Merge tag 'for-linus-20131025' of git://git.infradead.org/linux-mtd
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static int btrfs_decompress_biovec(int type, struct page **pages_in,
86                                    u64 disk_start, struct bio_vec *bvec,
87                                    int vcnt, size_t srclen);
88
89 static inline int compressed_bio_size(struct btrfs_root *root,
90                                       unsigned long disk_size)
91 {
92         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
93
94         return sizeof(struct compressed_bio) +
95                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
96                 csum_size;
97 }
98
99 static struct bio *compressed_bio_alloc(struct block_device *bdev,
100                                         u64 first_byte, gfp_t gfp_flags)
101 {
102         int nr_vecs;
103
104         nr_vecs = bio_get_nr_vecs(bdev);
105         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
106 }
107
108 static int check_compressed_csum(struct inode *inode,
109                                  struct compressed_bio *cb,
110                                  u64 disk_start)
111 {
112         int ret;
113         struct page *page;
114         unsigned long i;
115         char *kaddr;
116         u32 csum;
117         u32 *cb_sum = &cb->sums;
118
119         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
120                 return 0;
121
122         for (i = 0; i < cb->nr_pages; i++) {
123                 page = cb->compressed_pages[i];
124                 csum = ~(u32)0;
125
126                 kaddr = kmap_atomic(page);
127                 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
128                 btrfs_csum_final(csum, (char *)&csum);
129                 kunmap_atomic(kaddr);
130
131                 if (csum != *cb_sum) {
132                         printk(KERN_INFO "btrfs csum failed ino %llu "
133                                "extent %llu csum %u "
134                                "wanted %u mirror %d\n",
135                                btrfs_ino(inode), disk_start, csum, *cb_sum,
136                                cb->mirror_num);
137                         ret = -EIO;
138                         goto fail;
139                 }
140                 cb_sum++;
141
142         }
143         ret = 0;
144 fail:
145         return ret;
146 }
147
148 /* when we finish reading compressed pages from the disk, we
149  * decompress them and then run the bio end_io routines on the
150  * decompressed pages (in the inode address space).
151  *
152  * This allows the checksumming and other IO error handling routines
153  * to work normally
154  *
155  * The compressed pages are freed here, and it must be run
156  * in process context
157  */
158 static void end_compressed_bio_read(struct bio *bio, int err)
159 {
160         struct compressed_bio *cb = bio->bi_private;
161         struct inode *inode;
162         struct page *page;
163         unsigned long index;
164         int ret;
165
166         if (err)
167                 cb->errors = 1;
168
169         /* if there are more bios still pending for this compressed
170          * extent, just exit
171          */
172         if (!atomic_dec_and_test(&cb->pending_bios))
173                 goto out;
174
175         inode = cb->inode;
176         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
177         if (ret)
178                 goto csum_failed;
179
180         /* ok, we're the last bio for this extent, lets start
181          * the decompression.
182          */
183         ret = btrfs_decompress_biovec(cb->compress_type,
184                                       cb->compressed_pages,
185                                       cb->start,
186                                       cb->orig_bio->bi_io_vec,
187                                       cb->orig_bio->bi_vcnt,
188                                       cb->compressed_len);
189 csum_failed:
190         if (ret)
191                 cb->errors = 1;
192
193         /* release the compressed pages */
194         index = 0;
195         for (index = 0; index < cb->nr_pages; index++) {
196                 page = cb->compressed_pages[index];
197                 page->mapping = NULL;
198                 page_cache_release(page);
199         }
200
201         /* do io completion on the original bio */
202         if (cb->errors) {
203                 bio_io_error(cb->orig_bio);
204         } else {
205                 int bio_index = 0;
206                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
207
208                 /*
209                  * we have verified the checksum already, set page
210                  * checked so the end_io handlers know about it
211                  */
212                 while (bio_index < cb->orig_bio->bi_vcnt) {
213                         SetPageChecked(bvec->bv_page);
214                         bvec++;
215                         bio_index++;
216                 }
217                 bio_endio(cb->orig_bio, 0);
218         }
219
220         /* finally free the cb struct */
221         kfree(cb->compressed_pages);
222         kfree(cb);
223 out:
224         bio_put(bio);
225 }
226
227 /*
228  * Clear the writeback bits on all of the file
229  * pages for a compressed write
230  */
231 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
232                                               unsigned long ram_size)
233 {
234         unsigned long index = start >> PAGE_CACHE_SHIFT;
235         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
236         struct page *pages[16];
237         unsigned long nr_pages = end_index - index + 1;
238         int i;
239         int ret;
240
241         while (nr_pages > 0) {
242                 ret = find_get_pages_contig(inode->i_mapping, index,
243                                      min_t(unsigned long,
244                                      nr_pages, ARRAY_SIZE(pages)), pages);
245                 if (ret == 0) {
246                         nr_pages -= 1;
247                         index += 1;
248                         continue;
249                 }
250                 for (i = 0; i < ret; i++) {
251                         end_page_writeback(pages[i]);
252                         page_cache_release(pages[i]);
253                 }
254                 nr_pages -= ret;
255                 index += ret;
256         }
257         /* the inode may be gone now */
258 }
259
260 /*
261  * do the cleanup once all the compressed pages hit the disk.
262  * This will clear writeback on the file pages and free the compressed
263  * pages.
264  *
265  * This also calls the writeback end hooks for the file pages so that
266  * metadata and checksums can be updated in the file.
267  */
268 static void end_compressed_bio_write(struct bio *bio, int err)
269 {
270         struct extent_io_tree *tree;
271         struct compressed_bio *cb = bio->bi_private;
272         struct inode *inode;
273         struct page *page;
274         unsigned long index;
275
276         if (err)
277                 cb->errors = 1;
278
279         /* if there are more bios still pending for this compressed
280          * extent, just exit
281          */
282         if (!atomic_dec_and_test(&cb->pending_bios))
283                 goto out;
284
285         /* ok, we're the last bio for this extent, step one is to
286          * call back into the FS and do all the end_io operations
287          */
288         inode = cb->inode;
289         tree = &BTRFS_I(inode)->io_tree;
290         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
291         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
292                                          cb->start,
293                                          cb->start + cb->len - 1,
294                                          NULL, 1);
295         cb->compressed_pages[0]->mapping = NULL;
296
297         end_compressed_writeback(inode, cb->start, cb->len);
298         /* note, our inode could be gone now */
299
300         /*
301          * release the compressed pages, these came from alloc_page and
302          * are not attached to the inode at all
303          */
304         index = 0;
305         for (index = 0; index < cb->nr_pages; index++) {
306                 page = cb->compressed_pages[index];
307                 page->mapping = NULL;
308                 page_cache_release(page);
309         }
310
311         /* finally free the cb struct */
312         kfree(cb->compressed_pages);
313         kfree(cb);
314 out:
315         bio_put(bio);
316 }
317
318 /*
319  * worker function to build and submit bios for previously compressed pages.
320  * The corresponding pages in the inode should be marked for writeback
321  * and the compressed pages should have a reference on them for dropping
322  * when the IO is complete.
323  *
324  * This also checksums the file bytes and gets things ready for
325  * the end io hooks.
326  */
327 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
328                                  unsigned long len, u64 disk_start,
329                                  unsigned long compressed_len,
330                                  struct page **compressed_pages,
331                                  unsigned long nr_pages)
332 {
333         struct bio *bio = NULL;
334         struct btrfs_root *root = BTRFS_I(inode)->root;
335         struct compressed_bio *cb;
336         unsigned long bytes_left;
337         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
338         int pg_index = 0;
339         struct page *page;
340         u64 first_byte = disk_start;
341         struct block_device *bdev;
342         int ret;
343         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
344
345         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
346         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
347         if (!cb)
348                 return -ENOMEM;
349         atomic_set(&cb->pending_bios, 0);
350         cb->errors = 0;
351         cb->inode = inode;
352         cb->start = start;
353         cb->len = len;
354         cb->mirror_num = 0;
355         cb->compressed_pages = compressed_pages;
356         cb->compressed_len = compressed_len;
357         cb->orig_bio = NULL;
358         cb->nr_pages = nr_pages;
359
360         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
361
362         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
363         if(!bio) {
364                 kfree(cb);
365                 return -ENOMEM;
366         }
367         bio->bi_private = cb;
368         bio->bi_end_io = end_compressed_bio_write;
369         atomic_inc(&cb->pending_bios);
370
371         /* create and submit bios for the compressed pages */
372         bytes_left = compressed_len;
373         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374                 page = compressed_pages[pg_index];
375                 page->mapping = inode->i_mapping;
376                 if (bio->bi_size)
377                         ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
378                                                            PAGE_CACHE_SIZE,
379                                                            bio, 0);
380                 else
381                         ret = 0;
382
383                 page->mapping = NULL;
384                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
385                     PAGE_CACHE_SIZE) {
386                         bio_get(bio);
387
388                         /*
389                          * inc the count before we submit the bio so
390                          * we know the end IO handler won't happen before
391                          * we inc the count.  Otherwise, the cb might get
392                          * freed before we're done setting it up
393                          */
394                         atomic_inc(&cb->pending_bios);
395                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
396                         BUG_ON(ret); /* -ENOMEM */
397
398                         if (!skip_sum) {
399                                 ret = btrfs_csum_one_bio(root, inode, bio,
400                                                          start, 1);
401                                 BUG_ON(ret); /* -ENOMEM */
402                         }
403
404                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405                         BUG_ON(ret); /* -ENOMEM */
406
407                         bio_put(bio);
408
409                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410                         BUG_ON(!bio);
411                         bio->bi_private = cb;
412                         bio->bi_end_io = end_compressed_bio_write;
413                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
414                 }
415                 if (bytes_left < PAGE_CACHE_SIZE) {
416                         printk("bytes left %lu compress len %lu nr %lu\n",
417                                bytes_left, cb->compressed_len, cb->nr_pages);
418                 }
419                 bytes_left -= PAGE_CACHE_SIZE;
420                 first_byte += PAGE_CACHE_SIZE;
421                 cond_resched();
422         }
423         bio_get(bio);
424
425         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
426         BUG_ON(ret); /* -ENOMEM */
427
428         if (!skip_sum) {
429                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
430                 BUG_ON(ret); /* -ENOMEM */
431         }
432
433         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
434         BUG_ON(ret); /* -ENOMEM */
435
436         bio_put(bio);
437         return 0;
438 }
439
440 static noinline int add_ra_bio_pages(struct inode *inode,
441                                      u64 compressed_end,
442                                      struct compressed_bio *cb)
443 {
444         unsigned long end_index;
445         unsigned long pg_index;
446         u64 last_offset;
447         u64 isize = i_size_read(inode);
448         int ret;
449         struct page *page;
450         unsigned long nr_pages = 0;
451         struct extent_map *em;
452         struct address_space *mapping = inode->i_mapping;
453         struct extent_map_tree *em_tree;
454         struct extent_io_tree *tree;
455         u64 end;
456         int misses = 0;
457
458         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
459         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
460         em_tree = &BTRFS_I(inode)->extent_tree;
461         tree = &BTRFS_I(inode)->io_tree;
462
463         if (isize == 0)
464                 return 0;
465
466         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
467
468         while (last_offset < compressed_end) {
469                 pg_index = last_offset >> PAGE_CACHE_SHIFT;
470
471                 if (pg_index > end_index)
472                         break;
473
474                 rcu_read_lock();
475                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
476                 rcu_read_unlock();
477                 if (page) {
478                         misses++;
479                         if (misses > 4)
480                                 break;
481                         goto next;
482                 }
483
484                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
485                                                                 ~__GFP_FS);
486                 if (!page)
487                         break;
488
489                 if (add_to_page_cache_lru(page, mapping, pg_index,
490                                                                 GFP_NOFS)) {
491                         page_cache_release(page);
492                         goto next;
493                 }
494
495                 end = last_offset + PAGE_CACHE_SIZE - 1;
496                 /*
497                  * at this point, we have a locked page in the page cache
498                  * for these bytes in the file.  But, we have to make
499                  * sure they map to this compressed extent on disk.
500                  */
501                 set_page_extent_mapped(page);
502                 lock_extent(tree, last_offset, end);
503                 read_lock(&em_tree->lock);
504                 em = lookup_extent_mapping(em_tree, last_offset,
505                                            PAGE_CACHE_SIZE);
506                 read_unlock(&em_tree->lock);
507
508                 if (!em || last_offset < em->start ||
509                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
510                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
511                         free_extent_map(em);
512                         unlock_extent(tree, last_offset, end);
513                         unlock_page(page);
514                         page_cache_release(page);
515                         break;
516                 }
517                 free_extent_map(em);
518
519                 if (page->index == end_index) {
520                         char *userpage;
521                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
522
523                         if (zero_offset) {
524                                 int zeros;
525                                 zeros = PAGE_CACHE_SIZE - zero_offset;
526                                 userpage = kmap_atomic(page);
527                                 memset(userpage + zero_offset, 0, zeros);
528                                 flush_dcache_page(page);
529                                 kunmap_atomic(userpage);
530                         }
531                 }
532
533                 ret = bio_add_page(cb->orig_bio, page,
534                                    PAGE_CACHE_SIZE, 0);
535
536                 if (ret == PAGE_CACHE_SIZE) {
537                         nr_pages++;
538                         page_cache_release(page);
539                 } else {
540                         unlock_extent(tree, last_offset, end);
541                         unlock_page(page);
542                         page_cache_release(page);
543                         break;
544                 }
545 next:
546                 last_offset += PAGE_CACHE_SIZE;
547         }
548         return 0;
549 }
550
551 /*
552  * for a compressed read, the bio we get passed has all the inode pages
553  * in it.  We don't actually do IO on those pages but allocate new ones
554  * to hold the compressed pages on disk.
555  *
556  * bio->bi_sector points to the compressed extent on disk
557  * bio->bi_io_vec points to all of the inode pages
558  * bio->bi_vcnt is a count of pages
559  *
560  * After the compressed pages are read, we copy the bytes into the
561  * bio we were passed and then call the bio end_io calls
562  */
563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564                                  int mirror_num, unsigned long bio_flags)
565 {
566         struct extent_io_tree *tree;
567         struct extent_map_tree *em_tree;
568         struct compressed_bio *cb;
569         struct btrfs_root *root = BTRFS_I(inode)->root;
570         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
571         unsigned long compressed_len;
572         unsigned long nr_pages;
573         unsigned long pg_index;
574         struct page *page;
575         struct block_device *bdev;
576         struct bio *comp_bio;
577         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
578         u64 em_len;
579         u64 em_start;
580         struct extent_map *em;
581         int ret = -ENOMEM;
582         int faili = 0;
583         u32 *sums;
584
585         tree = &BTRFS_I(inode)->io_tree;
586         em_tree = &BTRFS_I(inode)->extent_tree;
587
588         /* we need the actual starting offset of this extent in the file */
589         read_lock(&em_tree->lock);
590         em = lookup_extent_mapping(em_tree,
591                                    page_offset(bio->bi_io_vec->bv_page),
592                                    PAGE_CACHE_SIZE);
593         read_unlock(&em_tree->lock);
594         if (!em)
595                 return -EIO;
596
597         compressed_len = em->block_len;
598         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
599         if (!cb)
600                 goto out;
601
602         atomic_set(&cb->pending_bios, 0);
603         cb->errors = 0;
604         cb->inode = inode;
605         cb->mirror_num = mirror_num;
606         sums = &cb->sums;
607
608         cb->start = em->orig_start;
609         em_len = em->len;
610         em_start = em->start;
611
612         free_extent_map(em);
613         em = NULL;
614
615         cb->len = uncompressed_len;
616         cb->compressed_len = compressed_len;
617         cb->compress_type = extent_compress_type(bio_flags);
618         cb->orig_bio = bio;
619
620         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
621                                  PAGE_CACHE_SIZE;
622         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
623                                        GFP_NOFS);
624         if (!cb->compressed_pages)
625                 goto fail1;
626
627         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
628
629         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
631                                                               __GFP_HIGHMEM);
632                 if (!cb->compressed_pages[pg_index]) {
633                         faili = pg_index - 1;
634                         ret = -ENOMEM;
635                         goto fail2;
636                 }
637         }
638         faili = nr_pages - 1;
639         cb->nr_pages = nr_pages;
640
641         /* In the parent-locked case, we only locked the range we are
642          * interested in.  In all other cases, we can opportunistically
643          * cache decompressed data that goes beyond the requested range. */
644         if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
645                 add_ra_bio_pages(inode, em_start + em_len, cb);
646
647         /* include any pages we added in add_ra-bio_pages */
648         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
649         cb->len = uncompressed_len;
650
651         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
652         if (!comp_bio)
653                 goto fail2;
654         comp_bio->bi_private = cb;
655         comp_bio->bi_end_io = end_compressed_bio_read;
656         atomic_inc(&cb->pending_bios);
657
658         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
659                 page = cb->compressed_pages[pg_index];
660                 page->mapping = inode->i_mapping;
661                 page->index = em_start >> PAGE_CACHE_SHIFT;
662
663                 if (comp_bio->bi_size)
664                         ret = tree->ops->merge_bio_hook(READ, page, 0,
665                                                         PAGE_CACHE_SIZE,
666                                                         comp_bio, 0);
667                 else
668                         ret = 0;
669
670                 page->mapping = NULL;
671                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
672                     PAGE_CACHE_SIZE) {
673                         bio_get(comp_bio);
674
675                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
676                         BUG_ON(ret); /* -ENOMEM */
677
678                         /*
679                          * inc the count before we submit the bio so
680                          * we know the end IO handler won't happen before
681                          * we inc the count.  Otherwise, the cb might get
682                          * freed before we're done setting it up
683                          */
684                         atomic_inc(&cb->pending_bios);
685
686                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
687                                 ret = btrfs_lookup_bio_sums(root, inode,
688                                                         comp_bio, sums);
689                                 BUG_ON(ret); /* -ENOMEM */
690                         }
691                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
692                                 root->sectorsize;
693
694                         ret = btrfs_map_bio(root, READ, comp_bio,
695                                             mirror_num, 0);
696                         if (ret)
697                                 bio_endio(comp_bio, ret);
698
699                         bio_put(comp_bio);
700
701                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
702                                                         GFP_NOFS);
703                         BUG_ON(!comp_bio);
704                         comp_bio->bi_private = cb;
705                         comp_bio->bi_end_io = end_compressed_bio_read;
706
707                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
708                 }
709                 cur_disk_byte += PAGE_CACHE_SIZE;
710         }
711         bio_get(comp_bio);
712
713         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
714         BUG_ON(ret); /* -ENOMEM */
715
716         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
717                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
718                 BUG_ON(ret); /* -ENOMEM */
719         }
720
721         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
722         if (ret)
723                 bio_endio(comp_bio, ret);
724
725         bio_put(comp_bio);
726         return 0;
727
728 fail2:
729         while (faili >= 0) {
730                 __free_page(cb->compressed_pages[faili]);
731                 faili--;
732         }
733
734         kfree(cb->compressed_pages);
735 fail1:
736         kfree(cb);
737 out:
738         free_extent_map(em);
739         return ret;
740 }
741
742 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
743 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
744 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
745 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
746 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
747
748 static struct btrfs_compress_op *btrfs_compress_op[] = {
749         &btrfs_zlib_compress,
750         &btrfs_lzo_compress,
751 };
752
753 void __init btrfs_init_compress(void)
754 {
755         int i;
756
757         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
758                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
759                 spin_lock_init(&comp_workspace_lock[i]);
760                 atomic_set(&comp_alloc_workspace[i], 0);
761                 init_waitqueue_head(&comp_workspace_wait[i]);
762         }
763 }
764
765 /*
766  * this finds an available workspace or allocates a new one
767  * ERR_PTR is returned if things go bad.
768  */
769 static struct list_head *find_workspace(int type)
770 {
771         struct list_head *workspace;
772         int cpus = num_online_cpus();
773         int idx = type - 1;
774
775         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
776         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
777         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
778         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
779         int *num_workspace                      = &comp_num_workspace[idx];
780 again:
781         spin_lock(workspace_lock);
782         if (!list_empty(idle_workspace)) {
783                 workspace = idle_workspace->next;
784                 list_del(workspace);
785                 (*num_workspace)--;
786                 spin_unlock(workspace_lock);
787                 return workspace;
788
789         }
790         if (atomic_read(alloc_workspace) > cpus) {
791                 DEFINE_WAIT(wait);
792
793                 spin_unlock(workspace_lock);
794                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
795                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
796                         schedule();
797                 finish_wait(workspace_wait, &wait);
798                 goto again;
799         }
800         atomic_inc(alloc_workspace);
801         spin_unlock(workspace_lock);
802
803         workspace = btrfs_compress_op[idx]->alloc_workspace();
804         if (IS_ERR(workspace)) {
805                 atomic_dec(alloc_workspace);
806                 wake_up(workspace_wait);
807         }
808         return workspace;
809 }
810
811 /*
812  * put a workspace struct back on the list or free it if we have enough
813  * idle ones sitting around
814  */
815 static void free_workspace(int type, struct list_head *workspace)
816 {
817         int idx = type - 1;
818         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
819         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
820         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
821         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
822         int *num_workspace                      = &comp_num_workspace[idx];
823
824         spin_lock(workspace_lock);
825         if (*num_workspace < num_online_cpus()) {
826                 list_add_tail(workspace, idle_workspace);
827                 (*num_workspace)++;
828                 spin_unlock(workspace_lock);
829                 goto wake;
830         }
831         spin_unlock(workspace_lock);
832
833         btrfs_compress_op[idx]->free_workspace(workspace);
834         atomic_dec(alloc_workspace);
835 wake:
836         smp_mb();
837         if (waitqueue_active(workspace_wait))
838                 wake_up(workspace_wait);
839 }
840
841 /*
842  * cleanup function for module exit
843  */
844 static void free_workspaces(void)
845 {
846         struct list_head *workspace;
847         int i;
848
849         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
850                 while (!list_empty(&comp_idle_workspace[i])) {
851                         workspace = comp_idle_workspace[i].next;
852                         list_del(workspace);
853                         btrfs_compress_op[i]->free_workspace(workspace);
854                         atomic_dec(&comp_alloc_workspace[i]);
855                 }
856         }
857 }
858
859 /*
860  * given an address space and start/len, compress the bytes.
861  *
862  * pages are allocated to hold the compressed result and stored
863  * in 'pages'
864  *
865  * out_pages is used to return the number of pages allocated.  There
866  * may be pages allocated even if we return an error
867  *
868  * total_in is used to return the number of bytes actually read.  It
869  * may be smaller then len if we had to exit early because we
870  * ran out of room in the pages array or because we cross the
871  * max_out threshold.
872  *
873  * total_out is used to return the total number of compressed bytes
874  *
875  * max_out tells us the max number of bytes that we're allowed to
876  * stuff into pages
877  */
878 int btrfs_compress_pages(int type, struct address_space *mapping,
879                          u64 start, unsigned long len,
880                          struct page **pages,
881                          unsigned long nr_dest_pages,
882                          unsigned long *out_pages,
883                          unsigned long *total_in,
884                          unsigned long *total_out,
885                          unsigned long max_out)
886 {
887         struct list_head *workspace;
888         int ret;
889
890         workspace = find_workspace(type);
891         if (IS_ERR(workspace))
892                 return -1;
893
894         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
895                                                       start, len, pages,
896                                                       nr_dest_pages, out_pages,
897                                                       total_in, total_out,
898                                                       max_out);
899         free_workspace(type, workspace);
900         return ret;
901 }
902
903 /*
904  * pages_in is an array of pages with compressed data.
905  *
906  * disk_start is the starting logical offset of this array in the file
907  *
908  * bvec is a bio_vec of pages from the file that we want to decompress into
909  *
910  * vcnt is the count of pages in the biovec
911  *
912  * srclen is the number of bytes in pages_in
913  *
914  * The basic idea is that we have a bio that was created by readpages.
915  * The pages in the bio are for the uncompressed data, and they may not
916  * be contiguous.  They all correspond to the range of bytes covered by
917  * the compressed extent.
918  */
919 static int btrfs_decompress_biovec(int type, struct page **pages_in,
920                                    u64 disk_start, struct bio_vec *bvec,
921                                    int vcnt, size_t srclen)
922 {
923         struct list_head *workspace;
924         int ret;
925
926         workspace = find_workspace(type);
927         if (IS_ERR(workspace))
928                 return -ENOMEM;
929
930         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
931                                                          disk_start,
932                                                          bvec, vcnt, srclen);
933         free_workspace(type, workspace);
934         return ret;
935 }
936
937 /*
938  * a less complex decompression routine.  Our compressed data fits in a
939  * single page, and we want to read a single page out of it.
940  * start_byte tells us the offset into the compressed data we're interested in
941  */
942 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
943                      unsigned long start_byte, size_t srclen, size_t destlen)
944 {
945         struct list_head *workspace;
946         int ret;
947
948         workspace = find_workspace(type);
949         if (IS_ERR(workspace))
950                 return -ENOMEM;
951
952         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
953                                                   dest_page, start_byte,
954                                                   srclen, destlen);
955
956         free_workspace(type, workspace);
957         return ret;
958 }
959
960 void btrfs_exit_compress(void)
961 {
962         free_workspaces();
963 }
964
965 /*
966  * Copy uncompressed data from working buffer to pages.
967  *
968  * buf_start is the byte offset we're of the start of our workspace buffer.
969  *
970  * total_out is the last byte of the buffer
971  */
972 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
973                               unsigned long total_out, u64 disk_start,
974                               struct bio_vec *bvec, int vcnt,
975                               unsigned long *pg_index,
976                               unsigned long *pg_offset)
977 {
978         unsigned long buf_offset;
979         unsigned long current_buf_start;
980         unsigned long start_byte;
981         unsigned long working_bytes = total_out - buf_start;
982         unsigned long bytes;
983         char *kaddr;
984         struct page *page_out = bvec[*pg_index].bv_page;
985
986         /*
987          * start byte is the first byte of the page we're currently
988          * copying into relative to the start of the compressed data.
989          */
990         start_byte = page_offset(page_out) - disk_start;
991
992         /* we haven't yet hit data corresponding to this page */
993         if (total_out <= start_byte)
994                 return 1;
995
996         /*
997          * the start of the data we care about is offset into
998          * the middle of our working buffer
999          */
1000         if (total_out > start_byte && buf_start < start_byte) {
1001                 buf_offset = start_byte - buf_start;
1002                 working_bytes -= buf_offset;
1003         } else {
1004                 buf_offset = 0;
1005         }
1006         current_buf_start = buf_start;
1007
1008         /* copy bytes from the working buffer into the pages */
1009         while (working_bytes > 0) {
1010                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1011                             PAGE_CACHE_SIZE - buf_offset);
1012                 bytes = min(bytes, working_bytes);
1013                 kaddr = kmap_atomic(page_out);
1014                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1015                 kunmap_atomic(kaddr);
1016                 flush_dcache_page(page_out);
1017
1018                 *pg_offset += bytes;
1019                 buf_offset += bytes;
1020                 working_bytes -= bytes;
1021                 current_buf_start += bytes;
1022
1023                 /* check if we need to pick another page */
1024                 if (*pg_offset == PAGE_CACHE_SIZE) {
1025                         (*pg_index)++;
1026                         if (*pg_index >= vcnt)
1027                                 return 0;
1028
1029                         page_out = bvec[*pg_index].bv_page;
1030                         *pg_offset = 0;
1031                         start_byte = page_offset(page_out) - disk_start;
1032
1033                         /*
1034                          * make sure our new page is covered by this
1035                          * working buffer
1036                          */
1037                         if (total_out <= start_byte)
1038                                 return 1;
1039
1040                         /*
1041                          * the next page in the biovec might not be adjacent
1042                          * to the last page, but it might still be found
1043                          * inside this working buffer. bump our offset pointer
1044                          */
1045                         if (total_out > start_byte &&
1046                             current_buf_start < start_byte) {
1047                                 buf_offset = start_byte - buf_start;
1048                                 working_bytes = total_out - start_byte;
1049                                 current_buf_start = buf_start + buf_offset;
1050                         }
1051                 }
1052         }
1053
1054         return 1;
1055 }