenr(eb, eb->start);
1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 btrfs_set_header_level(eb, old_root->level);
1476 btrfs_set_header_generation(eb, old_generation);
1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1481 WARN_ON(btrfs_header_level(eb) != 0);
1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1489 struct tree_mod_elem *tm;
1491 struct extent_buffer *eb_root = btrfs_root_node(root);
1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 level = tm->old_root.level;
1497 level = btrfs_header_level(eb_root);
1499 free_extent_buffer(eb_root);
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *root,
1506 struct extent_buffer *buf)
1508 if (btrfs_test_is_dummy_root(root))
1511 /* ensure we can see the force_cow */
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
1542 struct extent_buffer **cow_ret)
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1550 root->fs_info->running_transaction->transid);
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 trans->transid, root->fs_info->generation);
1556 if (!should_cow_block(trans, root, buf)) {
1557 trans->dirty = true;
1562 search_start = buf->start & ~((u64)SZ_1G - 1);
1565 btrfs_set_lock_blocking(parent);
1566 btrfs_set_lock_blocking(buf);
1568 ret = __btrfs_cow_block(trans, root, buf, parent,
1569 parent_slot, cow_ret, search_start, 0);
1571 trace_btrfs_cow_block(root, buf, *cow_ret);
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1582 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1584 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1590 * compare two keys in a memcmp fashion
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1594 struct btrfs_key k1;
1596 btrfs_disk_key_to_cpu(&k1, disk);
1598 return btrfs_comp_cpu_keys(&k1, k2);
1602 * same as comp_keys only with two btrfs_key's
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1606 if (k1->objectid > k2->objectid)
1608 if (k1->objectid < k2->objectid)
1610 if (k1->type > k2->type)
1612 if (k1->type < k2->type)
1614 if (k1->offset > k2->offset)
1616 if (k1->offset < k2->offset)
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627 struct btrfs_root *root, struct extent_buffer *parent,
1628 int start_slot, u64 *last_ret,
1629 struct btrfs_key *progress)
1631 struct extent_buffer *cur;
1634 u64 search_start = *last_ret;
1644 int progress_passed = 0;
1645 struct btrfs_disk_key disk_key;
1647 parent_level = btrfs_header_level(parent);
1649 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 WARN_ON(trans->transid != root->fs_info->generation);
1652 parent_nritems = btrfs_header_nritems(parent);
1653 blocksize = root->nodesize;
1654 end_slot = parent_nritems - 1;
1656 if (parent_nritems <= 1)
1659 btrfs_set_lock_blocking(parent);
1661 for (i = start_slot; i <= end_slot; i++) {
1664 btrfs_node_key(parent, &disk_key, i);
1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1668 progress_passed = 1;
1669 blocknr = btrfs_node_blockptr(parent, i);
1670 gen = btrfs_node_ptr_generation(parent, i);
1671 if (last_block == 0)
1672 last_block = blocknr;
1675 other = btrfs_node_blockptr(parent, i - 1);
1676 close = close_blocks(blocknr, other, blocksize);
1678 if (!close && i < end_slot) {
1679 other = btrfs_node_blockptr(parent, i + 1);
1680 close = close_blocks(blocknr, other, blocksize);
1683 last_block = blocknr;
1687 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1692 if (!cur || !uptodate) {
1694 cur = read_tree_block(root, blocknr, gen);
1696 return PTR_ERR(cur);
1697 } else if (!extent_buffer_uptodate(cur)) {
1698 free_extent_buffer(cur);
1701 } else if (!uptodate) {
1702 err = btrfs_read_buffer(cur, gen);
1704 free_extent_buffer(cur);
1709 if (search_start == 0)
1710 search_start = last_block;
1712 btrfs_tree_lock(cur);
1713 btrfs_set_lock_blocking(cur);
1714 err = __btrfs_cow_block(trans, root, cur, parent, i,
1717 (end_slot - i) * blocksize));
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
1723 search_start = cur->start;
1724 last_block = cur->start;
1725 *last_ret = search_start;
1726 btrfs_tree_unlock(cur);
1727 free_extent_buffer(cur);
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738 struct extent_buffer *leaf)
1740 u32 nr = btrfs_header_nritems(leaf);
1742 return BTRFS_LEAF_DATA_SIZE(root);
1743 return btrfs_item_offset_nr(leaf, nr - 1);
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1755 * slot may point to max if the key is bigger than all of the keys
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1759 int item_size, struct btrfs_key *key,
1766 struct btrfs_disk_key *tmp = NULL;
1767 struct btrfs_disk_key unaligned;
1768 unsigned long offset;
1770 unsigned long map_start = 0;
1771 unsigned long map_len = 0;
1774 while (low < high) {
1775 mid = (low + high) / 2;
1776 offset = p + mid * item_size;
1778 if (!kaddr || offset < map_start ||
1779 (offset + sizeof(struct btrfs_disk_key)) >
1780 map_start + map_len) {
1782 err = map_private_extent_buffer(eb, offset,
1783 sizeof(struct btrfs_disk_key),
1784 &kaddr, &map_start, &map_len);
1787 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1790 read_extent_buffer(eb, &unaligned,
1791 offset, sizeof(unaligned));
1796 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1799 ret = comp_keys(tmp, key);
1815 * simple bin_search frontend that does the right thing for
1818 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1819 int level, int *slot)
1822 return generic_bin_search(eb,
1823 offsetof(struct btrfs_leaf, items),
1824 sizeof(struct btrfs_item),
1825 key, btrfs_header_nritems(eb),
1828 return generic_bin_search(eb,
1829 offsetof(struct btrfs_node, ptrs),
1830 sizeof(struct btrfs_key_ptr),
1831 key, btrfs_header_nritems(eb),
1835 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1836 int level, int *slot)
1838 return bin_search(eb, key, level, slot);
1841 static void root_add_used(struct btrfs_root *root, u32 size)
1843 spin_lock(&root->accounting_lock);
1844 btrfs_set_root_used(&root->root_item,
1845 btrfs_root_used(&root->root_item) + size);
1846 spin_unlock(&root->accounting_lock);
1849 static void root_sub_used(struct btrfs_root *root, u32 size)
1851 spin_lock(&root->accounting_lock);
1852 btrfs_set_root_used(&root->root_item,
1853 btrfs_root_used(&root->root_item) - size);
1854 spin_unlock(&root->accounting_lock);
1857 /* given a node and slot number, this reads the blocks it points to. The
1858 * extent buffer is returned with a reference taken (but unlocked).
1859 * NULL is returned on error.
1861 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1862 struct extent_buffer *parent, int slot)
1864 int level = btrfs_header_level(parent);
1865 struct extent_buffer *eb;
1869 if (slot >= btrfs_header_nritems(parent))
1874 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1875 btrfs_node_ptr_generation(parent, slot));
1876 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1878 free_extent_buffer(eb);
1886 * node level balancing, used to make sure nodes are in proper order for
1887 * item deletion. We balance from the top down, so we have to make sure
1888 * that a deletion won't leave an node completely empty later on.
1890 static noinline int balance_level(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *root,
1892 struct btrfs_path *path, int level)
1894 struct extent_buffer *right = NULL;
1895 struct extent_buffer *mid;
1896 struct extent_buffer *left = NULL;
1897 struct extent_buffer *parent = NULL;
1901 int orig_slot = path->slots[level];
1907 mid = path->nodes[level];
1909 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1910 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1911 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1913 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1915 if (level < BTRFS_MAX_LEVEL - 1) {
1916 parent = path->nodes[level + 1];
1917 pslot = path->slots[level + 1];
1921 * deal with the case where there is only one pointer in the root
1922 * by promoting the node below to a root
1925 struct extent_buffer *child;
1927 if (btrfs_header_nritems(mid) != 1)
1930 /* promote the child to a root */
1931 child = read_node_slot(root, mid, 0);
1934 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1938 btrfs_tree_lock(child);
1939 btrfs_set_lock_blocking(child);
1940 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1942 btrfs_tree_unlock(child);
1943 free_extent_buffer(child);
1947 tree_mod_log_set_root_pointer(root, child, 1);
1948 rcu_assign_pointer(root->node, child);
1950 add_root_to_dirty_list(root);
1951 btrfs_tree_unlock(child);
1953 path->locks[level] = 0;
1954 path->nodes[level] = NULL;
1955 clean_tree_block(trans, root->fs_info, mid);
1956 btrfs_tree_unlock(mid);
1957 /* once for the path */
1958 free_extent_buffer(mid);
1960 root_sub_used(root, mid->len);
1961 btrfs_free_tree_block(trans, root, mid, 0, 1);
1962 /* once for the root ptr */
1963 free_extent_buffer_stale(mid);
1966 if (btrfs_header_nritems(mid) >
1967 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1970 left = read_node_slot(root, parent, pslot - 1);
1972 btrfs_tree_lock(left);
1973 btrfs_set_lock_blocking(left);
1974 wret = btrfs_cow_block(trans, root, left,
1975 parent, pslot - 1, &left);
1981 right = read_node_slot(root, parent, pslot + 1);
1983 btrfs_tree_lock(right);
1984 btrfs_set_lock_blocking(right);
1985 wret = btrfs_cow_block(trans, root, right,
1986 parent, pslot + 1, &right);
1993 /* first, try to make some room in the middle buffer */
1995 orig_slot += btrfs_header_nritems(left);
1996 wret = push_node_left(trans, root, left, mid, 1);
2002 * then try to empty the right most buffer into the middle
2005 wret = push_node_left(trans, root, mid, right, 1);
2006 if (wret < 0 && wret != -ENOSPC)
2008 if (btrfs_header_nritems(right) == 0) {
2009 clean_tree_block(trans, root->fs_info, right);
2010 btrfs_tree_unlock(right);
2011 del_ptr(root, path, level + 1, pslot + 1);
2012 root_sub_used(root, right->len);
2013 btrfs_free_tree_block(trans, root, right, 0, 1);
2014 free_extent_buffer_stale(right);
2017 struct btrfs_disk_key right_key;
2018 btrfs_node_key(right, &right_key, 0);
2019 tree_mod_log_set_node_key(root->fs_info, parent,
2021 btrfs_set_node_key(parent, &right_key, pslot + 1);
2022 btrfs_mark_buffer_dirty(parent);
2025 if (btrfs_header_nritems(mid) == 1) {
2027 * we're not allowed to leave a node with one item in the
2028 * tree during a delete. A deletion from lower in the tree
2029 * could try to delete the only pointer in this node.
2030 * So, pull some keys from the left.
2031 * There has to be a left pointer at this point because
2032 * otherwise we would have pulled some pointers from the
2037 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2040 wret = balance_node_right(trans, root, mid, left);
2046 wret = push_node_left(trans, root, left, mid, 1);
2052 if (btrfs_header_nritems(mid) == 0) {
2053 clean_tree_block(trans, root->fs_info, mid);
2054 btrfs_tree_unlock(mid);
2055 del_ptr(root, path, level + 1, pslot);
2056 root_sub_used(root, mid->len);
2057 btrfs_free_tree_block(trans, root, mid, 0, 1);
2058 free_extent_buffer_stale(mid);
2061 /* update the parent key to reflect our changes */
2062 struct btrfs_disk_key mid_key;
2063 btrfs_node_key(mid, &mid_key, 0);
2064 tree_mod_log_set_node_key(root->fs_info, parent,
2066 btrfs_set_node_key(parent, &mid_key, pslot);
2067 btrfs_mark_buffer_dirty(parent);
2070 /* update the path */
2072 if (btrfs_header_nritems(left) > orig_slot) {
2073 extent_buffer_get(left);
2074 /* left was locked after cow */
2075 path->nodes[level] = left;
2076 path->slots[level + 1] -= 1;
2077 path->slots[level] = orig_slot;
2079 btrfs_tree_unlock(mid);
2080 free_extent_buffer(mid);
2083 orig_slot -= btrfs_header_nritems(left);
2084 path->slots[level] = orig_slot;
2087 /* double check we haven't messed things up */
2089 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2093 btrfs_tree_unlock(right);
2094 free_extent_buffer(right);
2097 if (path->nodes[level] != left)
2098 btrfs_tree_unlock(left);
2099 free_extent_buffer(left);
2104 /* Node balancing for insertion. Here we only split or push nodes around
2105 * when they are completely full. This is also done top down, so we
2106 * have to be pessimistic.
2108 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2109 struct btrfs_root *root,
2110 struct btrfs_path *path, int level)
2112 struct extent_buffer *right = NULL;
2113 struct extent_buffer *mid;
2114 struct extent_buffer *left = NULL;
2115 struct extent_buffer *parent = NULL;
2119 int orig_slot = path->slots[level];
2124 mid = path->nodes[level];
2125 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2127 if (level < BTRFS_MAX_LEVEL - 1) {
2128 parent = path->nodes[level + 1];
2129 pslot = path->slots[level + 1];
2135 left = read_node_slot(root, parent, pslot - 1);
2137 /* first, try to make some room in the middle buffer */
2141 btrfs_tree_lock(left);
2142 btrfs_set_lock_blocking(left);
2144 left_nr = btrfs_header_nritems(left);
2145 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2148 ret = btrfs_cow_block(trans, root, left, parent,
2153 wret = push_node_left(trans, root,
2160 struct btrfs_disk_key disk_key;
2161 orig_slot += left_nr;
2162 btrfs_node_key(mid, &disk_key, 0);
2163 tree_mod_log_set_node_key(root->fs_info, parent,
2165 btrfs_set_node_key(parent, &disk_key, pslot);
2166 btrfs_mark_buffer_dirty(parent);
2167 if (btrfs_header_nritems(left) > orig_slot) {
2168 path->nodes[level] = left;
2169 path->slots[level + 1] -= 1;
2170 path->slots[level] = orig_slot;
2171 btrfs_tree_unlock(mid);
2172 free_extent_buffer(mid);
2175 btrfs_header_nritems(left);
2176 path->slots[level] = orig_slot;
2177 btrfs_tree_unlock(left);
2178 free_extent_buffer(left);
2182 btrfs_tree_unlock(left);
2183 free_extent_buffer(left);
2185 right = read_node_slot(root, parent, pslot + 1);
2188 * then try to empty the right most buffer into the middle
2193 btrfs_tree_lock(right);
2194 btrfs_set_lock_blocking(right);
2196 right_nr = btrfs_header_nritems(right);
2197 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2200 ret = btrfs_cow_block(trans, root, right,
2206 wret = balance_node_right(trans, root,
2213 struct btrfs_disk_key disk_key;
2215 btrfs_node_key(right, &disk_key, 0);
2216 tree_mod_log_set_node_key(root->fs_info, parent,
2218 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2219 btrfs_mark_buffer_dirty(parent);
2221 if (btrfs_header_nritems(mid) <= orig_slot) {
2222 path->nodes[level] = right;
2223 path->slots[level + 1] += 1;
2224 path->slots[level] = orig_slot -
2225 btrfs_header_nritems(mid);
2226 btrfs_tree_unlock(mid);
2227 free_extent_buffer(mid);
2229 btrfs_tree_unlock(right);
2230 free_extent_buffer(right);
2234 btrfs_tree_unlock(right);
2235 free_extent_buffer(right);
2241 * readahead one full node of leaves, finding things that are close
2242 * to the block in 'slot', and triggering ra on them.
2244 static void reada_for_search(struct btrfs_root *root,
2245 struct btrfs_path *path,
2246 int level, int slot, u64 objectid)
2248 struct extent_buffer *node;
2249 struct btrfs_disk_key disk_key;
2255 struct extent_buffer *eb;
2263 if (!path->nodes[level])
2266 node = path->nodes[level];
2268 search = btrfs_node_blockptr(node, slot);
2269 blocksize = root->nodesize;
2270 eb = btrfs_find_tree_block(root->fs_info, search);
2272 free_extent_buffer(eb);
2278 nritems = btrfs_header_nritems(node);
2282 if (path->reada == READA_BACK) {
2286 } else if (path->reada == READA_FORWARD) {
2291 if (path->reada == READA_BACK && objectid) {
2292 btrfs_node_key(node, &disk_key, nr);
2293 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2296 search = btrfs_node_blockptr(node, nr);
2297 if ((search <= target && target - search <= 65536) ||
2298 (search > target && search - target <= 65536)) {
2299 gen = btrfs_node_ptr_generation(node, nr);
2300 readahead_tree_block(root, search);
2304 if ((nread > 65536 || nscan > 32))
2309 static noinline void reada_for_balance(struct btrfs_root *root,
2310 struct btrfs_path *path, int level)
2314 struct extent_buffer *parent;
2315 struct extent_buffer *eb;
2320 parent = path->nodes[level + 1];
2324 nritems = btrfs_header_nritems(parent);
2325 slot = path->slots[level + 1];
2328 block1 = btrfs_node_blockptr(parent, slot - 1);
2329 gen = btrfs_node_ptr_generation(parent, slot - 1);
2330 eb = btrfs_find_tree_block(root->fs_info, block1);
2332 * if we get -eagain from btrfs_buffer_uptodate, we
2333 * don't want to return eagain here. That will loop
2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338 free_extent_buffer(eb);
2340 if (slot + 1 < nritems) {
2341 block2 = btrfs_node_blockptr(parent, slot + 1);
2342 gen = btrfs_node_ptr_generation(parent, slot + 1);
2343 eb = btrfs_find_tree_block(root->fs_info, block2);
2344 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2346 free_extent_buffer(eb);
2350 readahead_tree_block(root, block1);
2352 readahead_tree_block(root, block2);
2357 * when we walk down the tree, it is usually safe to unlock the higher layers
2358 * in the tree. The exceptions are when our path goes through slot 0, because
2359 * operations on the tree might require changing key pointers higher up in the
2362 * callers might also have set path->keep_locks, which tells this code to keep
2363 * the lock if the path points to the last slot in the block. This is part of
2364 * walking through the tree, and selecting the next slot in the higher block.
2366 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2367 * if lowest_unlock is 1, level 0 won't be unlocked
2369 static noinline void unlock_up(struct btrfs_path *path, int level,
2370 int lowest_unlock, int min_write_lock_level,
2371 int *write_lock_level)
2374 int skip_level = level;
2376 struct extent_buffer *t;
2378 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379 if (!path->nodes[i])
2381 if (!path->locks[i])
2383 if (!no_skips && path->slots[i] == 0) {
2387 if (!no_skips && path->keep_locks) {
2390 nritems = btrfs_header_nritems(t);
2391 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2396 if (skip_level < i && i >= lowest_unlock)
2400 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2401 btrfs_tree_unlock_rw(t, path->locks[i]);
2403 if (write_lock_level &&
2404 i > min_write_lock_level &&
2405 i <= *write_lock_level) {
2406 *write_lock_level = i - 1;
2413 * This releases any locks held in the path starting at level and
2414 * going all the way up to the root.
2416 * btrfs_search_slot will keep the lock held on higher nodes in a few
2417 * corner cases, such as COW of the block at slot zero in the node. This
2418 * ignores those rules, and it should only be called when there are no
2419 * more updates to be done higher up in the tree.
2421 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2425 if (path->keep_locks)
2428 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2429 if (!path->nodes[i])
2431 if (!path->locks[i])
2433 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2439 * helper function for btrfs_search_slot. The goal is to find a block
2440 * in cache without setting the path to blocking. If we find the block
2441 * we return zero and the path is unchanged.
2443 * If we can't find the block, we set the path blocking and do some
2444 * reada. -EAGAIN is returned and the search must be repeated.
2447 read_block_for_search(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *root, struct btrfs_path *p,
2449 struct extent_buffer **eb_ret, int level, int slot,
2450 struct btrfs_key *key, u64 time_seq)
2454 struct extent_buffer *b = *eb_ret;
2455 struct extent_buffer *tmp;
2458 blocknr = btrfs_node_blockptr(b, slot);
2459 gen = btrfs_node_ptr_generation(b, slot);
2461 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2463 /* first we do an atomic uptodate check */
2464 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2469 /* the pages were up to date, but we failed
2470 * the generation number check. Do a full
2471 * read for the generation number that is correct.
2472 * We must do this without dropping locks so
2473 * we can trust our generation number
2475 btrfs_set_path_blocking(p);
2477 /* now we're allowed to do a blocking uptodate check */
2478 ret = btrfs_read_buffer(tmp, gen);
2483 free_extent_buffer(tmp);
2484 btrfs_release_path(p);
2489 * reduce lock contention at high levels
2490 * of the btree by dropping locks before
2491 * we read. Don't release the lock on the current
2492 * level because we need to walk this node to figure
2493 * out which blocks to read.
2495 btrfs_unlock_up_safe(p, level + 1);
2496 btrfs_set_path_blocking(p);
2498 free_extent_buffer(tmp);
2499 if (p->reada != READA_NONE)
2500 reada_for_search(root, p, level, slot, key->objectid);
2502 btrfs_release_path(p);
2505 tmp = read_tree_block(root, blocknr, 0);
2508 * If the read above didn't mark this buffer up to date,
2509 * it will never end up being up to date. Set ret to EIO now
2510 * and give up so that our caller doesn't loop forever
2513 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2515 free_extent_buffer(tmp);
2523 * helper function for btrfs_search_slot. This does all of the checks
2524 * for node-level blocks and does any balancing required based on
2527 * If no extra work was required, zero is returned. If we had to
2528 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2532 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2533 struct btrfs_root *root, struct btrfs_path *p,
2534 struct extent_buffer *b, int level, int ins_len,
2535 int *write_lock_level)
2538 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2539 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2542 if (*write_lock_level < level + 1) {
2543 *write_lock_level = level + 1;
2544 btrfs_release_path(p);
2548 btrfs_set_path_blocking(p);
2549 reada_for_balance(root, p, level);
2550 sret = split_node(trans, root, p, level);
2551 btrfs_clear_path_blocking(p, NULL, 0);
2558 b = p->nodes[level];
2559 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2560 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2563 if (*write_lock_level < level + 1) {
2564 *write_lock_level = level + 1;
2565 btrfs_release_path(p);
2569 btrfs_set_path_blocking(p);
2570 reada_for_balance(root, p, level);
2571 sret = balance_level(trans, root, p, level);
2572 btrfs_clear_path_blocking(p, NULL, 0);
2578 b = p->nodes[level];
2580 btrfs_release_path(p);
2583 BUG_ON(btrfs_header_nritems(b) == 1);
2593 static void key_search_validate(struct extent_buffer *b,
2594 struct btrfs_key *key,
2597 #ifdef CONFIG_BTRFS_ASSERT
2598 struct btrfs_disk_key disk_key;
2600 btrfs_cpu_key_to_disk(&disk_key, key);
2603 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 offsetof(struct btrfs_leaf, items[0].key),
2607 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2608 offsetof(struct btrfs_node, ptrs[0].key),
2613 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2614 int level, int *prev_cmp, int *slot)
2616 if (*prev_cmp != 0) {
2617 *prev_cmp = bin_search(b, key, level, slot);
2621 key_search_validate(b, key, level);
2627 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2628 u64 iobjectid, u64 ioff, u8 key_type,
2629 struct btrfs_key *found_key)
2632 struct btrfs_key key;
2633 struct extent_buffer *eb;
2638 key.type = key_type;
2639 key.objectid = iobjectid;
2642 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2646 eb = path->nodes[0];
2647 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2648 ret = btrfs_next_leaf(fs_root, path);
2651 eb = path->nodes[0];
2654 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2655 if (found_key->type != key.type ||
2656 found_key->objectid != key.objectid)
2663 * look for key in the tree. path is filled in with nodes along the way
2664 * if key is found, we return zero and you can find the item in the leaf
2665 * level of the path (level 0)
2667 * If the key isn't found, the path points to the slot where it should
2668 * be inserted, and 1 is returned. If there are other errors during the
2669 * search a negative error number is returned.
2671 * if ins_len > 0, nodes and leaves will be split as we walk down the
2672 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2675 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2676 *root, struct btrfs_key *key, struct btrfs_path *p, int
2679 struct extent_buffer *b;
2684 int lowest_unlock = 1;
2686 /* everything at write_lock_level or lower must be write locked */
2687 int write_lock_level = 0;
2688 u8 lowest_level = 0;
2689 int min_write_lock_level;
2692 lowest_level = p->lowest_level;
2693 WARN_ON(lowest_level && ins_len > 0);
2694 WARN_ON(p->nodes[0] != NULL);
2695 BUG_ON(!cow && ins_len);
2700 /* when we are removing items, we might have to go up to level
2701 * two as we update tree pointers Make sure we keep write
2702 * for those levels as well
2704 write_lock_level = 2;
2705 } else if (ins_len > 0) {
2707 * for inserting items, make sure we have a write lock on
2708 * level 1 so we can update keys
2710 write_lock_level = 1;
2714 write_lock_level = -1;
2716 if (cow && (p->keep_locks || p->lowest_level))
2717 write_lock_level = BTRFS_MAX_LEVEL;
2719 min_write_lock_level = write_lock_level;
2724 * we try very hard to do read locks on the root
2726 root_lock = BTRFS_READ_LOCK;
2728 if (p->search_commit_root) {
2730 * the commit roots are read only
2731 * so we always do read locks
2733 if (p->need_commit_sem)
2734 down_read(&root->fs_info->commit_root_sem);
2735 b = root->commit_root;
2736 extent_buffer_get(b);
2737 level = btrfs_header_level(b);
2738 if (p->need_commit_sem)
2739 up_read(&root->fs_info->commit_root_sem);
2740 if (!p->skip_locking)
2741 btrfs_tree_read_lock(b);
2743 if (p->skip_locking) {
2744 b = btrfs_root_node(root);
2745 level = btrfs_header_level(b);
2747 /* we don't know the level of the root node
2748 * until we actually have it read locked
2750 b = btrfs_read_lock_root_node(root);
2751 level = btrfs_header_level(b);
2752 if (level <= write_lock_level) {
2753 /* whoops, must trade for write lock */
2754 btrfs_tree_read_unlock(b);
2755 free_extent_buffer(b);
2756 b = btrfs_lock_root_node(root);
2757 root_lock = BTRFS_WRITE_LOCK;
2759 /* the level might have changed, check again */
2760 level = btrfs_header_level(b);
2764 p->nodes[level] = b;
2765 if (!p->skip_locking)
2766 p->locks[level] = root_lock;
2769 level = btrfs_header_level(b);
2772 * setup the path here so we can release it under lock
2773 * contention with the cow code
2777 * if we don't really need to cow this block
2778 * then we don't want to set the path blocking,
2779 * so we test it here
2781 if (!should_cow_block(trans, root, b)) {
2782 trans->dirty = true;
2787 * must have write locks on this node and the
2790 if (level > write_lock_level ||
2791 (level + 1 > write_lock_level &&
2792 level + 1 < BTRFS_MAX_LEVEL &&
2793 p->nodes[level + 1])) {
2794 write_lock_level = level + 1;
2795 btrfs_release_path(p);
2799 btrfs_set_path_blocking(p);
2800 err = btrfs_cow_block(trans, root, b,
2801 p->nodes[level + 1],
2802 p->slots[level + 1], &b);
2809 p->nodes[level] = b;
2810 btrfs_clear_path_blocking(p, NULL, 0);
2813 * we have a lock on b and as long as we aren't changing
2814 * the tree, there is no way to for the items in b to change.
2815 * It is safe to drop the lock on our parent before we
2816 * go through the expensive btree search on b.
2818 * If we're inserting or deleting (ins_len != 0), then we might
2819 * be changing slot zero, which may require changing the parent.
2820 * So, we can't drop the lock until after we know which slot
2821 * we're operating on.
2823 if (!ins_len && !p->keep_locks) {
2826 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2827 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2832 ret = key_search(b, key, level, &prev_cmp, &slot);
2836 if (ret && slot > 0) {
2840 p->slots[level] = slot;
2841 err = setup_nodes_for_search(trans, root, p, b, level,
2842 ins_len, &write_lock_level);
2849 b = p->nodes[level];
2850 slot = p->slots[level];
2853 * slot 0 is special, if we change the key
2854 * we have to update the parent pointer
2855 * which means we must have a write lock
2858 if (slot == 0 && ins_len &&
2859 write_lock_level < level + 1) {
2860 write_lock_level = level + 1;
2861 btrfs_release_path(p);
2865 unlock_up(p, level, lowest_unlock,
2866 min_write_lock_level, &write_lock_level);
2868 if (level == lowest_level) {
2874 err = read_block_for_search(trans, root, p,
2875 &b, level, slot, key, 0);
2883 if (!p->skip_locking) {
2884 level = btrfs_header_level(b);
2885 if (level <= write_lock_level) {
2886 err = btrfs_try_tree_write_lock(b);
2888 btrfs_set_path_blocking(p);
2890 btrfs_clear_path_blocking(p, b,
2893 p->locks[level] = BTRFS_WRITE_LOCK;
2895 err = btrfs_tree_read_lock_atomic(b);
2897 btrfs_set_path_blocking(p);
2898 btrfs_tree_read_lock(b);
2899 btrfs_clear_path_blocking(p, b,
2902 p->locks[level] = BTRFS_READ_LOCK;
2904 p->nodes[level] = b;
2907 p->slots[level] = slot;
2909 btrfs_leaf_free_space(root, b) < ins_len) {
2910 if (write_lock_level < 1) {
2911 write_lock_level = 1;
2912 btrfs_release_path(p);
2916 btrfs_set_path_blocking(p);
2917 err = split_leaf(trans, root, key,
2918 p, ins_len, ret == 0);
2919 btrfs_clear_path_blocking(p, NULL, 0);
2927 if (!p->search_for_split)
2928 unlock_up(p, level, lowest_unlock,
2929 min_write_lock_level, &write_lock_level);
2936 * we don't really know what they plan on doing with the path
2937 * from here on, so for now just mark it as blocking
2939 if (!p->leave_spinning)
2940 btrfs_set_path_blocking(p);
2941 if (ret < 0 && !p->skip_release_on_error)
2942 btrfs_release_path(p);
2947 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2948 * current state of the tree together with the operations recorded in the tree
2949 * modification log to search for the key in a previous version of this tree, as
2950 * denoted by the time_seq parameter.
2952 * Naturally, there is no support for insert, delete or cow operations.
2954 * The resulting path and return value will be set up as if we called
2955 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2957 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2958 struct btrfs_path *p, u64 time_seq)
2960 struct extent_buffer *b;
2965 int lowest_unlock = 1;
2966 u8 lowest_level = 0;
2969 lowest_level = p->lowest_level;
2970 WARN_ON(p->nodes[0] != NULL);
2972 if (p->search_commit_root) {
2974 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2978 b = get_old_root(root, time_seq);
2979 level = btrfs_header_level(b);
2980 p->locks[level] = BTRFS_READ_LOCK;
2983 level = btrfs_header_level(b);
2984 p->nodes[level] = b;
2985 btrfs_clear_path_blocking(p, NULL, 0);
2988 * we have a lock on b and as long as we aren't changing
2989 * the tree, there is no way to for the items in b to change.
2990 * It is safe to drop the lock on our parent before we
2991 * go through the expensive btree search on b.
2993 btrfs_unlock_up_safe(p, level + 1);
2996 * Since we can unwind ebs we want to do a real search every
3000 ret = key_search(b, key, level, &prev_cmp, &slot);
3004 if (ret && slot > 0) {
3008 p->slots[level] = slot;
3009 unlock_up(p, level, lowest_unlock, 0, NULL);
3011 if (level == lowest_level) {
3017 err = read_block_for_search(NULL, root, p, &b, level,
3018 slot, key, time_seq);
3026 level = btrfs_header_level(b);
3027 err = btrfs_tree_read_lock_atomic(b);
3029 btrfs_set_path_blocking(p);
3030 btrfs_tree_read_lock(b);
3031 btrfs_clear_path_blocking(p, b,
3034 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3039 p->locks[level] = BTRFS_READ_LOCK;
3040 p->nodes[level] = b;
3042 p->slots[level] = slot;
3043 unlock_up(p, level, lowest_unlock, 0, NULL);
3049 if (!p->leave_spinning)
3050 btrfs_set_path_blocking(p);
3052 btrfs_release_path(p);
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3069 int btrfs_search_slot_for_read(struct btrfs_root *root,
3070 struct btrfs_key *key, struct btrfs_path *p,
3071 int find_higher, int return_any)
3074 struct extent_buffer *leaf;
3077 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3081 * a return value of 1 means the path is at the position where the
3082 * item should be inserted. Normally this is the next bigger item,
3083 * but in case the previous item is the last in a leaf, path points
3084 * to the first free slot in the previous leaf, i.e. at an invalid
3090 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091 ret = btrfs_next_leaf(root, p);
3097 * no higher item found, return the next
3102 btrfs_release_path(p);
3106 if (p->slots[0] == 0) {
3107 ret = btrfs_prev_leaf(root, p);
3112 if (p->slots[0] == btrfs_header_nritems(leaf))
3119 * no lower item found, return the next
3124 btrfs_release_path(p);
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3141 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142 struct btrfs_path *path,
3143 struct btrfs_disk_key *key, int level)
3146 struct extent_buffer *t;
3148 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149 int tslot = path->slots[i];
3150 if (!path->nodes[i])
3153 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3154 btrfs_set_node_key(t, key, tslot);
3155 btrfs_mark_buffer_dirty(path->nodes[i]);
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3167 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168 struct btrfs_path *path,
3169 struct btrfs_key *new_key)
3171 struct btrfs_disk_key disk_key;
3172 struct extent_buffer *eb;
3175 eb = path->nodes[0];
3176 slot = path->slots[0];
3178 btrfs_item_key(eb, &disk_key, slot - 1);
3179 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3181 if (slot < btrfs_header_nritems(eb) - 1) {
3182 btrfs_item_key(eb, &disk_key, slot + 1);
3183 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3186 btrfs_cpu_key_to_disk(&disk_key, new_key);
3187 btrfs_set_item_key(eb, &disk_key, slot);
3188 btrfs_mark_buffer_dirty(eb);
3190 fixup_low_keys(fs_info, path, &disk_key, 1);
3194 * try to push data from one node into the next node left in the
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3200 static int push_node_left(struct btrfs_trans_handle *trans,
3201 struct btrfs_root *root, struct extent_buffer *dst,
3202 struct extent_buffer *src, int empty)
3209 src_nritems = btrfs_header_nritems(src);
3210 dst_nritems = btrfs_header_nritems(dst);
3211 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3212 WARN_ON(btrfs_header_generation(src) != trans->transid);
3213 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215 if (!empty && src_nritems <= 8)
3218 if (push_items <= 0)
3222 push_items = min(src_nritems, push_items);
3223 if (push_items < src_nritems) {
3224 /* leave at least 8 pointers in the node if
3225 * we aren't going to empty it
3227 if (src_nritems - push_items < 8) {
3228 if (push_items <= 8)
3234 push_items = min(src_nritems - 8, push_items);
3236 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3239 btrfs_abort_transaction(trans, root, ret);
3242 copy_extent_buffer(dst, src,
3243 btrfs_node_key_ptr_offset(dst_nritems),
3244 btrfs_node_key_ptr_offset(0),
3245 push_items * sizeof(struct btrfs_key_ptr));
3247 if (push_items < src_nritems) {
3249 * don't call tree_mod_log_eb_move here, key removal was already
3250 * fully logged by tree_mod_log_eb_copy above.
3252 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3253 btrfs_node_key_ptr_offset(push_items),
3254 (src_nritems - push_items) *
3255 sizeof(struct btrfs_key_ptr));
3257 btrfs_set_header_nritems(src, src_nritems - push_items);
3258 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3259 btrfs_mark_buffer_dirty(src);
3260 btrfs_mark_buffer_dirty(dst);
3266 * try to push data from one node into the next node right in the
3269 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3270 * error, and > 0 if there was no room in the right hand block.
3272 * this will only push up to 1/2 the contents of the left node over
3274 static int balance_node_right(struct btrfs_trans_handle *trans,
3275 struct btrfs_root *root,
3276 struct extent_buffer *dst,
3277 struct extent_buffer *src)
3285 WARN_ON(btrfs_header_generation(src) != trans->transid);
3286 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288 src_nritems = btrfs_header_nritems(src);
3289 dst_nritems = btrfs_header_nritems(dst);
3290 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3291 if (push_items <= 0)
3294 if (src_nritems < 4)
3297 max_push = src_nritems / 2 + 1;
3298 /* don't try to empty the node */
3299 if (max_push >= src_nritems)
3302 if (max_push < push_items)
3303 push_items = max_push;
3305 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3306 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3307 btrfs_node_key_ptr_offset(0),
3309 sizeof(struct btrfs_key_ptr));
3311 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3312 src_nritems - push_items, push_items);
3314 btrfs_abort_transaction(trans, root, ret);
3317 copy_extent_buffer(dst, src,
3318 btrfs_node_key_ptr_offset(0),
3319 btrfs_node_key_ptr_offset(src_nritems - push_items),
3320 push_items * sizeof(struct btrfs_key_ptr));
3322 btrfs_set_header_nritems(src, src_nritems - push_items);
3323 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325 btrfs_mark_buffer_dirty(src);
3326 btrfs_mark_buffer_dirty(dst);
3332 * helper function to insert a new root level in the tree.
3333 * A new node is allocated, and a single item is inserted to
3334 * point to the existing root
3336 * returns zero on success or < 0 on failure.
3338 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3339 struct btrfs_root *root,
3340 struct btrfs_path *path, int level)
3343 struct extent_buffer *lower;
3344 struct extent_buffer *c;
3345 struct extent_buffer *old;
3346 struct btrfs_disk_key lower_key;
3348 BUG_ON(path->nodes[level]);
3349 BUG_ON(path->nodes[level-1] != root->node);
3351 lower = path->nodes[level-1];
3353 btrfs_item_key(lower, &lower_key, 0);
3355 btrfs_node_key(lower, &lower_key, 0);
3357 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3358 &lower_key, level, root->node->start, 0);
3362 root_add_used(root, root->nodesize);
3364 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3365 btrfs_set_header_nritems(c, 1);
3366 btrfs_set_header_level(c, level);
3367 btrfs_set_header_bytenr(c, c->start);
3368 btrfs_set_header_generation(c, trans->transid);
3369 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3370 btrfs_set_header_owner(c, root->root_key.objectid);
3372 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3375 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3376 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3378 btrfs_set_node_key(c, &lower_key, 0);
3379 btrfs_set_node_blockptr(c, 0, lower->start);
3380 lower_gen = btrfs_header_generation(lower);
3381 WARN_ON(lower_gen != trans->transid);
3383 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3385 btrfs_mark_buffer_dirty(c);
3388 tree_mod_log_set_root_pointer(root, c, 0);
3389 rcu_assign_pointer(root->node, c);
3391 /* the super has an extra ref to root->node */
3392 free_extent_buffer(old);
3394 add_root_to_dirty_list(root);
3395 extent_buffer_get(c);
3396 path->nodes[level] = c;
3397 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3398 path->slots[level] = 0;
3403 * worker function to insert a single pointer in a node.
3404 * the node should have enough room for the pointer already
3406 * slot and level indicate where you want the key to go, and
3407 * blocknr is the block the key points to.
3409 static void insert_ptr(struct btrfs_trans_handle *trans,
3410 struct btrfs_root *root, struct btrfs_path *path,
3411 struct btrfs_disk_key *key, u64 bytenr,
3412 int slot, int level)
3414 struct extent_buffer *lower;
3418 BUG_ON(!path->nodes[level]);
3419 btrfs_assert_tree_locked(path->nodes[level]);
3420 lower = path->nodes[level];
3421 nritems = btrfs_header_nritems(lower);
3422 BUG_ON(slot > nritems);
3423 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3424 if (slot != nritems) {
3426 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3427 slot, nritems - slot);
3428 memmove_extent_buffer(lower,
3429 btrfs_node_key_ptr_offset(slot + 1),
3430 btrfs_node_key_ptr_offset(slot),
3431 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3434 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3435 MOD_LOG_KEY_ADD, GFP_NOFS);
3438 btrfs_set_node_key(lower, key, slot);
3439 btrfs_set_node_blockptr(lower, slot, bytenr);
3440 WARN_ON(trans->transid == 0);
3441 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3442 btrfs_set_header_nritems(lower, nritems + 1);
3443 btrfs_mark_buffer_dirty(lower);
3447 * split the node at the specified level in path in two.
3448 * The path is corrected to point to the appropriate node after the split
3450 * Before splitting this tries to make some room in the node by pushing
3451 * left and right, if either one works, it returns right away.
3453 * returns 0 on success and < 0 on failure
3455 static noinline int split_node(struct btrfs_trans_handle *trans,
3456 struct btrfs_root *root,
3457 struct btrfs_path *path, int level)
3459 struct extent_buffer *c;
3460 struct extent_buffer *split;
3461 struct btrfs_disk_key disk_key;
3466 c = path->nodes[level];
3467 WARN_ON(btrfs_header_generation(c) != trans->transid);
3468 if (c == root->node) {
3470 * trying to split the root, lets make a new one
3472 * tree mod log: We don't log_removal old root in
3473 * insert_new_root, because that root buffer will be kept as a
3474 * normal node. We are going to log removal of half of the
3475 * elements below with tree_mod_log_eb_copy. We're holding a
3476 * tree lock on the buffer, which is why we cannot race with
3477 * other tree_mod_log users.
3479 ret = insert_new_root(trans, root, path, level + 1);
3483 ret = push_nodes_for_insert(trans, root, path, level);
3484 c = path->nodes[level];
3485 if (!ret && btrfs_header_nritems(c) <
3486 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3492 c_nritems = btrfs_header_nritems(c);
3493 mid = (c_nritems + 1) / 2;
3494 btrfs_node_key(c, &disk_key, mid);
3496 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497 &disk_key, level, c->start, 0);
3499 return PTR_ERR(split);
3501 root_add_used(root, root->nodesize);
3503 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3504 btrfs_set_header_level(split, btrfs_header_level(c));
3505 btrfs_set_header_bytenr(split, split->start);
3506 btrfs_set_header_generation(split, trans->transid);
3507 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508 btrfs_set_header_owner(split, root->root_key.objectid);
3509 write_extent_buffer(split, root->fs_info->fsid,
3510 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3511 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3512 btrfs_header_chunk_tree_uuid(split),
3515 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3516 mid, c_nritems - mid);
3518 btrfs_abort_transaction(trans, root, ret);
3521 copy_extent_buffer(split, c,
3522 btrfs_node_key_ptr_offset(0),
3523 btrfs_node_key_ptr_offset(mid),
3524 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3525 btrfs_set_header_nritems(split, c_nritems - mid);
3526 btrfs_set_header_nritems(c, mid);
3529 btrfs_mark_buffer_dirty(c);
3530 btrfs_mark_buffer_dirty(split);
3532 insert_ptr(trans, root, path, &disk_key, split->start,
3533 path->slots[level + 1] + 1, level + 1);
3535 if (path->slots[level] >= mid) {
3536 path->slots[level] -= mid;
3537 btrfs_tree_unlock(c);
3538 free_extent_buffer(c);
3539 path->nodes[level] = split;
3540 path->slots[level + 1] += 1;
3542 btrfs_tree_unlock(split);
3543 free_extent_buffer(split);
3549 * how many bytes are required to store the items in a leaf. start
3550 * and nr indicate which items in the leaf to check. This totals up the
3551 * space used both by the item structs and the item data
3553 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3555 struct btrfs_item *start_item;
3556 struct btrfs_item *end_item;
3557 struct btrfs_map_token token;
3559 int nritems = btrfs_header_nritems(l);
3560 int end = min(nritems, start + nr) - 1;
3564 btrfs_init_map_token(&token);
3565 start_item = btrfs_item_nr(start);
3566 end_item = btrfs_item_nr(end);
3567 data_len = btrfs_token_item_offset(l, start_item, &token) +
3568 btrfs_token_item_size(l, start_item, &token);
3569 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3570 data_len += sizeof(struct btrfs_item) * nr;
3571 WARN_ON(data_len < 0);
3576 * The space between the end of the leaf items and
3577 * the start of the leaf data. IOW, how much room
3578 * the leaf has left for both items and data
3580 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3581 struct extent_buffer *leaf)
3583 int nritems = btrfs_header_nritems(leaf);
3585 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3587 btrfs_crit(root->fs_info,
3588 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3589 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3590 leaf_space_used(leaf, 0, nritems), nritems);
3596 * min slot controls the lowest index we're willing to push to the
3597 * right. We'll push up to and including min_slot, but no lower
3599 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3600 struct btrfs_root *root,
3601 struct btrfs_path *path,
3602 int data_size, int empty,
3603 struct extent_buffer *right,
3604 int free_space, u32 left_nritems,
3607 struct extent_buffer *left = path->nodes[0];
3608 struct extent_buffer *upper = path->nodes[1];
3609 struct btrfs_map_token token;
3610 struct btrfs_disk_key disk_key;
3615 struct btrfs_item *item;
3621 btrfs_init_map_token(&token);
3626 nr = max_t(u32, 1, min_slot);
3628 if (path->slots[0] >= left_nritems)
3629 push_space += data_size;
3631 slot = path->slots[1];
3632 i = left_nritems - 1;
3634 item = btrfs_item_nr(i);
3636 if (!empty && push_items > 0) {
3637 if (path->slots[0] > i)
3639 if (path->slots[0] == i) {
3640 int space = btrfs_leaf_free_space(root, left);
3641 if (space + push_space * 2 > free_space)
3646 if (path->slots[0] == i)
3647 push_space += data_size;
3649 this_item_size = btrfs_item_size(left, item);
3650 if (this_item_size + sizeof(*item) + push_space > free_space)
3654 push_space += this_item_size + sizeof(*item);
3660 if (push_items == 0)
3663 WARN_ON(!empty && push_items == left_nritems);
3665 /* push left to right */
3666 right_nritems = btrfs_header_nritems(right);
3668 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3669 push_space -= leaf_data_end(root, left);
3671 /* make room in the right data area */
3672 data_end = leaf_data_end(root, right);
3673 memmove_extent_buffer(right,
3674 btrfs_leaf_data(right) + data_end - push_space,
3675 btrfs_leaf_data(right) + data_end,
3676 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3678 /* copy from the left data area */
3679 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3680 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3681 btrfs_leaf_data(left) + leaf_data_end(root, left),
3684 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3685 btrfs_item_nr_offset(0),
3686 right_nritems * sizeof(struct btrfs_item));
3688 /* copy the items from left to right */
3689 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3690 btrfs_item_nr_offset(left_nritems - push_items),
3691 push_items * sizeof(struct btrfs_item));
3693 /* update the item pointers */
3694 right_nritems += push_items;
3695 btrfs_set_header_nritems(right, right_nritems);
3696 push_space = BTRFS_LEAF_DATA_SIZE(root);
3697 for (i = 0; i < right_nritems; i++) {
3698 item = btrfs_item_nr(i);
3699 push_space -= btrfs_token_item_size(right, item, &token);
3700 btrfs_set_token_item_offset(right, item, push_space, &token);
3703 left_nritems -= push_items;
3704 btrfs_set_header_nritems(left, left_nritems);
3707 btrfs_mark_buffer_dirty(left);
3709 clean_tree_block(trans, root->fs_info, left);
3711 btrfs_mark_buffer_dirty(right);
3713 btrfs_item_key(right, &disk_key, 0);
3714 btrfs_set_node_key(upper, &disk_key, slot + 1);
3715 btrfs_mark_buffer_dirty(upper);
3717 /* then fixup the leaf pointer in the path */
3718 if (path->slots[0] >= left_nritems) {
3719 path->slots[0] -= left_nritems;
3720 if (btrfs_header_nritems(path->nodes[0]) == 0)
3721 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3722 btrfs_tree_unlock(path->nodes[0]);
3723 free_extent_buffer(path->nodes[0]);
3724 path->nodes[0] = right;
3725 path->slots[1] += 1;
3727 btrfs_tree_unlock(right);
3728 free_extent_buffer(right);
3733 btrfs_tree_unlock(right);
3734 free_extent_buffer(right);
3739 * push some data in the path leaf to the right, trying to free up at
3740 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3742 * returns 1 if the push failed because the other node didn't have enough
3743 * room, 0 if everything worked out and < 0 if there were major errors.
3745 * this will push starting from min_slot to the end of the leaf. It won't
3746 * push any slot lower than min_slot
3748 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3749 *root, struct btrfs_path *path,
3750 int min_data_size, int data_size,
3751 int empty, u32 min_slot)
3753 struct extent_buffer *left = path->nodes[0];
3754 struct extent_buffer *right;
3755 struct extent_buffer *upper;
3761 if (!path->nodes[1])
3764 slot = path->slots[1];
3765 upper = path->nodes[1];
3766 if (slot >= btrfs_header_nritems(upper) - 1)
3769 btrfs_assert_tree_locked(path->nodes[1]);
3771 right = read_node_slot(root, upper, slot + 1);
3775 btrfs_tree_lock(right);
3776 btrfs_set_lock_blocking(right);
3778 free_space = btrfs_leaf_free_space(root, right);
3779 if (free_space < data_size)
3782 /* cow and double check */
3783 ret = btrfs_cow_block(trans, root, right, upper,
3788 free_space = btrfs_leaf_free_space(root, right);
3789 if (free_space < data_size)
3792 left_nritems = btrfs_header_nritems(left);
3793 if (left_nritems == 0)
3796 if (path->slots[0] == left_nritems && !empty) {
3797 /* Key greater than all keys in the leaf, right neighbor has
3798 * enough room for it and we're not emptying our leaf to delete
3799 * it, therefore use right neighbor to insert the new item and
3800 * no need to touch/dirty our left leaft. */
3801 btrfs_tree_unlock(left);
3802 free_extent_buffer(left);
3803 path->nodes[0] = right;
3809 return __push_leaf_right(trans, root, path, min_data_size, empty,
3810 right, free_space, left_nritems, min_slot);
3812 btrfs_tree_unlock(right);
3813 free_extent_buffer(right);
3818 * push some data in the path leaf to the left, trying to free up at
3819 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3821 * max_slot can put a limit on how far into the leaf we'll push items. The
3822 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3825 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3826 struct btrfs_root *root,
3827 struct btrfs_path *path, int data_size,
3828 int empty, struct extent_buffer *left,
3829 int free_space, u32 right_nritems,
3832 struct btrfs_disk_key disk_key;
3833 struct extent_buffer *right = path->nodes[0];
3837 struct btrfs_item *item;
3838 u32 old_left_nritems;
3842 u32 old_left_item_size;
3843 struct btrfs_map_token token;
3845 btrfs_init_map_token(&token);
3848 nr = min(right_nritems, max_slot);
3850 nr = min(right_nritems - 1, max_slot);
3852 for (i = 0; i < nr; i++) {
3853 item = btrfs_item_nr(i);
3855 if (!empty && push_items > 0) {
3856 if (path->slots[0] < i)
3858 if (path->slots[0] == i) {
3859 int space = btrfs_leaf_free_space(root, right);
3860 if (space + push_space * 2 > free_space)
3865 if (path->slots[0] == i)
3866 push_space += data_size;
3868 this_item_size = btrfs_item_size(right, item);
3869 if (this_item_size + sizeof(*item) + push_space > free_space)
3873 push_space += this_item_size + sizeof(*item);
3876 if (push_items == 0) {
3880 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3882 /* push data from right to left */
3883 copy_extent_buffer(left, right,
3884 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885 btrfs_item_nr_offset(0),
3886 push_items * sizeof(struct btrfs_item));
3888 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3889 btrfs_item_offset_nr(right, push_items - 1);
3891 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3892 leaf_data_end(root, left) - push_space,
3893 btrfs_leaf_data(right) +
3894 btrfs_item_offset_nr(right, push_items - 1),
3896 old_left_nritems = btrfs_header_nritems(left);
3897 BUG_ON(old_left_nritems <= 0);
3899 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3903 item = btrfs_item_nr(i);
3905 ioff = btrfs_token_item_offset(left, item, &token);
3906 btrfs_set_token_item_offset(left, item,
3907 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3910 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3912 /* fixup right node */
3913 if (push_items > right_nritems)
3914 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3917 if (push_items < right_nritems) {
3918 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919 leaf_data_end(root, right);
3920 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3921 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3922 btrfs_leaf_data(right) +
3923 leaf_data_end(root, right), push_space);
3925 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926 btrfs_item_nr_offset(push_items),
3927 (btrfs_header_nritems(right) - push_items) *
3928 sizeof(struct btrfs_item));
3930 right_nritems -= push_items;
3931 btrfs_set_header_nritems(right, right_nritems);
3932 push_space = BTRFS_LEAF_DATA_SIZE(root);
3933 for (i = 0; i < right_nritems; i++) {
3934 item = btrfs_item_nr(i);
3936 push_space = push_space - btrfs_token_item_size(right,
3938 btrfs_set_token_item_offset(right, item, push_space, &token);
3941 btrfs_mark_buffer_dirty(left);
3943 btrfs_mark_buffer_dirty(right);
3945 clean_tree_block(trans, root->fs_info, right);
3947 btrfs_item_key(right, &disk_key, 0);
3948 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3950 /* then fixup the leaf pointer in the path */
3951 if (path->slots[0] < push_items) {
3952 path->slots[0] += old_left_nritems;
3953 btrfs_tree_unlock(path->nodes[0]);
3954 free_extent_buffer(path->nodes[0]);
3955 path->nodes[0] = left;
3956 path->slots[1] -= 1;
3958 btrfs_tree_unlock(left);
3959 free_extent_buffer(left);
3960 path->slots[0] -= push_items;
3962 BUG_ON(path->slots[0] < 0);
3965 btrfs_tree_unlock(left);
3966 free_extent_buffer(left);
3971 * push some data in the path leaf to the left, trying to free up at
3972 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3974 * max_slot can put a limit on how far into the leaf we'll push items. The
3975 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3978 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979 *root, struct btrfs_path *path, int min_data_size,
3980 int data_size, int empty, u32 max_slot)
3982 struct extent_buffer *right = path->nodes[0];
3983 struct extent_buffer *left;
3989 slot = path->slots[1];
3992 if (!path->nodes[1])
3995 right_nritems = btrfs_header_nritems(right);
3996 if (right_nritems == 0)
3999 btrfs_assert_tree_locked(path->nodes[1]);
4001 left = read_node_slot(root, path->nodes[1], slot - 1);
4005 btrfs_tree_lock(left);
4006 btrfs_set_lock_blocking(left);
4008 free_space = btrfs_leaf_free_space(root, left);
4009 if (free_space < data_size) {
4014 /* cow and double check */
4015 ret = btrfs_cow_block(trans, root, left,
4016 path->nodes[1], slot - 1, &left);
4018 /* we hit -ENOSPC, but it isn't fatal here */
4024 free_space = btrfs_leaf_free_space(root, left);
4025 if (free_space < data_size) {
4030 return __push_leaf_left(trans, root, path, min_data_size,
4031 empty, left, free_space, right_nritems,
4034 btrfs_tree_unlock(left);
4035 free_extent_buffer(left);
4040 * split the path's leaf in two, making sure there is at least data_size
4041 * available for the resulting leaf level of the path.
4043 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4044 struct btrfs_root *root,
4045 struct btrfs_path *path,
4046 struct extent_buffer *l,
4047 struct extent_buffer *right,
4048 int slot, int mid, int nritems)
4053 struct btrfs_disk_key disk_key;
4054 struct btrfs_map_token token;
4056 btrfs_init_map_token(&token);
4058 nritems = nritems - mid;
4059 btrfs_set_header_nritems(right, nritems);
4060 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4062 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4063 btrfs_item_nr_offset(mid),
4064 nritems * sizeof(struct btrfs_item));
4066 copy_extent_buffer(right, l,
4067 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4068 data_copy_size, btrfs_leaf_data(l) +
4069 leaf_data_end(root, l), data_copy_size);
4071 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4072 btrfs_item_end_nr(l, mid);
4074 for (i = 0; i < nritems; i++) {
4075 struct btrfs_item *item = btrfs_item_nr(i);
4078 ioff = btrfs_token_item_offset(right, item, &token);
4079 btrfs_set_token_item_offset(right, item,
4080 ioff + rt_data_off, &token);
4083 btrfs_set_header_nritems(l, mid);
4084 btrfs_item_key(right, &disk_key, 0);
4085 insert_ptr(trans, root, path, &disk_key, right->start,
4086 path->slots[1] + 1, 1);
4088 btrfs_mark_buffer_dirty(right);
4089 btrfs_mark_buffer_dirty(l);
4090 BUG_ON(path->slots[0] != slot);
4093 btrfs_tree_unlock(path->nodes[0]);
4094 free_extent_buffer(path->nodes[0]);
4095 path->nodes[0] = right;
4096 path->slots[0] -= mid;
4097 path->slots[1] += 1;
4099 btrfs_tree_unlock(right);
4100 free_extent_buffer(right);
4103 BUG_ON(path->slots[0] < 0);
4107 * double splits happen when we need to insert a big item in the middle
4108 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4109 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4112 * We avoid this by trying to push the items on either side of our target
4113 * into the adjacent leaves. If all goes well we can avoid the double split
4116 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4117 struct btrfs_root *root,
4118 struct btrfs_path *path,
4125 int space_needed = data_size;
4127 slot = path->slots[0];
4128 if (slot < btrfs_header_nritems(path->nodes[0]))
4129 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4132 * try to push all the items after our slot into the
4135 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4142 nritems = btrfs_header_nritems(path->nodes[0]);
4144 * our goal is to get our slot at the start or end of a leaf. If
4145 * we've done so we're done
4147 if (path->slots[0] == 0 || path->slots[0] == nritems)
4150 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4153 /* try to push all the items before our slot into the next leaf */
4154 slot = path->slots[0];
4155 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4168 * split the path's leaf in two, making sure there is at least data_size
4169 * available for the resulting leaf level of the path.
4171 * returns 0 if all went well and < 0 on failure.
4173 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4174 struct btrfs_root *root,
4175 struct btrfs_key *ins_key,
4176 struct btrfs_path *path, int data_size,
4179 struct btrfs_disk_key disk_key;
4180 struct extent_buffer *l;
4184 struct extent_buffer *right;
4185 struct btrfs_fs_info *fs_info = root->fs_info;
4189 int num_doubles = 0;
4190 int tried_avoid_double = 0;
4193 slot = path->slots[0];
4194 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4195 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4198 /* first try to make some room by pushing left and right */
4199 if (data_size && path->nodes[1]) {
4200 int space_needed = data_size;
4202 if (slot < btrfs_header_nritems(l))
4203 space_needed -= btrfs_leaf_free_space(root, l);
4205 wret = push_leaf_right(trans, root, path, space_needed,
4206 space_needed, 0, 0);
4210 wret = push_leaf_left(trans, root, path, space_needed,
4211 space_needed, 0, (u32)-1);
4217 /* did the pushes work? */
4218 if (btrfs_leaf_free_space(root, l) >= data_size)
4222 if (!path->nodes[1]) {
4223 ret = insert_new_root(trans, root, path, 1);
4230 slot = path->slots[0];
4231 nritems = btrfs_header_nritems(l);
4232 mid = (nritems + 1) / 2;
4236 leaf_space_used(l, mid, nritems - mid) + data_size >
4237 BTRFS_LEAF_DATA_SIZE(root)) {
4238 if (slot >= nritems) {
4242 if (mid != nritems &&
4243 leaf_space_used(l, mid, nritems - mid) +
4244 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4245 if (data_size && !tried_avoid_double)
4246 goto push_for_double;
4252 if (leaf_space_used(l, 0, mid) + data_size >
4253 BTRFS_LEAF_DATA_SIZE(root)) {
4254 if (!extend && data_size && slot == 0) {
4256 } else if ((extend || !data_size) && slot == 0) {
4260 if (mid != nritems &&
4261 leaf_space_used(l, mid, nritems - mid) +
4262 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4263 if (data_size && !tried_avoid_double)
4264 goto push_for_double;
4272 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4274 btrfs_item_key(l, &disk_key, mid);
4276 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4277 &disk_key, 0, l->start, 0);
4279 return PTR_ERR(right);
4281 root_add_used(root, root->nodesize);
4283 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4284 btrfs_set_header_bytenr(right, right->start);
4285 btrfs_set_header_generation(right, trans->transid);
4286 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4287 btrfs_set_header_owner(right, root->root_key.objectid);
4288 btrfs_set_header_level(right, 0);
4289 write_extent_buffer(right, fs_info->fsid,
4290 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4292 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4293 btrfs_header_chunk_tree_uuid(right),
4298 btrfs_set_header_nritems(right, 0);
4299 insert_ptr(trans, root, path, &disk_key, right->start,
4300 path->slots[1] + 1, 1);
4301 btrfs_tree_unlock(path->nodes[0]);
4302 free_extent_buffer(path->nodes[0]);
4303 path->nodes[0] = right;
4305 path->slots[1] += 1;
4307 btrfs_set_header_nritems(right, 0);
4308 insert_ptr(trans, root, path, &disk_key, right->start,
4310 btrfs_tree_unlock(path->nodes[0]);
4311 free_extent_buffer(path->nodes[0]);
4312 path->nodes[0] = right;
4314 if (path->slots[1] == 0)
4315 fixup_low_keys(fs_info, path, &disk_key, 1);
4317 btrfs_mark_buffer_dirty(right);
4321 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4324 BUG_ON(num_doubles != 0);
4332 push_for_double_split(trans, root, path, data_size);
4333 tried_avoid_double = 1;
4334 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4339 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4340 struct btrfs_root *root,
4341 struct btrfs_path *path, int ins_len)
4343 struct btrfs_key key;
4344 struct extent_buffer *leaf;
4345 struct btrfs_file_extent_item *fi;
4350 leaf = path->nodes[0];
4351 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4353 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4354 key.type != BTRFS_EXTENT_CSUM_KEY);
4356 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4359 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4360 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4361 fi = btrfs_item_ptr(leaf, path->slots[0],
4362 struct btrfs_file_extent_item);
4363 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4365 btrfs_release_path(path);
4367 path->keep_locks = 1;
4368 path->search_for_split = 1;
4369 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4370 path->search_for_split = 0;
4377 leaf = path->nodes[0];
4378 /* if our item isn't there, return now */
4379 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4382 /* the leaf has changed, it now has room. return now */
4383 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4386 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4387 fi = btrfs_item_ptr(leaf, path->slots[0],
4388 struct btrfs_file_extent_item);
4389 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4393 btrfs_set_path_blocking(path);
4394 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4398 path->keep_locks = 0;
4399 btrfs_unlock_up_safe(path, 1);
4402 path->keep_locks = 0;
4406 static noinline int split_item(struct btrfs_trans_handle *trans,
4407 struct btrfs_root *root,
4408 struct btrfs_path *path,
4409 struct btrfs_key *new_key,
4410 unsigned long split_offset)
4412 struct extent_buffer *leaf;
4413 struct btrfs_item *item;
4414 struct btrfs_item *new_item;
4420 struct btrfs_disk_key disk_key;
4422 leaf = path->nodes[0];
4423 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4425 btrfs_set_path_blocking(path);
4427 item = btrfs_item_nr(path->slots[0]);
4428 orig_offset = btrfs_item_offset(leaf, item);
4429 item_size = btrfs_item_size(leaf, item);
4431 buf = kmalloc(item_size, GFP_NOFS);
4435 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4436 path->slots[0]), item_size);
4438 slot = path->slots[0] + 1;
4439 nritems = btrfs_header_nritems(leaf);
4440 if (slot != nritems) {
4441 /* shift the items */
4442 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4443 btrfs_item_nr_offset(slot),
4444 (nritems - slot) * sizeof(struct btrfs_item));
4447 btrfs_cpu_key_to_disk(&disk_key, new_key);
4448 btrfs_set_item_key(leaf, &disk_key, slot);
4450 new_item = btrfs_item_nr(slot);
4452 btrfs_set_item_offset(leaf, new_item, orig_offset);
4453 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4455 btrfs_set_item_offset(leaf, item,
4456 orig_offset + item_size - split_offset);
4457 btrfs_set_item_size(leaf, item, split_offset);
4459 btrfs_set_header_nritems(leaf, nritems + 1);
4461 /* write the data for the start of the original item */
4462 write_extent_buffer(leaf, buf,
4463 btrfs_item_ptr_offset(leaf, path->slots[0]),
4466 /* write the data for the new item */
4467 write_extent_buffer(leaf, buf + split_offset,
4468 btrfs_item_ptr_offset(leaf, slot),
4469 item_size - split_offset);
4470 btrfs_mark_buffer_dirty(leaf);
4472 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4478 * This function splits a single item into two items,
4479 * giving 'new_key' to the new item and splitting the
4480 * old one at split_offset (from the start of the item).
4482 * The path may be released by this operation. After
4483 * the split, the path is pointing to the old item. The
4484 * new item is going to be in the same node as the old one.
4486 * Note, the item being split must be smaller enough to live alone on
4487 * a tree block with room for one extra struct btrfs_item
4489 * This allows us to split the item in place, keeping a lock on the
4490 * leaf the entire time.
4492 int btrfs_split_item(struct btrfs_trans_handle *trans,
4493 struct btrfs_root *root,
4494 struct btrfs_path *path,
4495 struct btrfs_key *new_key,
4496 unsigned long split_offset)
4499 ret = setup_leaf_for_split(trans, root, path,
4500 sizeof(struct btrfs_item));
4504 ret = split_item(trans, root, path, new_key, split_offset);
4509 * This function duplicate a item, giving 'new_key' to the new item.
4510 * It guarantees both items live in the same tree leaf and the new item
4511 * is contiguous with the original item.
4513 * This allows us to split file extent in place, keeping a lock on the
4514 * leaf the entire time.
4516 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4517 struct btrfs_root *root,
4518 struct btrfs_path *path,
4519 struct btrfs_key *new_key)
4521 struct extent_buffer *leaf;
4525 leaf = path->nodes[0];
4526 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4527 ret = setup_leaf_for_split(trans, root, path,
4528 item_size + sizeof(struct btrfs_item));
4533 setup_items_for_insert(root, path, new_key, &item_size,
4534 item_size, item_size +
4535 sizeof(struct btrfs_item), 1);
4536 leaf = path->nodes[0];
4537 memcpy_extent_buffer(leaf,
4538 btrfs_item_ptr_offset(leaf, path->slots[0]),
4539 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4545 * make the item pointed to by the path smaller. new_size indicates
4546 * how small to make it, and from_end tells us if we just chop bytes
4547 * off the end of the item or if we shift the item to chop bytes off
4550 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4551 u32 new_size, int from_end)
4554 struct extent_buffer *leaf;
4555 struct btrfs_item *item;
4557 unsigned int data_end;
4558 unsigned int old_data_start;
4559 unsigned int old_size;
4560 unsigned int size_diff;
4562 struct btrfs_map_token token;
4564 btrfs_init_map_token(&token);
4566 leaf = path->nodes[0];
4567 slot = path->slots[0];
4569 old_size = btrfs_item_size_nr(leaf, slot);
4570 if (old_size == new_size)
4573 nritems = btrfs_header_nritems(leaf);
4574 data_end = leaf_data_end(root, leaf);
4576 old_data_start = btrfs_item_offset_nr(leaf, slot);
4578 size_diff = old_size - new_size;
4581 BUG_ON(slot >= nritems);
4584 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4586 /* first correct the data pointers */
4587 for (i = slot; i < nritems; i++) {
4589 item = btrfs_item_nr(i);
4591 ioff = btrfs_token_item_offset(leaf, item, &token);
4592 btrfs_set_token_item_offset(leaf, item,
4593 ioff + size_diff, &token);
4596 /* shift the data */
4598 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4599 data_end + size_diff, btrfs_leaf_data(leaf) +
4600 data_end, old_data_start + new_size - data_end);
4602 struct btrfs_disk_key disk_key;
4605 btrfs_item_key(leaf, &disk_key, slot);
4607 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4609 struct btrfs_file_extent_item *fi;
4611 fi = btrfs_item_ptr(leaf, slot,
4612 struct btrfs_file_extent_item);
4613 fi = (struct btrfs_file_extent_item *)(
4614 (unsigned long)fi - size_diff);
4616 if (btrfs_file_extent_type(leaf, fi) ==
4617 BTRFS_FILE_EXTENT_INLINE) {
4618 ptr = btrfs_item_ptr_offset(leaf, slot);
4619 memmove_extent_buffer(leaf, ptr,
4621 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4625 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4626 data_end + size_diff, btrfs_leaf_data(leaf) +
4627 data_end, old_data_start - data_end);
4629 offset = btrfs_disk_key_offset(&disk_key);
4630 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4631 btrfs_set_item_key(leaf, &disk_key, slot);
4633 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4636 item = btrfs_item_nr(slot);
4637 btrfs_set_item_size(leaf, item, new_size);
4638 btrfs_mark_buffer_dirty(leaf);
4640 if (btrfs_leaf_free_space(root, leaf) < 0) {
4641 btrfs_print_leaf(root, leaf);
4647 * make the item pointed to by the path bigger, data_size is the added size.
4649 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4653 struct extent_buffer *leaf;
4654 struct btrfs_item *item;
4656 unsigned int data_end;
4657 unsigned int old_data;
4658 unsigned int old_size;
4660 struct btrfs_map_token token;
4662 btrfs_init_map_token(&token);
4664 leaf = path->nodes[0];
4666 nritems = btrfs_header_nritems(leaf);
4667 data_end = leaf_data_end(root, leaf);
4669 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4670 btrfs_print_leaf(root, leaf);
4673 slot = path->slots[0];
4674 old_data = btrfs_item_end_nr(leaf, slot);
4677 if (slot >= nritems) {
4678 btrfs_print_leaf(root, leaf);
4679 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4685 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4687 /* first correct the data pointers */
4688 for (i = slot; i < nritems; i++) {
4690 item = btrfs_item_nr(i);
4692 ioff = btrfs_token_item_offset(leaf, item, &token);
4693 btrfs_set_token_item_offset(leaf, item,
4694 ioff - data_size, &token);
4697 /* shift the data */
4698 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4699 data_end - data_size, btrfs_leaf_data(leaf) +
4700 data_end, old_data - data_end);
4702 data_end = old_data;
4703 old_size = btrfs_item_size_nr(leaf, slot);
4704 item = btrfs_item_nr(slot);
4705 btrfs_set_item_size(leaf, item, old_size + data_size);
4706 btrfs_mark_buffer_dirty(leaf);
4708 if (btrfs_leaf_free_space(root, leaf) < 0) {
4709 btrfs_print_leaf(root, leaf);
4715 * this is a helper for btrfs_insert_empty_items, the main goal here is
4716 * to save stack depth by doing the bulk of the work in a function
4717 * that doesn't call btrfs_search_slot
4719 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4720 struct btrfs_key *cpu_key, u32 *data_size,
4721 u32 total_data, u32 total_size, int nr)
4723 struct btrfs_item *item;
4726 unsigned int data_end;
4727 struct btrfs_disk_key disk_key;
4728 struct extent_buffer *leaf;
4730 struct btrfs_map_token token;
4732 if (path->slots[0] == 0) {
4733 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4734 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4736 btrfs_unlock_up_safe(path, 1);
4738 btrfs_init_map_token(&token);
4740 leaf = path->nodes[0];
4741 slot = path->slots[0];
4743 nritems = btrfs_header_nritems(leaf);
4744 data_end = leaf_data_end(root, leaf);
4746 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4747 btrfs_print_leaf(root, leaf);
4748 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4749 total_size, btrfs_leaf_free_space(root, leaf));
4753 if (slot != nritems) {
4754 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4756 if (old_data < data_end) {
4757 btrfs_print_leaf(root, leaf);
4758 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4759 slot, old_data, data_end);
4763 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4765 /* first correct the data pointers */
4766 for (i = slot; i < nritems; i++) {
4769 item = btrfs_item_nr( i);
4770 ioff = btrfs_token_item_offset(leaf, item, &token);
4771 btrfs_set_token_item_offset(leaf, item,
4772 ioff - total_data, &token);
4774 /* shift the items */
4775 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4776 btrfs_item_nr_offset(slot),
4777 (nritems - slot) * sizeof(struct btrfs_item));
4779 /* shift the data */
4780 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4781 data_end - total_data, btrfs_leaf_data(leaf) +
4782 data_end, old_data - data_end);
4783 data_end = old_data;
4786 /* setup the item for the new data */
4787 for (i = 0; i < nr; i++) {
4788 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4789 btrfs_set_item_key(leaf, &disk_key, slot + i);
4790 item = btrfs_item_nr(slot + i);
4791 btrfs_set_token_item_offset(leaf, item,
4792 data_end - data_size[i], &token);
4793 data_end -= data_size[i];
4794 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4797 btrfs_set_header_nritems(leaf, nritems + nr);
4798 btrfs_mark_buffer_dirty(leaf);
4800 if (btrfs_leaf_free_space(root, leaf) < 0) {
4801 btrfs_print_leaf(root, leaf);
4807 * Given a key and some data, insert items into the tree.
4808 * This does all the path init required, making room in the tree if needed.
4810 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4811 struct btrfs_root *root,
4812 struct btrfs_path *path,
4813 struct btrfs_key *cpu_key, u32 *data_size,
4822 for (i = 0; i < nr; i++)
4823 total_data += data_size[i];
4825 total_size = total_data + (nr * sizeof(struct btrfs_item));
4826 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4832 slot = path->slots[0];
4835 setup_items_for_insert(root, path, cpu_key, data_size,
4836 total_data, total_size, nr);
4841 * Given a key and some data, insert an item into the tree.
4842 * This does all the path init required, making room in the tree if needed.
4844 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4845 *root, struct btrfs_key *cpu_key, void *data, u32
4849 struct btrfs_path *path;
4850 struct extent_buffer *leaf;
4853 path = btrfs_alloc_path();
4856 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4858 leaf = path->nodes[0];
4859 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4860 write_extent_buffer(leaf, data, ptr, data_size);
4861 btrfs_mark_buffer_dirty(leaf);
4863 btrfs_free_path(path);
4868 * delete the pointer from a given node.
4870 * the tree should have been previously balanced so the deletion does not
4873 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4874 int level, int slot)
4876 struct extent_buffer *parent = path->nodes[level];
4880 nritems = btrfs_header_nritems(parent);
4881 if (slot != nritems - 1) {
4883 tree_mod_log_eb_move(root->fs_info, parent, slot,
4884 slot + 1, nritems - slot - 1);
4885 memmove_extent_buffer(parent,
4886 btrfs_node_key_ptr_offset(slot),
4887 btrfs_node_key_ptr_offset(slot + 1),
4888 sizeof(struct btrfs_key_ptr) *
4889 (nritems - slot - 1));
4891 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4892 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4897 btrfs_set_header_nritems(parent, nritems);
4898 if (nritems == 0 && parent == root->node) {
4899 BUG_ON(btrfs_header_level(root->node) != 1);
4900 /* just turn the root into a leaf and break */
4901 btrfs_set_header_level(root->node, 0);
4902 } else if (slot == 0) {
4903 struct btrfs_disk_key disk_key;
4905 btrfs_node_key(parent, &disk_key, 0);
4906 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4908 btrfs_mark_buffer_dirty(parent);
4912 * a helper function to delete the leaf pointed to by path->slots[1] and
4915 * This deletes the pointer in path->nodes[1] and frees the leaf
4916 * block extent. zero is returned if it all worked out, < 0 otherwise.
4918 * The path must have already been setup for deleting the leaf, including
4919 * all the proper balancing. path->nodes[1] must be locked.
4921 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4922 struct btrfs_root *root,
4923 struct btrfs_path *path,
4924 struct extent_buffer *leaf)
4926 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4927 del_ptr(root, path, 1, path->slots[1]);
4930 * btrfs_free_extent is expensive, we want to make sure we
4931 * aren't holding any locks when we call it
4933 btrfs_unlock_up_safe(path, 0);
4935 root_sub_used(root, leaf->len);
4937 extent_buffer_get(leaf);
4938 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4939 free_extent_buffer_stale(leaf);
4942 * delete the item at the leaf level in path. If that empties
4943 * the leaf, remove it from the tree
4945 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4946 struct btrfs_path *path, int slot, int nr)
4948 struct extent_buffer *leaf;
4949 struct btrfs_item *item;
4956 struct btrfs_map_token token;
4958 btrfs_init_map_token(&token);
4960 leaf = path->nodes[0];
4961 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4963 for (i = 0; i < nr; i++)
4964 dsize += btrfs_item_size_nr(leaf, slot + i);
4966 nritems = btrfs_header_nritems(leaf);
4968 if (slot + nr != nritems) {
4969 int data_end = leaf_data_end(root, leaf);
4971 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4973 btrfs_leaf_data(leaf) + data_end,
4974 last_off - data_end);
4976 for (i = slot + nr; i < nritems; i++) {
4979 item = btrfs_item_nr(i);
4980 ioff = btrfs_token_item_offset(leaf, item, &token);
4981 btrfs_set_token_item_offset(leaf, item,
4982 ioff + dsize, &token);
4985 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4986 btrfs_item_nr_offset(slot + nr),
4987 sizeof(struct btrfs_item) *
4988 (nritems - slot - nr));
4990 btrfs_set_header_nritems(leaf, nritems - nr);
4993 /* delete the leaf if we've emptied it */
4995 if (leaf == root->node) {
4996 btrfs_set_header_level(leaf, 0);
4998 btrfs_set_path_blocking(path);
4999 clean_tree_block(trans, root->fs_info, leaf);
5000 btrfs_del_leaf(trans, root, path, leaf);
5003 int used = leaf_space_used(leaf, 0, nritems);
5005 struct btrfs_disk_key disk_key;
5007 btrfs_item_key(leaf, &disk_key, 0);
5008 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5011 /* delete the leaf if it is mostly empty */
5012 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5013 /* push_leaf_left fixes the path.
5014 * make sure the path still points to our leaf
5015 * for possible call to del_ptr below
5017 slot = path->slots[1];
5018 extent_buffer_get(leaf);
5020 btrfs_set_path_blocking(path);
5021 wret = push_leaf_left(trans, root, path, 1, 1,
5023 if (wret < 0 && wret != -ENOSPC)
5026 if (path->nodes[0] == leaf &&
5027 btrfs_header_nritems(leaf)) {
5028 wret = push_leaf_right(trans, root, path, 1,
5030 if (wret < 0 && wret != -ENOSPC)
5034 if (btrfs_header_nritems(leaf) == 0) {
5035 path->slots[1] = slot;
5036 btrfs_del_leaf(trans, root, path, leaf);
5037 free_extent_buffer(leaf);
5040 /* if we're still in the path, make sure
5041 * we're dirty. Otherwise, one of the
5042 * push_leaf functions must have already
5043 * dirtied this buffer
5045 if (path->nodes[0] == leaf)
5046 btrfs_mark_buffer_dirty(leaf);
5047 free_extent_buffer(leaf);
5050 btrfs_mark_buffer_dirty(leaf);
5057 * search the tree again to find a leaf with lesser keys
5058 * returns 0 if it found something or 1 if there are no lesser leaves.
5059 * returns < 0 on io errors.
5061 * This may release the path, and so you may lose any locks held at the
5064 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5066 struct btrfs_key key;
5067 struct btrfs_disk_key found_key;
5070 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5072 if (key.offset > 0) {
5074 } else if (key.type > 0) {
5076 key.offset = (u64)-1;
5077 } else if (key.objectid > 0) {
5080 key.offset = (u64)-1;
5085 btrfs_release_path(path);
5086 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5089 btrfs_item_key(path->nodes[0], &found_key, 0);
5090 ret = comp_keys(&found_key, &key);
5092 * We might have had an item with the previous key in the tree right
5093 * before we released our path. And after we released our path, that
5094 * item might have been pushed to the first slot (0) of the leaf we
5095 * were holding due to a tree balance. Alternatively, an item with the
5096 * previous key can exist as the only element of a leaf (big fat item).
5097 * Therefore account for these 2 cases, so that our callers (like
5098 * btrfs_previous_item) don't miss an existing item with a key matching
5099 * the previous key we computed above.
5107 * A helper function to walk down the tree starting at min_key, and looking
5108 * for nodes or leaves that are have a minimum transaction id.
5109 * This is used by the btree defrag code, and tree logging
5111 * This does not cow, but it does stuff the starting key it finds back
5112 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5113 * key and get a writable path.
5115 * This does lock as it descends, and path->keep_locks should be set
5116 * to 1 by the caller.
5118 * This honors path->lowest_level to prevent descent past a given level
5121 * min_trans indicates the oldest transaction that you are interested
5122 * in walking through. Any nodes or leaves older than min_trans are
5123 * skipped over (without reading them).
5125 * returns zero if something useful was found, < 0 on error and 1 if there
5126 * was nothing in the tree that matched the search criteria.
5128 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5129 struct btrfs_path *path,
5132 struct extent_buffer *cur;
5133 struct btrfs_key found_key;
5139 int keep_locks = path->keep_locks;
5141 path->keep_locks = 1;
5143 cur = btrfs_read_lock_root_node(root);
5144 level = btrfs_header_level(cur);
5145 WARN_ON(path->nodes[level]);
5146 path->nodes[level] = cur;
5147 path->locks[level] = BTRFS_READ_LOCK;
5149 if (btrfs_header_generation(cur) < min_trans) {
5154 nritems = btrfs_header_nritems(cur);
5155 level = btrfs_header_level(cur);
5156 sret = bin_search(cur, min_key, level, &slot);
5158 /* at the lowest level, we're done, setup the path and exit */
5159 if (level == path->lowest_level) {
5160 if (slot >= nritems)
5163 path->slots[level] = slot;
5164 btrfs_item_key_to_cpu(cur, &found_key, slot);
5167 if (sret && slot > 0)
5170 * check this node pointer against the min_trans parameters.
5171 * If it is too old, old, skip to the next one.
5173 while (slot < nritems) {
5176 gen = btrfs_node_ptr_generation(cur, slot);
5177 if (gen < min_trans) {
5185 * we didn't find a candidate key in this node, walk forward
5186 * and find another one
5188 if (slot >= nritems) {
5189 path->slots[level] = slot;
5190 btrfs_set_path_blocking(path);
5191 sret = btrfs_find_next_key(root, path, min_key, level,
5194 btrfs_release_path(path);
5200 /* save our key for returning back */
5201 btrfs_node_key_to_cpu(cur, &found_key, slot);
5202 path->slots[level] = slot;
5203 if (level == path->lowest_level) {
5207 btrfs_set_path_blocking(path);
5208 cur = read_node_slot(root, cur, slot);
5209 BUG_ON(!cur); /* -ENOMEM */
5211 btrfs_tree_read_lock(cur);
5213 path->locks[level - 1] = BTRFS_READ_LOCK;
5214 path->nodes[level - 1] = cur;
5215 unlock_up(path, level, 1, 0, NULL);
5216 btrfs_clear_path_blocking(path, NULL, 0);
5219 path->keep_locks = keep_locks;
5221 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5222 btrfs_set_path_blocking(path);
5223 memcpy(min_key, &found_key, sizeof(found_key));
5228 static void tree_move_down(struct btrfs_root *root,
5229 struct btrfs_path *path,
5230 int *level, int root_level)
5232 BUG_ON(*level == 0);
5233 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5234 path->slots[*level]);
5235 path->slots[*level - 1] = 0;
5239 static int tree_move_next_or_upnext(struct btrfs_root *root,
5240 struct btrfs_path *path,
5241 int *level, int root_level)
5245 nritems = btrfs_header_nritems(path->nodes[*level]);
5247 path->slots[*level]++;
5249 while (path->slots[*level] >= nritems) {
5250 if (*level == root_level)
5254 path->slots[*level] = 0;
5255 free_extent_buffer(path->nodes[*level]);
5256 path->nodes[*level] = NULL;
5258 path->slots[*level]++;
5260 nritems = btrfs_header_nritems(path->nodes[*level]);
5267 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5270 static int tree_advance(struct btrfs_root *root,
5271 struct btrfs_path *path,
5272 int *level, int root_level,
5274 struct btrfs_key *key)
5278 if (*level == 0 || !allow_down) {
5279 ret = tree_move_next_or_upnext(root, path, level, root_level);
5281 tree_move_down(root, path, level, root_level);
5286 btrfs_item_key_to_cpu(path->nodes[*level], key,
5287 path->slots[*level]);
5289 btrfs_node_key_to_cpu(path->nodes[*level], key,
5290 path->slots[*level]);
5295 static int tree_compare_item(struct btrfs_root *left_root,
5296 struct btrfs_path *left_path,
5297 struct btrfs_path *right_path,
5302 unsigned long off1, off2;
5304 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5305 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5309 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5310 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5311 right_path->slots[0]);
5313 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5315 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5322 #define ADVANCE_ONLY_NEXT -1
5325 * This function compares two trees and calls the provided callback for
5326 * every changed/new/deleted item it finds.
5327 * If shared tree blocks are encountered, whole subtrees are skipped, making
5328 * the compare pretty fast on snapshotted subvolumes.
5330 * This currently works on commit roots only. As commit roots are read only,
5331 * we don't do any locking. The commit roots are protected with transactions.
5332 * Transactions are ended and rejoined when a commit is tried in between.
5334 * This function checks for modifications done to the trees while comparing.
5335 * If it detects a change, it aborts immediately.
5337 int btrfs_compare_trees(struct btrfs_root *left_root,
5338 struct btrfs_root *right_root,
5339 btrfs_changed_cb_t changed_cb, void *ctx)
5343 struct btrfs_path *left_path = NULL;
5344 struct btrfs_path *right_path = NULL;
5345 struct btrfs_key left_key;
5346 struct btrfs_key right_key;
5347 char *tmp_buf = NULL;
5348 int left_root_level;
5349 int right_root_level;
5352 int left_end_reached;
5353 int right_end_reached;
5361 left_path = btrfs_alloc_path();
5366 right_path = btrfs_alloc_path();
5372 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5374 tmp_buf = vmalloc(left_root->nodesize);
5381 left_path->search_commit_root = 1;
5382 left_path->skip_locking = 1;
5383 right_path->search_commit_root = 1;
5384 right_path->skip_locking = 1;
5387 * Strategy: Go to the first items of both trees. Then do
5389 * If both trees are at level 0
5390 * Compare keys of current items
5391 * If left < right treat left item as new, advance left tree
5393 * If left > right treat right item as deleted, advance right tree
5395 * If left == right do deep compare of items, treat as changed if
5396 * needed, advance both trees and repeat
5397 * If both trees are at the same level but not at level 0
5398 * Compare keys of current nodes/leafs
5399 * If left < right advance left tree and repeat
5400 * If left > right advance right tree and repeat
5401 * If left == right compare blockptrs of the next nodes/leafs
5402 * If they match advance both trees but stay at the same level
5404 * If they don't match advance both trees while allowing to go
5406 * If tree levels are different
5407 * Advance the tree that needs it and repeat
5409 * Advancing a tree means:
5410 * If we are at level 0, try to go to the next slot. If that's not
5411 * possible, go one level up and repeat. Stop when we found a level
5412 * where we could go to the next slot. We may at this point be on a
5415 * If we are not at level 0 and not on shared tree blocks, go one
5418 * If we are not at level 0 and on shared tree blocks, go one slot to
5419 * the right if possible or go up and right.
5422 down_read(&left_root->fs_info->commit_root_sem);
5423 left_level = btrfs_header_level(left_root->commit_root);
5424 left_root_level = left_level;
5425 left_path->nodes[left_level] = left_root->commit_root;
5426 extent_buffer_get(left_path->nodes[left_level]);
5428 right_level = btrfs_header_level(right_root->commit_root);
5429 right_root_level = right_level;
5430 right_path->nodes[right_level] = right_root->commit_root;
5431 extent_buffer_get(right_path->nodes[right_level]);
5432 up_read(&left_root->fs_info->commit_root_sem);
5434 if (left_level == 0)
5435 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5436 &left_key, left_path->slots[left_level]);
5438 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5439 &left_key, left_path->slots[left_level]);
5440 if (right_level == 0)
5441 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5442 &right_key, right_path->slots[right_level]);
5444 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5445 &right_key, right_path->slots[right_level]);
5447 left_end_reached = right_end_reached = 0;
5448 advance_left = advance_right = 0;
5451 if (advance_left && !left_end_reached) {
5452 ret = tree_advance(left_root, left_path, &left_level,
5454 advance_left != ADVANCE_ONLY_NEXT,
5457 left_end_reached = ADVANCE;
5460 if (advance_right && !right_end_reached) {
5461 ret = tree_advance(right_root, right_path, &right_level,
5463 advance_right != ADVANCE_ONLY_NEXT,
5466 right_end_reached = ADVANCE;
5470 if (left_end_reached && right_end_reached) {
5473 } else if (left_end_reached) {
5474 if (right_level == 0) {
5475 ret = changed_cb(left_root, right_root,
5476 left_path, right_path,
5478 BTRFS_COMPARE_TREE_DELETED,
5483 advance_right = ADVANCE;
5485 } else if (right_end_reached) {
5486 if (left_level == 0) {
5487 ret = changed_cb(left_root, right_root,
5488 left_path, right_path,
5490 BTRFS_COMPARE_TREE_NEW,
5495 advance_left = ADVANCE;
5499 if (left_level == 0 && right_level == 0) {
5500 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5502 ret = changed_cb(left_root, right_root,
5503 left_path, right_path,
5505 BTRFS_COMPARE_TREE_NEW,
5509 advance_left = ADVANCE;
5510 } else if (cmp > 0) {
5511 ret = changed_cb(left_root, right_root,
5512 left_path, right_path,
5514 BTRFS_COMPARE_TREE_DELETED,
5518 advance_right = ADVANCE;
5520 enum btrfs_compare_tree_result result;
5522 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5523 ret = tree_compare_item(left_root, left_path,
5524 right_path, tmp_buf);
5526 result = BTRFS_COMPARE_TREE_CHANGED;
5528 result = BTRFS_COMPARE_TREE_SAME;
5529 ret = changed_cb(left_root, right_root,
5530 left_path, right_path,
5531 &left_key, result, ctx);
5534 advance_left = ADVANCE;
5535 advance_right = ADVANCE;
5537 } else if (left_level == right_level) {
5538 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5540 advance_left = ADVANCE;
5541 } else if (cmp > 0) {
5542 advance_right = ADVANCE;
5544 left_blockptr = btrfs_node_blockptr(
5545 left_path->nodes[left_level],
5546 left_path->slots[left_level]);
5547 right_blockptr = btrfs_node_blockptr(
5548 right_path->nodes[right_level],
5549 right_path->slots[right_level]);
5550 left_gen = btrfs_node_ptr_generation(
5551 left_path->nodes[left_level],
5552 left_path->slots[left_level]);
5553 right_gen = btrfs_node_ptr_generation(
5554 right_path->nodes[right_level],
5555 right_path->slots[right_level]);
5556 if (left_blockptr == right_blockptr &&
5557 left_gen == right_gen) {
5559 * As we're on a shared block, don't
5560 * allow to go deeper.
5562 advance_left = ADVANCE_ONLY_NEXT;
5563 advance_right = ADVANCE_ONLY_NEXT;
5565 advance_left = ADVANCE;
5566 advance_right = ADVANCE;
5569 } else if (left_level < right_level) {
5570 advance_right = ADVANCE;
5572 advance_left = ADVANCE;
5577 btrfs_free_path(left_path);
5578 btrfs_free_path(right_path);
5584 * this is similar to btrfs_next_leaf, but does not try to preserve
5585 * and fixup the path. It looks for and returns the next key in the
5586 * tree based on the current path and the min_trans parameters.
5588 * 0 is returned if another key is found, < 0 if there are any errors
5589 * and 1 is returned if there are no higher keys in the tree
5591 * path->keep_locks should be set to 1 on the search made before
5592 * calling this function.
5594 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5595 struct btrfs_key *key, int level, u64 min_trans)
5598 struct extent_buffer *c;
5600 WARN_ON(!path->keep_locks);
5601 while (level < BTRFS_MAX_LEVEL) {
5602 if (!path->nodes[level])
5605 slot = path->slots[level] + 1;
5606 c = path->nodes[level];
5608 if (slot >= btrfs_header_nritems(c)) {
5611 struct btrfs_key cur_key;
5612 if (level + 1 >= BTRFS_MAX_LEVEL ||
5613 !path->nodes[level + 1])
5616 if (path->locks[level + 1]) {
5621 slot = btrfs_header_nritems(c) - 1;
5623 btrfs_item_key_to_cpu(c, &cur_key, slot);
5625 btrfs_node_key_to_cpu(c, &cur_key, slot);
5627 orig_lowest = path->lowest_level;
5628 btrfs_release_path(path);
5629 path->lowest_level = level;
5630 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5632 path->lowest_level = orig_lowest;
5636 c = path->nodes[level];
5637 slot = path->slots[level];
5644 btrfs_item_key_to_cpu(c, key, slot);
5646 u64 gen = btrfs_node_ptr_generation(c, slot);
5648 if (gen < min_trans) {
5652 btrfs_node_key_to_cpu(c, key, slot);
5660 * search the tree again to find a leaf with greater keys
5661 * returns 0 if it found something or 1 if there are no greater leaves.
5662 * returns < 0 on io errors.
5664 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5666 return btrfs_next_old_leaf(root, path, 0);
5669 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5674 struct extent_buffer *c;
5675 struct extent_buffer *next;
5676 struct btrfs_key key;
5679 int old_spinning = path->leave_spinning;
5680 int next_rw_lock = 0;
5682 nritems = btrfs_header_nritems(path->nodes[0]);
5686 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5691 btrfs_release_path(path);
5693 path->keep_locks = 1;
5694 path->leave_spinning = 1;
5697 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5699 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5700 path->keep_locks = 0;
5705 nritems = btrfs_header_nritems(path->nodes[0]);
5707 * by releasing the path above we dropped all our locks. A balance
5708 * could have added more items next to the key that used to be
5709 * at the very end of the block. So, check again here and
5710 * advance the path if there are now more items available.
5712 if (nritems > 0 && path->slots[0] < nritems - 1) {
5719 * So the above check misses one case:
5720 * - after releasing the path above, someone has removed the item that
5721 * used to be at the very end of the block, and balance between leafs
5722 * gets another one with bigger key.offset to replace it.
5724 * This one should be returned as well, or we can get leaf corruption
5725 * later(esp. in __btrfs_drop_extents()).
5727 * And a bit more explanation about this check,
5728 * with ret > 0, the key isn't found, the path points to the slot
5729 * where it should be inserted, so the path->slots[0] item must be the
5732 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5737 while (level < BTRFS_MAX_LEVEL) {
5738 if (!path->nodes[level]) {
5743 slot = path->slots[level] + 1;
5744 c = path->nodes[level];
5745 if (slot >= btrfs_header_nritems(c)) {
5747 if (level == BTRFS_MAX_LEVEL) {
5755 btrfs_tree_unlock_rw(next, next_rw_lock);
5756 free_extent_buffer(next);
5760 next_rw_lock = path->locks[level];
5761 ret = read_block_for_search(NULL, root, path, &next, level,
5767 btrfs_release_path(path);
5771 if (!path->skip_locking) {
5772 ret = btrfs_try_tree_read_lock(next);
5773 if (!ret && time_seq) {
5775 * If we don't get the lock, we may be racing
5776 * with push_leaf_left, holding that lock while
5777 * itself waiting for the leaf we've currently
5778 * locked. To solve this situation, we give up
5779 * on our lock and cycle.
5781 free_extent_buffer(next);
5782 btrfs_release_path(path);
5787 btrfs_set_path_blocking(path);
5788 btrfs_tree_read_lock(next);
5789 btrfs_clear_path_blocking(path, next,
5792 next_rw_lock = BTRFS_READ_LOCK;
5796 path->slots[level] = slot;
5799 c = path->nodes[level];
5800 if (path->locks[level])
5801 btrfs_tree_unlock_rw(c, path->locks[level]);
5803 free_extent_buffer(c);
5804 path->nodes[level] = next;
5805 path->slots[level] = 0;
5806 if (!path->skip_locking)
5807 path->locks[level] = next_rw_lock;
5811 ret = read_block_for_search(NULL, root, path, &next, level,
5817 btrfs_release_path(path);
5821 if (!path->skip_locking) {
5822 ret = btrfs_try_tree_read_lock(next);
5824 btrfs_set_path_blocking(path);
5825 btrfs_tree_read_lock(next);
5826 btrfs_clear_path_blocking(path, next,
5829 next_rw_lock = BTRFS_READ_LOCK;
5834 unlock_up(path, 0, 1, 0, NULL);
5835 path->leave_spinning = old_spinning;
5837 btrfs_set_path_blocking(path);
5843 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5844 * searching until it gets past min_objectid or finds an item of 'type'
5846 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5848 int btrfs_previous_item(struct btrfs_root *root,
5849 struct btrfs_path *path, u64 min_objectid,
5852 struct btrfs_key found_key;
5853 struct extent_buffer *leaf;
5858 if (path->slots[0] == 0) {
5859 btrfs_set_path_blocking(path);
5860 ret = btrfs_prev_leaf(root, path);
5866 leaf = path->nodes[0];
5867 nritems = btrfs_header_nritems(leaf);
5870 if (path->slots[0] == nritems)
5873 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5874 if (found_key.objectid < min_objectid)
5876 if (found_key.type == type)
5878 if (found_key.objectid == min_objectid &&
5879 found_key.type < type)
5886 * search in extent tree to find a previous Metadata/Data extent item with
5889 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5891 int btrfs_previous_extent_item(struct btrfs_root *root,
5892 struct btrfs_path *path, u64 min_objectid)
5894 struct btrfs_key found_key;
5895 struct extent_buffer *leaf;
5900 if (path->slots[0] == 0) {
5901 btrfs_set_path_blocking(path);
5902 ret = btrfs_prev_leaf(root, path);
5908 leaf = path->nodes[0];
5909 nritems = btrfs_header_nritems(leaf);
5912 if (path->slots[0] == nritems)
5915 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5916 if (found_key.objectid < min_objectid)
5918 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5919 found_key.type == BTRFS_METADATA_ITEM_KEY)
5921 if (found_key.objectid == min_objectid &&
5922 found_key.type < BTRFS_EXTENT_ITEM_KEY)