fs: push rcu_barrier() from deactivate_locked_super() to filesystems
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static inline int compressed_bio_size(struct btrfs_root *root,
86                                       unsigned long disk_size)
87 {
88         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
89
90         return sizeof(struct compressed_bio) +
91                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
92                 csum_size;
93 }
94
95 static struct bio *compressed_bio_alloc(struct block_device *bdev,
96                                         u64 first_byte, gfp_t gfp_flags)
97 {
98         int nr_vecs;
99
100         nr_vecs = bio_get_nr_vecs(bdev);
101         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
102 }
103
104 static int check_compressed_csum(struct inode *inode,
105                                  struct compressed_bio *cb,
106                                  u64 disk_start)
107 {
108         int ret;
109         struct btrfs_root *root = BTRFS_I(inode)->root;
110         struct page *page;
111         unsigned long i;
112         char *kaddr;
113         u32 csum;
114         u32 *cb_sum = &cb->sums;
115
116         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
117                 return 0;
118
119         for (i = 0; i < cb->nr_pages; i++) {
120                 page = cb->compressed_pages[i];
121                 csum = ~(u32)0;
122
123                 kaddr = kmap_atomic(page);
124                 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125                 btrfs_csum_final(csum, (char *)&csum);
126                 kunmap_atomic(kaddr);
127
128                 if (csum != *cb_sum) {
129                         printk(KERN_INFO "btrfs csum failed ino %llu "
130                                "extent %llu csum %u "
131                                "wanted %u mirror %d\n",
132                                (unsigned long long)btrfs_ino(inode),
133                                (unsigned long long)disk_start,
134                                csum, *cb_sum, cb->mirror_num);
135                         ret = -EIO;
136                         goto fail;
137                 }
138                 cb_sum++;
139
140         }
141         ret = 0;
142 fail:
143         return ret;
144 }
145
146 /* when we finish reading compressed pages from the disk, we
147  * decompress them and then run the bio end_io routines on the
148  * decompressed pages (in the inode address space).
149  *
150  * This allows the checksumming and other IO error handling routines
151  * to work normally
152  *
153  * The compressed pages are freed here, and it must be run
154  * in process context
155  */
156 static void end_compressed_bio_read(struct bio *bio, int err)
157 {
158         struct compressed_bio *cb = bio->bi_private;
159         struct inode *inode;
160         struct page *page;
161         unsigned long index;
162         int ret;
163
164         if (err)
165                 cb->errors = 1;
166
167         /* if there are more bios still pending for this compressed
168          * extent, just exit
169          */
170         if (!atomic_dec_and_test(&cb->pending_bios))
171                 goto out;
172
173         inode = cb->inode;
174         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175         if (ret)
176                 goto csum_failed;
177
178         /* ok, we're the last bio for this extent, lets start
179          * the decompression.
180          */
181         ret = btrfs_decompress_biovec(cb->compress_type,
182                                       cb->compressed_pages,
183                                       cb->start,
184                                       cb->orig_bio->bi_io_vec,
185                                       cb->orig_bio->bi_vcnt,
186                                       cb->compressed_len);
187 csum_failed:
188         if (ret)
189                 cb->errors = 1;
190
191         /* release the compressed pages */
192         index = 0;
193         for (index = 0; index < cb->nr_pages; index++) {
194                 page = cb->compressed_pages[index];
195                 page->mapping = NULL;
196                 page_cache_release(page);
197         }
198
199         /* do io completion on the original bio */
200         if (cb->errors) {
201                 bio_io_error(cb->orig_bio);
202         } else {
203                 int bio_index = 0;
204                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
205
206                 /*
207                  * we have verified the checksum already, set page
208                  * checked so the end_io handlers know about it
209                  */
210                 while (bio_index < cb->orig_bio->bi_vcnt) {
211                         SetPageChecked(bvec->bv_page);
212                         bvec++;
213                         bio_index++;
214                 }
215                 bio_endio(cb->orig_bio, 0);
216         }
217
218         /* finally free the cb struct */
219         kfree(cb->compressed_pages);
220         kfree(cb);
221 out:
222         bio_put(bio);
223 }
224
225 /*
226  * Clear the writeback bits on all of the file
227  * pages for a compressed write
228  */
229 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
230                                               unsigned long ram_size)
231 {
232         unsigned long index = start >> PAGE_CACHE_SHIFT;
233         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234         struct page *pages[16];
235         unsigned long nr_pages = end_index - index + 1;
236         int i;
237         int ret;
238
239         while (nr_pages > 0) {
240                 ret = find_get_pages_contig(inode->i_mapping, index,
241                                      min_t(unsigned long,
242                                      nr_pages, ARRAY_SIZE(pages)), pages);
243                 if (ret == 0) {
244                         nr_pages -= 1;
245                         index += 1;
246                         continue;
247                 }
248                 for (i = 0; i < ret; i++) {
249                         end_page_writeback(pages[i]);
250                         page_cache_release(pages[i]);
251                 }
252                 nr_pages -= ret;
253                 index += ret;
254         }
255         /* the inode may be gone now */
256 }
257
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268         struct extent_io_tree *tree;
269         struct compressed_bio *cb = bio->bi_private;
270         struct inode *inode;
271         struct page *page;
272         unsigned long index;
273
274         if (err)
275                 cb->errors = 1;
276
277         /* if there are more bios still pending for this compressed
278          * extent, just exit
279          */
280         if (!atomic_dec_and_test(&cb->pending_bios))
281                 goto out;
282
283         /* ok, we're the last bio for this extent, step one is to
284          * call back into the FS and do all the end_io operations
285          */
286         inode = cb->inode;
287         tree = &BTRFS_I(inode)->io_tree;
288         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290                                          cb->start,
291                                          cb->start + cb->len - 1,
292                                          NULL, 1);
293         cb->compressed_pages[0]->mapping = NULL;
294
295         end_compressed_writeback(inode, cb->start, cb->len);
296         /* note, our inode could be gone now */
297
298         /*
299          * release the compressed pages, these came from alloc_page and
300          * are not attached to the inode at all
301          */
302         index = 0;
303         for (index = 0; index < cb->nr_pages; index++) {
304                 page = cb->compressed_pages[index];
305                 page->mapping = NULL;
306                 page_cache_release(page);
307         }
308
309         /* finally free the cb struct */
310         kfree(cb->compressed_pages);
311         kfree(cb);
312 out:
313         bio_put(bio);
314 }
315
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326                                  unsigned long len, u64 disk_start,
327                                  unsigned long compressed_len,
328                                  struct page **compressed_pages,
329                                  unsigned long nr_pages)
330 {
331         struct bio *bio = NULL;
332         struct btrfs_root *root = BTRFS_I(inode)->root;
333         struct compressed_bio *cb;
334         unsigned long bytes_left;
335         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336         int pg_index = 0;
337         struct page *page;
338         u64 first_byte = disk_start;
339         struct block_device *bdev;
340         int ret;
341         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342
343         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
345         if (!cb)
346                 return -ENOMEM;
347         atomic_set(&cb->pending_bios, 0);
348         cb->errors = 0;
349         cb->inode = inode;
350         cb->start = start;
351         cb->len = len;
352         cb->mirror_num = 0;
353         cb->compressed_pages = compressed_pages;
354         cb->compressed_len = compressed_len;
355         cb->orig_bio = NULL;
356         cb->nr_pages = nr_pages;
357
358         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359
360         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361         if(!bio) {
362                 kfree(cb);
363                 return -ENOMEM;
364         }
365         bio->bi_private = cb;
366         bio->bi_end_io = end_compressed_bio_write;
367         atomic_inc(&cb->pending_bios);
368
369         /* create and submit bios for the compressed pages */
370         bytes_left = compressed_len;
371         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372                 page = compressed_pages[pg_index];
373                 page->mapping = inode->i_mapping;
374                 if (bio->bi_size)
375                         ret = io_tree->ops->merge_bio_hook(page, 0,
376                                                            PAGE_CACHE_SIZE,
377                                                            bio, 0);
378                 else
379                         ret = 0;
380
381                 page->mapping = NULL;
382                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
383                     PAGE_CACHE_SIZE) {
384                         bio_get(bio);
385
386                         /*
387                          * inc the count before we submit the bio so
388                          * we know the end IO handler won't happen before
389                          * we inc the count.  Otherwise, the cb might get
390                          * freed before we're done setting it up
391                          */
392                         atomic_inc(&cb->pending_bios);
393                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394                         BUG_ON(ret); /* -ENOMEM */
395
396                         if (!skip_sum) {
397                                 ret = btrfs_csum_one_bio(root, inode, bio,
398                                                          start, 1);
399                                 BUG_ON(ret); /* -ENOMEM */
400                         }
401
402                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403                         BUG_ON(ret); /* -ENOMEM */
404
405                         bio_put(bio);
406
407                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
408                         BUG_ON(!bio);
409                         bio->bi_private = cb;
410                         bio->bi_end_io = end_compressed_bio_write;
411                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
412                 }
413                 if (bytes_left < PAGE_CACHE_SIZE) {
414                         printk("bytes left %lu compress len %lu nr %lu\n",
415                                bytes_left, cb->compressed_len, cb->nr_pages);
416                 }
417                 bytes_left -= PAGE_CACHE_SIZE;
418                 first_byte += PAGE_CACHE_SIZE;
419                 cond_resched();
420         }
421         bio_get(bio);
422
423         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424         BUG_ON(ret); /* -ENOMEM */
425
426         if (!skip_sum) {
427                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428                 BUG_ON(ret); /* -ENOMEM */
429         }
430
431         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432         BUG_ON(ret); /* -ENOMEM */
433
434         bio_put(bio);
435         return 0;
436 }
437
438 static noinline int add_ra_bio_pages(struct inode *inode,
439                                      u64 compressed_end,
440                                      struct compressed_bio *cb)
441 {
442         unsigned long end_index;
443         unsigned long pg_index;
444         u64 last_offset;
445         u64 isize = i_size_read(inode);
446         int ret;
447         struct page *page;
448         unsigned long nr_pages = 0;
449         struct extent_map *em;
450         struct address_space *mapping = inode->i_mapping;
451         struct extent_map_tree *em_tree;
452         struct extent_io_tree *tree;
453         u64 end;
454         int misses = 0;
455
456         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458         em_tree = &BTRFS_I(inode)->extent_tree;
459         tree = &BTRFS_I(inode)->io_tree;
460
461         if (isize == 0)
462                 return 0;
463
464         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465
466         while (last_offset < compressed_end) {
467                 pg_index = last_offset >> PAGE_CACHE_SHIFT;
468
469                 if (pg_index > end_index)
470                         break;
471
472                 rcu_read_lock();
473                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
474                 rcu_read_unlock();
475                 if (page) {
476                         misses++;
477                         if (misses > 4)
478                                 break;
479                         goto next;
480                 }
481
482                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483                                                                 ~__GFP_FS);
484                 if (!page)
485                         break;
486
487                 if (add_to_page_cache_lru(page, mapping, pg_index,
488                                                                 GFP_NOFS)) {
489                         page_cache_release(page);
490                         goto next;
491                 }
492
493                 end = last_offset + PAGE_CACHE_SIZE - 1;
494                 /*
495                  * at this point, we have a locked page in the page cache
496                  * for these bytes in the file.  But, we have to make
497                  * sure they map to this compressed extent on disk.
498                  */
499                 set_page_extent_mapped(page);
500                 lock_extent(tree, last_offset, end);
501                 read_lock(&em_tree->lock);
502                 em = lookup_extent_mapping(em_tree, last_offset,
503                                            PAGE_CACHE_SIZE);
504                 read_unlock(&em_tree->lock);
505
506                 if (!em || last_offset < em->start ||
507                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
509                         free_extent_map(em);
510                         unlock_extent(tree, last_offset, end);
511                         unlock_page(page);
512                         page_cache_release(page);
513                         break;
514                 }
515                 free_extent_map(em);
516
517                 if (page->index == end_index) {
518                         char *userpage;
519                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520
521                         if (zero_offset) {
522                                 int zeros;
523                                 zeros = PAGE_CACHE_SIZE - zero_offset;
524                                 userpage = kmap_atomic(page);
525                                 memset(userpage + zero_offset, 0, zeros);
526                                 flush_dcache_page(page);
527                                 kunmap_atomic(userpage);
528                         }
529                 }
530
531                 ret = bio_add_page(cb->orig_bio, page,
532                                    PAGE_CACHE_SIZE, 0);
533
534                 if (ret == PAGE_CACHE_SIZE) {
535                         nr_pages++;
536                         page_cache_release(page);
537                 } else {
538                         unlock_extent(tree, last_offset, end);
539                         unlock_page(page);
540                         page_cache_release(page);
541                         break;
542                 }
543 next:
544                 last_offset += PAGE_CACHE_SIZE;
545         }
546         return 0;
547 }
548
549 /*
550  * for a compressed read, the bio we get passed has all the inode pages
551  * in it.  We don't actually do IO on those pages but allocate new ones
552  * to hold the compressed pages on disk.
553  *
554  * bio->bi_sector points to the compressed extent on disk
555  * bio->bi_io_vec points to all of the inode pages
556  * bio->bi_vcnt is a count of pages
557  *
558  * After the compressed pages are read, we copy the bytes into the
559  * bio we were passed and then call the bio end_io calls
560  */
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562                                  int mirror_num, unsigned long bio_flags)
563 {
564         struct extent_io_tree *tree;
565         struct extent_map_tree *em_tree;
566         struct compressed_bio *cb;
567         struct btrfs_root *root = BTRFS_I(inode)->root;
568         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569         unsigned long compressed_len;
570         unsigned long nr_pages;
571         unsigned long pg_index;
572         struct page *page;
573         struct block_device *bdev;
574         struct bio *comp_bio;
575         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
576         u64 em_len;
577         u64 em_start;
578         struct extent_map *em;
579         int ret = -ENOMEM;
580         u32 *sums;
581
582         tree = &BTRFS_I(inode)->io_tree;
583         em_tree = &BTRFS_I(inode)->extent_tree;
584
585         /* we need the actual starting offset of this extent in the file */
586         read_lock(&em_tree->lock);
587         em = lookup_extent_mapping(em_tree,
588                                    page_offset(bio->bi_io_vec->bv_page),
589                                    PAGE_CACHE_SIZE);
590         read_unlock(&em_tree->lock);
591         if (!em)
592                 return -EIO;
593
594         compressed_len = em->block_len;
595         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
596         if (!cb)
597                 goto out;
598
599         atomic_set(&cb->pending_bios, 0);
600         cb->errors = 0;
601         cb->inode = inode;
602         cb->mirror_num = mirror_num;
603         sums = &cb->sums;
604
605         cb->start = em->orig_start;
606         em_len = em->len;
607         em_start = em->start;
608
609         free_extent_map(em);
610         em = NULL;
611
612         cb->len = uncompressed_len;
613         cb->compressed_len = compressed_len;
614         cb->compress_type = extent_compress_type(bio_flags);
615         cb->orig_bio = bio;
616
617         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
618                                  PAGE_CACHE_SIZE;
619         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
620                                        GFP_NOFS);
621         if (!cb->compressed_pages)
622                 goto fail1;
623
624         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
625
626         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
628                                                               __GFP_HIGHMEM);
629                 if (!cb->compressed_pages[pg_index])
630                         goto fail2;
631         }
632         cb->nr_pages = nr_pages;
633
634         add_ra_bio_pages(inode, em_start + em_len, cb);
635
636         /* include any pages we added in add_ra-bio_pages */
637         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
638         cb->len = uncompressed_len;
639
640         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
641         if (!comp_bio)
642                 goto fail2;
643         comp_bio->bi_private = cb;
644         comp_bio->bi_end_io = end_compressed_bio_read;
645         atomic_inc(&cb->pending_bios);
646
647         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
648                 page = cb->compressed_pages[pg_index];
649                 page->mapping = inode->i_mapping;
650                 page->index = em_start >> PAGE_CACHE_SHIFT;
651
652                 if (comp_bio->bi_size)
653                         ret = tree->ops->merge_bio_hook(page, 0,
654                                                         PAGE_CACHE_SIZE,
655                                                         comp_bio, 0);
656                 else
657                         ret = 0;
658
659                 page->mapping = NULL;
660                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
661                     PAGE_CACHE_SIZE) {
662                         bio_get(comp_bio);
663
664                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
665                         BUG_ON(ret); /* -ENOMEM */
666
667                         /*
668                          * inc the count before we submit the bio so
669                          * we know the end IO handler won't happen before
670                          * we inc the count.  Otherwise, the cb might get
671                          * freed before we're done setting it up
672                          */
673                         atomic_inc(&cb->pending_bios);
674
675                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
676                                 ret = btrfs_lookup_bio_sums(root, inode,
677                                                         comp_bio, sums);
678                                 BUG_ON(ret); /* -ENOMEM */
679                         }
680                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
681                                 root->sectorsize;
682
683                         ret = btrfs_map_bio(root, READ, comp_bio,
684                                             mirror_num, 0);
685                         BUG_ON(ret); /* -ENOMEM */
686
687                         bio_put(comp_bio);
688
689                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
690                                                         GFP_NOFS);
691                         BUG_ON(!comp_bio);
692                         comp_bio->bi_private = cb;
693                         comp_bio->bi_end_io = end_compressed_bio_read;
694
695                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
696                 }
697                 cur_disk_byte += PAGE_CACHE_SIZE;
698         }
699         bio_get(comp_bio);
700
701         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
702         BUG_ON(ret); /* -ENOMEM */
703
704         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
705                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
706                 BUG_ON(ret); /* -ENOMEM */
707         }
708
709         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
710         BUG_ON(ret); /* -ENOMEM */
711
712         bio_put(comp_bio);
713         return 0;
714
715 fail2:
716         for (pg_index = 0; pg_index < nr_pages; pg_index++)
717                 free_page((unsigned long)cb->compressed_pages[pg_index]);
718
719         kfree(cb->compressed_pages);
720 fail1:
721         kfree(cb);
722 out:
723         free_extent_map(em);
724         return ret;
725 }
726
727 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
728 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
729 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
730 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
731 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
732
733 struct btrfs_compress_op *btrfs_compress_op[] = {
734         &btrfs_zlib_compress,
735         &btrfs_lzo_compress,
736 };
737
738 void __init btrfs_init_compress(void)
739 {
740         int i;
741
742         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
743                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
744                 spin_lock_init(&comp_workspace_lock[i]);
745                 atomic_set(&comp_alloc_workspace[i], 0);
746                 init_waitqueue_head(&comp_workspace_wait[i]);
747         }
748 }
749
750 /*
751  * this finds an available workspace or allocates a new one
752  * ERR_PTR is returned if things go bad.
753  */
754 static struct list_head *find_workspace(int type)
755 {
756         struct list_head *workspace;
757         int cpus = num_online_cpus();
758         int idx = type - 1;
759
760         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
761         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
762         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
763         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
764         int *num_workspace                      = &comp_num_workspace[idx];
765 again:
766         spin_lock(workspace_lock);
767         if (!list_empty(idle_workspace)) {
768                 workspace = idle_workspace->next;
769                 list_del(workspace);
770                 (*num_workspace)--;
771                 spin_unlock(workspace_lock);
772                 return workspace;
773
774         }
775         if (atomic_read(alloc_workspace) > cpus) {
776                 DEFINE_WAIT(wait);
777
778                 spin_unlock(workspace_lock);
779                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
780                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
781                         schedule();
782                 finish_wait(workspace_wait, &wait);
783                 goto again;
784         }
785         atomic_inc(alloc_workspace);
786         spin_unlock(workspace_lock);
787
788         workspace = btrfs_compress_op[idx]->alloc_workspace();
789         if (IS_ERR(workspace)) {
790                 atomic_dec(alloc_workspace);
791                 wake_up(workspace_wait);
792         }
793         return workspace;
794 }
795
796 /*
797  * put a workspace struct back on the list or free it if we have enough
798  * idle ones sitting around
799  */
800 static void free_workspace(int type, struct list_head *workspace)
801 {
802         int idx = type - 1;
803         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
804         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
805         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
806         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
807         int *num_workspace                      = &comp_num_workspace[idx];
808
809         spin_lock(workspace_lock);
810         if (*num_workspace < num_online_cpus()) {
811                 list_add_tail(workspace, idle_workspace);
812                 (*num_workspace)++;
813                 spin_unlock(workspace_lock);
814                 goto wake;
815         }
816         spin_unlock(workspace_lock);
817
818         btrfs_compress_op[idx]->free_workspace(workspace);
819         atomic_dec(alloc_workspace);
820 wake:
821         smp_mb();
822         if (waitqueue_active(workspace_wait))
823                 wake_up(workspace_wait);
824 }
825
826 /*
827  * cleanup function for module exit
828  */
829 static void free_workspaces(void)
830 {
831         struct list_head *workspace;
832         int i;
833
834         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
835                 while (!list_empty(&comp_idle_workspace[i])) {
836                         workspace = comp_idle_workspace[i].next;
837                         list_del(workspace);
838                         btrfs_compress_op[i]->free_workspace(workspace);
839                         atomic_dec(&comp_alloc_workspace[i]);
840                 }
841         }
842 }
843
844 /*
845  * given an address space and start/len, compress the bytes.
846  *
847  * pages are allocated to hold the compressed result and stored
848  * in 'pages'
849  *
850  * out_pages is used to return the number of pages allocated.  There
851  * may be pages allocated even if we return an error
852  *
853  * total_in is used to return the number of bytes actually read.  It
854  * may be smaller then len if we had to exit early because we
855  * ran out of room in the pages array or because we cross the
856  * max_out threshold.
857  *
858  * total_out is used to return the total number of compressed bytes
859  *
860  * max_out tells us the max number of bytes that we're allowed to
861  * stuff into pages
862  */
863 int btrfs_compress_pages(int type, struct address_space *mapping,
864                          u64 start, unsigned long len,
865                          struct page **pages,
866                          unsigned long nr_dest_pages,
867                          unsigned long *out_pages,
868                          unsigned long *total_in,
869                          unsigned long *total_out,
870                          unsigned long max_out)
871 {
872         struct list_head *workspace;
873         int ret;
874
875         workspace = find_workspace(type);
876         if (IS_ERR(workspace))
877                 return -1;
878
879         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
880                                                       start, len, pages,
881                                                       nr_dest_pages, out_pages,
882                                                       total_in, total_out,
883                                                       max_out);
884         free_workspace(type, workspace);
885         return ret;
886 }
887
888 /*
889  * pages_in is an array of pages with compressed data.
890  *
891  * disk_start is the starting logical offset of this array in the file
892  *
893  * bvec is a bio_vec of pages from the file that we want to decompress into
894  *
895  * vcnt is the count of pages in the biovec
896  *
897  * srclen is the number of bytes in pages_in
898  *
899  * The basic idea is that we have a bio that was created by readpages.
900  * The pages in the bio are for the uncompressed data, and they may not
901  * be contiguous.  They all correspond to the range of bytes covered by
902  * the compressed extent.
903  */
904 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
905                             struct bio_vec *bvec, int vcnt, size_t srclen)
906 {
907         struct list_head *workspace;
908         int ret;
909
910         workspace = find_workspace(type);
911         if (IS_ERR(workspace))
912                 return -ENOMEM;
913
914         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
915                                                          disk_start,
916                                                          bvec, vcnt, srclen);
917         free_workspace(type, workspace);
918         return ret;
919 }
920
921 /*
922  * a less complex decompression routine.  Our compressed data fits in a
923  * single page, and we want to read a single page out of it.
924  * start_byte tells us the offset into the compressed data we're interested in
925  */
926 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
927                      unsigned long start_byte, size_t srclen, size_t destlen)
928 {
929         struct list_head *workspace;
930         int ret;
931
932         workspace = find_workspace(type);
933         if (IS_ERR(workspace))
934                 return -ENOMEM;
935
936         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
937                                                   dest_page, start_byte,
938                                                   srclen, destlen);
939
940         free_workspace(type, workspace);
941         return ret;
942 }
943
944 void btrfs_exit_compress(void)
945 {
946         free_workspaces();
947 }
948
949 /*
950  * Copy uncompressed data from working buffer to pages.
951  *
952  * buf_start is the byte offset we're of the start of our workspace buffer.
953  *
954  * total_out is the last byte of the buffer
955  */
956 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
957                               unsigned long total_out, u64 disk_start,
958                               struct bio_vec *bvec, int vcnt,
959                               unsigned long *pg_index,
960                               unsigned long *pg_offset)
961 {
962         unsigned long buf_offset;
963         unsigned long current_buf_start;
964         unsigned long start_byte;
965         unsigned long working_bytes = total_out - buf_start;
966         unsigned long bytes;
967         char *kaddr;
968         struct page *page_out = bvec[*pg_index].bv_page;
969
970         /*
971          * start byte is the first byte of the page we're currently
972          * copying into relative to the start of the compressed data.
973          */
974         start_byte = page_offset(page_out) - disk_start;
975
976         /* we haven't yet hit data corresponding to this page */
977         if (total_out <= start_byte)
978                 return 1;
979
980         /*
981          * the start of the data we care about is offset into
982          * the middle of our working buffer
983          */
984         if (total_out > start_byte && buf_start < start_byte) {
985                 buf_offset = start_byte - buf_start;
986                 working_bytes -= buf_offset;
987         } else {
988                 buf_offset = 0;
989         }
990         current_buf_start = buf_start;
991
992         /* copy bytes from the working buffer into the pages */
993         while (working_bytes > 0) {
994                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
995                             PAGE_CACHE_SIZE - buf_offset);
996                 bytes = min(bytes, working_bytes);
997                 kaddr = kmap_atomic(page_out);
998                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
999                 kunmap_atomic(kaddr);
1000                 flush_dcache_page(page_out);
1001
1002                 *pg_offset += bytes;
1003                 buf_offset += bytes;
1004                 working_bytes -= bytes;
1005                 current_buf_start += bytes;
1006
1007                 /* check if we need to pick another page */
1008                 if (*pg_offset == PAGE_CACHE_SIZE) {
1009                         (*pg_index)++;
1010                         if (*pg_index >= vcnt)
1011                                 return 0;
1012
1013                         page_out = bvec[*pg_index].bv_page;
1014                         *pg_offset = 0;
1015                         start_byte = page_offset(page_out) - disk_start;
1016
1017                         /*
1018                          * make sure our new page is covered by this
1019                          * working buffer
1020                          */
1021                         if (total_out <= start_byte)
1022                                 return 1;
1023
1024                         /*
1025                          * the next page in the biovec might not be adjacent
1026                          * to the last page, but it might still be found
1027                          * inside this working buffer. bump our offset pointer
1028                          */
1029                         if (total_out > start_byte &&
1030                             current_buf_start < start_byte) {
1031                                 buf_offset = start_byte - buf_start;
1032                                 working_bytes = total_out - start_byte;
1033                                 current_buf_start = buf_start + buf_offset;
1034                         }
1035                 }
1036         }
1037
1038         return 1;
1039 }