Merge tag 'for-linus-20131025' of git://git.infradead.org/linux-mtd
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / check-integrity.c
1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and no write error was indicated and a
41  *        FLUSH request to the device where these blocks are
42  *        located was received and completed.
43  *    2b. All referenced blocks need to have a generation
44  *        number which is equal to the parent's number.
45  *
46  * One issue that was found using this module was that the log
47  * tree on disk became temporarily corrupted because disk blocks
48  * that had been in use for the log tree had been freed and
49  * reused too early, while being referenced by the written super
50  * block.
51  *
52  * The search term in the kernel log that can be used to filter
53  * on the existence of detected integrity issues is
54  * "btrfs: attempt".
55  *
56  * The integrity check is enabled via mount options. These
57  * mount options are only supported if the integrity check
58  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59  *
60  * Example #1, apply integrity checks to all metadata:
61  * mount /dev/sdb1 /mnt -o check_int
62  *
63  * Example #2, apply integrity checks to all metadata and
64  * to data extents:
65  * mount /dev/sdb1 /mnt -o check_int_data
66  *
67  * Example #3, apply integrity checks to all metadata and dump
68  * the tree that the super block references to kernel messages
69  * each time after a super block was written:
70  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71  *
72  * If the integrity check tool is included and activated in
73  * the mount options, plenty of kernel memory is used, and
74  * plenty of additional CPU cycles are spent. Enabling this
75  * functionality is not intended for normal use. In most
76  * cases, unless you are a btrfs developer who needs to verify
77  * the integrity of (super)-block write requests, do not
78  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79  * include and compile the integrity check tool.
80  */
81
82 #include <linux/sched.h>
83 #include <linux/slab.h>
84 #include <linux/buffer_head.h>
85 #include <linux/mutex.h>
86 #include <linux/crc32c.h>
87 #include <linux/genhd.h>
88 #include <linux/blkdev.h>
89 #include "ctree.h"
90 #include "disk-io.h"
91 #include "transaction.h"
92 #include "extent_io.h"
93 #include "volumes.h"
94 #include "print-tree.h"
95 #include "locking.h"
96 #include "check-integrity.h"
97 #include "rcu-string.h"
98
99 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
101 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
102 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
103 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
104 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
105 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
106 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)    /* in characters,
107                                                          * excluding " [...]" */
108 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
109
110 /*
111  * The definition of the bitmask fields for the print_mask.
112  * They are specified with the mount option check_integrity_print_mask.
113  */
114 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE                     0x00000001
115 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION         0x00000002
116 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE                  0x00000004
117 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE                 0x00000008
118 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH                        0x00000010
119 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH                        0x00000020
120 #define BTRFSIC_PRINT_MASK_VERBOSE                              0x00000040
121 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE                         0x00000080
122 #define BTRFSIC_PRINT_MASK_INITIAL_TREE                         0x00000100
123 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES                    0x00000200
124 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE                     0x00000400
125 #define BTRFSIC_PRINT_MASK_NUM_COPIES                           0x00000800
126 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS                0x00001000
127
128 struct btrfsic_dev_state;
129 struct btrfsic_state;
130
131 struct btrfsic_block {
132         u32 magic_num;          /* only used for debug purposes */
133         unsigned int is_metadata:1;     /* if it is meta-data, not data-data */
134         unsigned int is_superblock:1;   /* if it is one of the superblocks */
135         unsigned int is_iodone:1;       /* if is done by lower subsystem */
136         unsigned int iodone_w_error:1;  /* error was indicated to endio */
137         unsigned int never_written:1;   /* block was added because it was
138                                          * referenced, not because it was
139                                          * written */
140         unsigned int mirror_num;        /* large enough to hold
141                                          * BTRFS_SUPER_MIRROR_MAX */
142         struct btrfsic_dev_state *dev_state;
143         u64 dev_bytenr;         /* key, physical byte num on disk */
144         u64 logical_bytenr;     /* logical byte num on disk */
145         u64 generation;
146         struct btrfs_disk_key disk_key; /* extra info to print in case of
147                                          * issues, will not always be correct */
148         struct list_head collision_resolving_node;      /* list node */
149         struct list_head all_blocks_node;       /* list node */
150
151         /* the following two lists contain block_link items */
152         struct list_head ref_to_list;   /* list */
153         struct list_head ref_from_list; /* list */
154         struct btrfsic_block *next_in_same_bio;
155         void *orig_bio_bh_private;
156         union {
157                 bio_end_io_t *bio;
158                 bh_end_io_t *bh;
159         } orig_bio_bh_end_io;
160         int submit_bio_bh_rw;
161         u64 flush_gen; /* only valid if !never_written */
162 };
163
164 /*
165  * Elements of this type are allocated dynamically and required because
166  * each block object can refer to and can be ref from multiple blocks.
167  * The key to lookup them in the hashtable is the dev_bytenr of
168  * the block ref to plus the one from the block refered from.
169  * The fact that they are searchable via a hashtable and that a
170  * ref_cnt is maintained is not required for the btrfs integrity
171  * check algorithm itself, it is only used to make the output more
172  * beautiful in case that an error is detected (an error is defined
173  * as a write operation to a block while that block is still referenced).
174  */
175 struct btrfsic_block_link {
176         u32 magic_num;          /* only used for debug purposes */
177         u32 ref_cnt;
178         struct list_head node_ref_to;   /* list node */
179         struct list_head node_ref_from; /* list node */
180         struct list_head collision_resolving_node;      /* list node */
181         struct btrfsic_block *block_ref_to;
182         struct btrfsic_block *block_ref_from;
183         u64 parent_generation;
184 };
185
186 struct btrfsic_dev_state {
187         u32 magic_num;          /* only used for debug purposes */
188         struct block_device *bdev;
189         struct btrfsic_state *state;
190         struct list_head collision_resolving_node;      /* list node */
191         struct btrfsic_block dummy_block_for_bio_bh_flush;
192         u64 last_flush_gen;
193         char name[BDEVNAME_SIZE];
194 };
195
196 struct btrfsic_block_hashtable {
197         struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
198 };
199
200 struct btrfsic_block_link_hashtable {
201         struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
202 };
203
204 struct btrfsic_dev_state_hashtable {
205         struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
206 };
207
208 struct btrfsic_block_data_ctx {
209         u64 start;              /* virtual bytenr */
210         u64 dev_bytenr;         /* physical bytenr on device */
211         u32 len;
212         struct btrfsic_dev_state *dev;
213         char **datav;
214         struct page **pagev;
215         void *mem_to_free;
216 };
217
218 /* This structure is used to implement recursion without occupying
219  * any stack space, refer to btrfsic_process_metablock() */
220 struct btrfsic_stack_frame {
221         u32 magic;
222         u32 nr;
223         int error;
224         int i;
225         int limit_nesting;
226         int num_copies;
227         int mirror_num;
228         struct btrfsic_block *block;
229         struct btrfsic_block_data_ctx *block_ctx;
230         struct btrfsic_block *next_block;
231         struct btrfsic_block_data_ctx next_block_ctx;
232         struct btrfs_header *hdr;
233         struct btrfsic_stack_frame *prev;
234 };
235
236 /* Some state per mounted filesystem */
237 struct btrfsic_state {
238         u32 print_mask;
239         int include_extent_data;
240         int csum_size;
241         struct list_head all_blocks_list;
242         struct btrfsic_block_hashtable block_hashtable;
243         struct btrfsic_block_link_hashtable block_link_hashtable;
244         struct btrfs_root *root;
245         u64 max_superblock_generation;
246         struct btrfsic_block *latest_superblock;
247         u32 metablock_size;
248         u32 datablock_size;
249 };
250
251 static void btrfsic_block_init(struct btrfsic_block *b);
252 static struct btrfsic_block *btrfsic_block_alloc(void);
253 static void btrfsic_block_free(struct btrfsic_block *b);
254 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262                                         struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265                 struct block_device *bdev,
266                 u64 dev_bytenr,
267                 struct btrfsic_block_hashtable *h);
268 static void btrfsic_block_link_hashtable_init(
269                 struct btrfsic_block_link_hashtable *h);
270 static void btrfsic_block_link_hashtable_add(
271                 struct btrfsic_block_link *l,
272                 struct btrfsic_block_link_hashtable *h);
273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275                 struct block_device *bdev_ref_to,
276                 u64 dev_bytenr_ref_to,
277                 struct block_device *bdev_ref_from,
278                 u64 dev_bytenr_ref_from,
279                 struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_dev_state_hashtable_init(
281                 struct btrfsic_dev_state_hashtable *h);
282 static void btrfsic_dev_state_hashtable_add(
283                 struct btrfsic_dev_state *ds,
284                 struct btrfsic_dev_state_hashtable *h);
285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
287                 struct block_device *bdev,
288                 struct btrfsic_dev_state_hashtable *h);
289 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
290 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
291 static int btrfsic_process_superblock(struct btrfsic_state *state,
292                                       struct btrfs_fs_devices *fs_devices);
293 static int btrfsic_process_metablock(struct btrfsic_state *state,
294                                      struct btrfsic_block *block,
295                                      struct btrfsic_block_data_ctx *block_ctx,
296                                      int limit_nesting, int force_iodone_flag);
297 static void btrfsic_read_from_block_data(
298         struct btrfsic_block_data_ctx *block_ctx,
299         void *dst, u32 offset, size_t len);
300 static int btrfsic_create_link_to_next_block(
301                 struct btrfsic_state *state,
302                 struct btrfsic_block *block,
303                 struct btrfsic_block_data_ctx
304                 *block_ctx, u64 next_bytenr,
305                 int limit_nesting,
306                 struct btrfsic_block_data_ctx *next_block_ctx,
307                 struct btrfsic_block **next_blockp,
308                 int force_iodone_flag,
309                 int *num_copiesp, int *mirror_nump,
310                 struct btrfs_disk_key *disk_key,
311                 u64 parent_generation);
312 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
313                                       struct btrfsic_block *block,
314                                       struct btrfsic_block_data_ctx *block_ctx,
315                                       u32 item_offset, int force_iodone_flag);
316 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
317                              struct btrfsic_block_data_ctx *block_ctx_out,
318                              int mirror_num);
319 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
320                                   u32 len, struct block_device *bdev,
321                                   struct btrfsic_block_data_ctx *block_ctx_out);
322 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
323 static int btrfsic_read_block(struct btrfsic_state *state,
324                               struct btrfsic_block_data_ctx *block_ctx);
325 static void btrfsic_dump_database(struct btrfsic_state *state);
326 static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
327 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
328                                      char **datav, unsigned int num_pages);
329 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
330                                           u64 dev_bytenr, char **mapped_datav,
331                                           unsigned int num_pages,
332                                           struct bio *bio, int *bio_is_patched,
333                                           struct buffer_head *bh,
334                                           int submit_bio_bh_rw);
335 static int btrfsic_process_written_superblock(
336                 struct btrfsic_state *state,
337                 struct btrfsic_block *const block,
338                 struct btrfs_super_block *const super_hdr);
339 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
340 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
341 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
342                                               const struct btrfsic_block *block,
343                                               int recursion_level);
344 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
345                                         struct btrfsic_block *const block,
346                                         int recursion_level);
347 static void btrfsic_print_add_link(const struct btrfsic_state *state,
348                                    const struct btrfsic_block_link *l);
349 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
350                                    const struct btrfsic_block_link *l);
351 static char btrfsic_get_block_type(const struct btrfsic_state *state,
352                                    const struct btrfsic_block *block);
353 static void btrfsic_dump_tree(const struct btrfsic_state *state);
354 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
355                                   const struct btrfsic_block *block,
356                                   int indent_level);
357 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
358                 struct btrfsic_state *state,
359                 struct btrfsic_block_data_ctx *next_block_ctx,
360                 struct btrfsic_block *next_block,
361                 struct btrfsic_block *from_block,
362                 u64 parent_generation);
363 static struct btrfsic_block *btrfsic_block_lookup_or_add(
364                 struct btrfsic_state *state,
365                 struct btrfsic_block_data_ctx *block_ctx,
366                 const char *additional_string,
367                 int is_metadata,
368                 int is_iodone,
369                 int never_written,
370                 int mirror_num,
371                 int *was_created);
372 static int btrfsic_process_superblock_dev_mirror(
373                 struct btrfsic_state *state,
374                 struct btrfsic_dev_state *dev_state,
375                 struct btrfs_device *device,
376                 int superblock_mirror_num,
377                 struct btrfsic_dev_state **selected_dev_state,
378                 struct btrfs_super_block *selected_super);
379 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
380                 struct block_device *bdev);
381 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
382                                            u64 bytenr,
383                                            struct btrfsic_dev_state *dev_state,
384                                            u64 dev_bytenr);
385
386 static struct mutex btrfsic_mutex;
387 static int btrfsic_is_initialized;
388 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
389
390
391 static void btrfsic_block_init(struct btrfsic_block *b)
392 {
393         b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
394         b->dev_state = NULL;
395         b->dev_bytenr = 0;
396         b->logical_bytenr = 0;
397         b->generation = BTRFSIC_GENERATION_UNKNOWN;
398         b->disk_key.objectid = 0;
399         b->disk_key.type = 0;
400         b->disk_key.offset = 0;
401         b->is_metadata = 0;
402         b->is_superblock = 0;
403         b->is_iodone = 0;
404         b->iodone_w_error = 0;
405         b->never_written = 0;
406         b->mirror_num = 0;
407         b->next_in_same_bio = NULL;
408         b->orig_bio_bh_private = NULL;
409         b->orig_bio_bh_end_io.bio = NULL;
410         INIT_LIST_HEAD(&b->collision_resolving_node);
411         INIT_LIST_HEAD(&b->all_blocks_node);
412         INIT_LIST_HEAD(&b->ref_to_list);
413         INIT_LIST_HEAD(&b->ref_from_list);
414         b->submit_bio_bh_rw = 0;
415         b->flush_gen = 0;
416 }
417
418 static struct btrfsic_block *btrfsic_block_alloc(void)
419 {
420         struct btrfsic_block *b;
421
422         b = kzalloc(sizeof(*b), GFP_NOFS);
423         if (NULL != b)
424                 btrfsic_block_init(b);
425
426         return b;
427 }
428
429 static void btrfsic_block_free(struct btrfsic_block *b)
430 {
431         BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
432         kfree(b);
433 }
434
435 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
436 {
437         l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
438         l->ref_cnt = 1;
439         INIT_LIST_HEAD(&l->node_ref_to);
440         INIT_LIST_HEAD(&l->node_ref_from);
441         INIT_LIST_HEAD(&l->collision_resolving_node);
442         l->block_ref_to = NULL;
443         l->block_ref_from = NULL;
444 }
445
446 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
447 {
448         struct btrfsic_block_link *l;
449
450         l = kzalloc(sizeof(*l), GFP_NOFS);
451         if (NULL != l)
452                 btrfsic_block_link_init(l);
453
454         return l;
455 }
456
457 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
458 {
459         BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
460         kfree(l);
461 }
462
463 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
464 {
465         ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
466         ds->bdev = NULL;
467         ds->state = NULL;
468         ds->name[0] = '\0';
469         INIT_LIST_HEAD(&ds->collision_resolving_node);
470         ds->last_flush_gen = 0;
471         btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
472         ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
473         ds->dummy_block_for_bio_bh_flush.dev_state = ds;
474 }
475
476 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
477 {
478         struct btrfsic_dev_state *ds;
479
480         ds = kzalloc(sizeof(*ds), GFP_NOFS);
481         if (NULL != ds)
482                 btrfsic_dev_state_init(ds);
483
484         return ds;
485 }
486
487 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
488 {
489         BUG_ON(!(NULL == ds ||
490                  BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
491         kfree(ds);
492 }
493
494 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
495 {
496         int i;
497
498         for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
499                 INIT_LIST_HEAD(h->table + i);
500 }
501
502 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
503                                         struct btrfsic_block_hashtable *h)
504 {
505         const unsigned int hashval =
506             (((unsigned int)(b->dev_bytenr >> 16)) ^
507              ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
508              (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
509
510         list_add(&b->collision_resolving_node, h->table + hashval);
511 }
512
513 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
514 {
515         list_del(&b->collision_resolving_node);
516 }
517
518 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
519                 struct block_device *bdev,
520                 u64 dev_bytenr,
521                 struct btrfsic_block_hashtable *h)
522 {
523         const unsigned int hashval =
524             (((unsigned int)(dev_bytenr >> 16)) ^
525              ((unsigned int)((uintptr_t)bdev))) &
526              (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
527         struct list_head *elem;
528
529         list_for_each(elem, h->table + hashval) {
530                 struct btrfsic_block *const b =
531                     list_entry(elem, struct btrfsic_block,
532                                collision_resolving_node);
533
534                 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
535                         return b;
536         }
537
538         return NULL;
539 }
540
541 static void btrfsic_block_link_hashtable_init(
542                 struct btrfsic_block_link_hashtable *h)
543 {
544         int i;
545
546         for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
547                 INIT_LIST_HEAD(h->table + i);
548 }
549
550 static void btrfsic_block_link_hashtable_add(
551                 struct btrfsic_block_link *l,
552                 struct btrfsic_block_link_hashtable *h)
553 {
554         const unsigned int hashval =
555             (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
556              ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
557              ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
558              ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
559              & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
560
561         BUG_ON(NULL == l->block_ref_to);
562         BUG_ON(NULL == l->block_ref_from);
563         list_add(&l->collision_resolving_node, h->table + hashval);
564 }
565
566 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
567 {
568         list_del(&l->collision_resolving_node);
569 }
570
571 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
572                 struct block_device *bdev_ref_to,
573                 u64 dev_bytenr_ref_to,
574                 struct block_device *bdev_ref_from,
575                 u64 dev_bytenr_ref_from,
576                 struct btrfsic_block_link_hashtable *h)
577 {
578         const unsigned int hashval =
579             (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
580              ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
581              ((unsigned int)((uintptr_t)bdev_ref_to)) ^
582              ((unsigned int)((uintptr_t)bdev_ref_from))) &
583              (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
584         struct list_head *elem;
585
586         list_for_each(elem, h->table + hashval) {
587                 struct btrfsic_block_link *const l =
588                     list_entry(elem, struct btrfsic_block_link,
589                                collision_resolving_node);
590
591                 BUG_ON(NULL == l->block_ref_to);
592                 BUG_ON(NULL == l->block_ref_from);
593                 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
594                     l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
595                     l->block_ref_from->dev_state->bdev == bdev_ref_from &&
596                     l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
597                         return l;
598         }
599
600         return NULL;
601 }
602
603 static void btrfsic_dev_state_hashtable_init(
604                 struct btrfsic_dev_state_hashtable *h)
605 {
606         int i;
607
608         for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
609                 INIT_LIST_HEAD(h->table + i);
610 }
611
612 static void btrfsic_dev_state_hashtable_add(
613                 struct btrfsic_dev_state *ds,
614                 struct btrfsic_dev_state_hashtable *h)
615 {
616         const unsigned int hashval =
617             (((unsigned int)((uintptr_t)ds->bdev)) &
618              (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
619
620         list_add(&ds->collision_resolving_node, h->table + hashval);
621 }
622
623 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
624 {
625         list_del(&ds->collision_resolving_node);
626 }
627
628 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
629                 struct block_device *bdev,
630                 struct btrfsic_dev_state_hashtable *h)
631 {
632         const unsigned int hashval =
633             (((unsigned int)((uintptr_t)bdev)) &
634              (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
635         struct list_head *elem;
636
637         list_for_each(elem, h->table + hashval) {
638                 struct btrfsic_dev_state *const ds =
639                     list_entry(elem, struct btrfsic_dev_state,
640                                collision_resolving_node);
641
642                 if (ds->bdev == bdev)
643                         return ds;
644         }
645
646         return NULL;
647 }
648
649 static int btrfsic_process_superblock(struct btrfsic_state *state,
650                                       struct btrfs_fs_devices *fs_devices)
651 {
652         int ret = 0;
653         struct btrfs_super_block *selected_super;
654         struct list_head *dev_head = &fs_devices->devices;
655         struct btrfs_device *device;
656         struct btrfsic_dev_state *selected_dev_state = NULL;
657         int pass;
658
659         BUG_ON(NULL == state);
660         selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
661         if (NULL == selected_super) {
662                 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
663                 return -1;
664         }
665
666         list_for_each_entry(device, dev_head, dev_list) {
667                 int i;
668                 struct btrfsic_dev_state *dev_state;
669
670                 if (!device->bdev || !device->name)
671                         continue;
672
673                 dev_state = btrfsic_dev_state_lookup(device->bdev);
674                 BUG_ON(NULL == dev_state);
675                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
676                         ret = btrfsic_process_superblock_dev_mirror(
677                                         state, dev_state, device, i,
678                                         &selected_dev_state, selected_super);
679                         if (0 != ret && 0 == i) {
680                                 kfree(selected_super);
681                                 return ret;
682                         }
683                 }
684         }
685
686         if (NULL == state->latest_superblock) {
687                 printk(KERN_INFO "btrfsic: no superblock found!\n");
688                 kfree(selected_super);
689                 return -1;
690         }
691
692         state->csum_size = btrfs_super_csum_size(selected_super);
693
694         for (pass = 0; pass < 3; pass++) {
695                 int num_copies;
696                 int mirror_num;
697                 u64 next_bytenr;
698
699                 switch (pass) {
700                 case 0:
701                         next_bytenr = btrfs_super_root(selected_super);
702                         if (state->print_mask &
703                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
704                                 printk(KERN_INFO "root@%llu\n", next_bytenr);
705                         break;
706                 case 1:
707                         next_bytenr = btrfs_super_chunk_root(selected_super);
708                         if (state->print_mask &
709                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
710                                 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
711                         break;
712                 case 2:
713                         next_bytenr = btrfs_super_log_root(selected_super);
714                         if (0 == next_bytenr)
715                                 continue;
716                         if (state->print_mask &
717                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
718                                 printk(KERN_INFO "log@%llu\n", next_bytenr);
719                         break;
720                 }
721
722                 num_copies =
723                     btrfs_num_copies(state->root->fs_info,
724                                      next_bytenr, state->metablock_size);
725                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
726                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
727                                next_bytenr, num_copies);
728
729                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
730                         struct btrfsic_block *next_block;
731                         struct btrfsic_block_data_ctx tmp_next_block_ctx;
732                         struct btrfsic_block_link *l;
733
734                         ret = btrfsic_map_block(state, next_bytenr,
735                                                 state->metablock_size,
736                                                 &tmp_next_block_ctx,
737                                                 mirror_num);
738                         if (ret) {
739                                 printk(KERN_INFO "btrfsic:"
740                                        " btrfsic_map_block(root @%llu,"
741                                        " mirror %d) failed!\n",
742                                        next_bytenr, mirror_num);
743                                 kfree(selected_super);
744                                 return -1;
745                         }
746
747                         next_block = btrfsic_block_hashtable_lookup(
748                                         tmp_next_block_ctx.dev->bdev,
749                                         tmp_next_block_ctx.dev_bytenr,
750                                         &state->block_hashtable);
751                         BUG_ON(NULL == next_block);
752
753                         l = btrfsic_block_link_hashtable_lookup(
754                                         tmp_next_block_ctx.dev->bdev,
755                                         tmp_next_block_ctx.dev_bytenr,
756                                         state->latest_superblock->dev_state->
757                                         bdev,
758                                         state->latest_superblock->dev_bytenr,
759                                         &state->block_link_hashtable);
760                         BUG_ON(NULL == l);
761
762                         ret = btrfsic_read_block(state, &tmp_next_block_ctx);
763                         if (ret < (int)PAGE_CACHE_SIZE) {
764                                 printk(KERN_INFO
765                                        "btrfsic: read @logical %llu failed!\n",
766                                        tmp_next_block_ctx.start);
767                                 btrfsic_release_block_ctx(&tmp_next_block_ctx);
768                                 kfree(selected_super);
769                                 return -1;
770                         }
771
772                         ret = btrfsic_process_metablock(state,
773                                                         next_block,
774                                                         &tmp_next_block_ctx,
775                                                         BTRFS_MAX_LEVEL + 3, 1);
776                         btrfsic_release_block_ctx(&tmp_next_block_ctx);
777                 }
778         }
779
780         kfree(selected_super);
781         return ret;
782 }
783
784 static int btrfsic_process_superblock_dev_mirror(
785                 struct btrfsic_state *state,
786                 struct btrfsic_dev_state *dev_state,
787                 struct btrfs_device *device,
788                 int superblock_mirror_num,
789                 struct btrfsic_dev_state **selected_dev_state,
790                 struct btrfs_super_block *selected_super)
791 {
792         struct btrfs_super_block *super_tmp;
793         u64 dev_bytenr;
794         struct buffer_head *bh;
795         struct btrfsic_block *superblock_tmp;
796         int pass;
797         struct block_device *const superblock_bdev = device->bdev;
798
799         /* super block bytenr is always the unmapped device bytenr */
800         dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
801         if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
802                 return -1;
803         bh = __bread(superblock_bdev, dev_bytenr / 4096,
804                      BTRFS_SUPER_INFO_SIZE);
805         if (NULL == bh)
806                 return -1;
807         super_tmp = (struct btrfs_super_block *)
808             (bh->b_data + (dev_bytenr & 4095));
809
810         if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
811             btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
812             memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
813             btrfs_super_nodesize(super_tmp) != state->metablock_size ||
814             btrfs_super_leafsize(super_tmp) != state->metablock_size ||
815             btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
816                 brelse(bh);
817                 return 0;
818         }
819
820         superblock_tmp =
821             btrfsic_block_hashtable_lookup(superblock_bdev,
822                                            dev_bytenr,
823                                            &state->block_hashtable);
824         if (NULL == superblock_tmp) {
825                 superblock_tmp = btrfsic_block_alloc();
826                 if (NULL == superblock_tmp) {
827                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
828                         brelse(bh);
829                         return -1;
830                 }
831                 /* for superblock, only the dev_bytenr makes sense */
832                 superblock_tmp->dev_bytenr = dev_bytenr;
833                 superblock_tmp->dev_state = dev_state;
834                 superblock_tmp->logical_bytenr = dev_bytenr;
835                 superblock_tmp->generation = btrfs_super_generation(super_tmp);
836                 superblock_tmp->is_metadata = 1;
837                 superblock_tmp->is_superblock = 1;
838                 superblock_tmp->is_iodone = 1;
839                 superblock_tmp->never_written = 0;
840                 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
841                 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
842                         printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
843                                      " @%llu (%s/%llu/%d)\n",
844                                      superblock_bdev,
845                                      rcu_str_deref(device->name), dev_bytenr,
846                                      dev_state->name, dev_bytenr,
847                                      superblock_mirror_num);
848                 list_add(&superblock_tmp->all_blocks_node,
849                          &state->all_blocks_list);
850                 btrfsic_block_hashtable_add(superblock_tmp,
851                                             &state->block_hashtable);
852         }
853
854         /* select the one with the highest generation field */
855         if (btrfs_super_generation(super_tmp) >
856             state->max_superblock_generation ||
857             0 == state->max_superblock_generation) {
858                 memcpy(selected_super, super_tmp, sizeof(*selected_super));
859                 *selected_dev_state = dev_state;
860                 state->max_superblock_generation =
861                     btrfs_super_generation(super_tmp);
862                 state->latest_superblock = superblock_tmp;
863         }
864
865         for (pass = 0; pass < 3; pass++) {
866                 u64 next_bytenr;
867                 int num_copies;
868                 int mirror_num;
869                 const char *additional_string = NULL;
870                 struct btrfs_disk_key tmp_disk_key;
871
872                 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
873                 tmp_disk_key.offset = 0;
874                 switch (pass) {
875                 case 0:
876                         btrfs_set_disk_key_objectid(&tmp_disk_key,
877                                                     BTRFS_ROOT_TREE_OBJECTID);
878                         additional_string = "initial root ";
879                         next_bytenr = btrfs_super_root(super_tmp);
880                         break;
881                 case 1:
882                         btrfs_set_disk_key_objectid(&tmp_disk_key,
883                                                     BTRFS_CHUNK_TREE_OBJECTID);
884                         additional_string = "initial chunk ";
885                         next_bytenr = btrfs_super_chunk_root(super_tmp);
886                         break;
887                 case 2:
888                         btrfs_set_disk_key_objectid(&tmp_disk_key,
889                                                     BTRFS_TREE_LOG_OBJECTID);
890                         additional_string = "initial log ";
891                         next_bytenr = btrfs_super_log_root(super_tmp);
892                         if (0 == next_bytenr)
893                                 continue;
894                         break;
895                 }
896
897                 num_copies =
898                     btrfs_num_copies(state->root->fs_info,
899                                      next_bytenr, state->metablock_size);
900                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
901                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
902                                next_bytenr, num_copies);
903                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
904                         struct btrfsic_block *next_block;
905                         struct btrfsic_block_data_ctx tmp_next_block_ctx;
906                         struct btrfsic_block_link *l;
907
908                         if (btrfsic_map_block(state, next_bytenr,
909                                               state->metablock_size,
910                                               &tmp_next_block_ctx,
911                                               mirror_num)) {
912                                 printk(KERN_INFO "btrfsic: btrfsic_map_block("
913                                        "bytenr @%llu, mirror %d) failed!\n",
914                                        next_bytenr, mirror_num);
915                                 brelse(bh);
916                                 return -1;
917                         }
918
919                         next_block = btrfsic_block_lookup_or_add(
920                                         state, &tmp_next_block_ctx,
921                                         additional_string, 1, 1, 0,
922                                         mirror_num, NULL);
923                         if (NULL == next_block) {
924                                 btrfsic_release_block_ctx(&tmp_next_block_ctx);
925                                 brelse(bh);
926                                 return -1;
927                         }
928
929                         next_block->disk_key = tmp_disk_key;
930                         next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
931                         l = btrfsic_block_link_lookup_or_add(
932                                         state, &tmp_next_block_ctx,
933                                         next_block, superblock_tmp,
934                                         BTRFSIC_GENERATION_UNKNOWN);
935                         btrfsic_release_block_ctx(&tmp_next_block_ctx);
936                         if (NULL == l) {
937                                 brelse(bh);
938                                 return -1;
939                         }
940                 }
941         }
942         if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
943                 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
944
945         brelse(bh);
946         return 0;
947 }
948
949 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
950 {
951         struct btrfsic_stack_frame *sf;
952
953         sf = kzalloc(sizeof(*sf), GFP_NOFS);
954         if (NULL == sf)
955                 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
956         else
957                 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
958         return sf;
959 }
960
961 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
962 {
963         BUG_ON(!(NULL == sf ||
964                  BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
965         kfree(sf);
966 }
967
968 static int btrfsic_process_metablock(
969                 struct btrfsic_state *state,
970                 struct btrfsic_block *const first_block,
971                 struct btrfsic_block_data_ctx *const first_block_ctx,
972                 int first_limit_nesting, int force_iodone_flag)
973 {
974         struct btrfsic_stack_frame initial_stack_frame = { 0 };
975         struct btrfsic_stack_frame *sf;
976         struct btrfsic_stack_frame *next_stack;
977         struct btrfs_header *const first_hdr =
978                 (struct btrfs_header *)first_block_ctx->datav[0];
979
980         BUG_ON(!first_hdr);
981         sf = &initial_stack_frame;
982         sf->error = 0;
983         sf->i = -1;
984         sf->limit_nesting = first_limit_nesting;
985         sf->block = first_block;
986         sf->block_ctx = first_block_ctx;
987         sf->next_block = NULL;
988         sf->hdr = first_hdr;
989         sf->prev = NULL;
990
991 continue_with_new_stack_frame:
992         sf->block->generation = le64_to_cpu(sf->hdr->generation);
993         if (0 == sf->hdr->level) {
994                 struct btrfs_leaf *const leafhdr =
995                     (struct btrfs_leaf *)sf->hdr;
996
997                 if (-1 == sf->i) {
998                         sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
999
1000                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1001                                 printk(KERN_INFO
1002                                        "leaf %llu items %d generation %llu"
1003                                        " owner %llu\n",
1004                                        sf->block_ctx->start, sf->nr,
1005                                        btrfs_stack_header_generation(
1006                                                &leafhdr->header),
1007                                        btrfs_stack_header_owner(
1008                                                &leafhdr->header));
1009                 }
1010
1011 continue_with_current_leaf_stack_frame:
1012                 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1013                         sf->i++;
1014                         sf->num_copies = 0;
1015                 }
1016
1017                 if (sf->i < sf->nr) {
1018                         struct btrfs_item disk_item;
1019                         u32 disk_item_offset =
1020                                 (uintptr_t)(leafhdr->items + sf->i) -
1021                                 (uintptr_t)leafhdr;
1022                         struct btrfs_disk_key *disk_key;
1023                         u8 type;
1024                         u32 item_offset;
1025                         u32 item_size;
1026
1027                         if (disk_item_offset + sizeof(struct btrfs_item) >
1028                             sf->block_ctx->len) {
1029 leaf_item_out_of_bounce_error:
1030                                 printk(KERN_INFO
1031                                        "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1032                                        sf->block_ctx->start,
1033                                        sf->block_ctx->dev->name);
1034                                 goto one_stack_frame_backwards;
1035                         }
1036                         btrfsic_read_from_block_data(sf->block_ctx,
1037                                                      &disk_item,
1038                                                      disk_item_offset,
1039                                                      sizeof(struct btrfs_item));
1040                         item_offset = btrfs_stack_item_offset(&disk_item);
1041                         item_size = btrfs_stack_item_offset(&disk_item);
1042                         disk_key = &disk_item.key;
1043                         type = btrfs_disk_key_type(disk_key);
1044
1045                         if (BTRFS_ROOT_ITEM_KEY == type) {
1046                                 struct btrfs_root_item root_item;
1047                                 u32 root_item_offset;
1048                                 u64 next_bytenr;
1049
1050                                 root_item_offset = item_offset +
1051                                         offsetof(struct btrfs_leaf, items);
1052                                 if (root_item_offset + item_size >
1053                                     sf->block_ctx->len)
1054                                         goto leaf_item_out_of_bounce_error;
1055                                 btrfsic_read_from_block_data(
1056                                         sf->block_ctx, &root_item,
1057                                         root_item_offset,
1058                                         item_size);
1059                                 next_bytenr = btrfs_root_bytenr(&root_item);
1060
1061                                 sf->error =
1062                                     btrfsic_create_link_to_next_block(
1063                                                 state,
1064                                                 sf->block,
1065                                                 sf->block_ctx,
1066                                                 next_bytenr,
1067                                                 sf->limit_nesting,
1068                                                 &sf->next_block_ctx,
1069                                                 &sf->next_block,
1070                                                 force_iodone_flag,
1071                                                 &sf->num_copies,
1072                                                 &sf->mirror_num,
1073                                                 disk_key,
1074                                                 btrfs_root_generation(
1075                                                 &root_item));
1076                                 if (sf->error)
1077                                         goto one_stack_frame_backwards;
1078
1079                                 if (NULL != sf->next_block) {
1080                                         struct btrfs_header *const next_hdr =
1081                                             (struct btrfs_header *)
1082                                             sf->next_block_ctx.datav[0];
1083
1084                                         next_stack =
1085                                             btrfsic_stack_frame_alloc();
1086                                         if (NULL == next_stack) {
1087                                                 btrfsic_release_block_ctx(
1088                                                                 &sf->
1089                                                                 next_block_ctx);
1090                                                 goto one_stack_frame_backwards;
1091                                         }
1092
1093                                         next_stack->i = -1;
1094                                         next_stack->block = sf->next_block;
1095                                         next_stack->block_ctx =
1096                                             &sf->next_block_ctx;
1097                                         next_stack->next_block = NULL;
1098                                         next_stack->hdr = next_hdr;
1099                                         next_stack->limit_nesting =
1100                                             sf->limit_nesting - 1;
1101                                         next_stack->prev = sf;
1102                                         sf = next_stack;
1103                                         goto continue_with_new_stack_frame;
1104                                 }
1105                         } else if (BTRFS_EXTENT_DATA_KEY == type &&
1106                                    state->include_extent_data) {
1107                                 sf->error = btrfsic_handle_extent_data(
1108                                                 state,
1109                                                 sf->block,
1110                                                 sf->block_ctx,
1111                                                 item_offset,
1112                                                 force_iodone_flag);
1113                                 if (sf->error)
1114                                         goto one_stack_frame_backwards;
1115                         }
1116
1117                         goto continue_with_current_leaf_stack_frame;
1118                 }
1119         } else {
1120                 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1121
1122                 if (-1 == sf->i) {
1123                         sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1124
1125                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1126                                 printk(KERN_INFO "node %llu level %d items %d"
1127                                        " generation %llu owner %llu\n",
1128                                        sf->block_ctx->start,
1129                                        nodehdr->header.level, sf->nr,
1130                                        btrfs_stack_header_generation(
1131                                        &nodehdr->header),
1132                                        btrfs_stack_header_owner(
1133                                        &nodehdr->header));
1134                 }
1135
1136 continue_with_current_node_stack_frame:
1137                 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1138                         sf->i++;
1139                         sf->num_copies = 0;
1140                 }
1141
1142                 if (sf->i < sf->nr) {
1143                         struct btrfs_key_ptr key_ptr;
1144                         u32 key_ptr_offset;
1145                         u64 next_bytenr;
1146
1147                         key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1148                                           (uintptr_t)nodehdr;
1149                         if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1150                             sf->block_ctx->len) {
1151                                 printk(KERN_INFO
1152                                        "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1153                                        sf->block_ctx->start,
1154                                        sf->block_ctx->dev->name);
1155                                 goto one_stack_frame_backwards;
1156                         }
1157                         btrfsic_read_from_block_data(
1158                                 sf->block_ctx, &key_ptr, key_ptr_offset,
1159                                 sizeof(struct btrfs_key_ptr));
1160                         next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1161
1162                         sf->error = btrfsic_create_link_to_next_block(
1163                                         state,
1164                                         sf->block,
1165                                         sf->block_ctx,
1166                                         next_bytenr,
1167                                         sf->limit_nesting,
1168                                         &sf->next_block_ctx,
1169                                         &sf->next_block,
1170                                         force_iodone_flag,
1171                                         &sf->num_copies,
1172                                         &sf->mirror_num,
1173                                         &key_ptr.key,
1174                                         btrfs_stack_key_generation(&key_ptr));
1175                         if (sf->error)
1176                                 goto one_stack_frame_backwards;
1177
1178                         if (NULL != sf->next_block) {
1179                                 struct btrfs_header *const next_hdr =
1180                                     (struct btrfs_header *)
1181                                     sf->next_block_ctx.datav[0];
1182
1183                                 next_stack = btrfsic_stack_frame_alloc();
1184                                 if (NULL == next_stack)
1185                                         goto one_stack_frame_backwards;
1186
1187                                 next_stack->i = -1;
1188                                 next_stack->block = sf->next_block;
1189                                 next_stack->block_ctx = &sf->next_block_ctx;
1190                                 next_stack->next_block = NULL;
1191                                 next_stack->hdr = next_hdr;
1192                                 next_stack->limit_nesting =
1193                                     sf->limit_nesting - 1;
1194                                 next_stack->prev = sf;
1195                                 sf = next_stack;
1196                                 goto continue_with_new_stack_frame;
1197                         }
1198
1199                         goto continue_with_current_node_stack_frame;
1200                 }
1201         }
1202
1203 one_stack_frame_backwards:
1204         if (NULL != sf->prev) {
1205                 struct btrfsic_stack_frame *const prev = sf->prev;
1206
1207                 /* the one for the initial block is freed in the caller */
1208                 btrfsic_release_block_ctx(sf->block_ctx);
1209
1210                 if (sf->error) {
1211                         prev->error = sf->error;
1212                         btrfsic_stack_frame_free(sf);
1213                         sf = prev;
1214                         goto one_stack_frame_backwards;
1215                 }
1216
1217                 btrfsic_stack_frame_free(sf);
1218                 sf = prev;
1219                 goto continue_with_new_stack_frame;
1220         } else {
1221                 BUG_ON(&initial_stack_frame != sf);
1222         }
1223
1224         return sf->error;
1225 }
1226
1227 static void btrfsic_read_from_block_data(
1228         struct btrfsic_block_data_ctx *block_ctx,
1229         void *dstv, u32 offset, size_t len)
1230 {
1231         size_t cur;
1232         size_t offset_in_page;
1233         char *kaddr;
1234         char *dst = (char *)dstv;
1235         size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1236         unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1237
1238         WARN_ON(offset + len > block_ctx->len);
1239         offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1240
1241         while (len > 0) {
1242                 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1243                 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1244                             PAGE_CACHE_SHIFT);
1245                 kaddr = block_ctx->datav[i];
1246                 memcpy(dst, kaddr + offset_in_page, cur);
1247
1248                 dst += cur;
1249                 len -= cur;
1250                 offset_in_page = 0;
1251                 i++;
1252         }
1253 }
1254
1255 static int btrfsic_create_link_to_next_block(
1256                 struct btrfsic_state *state,
1257                 struct btrfsic_block *block,
1258                 struct btrfsic_block_data_ctx *block_ctx,
1259                 u64 next_bytenr,
1260                 int limit_nesting,
1261                 struct btrfsic_block_data_ctx *next_block_ctx,
1262                 struct btrfsic_block **next_blockp,
1263                 int force_iodone_flag,
1264                 int *num_copiesp, int *mirror_nump,
1265                 struct btrfs_disk_key *disk_key,
1266                 u64 parent_generation)
1267 {
1268         struct btrfsic_block *next_block = NULL;
1269         int ret;
1270         struct btrfsic_block_link *l;
1271         int did_alloc_block_link;
1272         int block_was_created;
1273
1274         *next_blockp = NULL;
1275         if (0 == *num_copiesp) {
1276                 *num_copiesp =
1277                     btrfs_num_copies(state->root->fs_info,
1278                                      next_bytenr, state->metablock_size);
1279                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1280                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1281                                next_bytenr, *num_copiesp);
1282                 *mirror_nump = 1;
1283         }
1284
1285         if (*mirror_nump > *num_copiesp)
1286                 return 0;
1287
1288         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1289                 printk(KERN_INFO
1290                        "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1291                        *mirror_nump);
1292         ret = btrfsic_map_block(state, next_bytenr,
1293                                 state->metablock_size,
1294                                 next_block_ctx, *mirror_nump);
1295         if (ret) {
1296                 printk(KERN_INFO
1297                        "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1298                        next_bytenr, *mirror_nump);
1299                 btrfsic_release_block_ctx(next_block_ctx);
1300                 *next_blockp = NULL;
1301                 return -1;
1302         }
1303
1304         next_block = btrfsic_block_lookup_or_add(state,
1305                                                  next_block_ctx, "referenced ",
1306                                                  1, force_iodone_flag,
1307                                                  !force_iodone_flag,
1308                                                  *mirror_nump,
1309                                                  &block_was_created);
1310         if (NULL == next_block) {
1311                 btrfsic_release_block_ctx(next_block_ctx);
1312                 *next_blockp = NULL;
1313                 return -1;
1314         }
1315         if (block_was_created) {
1316                 l = NULL;
1317                 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1318         } else {
1319                 if (next_block->logical_bytenr != next_bytenr &&
1320                     !(!next_block->is_metadata &&
1321                       0 == next_block->logical_bytenr)) {
1322                         printk(KERN_INFO
1323                                "Referenced block @%llu (%s/%llu/%d)"
1324                                " found in hash table, %c,"
1325                                " bytenr mismatch (!= stored %llu).\n",
1326                                next_bytenr, next_block_ctx->dev->name,
1327                                next_block_ctx->dev_bytenr, *mirror_nump,
1328                                btrfsic_get_block_type(state, next_block),
1329                                next_block->logical_bytenr);
1330                 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1331                         printk(KERN_INFO
1332                                "Referenced block @%llu (%s/%llu/%d)"
1333                                " found in hash table, %c.\n",
1334                                next_bytenr, next_block_ctx->dev->name,
1335                                next_block_ctx->dev_bytenr, *mirror_nump,
1336                                btrfsic_get_block_type(state, next_block));
1337                 next_block->logical_bytenr = next_bytenr;
1338
1339                 next_block->mirror_num = *mirror_nump;
1340                 l = btrfsic_block_link_hashtable_lookup(
1341                                 next_block_ctx->dev->bdev,
1342                                 next_block_ctx->dev_bytenr,
1343                                 block_ctx->dev->bdev,
1344                                 block_ctx->dev_bytenr,
1345                                 &state->block_link_hashtable);
1346         }
1347
1348         next_block->disk_key = *disk_key;
1349         if (NULL == l) {
1350                 l = btrfsic_block_link_alloc();
1351                 if (NULL == l) {
1352                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1353                         btrfsic_release_block_ctx(next_block_ctx);
1354                         *next_blockp = NULL;
1355                         return -1;
1356                 }
1357
1358                 did_alloc_block_link = 1;
1359                 l->block_ref_to = next_block;
1360                 l->block_ref_from = block;
1361                 l->ref_cnt = 1;
1362                 l->parent_generation = parent_generation;
1363
1364                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1365                         btrfsic_print_add_link(state, l);
1366
1367                 list_add(&l->node_ref_to, &block->ref_to_list);
1368                 list_add(&l->node_ref_from, &next_block->ref_from_list);
1369
1370                 btrfsic_block_link_hashtable_add(l,
1371                                                  &state->block_link_hashtable);
1372         } else {
1373                 did_alloc_block_link = 0;
1374                 if (0 == limit_nesting) {
1375                         l->ref_cnt++;
1376                         l->parent_generation = parent_generation;
1377                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1378                                 btrfsic_print_add_link(state, l);
1379                 }
1380         }
1381
1382         if (limit_nesting > 0 && did_alloc_block_link) {
1383                 ret = btrfsic_read_block(state, next_block_ctx);
1384                 if (ret < (int)next_block_ctx->len) {
1385                         printk(KERN_INFO
1386                                "btrfsic: read block @logical %llu failed!\n",
1387                                next_bytenr);
1388                         btrfsic_release_block_ctx(next_block_ctx);
1389                         *next_blockp = NULL;
1390                         return -1;
1391                 }
1392
1393                 *next_blockp = next_block;
1394         } else {
1395                 *next_blockp = NULL;
1396         }
1397         (*mirror_nump)++;
1398
1399         return 0;
1400 }
1401
1402 static int btrfsic_handle_extent_data(
1403                 struct btrfsic_state *state,
1404                 struct btrfsic_block *block,
1405                 struct btrfsic_block_data_ctx *block_ctx,
1406                 u32 item_offset, int force_iodone_flag)
1407 {
1408         int ret;
1409         struct btrfs_file_extent_item file_extent_item;
1410         u64 file_extent_item_offset;
1411         u64 next_bytenr;
1412         u64 num_bytes;
1413         u64 generation;
1414         struct btrfsic_block_link *l;
1415
1416         file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1417                                   item_offset;
1418         if (file_extent_item_offset +
1419             offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1420             block_ctx->len) {
1421                 printk(KERN_INFO
1422                        "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1423                        block_ctx->start, block_ctx->dev->name);
1424                 return -1;
1425         }
1426
1427         btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1428                 file_extent_item_offset,
1429                 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1430         if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1431             btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1432                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1433                         printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1434                                file_extent_item.type,
1435                                btrfs_stack_file_extent_disk_bytenr(
1436                                &file_extent_item));
1437                 return 0;
1438         }
1439
1440         if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1441             block_ctx->len) {
1442                 printk(KERN_INFO
1443                        "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1444                        block_ctx->start, block_ctx->dev->name);
1445                 return -1;
1446         }
1447         btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1448                                      file_extent_item_offset,
1449                                      sizeof(struct btrfs_file_extent_item));
1450         next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item) +
1451                       btrfs_stack_file_extent_offset(&file_extent_item);
1452         generation = btrfs_stack_file_extent_generation(&file_extent_item);
1453         num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1454         generation = btrfs_stack_file_extent_generation(&file_extent_item);
1455
1456         if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1457                 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1458                        " offset = %llu, num_bytes = %llu\n",
1459                        file_extent_item.type,
1460                        btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1461                        btrfs_stack_file_extent_offset(&file_extent_item),
1462                        num_bytes);
1463         while (num_bytes > 0) {
1464                 u32 chunk_len;
1465                 int num_copies;
1466                 int mirror_num;
1467
1468                 if (num_bytes > state->datablock_size)
1469                         chunk_len = state->datablock_size;
1470                 else
1471                         chunk_len = num_bytes;
1472
1473                 num_copies =
1474                     btrfs_num_copies(state->root->fs_info,
1475                                      next_bytenr, state->datablock_size);
1476                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1477                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1478                                next_bytenr, num_copies);
1479                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1480                         struct btrfsic_block_data_ctx next_block_ctx;
1481                         struct btrfsic_block *next_block;
1482                         int block_was_created;
1483
1484                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1485                                 printk(KERN_INFO "btrfsic_handle_extent_data("
1486                                        "mirror_num=%d)\n", mirror_num);
1487                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1488                                 printk(KERN_INFO
1489                                        "\tdisk_bytenr = %llu, num_bytes %u\n",
1490                                        next_bytenr, chunk_len);
1491                         ret = btrfsic_map_block(state, next_bytenr,
1492                                                 chunk_len, &next_block_ctx,
1493                                                 mirror_num);
1494                         if (ret) {
1495                                 printk(KERN_INFO
1496                                        "btrfsic: btrfsic_map_block(@%llu,"
1497                                        " mirror=%d) failed!\n",
1498                                        next_bytenr, mirror_num);
1499                                 return -1;
1500                         }
1501
1502                         next_block = btrfsic_block_lookup_or_add(
1503                                         state,
1504                                         &next_block_ctx,
1505                                         "referenced ",
1506                                         0,
1507                                         force_iodone_flag,
1508                                         !force_iodone_flag,
1509                                         mirror_num,
1510                                         &block_was_created);
1511                         if (NULL == next_block) {
1512                                 printk(KERN_INFO
1513                                        "btrfsic: error, kmalloc failed!\n");
1514                                 btrfsic_release_block_ctx(&next_block_ctx);
1515                                 return -1;
1516                         }
1517                         if (!block_was_created) {
1518                                 if (next_block->logical_bytenr != next_bytenr &&
1519                                     !(!next_block->is_metadata &&
1520                                       0 == next_block->logical_bytenr)) {
1521                                         printk(KERN_INFO
1522                                                "Referenced block"
1523                                                " @%llu (%s/%llu/%d)"
1524                                                " found in hash table, D,"
1525                                                " bytenr mismatch"
1526                                                " (!= stored %llu).\n",
1527                                                next_bytenr,
1528                                                next_block_ctx.dev->name,
1529                                                next_block_ctx.dev_bytenr,
1530                                                mirror_num,
1531                                                next_block->logical_bytenr);
1532                                 }
1533                                 next_block->logical_bytenr = next_bytenr;
1534                                 next_block->mirror_num = mirror_num;
1535                         }
1536
1537                         l = btrfsic_block_link_lookup_or_add(state,
1538                                                              &next_block_ctx,
1539                                                              next_block, block,
1540                                                              generation);
1541                         btrfsic_release_block_ctx(&next_block_ctx);
1542                         if (NULL == l)
1543                                 return -1;
1544                 }
1545
1546                 next_bytenr += chunk_len;
1547                 num_bytes -= chunk_len;
1548         }
1549
1550         return 0;
1551 }
1552
1553 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1554                              struct btrfsic_block_data_ctx *block_ctx_out,
1555                              int mirror_num)
1556 {
1557         int ret;
1558         u64 length;
1559         struct btrfs_bio *multi = NULL;
1560         struct btrfs_device *device;
1561
1562         length = len;
1563         ret = btrfs_map_block(state->root->fs_info, READ,
1564                               bytenr, &length, &multi, mirror_num);
1565
1566         if (ret) {
1567                 block_ctx_out->start = 0;
1568                 block_ctx_out->dev_bytenr = 0;
1569                 block_ctx_out->len = 0;
1570                 block_ctx_out->dev = NULL;
1571                 block_ctx_out->datav = NULL;
1572                 block_ctx_out->pagev = NULL;
1573                 block_ctx_out->mem_to_free = NULL;
1574
1575                 return ret;
1576         }
1577
1578         device = multi->stripes[0].dev;
1579         block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1580         block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1581         block_ctx_out->start = bytenr;
1582         block_ctx_out->len = len;
1583         block_ctx_out->datav = NULL;
1584         block_ctx_out->pagev = NULL;
1585         block_ctx_out->mem_to_free = NULL;
1586
1587         kfree(multi);
1588         if (NULL == block_ctx_out->dev) {
1589                 ret = -ENXIO;
1590                 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1591         }
1592
1593         return ret;
1594 }
1595
1596 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1597                                   u32 len, struct block_device *bdev,
1598                                   struct btrfsic_block_data_ctx *block_ctx_out)
1599 {
1600         block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1601         block_ctx_out->dev_bytenr = bytenr;
1602         block_ctx_out->start = bytenr;
1603         block_ctx_out->len = len;
1604         block_ctx_out->datav = NULL;
1605         block_ctx_out->pagev = NULL;
1606         block_ctx_out->mem_to_free = NULL;
1607         if (NULL != block_ctx_out->dev) {
1608                 return 0;
1609         } else {
1610                 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1611                 return -ENXIO;
1612         }
1613 }
1614
1615 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1616 {
1617         if (block_ctx->mem_to_free) {
1618                 unsigned int num_pages;
1619
1620                 BUG_ON(!block_ctx->datav);
1621                 BUG_ON(!block_ctx->pagev);
1622                 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1623                             PAGE_CACHE_SHIFT;
1624                 while (num_pages > 0) {
1625                         num_pages--;
1626                         if (block_ctx->datav[num_pages]) {
1627                                 kunmap(block_ctx->pagev[num_pages]);
1628                                 block_ctx->datav[num_pages] = NULL;
1629                         }
1630                         if (block_ctx->pagev[num_pages]) {
1631                                 __free_page(block_ctx->pagev[num_pages]);
1632                                 block_ctx->pagev[num_pages] = NULL;
1633                         }
1634                 }
1635
1636                 kfree(block_ctx->mem_to_free);
1637                 block_ctx->mem_to_free = NULL;
1638                 block_ctx->pagev = NULL;
1639                 block_ctx->datav = NULL;
1640         }
1641 }
1642
1643 static int btrfsic_read_block(struct btrfsic_state *state,
1644                               struct btrfsic_block_data_ctx *block_ctx)
1645 {
1646         unsigned int num_pages;
1647         unsigned int i;
1648         u64 dev_bytenr;
1649         int ret;
1650
1651         BUG_ON(block_ctx->datav);
1652         BUG_ON(block_ctx->pagev);
1653         BUG_ON(block_ctx->mem_to_free);
1654         if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1655                 printk(KERN_INFO
1656                        "btrfsic: read_block() with unaligned bytenr %llu\n",
1657                        block_ctx->dev_bytenr);
1658                 return -1;
1659         }
1660
1661         num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1662                     PAGE_CACHE_SHIFT;
1663         block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1664                                           sizeof(*block_ctx->pagev)) *
1665                                          num_pages, GFP_NOFS);
1666         if (!block_ctx->mem_to_free)
1667                 return -1;
1668         block_ctx->datav = block_ctx->mem_to_free;
1669         block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1670         for (i = 0; i < num_pages; i++) {
1671                 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1672                 if (!block_ctx->pagev[i])
1673                         return -1;
1674         }
1675
1676         dev_bytenr = block_ctx->dev_bytenr;
1677         for (i = 0; i < num_pages;) {
1678                 struct bio *bio;
1679                 unsigned int j;
1680                 DECLARE_COMPLETION_ONSTACK(complete);
1681
1682                 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1683                 if (!bio) {
1684                         printk(KERN_INFO
1685                                "btrfsic: bio_alloc() for %u pages failed!\n",
1686                                num_pages - i);
1687                         return -1;
1688                 }
1689                 bio->bi_bdev = block_ctx->dev->bdev;
1690                 bio->bi_sector = dev_bytenr >> 9;
1691                 bio->bi_end_io = btrfsic_complete_bio_end_io;
1692                 bio->bi_private = &complete;
1693
1694                 for (j = i; j < num_pages; j++) {
1695                         ret = bio_add_page(bio, block_ctx->pagev[j],
1696                                            PAGE_CACHE_SIZE, 0);
1697                         if (PAGE_CACHE_SIZE != ret)
1698                                 break;
1699                 }
1700                 if (j == i) {
1701                         printk(KERN_INFO
1702                                "btrfsic: error, failed to add a single page!\n");
1703                         return -1;
1704                 }
1705                 submit_bio(READ, bio);
1706
1707                 /* this will also unplug the queue */
1708                 wait_for_completion(&complete);
1709
1710                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1711                         printk(KERN_INFO
1712                                "btrfsic: read error at logical %llu dev %s!\n",
1713                                block_ctx->start, block_ctx->dev->name);
1714                         bio_put(bio);
1715                         return -1;
1716                 }
1717                 bio_put(bio);
1718                 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1719                 i = j;
1720         }
1721         for (i = 0; i < num_pages; i++) {
1722                 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1723                 if (!block_ctx->datav[i]) {
1724                         printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1725                                block_ctx->dev->name);
1726                         return -1;
1727                 }
1728         }
1729
1730         return block_ctx->len;
1731 }
1732
1733 static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1734 {
1735         complete((struct completion *)bio->bi_private);
1736 }
1737
1738 static void btrfsic_dump_database(struct btrfsic_state *state)
1739 {
1740         struct list_head *elem_all;
1741
1742         BUG_ON(NULL == state);
1743
1744         printk(KERN_INFO "all_blocks_list:\n");
1745         list_for_each(elem_all, &state->all_blocks_list) {
1746                 const struct btrfsic_block *const b_all =
1747                     list_entry(elem_all, struct btrfsic_block,
1748                                all_blocks_node);
1749                 struct list_head *elem_ref_to;
1750                 struct list_head *elem_ref_from;
1751
1752                 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1753                        btrfsic_get_block_type(state, b_all),
1754                        b_all->logical_bytenr, b_all->dev_state->name,
1755                        b_all->dev_bytenr, b_all->mirror_num);
1756
1757                 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1758                         const struct btrfsic_block_link *const l =
1759                             list_entry(elem_ref_to,
1760                                        struct btrfsic_block_link,
1761                                        node_ref_to);
1762
1763                         printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1764                                " refers %u* to"
1765                                " %c @%llu (%s/%llu/%d)\n",
1766                                btrfsic_get_block_type(state, b_all),
1767                                b_all->logical_bytenr, b_all->dev_state->name,
1768                                b_all->dev_bytenr, b_all->mirror_num,
1769                                l->ref_cnt,
1770                                btrfsic_get_block_type(state, l->block_ref_to),
1771                                l->block_ref_to->logical_bytenr,
1772                                l->block_ref_to->dev_state->name,
1773                                l->block_ref_to->dev_bytenr,
1774                                l->block_ref_to->mirror_num);
1775                 }
1776
1777                 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1778                         const struct btrfsic_block_link *const l =
1779                             list_entry(elem_ref_from,
1780                                        struct btrfsic_block_link,
1781                                        node_ref_from);
1782
1783                         printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1784                                " is ref %u* from"
1785                                " %c @%llu (%s/%llu/%d)\n",
1786                                btrfsic_get_block_type(state, b_all),
1787                                b_all->logical_bytenr, b_all->dev_state->name,
1788                                b_all->dev_bytenr, b_all->mirror_num,
1789                                l->ref_cnt,
1790                                btrfsic_get_block_type(state, l->block_ref_from),
1791                                l->block_ref_from->logical_bytenr,
1792                                l->block_ref_from->dev_state->name,
1793                                l->block_ref_from->dev_bytenr,
1794                                l->block_ref_from->mirror_num);
1795                 }
1796
1797                 printk(KERN_INFO "\n");
1798         }
1799 }
1800
1801 /*
1802  * Test whether the disk block contains a tree block (leaf or node)
1803  * (note that this test fails for the super block)
1804  */
1805 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1806                                      char **datav, unsigned int num_pages)
1807 {
1808         struct btrfs_header *h;
1809         u8 csum[BTRFS_CSUM_SIZE];
1810         u32 crc = ~(u32)0;
1811         unsigned int i;
1812
1813         if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1814                 return 1; /* not metadata */
1815         num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1816         h = (struct btrfs_header *)datav[0];
1817
1818         if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1819                 return 1;
1820
1821         for (i = 0; i < num_pages; i++) {
1822                 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1823                 size_t sublen = i ? PAGE_CACHE_SIZE :
1824                                     (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1825
1826                 crc = crc32c(crc, data, sublen);
1827         }
1828         btrfs_csum_final(crc, csum);
1829         if (memcmp(csum, h->csum, state->csum_size))
1830                 return 1;
1831
1832         return 0; /* is metadata */
1833 }
1834
1835 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1836                                           u64 dev_bytenr, char **mapped_datav,
1837                                           unsigned int num_pages,
1838                                           struct bio *bio, int *bio_is_patched,
1839                                           struct buffer_head *bh,
1840                                           int submit_bio_bh_rw)
1841 {
1842         int is_metadata;
1843         struct btrfsic_block *block;
1844         struct btrfsic_block_data_ctx block_ctx;
1845         int ret;
1846         struct btrfsic_state *state = dev_state->state;
1847         struct block_device *bdev = dev_state->bdev;
1848         unsigned int processed_len;
1849
1850         if (NULL != bio_is_patched)
1851                 *bio_is_patched = 0;
1852
1853 again:
1854         if (num_pages == 0)
1855                 return;
1856
1857         processed_len = 0;
1858         is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1859                                                       num_pages));
1860
1861         block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1862                                                &state->block_hashtable);
1863         if (NULL != block) {
1864                 u64 bytenr = 0;
1865                 struct list_head *elem_ref_to;
1866                 struct list_head *tmp_ref_to;
1867
1868                 if (block->is_superblock) {
1869                         bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1870                                                     mapped_datav[0]);
1871                         if (num_pages * PAGE_CACHE_SIZE <
1872                             BTRFS_SUPER_INFO_SIZE) {
1873                                 printk(KERN_INFO
1874                                        "btrfsic: cannot work with too short bios!\n");
1875                                 return;
1876                         }
1877                         is_metadata = 1;
1878                         BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1879                         processed_len = BTRFS_SUPER_INFO_SIZE;
1880                         if (state->print_mask &
1881                             BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1882                                 printk(KERN_INFO
1883                                        "[before new superblock is written]:\n");
1884                                 btrfsic_dump_tree_sub(state, block, 0);
1885                         }
1886                 }
1887                 if (is_metadata) {
1888                         if (!block->is_superblock) {
1889                                 if (num_pages * PAGE_CACHE_SIZE <
1890                                     state->metablock_size) {
1891                                         printk(KERN_INFO
1892                                                "btrfsic: cannot work with too short bios!\n");
1893                                         return;
1894                                 }
1895                                 processed_len = state->metablock_size;
1896                                 bytenr = btrfs_stack_header_bytenr(
1897                                                 (struct btrfs_header *)
1898                                                 mapped_datav[0]);
1899                                 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1900                                                                dev_state,
1901                                                                dev_bytenr);
1902                         }
1903                         if (block->logical_bytenr != bytenr) {
1904                                 printk(KERN_INFO
1905                                        "Written block @%llu (%s/%llu/%d)"
1906                                        " found in hash table, %c,"
1907                                        " bytenr mismatch"
1908                                        " (!= stored %llu).\n",
1909                                        bytenr, dev_state->name, dev_bytenr,
1910                                        block->mirror_num,
1911                                        btrfsic_get_block_type(state, block),
1912                                        block->logical_bytenr);
1913                                 block->logical_bytenr = bytenr;
1914                         } else if (state->print_mask &
1915                                    BTRFSIC_PRINT_MASK_VERBOSE)
1916                                 printk(KERN_INFO
1917                                        "Written block @%llu (%s/%llu/%d)"
1918                                        " found in hash table, %c.\n",
1919                                        bytenr, dev_state->name, dev_bytenr,
1920                                        block->mirror_num,
1921                                        btrfsic_get_block_type(state, block));
1922                 } else {
1923                         if (num_pages * PAGE_CACHE_SIZE <
1924                             state->datablock_size) {
1925                                 printk(KERN_INFO
1926                                        "btrfsic: cannot work with too short bios!\n");
1927                                 return;
1928                         }
1929                         processed_len = state->datablock_size;
1930                         bytenr = block->logical_bytenr;
1931                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1932                                 printk(KERN_INFO
1933                                        "Written block @%llu (%s/%llu/%d)"
1934                                        " found in hash table, %c.\n",
1935                                        bytenr, dev_state->name, dev_bytenr,
1936                                        block->mirror_num,
1937                                        btrfsic_get_block_type(state, block));
1938                 }
1939
1940                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1941                         printk(KERN_INFO
1942                                "ref_to_list: %cE, ref_from_list: %cE\n",
1943                                list_empty(&block->ref_to_list) ? ' ' : '!',
1944                                list_empty(&block->ref_from_list) ? ' ' : '!');
1945                 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1946                         printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1947                                " @%llu (%s/%llu/%d), old(gen=%llu,"
1948                                " objectid=%llu, type=%d, offset=%llu),"
1949                                " new(gen=%llu),"
1950                                " which is referenced by most recent superblock"
1951                                " (superblockgen=%llu)!\n",
1952                                btrfsic_get_block_type(state, block), bytenr,
1953                                dev_state->name, dev_bytenr, block->mirror_num,
1954                                block->generation,
1955                                btrfs_disk_key_objectid(&block->disk_key),
1956                                block->disk_key.type,
1957                                btrfs_disk_key_offset(&block->disk_key),
1958                                btrfs_stack_header_generation(
1959                                        (struct btrfs_header *) mapped_datav[0]),
1960                                state->max_superblock_generation);
1961                         btrfsic_dump_tree(state);
1962                 }
1963
1964                 if (!block->is_iodone && !block->never_written) {
1965                         printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1966                                " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1967                                " which is not yet iodone!\n",
1968                                btrfsic_get_block_type(state, block), bytenr,
1969                                dev_state->name, dev_bytenr, block->mirror_num,
1970                                block->generation,
1971                                btrfs_stack_header_generation(
1972                                        (struct btrfs_header *)
1973                                        mapped_datav[0]));
1974                         /* it would not be safe to go on */
1975                         btrfsic_dump_tree(state);
1976                         goto continue_loop;
1977                 }
1978
1979                 /*
1980                  * Clear all references of this block. Do not free
1981                  * the block itself even if is not referenced anymore
1982                  * because it still carries valueable information
1983                  * like whether it was ever written and IO completed.
1984                  */
1985                 list_for_each_safe(elem_ref_to, tmp_ref_to,
1986                                    &block->ref_to_list) {
1987                         struct btrfsic_block_link *const l =
1988                             list_entry(elem_ref_to,
1989                                        struct btrfsic_block_link,
1990                                        node_ref_to);
1991
1992                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1993                                 btrfsic_print_rem_link(state, l);
1994                         l->ref_cnt--;
1995                         if (0 == l->ref_cnt) {
1996                                 list_del(&l->node_ref_to);
1997                                 list_del(&l->node_ref_from);
1998                                 btrfsic_block_link_hashtable_remove(l);
1999                                 btrfsic_block_link_free(l);
2000                         }
2001                 }
2002
2003                 if (block->is_superblock)
2004                         ret = btrfsic_map_superblock(state, bytenr,
2005                                                      processed_len,
2006                                                      bdev, &block_ctx);
2007                 else
2008                         ret = btrfsic_map_block(state, bytenr, processed_len,
2009                                                 &block_ctx, 0);
2010                 if (ret) {
2011                         printk(KERN_INFO
2012                                "btrfsic: btrfsic_map_block(root @%llu)"
2013                                " failed!\n", bytenr);
2014                         goto continue_loop;
2015                 }
2016                 block_ctx.datav = mapped_datav;
2017                 /* the following is required in case of writes to mirrors,
2018                  * use the same that was used for the lookup */
2019                 block_ctx.dev = dev_state;
2020                 block_ctx.dev_bytenr = dev_bytenr;
2021
2022                 if (is_metadata || state->include_extent_data) {
2023                         block->never_written = 0;
2024                         block->iodone_w_error = 0;
2025                         if (NULL != bio) {
2026                                 block->is_iodone = 0;
2027                                 BUG_ON(NULL == bio_is_patched);
2028                                 if (!*bio_is_patched) {
2029                                         block->orig_bio_bh_private =
2030                                             bio->bi_private;
2031                                         block->orig_bio_bh_end_io.bio =
2032                                             bio->bi_end_io;
2033                                         block->next_in_same_bio = NULL;
2034                                         bio->bi_private = block;
2035                                         bio->bi_end_io = btrfsic_bio_end_io;
2036                                         *bio_is_patched = 1;
2037                                 } else {
2038                                         struct btrfsic_block *chained_block =
2039                                             (struct btrfsic_block *)
2040                                             bio->bi_private;
2041
2042                                         BUG_ON(NULL == chained_block);
2043                                         block->orig_bio_bh_private =
2044                                             chained_block->orig_bio_bh_private;
2045                                         block->orig_bio_bh_end_io.bio =
2046                                             chained_block->orig_bio_bh_end_io.
2047                                             bio;
2048                                         block->next_in_same_bio = chained_block;
2049                                         bio->bi_private = block;
2050                                 }
2051                         } else if (NULL != bh) {
2052                                 block->is_iodone = 0;
2053                                 block->orig_bio_bh_private = bh->b_private;
2054                                 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2055                                 block->next_in_same_bio = NULL;
2056                                 bh->b_private = block;
2057                                 bh->b_end_io = btrfsic_bh_end_io;
2058                         } else {
2059                                 block->is_iodone = 1;
2060                                 block->orig_bio_bh_private = NULL;
2061                                 block->orig_bio_bh_end_io.bio = NULL;
2062                                 block->next_in_same_bio = NULL;
2063                         }
2064                 }
2065
2066                 block->flush_gen = dev_state->last_flush_gen + 1;
2067                 block->submit_bio_bh_rw = submit_bio_bh_rw;
2068                 if (is_metadata) {
2069                         block->logical_bytenr = bytenr;
2070                         block->is_metadata = 1;
2071                         if (block->is_superblock) {
2072                                 BUG_ON(PAGE_CACHE_SIZE !=
2073                                        BTRFS_SUPER_INFO_SIZE);
2074                                 ret = btrfsic_process_written_superblock(
2075                                                 state,
2076                                                 block,
2077                                                 (struct btrfs_super_block *)
2078                                                 mapped_datav[0]);
2079                                 if (state->print_mask &
2080                                     BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2081                                         printk(KERN_INFO
2082                                         "[after new superblock is written]:\n");
2083                                         btrfsic_dump_tree_sub(state, block, 0);
2084                                 }
2085                         } else {
2086                                 block->mirror_num = 0;  /* unknown */
2087                                 ret = btrfsic_process_metablock(
2088                                                 state,
2089                                                 block,
2090                                                 &block_ctx,
2091                                                 0, 0);
2092                         }
2093                         if (ret)
2094                                 printk(KERN_INFO
2095                                        "btrfsic: btrfsic_process_metablock"
2096                                        "(root @%llu) failed!\n",
2097                                        dev_bytenr);
2098                 } else {
2099                         block->is_metadata = 0;
2100                         block->mirror_num = 0;  /* unknown */
2101                         block->generation = BTRFSIC_GENERATION_UNKNOWN;
2102                         if (!state->include_extent_data
2103                             && list_empty(&block->ref_from_list)) {
2104                                 /*
2105                                  * disk block is overwritten with extent
2106                                  * data (not meta data) and we are configured
2107                                  * to not include extent data: take the
2108                                  * chance and free the block's memory
2109                                  */
2110                                 btrfsic_block_hashtable_remove(block);
2111                                 list_del(&block->all_blocks_node);
2112                                 btrfsic_block_free(block);
2113                         }
2114                 }
2115                 btrfsic_release_block_ctx(&block_ctx);
2116         } else {
2117                 /* block has not been found in hash table */
2118                 u64 bytenr;
2119
2120                 if (!is_metadata) {
2121                         processed_len = state->datablock_size;
2122                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2123                                 printk(KERN_INFO "Written block (%s/%llu/?)"
2124                                        " !found in hash table, D.\n",
2125                                        dev_state->name, dev_bytenr);
2126                         if (!state->include_extent_data) {
2127                                 /* ignore that written D block */
2128                                 goto continue_loop;
2129                         }
2130
2131                         /* this is getting ugly for the
2132                          * include_extent_data case... */
2133                         bytenr = 0;     /* unknown */
2134                         block_ctx.start = bytenr;
2135                         block_ctx.len = processed_len;
2136                         block_ctx.mem_to_free = NULL;
2137                         block_ctx.pagev = NULL;
2138                 } else {
2139                         processed_len = state->metablock_size;
2140                         bytenr = btrfs_stack_header_bytenr(
2141                                         (struct btrfs_header *)
2142                                         mapped_datav[0]);
2143                         btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2144                                                        dev_bytenr);
2145                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2146                                 printk(KERN_INFO
2147                                        "Written block @%llu (%s/%llu/?)"
2148                                        " !found in hash table, M.\n",
2149                                        bytenr, dev_state->name, dev_bytenr);
2150
2151                         ret = btrfsic_map_block(state, bytenr, processed_len,
2152                                                 &block_ctx, 0);
2153                         if (ret) {
2154                                 printk(KERN_INFO
2155                                        "btrfsic: btrfsic_map_block(root @%llu)"
2156                                        " failed!\n",
2157                                        dev_bytenr);
2158                                 goto continue_loop;
2159                         }
2160                 }
2161                 block_ctx.datav = mapped_datav;
2162                 /* the following is required in case of writes to mirrors,
2163                  * use the same that was used for the lookup */
2164                 block_ctx.dev = dev_state;
2165                 block_ctx.dev_bytenr = dev_bytenr;
2166
2167                 block = btrfsic_block_alloc();
2168                 if (NULL == block) {
2169                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2170                         btrfsic_release_block_ctx(&block_ctx);
2171                         goto continue_loop;
2172                 }
2173                 block->dev_state = dev_state;
2174                 block->dev_bytenr = dev_bytenr;
2175                 block->logical_bytenr = bytenr;
2176                 block->is_metadata = is_metadata;
2177                 block->never_written = 0;
2178                 block->iodone_w_error = 0;
2179                 block->mirror_num = 0;  /* unknown */
2180                 block->flush_gen = dev_state->last_flush_gen + 1;
2181                 block->submit_bio_bh_rw = submit_bio_bh_rw;
2182                 if (NULL != bio) {
2183                         block->is_iodone = 0;
2184                         BUG_ON(NULL == bio_is_patched);
2185                         if (!*bio_is_patched) {
2186                                 block->orig_bio_bh_private = bio->bi_private;
2187                                 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2188                                 block->next_in_same_bio = NULL;
2189                                 bio->bi_private = block;
2190                                 bio->bi_end_io = btrfsic_bio_end_io;
2191                                 *bio_is_patched = 1;
2192                         } else {
2193                                 struct btrfsic_block *chained_block =
2194                                     (struct btrfsic_block *)
2195                                     bio->bi_private;
2196
2197                                 BUG_ON(NULL == chained_block);
2198                                 block->orig_bio_bh_private =
2199                                     chained_block->orig_bio_bh_private;
2200                                 block->orig_bio_bh_end_io.bio =
2201                                     chained_block->orig_bio_bh_end_io.bio;
2202                                 block->next_in_same_bio = chained_block;
2203                                 bio->bi_private = block;
2204                         }
2205                 } else if (NULL != bh) {
2206                         block->is_iodone = 0;
2207                         block->orig_bio_bh_private = bh->b_private;
2208                         block->orig_bio_bh_end_io.bh = bh->b_end_io;
2209                         block->next_in_same_bio = NULL;
2210                         bh->b_private = block;
2211                         bh->b_end_io = btrfsic_bh_end_io;
2212                 } else {
2213                         block->is_iodone = 1;
2214                         block->orig_bio_bh_private = NULL;
2215                         block->orig_bio_bh_end_io.bio = NULL;
2216                         block->next_in_same_bio = NULL;
2217                 }
2218                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2219                         printk(KERN_INFO
2220                                "New written %c-block @%llu (%s/%llu/%d)\n",
2221                                is_metadata ? 'M' : 'D',
2222                                block->logical_bytenr, block->dev_state->name,
2223                                block->dev_bytenr, block->mirror_num);
2224                 list_add(&block->all_blocks_node, &state->all_blocks_list);
2225                 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2226
2227                 if (is_metadata) {
2228                         ret = btrfsic_process_metablock(state, block,
2229                                                         &block_ctx, 0, 0);
2230                         if (ret)
2231                                 printk(KERN_INFO
2232                                        "btrfsic: process_metablock(root @%llu)"
2233                                        " failed!\n",
2234                                        dev_bytenr);
2235                 }
2236                 btrfsic_release_block_ctx(&block_ctx);
2237         }
2238
2239 continue_loop:
2240         BUG_ON(!processed_len);
2241         dev_bytenr += processed_len;
2242         mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2243         num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2244         goto again;
2245 }
2246
2247 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2248 {
2249         struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2250         int iodone_w_error;
2251
2252         /* mutex is not held! This is not save if IO is not yet completed
2253          * on umount */
2254         iodone_w_error = 0;
2255         if (bio_error_status)
2256                 iodone_w_error = 1;
2257
2258         BUG_ON(NULL == block);
2259         bp->bi_private = block->orig_bio_bh_private;
2260         bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2261
2262         do {
2263                 struct btrfsic_block *next_block;
2264                 struct btrfsic_dev_state *const dev_state = block->dev_state;
2265
2266                 if ((dev_state->state->print_mask &
2267                      BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2268                         printk(KERN_INFO
2269                                "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2270                                bio_error_status,
2271                                btrfsic_get_block_type(dev_state->state, block),
2272                                block->logical_bytenr, dev_state->name,
2273                                block->dev_bytenr, block->mirror_num);
2274                 next_block = block->next_in_same_bio;
2275                 block->iodone_w_error = iodone_w_error;
2276                 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2277                         dev_state->last_flush_gen++;
2278                         if ((dev_state->state->print_mask &
2279                              BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2280                                 printk(KERN_INFO
2281                                        "bio_end_io() new %s flush_gen=%llu\n",
2282                                        dev_state->name,
2283                                        dev_state->last_flush_gen);
2284                 }
2285                 if (block->submit_bio_bh_rw & REQ_FUA)
2286                         block->flush_gen = 0; /* FUA completed means block is
2287                                                * on disk */
2288                 block->is_iodone = 1; /* for FLUSH, this releases the block */
2289                 block = next_block;
2290         } while (NULL != block);
2291
2292         bp->bi_end_io(bp, bio_error_status);
2293 }
2294
2295 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2296 {
2297         struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2298         int iodone_w_error = !uptodate;
2299         struct btrfsic_dev_state *dev_state;
2300
2301         BUG_ON(NULL == block);
2302         dev_state = block->dev_state;
2303         if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2304                 printk(KERN_INFO
2305                        "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2306                        iodone_w_error,
2307                        btrfsic_get_block_type(dev_state->state, block),
2308                        block->logical_bytenr, block->dev_state->name,
2309                        block->dev_bytenr, block->mirror_num);
2310
2311         block->iodone_w_error = iodone_w_error;
2312         if (block->submit_bio_bh_rw & REQ_FLUSH) {
2313                 dev_state->last_flush_gen++;
2314                 if ((dev_state->state->print_mask &
2315                      BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2316                         printk(KERN_INFO
2317                                "bh_end_io() new %s flush_gen=%llu\n",
2318                                dev_state->name, dev_state->last_flush_gen);
2319         }
2320         if (block->submit_bio_bh_rw & REQ_FUA)
2321                 block->flush_gen = 0; /* FUA completed means block is on disk */
2322
2323         bh->b_private = block->orig_bio_bh_private;
2324         bh->b_end_io = block->orig_bio_bh_end_io.bh;
2325         block->is_iodone = 1; /* for FLUSH, this releases the block */
2326         bh->b_end_io(bh, uptodate);
2327 }
2328
2329 static int btrfsic_process_written_superblock(
2330                 struct btrfsic_state *state,
2331                 struct btrfsic_block *const superblock,
2332                 struct btrfs_super_block *const super_hdr)
2333 {
2334         int pass;
2335
2336         superblock->generation = btrfs_super_generation(super_hdr);
2337         if (!(superblock->generation > state->max_superblock_generation ||
2338               0 == state->max_superblock_generation)) {
2339                 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2340                         printk(KERN_INFO
2341                                "btrfsic: superblock @%llu (%s/%llu/%d)"
2342                                " with old gen %llu <= %llu\n",
2343                                superblock->logical_bytenr,
2344                                superblock->dev_state->name,
2345                                superblock->dev_bytenr, superblock->mirror_num,
2346                                btrfs_super_generation(super_hdr),
2347                                state->max_superblock_generation);
2348         } else {
2349                 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2350                         printk(KERN_INFO
2351                                "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2352                                " with new gen %llu > %llu\n",
2353                                superblock->logical_bytenr,
2354                                superblock->dev_state->name,
2355                                superblock->dev_bytenr, superblock->mirror_num,
2356                                btrfs_super_generation(super_hdr),
2357                                state->max_superblock_generation);
2358
2359                 state->max_superblock_generation =
2360                     btrfs_super_generation(super_hdr);
2361                 state->latest_superblock = superblock;
2362         }
2363
2364         for (pass = 0; pass < 3; pass++) {
2365                 int ret;
2366                 u64 next_bytenr;
2367                 struct btrfsic_block *next_block;
2368                 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2369                 struct btrfsic_block_link *l;
2370                 int num_copies;
2371                 int mirror_num;
2372                 const char *additional_string = NULL;
2373                 struct btrfs_disk_key tmp_disk_key = {0};
2374
2375                 btrfs_set_disk_key_objectid(&tmp_disk_key,
2376                                             BTRFS_ROOT_ITEM_KEY);
2377                 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2378
2379                 switch (pass) {
2380                 case 0:
2381                         btrfs_set_disk_key_objectid(&tmp_disk_key,
2382                                                     BTRFS_ROOT_TREE_OBJECTID);
2383                         additional_string = "root ";
2384                         next_bytenr = btrfs_super_root(super_hdr);
2385                         if (state->print_mask &
2386                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2387                                 printk(KERN_INFO "root@%llu\n", next_bytenr);
2388                         break;
2389                 case 1:
2390                         btrfs_set_disk_key_objectid(&tmp_disk_key,
2391                                                     BTRFS_CHUNK_TREE_OBJECTID);
2392                         additional_string = "chunk ";
2393                         next_bytenr = btrfs_super_chunk_root(super_hdr);
2394                         if (state->print_mask &
2395                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2396                                 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2397                         break;
2398                 case 2:
2399                         btrfs_set_disk_key_objectid(&tmp_disk_key,
2400                                                     BTRFS_TREE_LOG_OBJECTID);
2401                         additional_string = "log ";
2402                         next_bytenr = btrfs_super_log_root(super_hdr);
2403                         if (0 == next_bytenr)
2404                                 continue;
2405                         if (state->print_mask &
2406                             BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2407                                 printk(KERN_INFO "log@%llu\n", next_bytenr);
2408                         break;
2409                 }
2410
2411                 num_copies =
2412                     btrfs_num_copies(state->root->fs_info,
2413                                      next_bytenr, BTRFS_SUPER_INFO_SIZE);
2414                 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2415                         printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2416                                next_bytenr, num_copies);
2417                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2418                         int was_created;
2419
2420                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2421                                 printk(KERN_INFO
2422                                        "btrfsic_process_written_superblock("
2423                                        "mirror_num=%d)\n", mirror_num);
2424                         ret = btrfsic_map_block(state, next_bytenr,
2425                                                 BTRFS_SUPER_INFO_SIZE,
2426                                                 &tmp_next_block_ctx,
2427                                                 mirror_num);
2428                         if (ret) {
2429                                 printk(KERN_INFO
2430                                        "btrfsic: btrfsic_map_block(@%llu,"
2431                                        " mirror=%d) failed!\n",
2432                                        next_bytenr, mirror_num);
2433                                 return -1;
2434                         }
2435
2436                         next_block = btrfsic_block_lookup_or_add(
2437                                         state,
2438                                         &tmp_next_block_ctx,
2439                                         additional_string,
2440                                         1, 0, 1,
2441                                         mirror_num,
2442                                         &was_created);
2443                         if (NULL == next_block) {
2444                                 printk(KERN_INFO
2445                                        "btrfsic: error, kmalloc failed!\n");
2446                                 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2447                                 return -1;
2448                         }
2449
2450                         next_block->disk_key = tmp_disk_key;
2451                         if (was_created)
2452                                 next_block->generation =
2453                                     BTRFSIC_GENERATION_UNKNOWN;
2454                         l = btrfsic_block_link_lookup_or_add(
2455                                         state,
2456                                         &tmp_next_block_ctx,
2457                                         next_block,
2458                                         superblock,
2459                                         BTRFSIC_GENERATION_UNKNOWN);
2460                         btrfsic_release_block_ctx(&tmp_next_block_ctx);
2461                         if (NULL == l)
2462                                 return -1;
2463                 }
2464         }
2465
2466         if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2467                 WARN_ON(1);
2468                 btrfsic_dump_tree(state);
2469         }
2470
2471         return 0;
2472 }
2473
2474 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2475                                         struct btrfsic_block *const block,
2476                                         int recursion_level)
2477 {
2478         struct list_head *elem_ref_to;
2479         int ret = 0;
2480
2481         if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2482                 /*
2483                  * Note that this situation can happen and does not
2484                  * indicate an error in regular cases. It happens
2485                  * when disk blocks are freed and later reused.
2486                  * The check-integrity module is not aware of any
2487                  * block free operations, it just recognizes block
2488                  * write operations. Therefore it keeps the linkage
2489                  * information for a block until a block is
2490                  * rewritten. This can temporarily cause incorrect
2491                  * and even circular linkage informations. This
2492                  * causes no harm unless such blocks are referenced
2493                  * by the most recent super block.
2494                  */
2495                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2496                         printk(KERN_INFO
2497                                "btrfsic: abort cyclic linkage (case 1).\n");
2498
2499                 return ret;
2500         }
2501
2502         /*
2503          * This algorithm is recursive because the amount of used stack
2504          * space is very small and the max recursion depth is limited.
2505          */
2506         list_for_each(elem_ref_to, &block->ref_to_list) {
2507                 const struct btrfsic_block_link *const l =
2508                     list_entry(elem_ref_to, struct btrfsic_block_link,
2509                                node_ref_to);
2510
2511                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2512                         printk(KERN_INFO
2513                                "rl=%d, %c @%llu (%s/%llu/%d)"
2514                                " %u* refers to %c @%llu (%s/%llu/%d)\n",
2515                                recursion_level,
2516                                btrfsic_get_block_type(state, block),
2517                                block->logical_bytenr, block->dev_state->name,
2518                                block->dev_bytenr, block->mirror_num,
2519                                l->ref_cnt,
2520                                btrfsic_get_block_type(state, l->block_ref_to),
2521                                l->block_ref_to->logical_bytenr,
2522                                l->block_ref_to->dev_state->name,
2523                                l->block_ref_to->dev_bytenr,
2524                                l->block_ref_to->mirror_num);
2525                 if (l->block_ref_to->never_written) {
2526                         printk(KERN_INFO "btrfs: attempt to write superblock"
2527                                " which references block %c @%llu (%s/%llu/%d)"
2528                                " which is never written!\n",
2529                                btrfsic_get_block_type(state, l->block_ref_to),
2530                                l->block_ref_to->logical_bytenr,
2531                                l->block_ref_to->dev_state->name,
2532                                l->block_ref_to->dev_bytenr,
2533                                l->block_ref_to->mirror_num);
2534                         ret = -1;
2535                 } else if (!l->block_ref_to->is_iodone) {
2536                         printk(KERN_INFO "btrfs: attempt to write superblock"
2537                                " which references block %c @%llu (%s/%llu/%d)"
2538                                " which is not yet iodone!\n",
2539                                btrfsic_get_block_type(state, l->block_ref_to),
2540                                l->block_ref_to->logical_bytenr,
2541                                l->block_ref_to->dev_state->name,
2542                                l->block_ref_to->dev_bytenr,
2543                                l->block_ref_to->mirror_num);
2544                         ret = -1;
2545                 } else if (l->block_ref_to->iodone_w_error) {
2546                         printk(KERN_INFO "btrfs: attempt to write superblock"
2547                                " which references block %c @%llu (%s/%llu/%d)"
2548                                " which has write error!\n",
2549                                btrfsic_get_block_type(state, l->block_ref_to),
2550                                l->block_ref_to->logical_bytenr,
2551                                l->block_ref_to->dev_state->name,
2552                                l->block_ref_to->dev_bytenr,
2553                                l->block_ref_to->mirror_num);
2554                         ret = -1;
2555                 } else if (l->parent_generation !=
2556                            l->block_ref_to->generation &&
2557                            BTRFSIC_GENERATION_UNKNOWN !=
2558                            l->parent_generation &&
2559                            BTRFSIC_GENERATION_UNKNOWN !=
2560                            l->block_ref_to->generation) {
2561                         printk(KERN_INFO "btrfs: attempt to write superblock"
2562                                " which references block %c @%llu (%s/%llu/%d)"
2563                                " with generation %llu !="
2564                                " parent generation %llu!\n",
2565                                btrfsic_get_block_type(state, l->block_ref_to),
2566                                l->block_ref_to->logical_bytenr,
2567                                l->block_ref_to->dev_state->name,
2568                                l->block_ref_to->dev_bytenr,
2569                                l->block_ref_to->mirror_num,
2570                                l->block_ref_to->generation,
2571                                l->parent_generation);
2572                         ret = -1;
2573                 } else if (l->block_ref_to->flush_gen >
2574                            l->block_ref_to->dev_state->last_flush_gen) {
2575                         printk(KERN_INFO "btrfs: attempt to write superblock"
2576                                " which references block %c @%llu (%s/%llu/%d)"
2577                                " which is not flushed out of disk's write cache"
2578                                " (block flush_gen=%llu,"
2579                                " dev->flush_gen=%llu)!\n",
2580                                btrfsic_get_block_type(state, l->block_ref_to),
2581                                l->block_ref_to->logical_bytenr,
2582                                l->block_ref_to->dev_state->name,
2583                                l->block_ref_to->dev_bytenr,
2584                                l->block_ref_to->mirror_num, block->flush_gen,
2585                                l->block_ref_to->dev_state->last_flush_gen);
2586                         ret = -1;
2587                 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2588                                                               l->block_ref_to,
2589                                                               recursion_level +
2590                                                               1)) {
2591                         ret = -1;
2592                 }
2593         }
2594
2595         return ret;
2596 }
2597
2598 static int btrfsic_is_block_ref_by_superblock(
2599                 const struct btrfsic_state *state,
2600                 const struct btrfsic_block *block,
2601                 int recursion_level)
2602 {
2603         struct list_head *elem_ref_from;
2604
2605         if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2606                 /* refer to comment at "abort cyclic linkage (case 1)" */
2607                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2608                         printk(KERN_INFO
2609                                "btrfsic: abort cyclic linkage (case 2).\n");
2610
2611                 return 0;
2612         }
2613
2614         /*
2615          * This algorithm is recursive because the amount of used stack space
2616          * is very small and the max recursion depth is limited.
2617          */
2618         list_for_each(elem_ref_from, &block->ref_from_list) {
2619                 const struct btrfsic_block_link *const l =
2620                     list_entry(elem_ref_from, struct btrfsic_block_link,
2621                                node_ref_from);
2622
2623                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2624                         printk(KERN_INFO
2625                                "rl=%d, %c @%llu (%s/%llu/%d)"
2626                                " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2627                                recursion_level,
2628                                btrfsic_get_block_type(state, block),
2629                                block->logical_bytenr, block->dev_state->name,
2630                                block->dev_bytenr, block->mirror_num,
2631                                l->ref_cnt,
2632                                btrfsic_get_block_type(state, l->block_ref_from),
2633                                l->block_ref_from->logical_bytenr,
2634                                l->block_ref_from->dev_state->name,
2635                                l->block_ref_from->dev_bytenr,
2636                                l->block_ref_from->mirror_num);
2637                 if (l->block_ref_from->is_superblock &&
2638                     state->latest_superblock->dev_bytenr ==
2639                     l->block_ref_from->dev_bytenr &&
2640                     state->latest_superblock->dev_state->bdev ==
2641                     l->block_ref_from->dev_state->bdev)
2642                         return 1;
2643                 else if (btrfsic_is_block_ref_by_superblock(state,
2644                                                             l->block_ref_from,
2645                                                             recursion_level +
2646                                                             1))
2647                         return 1;
2648         }
2649
2650         return 0;
2651 }
2652
2653 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2654                                    const struct btrfsic_block_link *l)
2655 {
2656         printk(KERN_INFO
2657                "Add %u* link from %c @%llu (%s/%llu/%d)"
2658                " to %c @%llu (%s/%llu/%d).\n",
2659                l->ref_cnt,
2660                btrfsic_get_block_type(state, l->block_ref_from),
2661                l->block_ref_from->logical_bytenr,
2662                l->block_ref_from->dev_state->name,
2663                l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2664                btrfsic_get_block_type(state, l->block_ref_to),
2665                l->block_ref_to->logical_bytenr,
2666                l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2667                l->block_ref_to->mirror_num);
2668 }
2669
2670 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2671                                    const struct btrfsic_block_link *l)
2672 {
2673         printk(KERN_INFO
2674                "Rem %u* link from %c @%llu (%s/%llu/%d)"
2675                " to %c @%llu (%s/%llu/%d).\n",
2676                l->ref_cnt,
2677                btrfsic_get_block_type(state, l->block_ref_from),
2678                l->block_ref_from->logical_bytenr,
2679                l->block_ref_from->dev_state->name,
2680                l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2681                btrfsic_get_block_type(state, l->block_ref_to),
2682                l->block_ref_to->logical_bytenr,
2683                l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2684                l->block_ref_to->mirror_num);
2685 }
2686
2687 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2688                                    const struct btrfsic_block *block)
2689 {
2690         if (block->is_superblock &&
2691             state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2692             state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2693                 return 'S';
2694         else if (block->is_superblock)
2695                 return 's';
2696         else if (block->is_metadata)
2697                 return 'M';
2698         else
2699                 return 'D';
2700 }
2701
2702 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2703 {
2704         btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2705 }
2706
2707 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2708                                   const struct btrfsic_block *block,
2709                                   int indent_level)
2710 {
2711         struct list_head *elem_ref_to;
2712         int indent_add;
2713         static char buf[80];
2714         int cursor_position;
2715
2716         /*
2717          * Should better fill an on-stack buffer with a complete line and
2718          * dump it at once when it is time to print a newline character.
2719          */
2720
2721         /*
2722          * This algorithm is recursive because the amount of used stack space
2723          * is very small and the max recursion depth is limited.
2724          */
2725         indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2726                              btrfsic_get_block_type(state, block),
2727                              block->logical_bytenr, block->dev_state->name,
2728                              block->dev_bytenr, block->mirror_num);
2729         if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2730                 printk("[...]\n");
2731                 return;
2732         }
2733         printk(buf);
2734         indent_level += indent_add;
2735         if (list_empty(&block->ref_to_list)) {
2736                 printk("\n");
2737                 return;
2738         }
2739         if (block->mirror_num > 1 &&
2740             !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2741                 printk(" [...]\n");
2742                 return;
2743         }
2744
2745         cursor_position = indent_level;
2746         list_for_each(elem_ref_to, &block->ref_to_list) {
2747                 const struct btrfsic_block_link *const l =
2748                     list_entry(elem_ref_to, struct btrfsic_block_link,
2749                                node_ref_to);
2750
2751                 while (cursor_position < indent_level) {
2752                         printk(" ");
2753                         cursor_position++;
2754                 }
2755                 if (l->ref_cnt > 1)
2756                         indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2757                 else
2758                         indent_add = sprintf(buf, " --> ");
2759                 if (indent_level + indent_add >
2760                     BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2761                         printk("[...]\n");
2762                         cursor_position = 0;
2763                         continue;
2764                 }
2765
2766                 printk(buf);
2767
2768                 btrfsic_dump_tree_sub(state, l->block_ref_to,
2769                                       indent_level + indent_add);
2770                 cursor_position = 0;
2771         }
2772 }
2773
2774 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2775                 struct btrfsic_state *state,
2776                 struct btrfsic_block_data_ctx *next_block_ctx,
2777                 struct btrfsic_block *next_block,
2778                 struct btrfsic_block *from_block,
2779                 u64 parent_generation)
2780 {
2781         struct btrfsic_block_link *l;
2782
2783         l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2784                                                 next_block_ctx->dev_bytenr,
2785                                                 from_block->dev_state->bdev,
2786                                                 from_block->dev_bytenr,
2787                                                 &state->block_link_hashtable);
2788         if (NULL == l) {
2789                 l = btrfsic_block_link_alloc();
2790                 if (NULL == l) {
2791                         printk(KERN_INFO
2792                                "btrfsic: error, kmalloc" " failed!\n");
2793                         return NULL;
2794                 }
2795
2796                 l->block_ref_to = next_block;
2797                 l->block_ref_from = from_block;
2798                 l->ref_cnt = 1;
2799                 l->parent_generation = parent_generation;
2800
2801                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2802                         btrfsic_print_add_link(state, l);
2803
2804                 list_add(&l->node_ref_to, &from_block->ref_to_list);
2805                 list_add(&l->node_ref_from, &next_block->ref_from_list);
2806
2807                 btrfsic_block_link_hashtable_add(l,
2808                                                  &state->block_link_hashtable);
2809         } else {
2810                 l->ref_cnt++;
2811                 l->parent_generation = parent_generation;
2812                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2813                         btrfsic_print_add_link(state, l);
2814         }
2815
2816         return l;
2817 }
2818
2819 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2820                 struct btrfsic_state *state,
2821                 struct btrfsic_block_data_ctx *block_ctx,
2822                 const char *additional_string,
2823                 int is_metadata,
2824                 int is_iodone,
2825                 int never_written,
2826                 int mirror_num,
2827                 int *was_created)
2828 {
2829         struct btrfsic_block *block;
2830
2831         block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2832                                                block_ctx->dev_bytenr,
2833                                                &state->block_hashtable);
2834         if (NULL == block) {
2835                 struct btrfsic_dev_state *dev_state;
2836
2837                 block = btrfsic_block_alloc();
2838                 if (NULL == block) {
2839                         printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2840                         return NULL;
2841                 }
2842                 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2843                 if (NULL == dev_state) {
2844                         printk(KERN_INFO
2845                                "btrfsic: error, lookup dev_state failed!\n");
2846                         btrfsic_block_free(block);
2847                         return NULL;
2848                 }
2849                 block->dev_state = dev_state;
2850                 block->dev_bytenr = block_ctx->dev_bytenr;
2851                 block->logical_bytenr = block_ctx->start;
2852                 block->is_metadata = is_metadata;
2853                 block->is_iodone = is_iodone;
2854                 block->never_written = never_written;
2855                 block->mirror_num = mirror_num;
2856                 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2857                         printk(KERN_INFO
2858                                "New %s%c-block @%llu (%s/%llu/%d)\n",
2859                                additional_string,
2860                                btrfsic_get_block_type(state, block),
2861                                block->logical_bytenr, dev_state->name,
2862                                block->dev_bytenr, mirror_num);
2863                 list_add(&block->all_blocks_node, &state->all_blocks_list);
2864                 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2865                 if (NULL != was_created)
2866                         *was_created = 1;
2867         } else {
2868                 if (NULL != was_created)
2869                         *was_created = 0;
2870         }
2871
2872         return block;
2873 }
2874
2875 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2876                                            u64 bytenr,
2877                                            struct btrfsic_dev_state *dev_state,
2878                                            u64 dev_bytenr)
2879 {
2880         int num_copies;
2881         int mirror_num;
2882         int ret;
2883         struct btrfsic_block_data_ctx block_ctx;
2884         int match = 0;
2885
2886         num_copies = btrfs_num_copies(state->root->fs_info,
2887                                       bytenr, state->metablock_size);
2888
2889         for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2890                 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2891                                         &block_ctx, mirror_num);
2892                 if (ret) {
2893                         printk(KERN_INFO "btrfsic:"
2894                                " btrfsic_map_block(logical @%llu,"
2895                                " mirror %d) failed!\n",
2896                                bytenr, mirror_num);
2897                         continue;
2898                 }
2899
2900                 if (dev_state->bdev == block_ctx.dev->bdev &&
2901                     dev_bytenr == block_ctx.dev_bytenr) {
2902                         match++;
2903                         btrfsic_release_block_ctx(&block_ctx);
2904                         break;
2905                 }
2906                 btrfsic_release_block_ctx(&block_ctx);
2907         }
2908
2909         if (!match) {
2910                 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2911                        " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2912                        " phys_bytenr=%llu)!\n",
2913                        bytenr, dev_state->name, dev_bytenr);
2914                 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2915                         ret = btrfsic_map_block(state, bytenr,
2916                                                 state->metablock_size,
2917                                                 &block_ctx, mirror_num);
2918                         if (ret)
2919                                 continue;
2920
2921                         printk(KERN_INFO "Read logical bytenr @%llu maps to"
2922                                " (%s/%llu/%d)\n",
2923                                bytenr, block_ctx.dev->name,
2924                                block_ctx.dev_bytenr, mirror_num);
2925                 }
2926                 WARN_ON(1);
2927         }
2928 }
2929
2930 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2931                 struct block_device *bdev)
2932 {
2933         struct btrfsic_dev_state *ds;
2934
2935         ds = btrfsic_dev_state_hashtable_lookup(bdev,
2936                                                 &btrfsic_dev_state_hashtable);
2937         return ds;
2938 }
2939
2940 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2941 {
2942         struct btrfsic_dev_state *dev_state;
2943
2944         if (!btrfsic_is_initialized)
2945                 return submit_bh(rw, bh);
2946
2947         mutex_lock(&btrfsic_mutex);
2948         /* since btrfsic_submit_bh() might also be called before
2949          * btrfsic_mount(), this might return NULL */
2950         dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2951
2952         /* Only called to write the superblock (incl. FLUSH/FUA) */
2953         if (NULL != dev_state &&
2954             (rw & WRITE) && bh->b_size > 0) {
2955                 u64 dev_bytenr;
2956
2957                 dev_bytenr = 4096 * bh->b_blocknr;
2958                 if (dev_state->state->print_mask &
2959                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2960                         printk(KERN_INFO
2961                                "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2962                                " size=%zu, data=%p, bdev=%p)\n",
2963                                rw, (unsigned long long)bh->b_blocknr,
2964                                dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2965                 btrfsic_process_written_block(dev_state, dev_bytenr,
2966                                               &bh->b_data, 1, NULL,
2967                                               NULL, bh, rw);
2968         } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2969                 if (dev_state->state->print_mask &
2970                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2971                         printk(KERN_INFO
2972                                "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2973                                rw, bh->b_bdev);
2974                 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2975                         if ((dev_state->state->print_mask &
2976                              (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2977                               BTRFSIC_PRINT_MASK_VERBOSE)))
2978                                 printk(KERN_INFO
2979                                        "btrfsic_submit_bh(%s) with FLUSH"
2980                                        " but dummy block already in use"
2981                                        " (ignored)!\n",
2982                                        dev_state->name);
2983                 } else {
2984                         struct btrfsic_block *const block =
2985                                 &dev_state->dummy_block_for_bio_bh_flush;
2986
2987                         block->is_iodone = 0;
2988                         block->never_written = 0;
2989                         block->iodone_w_error = 0;
2990                         block->flush_gen = dev_state->last_flush_gen + 1;
2991                         block->submit_bio_bh_rw = rw;
2992                         block->orig_bio_bh_private = bh->b_private;
2993                         block->orig_bio_bh_end_io.bh = bh->b_end_io;
2994                         block->next_in_same_bio = NULL;
2995                         bh->b_private = block;
2996                         bh->b_end_io = btrfsic_bh_end_io;
2997                 }
2998         }
2999         mutex_unlock(&btrfsic_mutex);
3000         return submit_bh(rw, bh);
3001 }
3002
3003 void btrfsic_submit_bio(int rw, struct bio *bio)
3004 {
3005         struct btrfsic_dev_state *dev_state;
3006
3007         if (!btrfsic_is_initialized) {
3008                 submit_bio(rw, bio);
3009                 return;
3010         }
3011
3012         mutex_lock(&btrfsic_mutex);
3013         /* since btrfsic_submit_bio() is also called before
3014          * btrfsic_mount(), this might return NULL */
3015         dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3016         if (NULL != dev_state &&
3017             (rw & WRITE) && NULL != bio->bi_io_vec) {
3018                 unsigned int i;
3019                 u64 dev_bytenr;
3020                 int bio_is_patched;
3021                 char **mapped_datav;
3022
3023                 dev_bytenr = 512 * bio->bi_sector;
3024                 bio_is_patched = 0;
3025                 if (dev_state->state->print_mask &
3026                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3027                         printk(KERN_INFO
3028                                "submit_bio(rw=0x%x, bi_vcnt=%u,"
3029                                " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3030                                rw, bio->bi_vcnt,
3031                                (unsigned long long)bio->bi_sector, dev_bytenr,
3032                                bio->bi_bdev);
3033
3034                 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3035                                        GFP_NOFS);
3036                 if (!mapped_datav)
3037                         goto leave;
3038                 for (i = 0; i < bio->bi_vcnt; i++) {
3039                         BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3040                         mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3041                         if (!mapped_datav[i]) {
3042                                 while (i > 0) {
3043                                         i--;
3044                                         kunmap(bio->bi_io_vec[i].bv_page);
3045                                 }
3046                                 kfree(mapped_datav);
3047                                 goto leave;
3048                         }
3049                         if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3050                              BTRFSIC_PRINT_MASK_VERBOSE) ==
3051                             (dev_state->state->print_mask &
3052                              (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3053                               BTRFSIC_PRINT_MASK_VERBOSE)))
3054                                 printk(KERN_INFO
3055                                        "#%u: page=%p, len=%u, offset=%u\n",
3056                                        i, bio->bi_io_vec[i].bv_page,
3057                                        bio->bi_io_vec[i].bv_len,
3058                                        bio->bi_io_vec[i].bv_offset);
3059                 }
3060                 btrfsic_process_written_block(dev_state, dev_bytenr,
3061                                               mapped_datav, bio->bi_vcnt,
3062                                               bio, &bio_is_patched,
3063                                               NULL, rw);
3064                 while (i > 0) {
3065                         i--;
3066                         kunmap(bio->bi_io_vec[i].bv_page);
3067                 }
3068                 kfree(mapped_datav);
3069         } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3070                 if (dev_state->state->print_mask &
3071                     BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3072                         printk(KERN_INFO
3073                                "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3074                                rw, bio->bi_bdev);
3075                 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3076                         if ((dev_state->state->print_mask &
3077                              (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3078                               BTRFSIC_PRINT_MASK_VERBOSE)))
3079                                 printk(KERN_INFO
3080                                        "btrfsic_submit_bio(%s) with FLUSH"
3081                                        " but dummy block already in use"
3082                                        " (ignored)!\n",
3083                                        dev_state->name);
3084                 } else {
3085                         struct btrfsic_block *const block =
3086                                 &dev_state->dummy_block_for_bio_bh_flush;
3087
3088                         block->is_iodone = 0;
3089                         block->never_written = 0;
3090                         block->iodone_w_error = 0;
3091                         block->flush_gen = dev_state->last_flush_gen + 1;
3092                         block->submit_bio_bh_rw = rw;
3093                         block->orig_bio_bh_private = bio->bi_private;
3094                         block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3095                         block->next_in_same_bio = NULL;
3096                         bio->bi_private = block;
3097                         bio->bi_end_io = btrfsic_bio_end_io;
3098                 }
3099         }
3100 leave:
3101         mutex_unlock(&btrfsic_mutex);
3102
3103         submit_bio(rw, bio);
3104 }
3105
3106 int btrfsic_mount(struct btrfs_root *root,
3107                   struct btrfs_fs_devices *fs_devices,
3108                   int including_extent_data, u32 print_mask)
3109 {
3110         int ret;
3111         struct btrfsic_state *state;
3112         struct list_head *dev_head = &fs_devices->devices;
3113         struct btrfs_device *device;
3114
3115         if (root->nodesize != root->leafsize) {
3116                 printk(KERN_INFO
3117                        "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3118                        root->nodesize, root->leafsize);
3119                 return -1;
3120         }
3121         if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3122                 printk(KERN_INFO
3123                        "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3124                        root->nodesize, PAGE_CACHE_SIZE);
3125                 return -1;
3126         }
3127         if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3128                 printk(KERN_INFO
3129                        "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3130                        root->leafsize, PAGE_CACHE_SIZE);
3131                 return -1;
3132         }
3133         if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3134                 printk(KERN_INFO
3135                        "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3136                        root->sectorsize, PAGE_CACHE_SIZE);
3137                 return -1;
3138         }
3139         state = kzalloc(sizeof(*state), GFP_NOFS);
3140         if (NULL == state) {
3141                 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3142                 return -1;
3143         }
3144
3145         if (!btrfsic_is_initialized) {
3146                 mutex_init(&btrfsic_mutex);
3147                 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3148                 btrfsic_is_initialized = 1;
3149         }
3150         mutex_lock(&btrfsic_mutex);
3151         state->root = root;
3152         state->print_mask = print_mask;
3153         state->include_extent_data = including_extent_data;
3154         state->csum_size = 0;
3155         state->metablock_size = root->nodesize;
3156         state->datablock_size = root->sectorsize;
3157         INIT_LIST_HEAD(&state->all_blocks_list);
3158         btrfsic_block_hashtable_init(&state->block_hashtable);
3159         btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3160         state->max_superblock_generation = 0;
3161         state->latest_superblock = NULL;
3162
3163         list_for_each_entry(device, dev_head, dev_list) {
3164                 struct btrfsic_dev_state *ds;
3165                 char *p;
3166
3167                 if (!device->bdev || !device->name)
3168                         continue;
3169
3170                 ds = btrfsic_dev_state_alloc();
3171                 if (NULL == ds) {
3172                         printk(KERN_INFO
3173                                "btrfs check-integrity: kmalloc() failed!\n");
3174                         mutex_unlock(&btrfsic_mutex);
3175                         return -1;
3176                 }
3177                 ds->bdev = device->bdev;
3178                 ds->state = state;
3179                 bdevname(ds->bdev, ds->name);
3180                 ds->name[BDEVNAME_SIZE - 1] = '\0';
3181                 for (p = ds->name; *p != '\0'; p++);
3182                 while (p > ds->name && *p != '/')
3183                         p--;
3184                 if (*p == '/')
3185                         p++;
3186                 strlcpy(ds->name, p, sizeof(ds->name));
3187                 btrfsic_dev_state_hashtable_add(ds,
3188                                                 &btrfsic_dev_state_hashtable);
3189         }
3190
3191         ret = btrfsic_process_superblock(state, fs_devices);
3192         if (0 != ret) {
3193                 mutex_unlock(&btrfsic_mutex);
3194                 btrfsic_unmount(root, fs_devices);
3195                 return ret;
3196         }
3197
3198         if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3199                 btrfsic_dump_database(state);
3200         if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3201                 btrfsic_dump_tree(state);
3202
3203         mutex_unlock(&btrfsic_mutex);
3204         return 0;
3205 }
3206
3207 void btrfsic_unmount(struct btrfs_root *root,
3208                      struct btrfs_fs_devices *fs_devices)
3209 {
3210         struct list_head *elem_all;
3211         struct list_head *tmp_all;
3212         struct btrfsic_state *state;
3213         struct list_head *dev_head = &fs_devices->devices;
3214         struct btrfs_device *device;
3215
3216         if (!btrfsic_is_initialized)
3217                 return;
3218
3219         mutex_lock(&btrfsic_mutex);
3220
3221         state = NULL;
3222         list_for_each_entry(device, dev_head, dev_list) {
3223                 struct btrfsic_dev_state *ds;
3224
3225                 if (!device->bdev || !device->name)
3226                         continue;
3227
3228                 ds = btrfsic_dev_state_hashtable_lookup(
3229                                 device->bdev,
3230                                 &btrfsic_dev_state_hashtable);
3231                 if (NULL != ds) {
3232                         state = ds->state;
3233                         btrfsic_dev_state_hashtable_remove(ds);
3234                         btrfsic_dev_state_free(ds);
3235                 }
3236         }
3237
3238         if (NULL == state) {
3239                 printk(KERN_INFO
3240                        "btrfsic: error, cannot find state information"
3241                        " on umount!\n");
3242                 mutex_unlock(&btrfsic_mutex);
3243                 return;
3244         }
3245
3246         /*
3247          * Don't care about keeping the lists' state up to date,
3248          * just free all memory that was allocated dynamically.
3249          * Free the blocks and the block_links.
3250          */
3251         list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3252                 struct btrfsic_block *const b_all =
3253                     list_entry(elem_all, struct btrfsic_block,
3254                                all_blocks_node);
3255                 struct list_head *elem_ref_to;
3256                 struct list_head *tmp_ref_to;
3257
3258                 list_for_each_safe(elem_ref_to, tmp_ref_to,
3259                                    &b_all->ref_to_list) {
3260                         struct btrfsic_block_link *const l =
3261                             list_entry(elem_ref_to,
3262                                        struct btrfsic_block_link,
3263                                        node_ref_to);
3264
3265                         if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3266                                 btrfsic_print_rem_link(state, l);
3267
3268                         l->ref_cnt--;
3269                         if (0 == l->ref_cnt)
3270                                 btrfsic_block_link_free(l);
3271                 }
3272
3273                 if (b_all->is_iodone || b_all->never_written)
3274                         btrfsic_block_free(b_all);
3275                 else
3276                         printk(KERN_INFO "btrfs: attempt to free %c-block"
3277                                " @%llu (%s/%llu/%d) on umount which is"
3278                                " not yet iodone!\n",
3279                                btrfsic_get_block_type(state, b_all),
3280                                b_all->logical_bytenr, b_all->dev_state->name,
3281                                b_all->dev_bytenr, b_all->mirror_num);
3282         }
3283
3284         mutex_unlock(&btrfsic_mutex);
3285
3286         kfree(state);
3287 }