btrfs: fix qgroup_free_reserved_data int overflow
[platform/kernel/linux-rpi.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
33                       int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42         u16             size;
43         const char      name[10];
44         const char      driver[12];
45 } btrfs_csums[] = {
46         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50                                      .driver = "blake2b-256" },
51 };
52
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59         u32 nr = btrfs_header_nritems(leaf);
60
61         if (nr == 0)
62                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63         return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:       leaf that we're doing a memmove on
70  * @dst_offset: item data offset we're moving to
71  * @src_offset: item data offset were' moving from
72  * @len:        length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80                                      unsigned long dst_offset,
81                                      unsigned long src_offset,
82                                      unsigned long len)
83 {
84         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:        destination leaf that we're copying into
92  * @src:        source leaf that we're copying from
93  * @dst_offset: item data offset we're copying to
94  * @src_offset: item data offset were' copying from
95  * @len:        length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103                                   const struct extent_buffer *src,
104                                   unsigned long dst_offset,
105                                   unsigned long src_offset, unsigned long len)
106 {
107         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108                            btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:        destination leaf for the items
115  * @dst_item:   the item nr we're copying into
116  * @src_item:   the item nr we're copying from
117  * @nr_items:   the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123                                       int dst_item, int src_item, int nr_items)
124 {
125         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126                               btrfs_item_nr_offset(leaf, src_item),
127                               nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:        destination leaf for the items
134  * @src:        source leaf for the items
135  * @dst_item:   the item nr we're copying into
136  * @src_item:   the item nr we're copying from
137  * @nr_items:   the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143                                    const struct extent_buffer *src,
144                                    int dst_item, int src_item, int nr_items)
145 {
146         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147                               btrfs_item_nr_offset(src, src_item),
148                               nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154         return btrfs_csums[type].size;
155 }
156
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159         u16 t = btrfs_super_csum_type(s);
160         /*
161          * csum type is validated at mount time
162          */
163         return btrfs_csum_type_size(t);
164 }
165
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168         /* csum type is validated at mount time */
169         return btrfs_csums[csum_type].name;
170 }
171
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178         /* csum type is validated at mount time */
179         return btrfs_csums[csum_type].driver[0] ?
180                 btrfs_csums[csum_type].driver :
181                 btrfs_csums[csum_type].name;
182 }
183
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186         return ARRAY_SIZE(btrfs_csums);
187 }
188
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191         might_sleep();
192
193         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199         if (!p)
200                 return;
201         btrfs_release_path(p);
202         kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213         int i;
214
215         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216                 p->slots[i] = 0;
217                 if (!p->nodes[i])
218                         continue;
219                 if (p->locks[i]) {
220                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221                         p->locks[i] = 0;
222                 }
223                 free_extent_buffer(p->nodes[i]);
224                 p->nodes[i] = NULL;
225         }
226 }
227
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int errno)
234 {
235         switch (errno) {
236         case -EIO:
237         case -EROFS:
238         case -ENOMEM:
239                 return false;
240         }
241         return true;
242 }
243
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256         struct extent_buffer *eb;
257
258         while (1) {
259                 rcu_read_lock();
260                 eb = rcu_dereference(root->node);
261
262                 /*
263                  * RCU really hurts here, we could free up the root node because
264                  * it was COWed but we may not get the new root node yet so do
265                  * the inc_not_zero dance and if it doesn't work then
266                  * synchronize_rcu and try again.
267                  */
268                 if (atomic_inc_not_zero(&eb->refs)) {
269                         rcu_read_unlock();
270                         break;
271                 }
272                 rcu_read_unlock();
273                 synchronize_rcu();
274         }
275         return eb;
276 }
277
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285         struct btrfs_fs_info *fs_info = root->fs_info;
286
287         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289                 return;
290
291         spin_lock(&fs_info->trans_lock);
292         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293                 /* Want the extent tree to be the last on the list */
294                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295                         list_move_tail(&root->dirty_list,
296                                        &fs_info->dirty_cowonly_roots);
297                 else
298                         list_move(&root->dirty_list,
299                                   &fs_info->dirty_cowonly_roots);
300         }
301         spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310                       struct btrfs_root *root,
311                       struct extent_buffer *buf,
312                       struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314         struct btrfs_fs_info *fs_info = root->fs_info;
315         struct extent_buffer *cow;
316         int ret = 0;
317         int level;
318         struct btrfs_disk_key disk_key;
319
320         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321                 trans->transid != fs_info->running_transaction->transid);
322         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323                 trans->transid != root->last_trans);
324
325         level = btrfs_header_level(buf);
326         if (level == 0)
327                 btrfs_item_key(buf, &disk_key, 0);
328         else
329                 btrfs_node_key(buf, &disk_key, 0);
330
331         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332                                      &disk_key, level, buf->start, 0,
333                                      BTRFS_NESTING_NEW_ROOT);
334         if (IS_ERR(cow))
335                 return PTR_ERR(cow);
336
337         copy_extent_buffer_full(cow, buf);
338         btrfs_set_header_bytenr(cow, cow->start);
339         btrfs_set_header_generation(cow, trans->transid);
340         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342                                      BTRFS_HEADER_FLAG_RELOC);
343         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345         else
346                 btrfs_set_header_owner(cow, new_root_objectid);
347
348         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349
350         WARN_ON(btrfs_header_generation(buf) > trans->transid);
351         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352                 ret = btrfs_inc_ref(trans, root, cow, 1);
353         else
354                 ret = btrfs_inc_ref(trans, root, cow, 0);
355         if (ret) {
356                 btrfs_tree_unlock(cow);
357                 free_extent_buffer(cow);
358                 btrfs_abort_transaction(trans, ret);
359                 return ret;
360         }
361
362         btrfs_mark_buffer_dirty(trans, cow);
363         *cow_ret = cow;
364         return 0;
365 }
366
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
370 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
371                               struct btrfs_root *root,
372                               struct extent_buffer *buf)
373 {
374         /*
375          * Tree blocks not in shareable trees and tree roots are never shared.
376          * If a block was allocated after the last snapshot and the block was
377          * not allocated by tree relocation, we know the block is not shared.
378          */
379         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
380             buf != root->node &&
381             (btrfs_header_generation(buf) <=
382              btrfs_root_last_snapshot(&root->root_item) ||
383              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
384                 if (buf != root->commit_root)
385                         return 1;
386                 /*
387                  * An extent buffer that used to be the commit root may still be
388                  * shared because the tree height may have increased and it
389                  * became a child of a higher level root. This can happen when
390                  * snapshotting a subvolume created in the current transaction.
391                  */
392                 if (btrfs_header_generation(buf) == trans->transid)
393                         return 1;
394         }
395
396         return 0;
397 }
398
399 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
400                                        struct btrfs_root *root,
401                                        struct extent_buffer *buf,
402                                        struct extent_buffer *cow,
403                                        int *last_ref)
404 {
405         struct btrfs_fs_info *fs_info = root->fs_info;
406         u64 refs;
407         u64 owner;
408         u64 flags;
409         u64 new_flags = 0;
410         int ret;
411
412         /*
413          * Backrefs update rules:
414          *
415          * Always use full backrefs for extent pointers in tree block
416          * allocated by tree relocation.
417          *
418          * If a shared tree block is no longer referenced by its owner
419          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
420          * use full backrefs for extent pointers in tree block.
421          *
422          * If a tree block is been relocating
423          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
424          * use full backrefs for extent pointers in tree block.
425          * The reason for this is some operations (such as drop tree)
426          * are only allowed for blocks use full backrefs.
427          */
428
429         if (btrfs_block_can_be_shared(trans, root, buf)) {
430                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
431                                                btrfs_header_level(buf), 1,
432                                                &refs, &flags);
433                 if (ret)
434                         return ret;
435                 if (unlikely(refs == 0)) {
436                         btrfs_crit(fs_info,
437                 "found 0 references for tree block at bytenr %llu level %d root %llu",
438                                    buf->start, btrfs_header_level(buf),
439                                    btrfs_root_id(root));
440                         ret = -EUCLEAN;
441                         btrfs_abort_transaction(trans, ret);
442                         return ret;
443                 }
444         } else {
445                 refs = 1;
446                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
448                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
449                 else
450                         flags = 0;
451         }
452
453         owner = btrfs_header_owner(buf);
454         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
455                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
456
457         if (refs > 1) {
458                 if ((owner == root->root_key.objectid ||
459                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
460                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
461                         ret = btrfs_inc_ref(trans, root, buf, 1);
462                         if (ret)
463                                 return ret;
464
465                         if (root->root_key.objectid ==
466                             BTRFS_TREE_RELOC_OBJECTID) {
467                                 ret = btrfs_dec_ref(trans, root, buf, 0);
468                                 if (ret)
469                                         return ret;
470                                 ret = btrfs_inc_ref(trans, root, cow, 1);
471                                 if (ret)
472                                         return ret;
473                         }
474                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
475                 } else {
476
477                         if (root->root_key.objectid ==
478                             BTRFS_TREE_RELOC_OBJECTID)
479                                 ret = btrfs_inc_ref(trans, root, cow, 1);
480                         else
481                                 ret = btrfs_inc_ref(trans, root, cow, 0);
482                         if (ret)
483                                 return ret;
484                 }
485                 if (new_flags != 0) {
486                         ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
487                         if (ret)
488                                 return ret;
489                 }
490         } else {
491                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
492                         if (root->root_key.objectid ==
493                             BTRFS_TREE_RELOC_OBJECTID)
494                                 ret = btrfs_inc_ref(trans, root, cow, 1);
495                         else
496                                 ret = btrfs_inc_ref(trans, root, cow, 0);
497                         if (ret)
498                                 return ret;
499                         ret = btrfs_dec_ref(trans, root, buf, 1);
500                         if (ret)
501                                 return ret;
502                 }
503                 btrfs_clear_buffer_dirty(trans, buf);
504                 *last_ref = 1;
505         }
506         return 0;
507 }
508
509 /*
510  * does the dirty work in cow of a single block.  The parent block (if
511  * supplied) is updated to point to the new cow copy.  The new buffer is marked
512  * dirty and returned locked.  If you modify the block it needs to be marked
513  * dirty again.
514  *
515  * search_start -- an allocation hint for the new block
516  *
517  * empty_size -- a hint that you plan on doing more cow.  This is the size in
518  * bytes the allocator should try to find free next to the block it returns.
519  * This is just a hint and may be ignored by the allocator.
520  */
521 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
522                              struct btrfs_root *root,
523                              struct extent_buffer *buf,
524                              struct extent_buffer *parent, int parent_slot,
525                              struct extent_buffer **cow_ret,
526                              u64 search_start, u64 empty_size,
527                              enum btrfs_lock_nesting nest)
528 {
529         struct btrfs_fs_info *fs_info = root->fs_info;
530         struct btrfs_disk_key disk_key;
531         struct extent_buffer *cow;
532         int level, ret;
533         int last_ref = 0;
534         int unlock_orig = 0;
535         u64 parent_start = 0;
536
537         if (*cow_ret == buf)
538                 unlock_orig = 1;
539
540         btrfs_assert_tree_write_locked(buf);
541
542         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
543                 trans->transid != fs_info->running_transaction->transid);
544         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
545                 trans->transid != root->last_trans);
546
547         level = btrfs_header_level(buf);
548
549         if (level == 0)
550                 btrfs_item_key(buf, &disk_key, 0);
551         else
552                 btrfs_node_key(buf, &disk_key, 0);
553
554         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
555                 parent_start = parent->start;
556
557         cow = btrfs_alloc_tree_block(trans, root, parent_start,
558                                      root->root_key.objectid, &disk_key, level,
559                                      search_start, empty_size, nest);
560         if (IS_ERR(cow))
561                 return PTR_ERR(cow);
562
563         /* cow is set to blocking by btrfs_init_new_buffer */
564
565         copy_extent_buffer_full(cow, buf);
566         btrfs_set_header_bytenr(cow, cow->start);
567         btrfs_set_header_generation(cow, trans->transid);
568         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
569         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
570                                      BTRFS_HEADER_FLAG_RELOC);
571         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
572                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
573         else
574                 btrfs_set_header_owner(cow, root->root_key.objectid);
575
576         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
577
578         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
579         if (ret) {
580                 btrfs_tree_unlock(cow);
581                 free_extent_buffer(cow);
582                 btrfs_abort_transaction(trans, ret);
583                 return ret;
584         }
585
586         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
587                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
588                 if (ret) {
589                         btrfs_tree_unlock(cow);
590                         free_extent_buffer(cow);
591                         btrfs_abort_transaction(trans, ret);
592                         return ret;
593                 }
594         }
595
596         if (buf == root->node) {
597                 WARN_ON(parent && parent != buf);
598                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
599                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
600                         parent_start = buf->start;
601
602                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
603                 if (ret < 0) {
604                         btrfs_tree_unlock(cow);
605                         free_extent_buffer(cow);
606                         btrfs_abort_transaction(trans, ret);
607                         return ret;
608                 }
609                 atomic_inc(&cow->refs);
610                 rcu_assign_pointer(root->node, cow);
611
612                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
613                                       parent_start, last_ref);
614                 free_extent_buffer(buf);
615                 add_root_to_dirty_list(root);
616         } else {
617                 WARN_ON(trans->transid != btrfs_header_generation(parent));
618                 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
619                                                     BTRFS_MOD_LOG_KEY_REPLACE);
620                 if (ret) {
621                         btrfs_tree_unlock(cow);
622                         free_extent_buffer(cow);
623                         btrfs_abort_transaction(trans, ret);
624                         return ret;
625                 }
626                 btrfs_set_node_blockptr(parent, parent_slot,
627                                         cow->start);
628                 btrfs_set_node_ptr_generation(parent, parent_slot,
629                                               trans->transid);
630                 btrfs_mark_buffer_dirty(trans, parent);
631                 if (last_ref) {
632                         ret = btrfs_tree_mod_log_free_eb(buf);
633                         if (ret) {
634                                 btrfs_tree_unlock(cow);
635                                 free_extent_buffer(cow);
636                                 btrfs_abort_transaction(trans, ret);
637                                 return ret;
638                         }
639                 }
640                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
641                                       parent_start, last_ref);
642         }
643         if (unlock_orig)
644                 btrfs_tree_unlock(buf);
645         free_extent_buffer_stale(buf);
646         btrfs_mark_buffer_dirty(trans, cow);
647         *cow_ret = cow;
648         return 0;
649 }
650
651 static inline int should_cow_block(struct btrfs_trans_handle *trans,
652                                    struct btrfs_root *root,
653                                    struct extent_buffer *buf)
654 {
655         if (btrfs_is_testing(root->fs_info))
656                 return 0;
657
658         /* Ensure we can see the FORCE_COW bit */
659         smp_mb__before_atomic();
660
661         /*
662          * We do not need to cow a block if
663          * 1) this block is not created or changed in this transaction;
664          * 2) this block does not belong to TREE_RELOC tree;
665          * 3) the root is not forced COW.
666          *
667          * What is forced COW:
668          *    when we create snapshot during committing the transaction,
669          *    after we've finished copying src root, we must COW the shared
670          *    block to ensure the metadata consistency.
671          */
672         if (btrfs_header_generation(buf) == trans->transid &&
673             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
674             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
675               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
676             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
677                 return 0;
678         return 1;
679 }
680
681 /*
682  * cows a single block, see __btrfs_cow_block for the real work.
683  * This version of it has extra checks so that a block isn't COWed more than
684  * once per transaction, as long as it hasn't been written yet
685  */
686 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
687                     struct btrfs_root *root, struct extent_buffer *buf,
688                     struct extent_buffer *parent, int parent_slot,
689                     struct extent_buffer **cow_ret,
690                     enum btrfs_lock_nesting nest)
691 {
692         struct btrfs_fs_info *fs_info = root->fs_info;
693         u64 search_start;
694         int ret;
695
696         if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
697                 btrfs_abort_transaction(trans, -EUCLEAN);
698                 btrfs_crit(fs_info,
699                    "attempt to COW block %llu on root %llu that is being deleted",
700                            buf->start, btrfs_root_id(root));
701                 return -EUCLEAN;
702         }
703
704         /*
705          * COWing must happen through a running transaction, which always
706          * matches the current fs generation (it's a transaction with a state
707          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
708          * into error state to prevent the commit of any transaction.
709          */
710         if (unlikely(trans->transaction != fs_info->running_transaction ||
711                      trans->transid != fs_info->generation)) {
712                 btrfs_abort_transaction(trans, -EUCLEAN);
713                 btrfs_crit(fs_info,
714 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
715                            buf->start, btrfs_root_id(root), trans->transid,
716                            fs_info->running_transaction->transid,
717                            fs_info->generation);
718                 return -EUCLEAN;
719         }
720
721         if (!should_cow_block(trans, root, buf)) {
722                 *cow_ret = buf;
723                 return 0;
724         }
725
726         search_start = buf->start & ~((u64)SZ_1G - 1);
727
728         /*
729          * Before CoWing this block for later modification, check if it's
730          * the subtree root and do the delayed subtree trace if needed.
731          *
732          * Also We don't care about the error, as it's handled internally.
733          */
734         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
735         ret = __btrfs_cow_block(trans, root, buf, parent,
736                                  parent_slot, cow_ret, search_start, 0, nest);
737
738         trace_btrfs_cow_block(root, buf, *cow_ret);
739
740         return ret;
741 }
742 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
743
744 /*
745  * helper function for defrag to decide if two blocks pointed to by a
746  * node are actually close by
747  */
748 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
749 {
750         if (blocknr < other && other - (blocknr + blocksize) < 32768)
751                 return 1;
752         if (blocknr > other && blocknr - (other + blocksize) < 32768)
753                 return 1;
754         return 0;
755 }
756
757 #ifdef __LITTLE_ENDIAN
758
759 /*
760  * Compare two keys, on little-endian the disk order is same as CPU order and
761  * we can avoid the conversion.
762  */
763 static int comp_keys(const struct btrfs_disk_key *disk_key,
764                      const struct btrfs_key *k2)
765 {
766         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
767
768         return btrfs_comp_cpu_keys(k1, k2);
769 }
770
771 #else
772
773 /*
774  * compare two keys in a memcmp fashion
775  */
776 static int comp_keys(const struct btrfs_disk_key *disk,
777                      const struct btrfs_key *k2)
778 {
779         struct btrfs_key k1;
780
781         btrfs_disk_key_to_cpu(&k1, disk);
782
783         return btrfs_comp_cpu_keys(&k1, k2);
784 }
785 #endif
786
787 /*
788  * same as comp_keys only with two btrfs_key's
789  */
790 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
791 {
792         if (k1->objectid > k2->objectid)
793                 return 1;
794         if (k1->objectid < k2->objectid)
795                 return -1;
796         if (k1->type > k2->type)
797                 return 1;
798         if (k1->type < k2->type)
799                 return -1;
800         if (k1->offset > k2->offset)
801                 return 1;
802         if (k1->offset < k2->offset)
803                 return -1;
804         return 0;
805 }
806
807 /*
808  * this is used by the defrag code to go through all the
809  * leaves pointed to by a node and reallocate them so that
810  * disk order is close to key order
811  */
812 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
813                        struct btrfs_root *root, struct extent_buffer *parent,
814                        int start_slot, u64 *last_ret,
815                        struct btrfs_key *progress)
816 {
817         struct btrfs_fs_info *fs_info = root->fs_info;
818         struct extent_buffer *cur;
819         u64 blocknr;
820         u64 search_start = *last_ret;
821         u64 last_block = 0;
822         u64 other;
823         u32 parent_nritems;
824         int end_slot;
825         int i;
826         int err = 0;
827         u32 blocksize;
828         int progress_passed = 0;
829         struct btrfs_disk_key disk_key;
830
831         /*
832          * COWing must happen through a running transaction, which always
833          * matches the current fs generation (it's a transaction with a state
834          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
835          * into error state to prevent the commit of any transaction.
836          */
837         if (unlikely(trans->transaction != fs_info->running_transaction ||
838                      trans->transid != fs_info->generation)) {
839                 btrfs_abort_transaction(trans, -EUCLEAN);
840                 btrfs_crit(fs_info,
841 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
842                            parent->start, btrfs_root_id(root), trans->transid,
843                            fs_info->running_transaction->transid,
844                            fs_info->generation);
845                 return -EUCLEAN;
846         }
847
848         parent_nritems = btrfs_header_nritems(parent);
849         blocksize = fs_info->nodesize;
850         end_slot = parent_nritems - 1;
851
852         if (parent_nritems <= 1)
853                 return 0;
854
855         for (i = start_slot; i <= end_slot; i++) {
856                 int close = 1;
857
858                 btrfs_node_key(parent, &disk_key, i);
859                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
860                         continue;
861
862                 progress_passed = 1;
863                 blocknr = btrfs_node_blockptr(parent, i);
864                 if (last_block == 0)
865                         last_block = blocknr;
866
867                 if (i > 0) {
868                         other = btrfs_node_blockptr(parent, i - 1);
869                         close = close_blocks(blocknr, other, blocksize);
870                 }
871                 if (!close && i < end_slot) {
872                         other = btrfs_node_blockptr(parent, i + 1);
873                         close = close_blocks(blocknr, other, blocksize);
874                 }
875                 if (close) {
876                         last_block = blocknr;
877                         continue;
878                 }
879
880                 cur = btrfs_read_node_slot(parent, i);
881                 if (IS_ERR(cur))
882                         return PTR_ERR(cur);
883                 if (search_start == 0)
884                         search_start = last_block;
885
886                 btrfs_tree_lock(cur);
887                 err = __btrfs_cow_block(trans, root, cur, parent, i,
888                                         &cur, search_start,
889                                         min(16 * blocksize,
890                                             (end_slot - i) * blocksize),
891                                         BTRFS_NESTING_COW);
892                 if (err) {
893                         btrfs_tree_unlock(cur);
894                         free_extent_buffer(cur);
895                         break;
896                 }
897                 search_start = cur->start;
898                 last_block = cur->start;
899                 *last_ret = search_start;
900                 btrfs_tree_unlock(cur);
901                 free_extent_buffer(cur);
902         }
903         return err;
904 }
905
906 /*
907  * Search for a key in the given extent_buffer.
908  *
909  * The lower boundary for the search is specified by the slot number @first_slot.
910  * Use a value of 0 to search over the whole extent buffer. Works for both
911  * leaves and nodes.
912  *
913  * The slot in the extent buffer is returned via @slot. If the key exists in the
914  * extent buffer, then @slot will point to the slot where the key is, otherwise
915  * it points to the slot where you would insert the key.
916  *
917  * Slot may point to the total number of items (i.e. one position beyond the last
918  * key) if the key is bigger than the last key in the extent buffer.
919  */
920 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
921                      const struct btrfs_key *key, int *slot)
922 {
923         unsigned long p;
924         int item_size;
925         /*
926          * Use unsigned types for the low and high slots, so that we get a more
927          * efficient division in the search loop below.
928          */
929         u32 low = first_slot;
930         u32 high = btrfs_header_nritems(eb);
931         int ret;
932         const int key_size = sizeof(struct btrfs_disk_key);
933
934         if (unlikely(low > high)) {
935                 btrfs_err(eb->fs_info,
936                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
937                           __func__, low, high, eb->start,
938                           btrfs_header_owner(eb), btrfs_header_level(eb));
939                 return -EINVAL;
940         }
941
942         if (btrfs_header_level(eb) == 0) {
943                 p = offsetof(struct btrfs_leaf, items);
944                 item_size = sizeof(struct btrfs_item);
945         } else {
946                 p = offsetof(struct btrfs_node, ptrs);
947                 item_size = sizeof(struct btrfs_key_ptr);
948         }
949
950         while (low < high) {
951                 unsigned long oip;
952                 unsigned long offset;
953                 struct btrfs_disk_key *tmp;
954                 struct btrfs_disk_key unaligned;
955                 int mid;
956
957                 mid = (low + high) / 2;
958                 offset = p + mid * item_size;
959                 oip = offset_in_page(offset);
960
961                 if (oip + key_size <= PAGE_SIZE) {
962                         const unsigned long idx = get_eb_page_index(offset);
963                         char *kaddr = page_address(eb->pages[idx]);
964
965                         oip = get_eb_offset_in_page(eb, offset);
966                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
967                 } else {
968                         read_extent_buffer(eb, &unaligned, offset, key_size);
969                         tmp = &unaligned;
970                 }
971
972                 ret = comp_keys(tmp, key);
973
974                 if (ret < 0)
975                         low = mid + 1;
976                 else if (ret > 0)
977                         high = mid;
978                 else {
979                         *slot = mid;
980                         return 0;
981                 }
982         }
983         *slot = low;
984         return 1;
985 }
986
987 static void root_add_used(struct btrfs_root *root, u32 size)
988 {
989         spin_lock(&root->accounting_lock);
990         btrfs_set_root_used(&root->root_item,
991                             btrfs_root_used(&root->root_item) + size);
992         spin_unlock(&root->accounting_lock);
993 }
994
995 static void root_sub_used(struct btrfs_root *root, u32 size)
996 {
997         spin_lock(&root->accounting_lock);
998         btrfs_set_root_used(&root->root_item,
999                             btrfs_root_used(&root->root_item) - size);
1000         spin_unlock(&root->accounting_lock);
1001 }
1002
1003 /* given a node and slot number, this reads the blocks it points to.  The
1004  * extent buffer is returned with a reference taken (but unlocked).
1005  */
1006 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1007                                            int slot)
1008 {
1009         int level = btrfs_header_level(parent);
1010         struct btrfs_tree_parent_check check = { 0 };
1011         struct extent_buffer *eb;
1012
1013         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1014                 return ERR_PTR(-ENOENT);
1015
1016         ASSERT(level);
1017
1018         check.level = level - 1;
1019         check.transid = btrfs_node_ptr_generation(parent, slot);
1020         check.owner_root = btrfs_header_owner(parent);
1021         check.has_first_key = true;
1022         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1023
1024         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1025                              &check);
1026         if (IS_ERR(eb))
1027                 return eb;
1028         if (!extent_buffer_uptodate(eb)) {
1029                 free_extent_buffer(eb);
1030                 return ERR_PTR(-EIO);
1031         }
1032
1033         return eb;
1034 }
1035
1036 /*
1037  * node level balancing, used to make sure nodes are in proper order for
1038  * item deletion.  We balance from the top down, so we have to make sure
1039  * that a deletion won't leave an node completely empty later on.
1040  */
1041 static noinline int balance_level(struct btrfs_trans_handle *trans,
1042                          struct btrfs_root *root,
1043                          struct btrfs_path *path, int level)
1044 {
1045         struct btrfs_fs_info *fs_info = root->fs_info;
1046         struct extent_buffer *right = NULL;
1047         struct extent_buffer *mid;
1048         struct extent_buffer *left = NULL;
1049         struct extent_buffer *parent = NULL;
1050         int ret = 0;
1051         int wret;
1052         int pslot;
1053         int orig_slot = path->slots[level];
1054         u64 orig_ptr;
1055
1056         ASSERT(level > 0);
1057
1058         mid = path->nodes[level];
1059
1060         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1061         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1062
1063         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1064
1065         if (level < BTRFS_MAX_LEVEL - 1) {
1066                 parent = path->nodes[level + 1];
1067                 pslot = path->slots[level + 1];
1068         }
1069
1070         /*
1071          * deal with the case where there is only one pointer in the root
1072          * by promoting the node below to a root
1073          */
1074         if (!parent) {
1075                 struct extent_buffer *child;
1076
1077                 if (btrfs_header_nritems(mid) != 1)
1078                         return 0;
1079
1080                 /* promote the child to a root */
1081                 child = btrfs_read_node_slot(mid, 0);
1082                 if (IS_ERR(child)) {
1083                         ret = PTR_ERR(child);
1084                         goto out;
1085                 }
1086
1087                 btrfs_tree_lock(child);
1088                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1089                                       BTRFS_NESTING_COW);
1090                 if (ret) {
1091                         btrfs_tree_unlock(child);
1092                         free_extent_buffer(child);
1093                         goto out;
1094                 }
1095
1096                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1097                 if (ret < 0) {
1098                         btrfs_tree_unlock(child);
1099                         free_extent_buffer(child);
1100                         btrfs_abort_transaction(trans, ret);
1101                         goto out;
1102                 }
1103                 rcu_assign_pointer(root->node, child);
1104
1105                 add_root_to_dirty_list(root);
1106                 btrfs_tree_unlock(child);
1107
1108                 path->locks[level] = 0;
1109                 path->nodes[level] = NULL;
1110                 btrfs_clear_buffer_dirty(trans, mid);
1111                 btrfs_tree_unlock(mid);
1112                 /* once for the path */
1113                 free_extent_buffer(mid);
1114
1115                 root_sub_used(root, mid->len);
1116                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1117                 /* once for the root ptr */
1118                 free_extent_buffer_stale(mid);
1119                 return 0;
1120         }
1121         if (btrfs_header_nritems(mid) >
1122             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1123                 return 0;
1124
1125         if (pslot) {
1126                 left = btrfs_read_node_slot(parent, pslot - 1);
1127                 if (IS_ERR(left)) {
1128                         ret = PTR_ERR(left);
1129                         left = NULL;
1130                         goto out;
1131                 }
1132
1133                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1134                 wret = btrfs_cow_block(trans, root, left,
1135                                        parent, pslot - 1, &left,
1136                                        BTRFS_NESTING_LEFT_COW);
1137                 if (wret) {
1138                         ret = wret;
1139                         goto out;
1140                 }
1141         }
1142
1143         if (pslot + 1 < btrfs_header_nritems(parent)) {
1144                 right = btrfs_read_node_slot(parent, pslot + 1);
1145                 if (IS_ERR(right)) {
1146                         ret = PTR_ERR(right);
1147                         right = NULL;
1148                         goto out;
1149                 }
1150
1151                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1152                 wret = btrfs_cow_block(trans, root, right,
1153                                        parent, pslot + 1, &right,
1154                                        BTRFS_NESTING_RIGHT_COW);
1155                 if (wret) {
1156                         ret = wret;
1157                         goto out;
1158                 }
1159         }
1160
1161         /* first, try to make some room in the middle buffer */
1162         if (left) {
1163                 orig_slot += btrfs_header_nritems(left);
1164                 wret = push_node_left(trans, left, mid, 1);
1165                 if (wret < 0)
1166                         ret = wret;
1167         }
1168
1169         /*
1170          * then try to empty the right most buffer into the middle
1171          */
1172         if (right) {
1173                 wret = push_node_left(trans, mid, right, 1);
1174                 if (wret < 0 && wret != -ENOSPC)
1175                         ret = wret;
1176                 if (btrfs_header_nritems(right) == 0) {
1177                         btrfs_clear_buffer_dirty(trans, right);
1178                         btrfs_tree_unlock(right);
1179                         ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1180                         if (ret < 0) {
1181                                 free_extent_buffer_stale(right);
1182                                 right = NULL;
1183                                 goto out;
1184                         }
1185                         root_sub_used(root, right->len);
1186                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1187                                               0, 1);
1188                         free_extent_buffer_stale(right);
1189                         right = NULL;
1190                 } else {
1191                         struct btrfs_disk_key right_key;
1192                         btrfs_node_key(right, &right_key, 0);
1193                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1194                                         BTRFS_MOD_LOG_KEY_REPLACE);
1195                         if (ret < 0) {
1196                                 btrfs_abort_transaction(trans, ret);
1197                                 goto out;
1198                         }
1199                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1200                         btrfs_mark_buffer_dirty(trans, parent);
1201                 }
1202         }
1203         if (btrfs_header_nritems(mid) == 1) {
1204                 /*
1205                  * we're not allowed to leave a node with one item in the
1206                  * tree during a delete.  A deletion from lower in the tree
1207                  * could try to delete the only pointer in this node.
1208                  * So, pull some keys from the left.
1209                  * There has to be a left pointer at this point because
1210                  * otherwise we would have pulled some pointers from the
1211                  * right
1212                  */
1213                 if (unlikely(!left)) {
1214                         btrfs_crit(fs_info,
1215 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1216                                    parent->start, btrfs_header_level(parent),
1217                                    mid->start, btrfs_root_id(root));
1218                         ret = -EUCLEAN;
1219                         btrfs_abort_transaction(trans, ret);
1220                         goto out;
1221                 }
1222                 wret = balance_node_right(trans, mid, left);
1223                 if (wret < 0) {
1224                         ret = wret;
1225                         goto out;
1226                 }
1227                 if (wret == 1) {
1228                         wret = push_node_left(trans, left, mid, 1);
1229                         if (wret < 0)
1230                                 ret = wret;
1231                 }
1232                 BUG_ON(wret == 1);
1233         }
1234         if (btrfs_header_nritems(mid) == 0) {
1235                 btrfs_clear_buffer_dirty(trans, mid);
1236                 btrfs_tree_unlock(mid);
1237                 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1238                 if (ret < 0) {
1239                         free_extent_buffer_stale(mid);
1240                         mid = NULL;
1241                         goto out;
1242                 }
1243                 root_sub_used(root, mid->len);
1244                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1245                 free_extent_buffer_stale(mid);
1246                 mid = NULL;
1247         } else {
1248                 /* update the parent key to reflect our changes */
1249                 struct btrfs_disk_key mid_key;
1250                 btrfs_node_key(mid, &mid_key, 0);
1251                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1252                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1253                 if (ret < 0) {
1254                         btrfs_abort_transaction(trans, ret);
1255                         goto out;
1256                 }
1257                 btrfs_set_node_key(parent, &mid_key, pslot);
1258                 btrfs_mark_buffer_dirty(trans, parent);
1259         }
1260
1261         /* update the path */
1262         if (left) {
1263                 if (btrfs_header_nritems(left) > orig_slot) {
1264                         atomic_inc(&left->refs);
1265                         /* left was locked after cow */
1266                         path->nodes[level] = left;
1267                         path->slots[level + 1] -= 1;
1268                         path->slots[level] = orig_slot;
1269                         if (mid) {
1270                                 btrfs_tree_unlock(mid);
1271                                 free_extent_buffer(mid);
1272                         }
1273                 } else {
1274                         orig_slot -= btrfs_header_nritems(left);
1275                         path->slots[level] = orig_slot;
1276                 }
1277         }
1278         /* double check we haven't messed things up */
1279         if (orig_ptr !=
1280             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1281                 BUG();
1282 out:
1283         if (right) {
1284                 btrfs_tree_unlock(right);
1285                 free_extent_buffer(right);
1286         }
1287         if (left) {
1288                 if (path->nodes[level] != left)
1289                         btrfs_tree_unlock(left);
1290                 free_extent_buffer(left);
1291         }
1292         return ret;
1293 }
1294
1295 /* Node balancing for insertion.  Here we only split or push nodes around
1296  * when they are completely full.  This is also done top down, so we
1297  * have to be pessimistic.
1298  */
1299 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1300                                           struct btrfs_root *root,
1301                                           struct btrfs_path *path, int level)
1302 {
1303         struct btrfs_fs_info *fs_info = root->fs_info;
1304         struct extent_buffer *right = NULL;
1305         struct extent_buffer *mid;
1306         struct extent_buffer *left = NULL;
1307         struct extent_buffer *parent = NULL;
1308         int ret = 0;
1309         int wret;
1310         int pslot;
1311         int orig_slot = path->slots[level];
1312
1313         if (level == 0)
1314                 return 1;
1315
1316         mid = path->nodes[level];
1317         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1318
1319         if (level < BTRFS_MAX_LEVEL - 1) {
1320                 parent = path->nodes[level + 1];
1321                 pslot = path->slots[level + 1];
1322         }
1323
1324         if (!parent)
1325                 return 1;
1326
1327         /* first, try to make some room in the middle buffer */
1328         if (pslot) {
1329                 u32 left_nr;
1330
1331                 left = btrfs_read_node_slot(parent, pslot - 1);
1332                 if (IS_ERR(left))
1333                         return PTR_ERR(left);
1334
1335                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1336
1337                 left_nr = btrfs_header_nritems(left);
1338                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1339                         wret = 1;
1340                 } else {
1341                         ret = btrfs_cow_block(trans, root, left, parent,
1342                                               pslot - 1, &left,
1343                                               BTRFS_NESTING_LEFT_COW);
1344                         if (ret)
1345                                 wret = 1;
1346                         else {
1347                                 wret = push_node_left(trans, left, mid, 0);
1348                         }
1349                 }
1350                 if (wret < 0)
1351                         ret = wret;
1352                 if (wret == 0) {
1353                         struct btrfs_disk_key disk_key;
1354                         orig_slot += left_nr;
1355                         btrfs_node_key(mid, &disk_key, 0);
1356                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1357                                         BTRFS_MOD_LOG_KEY_REPLACE);
1358                         if (ret < 0) {
1359                                 btrfs_tree_unlock(left);
1360                                 free_extent_buffer(left);
1361                                 btrfs_abort_transaction(trans, ret);
1362                                 return ret;
1363                         }
1364                         btrfs_set_node_key(parent, &disk_key, pslot);
1365                         btrfs_mark_buffer_dirty(trans, parent);
1366                         if (btrfs_header_nritems(left) > orig_slot) {
1367                                 path->nodes[level] = left;
1368                                 path->slots[level + 1] -= 1;
1369                                 path->slots[level] = orig_slot;
1370                                 btrfs_tree_unlock(mid);
1371                                 free_extent_buffer(mid);
1372                         } else {
1373                                 orig_slot -=
1374                                         btrfs_header_nritems(left);
1375                                 path->slots[level] = orig_slot;
1376                                 btrfs_tree_unlock(left);
1377                                 free_extent_buffer(left);
1378                         }
1379                         return 0;
1380                 }
1381                 btrfs_tree_unlock(left);
1382                 free_extent_buffer(left);
1383         }
1384
1385         /*
1386          * then try to empty the right most buffer into the middle
1387          */
1388         if (pslot + 1 < btrfs_header_nritems(parent)) {
1389                 u32 right_nr;
1390
1391                 right = btrfs_read_node_slot(parent, pslot + 1);
1392                 if (IS_ERR(right))
1393                         return PTR_ERR(right);
1394
1395                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1396
1397                 right_nr = btrfs_header_nritems(right);
1398                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1399                         wret = 1;
1400                 } else {
1401                         ret = btrfs_cow_block(trans, root, right,
1402                                               parent, pslot + 1,
1403                                               &right, BTRFS_NESTING_RIGHT_COW);
1404                         if (ret)
1405                                 wret = 1;
1406                         else {
1407                                 wret = balance_node_right(trans, right, mid);
1408                         }
1409                 }
1410                 if (wret < 0)
1411                         ret = wret;
1412                 if (wret == 0) {
1413                         struct btrfs_disk_key disk_key;
1414
1415                         btrfs_node_key(right, &disk_key, 0);
1416                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1417                                         BTRFS_MOD_LOG_KEY_REPLACE);
1418                         if (ret < 0) {
1419                                 btrfs_tree_unlock(right);
1420                                 free_extent_buffer(right);
1421                                 btrfs_abort_transaction(trans, ret);
1422                                 return ret;
1423                         }
1424                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1425                         btrfs_mark_buffer_dirty(trans, parent);
1426
1427                         if (btrfs_header_nritems(mid) <= orig_slot) {
1428                                 path->nodes[level] = right;
1429                                 path->slots[level + 1] += 1;
1430                                 path->slots[level] = orig_slot -
1431                                         btrfs_header_nritems(mid);
1432                                 btrfs_tree_unlock(mid);
1433                                 free_extent_buffer(mid);
1434                         } else {
1435                                 btrfs_tree_unlock(right);
1436                                 free_extent_buffer(right);
1437                         }
1438                         return 0;
1439                 }
1440                 btrfs_tree_unlock(right);
1441                 free_extent_buffer(right);
1442         }
1443         return 1;
1444 }
1445
1446 /*
1447  * readahead one full node of leaves, finding things that are close
1448  * to the block in 'slot', and triggering ra on them.
1449  */
1450 static void reada_for_search(struct btrfs_fs_info *fs_info,
1451                              struct btrfs_path *path,
1452                              int level, int slot, u64 objectid)
1453 {
1454         struct extent_buffer *node;
1455         struct btrfs_disk_key disk_key;
1456         u32 nritems;
1457         u64 search;
1458         u64 target;
1459         u64 nread = 0;
1460         u64 nread_max;
1461         u32 nr;
1462         u32 blocksize;
1463         u32 nscan = 0;
1464
1465         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1466                 return;
1467
1468         if (!path->nodes[level])
1469                 return;
1470
1471         node = path->nodes[level];
1472
1473         /*
1474          * Since the time between visiting leaves is much shorter than the time
1475          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1476          * much IO at once (possibly random).
1477          */
1478         if (path->reada == READA_FORWARD_ALWAYS) {
1479                 if (level > 1)
1480                         nread_max = node->fs_info->nodesize;
1481                 else
1482                         nread_max = SZ_128K;
1483         } else {
1484                 nread_max = SZ_64K;
1485         }
1486
1487         search = btrfs_node_blockptr(node, slot);
1488         blocksize = fs_info->nodesize;
1489         if (path->reada != READA_FORWARD_ALWAYS) {
1490                 struct extent_buffer *eb;
1491
1492                 eb = find_extent_buffer(fs_info, search);
1493                 if (eb) {
1494                         free_extent_buffer(eb);
1495                         return;
1496                 }
1497         }
1498
1499         target = search;
1500
1501         nritems = btrfs_header_nritems(node);
1502         nr = slot;
1503
1504         while (1) {
1505                 if (path->reada == READA_BACK) {
1506                         if (nr == 0)
1507                                 break;
1508                         nr--;
1509                 } else if (path->reada == READA_FORWARD ||
1510                            path->reada == READA_FORWARD_ALWAYS) {
1511                         nr++;
1512                         if (nr >= nritems)
1513                                 break;
1514                 }
1515                 if (path->reada == READA_BACK && objectid) {
1516                         btrfs_node_key(node, &disk_key, nr);
1517                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1518                                 break;
1519                 }
1520                 search = btrfs_node_blockptr(node, nr);
1521                 if (path->reada == READA_FORWARD_ALWAYS ||
1522                     (search <= target && target - search <= 65536) ||
1523                     (search > target && search - target <= 65536)) {
1524                         btrfs_readahead_node_child(node, nr);
1525                         nread += blocksize;
1526                 }
1527                 nscan++;
1528                 if (nread > nread_max || nscan > 32)
1529                         break;
1530         }
1531 }
1532
1533 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1534 {
1535         struct extent_buffer *parent;
1536         int slot;
1537         int nritems;
1538
1539         parent = path->nodes[level + 1];
1540         if (!parent)
1541                 return;
1542
1543         nritems = btrfs_header_nritems(parent);
1544         slot = path->slots[level + 1];
1545
1546         if (slot > 0)
1547                 btrfs_readahead_node_child(parent, slot - 1);
1548         if (slot + 1 < nritems)
1549                 btrfs_readahead_node_child(parent, slot + 1);
1550 }
1551
1552
1553 /*
1554  * when we walk down the tree, it is usually safe to unlock the higher layers
1555  * in the tree.  The exceptions are when our path goes through slot 0, because
1556  * operations on the tree might require changing key pointers higher up in the
1557  * tree.
1558  *
1559  * callers might also have set path->keep_locks, which tells this code to keep
1560  * the lock if the path points to the last slot in the block.  This is part of
1561  * walking through the tree, and selecting the next slot in the higher block.
1562  *
1563  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1564  * if lowest_unlock is 1, level 0 won't be unlocked
1565  */
1566 static noinline void unlock_up(struct btrfs_path *path, int level,
1567                                int lowest_unlock, int min_write_lock_level,
1568                                int *write_lock_level)
1569 {
1570         int i;
1571         int skip_level = level;
1572         bool check_skip = true;
1573
1574         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1575                 if (!path->nodes[i])
1576                         break;
1577                 if (!path->locks[i])
1578                         break;
1579
1580                 if (check_skip) {
1581                         if (path->slots[i] == 0) {
1582                                 skip_level = i + 1;
1583                                 continue;
1584                         }
1585
1586                         if (path->keep_locks) {
1587                                 u32 nritems;
1588
1589                                 nritems = btrfs_header_nritems(path->nodes[i]);
1590                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1591                                         skip_level = i + 1;
1592                                         continue;
1593                                 }
1594                         }
1595                 }
1596
1597                 if (i >= lowest_unlock && i > skip_level) {
1598                         check_skip = false;
1599                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1600                         path->locks[i] = 0;
1601                         if (write_lock_level &&
1602                             i > min_write_lock_level &&
1603                             i <= *write_lock_level) {
1604                                 *write_lock_level = i - 1;
1605                         }
1606                 }
1607         }
1608 }
1609
1610 /*
1611  * Helper function for btrfs_search_slot() and other functions that do a search
1612  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1613  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1614  * its pages from disk.
1615  *
1616  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1617  * whole btree search, starting again from the current root node.
1618  */
1619 static int
1620 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1621                       struct extent_buffer **eb_ret, int level, int slot,
1622                       const struct btrfs_key *key)
1623 {
1624         struct btrfs_fs_info *fs_info = root->fs_info;
1625         struct btrfs_tree_parent_check check = { 0 };
1626         u64 blocknr;
1627         u64 gen;
1628         struct extent_buffer *tmp;
1629         int ret;
1630         int parent_level;
1631         bool unlock_up;
1632
1633         unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1634         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1635         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1636         parent_level = btrfs_header_level(*eb_ret);
1637         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1638         check.has_first_key = true;
1639         check.level = parent_level - 1;
1640         check.transid = gen;
1641         check.owner_root = root->root_key.objectid;
1642
1643         /*
1644          * If we need to read an extent buffer from disk and we are holding locks
1645          * on upper level nodes, we unlock all the upper nodes before reading the
1646          * extent buffer, and then return -EAGAIN to the caller as it needs to
1647          * restart the search. We don't release the lock on the current level
1648          * because we need to walk this node to figure out which blocks to read.
1649          */
1650         tmp = find_extent_buffer(fs_info, blocknr);
1651         if (tmp) {
1652                 if (p->reada == READA_FORWARD_ALWAYS)
1653                         reada_for_search(fs_info, p, level, slot, key->objectid);
1654
1655                 /* first we do an atomic uptodate check */
1656                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1657                         /*
1658                          * Do extra check for first_key, eb can be stale due to
1659                          * being cached, read from scrub, or have multiple
1660                          * parents (shared tree blocks).
1661                          */
1662                         if (btrfs_verify_level_key(tmp,
1663                                         parent_level - 1, &check.first_key, gen)) {
1664                                 free_extent_buffer(tmp);
1665                                 return -EUCLEAN;
1666                         }
1667                         *eb_ret = tmp;
1668                         return 0;
1669                 }
1670
1671                 if (p->nowait) {
1672                         free_extent_buffer(tmp);
1673                         return -EAGAIN;
1674                 }
1675
1676                 if (unlock_up)
1677                         btrfs_unlock_up_safe(p, level + 1);
1678
1679                 /* now we're allowed to do a blocking uptodate check */
1680                 ret = btrfs_read_extent_buffer(tmp, &check);
1681                 if (ret) {
1682                         free_extent_buffer(tmp);
1683                         btrfs_release_path(p);
1684                         return -EIO;
1685                 }
1686                 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1687                         free_extent_buffer(tmp);
1688                         btrfs_release_path(p);
1689                         return -EUCLEAN;
1690                 }
1691
1692                 if (unlock_up)
1693                         ret = -EAGAIN;
1694
1695                 goto out;
1696         } else if (p->nowait) {
1697                 return -EAGAIN;
1698         }
1699
1700         if (unlock_up) {
1701                 btrfs_unlock_up_safe(p, level + 1);
1702                 ret = -EAGAIN;
1703         } else {
1704                 ret = 0;
1705         }
1706
1707         if (p->reada != READA_NONE)
1708                 reada_for_search(fs_info, p, level, slot, key->objectid);
1709
1710         tmp = read_tree_block(fs_info, blocknr, &check);
1711         if (IS_ERR(tmp)) {
1712                 btrfs_release_path(p);
1713                 return PTR_ERR(tmp);
1714         }
1715         /*
1716          * If the read above didn't mark this buffer up to date,
1717          * it will never end up being up to date.  Set ret to EIO now
1718          * and give up so that our caller doesn't loop forever
1719          * on our EAGAINs.
1720          */
1721         if (!extent_buffer_uptodate(tmp))
1722                 ret = -EIO;
1723
1724 out:
1725         if (ret == 0) {
1726                 *eb_ret = tmp;
1727         } else {
1728                 free_extent_buffer(tmp);
1729                 btrfs_release_path(p);
1730         }
1731
1732         return ret;
1733 }
1734
1735 /*
1736  * helper function for btrfs_search_slot.  This does all of the checks
1737  * for node-level blocks and does any balancing required based on
1738  * the ins_len.
1739  *
1740  * If no extra work was required, zero is returned.  If we had to
1741  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1742  * start over
1743  */
1744 static int
1745 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1746                        struct btrfs_root *root, struct btrfs_path *p,
1747                        struct extent_buffer *b, int level, int ins_len,
1748                        int *write_lock_level)
1749 {
1750         struct btrfs_fs_info *fs_info = root->fs_info;
1751         int ret = 0;
1752
1753         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1754             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1755
1756                 if (*write_lock_level < level + 1) {
1757                         *write_lock_level = level + 1;
1758                         btrfs_release_path(p);
1759                         return -EAGAIN;
1760                 }
1761
1762                 reada_for_balance(p, level);
1763                 ret = split_node(trans, root, p, level);
1764
1765                 b = p->nodes[level];
1766         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1767                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1768
1769                 if (*write_lock_level < level + 1) {
1770                         *write_lock_level = level + 1;
1771                         btrfs_release_path(p);
1772                         return -EAGAIN;
1773                 }
1774
1775                 reada_for_balance(p, level);
1776                 ret = balance_level(trans, root, p, level);
1777                 if (ret)
1778                         return ret;
1779
1780                 b = p->nodes[level];
1781                 if (!b) {
1782                         btrfs_release_path(p);
1783                         return -EAGAIN;
1784                 }
1785                 BUG_ON(btrfs_header_nritems(b) == 1);
1786         }
1787         return ret;
1788 }
1789
1790 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1791                 u64 iobjectid, u64 ioff, u8 key_type,
1792                 struct btrfs_key *found_key)
1793 {
1794         int ret;
1795         struct btrfs_key key;
1796         struct extent_buffer *eb;
1797
1798         ASSERT(path);
1799         ASSERT(found_key);
1800
1801         key.type = key_type;
1802         key.objectid = iobjectid;
1803         key.offset = ioff;
1804
1805         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1806         if (ret < 0)
1807                 return ret;
1808
1809         eb = path->nodes[0];
1810         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1811                 ret = btrfs_next_leaf(fs_root, path);
1812                 if (ret)
1813                         return ret;
1814                 eb = path->nodes[0];
1815         }
1816
1817         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1818         if (found_key->type != key.type ||
1819                         found_key->objectid != key.objectid)
1820                 return 1;
1821
1822         return 0;
1823 }
1824
1825 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1826                                                         struct btrfs_path *p,
1827                                                         int write_lock_level)
1828 {
1829         struct extent_buffer *b;
1830         int root_lock = 0;
1831         int level = 0;
1832
1833         if (p->search_commit_root) {
1834                 b = root->commit_root;
1835                 atomic_inc(&b->refs);
1836                 level = btrfs_header_level(b);
1837                 /*
1838                  * Ensure that all callers have set skip_locking when
1839                  * p->search_commit_root = 1.
1840                  */
1841                 ASSERT(p->skip_locking == 1);
1842
1843                 goto out;
1844         }
1845
1846         if (p->skip_locking) {
1847                 b = btrfs_root_node(root);
1848                 level = btrfs_header_level(b);
1849                 goto out;
1850         }
1851
1852         /* We try very hard to do read locks on the root */
1853         root_lock = BTRFS_READ_LOCK;
1854
1855         /*
1856          * If the level is set to maximum, we can skip trying to get the read
1857          * lock.
1858          */
1859         if (write_lock_level < BTRFS_MAX_LEVEL) {
1860                 /*
1861                  * We don't know the level of the root node until we actually
1862                  * have it read locked
1863                  */
1864                 if (p->nowait) {
1865                         b = btrfs_try_read_lock_root_node(root);
1866                         if (IS_ERR(b))
1867                                 return b;
1868                 } else {
1869                         b = btrfs_read_lock_root_node(root);
1870                 }
1871                 level = btrfs_header_level(b);
1872                 if (level > write_lock_level)
1873                         goto out;
1874
1875                 /* Whoops, must trade for write lock */
1876                 btrfs_tree_read_unlock(b);
1877                 free_extent_buffer(b);
1878         }
1879
1880         b = btrfs_lock_root_node(root);
1881         root_lock = BTRFS_WRITE_LOCK;
1882
1883         /* The level might have changed, check again */
1884         level = btrfs_header_level(b);
1885
1886 out:
1887         /*
1888          * The root may have failed to write out at some point, and thus is no
1889          * longer valid, return an error in this case.
1890          */
1891         if (!extent_buffer_uptodate(b)) {
1892                 if (root_lock)
1893                         btrfs_tree_unlock_rw(b, root_lock);
1894                 free_extent_buffer(b);
1895                 return ERR_PTR(-EIO);
1896         }
1897
1898         p->nodes[level] = b;
1899         if (!p->skip_locking)
1900                 p->locks[level] = root_lock;
1901         /*
1902          * Callers are responsible for dropping b's references.
1903          */
1904         return b;
1905 }
1906
1907 /*
1908  * Replace the extent buffer at the lowest level of the path with a cloned
1909  * version. The purpose is to be able to use it safely, after releasing the
1910  * commit root semaphore, even if relocation is happening in parallel, the
1911  * transaction used for relocation is committed and the extent buffer is
1912  * reallocated in the next transaction.
1913  *
1914  * This is used in a context where the caller does not prevent transaction
1915  * commits from happening, either by holding a transaction handle or holding
1916  * some lock, while it's doing searches through a commit root.
1917  * At the moment it's only used for send operations.
1918  */
1919 static int finish_need_commit_sem_search(struct btrfs_path *path)
1920 {
1921         const int i = path->lowest_level;
1922         const int slot = path->slots[i];
1923         struct extent_buffer *lowest = path->nodes[i];
1924         struct extent_buffer *clone;
1925
1926         ASSERT(path->need_commit_sem);
1927
1928         if (!lowest)
1929                 return 0;
1930
1931         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1932
1933         clone = btrfs_clone_extent_buffer(lowest);
1934         if (!clone)
1935                 return -ENOMEM;
1936
1937         btrfs_release_path(path);
1938         path->nodes[i] = clone;
1939         path->slots[i] = slot;
1940
1941         return 0;
1942 }
1943
1944 static inline int search_for_key_slot(struct extent_buffer *eb,
1945                                       int search_low_slot,
1946                                       const struct btrfs_key *key,
1947                                       int prev_cmp,
1948                                       int *slot)
1949 {
1950         /*
1951          * If a previous call to btrfs_bin_search() on a parent node returned an
1952          * exact match (prev_cmp == 0), we can safely assume the target key will
1953          * always be at slot 0 on lower levels, since each key pointer
1954          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1955          * subtree it points to. Thus we can skip searching lower levels.
1956          */
1957         if (prev_cmp == 0) {
1958                 *slot = 0;
1959                 return 0;
1960         }
1961
1962         return btrfs_bin_search(eb, search_low_slot, key, slot);
1963 }
1964
1965 static int search_leaf(struct btrfs_trans_handle *trans,
1966                        struct btrfs_root *root,
1967                        const struct btrfs_key *key,
1968                        struct btrfs_path *path,
1969                        int ins_len,
1970                        int prev_cmp)
1971 {
1972         struct extent_buffer *leaf = path->nodes[0];
1973         int leaf_free_space = -1;
1974         int search_low_slot = 0;
1975         int ret;
1976         bool do_bin_search = true;
1977
1978         /*
1979          * If we are doing an insertion, the leaf has enough free space and the
1980          * destination slot for the key is not slot 0, then we can unlock our
1981          * write lock on the parent, and any other upper nodes, before doing the
1982          * binary search on the leaf (with search_for_key_slot()), allowing other
1983          * tasks to lock the parent and any other upper nodes.
1984          */
1985         if (ins_len > 0) {
1986                 /*
1987                  * Cache the leaf free space, since we will need it later and it
1988                  * will not change until then.
1989                  */
1990                 leaf_free_space = btrfs_leaf_free_space(leaf);
1991
1992                 /*
1993                  * !path->locks[1] means we have a single node tree, the leaf is
1994                  * the root of the tree.
1995                  */
1996                 if (path->locks[1] && leaf_free_space >= ins_len) {
1997                         struct btrfs_disk_key first_key;
1998
1999                         ASSERT(btrfs_header_nritems(leaf) > 0);
2000                         btrfs_item_key(leaf, &first_key, 0);
2001
2002                         /*
2003                          * Doing the extra comparison with the first key is cheap,
2004                          * taking into account that the first key is very likely
2005                          * already in a cache line because it immediately follows
2006                          * the extent buffer's header and we have recently accessed
2007                          * the header's level field.
2008                          */
2009                         ret = comp_keys(&first_key, key);
2010                         if (ret < 0) {
2011                                 /*
2012                                  * The first key is smaller than the key we want
2013                                  * to insert, so we are safe to unlock all upper
2014                                  * nodes and we have to do the binary search.
2015                                  *
2016                                  * We do use btrfs_unlock_up_safe() and not
2017                                  * unlock_up() because the later does not unlock
2018                                  * nodes with a slot of 0 - we can safely unlock
2019                                  * any node even if its slot is 0 since in this
2020                                  * case the key does not end up at slot 0 of the
2021                                  * leaf and there's no need to split the leaf.
2022                                  */
2023                                 btrfs_unlock_up_safe(path, 1);
2024                                 search_low_slot = 1;
2025                         } else {
2026                                 /*
2027                                  * The first key is >= then the key we want to
2028                                  * insert, so we can skip the binary search as
2029                                  * the target key will be at slot 0.
2030                                  *
2031                                  * We can not unlock upper nodes when the key is
2032                                  * less than the first key, because we will need
2033                                  * to update the key at slot 0 of the parent node
2034                                  * and possibly of other upper nodes too.
2035                                  * If the key matches the first key, then we can
2036                                  * unlock all the upper nodes, using
2037                                  * btrfs_unlock_up_safe() instead of unlock_up()
2038                                  * as stated above.
2039                                  */
2040                                 if (ret == 0)
2041                                         btrfs_unlock_up_safe(path, 1);
2042                                 /*
2043                                  * ret is already 0 or 1, matching the result of
2044                                  * a btrfs_bin_search() call, so there is no need
2045                                  * to adjust it.
2046                                  */
2047                                 do_bin_search = false;
2048                                 path->slots[0] = 0;
2049                         }
2050                 }
2051         }
2052
2053         if (do_bin_search) {
2054                 ret = search_for_key_slot(leaf, search_low_slot, key,
2055                                           prev_cmp, &path->slots[0]);
2056                 if (ret < 0)
2057                         return ret;
2058         }
2059
2060         if (ins_len > 0) {
2061                 /*
2062                  * Item key already exists. In this case, if we are allowed to
2063                  * insert the item (for example, in dir_item case, item key
2064                  * collision is allowed), it will be merged with the original
2065                  * item. Only the item size grows, no new btrfs item will be
2066                  * added. If search_for_extension is not set, ins_len already
2067                  * accounts the size btrfs_item, deduct it here so leaf space
2068                  * check will be correct.
2069                  */
2070                 if (ret == 0 && !path->search_for_extension) {
2071                         ASSERT(ins_len >= sizeof(struct btrfs_item));
2072                         ins_len -= sizeof(struct btrfs_item);
2073                 }
2074
2075                 ASSERT(leaf_free_space >= 0);
2076
2077                 if (leaf_free_space < ins_len) {
2078                         int err;
2079
2080                         err = split_leaf(trans, root, key, path, ins_len,
2081                                          (ret == 0));
2082                         ASSERT(err <= 0);
2083                         if (WARN_ON(err > 0))
2084                                 err = -EUCLEAN;
2085                         if (err)
2086                                 ret = err;
2087                 }
2088         }
2089
2090         return ret;
2091 }
2092
2093 /*
2094  * btrfs_search_slot - look for a key in a tree and perform necessary
2095  * modifications to preserve tree invariants.
2096  *
2097  * @trans:      Handle of transaction, used when modifying the tree
2098  * @p:          Holds all btree nodes along the search path
2099  * @root:       The root node of the tree
2100  * @key:        The key we are looking for
2101  * @ins_len:    Indicates purpose of search:
2102  *              >0  for inserts it's size of item inserted (*)
2103  *              <0  for deletions
2104  *               0  for plain searches, not modifying the tree
2105  *
2106  *              (*) If size of item inserted doesn't include
2107  *              sizeof(struct btrfs_item), then p->search_for_extension must
2108  *              be set.
2109  * @cow:        boolean should CoW operations be performed. Must always be 1
2110  *              when modifying the tree.
2111  *
2112  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2113  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2114  *
2115  * If @key is found, 0 is returned and you can find the item in the leaf level
2116  * of the path (level 0)
2117  *
2118  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2119  * points to the slot where it should be inserted
2120  *
2121  * If an error is encountered while searching the tree a negative error number
2122  * is returned
2123  */
2124 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2125                       const struct btrfs_key *key, struct btrfs_path *p,
2126                       int ins_len, int cow)
2127 {
2128         struct btrfs_fs_info *fs_info = root->fs_info;
2129         struct extent_buffer *b;
2130         int slot;
2131         int ret;
2132         int err;
2133         int level;
2134         int lowest_unlock = 1;
2135         /* everything at write_lock_level or lower must be write locked */
2136         int write_lock_level = 0;
2137         u8 lowest_level = 0;
2138         int min_write_lock_level;
2139         int prev_cmp;
2140
2141         might_sleep();
2142
2143         lowest_level = p->lowest_level;
2144         WARN_ON(lowest_level && ins_len > 0);
2145         WARN_ON(p->nodes[0] != NULL);
2146         BUG_ON(!cow && ins_len);
2147
2148         /*
2149          * For now only allow nowait for read only operations.  There's no
2150          * strict reason why we can't, we just only need it for reads so it's
2151          * only implemented for reads.
2152          */
2153         ASSERT(!p->nowait || !cow);
2154
2155         if (ins_len < 0) {
2156                 lowest_unlock = 2;
2157
2158                 /* when we are removing items, we might have to go up to level
2159                  * two as we update tree pointers  Make sure we keep write
2160                  * for those levels as well
2161                  */
2162                 write_lock_level = 2;
2163         } else if (ins_len > 0) {
2164                 /*
2165                  * for inserting items, make sure we have a write lock on
2166                  * level 1 so we can update keys
2167                  */
2168                 write_lock_level = 1;
2169         }
2170
2171         if (!cow)
2172                 write_lock_level = -1;
2173
2174         if (cow && (p->keep_locks || p->lowest_level))
2175                 write_lock_level = BTRFS_MAX_LEVEL;
2176
2177         min_write_lock_level = write_lock_level;
2178
2179         if (p->need_commit_sem) {
2180                 ASSERT(p->search_commit_root);
2181                 if (p->nowait) {
2182                         if (!down_read_trylock(&fs_info->commit_root_sem))
2183                                 return -EAGAIN;
2184                 } else {
2185                         down_read(&fs_info->commit_root_sem);
2186                 }
2187         }
2188
2189 again:
2190         prev_cmp = -1;
2191         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2192         if (IS_ERR(b)) {
2193                 ret = PTR_ERR(b);
2194                 goto done;
2195         }
2196
2197         while (b) {
2198                 int dec = 0;
2199
2200                 level = btrfs_header_level(b);
2201
2202                 if (cow) {
2203                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2204
2205                         /*
2206                          * if we don't really need to cow this block
2207                          * then we don't want to set the path blocking,
2208                          * so we test it here
2209                          */
2210                         if (!should_cow_block(trans, root, b))
2211                                 goto cow_done;
2212
2213                         /*
2214                          * must have write locks on this node and the
2215                          * parent
2216                          */
2217                         if (level > write_lock_level ||
2218                             (level + 1 > write_lock_level &&
2219                             level + 1 < BTRFS_MAX_LEVEL &&
2220                             p->nodes[level + 1])) {
2221                                 write_lock_level = level + 1;
2222                                 btrfs_release_path(p);
2223                                 goto again;
2224                         }
2225
2226                         if (last_level)
2227                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2228                                                       &b,
2229                                                       BTRFS_NESTING_COW);
2230                         else
2231                                 err = btrfs_cow_block(trans, root, b,
2232                                                       p->nodes[level + 1],
2233                                                       p->slots[level + 1], &b,
2234                                                       BTRFS_NESTING_COW);
2235                         if (err) {
2236                                 ret = err;
2237                                 goto done;
2238                         }
2239                 }
2240 cow_done:
2241                 p->nodes[level] = b;
2242
2243                 /*
2244                  * we have a lock on b and as long as we aren't changing
2245                  * the tree, there is no way to for the items in b to change.
2246                  * It is safe to drop the lock on our parent before we
2247                  * go through the expensive btree search on b.
2248                  *
2249                  * If we're inserting or deleting (ins_len != 0), then we might
2250                  * be changing slot zero, which may require changing the parent.
2251                  * So, we can't drop the lock until after we know which slot
2252                  * we're operating on.
2253                  */
2254                 if (!ins_len && !p->keep_locks) {
2255                         int u = level + 1;
2256
2257                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2258                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2259                                 p->locks[u] = 0;
2260                         }
2261                 }
2262
2263                 if (level == 0) {
2264                         if (ins_len > 0)
2265                                 ASSERT(write_lock_level >= 1);
2266
2267                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2268                         if (!p->search_for_split)
2269                                 unlock_up(p, level, lowest_unlock,
2270                                           min_write_lock_level, NULL);
2271                         goto done;
2272                 }
2273
2274                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2275                 if (ret < 0)
2276                         goto done;
2277                 prev_cmp = ret;
2278
2279                 if (ret && slot > 0) {
2280                         dec = 1;
2281                         slot--;
2282                 }
2283                 p->slots[level] = slot;
2284                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2285                                              &write_lock_level);
2286                 if (err == -EAGAIN)
2287                         goto again;
2288                 if (err) {
2289                         ret = err;
2290                         goto done;
2291                 }
2292                 b = p->nodes[level];
2293                 slot = p->slots[level];
2294
2295                 /*
2296                  * Slot 0 is special, if we change the key we have to update
2297                  * the parent pointer which means we must have a write lock on
2298                  * the parent
2299                  */
2300                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2301                         write_lock_level = level + 1;
2302                         btrfs_release_path(p);
2303                         goto again;
2304                 }
2305
2306                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2307                           &write_lock_level);
2308
2309                 if (level == lowest_level) {
2310                         if (dec)
2311                                 p->slots[level]++;
2312                         goto done;
2313                 }
2314
2315                 err = read_block_for_search(root, p, &b, level, slot, key);
2316                 if (err == -EAGAIN)
2317                         goto again;
2318                 if (err) {
2319                         ret = err;
2320                         goto done;
2321                 }
2322
2323                 if (!p->skip_locking) {
2324                         level = btrfs_header_level(b);
2325
2326                         btrfs_maybe_reset_lockdep_class(root, b);
2327
2328                         if (level <= write_lock_level) {
2329                                 btrfs_tree_lock(b);
2330                                 p->locks[level] = BTRFS_WRITE_LOCK;
2331                         } else {
2332                                 if (p->nowait) {
2333                                         if (!btrfs_try_tree_read_lock(b)) {
2334                                                 free_extent_buffer(b);
2335                                                 ret = -EAGAIN;
2336                                                 goto done;
2337                                         }
2338                                 } else {
2339                                         btrfs_tree_read_lock(b);
2340                                 }
2341                                 p->locks[level] = BTRFS_READ_LOCK;
2342                         }
2343                         p->nodes[level] = b;
2344                 }
2345         }
2346         ret = 1;
2347 done:
2348         if (ret < 0 && !p->skip_release_on_error)
2349                 btrfs_release_path(p);
2350
2351         if (p->need_commit_sem) {
2352                 int ret2;
2353
2354                 ret2 = finish_need_commit_sem_search(p);
2355                 up_read(&fs_info->commit_root_sem);
2356                 if (ret2)
2357                         ret = ret2;
2358         }
2359
2360         return ret;
2361 }
2362 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2363
2364 /*
2365  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2366  * current state of the tree together with the operations recorded in the tree
2367  * modification log to search for the key in a previous version of this tree, as
2368  * denoted by the time_seq parameter.
2369  *
2370  * Naturally, there is no support for insert, delete or cow operations.
2371  *
2372  * The resulting path and return value will be set up as if we called
2373  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2374  */
2375 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2376                           struct btrfs_path *p, u64 time_seq)
2377 {
2378         struct btrfs_fs_info *fs_info = root->fs_info;
2379         struct extent_buffer *b;
2380         int slot;
2381         int ret;
2382         int err;
2383         int level;
2384         int lowest_unlock = 1;
2385         u8 lowest_level = 0;
2386
2387         lowest_level = p->lowest_level;
2388         WARN_ON(p->nodes[0] != NULL);
2389         ASSERT(!p->nowait);
2390
2391         if (p->search_commit_root) {
2392                 BUG_ON(time_seq);
2393                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2394         }
2395
2396 again:
2397         b = btrfs_get_old_root(root, time_seq);
2398         if (!b) {
2399                 ret = -EIO;
2400                 goto done;
2401         }
2402         level = btrfs_header_level(b);
2403         p->locks[level] = BTRFS_READ_LOCK;
2404
2405         while (b) {
2406                 int dec = 0;
2407
2408                 level = btrfs_header_level(b);
2409                 p->nodes[level] = b;
2410
2411                 /*
2412                  * we have a lock on b and as long as we aren't changing
2413                  * the tree, there is no way to for the items in b to change.
2414                  * It is safe to drop the lock on our parent before we
2415                  * go through the expensive btree search on b.
2416                  */
2417                 btrfs_unlock_up_safe(p, level + 1);
2418
2419                 ret = btrfs_bin_search(b, 0, key, &slot);
2420                 if (ret < 0)
2421                         goto done;
2422
2423                 if (level == 0) {
2424                         p->slots[level] = slot;
2425                         unlock_up(p, level, lowest_unlock, 0, NULL);
2426                         goto done;
2427                 }
2428
2429                 if (ret && slot > 0) {
2430                         dec = 1;
2431                         slot--;
2432                 }
2433                 p->slots[level] = slot;
2434                 unlock_up(p, level, lowest_unlock, 0, NULL);
2435
2436                 if (level == lowest_level) {
2437                         if (dec)
2438                                 p->slots[level]++;
2439                         goto done;
2440                 }
2441
2442                 err = read_block_for_search(root, p, &b, level, slot, key);
2443                 if (err == -EAGAIN)
2444                         goto again;
2445                 if (err) {
2446                         ret = err;
2447                         goto done;
2448                 }
2449
2450                 level = btrfs_header_level(b);
2451                 btrfs_tree_read_lock(b);
2452                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2453                 if (!b) {
2454                         ret = -ENOMEM;
2455                         goto done;
2456                 }
2457                 p->locks[level] = BTRFS_READ_LOCK;
2458                 p->nodes[level] = b;
2459         }
2460         ret = 1;
2461 done:
2462         if (ret < 0)
2463                 btrfs_release_path(p);
2464
2465         return ret;
2466 }
2467
2468 /*
2469  * Search the tree again to find a leaf with smaller keys.
2470  * Returns 0 if it found something.
2471  * Returns 1 if there are no smaller keys.
2472  * Returns < 0 on error.
2473  *
2474  * This may release the path, and so you may lose any locks held at the
2475  * time you call it.
2476  */
2477 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2478 {
2479         struct btrfs_key key;
2480         struct btrfs_key orig_key;
2481         struct btrfs_disk_key found_key;
2482         int ret;
2483
2484         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2485         orig_key = key;
2486
2487         if (key.offset > 0) {
2488                 key.offset--;
2489         } else if (key.type > 0) {
2490                 key.type--;
2491                 key.offset = (u64)-1;
2492         } else if (key.objectid > 0) {
2493                 key.objectid--;
2494                 key.type = (u8)-1;
2495                 key.offset = (u64)-1;
2496         } else {
2497                 return 1;
2498         }
2499
2500         btrfs_release_path(path);
2501         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502         if (ret <= 0)
2503                 return ret;
2504
2505         /*
2506          * Previous key not found. Even if we were at slot 0 of the leaf we had
2507          * before releasing the path and calling btrfs_search_slot(), we now may
2508          * be in a slot pointing to the same original key - this can happen if
2509          * after we released the path, one of more items were moved from a
2510          * sibling leaf into the front of the leaf we had due to an insertion
2511          * (see push_leaf_right()).
2512          * If we hit this case and our slot is > 0 and just decrement the slot
2513          * so that the caller does not process the same key again, which may or
2514          * may not break the caller, depending on its logic.
2515          */
2516         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2517                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2518                 ret = comp_keys(&found_key, &orig_key);
2519                 if (ret == 0) {
2520                         if (path->slots[0] > 0) {
2521                                 path->slots[0]--;
2522                                 return 0;
2523                         }
2524                         /*
2525                          * At slot 0, same key as before, it means orig_key is
2526                          * the lowest, leftmost, key in the tree. We're done.
2527                          */
2528                         return 1;
2529                 }
2530         }
2531
2532         btrfs_item_key(path->nodes[0], &found_key, 0);
2533         ret = comp_keys(&found_key, &key);
2534         /*
2535          * We might have had an item with the previous key in the tree right
2536          * before we released our path. And after we released our path, that
2537          * item might have been pushed to the first slot (0) of the leaf we
2538          * were holding due to a tree balance. Alternatively, an item with the
2539          * previous key can exist as the only element of a leaf (big fat item).
2540          * Therefore account for these 2 cases, so that our callers (like
2541          * btrfs_previous_item) don't miss an existing item with a key matching
2542          * the previous key we computed above.
2543          */
2544         if (ret <= 0)
2545                 return 0;
2546         return 1;
2547 }
2548
2549 /*
2550  * helper to use instead of search slot if no exact match is needed but
2551  * instead the next or previous item should be returned.
2552  * When find_higher is true, the next higher item is returned, the next lower
2553  * otherwise.
2554  * When return_any and find_higher are both true, and no higher item is found,
2555  * return the next lower instead.
2556  * When return_any is true and find_higher is false, and no lower item is found,
2557  * return the next higher instead.
2558  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2559  * < 0 on error
2560  */
2561 int btrfs_search_slot_for_read(struct btrfs_root *root,
2562                                const struct btrfs_key *key,
2563                                struct btrfs_path *p, int find_higher,
2564                                int return_any)
2565 {
2566         int ret;
2567         struct extent_buffer *leaf;
2568
2569 again:
2570         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2571         if (ret <= 0)
2572                 return ret;
2573         /*
2574          * a return value of 1 means the path is at the position where the
2575          * item should be inserted. Normally this is the next bigger item,
2576          * but in case the previous item is the last in a leaf, path points
2577          * to the first free slot in the previous leaf, i.e. at an invalid
2578          * item.
2579          */
2580         leaf = p->nodes[0];
2581
2582         if (find_higher) {
2583                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2584                         ret = btrfs_next_leaf(root, p);
2585                         if (ret <= 0)
2586                                 return ret;
2587                         if (!return_any)
2588                                 return 1;
2589                         /*
2590                          * no higher item found, return the next
2591                          * lower instead
2592                          */
2593                         return_any = 0;
2594                         find_higher = 0;
2595                         btrfs_release_path(p);
2596                         goto again;
2597                 }
2598         } else {
2599                 if (p->slots[0] == 0) {
2600                         ret = btrfs_prev_leaf(root, p);
2601                         if (ret < 0)
2602                                 return ret;
2603                         if (!ret) {
2604                                 leaf = p->nodes[0];
2605                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2606                                         p->slots[0]--;
2607                                 return 0;
2608                         }
2609                         if (!return_any)
2610                                 return 1;
2611                         /*
2612                          * no lower item found, return the next
2613                          * higher instead
2614                          */
2615                         return_any = 0;
2616                         find_higher = 1;
2617                         btrfs_release_path(p);
2618                         goto again;
2619                 } else {
2620                         --p->slots[0];
2621                 }
2622         }
2623         return 0;
2624 }
2625
2626 /*
2627  * Execute search and call btrfs_previous_item to traverse backwards if the item
2628  * was not found.
2629  *
2630  * Return 0 if found, 1 if not found and < 0 if error.
2631  */
2632 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2633                            struct btrfs_path *path)
2634 {
2635         int ret;
2636
2637         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2638         if (ret > 0)
2639                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2640
2641         if (ret == 0)
2642                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2643
2644         return ret;
2645 }
2646
2647 /*
2648  * Search for a valid slot for the given path.
2649  *
2650  * @root:       The root node of the tree.
2651  * @key:        Will contain a valid item if found.
2652  * @path:       The starting point to validate the slot.
2653  *
2654  * Return: 0  if the item is valid
2655  *         1  if not found
2656  *         <0 if error.
2657  */
2658 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2659                               struct btrfs_path *path)
2660 {
2661         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2662                 int ret;
2663
2664                 ret = btrfs_next_leaf(root, path);
2665                 if (ret)
2666                         return ret;
2667         }
2668
2669         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2670         return 0;
2671 }
2672
2673 /*
2674  * adjust the pointers going up the tree, starting at level
2675  * making sure the right key of each node is points to 'key'.
2676  * This is used after shifting pointers to the left, so it stops
2677  * fixing up pointers when a given leaf/node is not in slot 0 of the
2678  * higher levels
2679  *
2680  */
2681 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2682                            struct btrfs_path *path,
2683                            struct btrfs_disk_key *key, int level)
2684 {
2685         int i;
2686         struct extent_buffer *t;
2687         int ret;
2688
2689         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2690                 int tslot = path->slots[i];
2691
2692                 if (!path->nodes[i])
2693                         break;
2694                 t = path->nodes[i];
2695                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2696                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2697                 BUG_ON(ret < 0);
2698                 btrfs_set_node_key(t, key, tslot);
2699                 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2700                 if (tslot != 0)
2701                         break;
2702         }
2703 }
2704
2705 /*
2706  * update item key.
2707  *
2708  * This function isn't completely safe. It's the caller's responsibility
2709  * that the new key won't break the order
2710  */
2711 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2712                              struct btrfs_path *path,
2713                              const struct btrfs_key *new_key)
2714 {
2715         struct btrfs_fs_info *fs_info = trans->fs_info;
2716         struct btrfs_disk_key disk_key;
2717         struct extent_buffer *eb;
2718         int slot;
2719
2720         eb = path->nodes[0];
2721         slot = path->slots[0];
2722         if (slot > 0) {
2723                 btrfs_item_key(eb, &disk_key, slot - 1);
2724                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2725                         btrfs_print_leaf(eb);
2726                         btrfs_crit(fs_info,
2727                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2728                                    slot, btrfs_disk_key_objectid(&disk_key),
2729                                    btrfs_disk_key_type(&disk_key),
2730                                    btrfs_disk_key_offset(&disk_key),
2731                                    new_key->objectid, new_key->type,
2732                                    new_key->offset);
2733                         BUG();
2734                 }
2735         }
2736         if (slot < btrfs_header_nritems(eb) - 1) {
2737                 btrfs_item_key(eb, &disk_key, slot + 1);
2738                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2739                         btrfs_print_leaf(eb);
2740                         btrfs_crit(fs_info,
2741                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2742                                    slot, btrfs_disk_key_objectid(&disk_key),
2743                                    btrfs_disk_key_type(&disk_key),
2744                                    btrfs_disk_key_offset(&disk_key),
2745                                    new_key->objectid, new_key->type,
2746                                    new_key->offset);
2747                         BUG();
2748                 }
2749         }
2750
2751         btrfs_cpu_key_to_disk(&disk_key, new_key);
2752         btrfs_set_item_key(eb, &disk_key, slot);
2753         btrfs_mark_buffer_dirty(trans, eb);
2754         if (slot == 0)
2755                 fixup_low_keys(trans, path, &disk_key, 1);
2756 }
2757
2758 /*
2759  * Check key order of two sibling extent buffers.
2760  *
2761  * Return true if something is wrong.
2762  * Return false if everything is fine.
2763  *
2764  * Tree-checker only works inside one tree block, thus the following
2765  * corruption can not be detected by tree-checker:
2766  *
2767  * Leaf @left                   | Leaf @right
2768  * --------------------------------------------------------------
2769  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2770  *
2771  * Key f6 in leaf @left itself is valid, but not valid when the next
2772  * key in leaf @right is 7.
2773  * This can only be checked at tree block merge time.
2774  * And since tree checker has ensured all key order in each tree block
2775  * is correct, we only need to bother the last key of @left and the first
2776  * key of @right.
2777  */
2778 static bool check_sibling_keys(struct extent_buffer *left,
2779                                struct extent_buffer *right)
2780 {
2781         struct btrfs_key left_last;
2782         struct btrfs_key right_first;
2783         int level = btrfs_header_level(left);
2784         int nr_left = btrfs_header_nritems(left);
2785         int nr_right = btrfs_header_nritems(right);
2786
2787         /* No key to check in one of the tree blocks */
2788         if (!nr_left || !nr_right)
2789                 return false;
2790
2791         if (level) {
2792                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2793                 btrfs_node_key_to_cpu(right, &right_first, 0);
2794         } else {
2795                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2796                 btrfs_item_key_to_cpu(right, &right_first, 0);
2797         }
2798
2799         if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2800                 btrfs_crit(left->fs_info, "left extent buffer:");
2801                 btrfs_print_tree(left, false);
2802                 btrfs_crit(left->fs_info, "right extent buffer:");
2803                 btrfs_print_tree(right, false);
2804                 btrfs_crit(left->fs_info,
2805 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2806                            left_last.objectid, left_last.type,
2807                            left_last.offset, right_first.objectid,
2808                            right_first.type, right_first.offset);
2809                 return true;
2810         }
2811         return false;
2812 }
2813
2814 /*
2815  * try to push data from one node into the next node left in the
2816  * tree.
2817  *
2818  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2819  * error, and > 0 if there was no room in the left hand block.
2820  */
2821 static int push_node_left(struct btrfs_trans_handle *trans,
2822                           struct extent_buffer *dst,
2823                           struct extent_buffer *src, int empty)
2824 {
2825         struct btrfs_fs_info *fs_info = trans->fs_info;
2826         int push_items = 0;
2827         int src_nritems;
2828         int dst_nritems;
2829         int ret = 0;
2830
2831         src_nritems = btrfs_header_nritems(src);
2832         dst_nritems = btrfs_header_nritems(dst);
2833         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2834         WARN_ON(btrfs_header_generation(src) != trans->transid);
2835         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2836
2837         if (!empty && src_nritems <= 8)
2838                 return 1;
2839
2840         if (push_items <= 0)
2841                 return 1;
2842
2843         if (empty) {
2844                 push_items = min(src_nritems, push_items);
2845                 if (push_items < src_nritems) {
2846                         /* leave at least 8 pointers in the node if
2847                          * we aren't going to empty it
2848                          */
2849                         if (src_nritems - push_items < 8) {
2850                                 if (push_items <= 8)
2851                                         return 1;
2852                                 push_items -= 8;
2853                         }
2854                 }
2855         } else
2856                 push_items = min(src_nritems - 8, push_items);
2857
2858         /* dst is the left eb, src is the middle eb */
2859         if (check_sibling_keys(dst, src)) {
2860                 ret = -EUCLEAN;
2861                 btrfs_abort_transaction(trans, ret);
2862                 return ret;
2863         }
2864         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2865         if (ret) {
2866                 btrfs_abort_transaction(trans, ret);
2867                 return ret;
2868         }
2869         copy_extent_buffer(dst, src,
2870                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2871                            btrfs_node_key_ptr_offset(src, 0),
2872                            push_items * sizeof(struct btrfs_key_ptr));
2873
2874         if (push_items < src_nritems) {
2875                 /*
2876                  * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2877                  * don't need to do an explicit tree mod log operation for it.
2878                  */
2879                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2880                                       btrfs_node_key_ptr_offset(src, push_items),
2881                                       (src_nritems - push_items) *
2882                                       sizeof(struct btrfs_key_ptr));
2883         }
2884         btrfs_set_header_nritems(src, src_nritems - push_items);
2885         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2886         btrfs_mark_buffer_dirty(trans, src);
2887         btrfs_mark_buffer_dirty(trans, dst);
2888
2889         return ret;
2890 }
2891
2892 /*
2893  * try to push data from one node into the next node right in the
2894  * tree.
2895  *
2896  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2897  * error, and > 0 if there was no room in the right hand block.
2898  *
2899  * this will  only push up to 1/2 the contents of the left node over
2900  */
2901 static int balance_node_right(struct btrfs_trans_handle *trans,
2902                               struct extent_buffer *dst,
2903                               struct extent_buffer *src)
2904 {
2905         struct btrfs_fs_info *fs_info = trans->fs_info;
2906         int push_items = 0;
2907         int max_push;
2908         int src_nritems;
2909         int dst_nritems;
2910         int ret = 0;
2911
2912         WARN_ON(btrfs_header_generation(src) != trans->transid);
2913         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2914
2915         src_nritems = btrfs_header_nritems(src);
2916         dst_nritems = btrfs_header_nritems(dst);
2917         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2918         if (push_items <= 0)
2919                 return 1;
2920
2921         if (src_nritems < 4)
2922                 return 1;
2923
2924         max_push = src_nritems / 2 + 1;
2925         /* don't try to empty the node */
2926         if (max_push >= src_nritems)
2927                 return 1;
2928
2929         if (max_push < push_items)
2930                 push_items = max_push;
2931
2932         /* dst is the right eb, src is the middle eb */
2933         if (check_sibling_keys(src, dst)) {
2934                 ret = -EUCLEAN;
2935                 btrfs_abort_transaction(trans, ret);
2936                 return ret;
2937         }
2938
2939         /*
2940          * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2941          * need to do an explicit tree mod log operation for it.
2942          */
2943         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2944                                       btrfs_node_key_ptr_offset(dst, 0),
2945                                       (dst_nritems) *
2946                                       sizeof(struct btrfs_key_ptr));
2947
2948         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2949                                          push_items);
2950         if (ret) {
2951                 btrfs_abort_transaction(trans, ret);
2952                 return ret;
2953         }
2954         copy_extent_buffer(dst, src,
2955                            btrfs_node_key_ptr_offset(dst, 0),
2956                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2957                            push_items * sizeof(struct btrfs_key_ptr));
2958
2959         btrfs_set_header_nritems(src, src_nritems - push_items);
2960         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2961
2962         btrfs_mark_buffer_dirty(trans, src);
2963         btrfs_mark_buffer_dirty(trans, dst);
2964
2965         return ret;
2966 }
2967
2968 /*
2969  * helper function to insert a new root level in the tree.
2970  * A new node is allocated, and a single item is inserted to
2971  * point to the existing root
2972  *
2973  * returns zero on success or < 0 on failure.
2974  */
2975 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2976                            struct btrfs_root *root,
2977                            struct btrfs_path *path, int level)
2978 {
2979         struct btrfs_fs_info *fs_info = root->fs_info;
2980         u64 lower_gen;
2981         struct extent_buffer *lower;
2982         struct extent_buffer *c;
2983         struct extent_buffer *old;
2984         struct btrfs_disk_key lower_key;
2985         int ret;
2986
2987         BUG_ON(path->nodes[level]);
2988         BUG_ON(path->nodes[level-1] != root->node);
2989
2990         lower = path->nodes[level-1];
2991         if (level == 1)
2992                 btrfs_item_key(lower, &lower_key, 0);
2993         else
2994                 btrfs_node_key(lower, &lower_key, 0);
2995
2996         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2997                                    &lower_key, level, root->node->start, 0,
2998                                    BTRFS_NESTING_NEW_ROOT);
2999         if (IS_ERR(c))
3000                 return PTR_ERR(c);
3001
3002         root_add_used(root, fs_info->nodesize);
3003
3004         btrfs_set_header_nritems(c, 1);
3005         btrfs_set_node_key(c, &lower_key, 0);
3006         btrfs_set_node_blockptr(c, 0, lower->start);
3007         lower_gen = btrfs_header_generation(lower);
3008         WARN_ON(lower_gen != trans->transid);
3009
3010         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3011
3012         btrfs_mark_buffer_dirty(trans, c);
3013
3014         old = root->node;
3015         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3016         if (ret < 0) {
3017                 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3018                 btrfs_tree_unlock(c);
3019                 free_extent_buffer(c);
3020                 return ret;
3021         }
3022         rcu_assign_pointer(root->node, c);
3023
3024         /* the super has an extra ref to root->node */
3025         free_extent_buffer(old);
3026
3027         add_root_to_dirty_list(root);
3028         atomic_inc(&c->refs);
3029         path->nodes[level] = c;
3030         path->locks[level] = BTRFS_WRITE_LOCK;
3031         path->slots[level] = 0;
3032         return 0;
3033 }
3034
3035 /*
3036  * worker function to insert a single pointer in a node.
3037  * the node should have enough room for the pointer already
3038  *
3039  * slot and level indicate where you want the key to go, and
3040  * blocknr is the block the key points to.
3041  */
3042 static int insert_ptr(struct btrfs_trans_handle *trans,
3043                       struct btrfs_path *path,
3044                       struct btrfs_disk_key *key, u64 bytenr,
3045                       int slot, int level)
3046 {
3047         struct extent_buffer *lower;
3048         int nritems;
3049         int ret;
3050
3051         BUG_ON(!path->nodes[level]);
3052         btrfs_assert_tree_write_locked(path->nodes[level]);
3053         lower = path->nodes[level];
3054         nritems = btrfs_header_nritems(lower);
3055         BUG_ON(slot > nritems);
3056         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3057         if (slot != nritems) {
3058                 if (level) {
3059                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3060                                         slot, nritems - slot);
3061                         if (ret < 0) {
3062                                 btrfs_abort_transaction(trans, ret);
3063                                 return ret;
3064                         }
3065                 }
3066                 memmove_extent_buffer(lower,
3067                               btrfs_node_key_ptr_offset(lower, slot + 1),
3068                               btrfs_node_key_ptr_offset(lower, slot),
3069                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3070         }
3071         if (level) {
3072                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
3073                                                     BTRFS_MOD_LOG_KEY_ADD);
3074                 if (ret < 0) {
3075                         btrfs_abort_transaction(trans, ret);
3076                         return ret;
3077                 }
3078         }
3079         btrfs_set_node_key(lower, key, slot);
3080         btrfs_set_node_blockptr(lower, slot, bytenr);
3081         WARN_ON(trans->transid == 0);
3082         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3083         btrfs_set_header_nritems(lower, nritems + 1);
3084         btrfs_mark_buffer_dirty(trans, lower);
3085
3086         return 0;
3087 }
3088
3089 /*
3090  * split the node at the specified level in path in two.
3091  * The path is corrected to point to the appropriate node after the split
3092  *
3093  * Before splitting this tries to make some room in the node by pushing
3094  * left and right, if either one works, it returns right away.
3095  *
3096  * returns 0 on success and < 0 on failure
3097  */
3098 static noinline int split_node(struct btrfs_trans_handle *trans,
3099                                struct btrfs_root *root,
3100                                struct btrfs_path *path, int level)
3101 {
3102         struct btrfs_fs_info *fs_info = root->fs_info;
3103         struct extent_buffer *c;
3104         struct extent_buffer *split;
3105         struct btrfs_disk_key disk_key;
3106         int mid;
3107         int ret;
3108         u32 c_nritems;
3109
3110         c = path->nodes[level];
3111         WARN_ON(btrfs_header_generation(c) != trans->transid);
3112         if (c == root->node) {
3113                 /*
3114                  * trying to split the root, lets make a new one
3115                  *
3116                  * tree mod log: We don't log_removal old root in
3117                  * insert_new_root, because that root buffer will be kept as a
3118                  * normal node. We are going to log removal of half of the
3119                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
3120                  * holding a tree lock on the buffer, which is why we cannot
3121                  * race with other tree_mod_log users.
3122                  */
3123                 ret = insert_new_root(trans, root, path, level + 1);
3124                 if (ret)
3125                         return ret;
3126         } else {
3127                 ret = push_nodes_for_insert(trans, root, path, level);
3128                 c = path->nodes[level];
3129                 if (!ret && btrfs_header_nritems(c) <
3130                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3131                         return 0;
3132                 if (ret < 0)
3133                         return ret;
3134         }
3135
3136         c_nritems = btrfs_header_nritems(c);
3137         mid = (c_nritems + 1) / 2;
3138         btrfs_node_key(c, &disk_key, mid);
3139
3140         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3141                                        &disk_key, level, c->start, 0,
3142                                        BTRFS_NESTING_SPLIT);
3143         if (IS_ERR(split))
3144                 return PTR_ERR(split);
3145
3146         root_add_used(root, fs_info->nodesize);
3147         ASSERT(btrfs_header_level(c) == level);
3148
3149         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3150         if (ret) {
3151                 btrfs_tree_unlock(split);
3152                 free_extent_buffer(split);
3153                 btrfs_abort_transaction(trans, ret);
3154                 return ret;
3155         }
3156         copy_extent_buffer(split, c,
3157                            btrfs_node_key_ptr_offset(split, 0),
3158                            btrfs_node_key_ptr_offset(c, mid),
3159                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3160         btrfs_set_header_nritems(split, c_nritems - mid);
3161         btrfs_set_header_nritems(c, mid);
3162
3163         btrfs_mark_buffer_dirty(trans, c);
3164         btrfs_mark_buffer_dirty(trans, split);
3165
3166         ret = insert_ptr(trans, path, &disk_key, split->start,
3167                          path->slots[level + 1] + 1, level + 1);
3168         if (ret < 0) {
3169                 btrfs_tree_unlock(split);
3170                 free_extent_buffer(split);
3171                 return ret;
3172         }
3173
3174         if (path->slots[level] >= mid) {
3175                 path->slots[level] -= mid;
3176                 btrfs_tree_unlock(c);
3177                 free_extent_buffer(c);
3178                 path->nodes[level] = split;
3179                 path->slots[level + 1] += 1;
3180         } else {
3181                 btrfs_tree_unlock(split);
3182                 free_extent_buffer(split);
3183         }
3184         return 0;
3185 }
3186
3187 /*
3188  * how many bytes are required to store the items in a leaf.  start
3189  * and nr indicate which items in the leaf to check.  This totals up the
3190  * space used both by the item structs and the item data
3191  */
3192 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3193 {
3194         int data_len;
3195         int nritems = btrfs_header_nritems(l);
3196         int end = min(nritems, start + nr) - 1;
3197
3198         if (!nr)
3199                 return 0;
3200         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3201         data_len = data_len - btrfs_item_offset(l, end);
3202         data_len += sizeof(struct btrfs_item) * nr;
3203         WARN_ON(data_len < 0);
3204         return data_len;
3205 }
3206
3207 /*
3208  * The space between the end of the leaf items and
3209  * the start of the leaf data.  IOW, how much room
3210  * the leaf has left for both items and data
3211  */
3212 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3213 {
3214         struct btrfs_fs_info *fs_info = leaf->fs_info;
3215         int nritems = btrfs_header_nritems(leaf);
3216         int ret;
3217
3218         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3219         if (ret < 0) {
3220                 btrfs_crit(fs_info,
3221                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3222                            ret,
3223                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3224                            leaf_space_used(leaf, 0, nritems), nritems);
3225         }
3226         return ret;
3227 }
3228
3229 /*
3230  * min slot controls the lowest index we're willing to push to the
3231  * right.  We'll push up to and including min_slot, but no lower
3232  */
3233 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3234                                       struct btrfs_path *path,
3235                                       int data_size, int empty,
3236                                       struct extent_buffer *right,
3237                                       int free_space, u32 left_nritems,
3238                                       u32 min_slot)
3239 {
3240         struct btrfs_fs_info *fs_info = right->fs_info;
3241         struct extent_buffer *left = path->nodes[0];
3242         struct extent_buffer *upper = path->nodes[1];
3243         struct btrfs_map_token token;
3244         struct btrfs_disk_key disk_key;
3245         int slot;
3246         u32 i;
3247         int push_space = 0;
3248         int push_items = 0;
3249         u32 nr;
3250         u32 right_nritems;
3251         u32 data_end;
3252         u32 this_item_size;
3253
3254         if (empty)
3255                 nr = 0;
3256         else
3257                 nr = max_t(u32, 1, min_slot);
3258
3259         if (path->slots[0] >= left_nritems)
3260                 push_space += data_size;
3261
3262         slot = path->slots[1];
3263         i = left_nritems - 1;
3264         while (i >= nr) {
3265                 if (!empty && push_items > 0) {
3266                         if (path->slots[0] > i)
3267                                 break;
3268                         if (path->slots[0] == i) {
3269                                 int space = btrfs_leaf_free_space(left);
3270
3271                                 if (space + push_space * 2 > free_space)
3272                                         break;
3273                         }
3274                 }
3275
3276                 if (path->slots[0] == i)
3277                         push_space += data_size;
3278
3279                 this_item_size = btrfs_item_size(left, i);
3280                 if (this_item_size + sizeof(struct btrfs_item) +
3281                     push_space > free_space)
3282                         break;
3283
3284                 push_items++;
3285                 push_space += this_item_size + sizeof(struct btrfs_item);
3286                 if (i == 0)
3287                         break;
3288                 i--;
3289         }
3290
3291         if (push_items == 0)
3292                 goto out_unlock;
3293
3294         WARN_ON(!empty && push_items == left_nritems);
3295
3296         /* push left to right */
3297         right_nritems = btrfs_header_nritems(right);
3298
3299         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3300         push_space -= leaf_data_end(left);
3301
3302         /* make room in the right data area */
3303         data_end = leaf_data_end(right);
3304         memmove_leaf_data(right, data_end - push_space, data_end,
3305                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3306
3307         /* copy from the left data area */
3308         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3309                        leaf_data_end(left), push_space);
3310
3311         memmove_leaf_items(right, push_items, 0, right_nritems);
3312
3313         /* copy the items from left to right */
3314         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3315
3316         /* update the item pointers */
3317         btrfs_init_map_token(&token, right);
3318         right_nritems += push_items;
3319         btrfs_set_header_nritems(right, right_nritems);
3320         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3321         for (i = 0; i < right_nritems; i++) {
3322                 push_space -= btrfs_token_item_size(&token, i);
3323                 btrfs_set_token_item_offset(&token, i, push_space);
3324         }
3325
3326         left_nritems -= push_items;
3327         btrfs_set_header_nritems(left, left_nritems);
3328
3329         if (left_nritems)
3330                 btrfs_mark_buffer_dirty(trans, left);
3331         else
3332                 btrfs_clear_buffer_dirty(trans, left);
3333
3334         btrfs_mark_buffer_dirty(trans, right);
3335
3336         btrfs_item_key(right, &disk_key, 0);
3337         btrfs_set_node_key(upper, &disk_key, slot + 1);
3338         btrfs_mark_buffer_dirty(trans, upper);
3339
3340         /* then fixup the leaf pointer in the path */
3341         if (path->slots[0] >= left_nritems) {
3342                 path->slots[0] -= left_nritems;
3343                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3344                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3345                 btrfs_tree_unlock(path->nodes[0]);
3346                 free_extent_buffer(path->nodes[0]);
3347                 path->nodes[0] = right;
3348                 path->slots[1] += 1;
3349         } else {
3350                 btrfs_tree_unlock(right);
3351                 free_extent_buffer(right);
3352         }
3353         return 0;
3354
3355 out_unlock:
3356         btrfs_tree_unlock(right);
3357         free_extent_buffer(right);
3358         return 1;
3359 }
3360
3361 /*
3362  * push some data in the path leaf to the right, trying to free up at
3363  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3364  *
3365  * returns 1 if the push failed because the other node didn't have enough
3366  * room, 0 if everything worked out and < 0 if there were major errors.
3367  *
3368  * this will push starting from min_slot to the end of the leaf.  It won't
3369  * push any slot lower than min_slot
3370  */
3371 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3372                            *root, struct btrfs_path *path,
3373                            int min_data_size, int data_size,
3374                            int empty, u32 min_slot)
3375 {
3376         struct extent_buffer *left = path->nodes[0];
3377         struct extent_buffer *right;
3378         struct extent_buffer *upper;
3379         int slot;
3380         int free_space;
3381         u32 left_nritems;
3382         int ret;
3383
3384         if (!path->nodes[1])
3385                 return 1;
3386
3387         slot = path->slots[1];
3388         upper = path->nodes[1];
3389         if (slot >= btrfs_header_nritems(upper) - 1)
3390                 return 1;
3391
3392         btrfs_assert_tree_write_locked(path->nodes[1]);
3393
3394         right = btrfs_read_node_slot(upper, slot + 1);
3395         if (IS_ERR(right))
3396                 return PTR_ERR(right);
3397
3398         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3399
3400         free_space = btrfs_leaf_free_space(right);
3401         if (free_space < data_size)
3402                 goto out_unlock;
3403
3404         ret = btrfs_cow_block(trans, root, right, upper,
3405                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3406         if (ret)
3407                 goto out_unlock;
3408
3409         left_nritems = btrfs_header_nritems(left);
3410         if (left_nritems == 0)
3411                 goto out_unlock;
3412
3413         if (check_sibling_keys(left, right)) {
3414                 ret = -EUCLEAN;
3415                 btrfs_abort_transaction(trans, ret);
3416                 btrfs_tree_unlock(right);
3417                 free_extent_buffer(right);
3418                 return ret;
3419         }
3420         if (path->slots[0] == left_nritems && !empty) {
3421                 /* Key greater than all keys in the leaf, right neighbor has
3422                  * enough room for it and we're not emptying our leaf to delete
3423                  * it, therefore use right neighbor to insert the new item and
3424                  * no need to touch/dirty our left leaf. */
3425                 btrfs_tree_unlock(left);
3426                 free_extent_buffer(left);
3427                 path->nodes[0] = right;
3428                 path->slots[0] = 0;
3429                 path->slots[1]++;
3430                 return 0;
3431         }
3432
3433         return __push_leaf_right(trans, path, min_data_size, empty, right,
3434                                  free_space, left_nritems, min_slot);
3435 out_unlock:
3436         btrfs_tree_unlock(right);
3437         free_extent_buffer(right);
3438         return 1;
3439 }
3440
3441 /*
3442  * push some data in the path leaf to the left, trying to free up at
3443  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3444  *
3445  * max_slot can put a limit on how far into the leaf we'll push items.  The
3446  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3447  * items
3448  */
3449 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3450                                      struct btrfs_path *path, int data_size,
3451                                      int empty, struct extent_buffer *left,
3452                                      int free_space, u32 right_nritems,
3453                                      u32 max_slot)
3454 {
3455         struct btrfs_fs_info *fs_info = left->fs_info;
3456         struct btrfs_disk_key disk_key;
3457         struct extent_buffer *right = path->nodes[0];
3458         int i;
3459         int push_space = 0;
3460         int push_items = 0;
3461         u32 old_left_nritems;
3462         u32 nr;
3463         int ret = 0;
3464         u32 this_item_size;
3465         u32 old_left_item_size;
3466         struct btrfs_map_token token;
3467
3468         if (empty)
3469                 nr = min(right_nritems, max_slot);
3470         else
3471                 nr = min(right_nritems - 1, max_slot);
3472
3473         for (i = 0; i < nr; i++) {
3474                 if (!empty && push_items > 0) {
3475                         if (path->slots[0] < i)
3476                                 break;
3477                         if (path->slots[0] == i) {
3478                                 int space = btrfs_leaf_free_space(right);
3479
3480                                 if (space + push_space * 2 > free_space)
3481                                         break;
3482                         }
3483                 }
3484
3485                 if (path->slots[0] == i)
3486                         push_space += data_size;
3487
3488                 this_item_size = btrfs_item_size(right, i);
3489                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3490                     free_space)
3491                         break;
3492
3493                 push_items++;
3494                 push_space += this_item_size + sizeof(struct btrfs_item);
3495         }
3496
3497         if (push_items == 0) {
3498                 ret = 1;
3499                 goto out;
3500         }
3501         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3502
3503         /* push data from right to left */
3504         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3505
3506         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3507                      btrfs_item_offset(right, push_items - 1);
3508
3509         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3510                        btrfs_item_offset(right, push_items - 1), push_space);
3511         old_left_nritems = btrfs_header_nritems(left);
3512         BUG_ON(old_left_nritems <= 0);
3513
3514         btrfs_init_map_token(&token, left);
3515         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3516         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3517                 u32 ioff;
3518
3519                 ioff = btrfs_token_item_offset(&token, i);
3520                 btrfs_set_token_item_offset(&token, i,
3521                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3522         }
3523         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3524
3525         /* fixup right node */
3526         if (push_items > right_nritems)
3527                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3528                        right_nritems);
3529
3530         if (push_items < right_nritems) {
3531                 push_space = btrfs_item_offset(right, push_items - 1) -
3532                                                   leaf_data_end(right);
3533                 memmove_leaf_data(right,
3534                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3535                                   leaf_data_end(right), push_space);
3536
3537                 memmove_leaf_items(right, 0, push_items,
3538                                    btrfs_header_nritems(right) - push_items);
3539         }
3540
3541         btrfs_init_map_token(&token, right);
3542         right_nritems -= push_items;
3543         btrfs_set_header_nritems(right, right_nritems);
3544         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3545         for (i = 0; i < right_nritems; i++) {
3546                 push_space = push_space - btrfs_token_item_size(&token, i);
3547                 btrfs_set_token_item_offset(&token, i, push_space);
3548         }
3549
3550         btrfs_mark_buffer_dirty(trans, left);
3551         if (right_nritems)
3552                 btrfs_mark_buffer_dirty(trans, right);
3553         else
3554                 btrfs_clear_buffer_dirty(trans, right);
3555
3556         btrfs_item_key(right, &disk_key, 0);
3557         fixup_low_keys(trans, path, &disk_key, 1);
3558
3559         /* then fixup the leaf pointer in the path */
3560         if (path->slots[0] < push_items) {
3561                 path->slots[0] += old_left_nritems;
3562                 btrfs_tree_unlock(path->nodes[0]);
3563                 free_extent_buffer(path->nodes[0]);
3564                 path->nodes[0] = left;
3565                 path->slots[1] -= 1;
3566         } else {
3567                 btrfs_tree_unlock(left);
3568                 free_extent_buffer(left);
3569                 path->slots[0] -= push_items;
3570         }
3571         BUG_ON(path->slots[0] < 0);
3572         return ret;
3573 out:
3574         btrfs_tree_unlock(left);
3575         free_extent_buffer(left);
3576         return ret;
3577 }
3578
3579 /*
3580  * push some data in the path leaf to the left, trying to free up at
3581  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3582  *
3583  * max_slot can put a limit on how far into the leaf we'll push items.  The
3584  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3585  * items
3586  */
3587 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3588                           *root, struct btrfs_path *path, int min_data_size,
3589                           int data_size, int empty, u32 max_slot)
3590 {
3591         struct extent_buffer *right = path->nodes[0];
3592         struct extent_buffer *left;
3593         int slot;
3594         int free_space;
3595         u32 right_nritems;
3596         int ret = 0;
3597
3598         slot = path->slots[1];
3599         if (slot == 0)
3600                 return 1;
3601         if (!path->nodes[1])
3602                 return 1;
3603
3604         right_nritems = btrfs_header_nritems(right);
3605         if (right_nritems == 0)
3606                 return 1;
3607
3608         btrfs_assert_tree_write_locked(path->nodes[1]);
3609
3610         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3611         if (IS_ERR(left))
3612                 return PTR_ERR(left);
3613
3614         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3615
3616         free_space = btrfs_leaf_free_space(left);
3617         if (free_space < data_size) {
3618                 ret = 1;
3619                 goto out;
3620         }
3621
3622         ret = btrfs_cow_block(trans, root, left,
3623                               path->nodes[1], slot - 1, &left,
3624                               BTRFS_NESTING_LEFT_COW);
3625         if (ret) {
3626                 /* we hit -ENOSPC, but it isn't fatal here */
3627                 if (ret == -ENOSPC)
3628                         ret = 1;
3629                 goto out;
3630         }
3631
3632         if (check_sibling_keys(left, right)) {
3633                 ret = -EUCLEAN;
3634                 btrfs_abort_transaction(trans, ret);
3635                 goto out;
3636         }
3637         return __push_leaf_left(trans, path, min_data_size, empty, left,
3638                                 free_space, right_nritems, max_slot);
3639 out:
3640         btrfs_tree_unlock(left);
3641         free_extent_buffer(left);
3642         return ret;
3643 }
3644
3645 /*
3646  * split the path's leaf in two, making sure there is at least data_size
3647  * available for the resulting leaf level of the path.
3648  */
3649 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3650                                    struct btrfs_path *path,
3651                                    struct extent_buffer *l,
3652                                    struct extent_buffer *right,
3653                                    int slot, int mid, int nritems)
3654 {
3655         struct btrfs_fs_info *fs_info = trans->fs_info;
3656         int data_copy_size;
3657         int rt_data_off;
3658         int i;
3659         int ret;
3660         struct btrfs_disk_key disk_key;
3661         struct btrfs_map_token token;
3662
3663         nritems = nritems - mid;
3664         btrfs_set_header_nritems(right, nritems);
3665         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3666
3667         copy_leaf_items(right, l, 0, mid, nritems);
3668
3669         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3670                        leaf_data_end(l), data_copy_size);
3671
3672         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3673
3674         btrfs_init_map_token(&token, right);
3675         for (i = 0; i < nritems; i++) {
3676                 u32 ioff;
3677
3678                 ioff = btrfs_token_item_offset(&token, i);
3679                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3680         }
3681
3682         btrfs_set_header_nritems(l, mid);
3683         btrfs_item_key(right, &disk_key, 0);
3684         ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3685         if (ret < 0)
3686                 return ret;
3687
3688         btrfs_mark_buffer_dirty(trans, right);
3689         btrfs_mark_buffer_dirty(trans, l);
3690         BUG_ON(path->slots[0] != slot);
3691
3692         if (mid <= slot) {
3693                 btrfs_tree_unlock(path->nodes[0]);
3694                 free_extent_buffer(path->nodes[0]);
3695                 path->nodes[0] = right;
3696                 path->slots[0] -= mid;
3697                 path->slots[1] += 1;
3698         } else {
3699                 btrfs_tree_unlock(right);
3700                 free_extent_buffer(right);
3701         }
3702
3703         BUG_ON(path->slots[0] < 0);
3704
3705         return 0;
3706 }
3707
3708 /*
3709  * double splits happen when we need to insert a big item in the middle
3710  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3711  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3712  *          A                 B                 C
3713  *
3714  * We avoid this by trying to push the items on either side of our target
3715  * into the adjacent leaves.  If all goes well we can avoid the double split
3716  * completely.
3717  */
3718 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3719                                           struct btrfs_root *root,
3720                                           struct btrfs_path *path,
3721                                           int data_size)
3722 {
3723         int ret;
3724         int progress = 0;
3725         int slot;
3726         u32 nritems;
3727         int space_needed = data_size;
3728
3729         slot = path->slots[0];
3730         if (slot < btrfs_header_nritems(path->nodes[0]))
3731                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3732
3733         /*
3734          * try to push all the items after our slot into the
3735          * right leaf
3736          */
3737         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3738         if (ret < 0)
3739                 return ret;
3740
3741         if (ret == 0)
3742                 progress++;
3743
3744         nritems = btrfs_header_nritems(path->nodes[0]);
3745         /*
3746          * our goal is to get our slot at the start or end of a leaf.  If
3747          * we've done so we're done
3748          */
3749         if (path->slots[0] == 0 || path->slots[0] == nritems)
3750                 return 0;
3751
3752         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3753                 return 0;
3754
3755         /* try to push all the items before our slot into the next leaf */
3756         slot = path->slots[0];
3757         space_needed = data_size;
3758         if (slot > 0)
3759                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3760         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3761         if (ret < 0)
3762                 return ret;
3763
3764         if (ret == 0)
3765                 progress++;
3766
3767         if (progress)
3768                 return 0;
3769         return 1;
3770 }
3771
3772 /*
3773  * split the path's leaf in two, making sure there is at least data_size
3774  * available for the resulting leaf level of the path.
3775  *
3776  * returns 0 if all went well and < 0 on failure.
3777  */
3778 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3779                                struct btrfs_root *root,
3780                                const struct btrfs_key *ins_key,
3781                                struct btrfs_path *path, int data_size,
3782                                int extend)
3783 {
3784         struct btrfs_disk_key disk_key;
3785         struct extent_buffer *l;
3786         u32 nritems;
3787         int mid;
3788         int slot;
3789         struct extent_buffer *right;
3790         struct btrfs_fs_info *fs_info = root->fs_info;
3791         int ret = 0;
3792         int wret;
3793         int split;
3794         int num_doubles = 0;
3795         int tried_avoid_double = 0;
3796
3797         l = path->nodes[0];
3798         slot = path->slots[0];
3799         if (extend && data_size + btrfs_item_size(l, slot) +
3800             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3801                 return -EOVERFLOW;
3802
3803         /* first try to make some room by pushing left and right */
3804         if (data_size && path->nodes[1]) {
3805                 int space_needed = data_size;
3806
3807                 if (slot < btrfs_header_nritems(l))
3808                         space_needed -= btrfs_leaf_free_space(l);
3809
3810                 wret = push_leaf_right(trans, root, path, space_needed,
3811                                        space_needed, 0, 0);
3812                 if (wret < 0)
3813                         return wret;
3814                 if (wret) {
3815                         space_needed = data_size;
3816                         if (slot > 0)
3817                                 space_needed -= btrfs_leaf_free_space(l);
3818                         wret = push_leaf_left(trans, root, path, space_needed,
3819                                               space_needed, 0, (u32)-1);
3820                         if (wret < 0)
3821                                 return wret;
3822                 }
3823                 l = path->nodes[0];
3824
3825                 /* did the pushes work? */
3826                 if (btrfs_leaf_free_space(l) >= data_size)
3827                         return 0;
3828         }
3829
3830         if (!path->nodes[1]) {
3831                 ret = insert_new_root(trans, root, path, 1);
3832                 if (ret)
3833                         return ret;
3834         }
3835 again:
3836         split = 1;
3837         l = path->nodes[0];
3838         slot = path->slots[0];
3839         nritems = btrfs_header_nritems(l);
3840         mid = (nritems + 1) / 2;
3841
3842         if (mid <= slot) {
3843                 if (nritems == 1 ||
3844                     leaf_space_used(l, mid, nritems - mid) + data_size >
3845                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3846                         if (slot >= nritems) {
3847                                 split = 0;
3848                         } else {
3849                                 mid = slot;
3850                                 if (mid != nritems &&
3851                                     leaf_space_used(l, mid, nritems - mid) +
3852                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3853                                         if (data_size && !tried_avoid_double)
3854                                                 goto push_for_double;
3855                                         split = 2;
3856                                 }
3857                         }
3858                 }
3859         } else {
3860                 if (leaf_space_used(l, 0, mid) + data_size >
3861                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3862                         if (!extend && data_size && slot == 0) {
3863                                 split = 0;
3864                         } else if ((extend || !data_size) && slot == 0) {
3865                                 mid = 1;
3866                         } else {
3867                                 mid = slot;
3868                                 if (mid != nritems &&
3869                                     leaf_space_used(l, mid, nritems - mid) +
3870                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3871                                         if (data_size && !tried_avoid_double)
3872                                                 goto push_for_double;
3873                                         split = 2;
3874                                 }
3875                         }
3876                 }
3877         }
3878
3879         if (split == 0)
3880                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3881         else
3882                 btrfs_item_key(l, &disk_key, mid);
3883
3884         /*
3885          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3886          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3887          * subclasses, which is 8 at the time of this patch, and we've maxed it
3888          * out.  In the future we could add a
3889          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3890          * use BTRFS_NESTING_NEW_ROOT.
3891          */
3892         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3893                                        &disk_key, 0, l->start, 0,
3894                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3895                                        BTRFS_NESTING_SPLIT);
3896         if (IS_ERR(right))
3897                 return PTR_ERR(right);
3898
3899         root_add_used(root, fs_info->nodesize);
3900
3901         if (split == 0) {
3902                 if (mid <= slot) {
3903                         btrfs_set_header_nritems(right, 0);
3904                         ret = insert_ptr(trans, path, &disk_key,
3905                                          right->start, path->slots[1] + 1, 1);
3906                         if (ret < 0) {
3907                                 btrfs_tree_unlock(right);
3908                                 free_extent_buffer(right);
3909                                 return ret;
3910                         }
3911                         btrfs_tree_unlock(path->nodes[0]);
3912                         free_extent_buffer(path->nodes[0]);
3913                         path->nodes[0] = right;
3914                         path->slots[0] = 0;
3915                         path->slots[1] += 1;
3916                 } else {
3917                         btrfs_set_header_nritems(right, 0);
3918                         ret = insert_ptr(trans, path, &disk_key,
3919                                          right->start, path->slots[1], 1);
3920                         if (ret < 0) {
3921                                 btrfs_tree_unlock(right);
3922                                 free_extent_buffer(right);
3923                                 return ret;
3924                         }
3925                         btrfs_tree_unlock(path->nodes[0]);
3926                         free_extent_buffer(path->nodes[0]);
3927                         path->nodes[0] = right;
3928                         path->slots[0] = 0;
3929                         if (path->slots[1] == 0)
3930                                 fixup_low_keys(trans, path, &disk_key, 1);
3931                 }
3932                 /*
3933                  * We create a new leaf 'right' for the required ins_len and
3934                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3935                  * the content of ins_len to 'right'.
3936                  */
3937                 return ret;
3938         }
3939
3940         ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3941         if (ret < 0) {
3942                 btrfs_tree_unlock(right);
3943                 free_extent_buffer(right);
3944                 return ret;
3945         }
3946
3947         if (split == 2) {
3948                 BUG_ON(num_doubles != 0);
3949                 num_doubles++;
3950                 goto again;
3951         }
3952
3953         return 0;
3954
3955 push_for_double:
3956         push_for_double_split(trans, root, path, data_size);
3957         tried_avoid_double = 1;
3958         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3959                 return 0;
3960         goto again;
3961 }
3962
3963 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3964                                          struct btrfs_root *root,
3965                                          struct btrfs_path *path, int ins_len)
3966 {
3967         struct btrfs_key key;
3968         struct extent_buffer *leaf;
3969         struct btrfs_file_extent_item *fi;
3970         u64 extent_len = 0;
3971         u32 item_size;
3972         int ret;
3973
3974         leaf = path->nodes[0];
3975         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3976
3977         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3978                key.type != BTRFS_EXTENT_CSUM_KEY);
3979
3980         if (btrfs_leaf_free_space(leaf) >= ins_len)
3981                 return 0;
3982
3983         item_size = btrfs_item_size(leaf, path->slots[0]);
3984         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3985                 fi = btrfs_item_ptr(leaf, path->slots[0],
3986                                     struct btrfs_file_extent_item);
3987                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3988         }
3989         btrfs_release_path(path);
3990
3991         path->keep_locks = 1;
3992         path->search_for_split = 1;
3993         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3994         path->search_for_split = 0;
3995         if (ret > 0)
3996                 ret = -EAGAIN;
3997         if (ret < 0)
3998                 goto err;
3999
4000         ret = -EAGAIN;
4001         leaf = path->nodes[0];
4002         /* if our item isn't there, return now */
4003         if (item_size != btrfs_item_size(leaf, path->slots[0]))
4004                 goto err;
4005
4006         /* the leaf has  changed, it now has room.  return now */
4007         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4008                 goto err;
4009
4010         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4011                 fi = btrfs_item_ptr(leaf, path->slots[0],
4012                                     struct btrfs_file_extent_item);
4013                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4014                         goto err;
4015         }
4016
4017         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4018         if (ret)
4019                 goto err;
4020
4021         path->keep_locks = 0;
4022         btrfs_unlock_up_safe(path, 1);
4023         return 0;
4024 err:
4025         path->keep_locks = 0;
4026         return ret;
4027 }
4028
4029 static noinline int split_item(struct btrfs_trans_handle *trans,
4030                                struct btrfs_path *path,
4031                                const struct btrfs_key *new_key,
4032                                unsigned long split_offset)
4033 {
4034         struct extent_buffer *leaf;
4035         int orig_slot, slot;
4036         char *buf;
4037         u32 nritems;
4038         u32 item_size;
4039         u32 orig_offset;
4040         struct btrfs_disk_key disk_key;
4041
4042         leaf = path->nodes[0];
4043         /*
4044          * Shouldn't happen because the caller must have previously called
4045          * setup_leaf_for_split() to make room for the new item in the leaf.
4046          */
4047         if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4048                 return -ENOSPC;
4049
4050         orig_slot = path->slots[0];
4051         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4052         item_size = btrfs_item_size(leaf, path->slots[0]);
4053
4054         buf = kmalloc(item_size, GFP_NOFS);
4055         if (!buf)
4056                 return -ENOMEM;
4057
4058         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4059                             path->slots[0]), item_size);
4060
4061         slot = path->slots[0] + 1;
4062         nritems = btrfs_header_nritems(leaf);
4063         if (slot != nritems) {
4064                 /* shift the items */
4065                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4066         }
4067
4068         btrfs_cpu_key_to_disk(&disk_key, new_key);
4069         btrfs_set_item_key(leaf, &disk_key, slot);
4070
4071         btrfs_set_item_offset(leaf, slot, orig_offset);
4072         btrfs_set_item_size(leaf, slot, item_size - split_offset);
4073
4074         btrfs_set_item_offset(leaf, orig_slot,
4075                                  orig_offset + item_size - split_offset);
4076         btrfs_set_item_size(leaf, orig_slot, split_offset);
4077
4078         btrfs_set_header_nritems(leaf, nritems + 1);
4079
4080         /* write the data for the start of the original item */
4081         write_extent_buffer(leaf, buf,
4082                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4083                             split_offset);
4084
4085         /* write the data for the new item */
4086         write_extent_buffer(leaf, buf + split_offset,
4087                             btrfs_item_ptr_offset(leaf, slot),
4088                             item_size - split_offset);
4089         btrfs_mark_buffer_dirty(trans, leaf);
4090
4091         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4092         kfree(buf);
4093         return 0;
4094 }
4095
4096 /*
4097  * This function splits a single item into two items,
4098  * giving 'new_key' to the new item and splitting the
4099  * old one at split_offset (from the start of the item).
4100  *
4101  * The path may be released by this operation.  After
4102  * the split, the path is pointing to the old item.  The
4103  * new item is going to be in the same node as the old one.
4104  *
4105  * Note, the item being split must be smaller enough to live alone on
4106  * a tree block with room for one extra struct btrfs_item
4107  *
4108  * This allows us to split the item in place, keeping a lock on the
4109  * leaf the entire time.
4110  */
4111 int btrfs_split_item(struct btrfs_trans_handle *trans,
4112                      struct btrfs_root *root,
4113                      struct btrfs_path *path,
4114                      const struct btrfs_key *new_key,
4115                      unsigned long split_offset)
4116 {
4117         int ret;
4118         ret = setup_leaf_for_split(trans, root, path,
4119                                    sizeof(struct btrfs_item));
4120         if (ret)
4121                 return ret;
4122
4123         ret = split_item(trans, path, new_key, split_offset);
4124         return ret;
4125 }
4126
4127 /*
4128  * make the item pointed to by the path smaller.  new_size indicates
4129  * how small to make it, and from_end tells us if we just chop bytes
4130  * off the end of the item or if we shift the item to chop bytes off
4131  * the front.
4132  */
4133 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4134                          struct btrfs_path *path, u32 new_size, int from_end)
4135 {
4136         int slot;
4137         struct extent_buffer *leaf;
4138         u32 nritems;
4139         unsigned int data_end;
4140         unsigned int old_data_start;
4141         unsigned int old_size;
4142         unsigned int size_diff;
4143         int i;
4144         struct btrfs_map_token token;
4145
4146         leaf = path->nodes[0];
4147         slot = path->slots[0];
4148
4149         old_size = btrfs_item_size(leaf, slot);
4150         if (old_size == new_size)
4151                 return;
4152
4153         nritems = btrfs_header_nritems(leaf);
4154         data_end = leaf_data_end(leaf);
4155
4156         old_data_start = btrfs_item_offset(leaf, slot);
4157
4158         size_diff = old_size - new_size;
4159
4160         BUG_ON(slot < 0);
4161         BUG_ON(slot >= nritems);
4162
4163         /*
4164          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4165          */
4166         /* first correct the data pointers */
4167         btrfs_init_map_token(&token, leaf);
4168         for (i = slot; i < nritems; i++) {
4169                 u32 ioff;
4170
4171                 ioff = btrfs_token_item_offset(&token, i);
4172                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4173         }
4174
4175         /* shift the data */
4176         if (from_end) {
4177                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4178                                   old_data_start + new_size - data_end);
4179         } else {
4180                 struct btrfs_disk_key disk_key;
4181                 u64 offset;
4182
4183                 btrfs_item_key(leaf, &disk_key, slot);
4184
4185                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4186                         unsigned long ptr;
4187                         struct btrfs_file_extent_item *fi;
4188
4189                         fi = btrfs_item_ptr(leaf, slot,
4190                                             struct btrfs_file_extent_item);
4191                         fi = (struct btrfs_file_extent_item *)(
4192                              (unsigned long)fi - size_diff);
4193
4194                         if (btrfs_file_extent_type(leaf, fi) ==
4195                             BTRFS_FILE_EXTENT_INLINE) {
4196                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4197                                 memmove_extent_buffer(leaf, ptr,
4198                                       (unsigned long)fi,
4199                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4200                         }
4201                 }
4202
4203                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4204                                   old_data_start - data_end);
4205
4206                 offset = btrfs_disk_key_offset(&disk_key);
4207                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4208                 btrfs_set_item_key(leaf, &disk_key, slot);
4209                 if (slot == 0)
4210                         fixup_low_keys(trans, path, &disk_key, 1);
4211         }
4212
4213         btrfs_set_item_size(leaf, slot, new_size);
4214         btrfs_mark_buffer_dirty(trans, leaf);
4215
4216         if (btrfs_leaf_free_space(leaf) < 0) {
4217                 btrfs_print_leaf(leaf);
4218                 BUG();
4219         }
4220 }
4221
4222 /*
4223  * make the item pointed to by the path bigger, data_size is the added size.
4224  */
4225 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4226                        struct btrfs_path *path, u32 data_size)
4227 {
4228         int slot;
4229         struct extent_buffer *leaf;
4230         u32 nritems;
4231         unsigned int data_end;
4232         unsigned int old_data;
4233         unsigned int old_size;
4234         int i;
4235         struct btrfs_map_token token;
4236
4237         leaf = path->nodes[0];
4238
4239         nritems = btrfs_header_nritems(leaf);
4240         data_end = leaf_data_end(leaf);
4241
4242         if (btrfs_leaf_free_space(leaf) < data_size) {
4243                 btrfs_print_leaf(leaf);
4244                 BUG();
4245         }
4246         slot = path->slots[0];
4247         old_data = btrfs_item_data_end(leaf, slot);
4248
4249         BUG_ON(slot < 0);
4250         if (slot >= nritems) {
4251                 btrfs_print_leaf(leaf);
4252                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4253                            slot, nritems);
4254                 BUG();
4255         }
4256
4257         /*
4258          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4259          */
4260         /* first correct the data pointers */
4261         btrfs_init_map_token(&token, leaf);
4262         for (i = slot; i < nritems; i++) {
4263                 u32 ioff;
4264
4265                 ioff = btrfs_token_item_offset(&token, i);
4266                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4267         }
4268
4269         /* shift the data */
4270         memmove_leaf_data(leaf, data_end - data_size, data_end,
4271                           old_data - data_end);
4272
4273         data_end = old_data;
4274         old_size = btrfs_item_size(leaf, slot);
4275         btrfs_set_item_size(leaf, slot, old_size + data_size);
4276         btrfs_mark_buffer_dirty(trans, leaf);
4277
4278         if (btrfs_leaf_free_space(leaf) < 0) {
4279                 btrfs_print_leaf(leaf);
4280                 BUG();
4281         }
4282 }
4283
4284 /*
4285  * Make space in the node before inserting one or more items.
4286  *
4287  * @trans:      transaction handle
4288  * @root:       root we are inserting items to
4289  * @path:       points to the leaf/slot where we are going to insert new items
4290  * @batch:      information about the batch of items to insert
4291  *
4292  * Main purpose is to save stack depth by doing the bulk of the work in a
4293  * function that doesn't call btrfs_search_slot
4294  */
4295 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4296                                    struct btrfs_root *root, struct btrfs_path *path,
4297                                    const struct btrfs_item_batch *batch)
4298 {
4299         struct btrfs_fs_info *fs_info = root->fs_info;
4300         int i;
4301         u32 nritems;
4302         unsigned int data_end;
4303         struct btrfs_disk_key disk_key;
4304         struct extent_buffer *leaf;
4305         int slot;
4306         struct btrfs_map_token token;
4307         u32 total_size;
4308
4309         /*
4310          * Before anything else, update keys in the parent and other ancestors
4311          * if needed, then release the write locks on them, so that other tasks
4312          * can use them while we modify the leaf.
4313          */
4314         if (path->slots[0] == 0) {
4315                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4316                 fixup_low_keys(trans, path, &disk_key, 1);
4317         }
4318         btrfs_unlock_up_safe(path, 1);
4319
4320         leaf = path->nodes[0];
4321         slot = path->slots[0];
4322
4323         nritems = btrfs_header_nritems(leaf);
4324         data_end = leaf_data_end(leaf);
4325         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4326
4327         if (btrfs_leaf_free_space(leaf) < total_size) {
4328                 btrfs_print_leaf(leaf);
4329                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4330                            total_size, btrfs_leaf_free_space(leaf));
4331                 BUG();
4332         }
4333
4334         btrfs_init_map_token(&token, leaf);
4335         if (slot != nritems) {
4336                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4337
4338                 if (old_data < data_end) {
4339                         btrfs_print_leaf(leaf);
4340                         btrfs_crit(fs_info,
4341                 "item at slot %d with data offset %u beyond data end of leaf %u",
4342                                    slot, old_data, data_end);
4343                         BUG();
4344                 }
4345                 /*
4346                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4347                  */
4348                 /* first correct the data pointers */
4349                 for (i = slot; i < nritems; i++) {
4350                         u32 ioff;
4351
4352                         ioff = btrfs_token_item_offset(&token, i);
4353                         btrfs_set_token_item_offset(&token, i,
4354                                                        ioff - batch->total_data_size);
4355                 }
4356                 /* shift the items */
4357                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4358
4359                 /* shift the data */
4360                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4361                                   data_end, old_data - data_end);
4362                 data_end = old_data;
4363         }
4364
4365         /* setup the item for the new data */
4366         for (i = 0; i < batch->nr; i++) {
4367                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4368                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4369                 data_end -= batch->data_sizes[i];
4370                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4371                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4372         }
4373
4374         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4375         btrfs_mark_buffer_dirty(trans, leaf);
4376
4377         if (btrfs_leaf_free_space(leaf) < 0) {
4378                 btrfs_print_leaf(leaf);
4379                 BUG();
4380         }
4381 }
4382
4383 /*
4384  * Insert a new item into a leaf.
4385  *
4386  * @trans:     Transaction handle.
4387  * @root:      The root of the btree.
4388  * @path:      A path pointing to the target leaf and slot.
4389  * @key:       The key of the new item.
4390  * @data_size: The size of the data associated with the new key.
4391  */
4392 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4393                                  struct btrfs_root *root,
4394                                  struct btrfs_path *path,
4395                                  const struct btrfs_key *key,
4396                                  u32 data_size)
4397 {
4398         struct btrfs_item_batch batch;
4399
4400         batch.keys = key;
4401         batch.data_sizes = &data_size;
4402         batch.total_data_size = data_size;
4403         batch.nr = 1;
4404
4405         setup_items_for_insert(trans, root, path, &batch);
4406 }
4407
4408 /*
4409  * Given a key and some data, insert items into the tree.
4410  * This does all the path init required, making room in the tree if needed.
4411  */
4412 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4413                             struct btrfs_root *root,
4414                             struct btrfs_path *path,
4415                             const struct btrfs_item_batch *batch)
4416 {
4417         int ret = 0;
4418         int slot;
4419         u32 total_size;
4420
4421         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4422         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4423         if (ret == 0)
4424                 return -EEXIST;
4425         if (ret < 0)
4426                 return ret;
4427
4428         slot = path->slots[0];
4429         BUG_ON(slot < 0);
4430
4431         setup_items_for_insert(trans, root, path, batch);
4432         return 0;
4433 }
4434
4435 /*
4436  * Given a key and some data, insert an item into the tree.
4437  * This does all the path init required, making room in the tree if needed.
4438  */
4439 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4440                       const struct btrfs_key *cpu_key, void *data,
4441                       u32 data_size)
4442 {
4443         int ret = 0;
4444         struct btrfs_path *path;
4445         struct extent_buffer *leaf;
4446         unsigned long ptr;
4447
4448         path = btrfs_alloc_path();
4449         if (!path)
4450                 return -ENOMEM;
4451         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4452         if (!ret) {
4453                 leaf = path->nodes[0];
4454                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4455                 write_extent_buffer(leaf, data, ptr, data_size);
4456                 btrfs_mark_buffer_dirty(trans, leaf);
4457         }
4458         btrfs_free_path(path);
4459         return ret;
4460 }
4461
4462 /*
4463  * This function duplicates an item, giving 'new_key' to the new item.
4464  * It guarantees both items live in the same tree leaf and the new item is
4465  * contiguous with the original item.
4466  *
4467  * This allows us to split a file extent in place, keeping a lock on the leaf
4468  * the entire time.
4469  */
4470 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4471                          struct btrfs_root *root,
4472                          struct btrfs_path *path,
4473                          const struct btrfs_key *new_key)
4474 {
4475         struct extent_buffer *leaf;
4476         int ret;
4477         u32 item_size;
4478
4479         leaf = path->nodes[0];
4480         item_size = btrfs_item_size(leaf, path->slots[0]);
4481         ret = setup_leaf_for_split(trans, root, path,
4482                                    item_size + sizeof(struct btrfs_item));
4483         if (ret)
4484                 return ret;
4485
4486         path->slots[0]++;
4487         btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4488         leaf = path->nodes[0];
4489         memcpy_extent_buffer(leaf,
4490                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4491                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492                              item_size);
4493         return 0;
4494 }
4495
4496 /*
4497  * delete the pointer from a given node.
4498  *
4499  * the tree should have been previously balanced so the deletion does not
4500  * empty a node.
4501  *
4502  * This is exported for use inside btrfs-progs, don't un-export it.
4503  */
4504 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4505                   struct btrfs_path *path, int level, int slot)
4506 {
4507         struct extent_buffer *parent = path->nodes[level];
4508         u32 nritems;
4509         int ret;
4510
4511         nritems = btrfs_header_nritems(parent);
4512         if (slot != nritems - 1) {
4513                 if (level) {
4514                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4515                                         slot + 1, nritems - slot - 1);
4516                         if (ret < 0) {
4517                                 btrfs_abort_transaction(trans, ret);
4518                                 return ret;
4519                         }
4520                 }
4521                 memmove_extent_buffer(parent,
4522                               btrfs_node_key_ptr_offset(parent, slot),
4523                               btrfs_node_key_ptr_offset(parent, slot + 1),
4524                               sizeof(struct btrfs_key_ptr) *
4525                               (nritems - slot - 1));
4526         } else if (level) {
4527                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4528                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4529                 if (ret < 0) {
4530                         btrfs_abort_transaction(trans, ret);
4531                         return ret;
4532                 }
4533         }
4534
4535         nritems--;
4536         btrfs_set_header_nritems(parent, nritems);
4537         if (nritems == 0 && parent == root->node) {
4538                 BUG_ON(btrfs_header_level(root->node) != 1);
4539                 /* just turn the root into a leaf and break */
4540                 btrfs_set_header_level(root->node, 0);
4541         } else if (slot == 0) {
4542                 struct btrfs_disk_key disk_key;
4543
4544                 btrfs_node_key(parent, &disk_key, 0);
4545                 fixup_low_keys(trans, path, &disk_key, level + 1);
4546         }
4547         btrfs_mark_buffer_dirty(trans, parent);
4548         return 0;
4549 }
4550
4551 /*
4552  * a helper function to delete the leaf pointed to by path->slots[1] and
4553  * path->nodes[1].
4554  *
4555  * This deletes the pointer in path->nodes[1] and frees the leaf
4556  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4557  *
4558  * The path must have already been setup for deleting the leaf, including
4559  * all the proper balancing.  path->nodes[1] must be locked.
4560  */
4561 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4562                                    struct btrfs_root *root,
4563                                    struct btrfs_path *path,
4564                                    struct extent_buffer *leaf)
4565 {
4566         int ret;
4567
4568         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4569         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4570         if (ret < 0)
4571                 return ret;
4572
4573         /*
4574          * btrfs_free_extent is expensive, we want to make sure we
4575          * aren't holding any locks when we call it
4576          */
4577         btrfs_unlock_up_safe(path, 0);
4578
4579         root_sub_used(root, leaf->len);
4580
4581         atomic_inc(&leaf->refs);
4582         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4583         free_extent_buffer_stale(leaf);
4584         return 0;
4585 }
4586 /*
4587  * delete the item at the leaf level in path.  If that empties
4588  * the leaf, remove it from the tree
4589  */
4590 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4591                     struct btrfs_path *path, int slot, int nr)
4592 {
4593         struct btrfs_fs_info *fs_info = root->fs_info;
4594         struct extent_buffer *leaf;
4595         int ret = 0;
4596         int wret;
4597         u32 nritems;
4598
4599         leaf = path->nodes[0];
4600         nritems = btrfs_header_nritems(leaf);
4601
4602         if (slot + nr != nritems) {
4603                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4604                 const int data_end = leaf_data_end(leaf);
4605                 struct btrfs_map_token token;
4606                 u32 dsize = 0;
4607                 int i;
4608
4609                 for (i = 0; i < nr; i++)
4610                         dsize += btrfs_item_size(leaf, slot + i);
4611
4612                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4613                                   last_off - data_end);
4614
4615                 btrfs_init_map_token(&token, leaf);
4616                 for (i = slot + nr; i < nritems; i++) {
4617                         u32 ioff;
4618
4619                         ioff = btrfs_token_item_offset(&token, i);
4620                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4621                 }
4622
4623                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4624         }
4625         btrfs_set_header_nritems(leaf, nritems - nr);
4626         nritems -= nr;
4627
4628         /* delete the leaf if we've emptied it */
4629         if (nritems == 0) {
4630                 if (leaf == root->node) {
4631                         btrfs_set_header_level(leaf, 0);
4632                 } else {
4633                         btrfs_clear_buffer_dirty(trans, leaf);
4634                         ret = btrfs_del_leaf(trans, root, path, leaf);
4635                         if (ret < 0)
4636                                 return ret;
4637                 }
4638         } else {
4639                 int used = leaf_space_used(leaf, 0, nritems);
4640                 if (slot == 0) {
4641                         struct btrfs_disk_key disk_key;
4642
4643                         btrfs_item_key(leaf, &disk_key, 0);
4644                         fixup_low_keys(trans, path, &disk_key, 1);
4645                 }
4646
4647                 /*
4648                  * Try to delete the leaf if it is mostly empty. We do this by
4649                  * trying to move all its items into its left and right neighbours.
4650                  * If we can't move all the items, then we don't delete it - it's
4651                  * not ideal, but future insertions might fill the leaf with more
4652                  * items, or items from other leaves might be moved later into our
4653                  * leaf due to deletions on those leaves.
4654                  */
4655                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4656                         u32 min_push_space;
4657
4658                         /* push_leaf_left fixes the path.
4659                          * make sure the path still points to our leaf
4660                          * for possible call to btrfs_del_ptr below
4661                          */
4662                         slot = path->slots[1];
4663                         atomic_inc(&leaf->refs);
4664                         /*
4665                          * We want to be able to at least push one item to the
4666                          * left neighbour leaf, and that's the first item.
4667                          */
4668                         min_push_space = sizeof(struct btrfs_item) +
4669                                 btrfs_item_size(leaf, 0);
4670                         wret = push_leaf_left(trans, root, path, 0,
4671                                               min_push_space, 1, (u32)-1);
4672                         if (wret < 0 && wret != -ENOSPC)
4673                                 ret = wret;
4674
4675                         if (path->nodes[0] == leaf &&
4676                             btrfs_header_nritems(leaf)) {
4677                                 /*
4678                                  * If we were not able to push all items from our
4679                                  * leaf to its left neighbour, then attempt to
4680                                  * either push all the remaining items to the
4681                                  * right neighbour or none. There's no advantage
4682                                  * in pushing only some items, instead of all, as
4683                                  * it's pointless to end up with a leaf having
4684                                  * too few items while the neighbours can be full
4685                                  * or nearly full.
4686                                  */
4687                                 nritems = btrfs_header_nritems(leaf);
4688                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4689                                 wret = push_leaf_right(trans, root, path, 0,
4690                                                        min_push_space, 1, 0);
4691                                 if (wret < 0 && wret != -ENOSPC)
4692                                         ret = wret;
4693                         }
4694
4695                         if (btrfs_header_nritems(leaf) == 0) {
4696                                 path->slots[1] = slot;
4697                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4698                                 if (ret < 0)
4699                                         return ret;
4700                                 free_extent_buffer(leaf);
4701                                 ret = 0;
4702                         } else {
4703                                 /* if we're still in the path, make sure
4704                                  * we're dirty.  Otherwise, one of the
4705                                  * push_leaf functions must have already
4706                                  * dirtied this buffer
4707                                  */
4708                                 if (path->nodes[0] == leaf)
4709                                         btrfs_mark_buffer_dirty(trans, leaf);
4710                                 free_extent_buffer(leaf);
4711                         }
4712                 } else {
4713                         btrfs_mark_buffer_dirty(trans, leaf);
4714                 }
4715         }
4716         return ret;
4717 }
4718
4719 /*
4720  * A helper function to walk down the tree starting at min_key, and looking
4721  * for nodes or leaves that are have a minimum transaction id.
4722  * This is used by the btree defrag code, and tree logging
4723  *
4724  * This does not cow, but it does stuff the starting key it finds back
4725  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4726  * key and get a writable path.
4727  *
4728  * This honors path->lowest_level to prevent descent past a given level
4729  * of the tree.
4730  *
4731  * min_trans indicates the oldest transaction that you are interested
4732  * in walking through.  Any nodes or leaves older than min_trans are
4733  * skipped over (without reading them).
4734  *
4735  * returns zero if something useful was found, < 0 on error and 1 if there
4736  * was nothing in the tree that matched the search criteria.
4737  */
4738 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4739                          struct btrfs_path *path,
4740                          u64 min_trans)
4741 {
4742         struct extent_buffer *cur;
4743         struct btrfs_key found_key;
4744         int slot;
4745         int sret;
4746         u32 nritems;
4747         int level;
4748         int ret = 1;
4749         int keep_locks = path->keep_locks;
4750
4751         ASSERT(!path->nowait);
4752         path->keep_locks = 1;
4753 again:
4754         cur = btrfs_read_lock_root_node(root);
4755         level = btrfs_header_level(cur);
4756         WARN_ON(path->nodes[level]);
4757         path->nodes[level] = cur;
4758         path->locks[level] = BTRFS_READ_LOCK;
4759
4760         if (btrfs_header_generation(cur) < min_trans) {
4761                 ret = 1;
4762                 goto out;
4763         }
4764         while (1) {
4765                 nritems = btrfs_header_nritems(cur);
4766                 level = btrfs_header_level(cur);
4767                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4768                 if (sret < 0) {
4769                         ret = sret;
4770                         goto out;
4771                 }
4772
4773                 /* at the lowest level, we're done, setup the path and exit */
4774                 if (level == path->lowest_level) {
4775                         if (slot >= nritems)
4776                                 goto find_next_key;
4777                         ret = 0;
4778                         path->slots[level] = slot;
4779                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4780                         goto out;
4781                 }
4782                 if (sret && slot > 0)
4783                         slot--;
4784                 /*
4785                  * check this node pointer against the min_trans parameters.
4786                  * If it is too old, skip to the next one.
4787                  */
4788                 while (slot < nritems) {
4789                         u64 gen;
4790
4791                         gen = btrfs_node_ptr_generation(cur, slot);
4792                         if (gen < min_trans) {
4793                                 slot++;
4794                                 continue;
4795                         }
4796                         break;
4797                 }
4798 find_next_key:
4799                 /*
4800                  * we didn't find a candidate key in this node, walk forward
4801                  * and find another one
4802                  */
4803                 if (slot >= nritems) {
4804                         path->slots[level] = slot;
4805                         sret = btrfs_find_next_key(root, path, min_key, level,
4806                                                   min_trans);
4807                         if (sret == 0) {
4808                                 btrfs_release_path(path);
4809                                 goto again;
4810                         } else {
4811                                 goto out;
4812                         }
4813                 }
4814                 /* save our key for returning back */
4815                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4816                 path->slots[level] = slot;
4817                 if (level == path->lowest_level) {
4818                         ret = 0;
4819                         goto out;
4820                 }
4821                 cur = btrfs_read_node_slot(cur, slot);
4822                 if (IS_ERR(cur)) {
4823                         ret = PTR_ERR(cur);
4824                         goto out;
4825                 }
4826
4827                 btrfs_tree_read_lock(cur);
4828
4829                 path->locks[level - 1] = BTRFS_READ_LOCK;
4830                 path->nodes[level - 1] = cur;
4831                 unlock_up(path, level, 1, 0, NULL);
4832         }
4833 out:
4834         path->keep_locks = keep_locks;
4835         if (ret == 0) {
4836                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4837                 memcpy(min_key, &found_key, sizeof(found_key));
4838         }
4839         return ret;
4840 }
4841
4842 /*
4843  * this is similar to btrfs_next_leaf, but does not try to preserve
4844  * and fixup the path.  It looks for and returns the next key in the
4845  * tree based on the current path and the min_trans parameters.
4846  *
4847  * 0 is returned if another key is found, < 0 if there are any errors
4848  * and 1 is returned if there are no higher keys in the tree
4849  *
4850  * path->keep_locks should be set to 1 on the search made before
4851  * calling this function.
4852  */
4853 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4854                         struct btrfs_key *key, int level, u64 min_trans)
4855 {
4856         int slot;
4857         struct extent_buffer *c;
4858
4859         WARN_ON(!path->keep_locks && !path->skip_locking);
4860         while (level < BTRFS_MAX_LEVEL) {
4861                 if (!path->nodes[level])
4862                         return 1;
4863
4864                 slot = path->slots[level] + 1;
4865                 c = path->nodes[level];
4866 next:
4867                 if (slot >= btrfs_header_nritems(c)) {
4868                         int ret;
4869                         int orig_lowest;
4870                         struct btrfs_key cur_key;
4871                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4872                             !path->nodes[level + 1])
4873                                 return 1;
4874
4875                         if (path->locks[level + 1] || path->skip_locking) {
4876                                 level++;
4877                                 continue;
4878                         }
4879
4880                         slot = btrfs_header_nritems(c) - 1;
4881                         if (level == 0)
4882                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4883                         else
4884                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4885
4886                         orig_lowest = path->lowest_level;
4887                         btrfs_release_path(path);
4888                         path->lowest_level = level;
4889                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4890                                                 0, 0);
4891                         path->lowest_level = orig_lowest;
4892                         if (ret < 0)
4893                                 return ret;
4894
4895                         c = path->nodes[level];
4896                         slot = path->slots[level];
4897                         if (ret == 0)
4898                                 slot++;
4899                         goto next;
4900                 }
4901
4902                 if (level == 0)
4903                         btrfs_item_key_to_cpu(c, key, slot);
4904                 else {
4905                         u64 gen = btrfs_node_ptr_generation(c, slot);
4906
4907                         if (gen < min_trans) {
4908                                 slot++;
4909                                 goto next;
4910                         }
4911                         btrfs_node_key_to_cpu(c, key, slot);
4912                 }
4913                 return 0;
4914         }
4915         return 1;
4916 }
4917
4918 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4919                         u64 time_seq)
4920 {
4921         int slot;
4922         int level;
4923         struct extent_buffer *c;
4924         struct extent_buffer *next;
4925         struct btrfs_fs_info *fs_info = root->fs_info;
4926         struct btrfs_key key;
4927         bool need_commit_sem = false;
4928         u32 nritems;
4929         int ret;
4930         int i;
4931
4932         /*
4933          * The nowait semantics are used only for write paths, where we don't
4934          * use the tree mod log and sequence numbers.
4935          */
4936         if (time_seq)
4937                 ASSERT(!path->nowait);
4938
4939         nritems = btrfs_header_nritems(path->nodes[0]);
4940         if (nritems == 0)
4941                 return 1;
4942
4943         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4944 again:
4945         level = 1;
4946         next = NULL;
4947         btrfs_release_path(path);
4948
4949         path->keep_locks = 1;
4950
4951         if (time_seq) {
4952                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4953         } else {
4954                 if (path->need_commit_sem) {
4955                         path->need_commit_sem = 0;
4956                         need_commit_sem = true;
4957                         if (path->nowait) {
4958                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4959                                         ret = -EAGAIN;
4960                                         goto done;
4961                                 }
4962                         } else {
4963                                 down_read(&fs_info->commit_root_sem);
4964                         }
4965                 }
4966                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4967         }
4968         path->keep_locks = 0;
4969
4970         if (ret < 0)
4971                 goto done;
4972
4973         nritems = btrfs_header_nritems(path->nodes[0]);
4974         /*
4975          * by releasing the path above we dropped all our locks.  A balance
4976          * could have added more items next to the key that used to be
4977          * at the very end of the block.  So, check again here and
4978          * advance the path if there are now more items available.
4979          */
4980         if (nritems > 0 && path->slots[0] < nritems - 1) {
4981                 if (ret == 0)
4982                         path->slots[0]++;
4983                 ret = 0;
4984                 goto done;
4985         }
4986         /*
4987          * So the above check misses one case:
4988          * - after releasing the path above, someone has removed the item that
4989          *   used to be at the very end of the block, and balance between leafs
4990          *   gets another one with bigger key.offset to replace it.
4991          *
4992          * This one should be returned as well, or we can get leaf corruption
4993          * later(esp. in __btrfs_drop_extents()).
4994          *
4995          * And a bit more explanation about this check,
4996          * with ret > 0, the key isn't found, the path points to the slot
4997          * where it should be inserted, so the path->slots[0] item must be the
4998          * bigger one.
4999          */
5000         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5001                 ret = 0;
5002                 goto done;
5003         }
5004
5005         while (level < BTRFS_MAX_LEVEL) {
5006                 if (!path->nodes[level]) {
5007                         ret = 1;
5008                         goto done;
5009                 }
5010
5011                 slot = path->slots[level] + 1;
5012                 c = path->nodes[level];
5013                 if (slot >= btrfs_header_nritems(c)) {
5014                         level++;
5015                         if (level == BTRFS_MAX_LEVEL) {
5016                                 ret = 1;
5017                                 goto done;
5018                         }
5019                         continue;
5020                 }
5021
5022
5023                 /*
5024                  * Our current level is where we're going to start from, and to
5025                  * make sure lockdep doesn't complain we need to drop our locks
5026                  * and nodes from 0 to our current level.
5027                  */
5028                 for (i = 0; i < level; i++) {
5029                         if (path->locks[level]) {
5030                                 btrfs_tree_read_unlock(path->nodes[i]);
5031                                 path->locks[i] = 0;
5032                         }
5033                         free_extent_buffer(path->nodes[i]);
5034                         path->nodes[i] = NULL;
5035                 }
5036
5037                 next = c;
5038                 ret = read_block_for_search(root, path, &next, level,
5039                                             slot, &key);
5040                 if (ret == -EAGAIN && !path->nowait)
5041                         goto again;
5042
5043                 if (ret < 0) {
5044                         btrfs_release_path(path);
5045                         goto done;
5046                 }
5047
5048                 if (!path->skip_locking) {
5049                         ret = btrfs_try_tree_read_lock(next);
5050                         if (!ret && path->nowait) {
5051                                 ret = -EAGAIN;
5052                                 goto done;
5053                         }
5054                         if (!ret && time_seq) {
5055                                 /*
5056                                  * If we don't get the lock, we may be racing
5057                                  * with push_leaf_left, holding that lock while
5058                                  * itself waiting for the leaf we've currently
5059                                  * locked. To solve this situation, we give up
5060                                  * on our lock and cycle.
5061                                  */
5062                                 free_extent_buffer(next);
5063                                 btrfs_release_path(path);
5064                                 cond_resched();
5065                                 goto again;
5066                         }
5067                         if (!ret)
5068                                 btrfs_tree_read_lock(next);
5069                 }
5070                 break;
5071         }
5072         path->slots[level] = slot;
5073         while (1) {
5074                 level--;
5075                 path->nodes[level] = next;
5076                 path->slots[level] = 0;
5077                 if (!path->skip_locking)
5078                         path->locks[level] = BTRFS_READ_LOCK;
5079                 if (!level)
5080                         break;
5081
5082                 ret = read_block_for_search(root, path, &next, level,
5083                                             0, &key);
5084                 if (ret == -EAGAIN && !path->nowait)
5085                         goto again;
5086
5087                 if (ret < 0) {
5088                         btrfs_release_path(path);
5089                         goto done;
5090                 }
5091
5092                 if (!path->skip_locking) {
5093                         if (path->nowait) {
5094                                 if (!btrfs_try_tree_read_lock(next)) {
5095                                         ret = -EAGAIN;
5096                                         goto done;
5097                                 }
5098                         } else {
5099                                 btrfs_tree_read_lock(next);
5100                         }
5101                 }
5102         }
5103         ret = 0;
5104 done:
5105         unlock_up(path, 0, 1, 0, NULL);
5106         if (need_commit_sem) {
5107                 int ret2;
5108
5109                 path->need_commit_sem = 1;
5110                 ret2 = finish_need_commit_sem_search(path);
5111                 up_read(&fs_info->commit_root_sem);
5112                 if (ret2)
5113                         ret = ret2;
5114         }
5115
5116         return ret;
5117 }
5118
5119 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5120 {
5121         path->slots[0]++;
5122         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5123                 return btrfs_next_old_leaf(root, path, time_seq);
5124         return 0;
5125 }
5126
5127 /*
5128  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5129  * searching until it gets past min_objectid or finds an item of 'type'
5130  *
5131  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5132  */
5133 int btrfs_previous_item(struct btrfs_root *root,
5134                         struct btrfs_path *path, u64 min_objectid,
5135                         int type)
5136 {
5137         struct btrfs_key found_key;
5138         struct extent_buffer *leaf;
5139         u32 nritems;
5140         int ret;
5141
5142         while (1) {
5143                 if (path->slots[0] == 0) {
5144                         ret = btrfs_prev_leaf(root, path);
5145                         if (ret != 0)
5146                                 return ret;
5147                 } else {
5148                         path->slots[0]--;
5149                 }
5150                 leaf = path->nodes[0];
5151                 nritems = btrfs_header_nritems(leaf);
5152                 if (nritems == 0)
5153                         return 1;
5154                 if (path->slots[0] == nritems)
5155                         path->slots[0]--;
5156
5157                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5158                 if (found_key.objectid < min_objectid)
5159                         break;
5160                 if (found_key.type == type)
5161                         return 0;
5162                 if (found_key.objectid == min_objectid &&
5163                     found_key.type < type)
5164                         break;
5165         }
5166         return 1;
5167 }
5168
5169 /*
5170  * search in extent tree to find a previous Metadata/Data extent item with
5171  * min objecitd.
5172  *
5173  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5174  */
5175 int btrfs_previous_extent_item(struct btrfs_root *root,
5176                         struct btrfs_path *path, u64 min_objectid)
5177 {
5178         struct btrfs_key found_key;
5179         struct extent_buffer *leaf;
5180         u32 nritems;
5181         int ret;
5182
5183         while (1) {
5184                 if (path->slots[0] == 0) {
5185                         ret = btrfs_prev_leaf(root, path);
5186                         if (ret != 0)
5187                                 return ret;
5188                 } else {
5189                         path->slots[0]--;
5190                 }
5191                 leaf = path->nodes[0];
5192                 nritems = btrfs_header_nritems(leaf);
5193                 if (nritems == 0)
5194                         return 1;
5195                 if (path->slots[0] == nritems)
5196                         path->slots[0]--;
5197
5198                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5199                 if (found_key.objectid < min_objectid)
5200                         break;
5201                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5202                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5203                         return 0;
5204                 if (found_key.objectid == min_objectid &&
5205                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5206                         break;
5207         }
5208         return 1;
5209 }
5210
5211 int __init btrfs_ctree_init(void)
5212 {
5213         btrfs_path_cachep = kmem_cache_create("btrfs_path",
5214                         sizeof(struct btrfs_path), 0,
5215                         SLAB_MEM_SPREAD, NULL);
5216         if (!btrfs_path_cachep)
5217                 return -ENOMEM;
5218         return 0;
5219 }
5220
5221 void __cold btrfs_ctree_exit(void)
5222 {
5223         kmem_cache_destroy(btrfs_path_cachep);
5224 }