2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
53 /* inode that owns this data */
56 /* starting offset in the inode for our pages */
59 /* number of bytes in the inode we're working on */
62 /* number of bytes on disk */
63 unsigned long compressed_len;
65 /* the compression algorithm for this bio */
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
75 /* for reads, this is the bio we are copying the data into */
79 * the start of a variable length array of checksums only
85 static int btrfs_decompress_biovec(int type, struct page **pages_in,
86 u64 disk_start, struct bio_vec *bvec,
87 int vcnt, size_t srclen);
89 static inline int compressed_bio_size(struct btrfs_root *root,
90 unsigned long disk_size)
92 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
94 return sizeof(struct compressed_bio) +
95 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
99 static struct bio *compressed_bio_alloc(struct block_device *bdev,
100 u64 first_byte, gfp_t gfp_flags)
104 nr_vecs = bio_get_nr_vecs(bdev);
105 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
108 static int check_compressed_csum(struct inode *inode,
109 struct compressed_bio *cb,
117 u32 *cb_sum = &cb->sums;
119 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
122 for (i = 0; i < cb->nr_pages; i++) {
123 page = cb->compressed_pages[i];
126 kaddr = kmap_atomic(page);
127 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
128 btrfs_csum_final(csum, (char *)&csum);
129 kunmap_atomic(kaddr);
131 if (csum != *cb_sum) {
132 printk(KERN_INFO "btrfs csum failed ino %llu "
133 "extent %llu csum %u "
134 "wanted %u mirror %d\n",
135 btrfs_ino(inode), disk_start, csum, *cb_sum,
148 /* when we finish reading compressed pages from the disk, we
149 * decompress them and then run the bio end_io routines on the
150 * decompressed pages (in the inode address space).
152 * This allows the checksumming and other IO error handling routines
155 * The compressed pages are freed here, and it must be run
158 static void end_compressed_bio_read(struct bio *bio, int err)
160 struct compressed_bio *cb = bio->bi_private;
169 /* if there are more bios still pending for this compressed
172 if (!atomic_dec_and_test(&cb->pending_bios))
176 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
180 /* ok, we're the last bio for this extent, lets start
183 ret = btrfs_decompress_biovec(cb->compress_type,
184 cb->compressed_pages,
186 cb->orig_bio->bi_io_vec,
187 cb->orig_bio->bi_vcnt,
193 /* release the compressed pages */
195 for (index = 0; index < cb->nr_pages; index++) {
196 page = cb->compressed_pages[index];
197 page->mapping = NULL;
198 page_cache_release(page);
201 /* do io completion on the original bio */
203 bio_io_error(cb->orig_bio);
206 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
209 * we have verified the checksum already, set page
210 * checked so the end_io handlers know about it
212 while (bio_index < cb->orig_bio->bi_vcnt) {
213 SetPageChecked(bvec->bv_page);
217 bio_endio(cb->orig_bio, 0);
220 /* finally free the cb struct */
221 kfree(cb->compressed_pages);
228 * Clear the writeback bits on all of the file
229 * pages for a compressed write
231 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
232 unsigned long ram_size)
234 unsigned long index = start >> PAGE_CACHE_SHIFT;
235 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
236 struct page *pages[16];
237 unsigned long nr_pages = end_index - index + 1;
241 while (nr_pages > 0) {
242 ret = find_get_pages_contig(inode->i_mapping, index,
244 nr_pages, ARRAY_SIZE(pages)), pages);
250 for (i = 0; i < ret; i++) {
251 end_page_writeback(pages[i]);
252 page_cache_release(pages[i]);
257 /* the inode may be gone now */
261 * do the cleanup once all the compressed pages hit the disk.
262 * This will clear writeback on the file pages and free the compressed
265 * This also calls the writeback end hooks for the file pages so that
266 * metadata and checksums can be updated in the file.
268 static void end_compressed_bio_write(struct bio *bio, int err)
270 struct extent_io_tree *tree;
271 struct compressed_bio *cb = bio->bi_private;
279 /* if there are more bios still pending for this compressed
282 if (!atomic_dec_and_test(&cb->pending_bios))
285 /* ok, we're the last bio for this extent, step one is to
286 * call back into the FS and do all the end_io operations
289 tree = &BTRFS_I(inode)->io_tree;
290 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
291 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
293 cb->start + cb->len - 1,
295 cb->compressed_pages[0]->mapping = NULL;
297 end_compressed_writeback(inode, cb->start, cb->len);
298 /* note, our inode could be gone now */
301 * release the compressed pages, these came from alloc_page and
302 * are not attached to the inode at all
305 for (index = 0; index < cb->nr_pages; index++) {
306 page = cb->compressed_pages[index];
307 page->mapping = NULL;
308 page_cache_release(page);
311 /* finally free the cb struct */
312 kfree(cb->compressed_pages);
319 * worker function to build and submit bios for previously compressed pages.
320 * The corresponding pages in the inode should be marked for writeback
321 * and the compressed pages should have a reference on them for dropping
322 * when the IO is complete.
324 * This also checksums the file bytes and gets things ready for
327 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
328 unsigned long len, u64 disk_start,
329 unsigned long compressed_len,
330 struct page **compressed_pages,
331 unsigned long nr_pages)
333 struct bio *bio = NULL;
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct compressed_bio *cb;
336 unsigned long bytes_left;
337 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
340 u64 first_byte = disk_start;
341 struct block_device *bdev;
343 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
345 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
346 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
349 atomic_set(&cb->pending_bios, 0);
355 cb->compressed_pages = compressed_pages;
356 cb->compressed_len = compressed_len;
358 cb->nr_pages = nr_pages;
360 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
362 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
367 bio->bi_private = cb;
368 bio->bi_end_io = end_compressed_bio_write;
369 atomic_inc(&cb->pending_bios);
371 /* create and submit bios for the compressed pages */
372 bytes_left = compressed_len;
373 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374 page = compressed_pages[pg_index];
375 page->mapping = inode->i_mapping;
377 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
383 page->mapping = NULL;
384 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
389 * inc the count before we submit the bio so
390 * we know the end IO handler won't happen before
391 * we inc the count. Otherwise, the cb might get
392 * freed before we're done setting it up
394 atomic_inc(&cb->pending_bios);
395 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
396 BUG_ON(ret); /* -ENOMEM */
399 ret = btrfs_csum_one_bio(root, inode, bio,
401 BUG_ON(ret); /* -ENOMEM */
404 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405 BUG_ON(ret); /* -ENOMEM */
409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
411 bio->bi_private = cb;
412 bio->bi_end_io = end_compressed_bio_write;
413 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
415 if (bytes_left < PAGE_CACHE_SIZE) {
416 printk("bytes left %lu compress len %lu nr %lu\n",
417 bytes_left, cb->compressed_len, cb->nr_pages);
419 bytes_left -= PAGE_CACHE_SIZE;
420 first_byte += PAGE_CACHE_SIZE;
425 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
426 BUG_ON(ret); /* -ENOMEM */
429 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
430 BUG_ON(ret); /* -ENOMEM */
433 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
434 BUG_ON(ret); /* -ENOMEM */
440 static noinline int add_ra_bio_pages(struct inode *inode,
442 struct compressed_bio *cb)
444 unsigned long end_index;
445 unsigned long pg_index;
447 u64 isize = i_size_read(inode);
450 unsigned long nr_pages = 0;
451 struct extent_map *em;
452 struct address_space *mapping = inode->i_mapping;
453 struct extent_map_tree *em_tree;
454 struct extent_io_tree *tree;
458 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
459 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
460 em_tree = &BTRFS_I(inode)->extent_tree;
461 tree = &BTRFS_I(inode)->io_tree;
466 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
468 while (last_offset < compressed_end) {
469 pg_index = last_offset >> PAGE_CACHE_SHIFT;
471 if (pg_index > end_index)
475 page = radix_tree_lookup(&mapping->page_tree, pg_index);
484 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
489 if (add_to_page_cache_lru(page, mapping, pg_index,
491 page_cache_release(page);
495 end = last_offset + PAGE_CACHE_SIZE - 1;
497 * at this point, we have a locked page in the page cache
498 * for these bytes in the file. But, we have to make
499 * sure they map to this compressed extent on disk.
501 set_page_extent_mapped(page);
502 lock_extent(tree, last_offset, end);
503 read_lock(&em_tree->lock);
504 em = lookup_extent_mapping(em_tree, last_offset,
506 read_unlock(&em_tree->lock);
508 if (!em || last_offset < em->start ||
509 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
510 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
512 unlock_extent(tree, last_offset, end);
514 page_cache_release(page);
519 if (page->index == end_index) {
521 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
525 zeros = PAGE_CACHE_SIZE - zero_offset;
526 userpage = kmap_atomic(page);
527 memset(userpage + zero_offset, 0, zeros);
528 flush_dcache_page(page);
529 kunmap_atomic(userpage);
533 ret = bio_add_page(cb->orig_bio, page,
536 if (ret == PAGE_CACHE_SIZE) {
538 page_cache_release(page);
540 unlock_extent(tree, last_offset, end);
542 page_cache_release(page);
546 last_offset += PAGE_CACHE_SIZE;
552 * for a compressed read, the bio we get passed has all the inode pages
553 * in it. We don't actually do IO on those pages but allocate new ones
554 * to hold the compressed pages on disk.
556 * bio->bi_sector points to the compressed extent on disk
557 * bio->bi_io_vec points to all of the inode pages
558 * bio->bi_vcnt is a count of pages
560 * After the compressed pages are read, we copy the bytes into the
561 * bio we were passed and then call the bio end_io calls
563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564 int mirror_num, unsigned long bio_flags)
566 struct extent_io_tree *tree;
567 struct extent_map_tree *em_tree;
568 struct compressed_bio *cb;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
571 unsigned long compressed_len;
572 unsigned long nr_pages;
573 unsigned long pg_index;
575 struct block_device *bdev;
576 struct bio *comp_bio;
577 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
580 struct extent_map *em;
585 tree = &BTRFS_I(inode)->io_tree;
586 em_tree = &BTRFS_I(inode)->extent_tree;
588 /* we need the actual starting offset of this extent in the file */
589 read_lock(&em_tree->lock);
590 em = lookup_extent_mapping(em_tree,
591 page_offset(bio->bi_io_vec->bv_page),
593 read_unlock(&em_tree->lock);
597 compressed_len = em->block_len;
598 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
602 atomic_set(&cb->pending_bios, 0);
605 cb->mirror_num = mirror_num;
608 cb->start = em->orig_start;
610 em_start = em->start;
615 cb->len = uncompressed_len;
616 cb->compressed_len = compressed_len;
617 cb->compress_type = extent_compress_type(bio_flags);
620 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
622 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
624 if (!cb->compressed_pages)
627 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
629 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
632 if (!cb->compressed_pages[pg_index]) {
633 faili = pg_index - 1;
638 faili = nr_pages - 1;
639 cb->nr_pages = nr_pages;
641 /* In the parent-locked case, we only locked the range we are
642 * interested in. In all other cases, we can opportunistically
643 * cache decompressed data that goes beyond the requested range. */
644 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
645 add_ra_bio_pages(inode, em_start + em_len, cb);
647 /* include any pages we added in add_ra-bio_pages */
648 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
649 cb->len = uncompressed_len;
651 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
654 comp_bio->bi_private = cb;
655 comp_bio->bi_end_io = end_compressed_bio_read;
656 atomic_inc(&cb->pending_bios);
658 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
659 page = cb->compressed_pages[pg_index];
660 page->mapping = inode->i_mapping;
661 page->index = em_start >> PAGE_CACHE_SHIFT;
663 if (comp_bio->bi_size)
664 ret = tree->ops->merge_bio_hook(READ, page, 0,
670 page->mapping = NULL;
671 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
675 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
676 BUG_ON(ret); /* -ENOMEM */
679 * inc the count before we submit the bio so
680 * we know the end IO handler won't happen before
681 * we inc the count. Otherwise, the cb might get
682 * freed before we're done setting it up
684 atomic_inc(&cb->pending_bios);
686 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
687 ret = btrfs_lookup_bio_sums(root, inode,
689 BUG_ON(ret); /* -ENOMEM */
691 sums += (comp_bio->bi_size + root->sectorsize - 1) /
694 ret = btrfs_map_bio(root, READ, comp_bio,
697 bio_endio(comp_bio, ret);
701 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
704 comp_bio->bi_private = cb;
705 comp_bio->bi_end_io = end_compressed_bio_read;
707 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
709 cur_disk_byte += PAGE_CACHE_SIZE;
713 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
714 BUG_ON(ret); /* -ENOMEM */
716 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
717 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
718 BUG_ON(ret); /* -ENOMEM */
721 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
723 bio_endio(comp_bio, ret);
730 __free_page(cb->compressed_pages[faili]);
734 kfree(cb->compressed_pages);
742 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
743 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
744 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
745 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
746 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
748 static struct btrfs_compress_op *btrfs_compress_op[] = {
749 &btrfs_zlib_compress,
753 void __init btrfs_init_compress(void)
757 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
758 INIT_LIST_HEAD(&comp_idle_workspace[i]);
759 spin_lock_init(&comp_workspace_lock[i]);
760 atomic_set(&comp_alloc_workspace[i], 0);
761 init_waitqueue_head(&comp_workspace_wait[i]);
766 * this finds an available workspace or allocates a new one
767 * ERR_PTR is returned if things go bad.
769 static struct list_head *find_workspace(int type)
771 struct list_head *workspace;
772 int cpus = num_online_cpus();
775 struct list_head *idle_workspace = &comp_idle_workspace[idx];
776 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
777 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
778 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
779 int *num_workspace = &comp_num_workspace[idx];
781 spin_lock(workspace_lock);
782 if (!list_empty(idle_workspace)) {
783 workspace = idle_workspace->next;
786 spin_unlock(workspace_lock);
790 if (atomic_read(alloc_workspace) > cpus) {
793 spin_unlock(workspace_lock);
794 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
795 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
797 finish_wait(workspace_wait, &wait);
800 atomic_inc(alloc_workspace);
801 spin_unlock(workspace_lock);
803 workspace = btrfs_compress_op[idx]->alloc_workspace();
804 if (IS_ERR(workspace)) {
805 atomic_dec(alloc_workspace);
806 wake_up(workspace_wait);
812 * put a workspace struct back on the list or free it if we have enough
813 * idle ones sitting around
815 static void free_workspace(int type, struct list_head *workspace)
818 struct list_head *idle_workspace = &comp_idle_workspace[idx];
819 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
820 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
821 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
822 int *num_workspace = &comp_num_workspace[idx];
824 spin_lock(workspace_lock);
825 if (*num_workspace < num_online_cpus()) {
826 list_add_tail(workspace, idle_workspace);
828 spin_unlock(workspace_lock);
831 spin_unlock(workspace_lock);
833 btrfs_compress_op[idx]->free_workspace(workspace);
834 atomic_dec(alloc_workspace);
837 if (waitqueue_active(workspace_wait))
838 wake_up(workspace_wait);
842 * cleanup function for module exit
844 static void free_workspaces(void)
846 struct list_head *workspace;
849 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
850 while (!list_empty(&comp_idle_workspace[i])) {
851 workspace = comp_idle_workspace[i].next;
853 btrfs_compress_op[i]->free_workspace(workspace);
854 atomic_dec(&comp_alloc_workspace[i]);
860 * given an address space and start/len, compress the bytes.
862 * pages are allocated to hold the compressed result and stored
865 * out_pages is used to return the number of pages allocated. There
866 * may be pages allocated even if we return an error
868 * total_in is used to return the number of bytes actually read. It
869 * may be smaller then len if we had to exit early because we
870 * ran out of room in the pages array or because we cross the
873 * total_out is used to return the total number of compressed bytes
875 * max_out tells us the max number of bytes that we're allowed to
878 int btrfs_compress_pages(int type, struct address_space *mapping,
879 u64 start, unsigned long len,
881 unsigned long nr_dest_pages,
882 unsigned long *out_pages,
883 unsigned long *total_in,
884 unsigned long *total_out,
885 unsigned long max_out)
887 struct list_head *workspace;
890 workspace = find_workspace(type);
891 if (IS_ERR(workspace))
894 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
896 nr_dest_pages, out_pages,
899 free_workspace(type, workspace);
904 * pages_in is an array of pages with compressed data.
906 * disk_start is the starting logical offset of this array in the file
908 * bvec is a bio_vec of pages from the file that we want to decompress into
910 * vcnt is the count of pages in the biovec
912 * srclen is the number of bytes in pages_in
914 * The basic idea is that we have a bio that was created by readpages.
915 * The pages in the bio are for the uncompressed data, and they may not
916 * be contiguous. They all correspond to the range of bytes covered by
917 * the compressed extent.
919 static int btrfs_decompress_biovec(int type, struct page **pages_in,
920 u64 disk_start, struct bio_vec *bvec,
921 int vcnt, size_t srclen)
923 struct list_head *workspace;
926 workspace = find_workspace(type);
927 if (IS_ERR(workspace))
930 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
933 free_workspace(type, workspace);
938 * a less complex decompression routine. Our compressed data fits in a
939 * single page, and we want to read a single page out of it.
940 * start_byte tells us the offset into the compressed data we're interested in
942 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
943 unsigned long start_byte, size_t srclen, size_t destlen)
945 struct list_head *workspace;
948 workspace = find_workspace(type);
949 if (IS_ERR(workspace))
952 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
953 dest_page, start_byte,
956 free_workspace(type, workspace);
960 void btrfs_exit_compress(void)
966 * Copy uncompressed data from working buffer to pages.
968 * buf_start is the byte offset we're of the start of our workspace buffer.
970 * total_out is the last byte of the buffer
972 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
973 unsigned long total_out, u64 disk_start,
974 struct bio_vec *bvec, int vcnt,
975 unsigned long *pg_index,
976 unsigned long *pg_offset)
978 unsigned long buf_offset;
979 unsigned long current_buf_start;
980 unsigned long start_byte;
981 unsigned long working_bytes = total_out - buf_start;
984 struct page *page_out = bvec[*pg_index].bv_page;
987 * start byte is the first byte of the page we're currently
988 * copying into relative to the start of the compressed data.
990 start_byte = page_offset(page_out) - disk_start;
992 /* we haven't yet hit data corresponding to this page */
993 if (total_out <= start_byte)
997 * the start of the data we care about is offset into
998 * the middle of our working buffer
1000 if (total_out > start_byte && buf_start < start_byte) {
1001 buf_offset = start_byte - buf_start;
1002 working_bytes -= buf_offset;
1006 current_buf_start = buf_start;
1008 /* copy bytes from the working buffer into the pages */
1009 while (working_bytes > 0) {
1010 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1011 PAGE_CACHE_SIZE - buf_offset);
1012 bytes = min(bytes, working_bytes);
1013 kaddr = kmap_atomic(page_out);
1014 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1015 kunmap_atomic(kaddr);
1016 flush_dcache_page(page_out);
1018 *pg_offset += bytes;
1019 buf_offset += bytes;
1020 working_bytes -= bytes;
1021 current_buf_start += bytes;
1023 /* check if we need to pick another page */
1024 if (*pg_offset == PAGE_CACHE_SIZE) {
1026 if (*pg_index >= vcnt)
1029 page_out = bvec[*pg_index].bv_page;
1031 start_byte = page_offset(page_out) - disk_start;
1034 * make sure our new page is covered by this
1037 if (total_out <= start_byte)
1041 * the next page in the biovec might not be adjacent
1042 * to the last page, but it might still be found
1043 * inside this working buffer. bump our offset pointer
1045 if (total_out > start_byte &&
1046 current_buf_start < start_byte) {
1047 buf_offset = start_byte - buf_start;
1048 working_bytes = total_out - start_byte;
1049 current_buf_start = buf_start + buf_offset;