Btrfs: error out if generic_bin_search get invalid arguments
[platform/kernel/linux-starfive.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32                       *root, struct btrfs_key *ins_key,
33                       struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct btrfs_root *root, struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct btrfs_root *root,
39                               struct extent_buffer *dst_buf,
40                               struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42                     int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84         if (held) {
85                 btrfs_set_lock_blocking_rw(held, held_rw);
86                 if (held_rw == BTRFS_WRITE_LOCK)
87                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88                 else if (held_rw == BTRFS_READ_LOCK)
89                         held_rw = BTRFS_READ_LOCK_BLOCKING;
90         }
91         btrfs_set_path_blocking(p);
92
93         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94                 if (p->nodes[i] && p->locks[i]) {
95                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97                                 p->locks[i] = BTRFS_WRITE_LOCK;
98                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99                                 p->locks[i] = BTRFS_READ_LOCK;
100                 }
101         }
102
103         if (held)
104                 btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110         if (!p)
111                 return;
112         btrfs_release_path(p);
113         kmem_cache_free(btrfs_path_cachep, p);
114 }
115
116 /*
117  * path release drops references on the extent buffers in the path
118  * and it drops any locks held by this path
119  *
120  * It is safe to call this on paths that no locks or extent buffers held.
121  */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124         int i;
125
126         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127                 p->slots[i] = 0;
128                 if (!p->nodes[i])
129                         continue;
130                 if (p->locks[i]) {
131                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132                         p->locks[i] = 0;
133                 }
134                 free_extent_buffer(p->nodes[i]);
135                 p->nodes[i] = NULL;
136         }
137 }
138
139 /*
140  * safely gets a reference on the root node of a tree.  A lock
141  * is not taken, so a concurrent writer may put a different node
142  * at the root of the tree.  See btrfs_lock_root_node for the
143  * looping required.
144  *
145  * The extent buffer returned by this has a reference taken, so
146  * it won't disappear.  It may stop being the root of the tree
147  * at any time because there are no locks held.
148  */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151         struct extent_buffer *eb;
152
153         while (1) {
154                 rcu_read_lock();
155                 eb = rcu_dereference(root->node);
156
157                 /*
158                  * RCU really hurts here, we could free up the root node because
159                  * it was COWed but we may not get the new root node yet so do
160                  * the inc_not_zero dance and if it doesn't work then
161                  * synchronize_rcu and try again.
162                  */
163                 if (atomic_inc_not_zero(&eb->refs)) {
164                         rcu_read_unlock();
165                         break;
166                 }
167                 rcu_read_unlock();
168                 synchronize_rcu();
169         }
170         return eb;
171 }
172
173 /* loop around taking references on and locking the root node of the
174  * tree until you end up with a lock on the root.  A locked buffer
175  * is returned, with a reference held.
176  */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179         struct extent_buffer *eb;
180
181         while (1) {
182                 eb = btrfs_root_node(root);
183                 btrfs_tree_lock(eb);
184                 if (eb == root->node)
185                         break;
186                 btrfs_tree_unlock(eb);
187                 free_extent_buffer(eb);
188         }
189         return eb;
190 }
191
192 /* loop around taking references on and locking the root node of the
193  * tree until you end up with a lock on the root.  A locked buffer
194  * is returned, with a reference held.
195  */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198         struct extent_buffer *eb;
199
200         while (1) {
201                 eb = btrfs_root_node(root);
202                 btrfs_tree_read_lock(eb);
203                 if (eb == root->node)
204                         break;
205                 btrfs_tree_read_unlock(eb);
206                 free_extent_buffer(eb);
207         }
208         return eb;
209 }
210
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212  * put onto a simple dirty list.  transaction.c walks this to make sure they
213  * get properly updated on disk.
214  */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219                 return;
220
221         spin_lock(&root->fs_info->trans_lock);
222         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223                 /* Want the extent tree to be the last on the list */
224                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225                         list_move_tail(&root->dirty_list,
226                                        &root->fs_info->dirty_cowonly_roots);
227                 else
228                         list_move(&root->dirty_list,
229                                   &root->fs_info->dirty_cowonly_roots);
230         }
231         spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240                       struct btrfs_root *root,
241                       struct extent_buffer *buf,
242                       struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244         struct extent_buffer *cow;
245         int ret = 0;
246         int level;
247         struct btrfs_disk_key disk_key;
248
249         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250                 trans->transid != root->fs_info->running_transaction->transid);
251         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252                 trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261                         &disk_key, level, buf->start, 0);
262         if (IS_ERR(cow))
263                 return PTR_ERR(cow);
264
265         copy_extent_buffer(cow, buf, 0, 0, cow->len);
266         btrfs_set_header_bytenr(cow, cow->start);
267         btrfs_set_header_generation(cow, trans->transid);
268         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270                                      BTRFS_HEADER_FLAG_RELOC);
271         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273         else
274                 btrfs_set_header_owner(cow, new_root_objectid);
275
276         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277                             BTRFS_FSID_SIZE);
278
279         WARN_ON(btrfs_header_generation(buf) > trans->transid);
280         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281                 ret = btrfs_inc_ref(trans, root, cow, 1);
282         else
283                 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285         if (ret)
286                 return ret;
287
288         btrfs_mark_buffer_dirty(cow);
289         *cow_ret = cow;
290         return 0;
291 }
292
293 enum mod_log_op {
294         MOD_LOG_KEY_REPLACE,
295         MOD_LOG_KEY_ADD,
296         MOD_LOG_KEY_REMOVE,
297         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299         MOD_LOG_MOVE_KEYS,
300         MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304         int dst_slot;
305         int nr_items;
306 };
307
308 struct tree_mod_root {
309         u64 logical;
310         u8 level;
311 };
312
313 struct tree_mod_elem {
314         struct rb_node node;
315         u64 logical;
316         u64 seq;
317         enum mod_log_op op;
318
319         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320         int slot;
321
322         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323         u64 generation;
324
325         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326         struct btrfs_disk_key key;
327         u64 blockptr;
328
329         /* this is used for op == MOD_LOG_MOVE_KEYS */
330         struct tree_mod_move move;
331
332         /* this is used for op == MOD_LOG_ROOT_REPLACE */
333         struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338         read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343         read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348         write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353         write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357  * Pull a new tree mod seq number for our operation.
358  */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361         return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373                            struct seq_list *elem)
374 {
375         tree_mod_log_write_lock(fs_info);
376         spin_lock(&fs_info->tree_mod_seq_lock);
377         if (!elem->seq) {
378                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380         }
381         spin_unlock(&fs_info->tree_mod_seq_lock);
382         tree_mod_log_write_unlock(fs_info);
383
384         return elem->seq;
385 }
386
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388                             struct seq_list *elem)
389 {
390         struct rb_root *tm_root;
391         struct rb_node *node;
392         struct rb_node *next;
393         struct seq_list *cur_elem;
394         struct tree_mod_elem *tm;
395         u64 min_seq = (u64)-1;
396         u64 seq_putting = elem->seq;
397
398         if (!seq_putting)
399                 return;
400
401         spin_lock(&fs_info->tree_mod_seq_lock);
402         list_del(&elem->list);
403         elem->seq = 0;
404
405         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406                 if (cur_elem->seq < min_seq) {
407                         if (seq_putting > cur_elem->seq) {
408                                 /*
409                                  * blocker with lower sequence number exists, we
410                                  * cannot remove anything from the log
411                                  */
412                                 spin_unlock(&fs_info->tree_mod_seq_lock);
413                                 return;
414                         }
415                         min_seq = cur_elem->seq;
416                 }
417         }
418         spin_unlock(&fs_info->tree_mod_seq_lock);
419
420         /*
421          * anything that's lower than the lowest existing (read: blocked)
422          * sequence number can be removed from the tree.
423          */
424         tree_mod_log_write_lock(fs_info);
425         tm_root = &fs_info->tree_mod_log;
426         for (node = rb_first(tm_root); node; node = next) {
427                 next = rb_next(node);
428                 tm = container_of(node, struct tree_mod_elem, node);
429                 if (tm->seq > min_seq)
430                         continue;
431                 rb_erase(node, tm_root);
432                 kfree(tm);
433         }
434         tree_mod_log_write_unlock(fs_info);
435 }
436
437 /*
438  * key order of the log:
439  *       node/leaf start address -> sequence
440  *
441  * The 'start address' is the logical address of the *new* root node
442  * for root replace operations, or the logical address of the affected
443  * block for all other operations.
444  *
445  * Note: must be called with write lock (tree_mod_log_write_lock).
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm);
456
457         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459         tm_root = &fs_info->tree_mod_log;
460         new = &tm_root->rb_node;
461         while (*new) {
462                 cur = container_of(*new, struct tree_mod_elem, node);
463                 parent = *new;
464                 if (cur->logical < tm->logical)
465                         new = &((*new)->rb_left);
466                 else if (cur->logical > tm->logical)
467                         new = &((*new)->rb_right);
468                 else if (cur->seq < tm->seq)
469                         new = &((*new)->rb_left);
470                 else if (cur->seq > tm->seq)
471                         new = &((*new)->rb_right);
472                 else
473                         return -EEXIST;
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497                 tree_mod_log_write_unlock(fs_info);
498                 return 1;
499         }
500
501         return 0;
502 }
503
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506                                     struct extent_buffer *eb)
507 {
508         smp_mb();
509         if (list_empty(&(fs_info)->tree_mod_seq_list))
510                 return 0;
511         if (eb && btrfs_header_level(eb) == 0)
512                 return 0;
513
514         return 1;
515 }
516
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519                     enum mod_log_op op, gfp_t flags)
520 {
521         struct tree_mod_elem *tm;
522
523         tm = kzalloc(sizeof(*tm), flags);
524         if (!tm)
525                 return NULL;
526
527         tm->logical = eb->start;
528         if (op != MOD_LOG_KEY_ADD) {
529                 btrfs_node_key(eb, &tm->key, slot);
530                 tm->blockptr = btrfs_node_blockptr(eb, slot);
531         }
532         tm->op = op;
533         tm->slot = slot;
534         tm->generation = btrfs_node_ptr_generation(eb, slot);
535         RB_CLEAR_NODE(&tm->node);
536
537         return tm;
538 }
539
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542                         struct extent_buffer *eb, int slot,
543                         enum mod_log_op op, gfp_t flags)
544 {
545         struct tree_mod_elem *tm;
546         int ret;
547
548         if (!tree_mod_need_log(fs_info, eb))
549                 return 0;
550
551         tm = alloc_tree_mod_elem(eb, slot, op, flags);
552         if (!tm)
553                 return -ENOMEM;
554
555         if (tree_mod_dont_log(fs_info, eb)) {
556                 kfree(tm);
557                 return 0;
558         }
559
560         ret = __tree_mod_log_insert(fs_info, tm);
561         tree_mod_log_write_unlock(fs_info);
562         if (ret)
563                 kfree(tm);
564
565         return ret;
566 }
567
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570                          struct extent_buffer *eb, int dst_slot, int src_slot,
571                          int nr_items, gfp_t flags)
572 {
573         struct tree_mod_elem *tm = NULL;
574         struct tree_mod_elem **tm_list = NULL;
575         int ret = 0;
576         int i;
577         int locked = 0;
578
579         if (!tree_mod_need_log(fs_info, eb))
580                 return 0;
581
582         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583         if (!tm_list)
584                 return -ENOMEM;
585
586         tm = kzalloc(sizeof(*tm), flags);
587         if (!tm) {
588                 ret = -ENOMEM;
589                 goto free_tms;
590         }
591
592         tm->logical = eb->start;
593         tm->slot = src_slot;
594         tm->move.dst_slot = dst_slot;
595         tm->move.nr_items = nr_items;
596         tm->op = MOD_LOG_MOVE_KEYS;
597
598         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601                 if (!tm_list[i]) {
602                         ret = -ENOMEM;
603                         goto free_tms;
604                 }
605         }
606
607         if (tree_mod_dont_log(fs_info, eb))
608                 goto free_tms;
609         locked = 1;
610
611         /*
612          * When we override something during the move, we log these removals.
613          * This can only happen when we move towards the beginning of the
614          * buffer, i.e. dst_slot < src_slot.
615          */
616         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618                 if (ret)
619                         goto free_tms;
620         }
621
622         ret = __tree_mod_log_insert(fs_info, tm);
623         if (ret)
624                 goto free_tms;
625         tree_mod_log_write_unlock(fs_info);
626         kfree(tm_list);
627
628         return 0;
629 free_tms:
630         for (i = 0; i < nr_items; i++) {
631                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633                 kfree(tm_list[i]);
634         }
635         if (locked)
636                 tree_mod_log_write_unlock(fs_info);
637         kfree(tm_list);
638         kfree(tm);
639
640         return ret;
641 }
642
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645                        struct tree_mod_elem **tm_list,
646                        int nritems)
647 {
648         int i, j;
649         int ret;
650
651         for (i = nritems - 1; i >= 0; i--) {
652                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653                 if (ret) {
654                         for (j = nritems - 1; j > i; j--)
655                                 rb_erase(&tm_list[j]->node,
656                                          &fs_info->tree_mod_log);
657                         return ret;
658                 }
659         }
660
661         return 0;
662 }
663
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666                          struct extent_buffer *old_root,
667                          struct extent_buffer *new_root, gfp_t flags,
668                          int log_removal)
669 {
670         struct tree_mod_elem *tm = NULL;
671         struct tree_mod_elem **tm_list = NULL;
672         int nritems = 0;
673         int ret = 0;
674         int i;
675
676         if (!tree_mod_need_log(fs_info, NULL))
677                 return 0;
678
679         if (log_removal && btrfs_header_level(old_root) > 0) {
680                 nritems = btrfs_header_nritems(old_root);
681                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682                                   flags);
683                 if (!tm_list) {
684                         ret = -ENOMEM;
685                         goto free_tms;
686                 }
687                 for (i = 0; i < nritems; i++) {
688                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
689                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690                         if (!tm_list[i]) {
691                                 ret = -ENOMEM;
692                                 goto free_tms;
693                         }
694                 }
695         }
696
697         tm = kzalloc(sizeof(*tm), flags);
698         if (!tm) {
699                 ret = -ENOMEM;
700                 goto free_tms;
701         }
702
703         tm->logical = new_root->start;
704         tm->old_root.logical = old_root->start;
705         tm->old_root.level = btrfs_header_level(old_root);
706         tm->generation = btrfs_header_generation(old_root);
707         tm->op = MOD_LOG_ROOT_REPLACE;
708
709         if (tree_mod_dont_log(fs_info, NULL))
710                 goto free_tms;
711
712         if (tm_list)
713                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714         if (!ret)
715                 ret = __tree_mod_log_insert(fs_info, tm);
716
717         tree_mod_log_write_unlock(fs_info);
718         if (ret)
719                 goto free_tms;
720         kfree(tm_list);
721
722         return ret;
723
724 free_tms:
725         if (tm_list) {
726                 for (i = 0; i < nritems; i++)
727                         kfree(tm_list[i]);
728                 kfree(tm_list);
729         }
730         kfree(tm);
731
732         return ret;
733 }
734
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737                       int smallest)
738 {
739         struct rb_root *tm_root;
740         struct rb_node *node;
741         struct tree_mod_elem *cur = NULL;
742         struct tree_mod_elem *found = NULL;
743
744         tree_mod_log_read_lock(fs_info);
745         tm_root = &fs_info->tree_mod_log;
746         node = tm_root->rb_node;
747         while (node) {
748                 cur = container_of(node, struct tree_mod_elem, node);
749                 if (cur->logical < start) {
750                         node = node->rb_left;
751                 } else if (cur->logical > start) {
752                         node = node->rb_right;
753                 } else if (cur->seq < min_seq) {
754                         node = node->rb_left;
755                 } else if (!smallest) {
756                         /* we want the node with the highest seq */
757                         if (found)
758                                 BUG_ON(found->seq > cur->seq);
759                         found = cur;
760                         node = node->rb_left;
761                 } else if (cur->seq > min_seq) {
762                         /* we want the node with the smallest seq */
763                         if (found)
764                                 BUG_ON(found->seq < cur->seq);
765                         found = cur;
766                         node = node->rb_right;
767                 } else {
768                         found = cur;
769                         break;
770                 }
771         }
772         tree_mod_log_read_unlock(fs_info);
773
774         return found;
775 }
776
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784                            u64 min_seq)
785 {
786         return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797         return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802                      struct extent_buffer *src, unsigned long dst_offset,
803                      unsigned long src_offset, int nr_items)
804 {
805         int ret = 0;
806         struct tree_mod_elem **tm_list = NULL;
807         struct tree_mod_elem **tm_list_add, **tm_list_rem;
808         int i;
809         int locked = 0;
810
811         if (!tree_mod_need_log(fs_info, NULL))
812                 return 0;
813
814         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815                 return 0;
816
817         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818                           GFP_NOFS);
819         if (!tm_list)
820                 return -ENOMEM;
821
822         tm_list_add = tm_list;
823         tm_list_rem = tm_list + nr_items;
824         for (i = 0; i < nr_items; i++) {
825                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
827                 if (!tm_list_rem[i]) {
828                         ret = -ENOMEM;
829                         goto free_tms;
830                 }
831
832                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833                     MOD_LOG_KEY_ADD, GFP_NOFS);
834                 if (!tm_list_add[i]) {
835                         ret = -ENOMEM;
836                         goto free_tms;
837                 }
838         }
839
840         if (tree_mod_dont_log(fs_info, NULL))
841                 goto free_tms;
842         locked = 1;
843
844         for (i = 0; i < nr_items; i++) {
845                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846                 if (ret)
847                         goto free_tms;
848                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849                 if (ret)
850                         goto free_tms;
851         }
852
853         tree_mod_log_write_unlock(fs_info);
854         kfree(tm_list);
855
856         return 0;
857
858 free_tms:
859         for (i = 0; i < nr_items * 2; i++) {
860                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862                 kfree(tm_list[i]);
863         }
864         if (locked)
865                 tree_mod_log_write_unlock(fs_info);
866         kfree(tm_list);
867
868         return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873                      int dst_offset, int src_offset, int nr_items)
874 {
875         int ret;
876         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877                                        nr_items, GFP_NOFS);
878         BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883                           struct extent_buffer *eb, int slot, int atomic)
884 {
885         int ret;
886
887         ret = tree_mod_log_insert_key(fs_info, eb, slot,
888                                         MOD_LOG_KEY_REPLACE,
889                                         atomic ? GFP_ATOMIC : GFP_NOFS);
890         BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896         struct tree_mod_elem **tm_list = NULL;
897         int nritems = 0;
898         int i;
899         int ret = 0;
900
901         if (btrfs_header_level(eb) == 0)
902                 return 0;
903
904         if (!tree_mod_need_log(fs_info, NULL))
905                 return 0;
906
907         nritems = btrfs_header_nritems(eb);
908         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909         if (!tm_list)
910                 return -ENOMEM;
911
912         for (i = 0; i < nritems; i++) {
913                 tm_list[i] = alloc_tree_mod_elem(eb, i,
914                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915                 if (!tm_list[i]) {
916                         ret = -ENOMEM;
917                         goto free_tms;
918                 }
919         }
920
921         if (tree_mod_dont_log(fs_info, eb))
922                 goto free_tms;
923
924         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925         tree_mod_log_write_unlock(fs_info);
926         if (ret)
927                 goto free_tms;
928         kfree(tm_list);
929
930         return 0;
931
932 free_tms:
933         for (i = 0; i < nritems; i++)
934                 kfree(tm_list[i]);
935         kfree(tm_list);
936
937         return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942                               struct extent_buffer *new_root_node,
943                               int log_removal)
944 {
945         int ret;
946         ret = tree_mod_log_insert_root(root->fs_info, root->node,
947                                        new_root_node, GFP_NOFS, log_removal);
948         BUG_ON(ret < 0);
949 }
950
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955                               struct extent_buffer *buf)
956 {
957         /*
958          * Tree blocks not in reference counted trees and tree roots
959          * are never shared. If a block was allocated after the last
960          * snapshot and the block was not allocated by tree relocation,
961          * we know the block is not shared.
962          */
963         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964             buf != root->node && buf != root->commit_root &&
965             (btrfs_header_generation(buf) <=
966              btrfs_root_last_snapshot(&root->root_item) ||
967              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968                 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972                 return 1;
973 #endif
974         return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978                                        struct btrfs_root *root,
979                                        struct extent_buffer *buf,
980                                        struct extent_buffer *cow,
981                                        int *last_ref)
982 {
983         u64 refs;
984         u64 owner;
985         u64 flags;
986         u64 new_flags = 0;
987         int ret;
988
989         /*
990          * Backrefs update rules:
991          *
992          * Always use full backrefs for extent pointers in tree block
993          * allocated by tree relocation.
994          *
995          * If a shared tree block is no longer referenced by its owner
996          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997          * use full backrefs for extent pointers in tree block.
998          *
999          * If a tree block is been relocating
1000          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001          * use full backrefs for extent pointers in tree block.
1002          * The reason for this is some operations (such as drop tree)
1003          * are only allowed for blocks use full backrefs.
1004          */
1005
1006         if (btrfs_block_can_be_shared(root, buf)) {
1007                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008                                                btrfs_header_level(buf), 1,
1009                                                &refs, &flags);
1010                 if (ret)
1011                         return ret;
1012                 if (refs == 0) {
1013                         ret = -EROFS;
1014                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015                         return ret;
1016                 }
1017         } else {
1018                 refs = 1;
1019                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                 else
1023                         flags = 0;
1024         }
1025
1026         owner = btrfs_header_owner(buf);
1027         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030         if (refs > 1) {
1031                 if ((owner == root->root_key.objectid ||
1032                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                         ret = btrfs_inc_ref(trans, root, buf, 1);
1035                         BUG_ON(ret); /* -ENOMEM */
1036
1037                         if (root->root_key.objectid ==
1038                             BTRFS_TREE_RELOC_OBJECTID) {
1039                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                 BUG_ON(ret); /* -ENOMEM */
1043                         }
1044                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                 } else {
1046
1047                         if (root->root_key.objectid ==
1048                             BTRFS_TREE_RELOC_OBJECTID)
1049                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1050                         else
1051                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1052                         BUG_ON(ret); /* -ENOMEM */
1053                 }
1054                 if (new_flags != 0) {
1055                         int level = btrfs_header_level(buf);
1056
1057                         ret = btrfs_set_disk_extent_flags(trans, root,
1058                                                           buf->start,
1059                                                           buf->len,
1060                                                           new_flags, level, 0);
1061                         if (ret)
1062                                 return ret;
1063                 }
1064         } else {
1065                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                         if (root->root_key.objectid ==
1067                             BTRFS_TREE_RELOC_OBJECTID)
1068                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1069                         else
1070                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                         ret = btrfs_dec_ref(trans, root, buf, 1);
1073                         BUG_ON(ret); /* -ENOMEM */
1074                 }
1075                 clean_tree_block(trans, root->fs_info, buf);
1076                 *last_ref = 1;
1077         }
1078         return 0;
1079 }
1080
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                              struct btrfs_root *root,
1095                              struct extent_buffer *buf,
1096                              struct extent_buffer *parent, int parent_slot,
1097                              struct extent_buffer **cow_ret,
1098                              u64 search_start, u64 empty_size)
1099 {
1100         struct btrfs_disk_key disk_key;
1101         struct extent_buffer *cow;
1102         int level, ret;
1103         int last_ref = 0;
1104         int unlock_orig = 0;
1105         u64 parent_start;
1106
1107         if (*cow_ret == buf)
1108                 unlock_orig = 1;
1109
1110         btrfs_assert_tree_locked(buf);
1111
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->fs_info->running_transaction->transid);
1114         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115                 trans->transid != root->last_trans);
1116
1117         level = btrfs_header_level(buf);
1118
1119         if (level == 0)
1120                 btrfs_item_key(buf, &disk_key, 0);
1121         else
1122                 btrfs_node_key(buf, &disk_key, 0);
1123
1124         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125                 if (parent)
1126                         parent_start = parent->start;
1127                 else
1128                         parent_start = 0;
1129         } else
1130                 parent_start = 0;
1131
1132         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133                         root->root_key.objectid, &disk_key, level,
1134                         search_start, empty_size);
1135         if (IS_ERR(cow))
1136                 return PTR_ERR(cow);
1137
1138         /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141         btrfs_set_header_bytenr(cow, cow->start);
1142         btrfs_set_header_generation(cow, trans->transid);
1143         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145                                      BTRFS_HEADER_FLAG_RELOC);
1146         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148         else
1149                 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152                             BTRFS_FSID_SIZE);
1153
1154         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155         if (ret) {
1156                 btrfs_abort_transaction(trans, root, ret);
1157                 return ret;
1158         }
1159
1160         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162                 if (ret) {
1163                         btrfs_abort_transaction(trans, root, ret);
1164                         return ret;
1165                 }
1166         }
1167
1168         if (buf == root->node) {
1169                 WARN_ON(parent && parent != buf);
1170                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172                         parent_start = buf->start;
1173                 else
1174                         parent_start = 0;
1175
1176                 extent_buffer_get(cow);
1177                 tree_mod_log_set_root_pointer(root, cow, 1);
1178                 rcu_assign_pointer(root->node, cow);
1179
1180                 btrfs_free_tree_block(trans, root, buf, parent_start,
1181                                       last_ref);
1182                 free_extent_buffer(buf);
1183                 add_root_to_dirty_list(root);
1184         } else {
1185                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186                         parent_start = parent->start;
1187                 else
1188                         parent_start = 0;
1189
1190                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193                 btrfs_set_node_blockptr(parent, parent_slot,
1194                                         cow->start);
1195                 btrfs_set_node_ptr_generation(parent, parent_slot,
1196                                               trans->transid);
1197                 btrfs_mark_buffer_dirty(parent);
1198                 if (last_ref) {
1199                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1200                         if (ret) {
1201                                 btrfs_abort_transaction(trans, root, ret);
1202                                 return ret;
1203                         }
1204                 }
1205                 btrfs_free_tree_block(trans, root, buf, parent_start,
1206                                       last_ref);
1207         }
1208         if (unlock_orig)
1209                 btrfs_tree_unlock(buf);
1210         free_extent_buffer_stale(buf);
1211         btrfs_mark_buffer_dirty(cow);
1212         *cow_ret = cow;
1213         return 0;
1214 }
1215
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222                            struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224         struct tree_mod_elem *tm;
1225         struct tree_mod_elem *found = NULL;
1226         u64 root_logical = eb_root->start;
1227         int looped = 0;
1228
1229         if (!time_seq)
1230                 return NULL;
1231
1232         /*
1233          * the very last operation that's logged for a root is the
1234          * replacement operation (if it is replaced at all). this has
1235          * the logical address of the *new* root, making it the very
1236          * first operation that's logged for this root.
1237          */
1238         while (1) {
1239                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240                                                 time_seq);
1241                 if (!looped && !tm)
1242                         return NULL;
1243                 /*
1244                  * if there are no tree operation for the oldest root, we simply
1245                  * return it. this should only happen if that (old) root is at
1246                  * level 0.
1247                  */
1248                 if (!tm)
1249                         break;
1250
1251                 /*
1252                  * if there's an operation that's not a root replacement, we
1253                  * found the oldest version of our root. normally, we'll find a
1254                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255                  */
1256                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257                         break;
1258
1259                 found = tm;
1260                 root_logical = tm->old_root.logical;
1261                 looped = 1;
1262         }
1263
1264         /* if there's no old root to return, return what we found instead */
1265         if (!found)
1266                 found = tm;
1267
1268         return found;
1269 }
1270
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewound (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278                       u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280         u32 n;
1281         struct rb_node *next;
1282         struct tree_mod_elem *tm = first_tm;
1283         unsigned long o_dst;
1284         unsigned long o_src;
1285         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287         n = btrfs_header_nritems(eb);
1288         tree_mod_log_read_lock(fs_info);
1289         while (tm && tm->seq >= time_seq) {
1290                 /*
1291                  * all the operations are recorded with the operator used for
1292                  * the modification. as we're going backwards, we do the
1293                  * opposite of each operation here.
1294                  */
1295                 switch (tm->op) {
1296                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297                         BUG_ON(tm->slot < n);
1298                         /* Fallthrough */
1299                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300                 case MOD_LOG_KEY_REMOVE:
1301                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1302                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303                         btrfs_set_node_ptr_generation(eb, tm->slot,
1304                                                       tm->generation);
1305                         n++;
1306                         break;
1307                 case MOD_LOG_KEY_REPLACE:
1308                         BUG_ON(tm->slot >= n);
1309                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1310                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311                         btrfs_set_node_ptr_generation(eb, tm->slot,
1312                                                       tm->generation);
1313                         break;
1314                 case MOD_LOG_KEY_ADD:
1315                         /* if a move operation is needed it's in the log */
1316                         n--;
1317                         break;
1318                 case MOD_LOG_MOVE_KEYS:
1319                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321                         memmove_extent_buffer(eb, o_dst, o_src,
1322                                               tm->move.nr_items * p_size);
1323                         break;
1324                 case MOD_LOG_ROOT_REPLACE:
1325                         /*
1326                          * this operation is special. for roots, this must be
1327                          * handled explicitly before rewinding.
1328                          * for non-roots, this operation may exist if the node
1329                          * was a root: root A -> child B; then A gets empty and
1330                          * B is promoted to the new root. in the mod log, we'll
1331                          * have a root-replace operation for B, a tree block
1332                          * that is no root. we simply ignore that operation.
1333                          */
1334                         break;
1335                 }
1336                 next = rb_next(&tm->node);
1337                 if (!next)
1338                         break;
1339                 tm = container_of(next, struct tree_mod_elem, node);
1340                 if (tm->logical != first_tm->logical)
1341                         break;
1342         }
1343         tree_mod_log_read_unlock(fs_info);
1344         btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356                     struct extent_buffer *eb, u64 time_seq)
1357 {
1358         struct extent_buffer *eb_rewin;
1359         struct tree_mod_elem *tm;
1360
1361         if (!time_seq)
1362                 return eb;
1363
1364         if (btrfs_header_level(eb) == 0)
1365                 return eb;
1366
1367         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368         if (!tm)
1369                 return eb;
1370
1371         btrfs_set_path_blocking(path);
1372         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375                 BUG_ON(tm->slot != 0);
1376                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377                                                 eb->len);
1378                 if (!eb_rewin) {
1379                         btrfs_tree_read_unlock_blocking(eb);
1380                         free_extent_buffer(eb);
1381                         return NULL;
1382                 }
1383                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384                 btrfs_set_header_backref_rev(eb_rewin,
1385                                              btrfs_header_backref_rev(eb));
1386                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388         } else {
1389                 eb_rewin = btrfs_clone_extent_buffer(eb);
1390                 if (!eb_rewin) {
1391                         btrfs_tree_read_unlock_blocking(eb);
1392                         free_extent_buffer(eb);
1393                         return NULL;
1394                 }
1395         }
1396
1397         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398         btrfs_tree_read_unlock_blocking(eb);
1399         free_extent_buffer(eb);
1400
1401         extent_buffer_get(eb_rewin);
1402         btrfs_tree_read_lock(eb_rewin);
1403         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404         WARN_ON(btrfs_header_nritems(eb_rewin) >
1405                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407         return eb_rewin;
1408 }
1409
1410 /*
1411  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412  * value. If there are no changes, the current root->root_node is returned. If
1413  * anything changed in between, there's a fresh buffer allocated on which the
1414  * rewind operations are done. In any case, the returned buffer is read locked.
1415  * Returns NULL on error (with no locks held).
1416  */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420         struct tree_mod_elem *tm;
1421         struct extent_buffer *eb = NULL;
1422         struct extent_buffer *eb_root;
1423         struct extent_buffer *old;
1424         struct tree_mod_root *old_root = NULL;
1425         u64 old_generation = 0;
1426         u64 logical;
1427
1428         eb_root = btrfs_read_lock_root_node(root);
1429         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430         if (!tm)
1431                 return eb_root;
1432
1433         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434                 old_root = &tm->old_root;
1435                 old_generation = tm->generation;
1436                 logical = old_root->logical;
1437         } else {
1438                 logical = eb_root->start;
1439         }
1440
1441         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443                 btrfs_tree_read_unlock(eb_root);
1444                 free_extent_buffer(eb_root);
1445                 old = read_tree_block(root, logical, 0);
1446                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447                         if (!IS_ERR(old))
1448                                 free_extent_buffer(old);
1449                         btrfs_warn(root->fs_info,
1450                                 "failed to read tree block %llu from get_old_root", logical);
1451                 } else {
1452                         eb = btrfs_clone_extent_buffer(old);
1453                         free_extent_buffer(old);
1454                 }
1455         } else if (old_root) {
1456                 btrfs_tree_read_unlock(eb_root);
1457                 free_extent_buffer(eb_root);
1458                 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459                                         root->nodesize);
1460         } else {
1461                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462                 eb = btrfs_clone_extent_buffer(eb_root);
1463                 btrfs_tree_read_unlock_blocking(eb_root);
1464                 free_extent_buffer(eb_root);
1465         }
1466
1467         if (!eb)
1468                 return NULL;
1469         extent_buffer_get(eb);
1470         btrfs_tree_read_lock(eb);
1471         if (old_root) {
1472                 btrfs_set_header_bytenr(eb, eb->start);
1473                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475                 btrfs_set_header_level(eb, old_root->level);
1476                 btrfs_set_header_generation(eb, old_generation);
1477         }
1478         if (tm)
1479                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480         else
1481                 WARN_ON(btrfs_header_level(eb) != 0);
1482         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484         return eb;
1485 }
1486
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489         struct tree_mod_elem *tm;
1490         int level;
1491         struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495                 level = tm->old_root.level;
1496         } else {
1497                 level = btrfs_header_level(eb_root);
1498         }
1499         free_extent_buffer(eb_root);
1500
1501         return level;
1502 }
1503
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505                                    struct btrfs_root *root,
1506                                    struct extent_buffer *buf)
1507 {
1508         if (btrfs_test_is_dummy_root(root))
1509                 return 0;
1510
1511         /* ensure we can see the force_cow */
1512         smp_rmb();
1513
1514         /*
1515          * We do not need to cow a block if
1516          * 1) this block is not created or changed in this transaction;
1517          * 2) this block does not belong to TREE_RELOC tree;
1518          * 3) the root is not forced COW.
1519          *
1520          * What is forced COW:
1521          *    when we create snapshot during committing the transaction,
1522          *    after we've finished coping src root, we must COW the shared
1523          *    block to ensure the metadata consistency.
1524          */
1525         if (btrfs_header_generation(buf) == trans->transid &&
1526             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530                 return 0;
1531         return 1;
1532 }
1533
1534 /*
1535  * cows a single block, see __btrfs_cow_block for the real work.
1536  * This version of it has extra checks so that a block isn't COWed more than
1537  * once per transaction, as long as it hasn't been written yet
1538  */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540                     struct btrfs_root *root, struct extent_buffer *buf,
1541                     struct extent_buffer *parent, int parent_slot,
1542                     struct extent_buffer **cow_ret)
1543 {
1544         u64 search_start;
1545         int ret;
1546
1547         if (trans->transaction != root->fs_info->running_transaction)
1548                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549                        trans->transid,
1550                        root->fs_info->running_transaction->transid);
1551
1552         if (trans->transid != root->fs_info->generation)
1553                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554                        trans->transid, root->fs_info->generation);
1555
1556         if (!should_cow_block(trans, root, buf)) {
1557                 trans->dirty = true;
1558                 *cow_ret = buf;
1559                 return 0;
1560         }
1561
1562         search_start = buf->start & ~((u64)SZ_1G - 1);
1563
1564         if (parent)
1565                 btrfs_set_lock_blocking(parent);
1566         btrfs_set_lock_blocking(buf);
1567
1568         ret = __btrfs_cow_block(trans, root, buf, parent,
1569                                  parent_slot, cow_ret, search_start, 0);
1570
1571         trace_btrfs_cow_block(root, buf, *cow_ret);
1572
1573         return ret;
1574 }
1575
1576 /*
1577  * helper function for defrag to decide if two blocks pointed to by a
1578  * node are actually close by
1579  */
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581 {
1582         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583                 return 1;
1584         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585                 return 1;
1586         return 0;
1587 }
1588
1589 /*
1590  * compare two keys in a memcmp fashion
1591  */
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593 {
1594         struct btrfs_key k1;
1595
1596         btrfs_disk_key_to_cpu(&k1, disk);
1597
1598         return btrfs_comp_cpu_keys(&k1, k2);
1599 }
1600
1601 /*
1602  * same as comp_keys only with two btrfs_key's
1603  */
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605 {
1606         if (k1->objectid > k2->objectid)
1607                 return 1;
1608         if (k1->objectid < k2->objectid)
1609                 return -1;
1610         if (k1->type > k2->type)
1611                 return 1;
1612         if (k1->type < k2->type)
1613                 return -1;
1614         if (k1->offset > k2->offset)
1615                 return 1;
1616         if (k1->offset < k2->offset)
1617                 return -1;
1618         return 0;
1619 }
1620
1621 /*
1622  * this is used by the defrag code to go through all the
1623  * leaves pointed to by a node and reallocate them so that
1624  * disk order is close to key order
1625  */
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627                        struct btrfs_root *root, struct extent_buffer *parent,
1628                        int start_slot, u64 *last_ret,
1629                        struct btrfs_key *progress)
1630 {
1631         struct extent_buffer *cur;
1632         u64 blocknr;
1633         u64 gen;
1634         u64 search_start = *last_ret;
1635         u64 last_block = 0;
1636         u64 other;
1637         u32 parent_nritems;
1638         int end_slot;
1639         int i;
1640         int err = 0;
1641         int parent_level;
1642         int uptodate;
1643         u32 blocksize;
1644         int progress_passed = 0;
1645         struct btrfs_disk_key disk_key;
1646
1647         parent_level = btrfs_header_level(parent);
1648
1649         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650         WARN_ON(trans->transid != root->fs_info->generation);
1651
1652         parent_nritems = btrfs_header_nritems(parent);
1653         blocksize = root->nodesize;
1654         end_slot = parent_nritems - 1;
1655
1656         if (parent_nritems <= 1)
1657                 return 0;
1658
1659         btrfs_set_lock_blocking(parent);
1660
1661         for (i = start_slot; i <= end_slot; i++) {
1662                 int close = 1;
1663
1664                 btrfs_node_key(parent, &disk_key, i);
1665                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666                         continue;
1667
1668                 progress_passed = 1;
1669                 blocknr = btrfs_node_blockptr(parent, i);
1670                 gen = btrfs_node_ptr_generation(parent, i);
1671                 if (last_block == 0)
1672                         last_block = blocknr;
1673
1674                 if (i > 0) {
1675                         other = btrfs_node_blockptr(parent, i - 1);
1676                         close = close_blocks(blocknr, other, blocksize);
1677                 }
1678                 if (!close && i < end_slot) {
1679                         other = btrfs_node_blockptr(parent, i + 1);
1680                         close = close_blocks(blocknr, other, blocksize);
1681                 }
1682                 if (close) {
1683                         last_block = blocknr;
1684                         continue;
1685                 }
1686
1687                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688                 if (cur)
1689                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690                 else
1691                         uptodate = 0;
1692                 if (!cur || !uptodate) {
1693                         if (!cur) {
1694                                 cur = read_tree_block(root, blocknr, gen);
1695                                 if (IS_ERR(cur)) {
1696                                         return PTR_ERR(cur);
1697                                 } else if (!extent_buffer_uptodate(cur)) {
1698                                         free_extent_buffer(cur);
1699                                         return -EIO;
1700                                 }
1701                         } else if (!uptodate) {
1702                                 err = btrfs_read_buffer(cur, gen);
1703                                 if (err) {
1704                                         free_extent_buffer(cur);
1705                                         return err;
1706                                 }
1707                         }
1708                 }
1709                 if (search_start == 0)
1710                         search_start = last_block;
1711
1712                 btrfs_tree_lock(cur);
1713                 btrfs_set_lock_blocking(cur);
1714                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1715                                         &cur, search_start,
1716                                         min(16 * blocksize,
1717                                             (end_slot - i) * blocksize));
1718                 if (err) {
1719                         btrfs_tree_unlock(cur);
1720                         free_extent_buffer(cur);
1721                         break;
1722                 }
1723                 search_start = cur->start;
1724                 last_block = cur->start;
1725                 *last_ret = search_start;
1726                 btrfs_tree_unlock(cur);
1727                 free_extent_buffer(cur);
1728         }
1729         return err;
1730 }
1731
1732 /*
1733  * The leaf data grows from end-to-front in the node.
1734  * this returns the address of the start of the last item,
1735  * which is the stop of the leaf data stack
1736  */
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738                                          struct extent_buffer *leaf)
1739 {
1740         u32 nr = btrfs_header_nritems(leaf);
1741         if (nr == 0)
1742                 return BTRFS_LEAF_DATA_SIZE(root);
1743         return btrfs_item_offset_nr(leaf, nr - 1);
1744 }
1745
1746
1747 /*
1748  * search for key in the extent_buffer.  The items start at offset p,
1749  * and they are item_size apart.  There are 'max' items in p.
1750  *
1751  * the slot in the array is returned via slot, and it points to
1752  * the place where you would insert key if it is not found in
1753  * the array.
1754  *
1755  * slot may point to max if the key is bigger than all of the keys
1756  */
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1758                                        unsigned long p,
1759                                        int item_size, struct btrfs_key *key,
1760                                        int max, int *slot)
1761 {
1762         int low = 0;
1763         int high = max;
1764         int mid;
1765         int ret;
1766         struct btrfs_disk_key *tmp = NULL;
1767         struct btrfs_disk_key unaligned;
1768         unsigned long offset;
1769         char *kaddr = NULL;
1770         unsigned long map_start = 0;
1771         unsigned long map_len = 0;
1772         int err;
1773
1774         if (low > high) {
1775                 btrfs_err(eb->fs_info,
1776                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1777                           __func__, low, high, eb->start,
1778                           btrfs_header_owner(eb), btrfs_header_level(eb));
1779                 return -EINVAL;
1780         }
1781
1782         while (low < high) {
1783                 mid = (low + high) / 2;
1784                 offset = p + mid * item_size;
1785
1786                 if (!kaddr || offset < map_start ||
1787                     (offset + sizeof(struct btrfs_disk_key)) >
1788                     map_start + map_len) {
1789
1790                         err = map_private_extent_buffer(eb, offset,
1791                                                 sizeof(struct btrfs_disk_key),
1792                                                 &kaddr, &map_start, &map_len);
1793
1794                         if (!err) {
1795                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796                                                         map_start);
1797                         } else if (err == 1) {
1798                                 read_extent_buffer(eb, &unaligned,
1799                                                    offset, sizeof(unaligned));
1800                                 tmp = &unaligned;
1801                         } else {
1802                                 return err;
1803                         }
1804
1805                 } else {
1806                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1807                                                         map_start);
1808                 }
1809                 ret = comp_keys(tmp, key);
1810
1811                 if (ret < 0)
1812                         low = mid + 1;
1813                 else if (ret > 0)
1814                         high = mid;
1815                 else {
1816                         *slot = mid;
1817                         return 0;
1818                 }
1819         }
1820         *slot = low;
1821         return 1;
1822 }
1823
1824 /*
1825  * simple bin_search frontend that does the right thing for
1826  * leaves vs nodes
1827  */
1828 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1829                       int level, int *slot)
1830 {
1831         if (level == 0)
1832                 return generic_bin_search(eb,
1833                                           offsetof(struct btrfs_leaf, items),
1834                                           sizeof(struct btrfs_item),
1835                                           key, btrfs_header_nritems(eb),
1836                                           slot);
1837         else
1838                 return generic_bin_search(eb,
1839                                           offsetof(struct btrfs_node, ptrs),
1840                                           sizeof(struct btrfs_key_ptr),
1841                                           key, btrfs_header_nritems(eb),
1842                                           slot);
1843 }
1844
1845 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1846                      int level, int *slot)
1847 {
1848         return bin_search(eb, key, level, slot);
1849 }
1850
1851 static void root_add_used(struct btrfs_root *root, u32 size)
1852 {
1853         spin_lock(&root->accounting_lock);
1854         btrfs_set_root_used(&root->root_item,
1855                             btrfs_root_used(&root->root_item) + size);
1856         spin_unlock(&root->accounting_lock);
1857 }
1858
1859 static void root_sub_used(struct btrfs_root *root, u32 size)
1860 {
1861         spin_lock(&root->accounting_lock);
1862         btrfs_set_root_used(&root->root_item,
1863                             btrfs_root_used(&root->root_item) - size);
1864         spin_unlock(&root->accounting_lock);
1865 }
1866
1867 /* given a node and slot number, this reads the blocks it points to.  The
1868  * extent buffer is returned with a reference taken (but unlocked).
1869  * NULL is returned on error.
1870  */
1871 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1872                                    struct extent_buffer *parent, int slot)
1873 {
1874         int level = btrfs_header_level(parent);
1875         struct extent_buffer *eb;
1876
1877         if (slot < 0)
1878                 return NULL;
1879         if (slot >= btrfs_header_nritems(parent))
1880                 return NULL;
1881
1882         BUG_ON(level == 0);
1883
1884         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1885                              btrfs_node_ptr_generation(parent, slot));
1886         if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1887                 if (!IS_ERR(eb))
1888                         free_extent_buffer(eb);
1889                 eb = NULL;
1890         }
1891
1892         return eb;
1893 }
1894
1895 /*
1896  * node level balancing, used to make sure nodes are in proper order for
1897  * item deletion.  We balance from the top down, so we have to make sure
1898  * that a deletion won't leave an node completely empty later on.
1899  */
1900 static noinline int balance_level(struct btrfs_trans_handle *trans,
1901                          struct btrfs_root *root,
1902                          struct btrfs_path *path, int level)
1903 {
1904         struct extent_buffer *right = NULL;
1905         struct extent_buffer *mid;
1906         struct extent_buffer *left = NULL;
1907         struct extent_buffer *parent = NULL;
1908         int ret = 0;
1909         int wret;
1910         int pslot;
1911         int orig_slot = path->slots[level];
1912         u64 orig_ptr;
1913
1914         if (level == 0)
1915                 return 0;
1916
1917         mid = path->nodes[level];
1918
1919         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1920                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1921         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1922
1923         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1924
1925         if (level < BTRFS_MAX_LEVEL - 1) {
1926                 parent = path->nodes[level + 1];
1927                 pslot = path->slots[level + 1];
1928         }
1929
1930         /*
1931          * deal with the case where there is only one pointer in the root
1932          * by promoting the node below to a root
1933          */
1934         if (!parent) {
1935                 struct extent_buffer *child;
1936
1937                 if (btrfs_header_nritems(mid) != 1)
1938                         return 0;
1939
1940                 /* promote the child to a root */
1941                 child = read_node_slot(root, mid, 0);
1942                 if (!child) {
1943                         ret = -EROFS;
1944                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1945                         goto enospc;
1946                 }
1947
1948                 btrfs_tree_lock(child);
1949                 btrfs_set_lock_blocking(child);
1950                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1951                 if (ret) {
1952                         btrfs_tree_unlock(child);
1953                         free_extent_buffer(child);
1954                         goto enospc;
1955                 }
1956
1957                 tree_mod_log_set_root_pointer(root, child, 1);
1958                 rcu_assign_pointer(root->node, child);
1959
1960                 add_root_to_dirty_list(root);
1961                 btrfs_tree_unlock(child);
1962
1963                 path->locks[level] = 0;
1964                 path->nodes[level] = NULL;
1965                 clean_tree_block(trans, root->fs_info, mid);
1966                 btrfs_tree_unlock(mid);
1967                 /* once for the path */
1968                 free_extent_buffer(mid);
1969
1970                 root_sub_used(root, mid->len);
1971                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1972                 /* once for the root ptr */
1973                 free_extent_buffer_stale(mid);
1974                 return 0;
1975         }
1976         if (btrfs_header_nritems(mid) >
1977             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1978                 return 0;
1979
1980         left = read_node_slot(root, parent, pslot - 1);
1981         if (left) {
1982                 btrfs_tree_lock(left);
1983                 btrfs_set_lock_blocking(left);
1984                 wret = btrfs_cow_block(trans, root, left,
1985                                        parent, pslot - 1, &left);
1986                 if (wret) {
1987                         ret = wret;
1988                         goto enospc;
1989                 }
1990         }
1991         right = read_node_slot(root, parent, pslot + 1);
1992         if (right) {
1993                 btrfs_tree_lock(right);
1994                 btrfs_set_lock_blocking(right);
1995                 wret = btrfs_cow_block(trans, root, right,
1996                                        parent, pslot + 1, &right);
1997                 if (wret) {
1998                         ret = wret;
1999                         goto enospc;
2000                 }
2001         }
2002
2003         /* first, try to make some room in the middle buffer */
2004         if (left) {
2005                 orig_slot += btrfs_header_nritems(left);
2006                 wret = push_node_left(trans, root, left, mid, 1);
2007                 if (wret < 0)
2008                         ret = wret;
2009         }
2010
2011         /*
2012          * then try to empty the right most buffer into the middle
2013          */
2014         if (right) {
2015                 wret = push_node_left(trans, root, mid, right, 1);
2016                 if (wret < 0 && wret != -ENOSPC)
2017                         ret = wret;
2018                 if (btrfs_header_nritems(right) == 0) {
2019                         clean_tree_block(trans, root->fs_info, right);
2020                         btrfs_tree_unlock(right);
2021                         del_ptr(root, path, level + 1, pslot + 1);
2022                         root_sub_used(root, right->len);
2023                         btrfs_free_tree_block(trans, root, right, 0, 1);
2024                         free_extent_buffer_stale(right);
2025                         right = NULL;
2026                 } else {
2027                         struct btrfs_disk_key right_key;
2028                         btrfs_node_key(right, &right_key, 0);
2029                         tree_mod_log_set_node_key(root->fs_info, parent,
2030                                                   pslot + 1, 0);
2031                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2032                         btrfs_mark_buffer_dirty(parent);
2033                 }
2034         }
2035         if (btrfs_header_nritems(mid) == 1) {
2036                 /*
2037                  * we're not allowed to leave a node with one item in the
2038                  * tree during a delete.  A deletion from lower in the tree
2039                  * could try to delete the only pointer in this node.
2040                  * So, pull some keys from the left.
2041                  * There has to be a left pointer at this point because
2042                  * otherwise we would have pulled some pointers from the
2043                  * right
2044                  */
2045                 if (!left) {
2046                         ret = -EROFS;
2047                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
2048                         goto enospc;
2049                 }
2050                 wret = balance_node_right(trans, root, mid, left);
2051                 if (wret < 0) {
2052                         ret = wret;
2053                         goto enospc;
2054                 }
2055                 if (wret == 1) {
2056                         wret = push_node_left(trans, root, left, mid, 1);
2057                         if (wret < 0)
2058                                 ret = wret;
2059                 }
2060                 BUG_ON(wret == 1);
2061         }
2062         if (btrfs_header_nritems(mid) == 0) {
2063                 clean_tree_block(trans, root->fs_info, mid);
2064                 btrfs_tree_unlock(mid);
2065                 del_ptr(root, path, level + 1, pslot);
2066                 root_sub_used(root, mid->len);
2067                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2068                 free_extent_buffer_stale(mid);
2069                 mid = NULL;
2070         } else {
2071                 /* update the parent key to reflect our changes */
2072                 struct btrfs_disk_key mid_key;
2073                 btrfs_node_key(mid, &mid_key, 0);
2074                 tree_mod_log_set_node_key(root->fs_info, parent,
2075                                           pslot, 0);
2076                 btrfs_set_node_key(parent, &mid_key, pslot);
2077                 btrfs_mark_buffer_dirty(parent);
2078         }
2079
2080         /* update the path */
2081         if (left) {
2082                 if (btrfs_header_nritems(left) > orig_slot) {
2083                         extent_buffer_get(left);
2084                         /* left was locked after cow */
2085                         path->nodes[level] = left;
2086                         path->slots[level + 1] -= 1;
2087                         path->slots[level] = orig_slot;
2088                         if (mid) {
2089                                 btrfs_tree_unlock(mid);
2090                                 free_extent_buffer(mid);
2091                         }
2092                 } else {
2093                         orig_slot -= btrfs_header_nritems(left);
2094                         path->slots[level] = orig_slot;
2095                 }
2096         }
2097         /* double check we haven't messed things up */
2098         if (orig_ptr !=
2099             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2100                 BUG();
2101 enospc:
2102         if (right) {
2103                 btrfs_tree_unlock(right);
2104                 free_extent_buffer(right);
2105         }
2106         if (left) {
2107                 if (path->nodes[level] != left)
2108                         btrfs_tree_unlock(left);
2109                 free_extent_buffer(left);
2110         }
2111         return ret;
2112 }
2113
2114 /* Node balancing for insertion.  Here we only split or push nodes around
2115  * when they are completely full.  This is also done top down, so we
2116  * have to be pessimistic.
2117  */
2118 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2119                                           struct btrfs_root *root,
2120                                           struct btrfs_path *path, int level)
2121 {
2122         struct extent_buffer *right = NULL;
2123         struct extent_buffer *mid;
2124         struct extent_buffer *left = NULL;
2125         struct extent_buffer *parent = NULL;
2126         int ret = 0;
2127         int wret;
2128         int pslot;
2129         int orig_slot = path->slots[level];
2130
2131         if (level == 0)
2132                 return 1;
2133
2134         mid = path->nodes[level];
2135         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2136
2137         if (level < BTRFS_MAX_LEVEL - 1) {
2138                 parent = path->nodes[level + 1];
2139                 pslot = path->slots[level + 1];
2140         }
2141
2142         if (!parent)
2143                 return 1;
2144
2145         left = read_node_slot(root, parent, pslot - 1);
2146
2147         /* first, try to make some room in the middle buffer */
2148         if (left) {
2149                 u32 left_nr;
2150
2151                 btrfs_tree_lock(left);
2152                 btrfs_set_lock_blocking(left);
2153
2154                 left_nr = btrfs_header_nritems(left);
2155                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2156                         wret = 1;
2157                 } else {
2158                         ret = btrfs_cow_block(trans, root, left, parent,
2159                                               pslot - 1, &left);
2160                         if (ret)
2161                                 wret = 1;
2162                         else {
2163                                 wret = push_node_left(trans, root,
2164                                                       left, mid, 0);
2165                         }
2166                 }
2167                 if (wret < 0)
2168                         ret = wret;
2169                 if (wret == 0) {
2170                         struct btrfs_disk_key disk_key;
2171                         orig_slot += left_nr;
2172                         btrfs_node_key(mid, &disk_key, 0);
2173                         tree_mod_log_set_node_key(root->fs_info, parent,
2174                                                   pslot, 0);
2175                         btrfs_set_node_key(parent, &disk_key, pslot);
2176                         btrfs_mark_buffer_dirty(parent);
2177                         if (btrfs_header_nritems(left) > orig_slot) {
2178                                 path->nodes[level] = left;
2179                                 path->slots[level + 1] -= 1;
2180                                 path->slots[level] = orig_slot;
2181                                 btrfs_tree_unlock(mid);
2182                                 free_extent_buffer(mid);
2183                         } else {
2184                                 orig_slot -=
2185                                         btrfs_header_nritems(left);
2186                                 path->slots[level] = orig_slot;
2187                                 btrfs_tree_unlock(left);
2188                                 free_extent_buffer(left);
2189                         }
2190                         return 0;
2191                 }
2192                 btrfs_tree_unlock(left);
2193                 free_extent_buffer(left);
2194         }
2195         right = read_node_slot(root, parent, pslot + 1);
2196
2197         /*
2198          * then try to empty the right most buffer into the middle
2199          */
2200         if (right) {
2201                 u32 right_nr;
2202
2203                 btrfs_tree_lock(right);
2204                 btrfs_set_lock_blocking(right);
2205
2206                 right_nr = btrfs_header_nritems(right);
2207                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2208                         wret = 1;
2209                 } else {
2210                         ret = btrfs_cow_block(trans, root, right,
2211                                               parent, pslot + 1,
2212                                               &right);
2213                         if (ret)
2214                                 wret = 1;
2215                         else {
2216                                 wret = balance_node_right(trans, root,
2217                                                           right, mid);
2218                         }
2219                 }
2220                 if (wret < 0)
2221                         ret = wret;
2222                 if (wret == 0) {
2223                         struct btrfs_disk_key disk_key;
2224
2225                         btrfs_node_key(right, &disk_key, 0);
2226                         tree_mod_log_set_node_key(root->fs_info, parent,
2227                                                   pslot + 1, 0);
2228                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2229                         btrfs_mark_buffer_dirty(parent);
2230
2231                         if (btrfs_header_nritems(mid) <= orig_slot) {
2232                                 path->nodes[level] = right;
2233                                 path->slots[level + 1] += 1;
2234                                 path->slots[level] = orig_slot -
2235                                         btrfs_header_nritems(mid);
2236                                 btrfs_tree_unlock(mid);
2237                                 free_extent_buffer(mid);
2238                         } else {
2239                                 btrfs_tree_unlock(right);
2240                                 free_extent_buffer(right);
2241                         }
2242                         return 0;
2243                 }
2244                 btrfs_tree_unlock(right);
2245                 free_extent_buffer(right);
2246         }
2247         return 1;
2248 }
2249
2250 /*
2251  * readahead one full node of leaves, finding things that are close
2252  * to the block in 'slot', and triggering ra on them.
2253  */
2254 static void reada_for_search(struct btrfs_root *root,
2255                              struct btrfs_path *path,
2256                              int level, int slot, u64 objectid)
2257 {
2258         struct extent_buffer *node;
2259         struct btrfs_disk_key disk_key;
2260         u32 nritems;
2261         u64 search;
2262         u64 target;
2263         u64 nread = 0;
2264         u64 gen;
2265         struct extent_buffer *eb;
2266         u32 nr;
2267         u32 blocksize;
2268         u32 nscan = 0;
2269
2270         if (level != 1)
2271                 return;
2272
2273         if (!path->nodes[level])
2274                 return;
2275
2276         node = path->nodes[level];
2277
2278         search = btrfs_node_blockptr(node, slot);
2279         blocksize = root->nodesize;
2280         eb = btrfs_find_tree_block(root->fs_info, search);
2281         if (eb) {
2282                 free_extent_buffer(eb);
2283                 return;
2284         }
2285
2286         target = search;
2287
2288         nritems = btrfs_header_nritems(node);
2289         nr = slot;
2290
2291         while (1) {
2292                 if (path->reada == READA_BACK) {
2293                         if (nr == 0)
2294                                 break;
2295                         nr--;
2296                 } else if (path->reada == READA_FORWARD) {
2297                         nr++;
2298                         if (nr >= nritems)
2299                                 break;
2300                 }
2301                 if (path->reada == READA_BACK && objectid) {
2302                         btrfs_node_key(node, &disk_key, nr);
2303                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2304                                 break;
2305                 }
2306                 search = btrfs_node_blockptr(node, nr);
2307                 if ((search <= target && target - search <= 65536) ||
2308                     (search > target && search - target <= 65536)) {
2309                         gen = btrfs_node_ptr_generation(node, nr);
2310                         readahead_tree_block(root, search);
2311                         nread += blocksize;
2312                 }
2313                 nscan++;
2314                 if ((nread > 65536 || nscan > 32))
2315                         break;
2316         }
2317 }
2318
2319 static noinline void reada_for_balance(struct btrfs_root *root,
2320                                        struct btrfs_path *path, int level)
2321 {
2322         int slot;
2323         int nritems;
2324         struct extent_buffer *parent;
2325         struct extent_buffer *eb;
2326         u64 gen;
2327         u64 block1 = 0;
2328         u64 block2 = 0;
2329
2330         parent = path->nodes[level + 1];
2331         if (!parent)
2332                 return;
2333
2334         nritems = btrfs_header_nritems(parent);
2335         slot = path->slots[level + 1];
2336
2337         if (slot > 0) {
2338                 block1 = btrfs_node_blockptr(parent, slot - 1);
2339                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2340                 eb = btrfs_find_tree_block(root->fs_info, block1);
2341                 /*
2342                  * if we get -eagain from btrfs_buffer_uptodate, we
2343                  * don't want to return eagain here.  That will loop
2344                  * forever
2345                  */
2346                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2347                         block1 = 0;
2348                 free_extent_buffer(eb);
2349         }
2350         if (slot + 1 < nritems) {
2351                 block2 = btrfs_node_blockptr(parent, slot + 1);
2352                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2353                 eb = btrfs_find_tree_block(root->fs_info, block2);
2354                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2355                         block2 = 0;
2356                 free_extent_buffer(eb);
2357         }
2358
2359         if (block1)
2360                 readahead_tree_block(root, block1);
2361         if (block2)
2362                 readahead_tree_block(root, block2);
2363 }
2364
2365
2366 /*
2367  * when we walk down the tree, it is usually safe to unlock the higher layers
2368  * in the tree.  The exceptions are when our path goes through slot 0, because
2369  * operations on the tree might require changing key pointers higher up in the
2370  * tree.
2371  *
2372  * callers might also have set path->keep_locks, which tells this code to keep
2373  * the lock if the path points to the last slot in the block.  This is part of
2374  * walking through the tree, and selecting the next slot in the higher block.
2375  *
2376  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2377  * if lowest_unlock is 1, level 0 won't be unlocked
2378  */
2379 static noinline void unlock_up(struct btrfs_path *path, int level,
2380                                int lowest_unlock, int min_write_lock_level,
2381                                int *write_lock_level)
2382 {
2383         int i;
2384         int skip_level = level;
2385         int no_skips = 0;
2386         struct extent_buffer *t;
2387
2388         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2389                 if (!path->nodes[i])
2390                         break;
2391                 if (!path->locks[i])
2392                         break;
2393                 if (!no_skips && path->slots[i] == 0) {
2394                         skip_level = i + 1;
2395                         continue;
2396                 }
2397                 if (!no_skips && path->keep_locks) {
2398                         u32 nritems;
2399                         t = path->nodes[i];
2400                         nritems = btrfs_header_nritems(t);
2401                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2402                                 skip_level = i + 1;
2403                                 continue;
2404                         }
2405                 }
2406                 if (skip_level < i && i >= lowest_unlock)
2407                         no_skips = 1;
2408
2409                 t = path->nodes[i];
2410                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2411                         btrfs_tree_unlock_rw(t, path->locks[i]);
2412                         path->locks[i] = 0;
2413                         if (write_lock_level &&
2414                             i > min_write_lock_level &&
2415                             i <= *write_lock_level) {
2416                                 *write_lock_level = i - 1;
2417                         }
2418                 }
2419         }
2420 }
2421
2422 /*
2423  * This releases any locks held in the path starting at level and
2424  * going all the way up to the root.
2425  *
2426  * btrfs_search_slot will keep the lock held on higher nodes in a few
2427  * corner cases, such as COW of the block at slot zero in the node.  This
2428  * ignores those rules, and it should only be called when there are no
2429  * more updates to be done higher up in the tree.
2430  */
2431 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2432 {
2433         int i;
2434
2435         if (path->keep_locks)
2436                 return;
2437
2438         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2439                 if (!path->nodes[i])
2440                         continue;
2441                 if (!path->locks[i])
2442                         continue;
2443                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2444                 path->locks[i] = 0;
2445         }
2446 }
2447
2448 /*
2449  * helper function for btrfs_search_slot.  The goal is to find a block
2450  * in cache without setting the path to blocking.  If we find the block
2451  * we return zero and the path is unchanged.
2452  *
2453  * If we can't find the block, we set the path blocking and do some
2454  * reada.  -EAGAIN is returned and the search must be repeated.
2455  */
2456 static int
2457 read_block_for_search(struct btrfs_trans_handle *trans,
2458                        struct btrfs_root *root, struct btrfs_path *p,
2459                        struct extent_buffer **eb_ret, int level, int slot,
2460                        struct btrfs_key *key, u64 time_seq)
2461 {
2462         u64 blocknr;
2463         u64 gen;
2464         struct extent_buffer *b = *eb_ret;
2465         struct extent_buffer *tmp;
2466         int ret;
2467
2468         blocknr = btrfs_node_blockptr(b, slot);
2469         gen = btrfs_node_ptr_generation(b, slot);
2470
2471         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2472         if (tmp) {
2473                 /* first we do an atomic uptodate check */
2474                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2475                         *eb_ret = tmp;
2476                         return 0;
2477                 }
2478
2479                 /* the pages were up to date, but we failed
2480                  * the generation number check.  Do a full
2481                  * read for the generation number that is correct.
2482                  * We must do this without dropping locks so
2483                  * we can trust our generation number
2484                  */
2485                 btrfs_set_path_blocking(p);
2486
2487                 /* now we're allowed to do a blocking uptodate check */
2488                 ret = btrfs_read_buffer(tmp, gen);
2489                 if (!ret) {
2490                         *eb_ret = tmp;
2491                         return 0;
2492                 }
2493                 free_extent_buffer(tmp);
2494                 btrfs_release_path(p);
2495                 return -EIO;
2496         }
2497
2498         /*
2499          * reduce lock contention at high levels
2500          * of the btree by dropping locks before
2501          * we read.  Don't release the lock on the current
2502          * level because we need to walk this node to figure
2503          * out which blocks to read.
2504          */
2505         btrfs_unlock_up_safe(p, level + 1);
2506         btrfs_set_path_blocking(p);
2507
2508         free_extent_buffer(tmp);
2509         if (p->reada != READA_NONE)
2510                 reada_for_search(root, p, level, slot, key->objectid);
2511
2512         btrfs_release_path(p);
2513
2514         ret = -EAGAIN;
2515         tmp = read_tree_block(root, blocknr, 0);
2516         if (!IS_ERR(tmp)) {
2517                 /*
2518                  * If the read above didn't mark this buffer up to date,
2519                  * it will never end up being up to date.  Set ret to EIO now
2520                  * and give up so that our caller doesn't loop forever
2521                  * on our EAGAINs.
2522                  */
2523                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2524                         ret = -EIO;
2525                 free_extent_buffer(tmp);
2526         } else {
2527                 ret = PTR_ERR(tmp);
2528         }
2529         return ret;
2530 }
2531
2532 /*
2533  * helper function for btrfs_search_slot.  This does all of the checks
2534  * for node-level blocks and does any balancing required based on
2535  * the ins_len.
2536  *
2537  * If no extra work was required, zero is returned.  If we had to
2538  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2539  * start over
2540  */
2541 static int
2542 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2543                        struct btrfs_root *root, struct btrfs_path *p,
2544                        struct extent_buffer *b, int level, int ins_len,
2545                        int *write_lock_level)
2546 {
2547         int ret;
2548         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2549             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2550                 int sret;
2551
2552                 if (*write_lock_level < level + 1) {
2553                         *write_lock_level = level + 1;
2554                         btrfs_release_path(p);
2555                         goto again;
2556                 }
2557
2558                 btrfs_set_path_blocking(p);
2559                 reada_for_balance(root, p, level);
2560                 sret = split_node(trans, root, p, level);
2561                 btrfs_clear_path_blocking(p, NULL, 0);
2562
2563                 BUG_ON(sret > 0);
2564                 if (sret) {
2565                         ret = sret;
2566                         goto done;
2567                 }
2568                 b = p->nodes[level];
2569         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2570                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2571                 int sret;
2572
2573                 if (*write_lock_level < level + 1) {
2574                         *write_lock_level = level + 1;
2575                         btrfs_release_path(p);
2576                         goto again;
2577                 }
2578
2579                 btrfs_set_path_blocking(p);
2580                 reada_for_balance(root, p, level);
2581                 sret = balance_level(trans, root, p, level);
2582                 btrfs_clear_path_blocking(p, NULL, 0);
2583
2584                 if (sret) {
2585                         ret = sret;
2586                         goto done;
2587                 }
2588                 b = p->nodes[level];
2589                 if (!b) {
2590                         btrfs_release_path(p);
2591                         goto again;
2592                 }
2593                 BUG_ON(btrfs_header_nritems(b) == 1);
2594         }
2595         return 0;
2596
2597 again:
2598         ret = -EAGAIN;
2599 done:
2600         return ret;
2601 }
2602
2603 static void key_search_validate(struct extent_buffer *b,
2604                                 struct btrfs_key *key,
2605                                 int level)
2606 {
2607 #ifdef CONFIG_BTRFS_ASSERT
2608         struct btrfs_disk_key disk_key;
2609
2610         btrfs_cpu_key_to_disk(&disk_key, key);
2611
2612         if (level == 0)
2613                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2614                     offsetof(struct btrfs_leaf, items[0].key),
2615                     sizeof(disk_key)));
2616         else
2617                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2618                     offsetof(struct btrfs_node, ptrs[0].key),
2619                     sizeof(disk_key)));
2620 #endif
2621 }
2622
2623 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2624                       int level, int *prev_cmp, int *slot)
2625 {
2626         if (*prev_cmp != 0) {
2627                 *prev_cmp = bin_search(b, key, level, slot);
2628                 return *prev_cmp;
2629         }
2630
2631         key_search_validate(b, key, level);
2632         *slot = 0;
2633
2634         return 0;
2635 }
2636
2637 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2638                 u64 iobjectid, u64 ioff, u8 key_type,
2639                 struct btrfs_key *found_key)
2640 {
2641         int ret;
2642         struct btrfs_key key;
2643         struct extent_buffer *eb;
2644
2645         ASSERT(path);
2646         ASSERT(found_key);
2647
2648         key.type = key_type;
2649         key.objectid = iobjectid;
2650         key.offset = ioff;
2651
2652         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2653         if (ret < 0)
2654                 return ret;
2655
2656         eb = path->nodes[0];
2657         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2658                 ret = btrfs_next_leaf(fs_root, path);
2659                 if (ret)
2660                         return ret;
2661                 eb = path->nodes[0];
2662         }
2663
2664         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2665         if (found_key->type != key.type ||
2666                         found_key->objectid != key.objectid)
2667                 return 1;
2668
2669         return 0;
2670 }
2671
2672 /*
2673  * look for key in the tree.  path is filled in with nodes along the way
2674  * if key is found, we return zero and you can find the item in the leaf
2675  * level of the path (level 0)
2676  *
2677  * If the key isn't found, the path points to the slot where it should
2678  * be inserted, and 1 is returned.  If there are other errors during the
2679  * search a negative error number is returned.
2680  *
2681  * if ins_len > 0, nodes and leaves will be split as we walk down the
2682  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2683  * possible)
2684  */
2685 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2686                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2687                       ins_len, int cow)
2688 {
2689         struct extent_buffer *b;
2690         int slot;
2691         int ret;
2692         int err;
2693         int level;
2694         int lowest_unlock = 1;
2695         int root_lock;
2696         /* everything at write_lock_level or lower must be write locked */
2697         int write_lock_level = 0;
2698         u8 lowest_level = 0;
2699         int min_write_lock_level;
2700         int prev_cmp;
2701
2702         lowest_level = p->lowest_level;
2703         WARN_ON(lowest_level && ins_len > 0);
2704         WARN_ON(p->nodes[0] != NULL);
2705         BUG_ON(!cow && ins_len);
2706
2707         if (ins_len < 0) {
2708                 lowest_unlock = 2;
2709
2710                 /* when we are removing items, we might have to go up to level
2711                  * two as we update tree pointers  Make sure we keep write
2712                  * for those levels as well
2713                  */
2714                 write_lock_level = 2;
2715         } else if (ins_len > 0) {
2716                 /*
2717                  * for inserting items, make sure we have a write lock on
2718                  * level 1 so we can update keys
2719                  */
2720                 write_lock_level = 1;
2721         }
2722
2723         if (!cow)
2724                 write_lock_level = -1;
2725
2726         if (cow && (p->keep_locks || p->lowest_level))
2727                 write_lock_level = BTRFS_MAX_LEVEL;
2728
2729         min_write_lock_level = write_lock_level;
2730
2731 again:
2732         prev_cmp = -1;
2733         /*
2734          * we try very hard to do read locks on the root
2735          */
2736         root_lock = BTRFS_READ_LOCK;
2737         level = 0;
2738         if (p->search_commit_root) {
2739                 /*
2740                  * the commit roots are read only
2741                  * so we always do read locks
2742                  */
2743                 if (p->need_commit_sem)
2744                         down_read(&root->fs_info->commit_root_sem);
2745                 b = root->commit_root;
2746                 extent_buffer_get(b);
2747                 level = btrfs_header_level(b);
2748                 if (p->need_commit_sem)
2749                         up_read(&root->fs_info->commit_root_sem);
2750                 if (!p->skip_locking)
2751                         btrfs_tree_read_lock(b);
2752         } else {
2753                 if (p->skip_locking) {
2754                         b = btrfs_root_node(root);
2755                         level = btrfs_header_level(b);
2756                 } else {
2757                         /* we don't know the level of the root node
2758                          * until we actually have it read locked
2759                          */
2760                         b = btrfs_read_lock_root_node(root);
2761                         level = btrfs_header_level(b);
2762                         if (level <= write_lock_level) {
2763                                 /* whoops, must trade for write lock */
2764                                 btrfs_tree_read_unlock(b);
2765                                 free_extent_buffer(b);
2766                                 b = btrfs_lock_root_node(root);
2767                                 root_lock = BTRFS_WRITE_LOCK;
2768
2769                                 /* the level might have changed, check again */
2770                                 level = btrfs_header_level(b);
2771                         }
2772                 }
2773         }
2774         p->nodes[level] = b;
2775         if (!p->skip_locking)
2776                 p->locks[level] = root_lock;
2777
2778         while (b) {
2779                 level = btrfs_header_level(b);
2780
2781                 /*
2782                  * setup the path here so we can release it under lock
2783                  * contention with the cow code
2784                  */
2785                 if (cow) {
2786                         /*
2787                          * if we don't really need to cow this block
2788                          * then we don't want to set the path blocking,
2789                          * so we test it here
2790                          */
2791                         if (!should_cow_block(trans, root, b)) {
2792                                 trans->dirty = true;
2793                                 goto cow_done;
2794                         }
2795
2796                         /*
2797                          * must have write locks on this node and the
2798                          * parent
2799                          */
2800                         if (level > write_lock_level ||
2801                             (level + 1 > write_lock_level &&
2802                             level + 1 < BTRFS_MAX_LEVEL &&
2803                             p->nodes[level + 1])) {
2804                                 write_lock_level = level + 1;
2805                                 btrfs_release_path(p);
2806                                 goto again;
2807                         }
2808
2809                         btrfs_set_path_blocking(p);
2810                         err = btrfs_cow_block(trans, root, b,
2811                                               p->nodes[level + 1],
2812                                               p->slots[level + 1], &b);
2813                         if (err) {
2814                                 ret = err;
2815                                 goto done;
2816                         }
2817                 }
2818 cow_done:
2819                 p->nodes[level] = b;
2820                 btrfs_clear_path_blocking(p, NULL, 0);
2821
2822                 /*
2823                  * we have a lock on b and as long as we aren't changing
2824                  * the tree, there is no way to for the items in b to change.
2825                  * It is safe to drop the lock on our parent before we
2826                  * go through the expensive btree search on b.
2827                  *
2828                  * If we're inserting or deleting (ins_len != 0), then we might
2829                  * be changing slot zero, which may require changing the parent.
2830                  * So, we can't drop the lock until after we know which slot
2831                  * we're operating on.
2832                  */
2833                 if (!ins_len && !p->keep_locks) {
2834                         int u = level + 1;
2835
2836                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2837                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2838                                 p->locks[u] = 0;
2839                         }
2840                 }
2841
2842                 ret = key_search(b, key, level, &prev_cmp, &slot);
2843                 if (ret < 0)
2844                         goto done;
2845
2846                 if (level != 0) {
2847                         int dec = 0;
2848                         if (ret && slot > 0) {
2849                                 dec = 1;
2850                                 slot -= 1;
2851                         }
2852                         p->slots[level] = slot;
2853                         err = setup_nodes_for_search(trans, root, p, b, level,
2854                                              ins_len, &write_lock_level);
2855                         if (err == -EAGAIN)
2856                                 goto again;
2857                         if (err) {
2858                                 ret = err;
2859                                 goto done;
2860                         }
2861                         b = p->nodes[level];
2862                         slot = p->slots[level];
2863
2864                         /*
2865                          * slot 0 is special, if we change the key
2866                          * we have to update the parent pointer
2867                          * which means we must have a write lock
2868                          * on the parent
2869                          */
2870                         if (slot == 0 && ins_len &&
2871                             write_lock_level < level + 1) {
2872                                 write_lock_level = level + 1;
2873                                 btrfs_release_path(p);
2874                                 goto again;
2875                         }
2876
2877                         unlock_up(p, level, lowest_unlock,
2878                                   min_write_lock_level, &write_lock_level);
2879
2880                         if (level == lowest_level) {
2881                                 if (dec)
2882                                         p->slots[level]++;
2883                                 goto done;
2884                         }
2885
2886                         err = read_block_for_search(trans, root, p,
2887                                                     &b, level, slot, key, 0);
2888                         if (err == -EAGAIN)
2889                                 goto again;
2890                         if (err) {
2891                                 ret = err;
2892                                 goto done;
2893                         }
2894
2895                         if (!p->skip_locking) {
2896                                 level = btrfs_header_level(b);
2897                                 if (level <= write_lock_level) {
2898                                         err = btrfs_try_tree_write_lock(b);
2899                                         if (!err) {
2900                                                 btrfs_set_path_blocking(p);
2901                                                 btrfs_tree_lock(b);
2902                                                 btrfs_clear_path_blocking(p, b,
2903                                                                   BTRFS_WRITE_LOCK);
2904                                         }
2905                                         p->locks[level] = BTRFS_WRITE_LOCK;
2906                                 } else {
2907                                         err = btrfs_tree_read_lock_atomic(b);
2908                                         if (!err) {
2909                                                 btrfs_set_path_blocking(p);
2910                                                 btrfs_tree_read_lock(b);
2911                                                 btrfs_clear_path_blocking(p, b,
2912                                                                   BTRFS_READ_LOCK);
2913                                         }
2914                                         p->locks[level] = BTRFS_READ_LOCK;
2915                                 }
2916                                 p->nodes[level] = b;
2917                         }
2918                 } else {
2919                         p->slots[level] = slot;
2920                         if (ins_len > 0 &&
2921                             btrfs_leaf_free_space(root, b) < ins_len) {
2922                                 if (write_lock_level < 1) {
2923                                         write_lock_level = 1;
2924                                         btrfs_release_path(p);
2925                                         goto again;
2926                                 }
2927
2928                                 btrfs_set_path_blocking(p);
2929                                 err = split_leaf(trans, root, key,
2930                                                  p, ins_len, ret == 0);
2931                                 btrfs_clear_path_blocking(p, NULL, 0);
2932
2933                                 BUG_ON(err > 0);
2934                                 if (err) {
2935                                         ret = err;
2936                                         goto done;
2937                                 }
2938                         }
2939                         if (!p->search_for_split)
2940                                 unlock_up(p, level, lowest_unlock,
2941                                           min_write_lock_level, &write_lock_level);
2942                         goto done;
2943                 }
2944         }
2945         ret = 1;
2946 done:
2947         /*
2948          * we don't really know what they plan on doing with the path
2949          * from here on, so for now just mark it as blocking
2950          */
2951         if (!p->leave_spinning)
2952                 btrfs_set_path_blocking(p);
2953         if (ret < 0 && !p->skip_release_on_error)
2954                 btrfs_release_path(p);
2955         return ret;
2956 }
2957
2958 /*
2959  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2960  * current state of the tree together with the operations recorded in the tree
2961  * modification log to search for the key in a previous version of this tree, as
2962  * denoted by the time_seq parameter.
2963  *
2964  * Naturally, there is no support for insert, delete or cow operations.
2965  *
2966  * The resulting path and return value will be set up as if we called
2967  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2968  */
2969 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2970                           struct btrfs_path *p, u64 time_seq)
2971 {
2972         struct extent_buffer *b;
2973         int slot;
2974         int ret;
2975         int err;
2976         int level;
2977         int lowest_unlock = 1;
2978         u8 lowest_level = 0;
2979         int prev_cmp = -1;
2980
2981         lowest_level = p->lowest_level;
2982         WARN_ON(p->nodes[0] != NULL);
2983
2984         if (p->search_commit_root) {
2985                 BUG_ON(time_seq);
2986                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2987         }
2988
2989 again:
2990         b = get_old_root(root, time_seq);
2991         level = btrfs_header_level(b);
2992         p->locks[level] = BTRFS_READ_LOCK;
2993
2994         while (b) {
2995                 level = btrfs_header_level(b);
2996                 p->nodes[level] = b;
2997                 btrfs_clear_path_blocking(p, NULL, 0);
2998
2999                 /*
3000                  * we have a lock on b and as long as we aren't changing
3001                  * the tree, there is no way to for the items in b to change.
3002                  * It is safe to drop the lock on our parent before we
3003                  * go through the expensive btree search on b.
3004                  */
3005                 btrfs_unlock_up_safe(p, level + 1);
3006
3007                 /*
3008                  * Since we can unwind ebs we want to do a real search every
3009                  * time.
3010                  */
3011                 prev_cmp = -1;
3012                 ret = key_search(b, key, level, &prev_cmp, &slot);
3013
3014                 if (level != 0) {
3015                         int dec = 0;
3016                         if (ret && slot > 0) {
3017                                 dec = 1;
3018                                 slot -= 1;
3019                         }
3020                         p->slots[level] = slot;
3021                         unlock_up(p, level, lowest_unlock, 0, NULL);
3022
3023                         if (level == lowest_level) {
3024                                 if (dec)
3025                                         p->slots[level]++;
3026                                 goto done;
3027                         }
3028
3029                         err = read_block_for_search(NULL, root, p, &b, level,
3030                                                     slot, key, time_seq);
3031                         if (err == -EAGAIN)
3032                                 goto again;
3033                         if (err) {
3034                                 ret = err;
3035                                 goto done;
3036                         }
3037
3038                         level = btrfs_header_level(b);
3039                         err = btrfs_tree_read_lock_atomic(b);
3040                         if (!err) {
3041                                 btrfs_set_path_blocking(p);
3042                                 btrfs_tree_read_lock(b);
3043                                 btrfs_clear_path_blocking(p, b,
3044                                                           BTRFS_READ_LOCK);
3045                         }
3046                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3047                         if (!b) {
3048                                 ret = -ENOMEM;
3049                                 goto done;
3050                         }
3051                         p->locks[level] = BTRFS_READ_LOCK;
3052                         p->nodes[level] = b;
3053                 } else {
3054                         p->slots[level] = slot;
3055                         unlock_up(p, level, lowest_unlock, 0, NULL);
3056                         goto done;
3057                 }
3058         }
3059         ret = 1;
3060 done:
3061         if (!p->leave_spinning)
3062                 btrfs_set_path_blocking(p);
3063         if (ret < 0)
3064                 btrfs_release_path(p);
3065
3066         return ret;
3067 }
3068
3069 /*
3070  * helper to use instead of search slot if no exact match is needed but
3071  * instead the next or previous item should be returned.
3072  * When find_higher is true, the next higher item is returned, the next lower
3073  * otherwise.
3074  * When return_any and find_higher are both true, and no higher item is found,
3075  * return the next lower instead.
3076  * When return_any is true and find_higher is false, and no lower item is found,
3077  * return the next higher instead.
3078  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3079  * < 0 on error
3080  */
3081 int btrfs_search_slot_for_read(struct btrfs_root *root,
3082                                struct btrfs_key *key, struct btrfs_path *p,
3083                                int find_higher, int return_any)
3084 {
3085         int ret;
3086         struct extent_buffer *leaf;
3087
3088 again:
3089         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3090         if (ret <= 0)
3091                 return ret;
3092         /*
3093          * a return value of 1 means the path is at the position where the
3094          * item should be inserted. Normally this is the next bigger item,
3095          * but in case the previous item is the last in a leaf, path points
3096          * to the first free slot in the previous leaf, i.e. at an invalid
3097          * item.
3098          */
3099         leaf = p->nodes[0];
3100
3101         if (find_higher) {
3102                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3103                         ret = btrfs_next_leaf(root, p);
3104                         if (ret <= 0)
3105                                 return ret;
3106                         if (!return_any)
3107                                 return 1;
3108                         /*
3109                          * no higher item found, return the next
3110                          * lower instead
3111                          */
3112                         return_any = 0;
3113                         find_higher = 0;
3114                         btrfs_release_path(p);
3115                         goto again;
3116                 }
3117         } else {
3118                 if (p->slots[0] == 0) {
3119                         ret = btrfs_prev_leaf(root, p);
3120                         if (ret < 0)
3121                                 return ret;
3122                         if (!ret) {
3123                                 leaf = p->nodes[0];
3124                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3125                                         p->slots[0]--;
3126                                 return 0;
3127                         }
3128                         if (!return_any)
3129                                 return 1;
3130                         /*
3131                          * no lower item found, return the next
3132                          * higher instead
3133                          */
3134                         return_any = 0;
3135                         find_higher = 1;
3136                         btrfs_release_path(p);
3137                         goto again;
3138                 } else {
3139                         --p->slots[0];
3140                 }
3141         }
3142         return 0;
3143 }
3144
3145 /*
3146  * adjust the pointers going up the tree, starting at level
3147  * making sure the right key of each node is points to 'key'.
3148  * This is used after shifting pointers to the left, so it stops
3149  * fixing up pointers when a given leaf/node is not in slot 0 of the
3150  * higher levels
3151  *
3152  */
3153 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3154                            struct btrfs_path *path,
3155                            struct btrfs_disk_key *key, int level)
3156 {
3157         int i;
3158         struct extent_buffer *t;
3159
3160         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3161                 int tslot = path->slots[i];
3162                 if (!path->nodes[i])
3163                         break;
3164                 t = path->nodes[i];
3165                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3166                 btrfs_set_node_key(t, key, tslot);
3167                 btrfs_mark_buffer_dirty(path->nodes[i]);
3168                 if (tslot != 0)
3169                         break;
3170         }
3171 }
3172
3173 /*
3174  * update item key.
3175  *
3176  * This function isn't completely safe. It's the caller's responsibility
3177  * that the new key won't break the order
3178  */
3179 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3180                              struct btrfs_path *path,
3181                              struct btrfs_key *new_key)
3182 {
3183         struct btrfs_disk_key disk_key;
3184         struct extent_buffer *eb;
3185         int slot;
3186
3187         eb = path->nodes[0];
3188         slot = path->slots[0];
3189         if (slot > 0) {
3190                 btrfs_item_key(eb, &disk_key, slot - 1);
3191                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3192         }
3193         if (slot < btrfs_header_nritems(eb) - 1) {
3194                 btrfs_item_key(eb, &disk_key, slot + 1);
3195                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3196         }
3197
3198         btrfs_cpu_key_to_disk(&disk_key, new_key);
3199         btrfs_set_item_key(eb, &disk_key, slot);
3200         btrfs_mark_buffer_dirty(eb);
3201         if (slot == 0)
3202                 fixup_low_keys(fs_info, path, &disk_key, 1);
3203 }
3204
3205 /*
3206  * try to push data from one node into the next node left in the
3207  * tree.
3208  *
3209  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3210  * error, and > 0 if there was no room in the left hand block.
3211  */
3212 static int push_node_left(struct btrfs_trans_handle *trans,
3213                           struct btrfs_root *root, struct extent_buffer *dst,
3214                           struct extent_buffer *src, int empty)
3215 {
3216         int push_items = 0;
3217         int src_nritems;
3218         int dst_nritems;
3219         int ret = 0;
3220
3221         src_nritems = btrfs_header_nritems(src);
3222         dst_nritems = btrfs_header_nritems(dst);
3223         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3224         WARN_ON(btrfs_header_generation(src) != trans->transid);
3225         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3226
3227         if (!empty && src_nritems <= 8)
3228                 return 1;
3229
3230         if (push_items <= 0)
3231                 return 1;
3232
3233         if (empty) {
3234                 push_items = min(src_nritems, push_items);
3235                 if (push_items < src_nritems) {
3236                         /* leave at least 8 pointers in the node if
3237                          * we aren't going to empty it
3238                          */
3239                         if (src_nritems - push_items < 8) {
3240                                 if (push_items <= 8)
3241                                         return 1;
3242                                 push_items -= 8;
3243                         }
3244                 }
3245         } else
3246                 push_items = min(src_nritems - 8, push_items);
3247
3248         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3249                                    push_items);
3250         if (ret) {
3251                 btrfs_abort_transaction(trans, root, ret);
3252                 return ret;
3253         }
3254         copy_extent_buffer(dst, src,
3255                            btrfs_node_key_ptr_offset(dst_nritems),
3256                            btrfs_node_key_ptr_offset(0),
3257                            push_items * sizeof(struct btrfs_key_ptr));
3258
3259         if (push_items < src_nritems) {
3260                 /*
3261                  * don't call tree_mod_log_eb_move here, key removal was already
3262                  * fully logged by tree_mod_log_eb_copy above.
3263                  */
3264                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3265                                       btrfs_node_key_ptr_offset(push_items),
3266                                       (src_nritems - push_items) *
3267                                       sizeof(struct btrfs_key_ptr));
3268         }
3269         btrfs_set_header_nritems(src, src_nritems - push_items);
3270         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3271         btrfs_mark_buffer_dirty(src);
3272         btrfs_mark_buffer_dirty(dst);
3273
3274         return ret;
3275 }
3276
3277 /*
3278  * try to push data from one node into the next node right in the
3279  * tree.
3280  *
3281  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3282  * error, and > 0 if there was no room in the right hand block.
3283  *
3284  * this will  only push up to 1/2 the contents of the left node over
3285  */
3286 static int balance_node_right(struct btrfs_trans_handle *trans,
3287                               struct btrfs_root *root,
3288                               struct extent_buffer *dst,
3289                               struct extent_buffer *src)
3290 {
3291         int push_items = 0;
3292         int max_push;
3293         int src_nritems;
3294         int dst_nritems;
3295         int ret = 0;
3296
3297         WARN_ON(btrfs_header_generation(src) != trans->transid);
3298         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3299
3300         src_nritems = btrfs_header_nritems(src);
3301         dst_nritems = btrfs_header_nritems(dst);
3302         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3303         if (push_items <= 0)
3304                 return 1;
3305
3306         if (src_nritems < 4)
3307                 return 1;
3308
3309         max_push = src_nritems / 2 + 1;
3310         /* don't try to empty the node */
3311         if (max_push >= src_nritems)
3312                 return 1;
3313
3314         if (max_push < push_items)
3315                 push_items = max_push;
3316
3317         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3318         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3319                                       btrfs_node_key_ptr_offset(0),
3320                                       (dst_nritems) *
3321                                       sizeof(struct btrfs_key_ptr));
3322
3323         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3324                                    src_nritems - push_items, push_items);
3325         if (ret) {
3326                 btrfs_abort_transaction(trans, root, ret);
3327                 return ret;
3328         }
3329         copy_extent_buffer(dst, src,
3330                            btrfs_node_key_ptr_offset(0),
3331                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3332                            push_items * sizeof(struct btrfs_key_ptr));
3333
3334         btrfs_set_header_nritems(src, src_nritems - push_items);
3335         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3336
3337         btrfs_mark_buffer_dirty(src);
3338         btrfs_mark_buffer_dirty(dst);
3339
3340         return ret;
3341 }
3342
3343 /*
3344  * helper function to insert a new root level in the tree.
3345  * A new node is allocated, and a single item is inserted to
3346  * point to the existing root
3347  *
3348  * returns zero on success or < 0 on failure.
3349  */
3350 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3351                            struct btrfs_root *root,
3352                            struct btrfs_path *path, int level)
3353 {
3354         u64 lower_gen;
3355         struct extent_buffer *lower;
3356         struct extent_buffer *c;
3357         struct extent_buffer *old;
3358         struct btrfs_disk_key lower_key;
3359
3360         BUG_ON(path->nodes[level]);
3361         BUG_ON(path->nodes[level-1] != root->node);
3362
3363         lower = path->nodes[level-1];
3364         if (level == 1)
3365                 btrfs_item_key(lower, &lower_key, 0);
3366         else
3367                 btrfs_node_key(lower, &lower_key, 0);
3368
3369         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3370                                    &lower_key, level, root->node->start, 0);
3371         if (IS_ERR(c))
3372                 return PTR_ERR(c);
3373
3374         root_add_used(root, root->nodesize);
3375
3376         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3377         btrfs_set_header_nritems(c, 1);
3378         btrfs_set_header_level(c, level);
3379         btrfs_set_header_bytenr(c, c->start);
3380         btrfs_set_header_generation(c, trans->transid);
3381         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3382         btrfs_set_header_owner(c, root->root_key.objectid);
3383
3384         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3385                             BTRFS_FSID_SIZE);
3386
3387         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3388                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3389
3390         btrfs_set_node_key(c, &lower_key, 0);
3391         btrfs_set_node_blockptr(c, 0, lower->start);
3392         lower_gen = btrfs_header_generation(lower);
3393         WARN_ON(lower_gen != trans->transid);
3394
3395         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3396
3397         btrfs_mark_buffer_dirty(c);
3398
3399         old = root->node;
3400         tree_mod_log_set_root_pointer(root, c, 0);
3401         rcu_assign_pointer(root->node, c);
3402
3403         /* the super has an extra ref to root->node */
3404         free_extent_buffer(old);
3405
3406         add_root_to_dirty_list(root);
3407         extent_buffer_get(c);
3408         path->nodes[level] = c;
3409         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3410         path->slots[level] = 0;
3411         return 0;
3412 }
3413
3414 /*
3415  * worker function to insert a single pointer in a node.
3416  * the node should have enough room for the pointer already
3417  *
3418  * slot and level indicate where you want the key to go, and
3419  * blocknr is the block the key points to.
3420  */
3421 static void insert_ptr(struct btrfs_trans_handle *trans,
3422                        struct btrfs_root *root, struct btrfs_path *path,
3423                        struct btrfs_disk_key *key, u64 bytenr,
3424                        int slot, int level)
3425 {
3426         struct extent_buffer *lower;
3427         int nritems;
3428         int ret;
3429
3430         BUG_ON(!path->nodes[level]);
3431         btrfs_assert_tree_locked(path->nodes[level]);
3432         lower = path->nodes[level];
3433         nritems = btrfs_header_nritems(lower);
3434         BUG_ON(slot > nritems);
3435         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3436         if (slot != nritems) {
3437                 if (level)
3438                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3439                                              slot, nritems - slot);
3440                 memmove_extent_buffer(lower,
3441                               btrfs_node_key_ptr_offset(slot + 1),
3442                               btrfs_node_key_ptr_offset(slot),
3443                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3444         }
3445         if (level) {
3446                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3447                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3448                 BUG_ON(ret < 0);
3449         }
3450         btrfs_set_node_key(lower, key, slot);
3451         btrfs_set_node_blockptr(lower, slot, bytenr);
3452         WARN_ON(trans->transid == 0);
3453         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3454         btrfs_set_header_nritems(lower, nritems + 1);
3455         btrfs_mark_buffer_dirty(lower);
3456 }
3457
3458 /*
3459  * split the node at the specified level in path in two.
3460  * The path is corrected to point to the appropriate node after the split
3461  *
3462  * Before splitting this tries to make some room in the node by pushing
3463  * left and right, if either one works, it returns right away.
3464  *
3465  * returns 0 on success and < 0 on failure
3466  */
3467 static noinline int split_node(struct btrfs_trans_handle *trans,
3468                                struct btrfs_root *root,
3469                                struct btrfs_path *path, int level)
3470 {
3471         struct extent_buffer *c;
3472         struct extent_buffer *split;
3473         struct btrfs_disk_key disk_key;
3474         int mid;
3475         int ret;
3476         u32 c_nritems;
3477
3478         c = path->nodes[level];
3479         WARN_ON(btrfs_header_generation(c) != trans->transid);
3480         if (c == root->node) {
3481                 /*
3482                  * trying to split the root, lets make a new one
3483                  *
3484                  * tree mod log: We don't log_removal old root in
3485                  * insert_new_root, because that root buffer will be kept as a
3486                  * normal node. We are going to log removal of half of the
3487                  * elements below with tree_mod_log_eb_copy. We're holding a
3488                  * tree lock on the buffer, which is why we cannot race with
3489                  * other tree_mod_log users.
3490                  */
3491                 ret = insert_new_root(trans, root, path, level + 1);
3492                 if (ret)
3493                         return ret;
3494         } else {
3495                 ret = push_nodes_for_insert(trans, root, path, level);
3496                 c = path->nodes[level];
3497                 if (!ret && btrfs_header_nritems(c) <
3498                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3499                         return 0;
3500                 if (ret < 0)
3501                         return ret;
3502         }
3503
3504         c_nritems = btrfs_header_nritems(c);
3505         mid = (c_nritems + 1) / 2;
3506         btrfs_node_key(c, &disk_key, mid);
3507
3508         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3509                         &disk_key, level, c->start, 0);
3510         if (IS_ERR(split))
3511                 return PTR_ERR(split);
3512
3513         root_add_used(root, root->nodesize);
3514
3515         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3516         btrfs_set_header_level(split, btrfs_header_level(c));
3517         btrfs_set_header_bytenr(split, split->start);
3518         btrfs_set_header_generation(split, trans->transid);
3519         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3520         btrfs_set_header_owner(split, root->root_key.objectid);
3521         write_extent_buffer(split, root->fs_info->fsid,
3522                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3523         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3524                             btrfs_header_chunk_tree_uuid(split),
3525                             BTRFS_UUID_SIZE);
3526
3527         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3528                                    mid, c_nritems - mid);
3529         if (ret) {
3530                 btrfs_abort_transaction(trans, root, ret);
3531                 return ret;
3532         }
3533         copy_extent_buffer(split, c,
3534                            btrfs_node_key_ptr_offset(0),
3535                            btrfs_node_key_ptr_offset(mid),
3536                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3537         btrfs_set_header_nritems(split, c_nritems - mid);
3538         btrfs_set_header_nritems(c, mid);
3539         ret = 0;
3540
3541         btrfs_mark_buffer_dirty(c);
3542         btrfs_mark_buffer_dirty(split);
3543
3544         insert_ptr(trans, root, path, &disk_key, split->start,
3545                    path->slots[level + 1] + 1, level + 1);
3546
3547         if (path->slots[level] >= mid) {
3548                 path->slots[level] -= mid;
3549                 btrfs_tree_unlock(c);
3550                 free_extent_buffer(c);
3551                 path->nodes[level] = split;
3552                 path->slots[level + 1] += 1;
3553         } else {
3554                 btrfs_tree_unlock(split);
3555                 free_extent_buffer(split);
3556         }
3557         return ret;
3558 }
3559
3560 /*
3561  * how many bytes are required to store the items in a leaf.  start
3562  * and nr indicate which items in the leaf to check.  This totals up the
3563  * space used both by the item structs and the item data
3564  */
3565 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3566 {
3567         struct btrfs_item *start_item;
3568         struct btrfs_item *end_item;
3569         struct btrfs_map_token token;
3570         int data_len;
3571         int nritems = btrfs_header_nritems(l);
3572         int end = min(nritems, start + nr) - 1;
3573
3574         if (!nr)
3575                 return 0;
3576         btrfs_init_map_token(&token);
3577         start_item = btrfs_item_nr(start);
3578         end_item = btrfs_item_nr(end);
3579         data_len = btrfs_token_item_offset(l, start_item, &token) +
3580                 btrfs_token_item_size(l, start_item, &token);
3581         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3582         data_len += sizeof(struct btrfs_item) * nr;
3583         WARN_ON(data_len < 0);
3584         return data_len;
3585 }
3586
3587 /*
3588  * The space between the end of the leaf items and
3589  * the start of the leaf data.  IOW, how much room
3590  * the leaf has left for both items and data
3591  */
3592 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3593                                    struct extent_buffer *leaf)
3594 {
3595         int nritems = btrfs_header_nritems(leaf);
3596         int ret;
3597         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3598         if (ret < 0) {
3599                 btrfs_crit(root->fs_info,
3600                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3601                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3602                        leaf_space_used(leaf, 0, nritems), nritems);
3603         }
3604         return ret;
3605 }
3606
3607 /*
3608  * min slot controls the lowest index we're willing to push to the
3609  * right.  We'll push up to and including min_slot, but no lower
3610  */
3611 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3612                                       struct btrfs_root *root,
3613                                       struct btrfs_path *path,
3614                                       int data_size, int empty,
3615                                       struct extent_buffer *right,
3616                                       int free_space, u32 left_nritems,
3617                                       u32 min_slot)
3618 {
3619         struct extent_buffer *left = path->nodes[0];
3620         struct extent_buffer *upper = path->nodes[1];
3621         struct btrfs_map_token token;
3622         struct btrfs_disk_key disk_key;
3623         int slot;
3624         u32 i;
3625         int push_space = 0;
3626         int push_items = 0;
3627         struct btrfs_item *item;
3628         u32 nr;
3629         u32 right_nritems;
3630         u32 data_end;
3631         u32 this_item_size;
3632
3633         btrfs_init_map_token(&token);
3634
3635         if (empty)
3636                 nr = 0;
3637         else
3638                 nr = max_t(u32, 1, min_slot);
3639
3640         if (path->slots[0] >= left_nritems)
3641                 push_space += data_size;
3642
3643         slot = path->slots[1];
3644         i = left_nritems - 1;
3645         while (i >= nr) {
3646                 item = btrfs_item_nr(i);
3647
3648                 if (!empty && push_items > 0) {
3649                         if (path->slots[0] > i)
3650                                 break;
3651                         if (path->slots[0] == i) {
3652                                 int space = btrfs_leaf_free_space(root, left);
3653                                 if (space + push_space * 2 > free_space)
3654                                         break;
3655                         }
3656                 }
3657
3658                 if (path->slots[0] == i)
3659                         push_space += data_size;
3660
3661                 this_item_size = btrfs_item_size(left, item);
3662                 if (this_item_size + sizeof(*item) + push_space > free_space)
3663                         break;
3664
3665                 push_items++;
3666                 push_space += this_item_size + sizeof(*item);
3667                 if (i == 0)
3668                         break;
3669                 i--;
3670         }
3671
3672         if (push_items == 0)
3673                 goto out_unlock;
3674
3675         WARN_ON(!empty && push_items == left_nritems);
3676
3677         /* push left to right */
3678         right_nritems = btrfs_header_nritems(right);
3679
3680         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3681         push_space -= leaf_data_end(root, left);
3682
3683         /* make room in the right data area */
3684         data_end = leaf_data_end(root, right);
3685         memmove_extent_buffer(right,
3686                               btrfs_leaf_data(right) + data_end - push_space,
3687                               btrfs_leaf_data(right) + data_end,
3688                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3689
3690         /* copy from the left data area */
3691         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3692                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3693                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3694                      push_space);
3695
3696         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3697                               btrfs_item_nr_offset(0),
3698                               right_nritems * sizeof(struct btrfs_item));
3699
3700         /* copy the items from left to right */
3701         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3702                    btrfs_item_nr_offset(left_nritems - push_items),
3703                    push_items * sizeof(struct btrfs_item));
3704
3705         /* update the item pointers */
3706         right_nritems += push_items;
3707         btrfs_set_header_nritems(right, right_nritems);
3708         push_space = BTRFS_LEAF_DATA_SIZE(root);
3709         for (i = 0; i < right_nritems; i++) {
3710                 item = btrfs_item_nr(i);
3711                 push_space -= btrfs_token_item_size(right, item, &token);
3712                 btrfs_set_token_item_offset(right, item, push_space, &token);
3713         }
3714
3715         left_nritems -= push_items;
3716         btrfs_set_header_nritems(left, left_nritems);
3717
3718         if (left_nritems)
3719                 btrfs_mark_buffer_dirty(left);
3720         else
3721                 clean_tree_block(trans, root->fs_info, left);
3722
3723         btrfs_mark_buffer_dirty(right);
3724
3725         btrfs_item_key(right, &disk_key, 0);
3726         btrfs_set_node_key(upper, &disk_key, slot + 1);
3727         btrfs_mark_buffer_dirty(upper);
3728
3729         /* then fixup the leaf pointer in the path */
3730         if (path->slots[0] >= left_nritems) {
3731                 path->slots[0] -= left_nritems;
3732                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3733                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3734                 btrfs_tree_unlock(path->nodes[0]);
3735                 free_extent_buffer(path->nodes[0]);
3736                 path->nodes[0] = right;
3737                 path->slots[1] += 1;
3738         } else {
3739                 btrfs_tree_unlock(right);
3740                 free_extent_buffer(right);
3741         }
3742         return 0;
3743
3744 out_unlock:
3745         btrfs_tree_unlock(right);
3746         free_extent_buffer(right);
3747         return 1;
3748 }
3749
3750 /*
3751  * push some data in the path leaf to the right, trying to free up at
3752  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3753  *
3754  * returns 1 if the push failed because the other node didn't have enough
3755  * room, 0 if everything worked out and < 0 if there were major errors.
3756  *
3757  * this will push starting from min_slot to the end of the leaf.  It won't
3758  * push any slot lower than min_slot
3759  */
3760 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3761                            *root, struct btrfs_path *path,
3762                            int min_data_size, int data_size,
3763                            int empty, u32 min_slot)
3764 {
3765         struct extent_buffer *left = path->nodes[0];
3766         struct extent_buffer *right;
3767         struct extent_buffer *upper;
3768         int slot;
3769         int free_space;
3770         u32 left_nritems;
3771         int ret;
3772
3773         if (!path->nodes[1])
3774                 return 1;
3775
3776         slot = path->slots[1];
3777         upper = path->nodes[1];
3778         if (slot >= btrfs_header_nritems(upper) - 1)
3779                 return 1;
3780
3781         btrfs_assert_tree_locked(path->nodes[1]);
3782
3783         right = read_node_slot(root, upper, slot + 1);
3784         if (right == NULL)
3785                 return 1;
3786
3787         btrfs_tree_lock(right);
3788         btrfs_set_lock_blocking(right);
3789
3790         free_space = btrfs_leaf_free_space(root, right);
3791         if (free_space < data_size)
3792                 goto out_unlock;
3793
3794         /* cow and double check */
3795         ret = btrfs_cow_block(trans, root, right, upper,
3796                               slot + 1, &right);
3797         if (ret)
3798                 goto out_unlock;
3799
3800         free_space = btrfs_leaf_free_space(root, right);
3801         if (free_space < data_size)
3802                 goto out_unlock;
3803
3804         left_nritems = btrfs_header_nritems(left);
3805         if (left_nritems == 0)
3806                 goto out_unlock;
3807
3808         if (path->slots[0] == left_nritems && !empty) {
3809                 /* Key greater than all keys in the leaf, right neighbor has
3810                  * enough room for it and we're not emptying our leaf to delete
3811                  * it, therefore use right neighbor to insert the new item and
3812                  * no need to touch/dirty our left leaft. */
3813                 btrfs_tree_unlock(left);
3814                 free_extent_buffer(left);
3815                 path->nodes[0] = right;
3816                 path->slots[0] = 0;
3817                 path->slots[1]++;
3818                 return 0;
3819         }
3820
3821         return __push_leaf_right(trans, root, path, min_data_size, empty,
3822                                 right, free_space, left_nritems, min_slot);
3823 out_unlock:
3824         btrfs_tree_unlock(right);
3825         free_extent_buffer(right);
3826         return 1;
3827 }
3828
3829 /*
3830  * push some data in the path leaf to the left, trying to free up at
3831  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3832  *
3833  * max_slot can put a limit on how far into the leaf we'll push items.  The
3834  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3835  * items
3836  */
3837 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3838                                      struct btrfs_root *root,
3839                                      struct btrfs_path *path, int data_size,
3840                                      int empty, struct extent_buffer *left,
3841                                      int free_space, u32 right_nritems,
3842                                      u32 max_slot)
3843 {
3844         struct btrfs_disk_key disk_key;
3845         struct extent_buffer *right = path->nodes[0];
3846         int i;
3847         int push_space = 0;
3848         int push_items = 0;
3849         struct btrfs_item *item;
3850         u32 old_left_nritems;
3851         u32 nr;
3852         int ret = 0;
3853         u32 this_item_size;
3854         u32 old_left_item_size;
3855         struct btrfs_map_token token;
3856
3857         btrfs_init_map_token(&token);
3858
3859         if (empty)
3860                 nr = min(right_nritems, max_slot);
3861         else
3862                 nr = min(right_nritems - 1, max_slot);
3863
3864         for (i = 0; i < nr; i++) {
3865                 item = btrfs_item_nr(i);
3866
3867                 if (!empty && push_items > 0) {
3868                         if (path->slots[0] < i)
3869                                 break;
3870                         if (path->slots[0] == i) {
3871                                 int space = btrfs_leaf_free_space(root, right);
3872                                 if (space + push_space * 2 > free_space)
3873                                         break;
3874                         }
3875                 }
3876
3877                 if (path->slots[0] == i)
3878                         push_space += data_size;
3879
3880                 this_item_size = btrfs_item_size(right, item);
3881                 if (this_item_size + sizeof(*item) + push_space > free_space)
3882                         break;
3883
3884                 push_items++;
3885                 push_space += this_item_size + sizeof(*item);
3886         }
3887
3888         if (push_items == 0) {
3889                 ret = 1;
3890                 goto out;
3891         }
3892         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3893
3894         /* push data from right to left */
3895         copy_extent_buffer(left, right,
3896                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3897                            btrfs_item_nr_offset(0),
3898                            push_items * sizeof(struct btrfs_item));
3899
3900         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3901                      btrfs_item_offset_nr(right, push_items - 1);
3902
3903         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3904                      leaf_data_end(root, left) - push_space,
3905                      btrfs_leaf_data(right) +
3906                      btrfs_item_offset_nr(right, push_items - 1),
3907                      push_space);
3908         old_left_nritems = btrfs_header_nritems(left);
3909         BUG_ON(old_left_nritems <= 0);
3910
3911         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3912         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3913                 u32 ioff;
3914
3915                 item = btrfs_item_nr(i);
3916
3917                 ioff = btrfs_token_item_offset(left, item, &token);
3918                 btrfs_set_token_item_offset(left, item,
3919                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3920                       &token);
3921         }
3922         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3923
3924         /* fixup right node */
3925         if (push_items > right_nritems)
3926                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3927                        right_nritems);
3928
3929         if (push_items < right_nritems) {
3930                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3931                                                   leaf_data_end(root, right);
3932                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3933                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3934                                       btrfs_leaf_data(right) +
3935                                       leaf_data_end(root, right), push_space);
3936
3937                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3938                               btrfs_item_nr_offset(push_items),
3939                              (btrfs_header_nritems(right) - push_items) *
3940                              sizeof(struct btrfs_item));
3941         }
3942         right_nritems -= push_items;
3943         btrfs_set_header_nritems(right, right_nritems);
3944         push_space = BTRFS_LEAF_DATA_SIZE(root);
3945         for (i = 0; i < right_nritems; i++) {
3946                 item = btrfs_item_nr(i);
3947
3948                 push_space = push_space - btrfs_token_item_size(right,
3949                                                                 item, &token);
3950                 btrfs_set_token_item_offset(right, item, push_space, &token);
3951         }
3952
3953         btrfs_mark_buffer_dirty(left);
3954         if (right_nritems)
3955                 btrfs_mark_buffer_dirty(right);
3956         else
3957                 clean_tree_block(trans, root->fs_info, right);
3958
3959         btrfs_item_key(right, &disk_key, 0);
3960         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3961
3962         /* then fixup the leaf pointer in the path */
3963         if (path->slots[0] < push_items) {
3964                 path->slots[0] += old_left_nritems;
3965                 btrfs_tree_unlock(path->nodes[0]);
3966                 free_extent_buffer(path->nodes[0]);
3967                 path->nodes[0] = left;
3968                 path->slots[1] -= 1;
3969         } else {
3970                 btrfs_tree_unlock(left);
3971                 free_extent_buffer(left);
3972                 path->slots[0] -= push_items;
3973         }
3974         BUG_ON(path->slots[0] < 0);
3975         return ret;
3976 out:
3977         btrfs_tree_unlock(left);
3978         free_extent_buffer(left);
3979         return ret;
3980 }
3981
3982 /*
3983  * push some data in the path leaf to the left, trying to free up at
3984  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3985  *
3986  * max_slot can put a limit on how far into the leaf we'll push items.  The
3987  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3988  * items
3989  */
3990 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3991                           *root, struct btrfs_path *path, int min_data_size,
3992                           int data_size, int empty, u32 max_slot)
3993 {
3994         struct extent_buffer *right = path->nodes[0];
3995         struct extent_buffer *left;
3996         int slot;
3997         int free_space;
3998         u32 right_nritems;
3999         int ret = 0;
4000
4001         slot = path->slots[1];
4002         if (slot == 0)
4003                 return 1;
4004         if (!path->nodes[1])
4005                 return 1;
4006
4007         right_nritems = btrfs_header_nritems(right);
4008         if (right_nritems == 0)
4009                 return 1;
4010
4011         btrfs_assert_tree_locked(path->nodes[1]);
4012
4013         left = read_node_slot(root, path->nodes[1], slot - 1);
4014         if (left == NULL)
4015                 return 1;
4016
4017         btrfs_tree_lock(left);
4018         btrfs_set_lock_blocking(left);
4019
4020         free_space = btrfs_leaf_free_space(root, left);
4021         if (free_space < data_size) {
4022                 ret = 1;
4023                 goto out;
4024         }
4025
4026         /* cow and double check */
4027         ret = btrfs_cow_block(trans, root, left,
4028                               path->nodes[1], slot - 1, &left);
4029         if (ret) {
4030                 /* we hit -ENOSPC, but it isn't fatal here */
4031                 if (ret == -ENOSPC)
4032                         ret = 1;
4033                 goto out;
4034         }
4035
4036         free_space = btrfs_leaf_free_space(root, left);
4037         if (free_space < data_size) {
4038                 ret = 1;
4039                 goto out;
4040         }
4041
4042         return __push_leaf_left(trans, root, path, min_data_size,
4043                                empty, left, free_space, right_nritems,
4044                                max_slot);
4045 out:
4046         btrfs_tree_unlock(left);
4047         free_extent_buffer(left);
4048         return ret;
4049 }
4050
4051 /*
4052  * split the path's leaf in two, making sure there is at least data_size
4053  * available for the resulting leaf level of the path.
4054  */
4055 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4056                                     struct btrfs_root *root,
4057                                     struct btrfs_path *path,
4058                                     struct extent_buffer *l,
4059                                     struct extent_buffer *right,
4060                                     int slot, int mid, int nritems)
4061 {
4062         int data_copy_size;
4063         int rt_data_off;
4064         int i;
4065         struct btrfs_disk_key disk_key;
4066         struct btrfs_map_token token;
4067
4068         btrfs_init_map_token(&token);
4069
4070         nritems = nritems - mid;
4071         btrfs_set_header_nritems(right, nritems);
4072         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4073
4074         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4075                            btrfs_item_nr_offset(mid),
4076                            nritems * sizeof(struct btrfs_item));
4077
4078         copy_extent_buffer(right, l,
4079                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4080                      data_copy_size, btrfs_leaf_data(l) +
4081                      leaf_data_end(root, l), data_copy_size);
4082
4083         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4084                       btrfs_item_end_nr(l, mid);
4085
4086         for (i = 0; i < nritems; i++) {
4087                 struct btrfs_item *item = btrfs_item_nr(i);
4088                 u32 ioff;
4089
4090                 ioff = btrfs_token_item_offset(right, item, &token);
4091                 btrfs_set_token_item_offset(right, item,
4092                                             ioff + rt_data_off, &token);
4093         }
4094
4095         btrfs_set_header_nritems(l, mid);
4096         btrfs_item_key(right, &disk_key, 0);
4097         insert_ptr(trans, root, path, &disk_key, right->start,
4098                    path->slots[1] + 1, 1);
4099
4100         btrfs_mark_buffer_dirty(right);
4101         btrfs_mark_buffer_dirty(l);
4102         BUG_ON(path->slots[0] != slot);
4103
4104         if (mid <= slot) {
4105                 btrfs_tree_unlock(path->nodes[0]);
4106                 free_extent_buffer(path->nodes[0]);
4107                 path->nodes[0] = right;
4108                 path->slots[0] -= mid;
4109                 path->slots[1] += 1;
4110         } else {
4111                 btrfs_tree_unlock(right);
4112                 free_extent_buffer(right);
4113         }
4114
4115         BUG_ON(path->slots[0] < 0);
4116 }
4117
4118 /*
4119  * double splits happen when we need to insert a big item in the middle
4120  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4121  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4122  *          A                 B                 C
4123  *
4124  * We avoid this by trying to push the items on either side of our target
4125  * into the adjacent leaves.  If all goes well we can avoid the double split
4126  * completely.
4127  */
4128 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4129                                           struct btrfs_root *root,
4130                                           struct btrfs_path *path,
4131                                           int data_size)
4132 {
4133         int ret;
4134         int progress = 0;
4135         int slot;
4136         u32 nritems;
4137         int space_needed = data_size;
4138
4139         slot = path->slots[0];
4140         if (slot < btrfs_header_nritems(path->nodes[0]))
4141                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4142
4143         /*
4144          * try to push all the items after our slot into the
4145          * right leaf
4146          */
4147         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4148         if (ret < 0)
4149                 return ret;
4150
4151         if (ret == 0)
4152                 progress++;
4153
4154         nritems = btrfs_header_nritems(path->nodes[0]);
4155         /*
4156          * our goal is to get our slot at the start or end of a leaf.  If
4157          * we've done so we're done
4158          */
4159         if (path->slots[0] == 0 || path->slots[0] == nritems)
4160                 return 0;
4161
4162         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4163                 return 0;
4164
4165         /* try to push all the items before our slot into the next leaf */
4166         slot = path->slots[0];
4167         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4168         if (ret < 0)
4169                 return ret;
4170
4171         if (ret == 0)
4172                 progress++;
4173
4174         if (progress)
4175                 return 0;
4176         return 1;
4177 }
4178
4179 /*
4180  * split the path's leaf in two, making sure there is at least data_size
4181  * available for the resulting leaf level of the path.
4182  *
4183  * returns 0 if all went well and < 0 on failure.
4184  */
4185 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4186                                struct btrfs_root *root,
4187                                struct btrfs_key *ins_key,
4188                                struct btrfs_path *path, int data_size,
4189                                int extend)
4190 {
4191         struct btrfs_disk_key disk_key;
4192         struct extent_buffer *l;
4193         u32 nritems;
4194         int mid;
4195         int slot;
4196         struct extent_buffer *right;
4197         struct btrfs_fs_info *fs_info = root->fs_info;
4198         int ret = 0;
4199         int wret;
4200         int split;
4201         int num_doubles = 0;
4202         int tried_avoid_double = 0;
4203
4204         l = path->nodes[0];
4205         slot = path->slots[0];
4206         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4207             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4208                 return -EOVERFLOW;
4209
4210         /* first try to make some room by pushing left and right */
4211         if (data_size && path->nodes[1]) {
4212                 int space_needed = data_size;
4213
4214                 if (slot < btrfs_header_nritems(l))
4215                         space_needed -= btrfs_leaf_free_space(root, l);
4216
4217                 wret = push_leaf_right(trans, root, path, space_needed,
4218                                        space_needed, 0, 0);
4219                 if (wret < 0)
4220                         return wret;
4221                 if (wret) {
4222                         wret = push_leaf_left(trans, root, path, space_needed,
4223                                               space_needed, 0, (u32)-1);
4224                         if (wret < 0)
4225                                 return wret;
4226                 }
4227                 l = path->nodes[0];
4228
4229                 /* did the pushes work? */
4230                 if (btrfs_leaf_free_space(root, l) >= data_size)
4231                         return 0;
4232         }
4233
4234         if (!path->nodes[1]) {
4235                 ret = insert_new_root(trans, root, path, 1);
4236                 if (ret)
4237                         return ret;
4238         }
4239 again:
4240         split = 1;
4241         l = path->nodes[0];
4242         slot = path->slots[0];
4243         nritems = btrfs_header_nritems(l);
4244         mid = (nritems + 1) / 2;
4245
4246         if (mid <= slot) {
4247                 if (nritems == 1 ||
4248                     leaf_space_used(l, mid, nritems - mid) + data_size >
4249                         BTRFS_LEAF_DATA_SIZE(root)) {
4250                         if (slot >= nritems) {
4251                                 split = 0;
4252                         } else {
4253                                 mid = slot;
4254                                 if (mid != nritems &&
4255                                     leaf_space_used(l, mid, nritems - mid) +
4256                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4257                                         if (data_size && !tried_avoid_double)
4258                                                 goto push_for_double;
4259                                         split = 2;
4260                                 }
4261                         }
4262                 }
4263         } else {
4264                 if (leaf_space_used(l, 0, mid) + data_size >
4265                         BTRFS_LEAF_DATA_SIZE(root)) {
4266                         if (!extend && data_size && slot == 0) {
4267                                 split = 0;
4268                         } else if ((extend || !data_size) && slot == 0) {
4269                                 mid = 1;
4270                         } else {
4271                                 mid = slot;
4272                                 if (mid != nritems &&
4273                                     leaf_space_used(l, mid, nritems - mid) +
4274                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4275                                         if (data_size && !tried_avoid_double)
4276                                                 goto push_for_double;
4277                                         split = 2;
4278                                 }
4279                         }
4280                 }
4281         }
4282
4283         if (split == 0)
4284                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4285         else
4286                 btrfs_item_key(l, &disk_key, mid);
4287
4288         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4289                         &disk_key, 0, l->start, 0);
4290         if (IS_ERR(right))
4291                 return PTR_ERR(right);
4292
4293         root_add_used(root, root->nodesize);
4294
4295         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4296         btrfs_set_header_bytenr(right, right->start);
4297         btrfs_set_header_generation(right, trans->transid);
4298         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4299         btrfs_set_header_owner(right, root->root_key.objectid);
4300         btrfs_set_header_level(right, 0);
4301         write_extent_buffer(right, fs_info->fsid,
4302                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4303
4304         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4305                             btrfs_header_chunk_tree_uuid(right),
4306                             BTRFS_UUID_SIZE);
4307
4308         if (split == 0) {
4309                 if (mid <= slot) {
4310                         btrfs_set_header_nritems(right, 0);
4311                         insert_ptr(trans, root, path, &disk_key, right->start,
4312                                    path->slots[1] + 1, 1);
4313                         btrfs_tree_unlock(path->nodes[0]);
4314                         free_extent_buffer(path->nodes[0]);
4315                         path->nodes[0] = right;
4316                         path->slots[0] = 0;
4317                         path->slots[1] += 1;
4318                 } else {
4319                         btrfs_set_header_nritems(right, 0);
4320                         insert_ptr(trans, root, path, &disk_key, right->start,
4321                                           path->slots[1], 1);
4322                         btrfs_tree_unlock(path->nodes[0]);
4323                         free_extent_buffer(path->nodes[0]);
4324                         path->nodes[0] = right;
4325                         path->slots[0] = 0;
4326                         if (path->slots[1] == 0)
4327                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4328                 }
4329                 btrfs_mark_buffer_dirty(right);
4330                 return ret;
4331         }
4332
4333         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4334
4335         if (split == 2) {
4336                 BUG_ON(num_doubles != 0);
4337                 num_doubles++;
4338                 goto again;
4339         }
4340
4341         return 0;
4342
4343 push_for_double:
4344         push_for_double_split(trans, root, path, data_size);
4345         tried_avoid_double = 1;
4346         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4347                 return 0;
4348         goto again;
4349 }
4350
4351 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4352                                          struct btrfs_root *root,
4353                                          struct btrfs_path *path, int ins_len)
4354 {
4355         struct btrfs_key key;
4356         struct extent_buffer *leaf;
4357         struct btrfs_file_extent_item *fi;
4358         u64 extent_len = 0;
4359         u32 item_size;
4360         int ret;
4361
4362         leaf = path->nodes[0];
4363         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4364
4365         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4366                key.type != BTRFS_EXTENT_CSUM_KEY);
4367
4368         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4369                 return 0;
4370
4371         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4372         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4373                 fi = btrfs_item_ptr(leaf, path->slots[0],
4374                                     struct btrfs_file_extent_item);
4375                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4376         }
4377         btrfs_release_path(path);
4378
4379         path->keep_locks = 1;
4380         path->search_for_split = 1;
4381         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4382         path->search_for_split = 0;
4383         if (ret > 0)
4384                 ret = -EAGAIN;
4385         if (ret < 0)
4386                 goto err;
4387
4388         ret = -EAGAIN;
4389         leaf = path->nodes[0];
4390         /* if our item isn't there, return now */
4391         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4392                 goto err;
4393
4394         /* the leaf has  changed, it now has room.  return now */
4395         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4396                 goto err;
4397
4398         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4399                 fi = btrfs_item_ptr(leaf, path->slots[0],
4400                                     struct btrfs_file_extent_item);
4401                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4402                         goto err;
4403         }
4404
4405         btrfs_set_path_blocking(path);
4406         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4407         if (ret)
4408                 goto err;
4409
4410         path->keep_locks = 0;
4411         btrfs_unlock_up_safe(path, 1);
4412         return 0;
4413 err:
4414         path->keep_locks = 0;
4415         return ret;
4416 }
4417
4418 static noinline int split_item(struct btrfs_trans_handle *trans,
4419                                struct btrfs_root *root,
4420                                struct btrfs_path *path,
4421                                struct btrfs_key *new_key,
4422                                unsigned long split_offset)
4423 {
4424         struct extent_buffer *leaf;
4425         struct btrfs_item *item;
4426         struct btrfs_item *new_item;
4427         int slot;
4428         char *buf;
4429         u32 nritems;
4430         u32 item_size;
4431         u32 orig_offset;
4432         struct btrfs_disk_key disk_key;
4433
4434         leaf = path->nodes[0];
4435         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4436
4437         btrfs_set_path_blocking(path);
4438
4439         item = btrfs_item_nr(path->slots[0]);
4440         orig_offset = btrfs_item_offset(leaf, item);
4441         item_size = btrfs_item_size(leaf, item);
4442
4443         buf = kmalloc(item_size, GFP_NOFS);
4444         if (!buf)
4445                 return -ENOMEM;
4446
4447         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4448                             path->slots[0]), item_size);
4449
4450         slot = path->slots[0] + 1;
4451         nritems = btrfs_header_nritems(leaf);
4452         if (slot != nritems) {
4453                 /* shift the items */
4454                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4455                                 btrfs_item_nr_offset(slot),
4456                                 (nritems - slot) * sizeof(struct btrfs_item));
4457         }
4458
4459         btrfs_cpu_key_to_disk(&disk_key, new_key);
4460         btrfs_set_item_key(leaf, &disk_key, slot);
4461
4462         new_item = btrfs_item_nr(slot);
4463
4464         btrfs_set_item_offset(leaf, new_item, orig_offset);
4465         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4466
4467         btrfs_set_item_offset(leaf, item,
4468                               orig_offset + item_size - split_offset);
4469         btrfs_set_item_size(leaf, item, split_offset);
4470
4471         btrfs_set_header_nritems(leaf, nritems + 1);
4472
4473         /* write the data for the start of the original item */
4474         write_extent_buffer(leaf, buf,
4475                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4476                             split_offset);
4477
4478         /* write the data for the new item */
4479         write_extent_buffer(leaf, buf + split_offset,
4480                             btrfs_item_ptr_offset(leaf, slot),
4481                             item_size - split_offset);
4482         btrfs_mark_buffer_dirty(leaf);
4483
4484         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4485         kfree(buf);
4486         return 0;
4487 }
4488
4489 /*
4490  * This function splits a single item into two items,
4491  * giving 'new_key' to the new item and splitting the
4492  * old one at split_offset (from the start of the item).
4493  *
4494  * The path may be released by this operation.  After
4495  * the split, the path is pointing to the old item.  The
4496  * new item is going to be in the same node as the old one.
4497  *
4498  * Note, the item being split must be smaller enough to live alone on
4499  * a tree block with room for one extra struct btrfs_item
4500  *
4501  * This allows us to split the item in place, keeping a lock on the
4502  * leaf the entire time.
4503  */
4504 int btrfs_split_item(struct btrfs_trans_handle *trans,
4505                      struct btrfs_root *root,
4506                      struct btrfs_path *path,
4507                      struct btrfs_key *new_key,
4508                      unsigned long split_offset)
4509 {
4510         int ret;
4511         ret = setup_leaf_for_split(trans, root, path,
4512                                    sizeof(struct btrfs_item));
4513         if (ret)
4514                 return ret;
4515
4516         ret = split_item(trans, root, path, new_key, split_offset);
4517         return ret;
4518 }
4519
4520 /*
4521  * This function duplicate a item, giving 'new_key' to the new item.
4522  * It guarantees both items live in the same tree leaf and the new item
4523  * is contiguous with the original item.
4524  *
4525  * This allows us to split file extent in place, keeping a lock on the
4526  * leaf the entire time.
4527  */
4528 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4529                          struct btrfs_root *root,
4530                          struct btrfs_path *path,
4531                          struct btrfs_key *new_key)
4532 {
4533         struct extent_buffer *leaf;
4534         int ret;
4535         u32 item_size;
4536
4537         leaf = path->nodes[0];
4538         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4539         ret = setup_leaf_for_split(trans, root, path,
4540                                    item_size + sizeof(struct btrfs_item));
4541         if (ret)
4542                 return ret;
4543
4544         path->slots[0]++;
4545         setup_items_for_insert(root, path, new_key, &item_size,
4546                                item_size, item_size +
4547                                sizeof(struct btrfs_item), 1);
4548         leaf = path->nodes[0];
4549         memcpy_extent_buffer(leaf,
4550                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4551                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4552                              item_size);
4553         return 0;
4554 }
4555
4556 /*
4557  * make the item pointed to by the path smaller.  new_size indicates
4558  * how small to make it, and from_end tells us if we just chop bytes
4559  * off the end of the item or if we shift the item to chop bytes off
4560  * the front.
4561  */
4562 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4563                          u32 new_size, int from_end)
4564 {
4565         int slot;
4566         struct extent_buffer *leaf;
4567         struct btrfs_item *item;
4568         u32 nritems;
4569         unsigned int data_end;
4570         unsigned int old_data_start;
4571         unsigned int old_size;
4572         unsigned int size_diff;
4573         int i;
4574         struct btrfs_map_token token;
4575
4576         btrfs_init_map_token(&token);
4577
4578         leaf = path->nodes[0];
4579         slot = path->slots[0];
4580
4581         old_size = btrfs_item_size_nr(leaf, slot);
4582         if (old_size == new_size)
4583                 return;
4584
4585         nritems = btrfs_header_nritems(leaf);
4586         data_end = leaf_data_end(root, leaf);
4587
4588         old_data_start = btrfs_item_offset_nr(leaf, slot);
4589
4590         size_diff = old_size - new_size;
4591
4592         BUG_ON(slot < 0);
4593         BUG_ON(slot >= nritems);
4594
4595         /*
4596          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597          */
4598         /* first correct the data pointers */
4599         for (i = slot; i < nritems; i++) {
4600                 u32 ioff;
4601                 item = btrfs_item_nr(i);
4602
4603                 ioff = btrfs_token_item_offset(leaf, item, &token);
4604                 btrfs_set_token_item_offset(leaf, item,
4605                                             ioff + size_diff, &token);
4606         }
4607
4608         /* shift the data */
4609         if (from_end) {
4610                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4611                               data_end + size_diff, btrfs_leaf_data(leaf) +
4612                               data_end, old_data_start + new_size - data_end);
4613         } else {
4614                 struct btrfs_disk_key disk_key;
4615                 u64 offset;
4616
4617                 btrfs_item_key(leaf, &disk_key, slot);
4618
4619                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4620                         unsigned long ptr;
4621                         struct btrfs_file_extent_item *fi;
4622
4623                         fi = btrfs_item_ptr(leaf, slot,
4624                                             struct btrfs_file_extent_item);
4625                         fi = (struct btrfs_file_extent_item *)(
4626                              (unsigned long)fi - size_diff);
4627
4628                         if (btrfs_file_extent_type(leaf, fi) ==
4629                             BTRFS_FILE_EXTENT_INLINE) {
4630                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4631                                 memmove_extent_buffer(leaf, ptr,
4632                                       (unsigned long)fi,
4633                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4634                         }
4635                 }
4636
4637                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4638                               data_end + size_diff, btrfs_leaf_data(leaf) +
4639                               data_end, old_data_start - data_end);
4640
4641                 offset = btrfs_disk_key_offset(&disk_key);
4642                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4643                 btrfs_set_item_key(leaf, &disk_key, slot);
4644                 if (slot == 0)
4645                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4646         }
4647
4648         item = btrfs_item_nr(slot);
4649         btrfs_set_item_size(leaf, item, new_size);
4650         btrfs_mark_buffer_dirty(leaf);
4651
4652         if (btrfs_leaf_free_space(root, leaf) < 0) {
4653                 btrfs_print_leaf(root, leaf);
4654                 BUG();
4655         }
4656 }
4657
4658 /*
4659  * make the item pointed to by the path bigger, data_size is the added size.
4660  */
4661 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4662                        u32 data_size)
4663 {
4664         int slot;
4665         struct extent_buffer *leaf;
4666         struct btrfs_item *item;
4667         u32 nritems;
4668         unsigned int data_end;
4669         unsigned int old_data;
4670         unsigned int old_size;
4671         int i;
4672         struct btrfs_map_token token;
4673
4674         btrfs_init_map_token(&token);
4675
4676         leaf = path->nodes[0];
4677
4678         nritems = btrfs_header_nritems(leaf);
4679         data_end = leaf_data_end(root, leaf);
4680
4681         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4682                 btrfs_print_leaf(root, leaf);
4683                 BUG();
4684         }
4685         slot = path->slots[0];
4686         old_data = btrfs_item_end_nr(leaf, slot);
4687
4688         BUG_ON(slot < 0);
4689         if (slot >= nritems) {
4690                 btrfs_print_leaf(root, leaf);
4691                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4692                        slot, nritems);
4693                 BUG_ON(1);
4694         }
4695
4696         /*
4697          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698          */
4699         /* first correct the data pointers */
4700         for (i = slot; i < nritems; i++) {
4701                 u32 ioff;
4702                 item = btrfs_item_nr(i);
4703
4704                 ioff = btrfs_token_item_offset(leaf, item, &token);
4705                 btrfs_set_token_item_offset(leaf, item,
4706                                             ioff - data_size, &token);
4707         }
4708
4709         /* shift the data */
4710         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4711                       data_end - data_size, btrfs_leaf_data(leaf) +
4712                       data_end, old_data - data_end);
4713
4714         data_end = old_data;
4715         old_size = btrfs_item_size_nr(leaf, slot);
4716         item = btrfs_item_nr(slot);
4717         btrfs_set_item_size(leaf, item, old_size + data_size);
4718         btrfs_mark_buffer_dirty(leaf);
4719
4720         if (btrfs_leaf_free_space(root, leaf) < 0) {
4721                 btrfs_print_leaf(root, leaf);
4722                 BUG();
4723         }
4724 }
4725
4726 /*
4727  * this is a helper for btrfs_insert_empty_items, the main goal here is
4728  * to save stack depth by doing the bulk of the work in a function
4729  * that doesn't call btrfs_search_slot
4730  */
4731 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732                             struct btrfs_key *cpu_key, u32 *data_size,
4733                             u32 total_data, u32 total_size, int nr)
4734 {
4735         struct btrfs_item *item;
4736         int i;
4737         u32 nritems;
4738         unsigned int data_end;
4739         struct btrfs_disk_key disk_key;
4740         struct extent_buffer *leaf;
4741         int slot;
4742         struct btrfs_map_token token;
4743
4744         if (path->slots[0] == 0) {
4745                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4746                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4747         }
4748         btrfs_unlock_up_safe(path, 1);
4749
4750         btrfs_init_map_token(&token);
4751
4752         leaf = path->nodes[0];
4753         slot = path->slots[0];
4754
4755         nritems = btrfs_header_nritems(leaf);
4756         data_end = leaf_data_end(root, leaf);
4757
4758         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4759                 btrfs_print_leaf(root, leaf);
4760                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4761                        total_size, btrfs_leaf_free_space(root, leaf));
4762                 BUG();
4763         }
4764
4765         if (slot != nritems) {
4766                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4767
4768                 if (old_data < data_end) {
4769                         btrfs_print_leaf(root, leaf);
4770                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4771                                slot, old_data, data_end);
4772                         BUG_ON(1);
4773                 }
4774                 /*
4775                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4776                  */
4777                 /* first correct the data pointers */
4778                 for (i = slot; i < nritems; i++) {
4779                         u32 ioff;
4780
4781                         item = btrfs_item_nr( i);
4782                         ioff = btrfs_token_item_offset(leaf, item, &token);
4783                         btrfs_set_token_item_offset(leaf, item,
4784                                                     ioff - total_data, &token);
4785                 }
4786                 /* shift the items */
4787                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4788                               btrfs_item_nr_offset(slot),
4789                               (nritems - slot) * sizeof(struct btrfs_item));
4790
4791                 /* shift the data */
4792                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4793                               data_end - total_data, btrfs_leaf_data(leaf) +
4794                               data_end, old_data - data_end);
4795                 data_end = old_data;
4796         }
4797
4798         /* setup the item for the new data */
4799         for (i = 0; i < nr; i++) {
4800                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4801                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4802                 item = btrfs_item_nr(slot + i);
4803                 btrfs_set_token_item_offset(leaf, item,
4804                                             data_end - data_size[i], &token);
4805                 data_end -= data_size[i];
4806                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4807         }
4808
4809         btrfs_set_header_nritems(leaf, nritems + nr);
4810         btrfs_mark_buffer_dirty(leaf);
4811
4812         if (btrfs_leaf_free_space(root, leaf) < 0) {
4813                 btrfs_print_leaf(root, leaf);
4814                 BUG();
4815         }
4816 }
4817
4818 /*
4819  * Given a key and some data, insert items into the tree.
4820  * This does all the path init required, making room in the tree if needed.
4821  */
4822 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4823                             struct btrfs_root *root,
4824                             struct btrfs_path *path,
4825                             struct btrfs_key *cpu_key, u32 *data_size,
4826                             int nr)
4827 {
4828         int ret = 0;
4829         int slot;
4830         int i;
4831         u32 total_size = 0;
4832         u32 total_data = 0;
4833
4834         for (i = 0; i < nr; i++)
4835                 total_data += data_size[i];
4836
4837         total_size = total_data + (nr * sizeof(struct btrfs_item));
4838         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4839         if (ret == 0)
4840                 return -EEXIST;
4841         if (ret < 0)
4842                 return ret;
4843
4844         slot = path->slots[0];
4845         BUG_ON(slot < 0);
4846
4847         setup_items_for_insert(root, path, cpu_key, data_size,
4848                                total_data, total_size, nr);
4849         return 0;
4850 }
4851
4852 /*
4853  * Given a key and some data, insert an item into the tree.
4854  * This does all the path init required, making room in the tree if needed.
4855  */
4856 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4857                       *root, struct btrfs_key *cpu_key, void *data, u32
4858                       data_size)
4859 {
4860         int ret = 0;
4861         struct btrfs_path *path;
4862         struct extent_buffer *leaf;
4863         unsigned long ptr;
4864
4865         path = btrfs_alloc_path();
4866         if (!path)
4867                 return -ENOMEM;
4868         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4869         if (!ret) {
4870                 leaf = path->nodes[0];
4871                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4872                 write_extent_buffer(leaf, data, ptr, data_size);
4873                 btrfs_mark_buffer_dirty(leaf);
4874         }
4875         btrfs_free_path(path);
4876         return ret;
4877 }
4878
4879 /*
4880  * delete the pointer from a given node.
4881  *
4882  * the tree should have been previously balanced so the deletion does not
4883  * empty a node.
4884  */
4885 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4886                     int level, int slot)
4887 {
4888         struct extent_buffer *parent = path->nodes[level];
4889         u32 nritems;
4890         int ret;
4891
4892         nritems = btrfs_header_nritems(parent);
4893         if (slot != nritems - 1) {
4894                 if (level)
4895                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4896                                              slot + 1, nritems - slot - 1);
4897                 memmove_extent_buffer(parent,
4898                               btrfs_node_key_ptr_offset(slot),
4899                               btrfs_node_key_ptr_offset(slot + 1),
4900                               sizeof(struct btrfs_key_ptr) *
4901                               (nritems - slot - 1));
4902         } else if (level) {
4903                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4904                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4905                 BUG_ON(ret < 0);
4906         }
4907
4908         nritems--;
4909         btrfs_set_header_nritems(parent, nritems);
4910         if (nritems == 0 && parent == root->node) {
4911                 BUG_ON(btrfs_header_level(root->node) != 1);
4912                 /* just turn the root into a leaf and break */
4913                 btrfs_set_header_level(root->node, 0);
4914         } else if (slot == 0) {
4915                 struct btrfs_disk_key disk_key;
4916
4917                 btrfs_node_key(parent, &disk_key, 0);
4918                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4919         }
4920         btrfs_mark_buffer_dirty(parent);
4921 }
4922
4923 /*
4924  * a helper function to delete the leaf pointed to by path->slots[1] and
4925  * path->nodes[1].
4926  *
4927  * This deletes the pointer in path->nodes[1] and frees the leaf
4928  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4929  *
4930  * The path must have already been setup for deleting the leaf, including
4931  * all the proper balancing.  path->nodes[1] must be locked.
4932  */
4933 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4934                                     struct btrfs_root *root,
4935                                     struct btrfs_path *path,
4936                                     struct extent_buffer *leaf)
4937 {
4938         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4939         del_ptr(root, path, 1, path->slots[1]);
4940
4941         /*
4942          * btrfs_free_extent is expensive, we want to make sure we
4943          * aren't holding any locks when we call it
4944          */
4945         btrfs_unlock_up_safe(path, 0);
4946
4947         root_sub_used(root, leaf->len);
4948
4949         extent_buffer_get(leaf);
4950         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4951         free_extent_buffer_stale(leaf);
4952 }
4953 /*
4954  * delete the item at the leaf level in path.  If that empties
4955  * the leaf, remove it from the tree
4956  */
4957 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4958                     struct btrfs_path *path, int slot, int nr)
4959 {
4960         struct extent_buffer *leaf;
4961         struct btrfs_item *item;
4962         u32 last_off;
4963         u32 dsize = 0;
4964         int ret = 0;
4965         int wret;
4966         int i;
4967         u32 nritems;
4968         struct btrfs_map_token token;
4969
4970         btrfs_init_map_token(&token);
4971
4972         leaf = path->nodes[0];
4973         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975         for (i = 0; i < nr; i++)
4976                 dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978         nritems = btrfs_header_nritems(leaf);
4979
4980         if (slot + nr != nritems) {
4981                 int data_end = leaf_data_end(root, leaf);
4982
4983                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984                               data_end + dsize,
4985                               btrfs_leaf_data(leaf) + data_end,
4986                               last_off - data_end);
4987
4988                 for (i = slot + nr; i < nritems; i++) {
4989                         u32 ioff;
4990
4991                         item = btrfs_item_nr(i);
4992                         ioff = btrfs_token_item_offset(leaf, item, &token);
4993                         btrfs_set_token_item_offset(leaf, item,
4994                                                     ioff + dsize, &token);
4995                 }
4996
4997                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998                               btrfs_item_nr_offset(slot + nr),
4999                               sizeof(struct btrfs_item) *
5000                               (nritems - slot - nr));
5001         }
5002         btrfs_set_header_nritems(leaf, nritems - nr);
5003         nritems -= nr;
5004
5005         /* delete the leaf if we've emptied it */
5006         if (nritems == 0) {
5007                 if (leaf == root->node) {
5008                         btrfs_set_header_level(leaf, 0);
5009                 } else {
5010                         btrfs_set_path_blocking(path);
5011                         clean_tree_block(trans, root->fs_info, leaf);
5012                         btrfs_del_leaf(trans, root, path, leaf);
5013                 }
5014         } else {
5015                 int used = leaf_space_used(leaf, 0, nritems);
5016                 if (slot == 0) {
5017                         struct btrfs_disk_key disk_key;
5018
5019                         btrfs_item_key(leaf, &disk_key, 0);
5020                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5021                 }
5022
5023                 /* delete the leaf if it is mostly empty */
5024                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5025                         /* push_leaf_left fixes the path.
5026                          * make sure the path still points to our leaf
5027                          * for possible call to del_ptr below
5028                          */
5029                         slot = path->slots[1];
5030                         extent_buffer_get(leaf);
5031
5032                         btrfs_set_path_blocking(path);
5033                         wret = push_leaf_left(trans, root, path, 1, 1,
5034                                               1, (u32)-1);
5035                         if (wret < 0 && wret != -ENOSPC)
5036                                 ret = wret;
5037
5038                         if (path->nodes[0] == leaf &&
5039                             btrfs_header_nritems(leaf)) {
5040                                 wret = push_leaf_right(trans, root, path, 1,
5041                                                        1, 1, 0);
5042                                 if (wret < 0 && wret != -ENOSPC)
5043                                         ret = wret;
5044                         }
5045
5046                         if (btrfs_header_nritems(leaf) == 0) {
5047                                 path->slots[1] = slot;
5048                                 btrfs_del_leaf(trans, root, path, leaf);
5049                                 free_extent_buffer(leaf);
5050                                 ret = 0;
5051                         } else {
5052                                 /* if we're still in the path, make sure
5053                                  * we're dirty.  Otherwise, one of the
5054                                  * push_leaf functions must have already
5055                                  * dirtied this buffer
5056                                  */
5057                                 if (path->nodes[0] == leaf)
5058                                         btrfs_mark_buffer_dirty(leaf);
5059                                 free_extent_buffer(leaf);
5060                         }
5061                 } else {
5062                         btrfs_mark_buffer_dirty(leaf);
5063                 }
5064         }
5065         return ret;
5066 }
5067
5068 /*
5069  * search the tree again to find a leaf with lesser keys
5070  * returns 0 if it found something or 1 if there are no lesser leaves.
5071  * returns < 0 on io errors.
5072  *
5073  * This may release the path, and so you may lose any locks held at the
5074  * time you call it.
5075  */
5076 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077 {
5078         struct btrfs_key key;
5079         struct btrfs_disk_key found_key;
5080         int ret;
5081
5082         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084         if (key.offset > 0) {
5085                 key.offset--;
5086         } else if (key.type > 0) {
5087                 key.type--;
5088                 key.offset = (u64)-1;
5089         } else if (key.objectid > 0) {
5090                 key.objectid--;
5091                 key.type = (u8)-1;
5092                 key.offset = (u64)-1;
5093         } else {
5094                 return 1;
5095         }
5096
5097         btrfs_release_path(path);
5098         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099         if (ret < 0)
5100                 return ret;
5101         btrfs_item_key(path->nodes[0], &found_key, 0);
5102         ret = comp_keys(&found_key, &key);
5103         /*
5104          * We might have had an item with the previous key in the tree right
5105          * before we released our path. And after we released our path, that
5106          * item might have been pushed to the first slot (0) of the leaf we
5107          * were holding due to a tree balance. Alternatively, an item with the
5108          * previous key can exist as the only element of a leaf (big fat item).
5109          * Therefore account for these 2 cases, so that our callers (like
5110          * btrfs_previous_item) don't miss an existing item with a key matching
5111          * the previous key we computed above.
5112          */
5113         if (ret <= 0)
5114                 return 0;
5115         return 1;
5116 }
5117
5118 /*
5119  * A helper function to walk down the tree starting at min_key, and looking
5120  * for nodes or leaves that are have a minimum transaction id.
5121  * This is used by the btree defrag code, and tree logging
5122  *
5123  * This does not cow, but it does stuff the starting key it finds back
5124  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125  * key and get a writable path.
5126  *
5127  * This does lock as it descends, and path->keep_locks should be set
5128  * to 1 by the caller.
5129  *
5130  * This honors path->lowest_level to prevent descent past a given level
5131  * of the tree.
5132  *
5133  * min_trans indicates the oldest transaction that you are interested
5134  * in walking through.  Any nodes or leaves older than min_trans are
5135  * skipped over (without reading them).
5136  *
5137  * returns zero if something useful was found, < 0 on error and 1 if there
5138  * was nothing in the tree that matched the search criteria.
5139  */
5140 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141                          struct btrfs_path *path,
5142                          u64 min_trans)
5143 {
5144         struct extent_buffer *cur;
5145         struct btrfs_key found_key;
5146         int slot;
5147         int sret;
5148         u32 nritems;
5149         int level;
5150         int ret = 1;
5151         int keep_locks = path->keep_locks;
5152
5153         path->keep_locks = 1;
5154 again:
5155         cur = btrfs_read_lock_root_node(root);
5156         level = btrfs_header_level(cur);
5157         WARN_ON(path->nodes[level]);
5158         path->nodes[level] = cur;
5159         path->locks[level] = BTRFS_READ_LOCK;
5160
5161         if (btrfs_header_generation(cur) < min_trans) {
5162                 ret = 1;
5163                 goto out;
5164         }
5165         while (1) {
5166                 nritems = btrfs_header_nritems(cur);
5167                 level = btrfs_header_level(cur);
5168                 sret = bin_search(cur, min_key, level, &slot);
5169
5170                 /* at the lowest level, we're done, setup the path and exit */
5171                 if (level == path->lowest_level) {
5172                         if (slot >= nritems)
5173                                 goto find_next_key;
5174                         ret = 0;
5175                         path->slots[level] = slot;
5176                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5177                         goto out;
5178                 }
5179                 if (sret && slot > 0)
5180                         slot--;
5181                 /*
5182                  * check this node pointer against the min_trans parameters.
5183                  * If it is too old, old, skip to the next one.
5184                  */
5185                 while (slot < nritems) {
5186                         u64 gen;
5187
5188                         gen = btrfs_node_ptr_generation(cur, slot);
5189                         if (gen < min_trans) {
5190                                 slot++;
5191                                 continue;
5192                         }
5193                         break;
5194                 }
5195 find_next_key:
5196                 /*
5197                  * we didn't find a candidate key in this node, walk forward
5198                  * and find another one
5199                  */
5200                 if (slot >= nritems) {
5201                         path->slots[level] = slot;
5202                         btrfs_set_path_blocking(path);
5203                         sret = btrfs_find_next_key(root, path, min_key, level,
5204                                                   min_trans);
5205                         if (sret == 0) {
5206                                 btrfs_release_path(path);
5207                                 goto again;
5208                         } else {
5209                                 goto out;
5210                         }
5211                 }
5212                 /* save our key for returning back */
5213                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5214                 path->slots[level] = slot;
5215                 if (level == path->lowest_level) {
5216                         ret = 0;
5217                         goto out;
5218                 }
5219                 btrfs_set_path_blocking(path);
5220                 cur = read_node_slot(root, cur, slot);
5221                 BUG_ON(!cur); /* -ENOMEM */
5222
5223                 btrfs_tree_read_lock(cur);
5224
5225                 path->locks[level - 1] = BTRFS_READ_LOCK;
5226                 path->nodes[level - 1] = cur;
5227                 unlock_up(path, level, 1, 0, NULL);
5228                 btrfs_clear_path_blocking(path, NULL, 0);
5229         }
5230 out:
5231         path->keep_locks = keep_locks;
5232         if (ret == 0) {
5233                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5234                 btrfs_set_path_blocking(path);
5235                 memcpy(min_key, &found_key, sizeof(found_key));
5236         }
5237         return ret;
5238 }
5239
5240 static void tree_move_down(struct btrfs_root *root,
5241                            struct btrfs_path *path,
5242                            int *level, int root_level)
5243 {
5244         BUG_ON(*level == 0);
5245         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5246                                         path->slots[*level]);
5247         path->slots[*level - 1] = 0;
5248         (*level)--;
5249 }
5250
5251 static int tree_move_next_or_upnext(struct btrfs_root *root,
5252                                     struct btrfs_path *path,
5253                                     int *level, int root_level)
5254 {
5255         int ret = 0;
5256         int nritems;
5257         nritems = btrfs_header_nritems(path->nodes[*level]);
5258
5259         path->slots[*level]++;
5260
5261         while (path->slots[*level] >= nritems) {
5262                 if (*level == root_level)
5263                         return -1;
5264
5265                 /* move upnext */
5266                 path->slots[*level] = 0;
5267                 free_extent_buffer(path->nodes[*level]);
5268                 path->nodes[*level] = NULL;
5269                 (*level)++;
5270                 path->slots[*level]++;
5271
5272                 nritems = btrfs_header_nritems(path->nodes[*level]);
5273                 ret = 1;
5274         }
5275         return ret;
5276 }
5277
5278 /*
5279  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5280  * or down.
5281  */
5282 static int tree_advance(struct btrfs_root *root,
5283                         struct btrfs_path *path,
5284                         int *level, int root_level,
5285                         int allow_down,
5286                         struct btrfs_key *key)
5287 {
5288         int ret;
5289
5290         if (*level == 0 || !allow_down) {
5291                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5292         } else {
5293                 tree_move_down(root, path, level, root_level);
5294                 ret = 0;
5295         }
5296         if (ret >= 0) {
5297                 if (*level == 0)
5298                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5299                                         path->slots[*level]);
5300                 else
5301                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5302                                         path->slots[*level]);
5303         }
5304         return ret;
5305 }
5306
5307 static int tree_compare_item(struct btrfs_root *left_root,
5308                              struct btrfs_path *left_path,
5309                              struct btrfs_path *right_path,
5310                              char *tmp_buf)
5311 {
5312         int cmp;
5313         int len1, len2;
5314         unsigned long off1, off2;
5315
5316         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5317         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5318         if (len1 != len2)
5319                 return 1;
5320
5321         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5322         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5323                                 right_path->slots[0]);
5324
5325         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5326
5327         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5328         if (cmp)
5329                 return 1;
5330         return 0;
5331 }
5332
5333 #define ADVANCE 1
5334 #define ADVANCE_ONLY_NEXT -1
5335
5336 /*
5337  * This function compares two trees and calls the provided callback for
5338  * every changed/new/deleted item it finds.
5339  * If shared tree blocks are encountered, whole subtrees are skipped, making
5340  * the compare pretty fast on snapshotted subvolumes.
5341  *
5342  * This currently works on commit roots only. As commit roots are read only,
5343  * we don't do any locking. The commit roots are protected with transactions.
5344  * Transactions are ended and rejoined when a commit is tried in between.
5345  *
5346  * This function checks for modifications done to the trees while comparing.
5347  * If it detects a change, it aborts immediately.
5348  */
5349 int btrfs_compare_trees(struct btrfs_root *left_root,
5350                         struct btrfs_root *right_root,
5351                         btrfs_changed_cb_t changed_cb, void *ctx)
5352 {
5353         int ret;
5354         int cmp;
5355         struct btrfs_path *left_path = NULL;
5356         struct btrfs_path *right_path = NULL;
5357         struct btrfs_key left_key;
5358         struct btrfs_key right_key;
5359         char *tmp_buf = NULL;
5360         int left_root_level;
5361         int right_root_level;
5362         int left_level;
5363         int right_level;
5364         int left_end_reached;
5365         int right_end_reached;
5366         int advance_left;
5367         int advance_right;
5368         u64 left_blockptr;
5369         u64 right_blockptr;
5370         u64 left_gen;
5371         u64 right_gen;
5372
5373         left_path = btrfs_alloc_path();
5374         if (!left_path) {
5375                 ret = -ENOMEM;
5376                 goto out;
5377         }
5378         right_path = btrfs_alloc_path();
5379         if (!right_path) {
5380                 ret = -ENOMEM;
5381                 goto out;
5382         }
5383
5384         tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5385         if (!tmp_buf) {
5386                 tmp_buf = vmalloc(left_root->nodesize);
5387                 if (!tmp_buf) {
5388                         ret = -ENOMEM;
5389                         goto out;
5390                 }
5391         }
5392
5393         left_path->search_commit_root = 1;
5394         left_path->skip_locking = 1;
5395         right_path->search_commit_root = 1;
5396         right_path->skip_locking = 1;
5397
5398         /*
5399          * Strategy: Go to the first items of both trees. Then do
5400          *
5401          * If both trees are at level 0
5402          *   Compare keys of current items
5403          *     If left < right treat left item as new, advance left tree
5404          *       and repeat
5405          *     If left > right treat right item as deleted, advance right tree
5406          *       and repeat
5407          *     If left == right do deep compare of items, treat as changed if
5408          *       needed, advance both trees and repeat
5409          * If both trees are at the same level but not at level 0
5410          *   Compare keys of current nodes/leafs
5411          *     If left < right advance left tree and repeat
5412          *     If left > right advance right tree and repeat
5413          *     If left == right compare blockptrs of the next nodes/leafs
5414          *       If they match advance both trees but stay at the same level
5415          *         and repeat
5416          *       If they don't match advance both trees while allowing to go
5417          *         deeper and repeat
5418          * If tree levels are different
5419          *   Advance the tree that needs it and repeat
5420          *
5421          * Advancing a tree means:
5422          *   If we are at level 0, try to go to the next slot. If that's not
5423          *   possible, go one level up and repeat. Stop when we found a level
5424          *   where we could go to the next slot. We may at this point be on a
5425          *   node or a leaf.
5426          *
5427          *   If we are not at level 0 and not on shared tree blocks, go one
5428          *   level deeper.
5429          *
5430          *   If we are not at level 0 and on shared tree blocks, go one slot to
5431          *   the right if possible or go up and right.
5432          */
5433
5434         down_read(&left_root->fs_info->commit_root_sem);
5435         left_level = btrfs_header_level(left_root->commit_root);
5436         left_root_level = left_level;
5437         left_path->nodes[left_level] = left_root->commit_root;
5438         extent_buffer_get(left_path->nodes[left_level]);
5439
5440         right_level = btrfs_header_level(right_root->commit_root);
5441         right_root_level = right_level;
5442         right_path->nodes[right_level] = right_root->commit_root;
5443         extent_buffer_get(right_path->nodes[right_level]);
5444         up_read(&left_root->fs_info->commit_root_sem);
5445
5446         if (left_level == 0)
5447                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5448                                 &left_key, left_path->slots[left_level]);
5449         else
5450                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5451                                 &left_key, left_path->slots[left_level]);
5452         if (right_level == 0)
5453                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5454                                 &right_key, right_path->slots[right_level]);
5455         else
5456                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5457                                 &right_key, right_path->slots[right_level]);
5458
5459         left_end_reached = right_end_reached = 0;
5460         advance_left = advance_right = 0;
5461
5462         while (1) {
5463                 if (advance_left && !left_end_reached) {
5464                         ret = tree_advance(left_root, left_path, &left_level,
5465                                         left_root_level,
5466                                         advance_left != ADVANCE_ONLY_NEXT,
5467                                         &left_key);
5468                         if (ret < 0)
5469                                 left_end_reached = ADVANCE;
5470                         advance_left = 0;
5471                 }
5472                 if (advance_right && !right_end_reached) {
5473                         ret = tree_advance(right_root, right_path, &right_level,
5474                                         right_root_level,
5475                                         advance_right != ADVANCE_ONLY_NEXT,
5476                                         &right_key);
5477                         if (ret < 0)
5478                                 right_end_reached = ADVANCE;
5479                         advance_right = 0;
5480                 }
5481
5482                 if (left_end_reached && right_end_reached) {
5483                         ret = 0;
5484                         goto out;
5485                 } else if (left_end_reached) {
5486                         if (right_level == 0) {
5487                                 ret = changed_cb(left_root, right_root,
5488                                                 left_path, right_path,
5489                                                 &right_key,
5490                                                 BTRFS_COMPARE_TREE_DELETED,
5491                                                 ctx);
5492                                 if (ret < 0)
5493                                         goto out;
5494                         }
5495                         advance_right = ADVANCE;
5496                         continue;
5497                 } else if (right_end_reached) {
5498                         if (left_level == 0) {
5499                                 ret = changed_cb(left_root, right_root,
5500                                                 left_path, right_path,
5501                                                 &left_key,
5502                                                 BTRFS_COMPARE_TREE_NEW,
5503                                                 ctx);
5504                                 if (ret < 0)
5505                                         goto out;
5506                         }
5507                         advance_left = ADVANCE;
5508                         continue;
5509                 }
5510
5511                 if (left_level == 0 && right_level == 0) {
5512                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5513                         if (cmp < 0) {
5514                                 ret = changed_cb(left_root, right_root,
5515                                                 left_path, right_path,
5516                                                 &left_key,
5517                                                 BTRFS_COMPARE_TREE_NEW,
5518                                                 ctx);
5519                                 if (ret < 0)
5520                                         goto out;
5521                                 advance_left = ADVANCE;
5522                         } else if (cmp > 0) {
5523                                 ret = changed_cb(left_root, right_root,
5524                                                 left_path, right_path,
5525                                                 &right_key,
5526                                                 BTRFS_COMPARE_TREE_DELETED,
5527                                                 ctx);
5528                                 if (ret < 0)
5529                                         goto out;
5530                                 advance_right = ADVANCE;
5531                         } else {
5532                                 enum btrfs_compare_tree_result result;
5533
5534                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5535                                 ret = tree_compare_item(left_root, left_path,
5536                                                 right_path, tmp_buf);
5537                                 if (ret)
5538                                         result = BTRFS_COMPARE_TREE_CHANGED;
5539                                 else
5540                                         result = BTRFS_COMPARE_TREE_SAME;
5541                                 ret = changed_cb(left_root, right_root,
5542                                                  left_path, right_path,
5543                                                  &left_key, result, ctx);
5544                                 if (ret < 0)
5545                                         goto out;
5546                                 advance_left = ADVANCE;
5547                                 advance_right = ADVANCE;
5548                         }
5549                 } else if (left_level == right_level) {
5550                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5551                         if (cmp < 0) {
5552                                 advance_left = ADVANCE;
5553                         } else if (cmp > 0) {
5554                                 advance_right = ADVANCE;
5555                         } else {
5556                                 left_blockptr = btrfs_node_blockptr(
5557                                                 left_path->nodes[left_level],
5558                                                 left_path->slots[left_level]);
5559                                 right_blockptr = btrfs_node_blockptr(
5560                                                 right_path->nodes[right_level],
5561                                                 right_path->slots[right_level]);
5562                                 left_gen = btrfs_node_ptr_generation(
5563                                                 left_path->nodes[left_level],
5564                                                 left_path->slots[left_level]);
5565                                 right_gen = btrfs_node_ptr_generation(
5566                                                 right_path->nodes[right_level],
5567                                                 right_path->slots[right_level]);
5568                                 if (left_blockptr == right_blockptr &&
5569                                     left_gen == right_gen) {
5570                                         /*
5571                                          * As we're on a shared block, don't
5572                                          * allow to go deeper.
5573                                          */
5574                                         advance_left = ADVANCE_ONLY_NEXT;
5575                                         advance_right = ADVANCE_ONLY_NEXT;
5576                                 } else {
5577                                         advance_left = ADVANCE;
5578                                         advance_right = ADVANCE;
5579                                 }
5580                         }
5581                 } else if (left_level < right_level) {
5582                         advance_right = ADVANCE;
5583                 } else {
5584                         advance_left = ADVANCE;
5585                 }
5586         }
5587
5588 out:
5589         btrfs_free_path(left_path);
5590         btrfs_free_path(right_path);
5591         kvfree(tmp_buf);
5592         return ret;
5593 }
5594
5595 /*
5596  * this is similar to btrfs_next_leaf, but does not try to preserve
5597  * and fixup the path.  It looks for and returns the next key in the
5598  * tree based on the current path and the min_trans parameters.
5599  *
5600  * 0 is returned if another key is found, < 0 if there are any errors
5601  * and 1 is returned if there are no higher keys in the tree
5602  *
5603  * path->keep_locks should be set to 1 on the search made before
5604  * calling this function.
5605  */
5606 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5607                         struct btrfs_key *key, int level, u64 min_trans)
5608 {
5609         int slot;
5610         struct extent_buffer *c;
5611
5612         WARN_ON(!path->keep_locks);
5613         while (level < BTRFS_MAX_LEVEL) {
5614                 if (!path->nodes[level])
5615                         return 1;
5616
5617                 slot = path->slots[level] + 1;
5618                 c = path->nodes[level];
5619 next:
5620                 if (slot >= btrfs_header_nritems(c)) {
5621                         int ret;
5622                         int orig_lowest;
5623                         struct btrfs_key cur_key;
5624                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5625                             !path->nodes[level + 1])
5626                                 return 1;
5627
5628                         if (path->locks[level + 1]) {
5629                                 level++;
5630                                 continue;
5631                         }
5632
5633                         slot = btrfs_header_nritems(c) - 1;
5634                         if (level == 0)
5635                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5636                         else
5637                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5638
5639                         orig_lowest = path->lowest_level;
5640                         btrfs_release_path(path);
5641                         path->lowest_level = level;
5642                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5643                                                 0, 0);
5644                         path->lowest_level = orig_lowest;
5645                         if (ret < 0)
5646                                 return ret;
5647
5648                         c = path->nodes[level];
5649                         slot = path->slots[level];
5650                         if (ret == 0)
5651                                 slot++;
5652                         goto next;
5653                 }
5654
5655                 if (level == 0)
5656                         btrfs_item_key_to_cpu(c, key, slot);
5657                 else {
5658                         u64 gen = btrfs_node_ptr_generation(c, slot);
5659
5660                         if (gen < min_trans) {
5661                                 slot++;
5662                                 goto next;
5663                         }
5664                         btrfs_node_key_to_cpu(c, key, slot);
5665                 }
5666                 return 0;
5667         }
5668         return 1;
5669 }
5670
5671 /*
5672  * search the tree again to find a leaf with greater keys
5673  * returns 0 if it found something or 1 if there are no greater leaves.
5674  * returns < 0 on io errors.
5675  */
5676 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5677 {
5678         return btrfs_next_old_leaf(root, path, 0);
5679 }
5680
5681 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5682                         u64 time_seq)
5683 {
5684         int slot;
5685         int level;
5686         struct extent_buffer *c;
5687         struct extent_buffer *next;
5688         struct btrfs_key key;
5689         u32 nritems;
5690         int ret;
5691         int old_spinning = path->leave_spinning;
5692         int next_rw_lock = 0;
5693
5694         nritems = btrfs_header_nritems(path->nodes[0]);
5695         if (nritems == 0)
5696                 return 1;
5697
5698         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5699 again:
5700         level = 1;
5701         next = NULL;
5702         next_rw_lock = 0;
5703         btrfs_release_path(path);
5704
5705         path->keep_locks = 1;
5706         path->leave_spinning = 1;
5707
5708         if (time_seq)
5709                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5710         else
5711                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5712         path->keep_locks = 0;
5713
5714         if (ret < 0)
5715                 return ret;
5716
5717         nritems = btrfs_header_nritems(path->nodes[0]);
5718         /*
5719          * by releasing the path above we dropped all our locks.  A balance
5720          * could have added more items next to the key that used to be
5721          * at the very end of the block.  So, check again here and
5722          * advance the path if there are now more items available.
5723          */
5724         if (nritems > 0 && path->slots[0] < nritems - 1) {
5725                 if (ret == 0)
5726                         path->slots[0]++;
5727                 ret = 0;
5728                 goto done;
5729         }
5730         /*
5731          * So the above check misses one case:
5732          * - after releasing the path above, someone has removed the item that
5733          *   used to be at the very end of the block, and balance between leafs
5734          *   gets another one with bigger key.offset to replace it.
5735          *
5736          * This one should be returned as well, or we can get leaf corruption
5737          * later(esp. in __btrfs_drop_extents()).
5738          *
5739          * And a bit more explanation about this check,
5740          * with ret > 0, the key isn't found, the path points to the slot
5741          * where it should be inserted, so the path->slots[0] item must be the
5742          * bigger one.
5743          */
5744         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5745                 ret = 0;
5746                 goto done;
5747         }
5748
5749         while (level < BTRFS_MAX_LEVEL) {
5750                 if (!path->nodes[level]) {
5751                         ret = 1;
5752                         goto done;
5753                 }
5754
5755                 slot = path->slots[level] + 1;
5756                 c = path->nodes[level];
5757                 if (slot >= btrfs_header_nritems(c)) {
5758                         level++;
5759                         if (level == BTRFS_MAX_LEVEL) {
5760                                 ret = 1;
5761                                 goto done;
5762                         }
5763                         continue;
5764                 }
5765
5766                 if (next) {
5767                         btrfs_tree_unlock_rw(next, next_rw_lock);
5768                         free_extent_buffer(next);
5769                 }
5770
5771                 next = c;
5772                 next_rw_lock = path->locks[level];
5773                 ret = read_block_for_search(NULL, root, path, &next, level,
5774                                             slot, &key, 0);
5775                 if (ret == -EAGAIN)
5776                         goto again;
5777
5778                 if (ret < 0) {
5779                         btrfs_release_path(path);
5780                         goto done;
5781                 }
5782
5783                 if (!path->skip_locking) {
5784                         ret = btrfs_try_tree_read_lock(next);
5785                         if (!ret && time_seq) {
5786                                 /*
5787                                  * If we don't get the lock, we may be racing
5788                                  * with push_leaf_left, holding that lock while
5789                                  * itself waiting for the leaf we've currently
5790                                  * locked. To solve this situation, we give up
5791                                  * on our lock and cycle.
5792                                  */
5793                                 free_extent_buffer(next);
5794                                 btrfs_release_path(path);
5795                                 cond_resched();
5796                                 goto again;
5797                         }
5798                         if (!ret) {
5799                                 btrfs_set_path_blocking(path);
5800                                 btrfs_tree_read_lock(next);
5801                                 btrfs_clear_path_blocking(path, next,
5802                                                           BTRFS_READ_LOCK);
5803                         }
5804                         next_rw_lock = BTRFS_READ_LOCK;
5805                 }
5806                 break;
5807         }
5808         path->slots[level] = slot;
5809         while (1) {
5810                 level--;
5811                 c = path->nodes[level];
5812                 if (path->locks[level])
5813                         btrfs_tree_unlock_rw(c, path->locks[level]);
5814
5815                 free_extent_buffer(c);
5816                 path->nodes[level] = next;
5817                 path->slots[level] = 0;
5818                 if (!path->skip_locking)
5819                         path->locks[level] = next_rw_lock;
5820                 if (!level)
5821                         break;
5822
5823                 ret = read_block_for_search(NULL, root, path, &next, level,
5824                                             0, &key, 0);
5825                 if (ret == -EAGAIN)
5826                         goto again;
5827
5828                 if (ret < 0) {
5829                         btrfs_release_path(path);
5830                         goto done;
5831                 }
5832
5833                 if (!path->skip_locking) {
5834                         ret = btrfs_try_tree_read_lock(next);
5835                         if (!ret) {
5836                                 btrfs_set_path_blocking(path);
5837                                 btrfs_tree_read_lock(next);
5838                                 btrfs_clear_path_blocking(path, next,
5839                                                           BTRFS_READ_LOCK);
5840                         }
5841                         next_rw_lock = BTRFS_READ_LOCK;
5842                 }
5843         }
5844         ret = 0;
5845 done:
5846         unlock_up(path, 0, 1, 0, NULL);
5847         path->leave_spinning = old_spinning;
5848         if (!old_spinning)
5849                 btrfs_set_path_blocking(path);
5850
5851         return ret;
5852 }
5853
5854 /*
5855  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5856  * searching until it gets past min_objectid or finds an item of 'type'
5857  *
5858  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5859  */
5860 int btrfs_previous_item(struct btrfs_root *root,
5861                         struct btrfs_path *path, u64 min_objectid,
5862                         int type)
5863 {
5864         struct btrfs_key found_key;
5865         struct extent_buffer *leaf;
5866         u32 nritems;
5867         int ret;
5868
5869         while (1) {
5870                 if (path->slots[0] == 0) {
5871                         btrfs_set_path_blocking(path);
5872                         ret = btrfs_prev_leaf(root, path);
5873                         if (ret != 0)
5874                                 return ret;
5875                 } else {
5876                         path->slots[0]--;
5877                 }
5878                 leaf = path->nodes[0];
5879                 nritems = btrfs_header_nritems(leaf);
5880                 if (nritems == 0)
5881                         return 1;
5882                 if (path->slots[0] == nritems)
5883                         path->slots[0]--;
5884
5885                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5886                 if (found_key.objectid < min_objectid)
5887                         break;
5888                 if (found_key.type == type)
5889                         return 0;
5890                 if (found_key.objectid == min_objectid &&
5891                     found_key.type < type)
5892                         break;
5893         }
5894         return 1;
5895 }
5896
5897 /*
5898  * search in extent tree to find a previous Metadata/Data extent item with
5899  * min objecitd.
5900  *
5901  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5902  */
5903 int btrfs_previous_extent_item(struct btrfs_root *root,
5904                         struct btrfs_path *path, u64 min_objectid)
5905 {
5906         struct btrfs_key found_key;
5907         struct extent_buffer *leaf;
5908         u32 nritems;
5909         int ret;
5910
5911         while (1) {
5912                 if (path->slots[0] == 0) {
5913                         btrfs_set_path_blocking(path);
5914                         ret = btrfs_prev_leaf(root, path);
5915                         if (ret != 0)
5916                                 return ret;
5917                 } else {
5918                         path->slots[0]--;
5919                 }
5920                 leaf = path->nodes[0];
5921                 nritems = btrfs_header_nritems(leaf);
5922                 if (nritems == 0)
5923                         return 1;
5924                 if (path->slots[0] == nritems)
5925                         path->slots[0]--;
5926
5927                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5928                 if (found_key.objectid < min_objectid)
5929                         break;
5930                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5931                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5932                         return 0;
5933                 if (found_key.objectid == min_objectid &&
5934                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5935                         break;
5936         }
5937         return 1;
5938 }