1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/list_sort.h>
6 #include "block-group.h"
7 #include "space-info.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
16 #include "delalloc-space.h"
22 * Return target flags in extended format or 0 if restripe for this chunk_type
25 * Should be called with balance_lock held
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
50 * @flags: available profiles in extended format (see ctree.h)
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
58 u64 num_devices = fs_info->fs_devices->rw_devices;
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
67 spin_lock(&fs_info->balance_lock);
68 target = get_restripe_target(fs_info, flags);
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
73 spin_unlock(&fs_info->balance_lock);
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
95 return extended_to_chunk(flags | allowed);
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
105 seq = read_seqbegin(&fs_info->profiles_lock);
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
115 return btrfs_reduce_alloc_profile(fs_info, flags);
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
120 refcount_inc(&cache->refs);
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
125 if (refcount_dec_and_test(&cache->refs)) {
126 WARN_ON(cache->pinned > 0);
128 * If there was a failure to cleanup a log tree, very likely due
129 * to an IO failure on a writeback attempt of one or more of its
130 * extent buffers, we could not do proper (and cheap) unaccounting
131 * of their reserved space, so don't warn on reserved > 0 in that
134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 WARN_ON(cache->reserved > 0);
139 * A block_group shouldn't be on the discard_list anymore.
140 * Remove the block_group from the discard_list to prevent us
141 * from causing a panic due to NULL pointer dereference.
143 if (WARN_ON(!list_empty(&cache->discard_list)))
144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
148 * If not empty, someone is still holding mutex of
149 * full_stripe_lock, which can only be released by caller.
150 * And it will definitely cause use-after-free when caller
151 * tries to release full stripe lock.
153 * No better way to resolve, but only to warn.
155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 kfree(cache->free_space_ctl);
157 kfree(cache->physical_map);
163 * This adds the block group to the fs_info rb tree for the block group cache
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 struct btrfs_block_group *block_group)
169 struct rb_node *parent = NULL;
170 struct btrfs_block_group *cache;
171 bool leftmost = true;
173 ASSERT(block_group->length != 0);
175 write_lock(&info->block_group_cache_lock);
176 p = &info->block_group_cache_tree.rb_root.rb_node;
180 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 if (block_group->start < cache->start) {
183 } else if (block_group->start > cache->start) {
187 write_unlock(&info->block_group_cache_lock);
192 rb_link_node(&block_group->cache_node, parent, p);
193 rb_insert_color_cached(&block_group->cache_node,
194 &info->block_group_cache_tree, leftmost);
196 write_unlock(&info->block_group_cache_lock);
202 * This will return the block group at or after bytenr if contains is 0, else
203 * it will return the block group that contains the bytenr
205 static struct btrfs_block_group *block_group_cache_tree_search(
206 struct btrfs_fs_info *info, u64 bytenr, int contains)
208 struct btrfs_block_group *cache, *ret = NULL;
212 read_lock(&info->block_group_cache_lock);
213 n = info->block_group_cache_tree.rb_root.rb_node;
216 cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 end = cache->start + cache->length - 1;
218 start = cache->start;
220 if (bytenr < start) {
221 if (!contains && (!ret || start < ret->start))
224 } else if (bytenr > start) {
225 if (contains && bytenr <= end) {
236 btrfs_get_block_group(ret);
237 read_unlock(&info->block_group_cache_lock);
243 * Return the block group that starts at or after bytenr
245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 struct btrfs_fs_info *info, u64 bytenr)
248 return block_group_cache_tree_search(info, bytenr, 0);
252 * Return the block group that contains the given bytenr
254 struct btrfs_block_group *btrfs_lookup_block_group(
255 struct btrfs_fs_info *info, u64 bytenr)
257 return block_group_cache_tree_search(info, bytenr, 1);
260 struct btrfs_block_group *btrfs_next_block_group(
261 struct btrfs_block_group *cache)
263 struct btrfs_fs_info *fs_info = cache->fs_info;
264 struct rb_node *node;
266 read_lock(&fs_info->block_group_cache_lock);
268 /* If our block group was removed, we need a full search. */
269 if (RB_EMPTY_NODE(&cache->cache_node)) {
270 const u64 next_bytenr = cache->start + cache->length;
272 read_unlock(&fs_info->block_group_cache_lock);
273 btrfs_put_block_group(cache);
274 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
276 node = rb_next(&cache->cache_node);
277 btrfs_put_block_group(cache);
279 cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 btrfs_get_block_group(cache);
283 read_unlock(&fs_info->block_group_cache_lock);
288 * Check if we can do a NOCOW write for a given extent.
290 * @fs_info: The filesystem information object.
291 * @bytenr: Logical start address of the extent.
293 * Check if we can do a NOCOW write for the given extent, and increments the
294 * number of NOCOW writers in the block group that contains the extent, as long
295 * as the block group exists and it's currently not in read-only mode.
297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298 * is responsible for calling btrfs_dec_nocow_writers() later.
300 * Or NULL if we can not do a NOCOW write
302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
305 struct btrfs_block_group *bg;
306 bool can_nocow = true;
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
312 spin_lock(&bg->lock);
316 atomic_inc(&bg->nocow_writers);
317 spin_unlock(&bg->lock);
320 btrfs_put_block_group(bg);
324 /* No put on block group, done by btrfs_dec_nocow_writers(). */
329 * Decrement the number of NOCOW writers in a block group.
331 * @bg: The block group.
333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334 * and on the block group returned by that call. Typically this is called after
335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
338 * After this call, the caller should not use the block group anymore. It it wants
339 * to use it, then it should get a reference on it before calling this function.
341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
343 if (atomic_dec_and_test(&bg->nocow_writers))
344 wake_up_var(&bg->nocow_writers);
346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 btrfs_put_block_group(bg);
350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
358 struct btrfs_block_group *bg;
360 bg = btrfs_lookup_block_group(fs_info, start);
362 if (atomic_dec_and_test(&bg->reservations))
363 wake_up_var(&bg->reservations);
364 btrfs_put_block_group(bg);
367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
369 struct btrfs_space_info *space_info = bg->space_info;
373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
377 * Our block group is read only but before we set it to read only,
378 * some task might have had allocated an extent from it already, but it
379 * has not yet created a respective ordered extent (and added it to a
380 * root's list of ordered extents).
381 * Therefore wait for any task currently allocating extents, since the
382 * block group's reservations counter is incremented while a read lock
383 * on the groups' semaphore is held and decremented after releasing
384 * the read access on that semaphore and creating the ordered extent.
386 down_write(&space_info->groups_sem);
387 up_write(&space_info->groups_sem);
389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
392 struct btrfs_caching_control *btrfs_get_caching_control(
393 struct btrfs_block_group *cache)
395 struct btrfs_caching_control *ctl;
397 spin_lock(&cache->lock);
398 if (!cache->caching_ctl) {
399 spin_unlock(&cache->lock);
403 ctl = cache->caching_ctl;
404 refcount_inc(&ctl->count);
405 spin_unlock(&cache->lock);
409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
411 if (refcount_dec_and_test(&ctl->count))
416 * When we wait for progress in the block group caching, its because our
417 * allocation attempt failed at least once. So, we must sleep and let some
418 * progress happen before we try again.
420 * This function will sleep at least once waiting for new free space to show
421 * up, and then it will check the block group free space numbers for our min
422 * num_bytes. Another option is to have it go ahead and look in the rbtree for
423 * a free extent of a given size, but this is a good start.
425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426 * any of the information in this block group.
428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
431 struct btrfs_caching_control *caching_ctl;
433 caching_ctl = btrfs_get_caching_control(cache);
437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 (cache->free_space_ctl->free_space >= num_bytes));
440 btrfs_put_caching_control(caching_ctl);
443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 struct btrfs_caching_control *caching_ctl)
446 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
452 struct btrfs_caching_control *caching_ctl;
455 caching_ctl = btrfs_get_caching_control(cache);
457 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
458 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
459 btrfs_put_caching_control(caching_ctl);
463 #ifdef CONFIG_BTRFS_DEBUG
464 static void fragment_free_space(struct btrfs_block_group *block_group)
466 struct btrfs_fs_info *fs_info = block_group->fs_info;
467 u64 start = block_group->start;
468 u64 len = block_group->length;
469 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 fs_info->nodesize : fs_info->sectorsize;
471 u64 step = chunk << 1;
473 while (len > chunk) {
474 btrfs_remove_free_space(block_group, start, chunk);
485 * This is only called by btrfs_cache_block_group, since we could have freed
486 * extents we need to check the pinned_extents for any extents that can't be
487 * used yet since their free space will be released as soon as the transaction
490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
492 struct btrfs_fs_info *info = block_group->fs_info;
493 u64 extent_start, extent_end, size, total_added = 0;
496 while (start < end) {
497 ret = find_first_extent_bit(&info->excluded_extents, start,
498 &extent_start, &extent_end,
499 EXTENT_DIRTY | EXTENT_UPTODATE,
504 if (extent_start <= start) {
505 start = extent_end + 1;
506 } else if (extent_start > start && extent_start < end) {
507 size = extent_start - start;
509 ret = btrfs_add_free_space_async_trimmed(block_group,
511 BUG_ON(ret); /* -ENOMEM or logic error */
512 start = extent_end + 1;
521 ret = btrfs_add_free_space_async_trimmed(block_group, start,
523 BUG_ON(ret); /* -ENOMEM or logic error */
529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
531 struct btrfs_block_group *block_group = caching_ctl->block_group;
532 struct btrfs_fs_info *fs_info = block_group->fs_info;
533 struct btrfs_root *extent_root;
534 struct btrfs_path *path;
535 struct extent_buffer *leaf;
536 struct btrfs_key key;
543 path = btrfs_alloc_path();
547 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
548 extent_root = btrfs_extent_root(fs_info, last);
550 #ifdef CONFIG_BTRFS_DEBUG
552 * If we're fragmenting we don't want to make anybody think we can
553 * allocate from this block group until we've had a chance to fragment
556 if (btrfs_should_fragment_free_space(block_group))
560 * We don't want to deadlock with somebody trying to allocate a new
561 * extent for the extent root while also trying to search the extent
562 * root to add free space. So we skip locking and search the commit
563 * root, since its read-only
565 path->skip_locking = 1;
566 path->search_commit_root = 1;
567 path->reada = READA_FORWARD;
571 key.type = BTRFS_EXTENT_ITEM_KEY;
574 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
578 leaf = path->nodes[0];
579 nritems = btrfs_header_nritems(leaf);
582 if (btrfs_fs_closing(fs_info) > 1) {
587 if (path->slots[0] < nritems) {
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
590 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
594 if (need_resched() ||
595 rwsem_is_contended(&fs_info->commit_root_sem)) {
596 btrfs_release_path(path);
597 up_read(&fs_info->commit_root_sem);
598 mutex_unlock(&caching_ctl->mutex);
600 mutex_lock(&caching_ctl->mutex);
601 down_read(&fs_info->commit_root_sem);
605 ret = btrfs_next_leaf(extent_root, path);
610 leaf = path->nodes[0];
611 nritems = btrfs_header_nritems(leaf);
615 if (key.objectid < last) {
618 key.type = BTRFS_EXTENT_ITEM_KEY;
619 btrfs_release_path(path);
623 if (key.objectid < block_group->start) {
628 if (key.objectid >= block_group->start + block_group->length)
631 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
632 key.type == BTRFS_METADATA_ITEM_KEY) {
633 total_found += add_new_free_space(block_group, last,
635 if (key.type == BTRFS_METADATA_ITEM_KEY)
636 last = key.objectid +
639 last = key.objectid + key.offset;
641 if (total_found > CACHING_CTL_WAKE_UP) {
644 wake_up(&caching_ctl->wait);
651 total_found += add_new_free_space(block_group, last,
652 block_group->start + block_group->length);
655 btrfs_free_path(path);
659 static noinline void caching_thread(struct btrfs_work *work)
661 struct btrfs_block_group *block_group;
662 struct btrfs_fs_info *fs_info;
663 struct btrfs_caching_control *caching_ctl;
666 caching_ctl = container_of(work, struct btrfs_caching_control, work);
667 block_group = caching_ctl->block_group;
668 fs_info = block_group->fs_info;
670 mutex_lock(&caching_ctl->mutex);
671 down_read(&fs_info->commit_root_sem);
673 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
674 ret = load_free_space_cache(block_group);
681 * We failed to load the space cache, set ourselves to
682 * CACHE_STARTED and carry on.
684 spin_lock(&block_group->lock);
685 block_group->cached = BTRFS_CACHE_STARTED;
686 spin_unlock(&block_group->lock);
687 wake_up(&caching_ctl->wait);
691 * If we are in the transaction that populated the free space tree we
692 * can't actually cache from the free space tree as our commit root and
693 * real root are the same, so we could change the contents of the blocks
694 * while caching. Instead do the slow caching in this case, and after
695 * the transaction has committed we will be safe.
697 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
698 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
699 ret = load_free_space_tree(caching_ctl);
701 ret = load_extent_tree_free(caching_ctl);
703 spin_lock(&block_group->lock);
704 block_group->caching_ctl = NULL;
705 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
706 spin_unlock(&block_group->lock);
708 #ifdef CONFIG_BTRFS_DEBUG
709 if (btrfs_should_fragment_free_space(block_group)) {
712 spin_lock(&block_group->space_info->lock);
713 spin_lock(&block_group->lock);
714 bytes_used = block_group->length - block_group->used;
715 block_group->space_info->bytes_used += bytes_used >> 1;
716 spin_unlock(&block_group->lock);
717 spin_unlock(&block_group->space_info->lock);
718 fragment_free_space(block_group);
722 up_read(&fs_info->commit_root_sem);
723 btrfs_free_excluded_extents(block_group);
724 mutex_unlock(&caching_ctl->mutex);
726 wake_up(&caching_ctl->wait);
728 btrfs_put_caching_control(caching_ctl);
729 btrfs_put_block_group(block_group);
732 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
734 struct btrfs_fs_info *fs_info = cache->fs_info;
735 struct btrfs_caching_control *caching_ctl = NULL;
738 /* Allocator for zoned filesystems does not use the cache at all */
739 if (btrfs_is_zoned(fs_info))
742 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
746 INIT_LIST_HEAD(&caching_ctl->list);
747 mutex_init(&caching_ctl->mutex);
748 init_waitqueue_head(&caching_ctl->wait);
749 caching_ctl->block_group = cache;
750 refcount_set(&caching_ctl->count, 2);
751 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
753 spin_lock(&cache->lock);
754 if (cache->cached != BTRFS_CACHE_NO) {
757 caching_ctl = cache->caching_ctl;
759 refcount_inc(&caching_ctl->count);
760 spin_unlock(&cache->lock);
763 WARN_ON(cache->caching_ctl);
764 cache->caching_ctl = caching_ctl;
765 cache->cached = BTRFS_CACHE_STARTED;
766 spin_unlock(&cache->lock);
768 write_lock(&fs_info->block_group_cache_lock);
769 refcount_inc(&caching_ctl->count);
770 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
771 write_unlock(&fs_info->block_group_cache_lock);
773 btrfs_get_block_group(cache);
775 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
778 if (wait && caching_ctl)
779 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
780 /* wait_event(caching_ctl->wait, space_cache_v1_done(cache)); */
782 btrfs_put_caching_control(caching_ctl);
787 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
789 u64 extra_flags = chunk_to_extended(flags) &
790 BTRFS_EXTENDED_PROFILE_MASK;
792 write_seqlock(&fs_info->profiles_lock);
793 if (flags & BTRFS_BLOCK_GROUP_DATA)
794 fs_info->avail_data_alloc_bits &= ~extra_flags;
795 if (flags & BTRFS_BLOCK_GROUP_METADATA)
796 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
797 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
798 fs_info->avail_system_alloc_bits &= ~extra_flags;
799 write_sequnlock(&fs_info->profiles_lock);
803 * Clear incompat bits for the following feature(s):
805 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
806 * in the whole filesystem
808 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
810 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
812 bool found_raid56 = false;
813 bool found_raid1c34 = false;
815 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
816 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
817 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
818 struct list_head *head = &fs_info->space_info;
819 struct btrfs_space_info *sinfo;
821 list_for_each_entry_rcu(sinfo, head, list) {
822 down_read(&sinfo->groups_sem);
823 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
825 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
827 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
828 found_raid1c34 = true;
829 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
830 found_raid1c34 = true;
831 up_read(&sinfo->groups_sem);
834 btrfs_clear_fs_incompat(fs_info, RAID56);
836 btrfs_clear_fs_incompat(fs_info, RAID1C34);
840 static int remove_block_group_item(struct btrfs_trans_handle *trans,
841 struct btrfs_path *path,
842 struct btrfs_block_group *block_group)
844 struct btrfs_fs_info *fs_info = trans->fs_info;
845 struct btrfs_root *root;
846 struct btrfs_key key;
849 root = btrfs_block_group_root(fs_info);
850 key.objectid = block_group->start;
851 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
852 key.offset = block_group->length;
854 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
860 ret = btrfs_del_item(trans, root, path);
864 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
865 u64 group_start, struct extent_map *em)
867 struct btrfs_fs_info *fs_info = trans->fs_info;
868 struct btrfs_path *path;
869 struct btrfs_block_group *block_group;
870 struct btrfs_free_cluster *cluster;
872 struct kobject *kobj = NULL;
876 struct btrfs_caching_control *caching_ctl = NULL;
878 bool remove_rsv = false;
880 block_group = btrfs_lookup_block_group(fs_info, group_start);
881 BUG_ON(!block_group);
882 BUG_ON(!block_group->ro);
884 trace_btrfs_remove_block_group(block_group);
886 * Free the reserved super bytes from this block group before
889 btrfs_free_excluded_extents(block_group);
890 btrfs_free_ref_tree_range(fs_info, block_group->start,
891 block_group->length);
893 index = btrfs_bg_flags_to_raid_index(block_group->flags);
894 factor = btrfs_bg_type_to_factor(block_group->flags);
896 /* make sure this block group isn't part of an allocation cluster */
897 cluster = &fs_info->data_alloc_cluster;
898 spin_lock(&cluster->refill_lock);
899 btrfs_return_cluster_to_free_space(block_group, cluster);
900 spin_unlock(&cluster->refill_lock);
903 * make sure this block group isn't part of a metadata
906 cluster = &fs_info->meta_alloc_cluster;
907 spin_lock(&cluster->refill_lock);
908 btrfs_return_cluster_to_free_space(block_group, cluster);
909 spin_unlock(&cluster->refill_lock);
911 btrfs_clear_treelog_bg(block_group);
912 btrfs_clear_data_reloc_bg(block_group);
914 path = btrfs_alloc_path();
921 * get the inode first so any iput calls done for the io_list
922 * aren't the final iput (no unlinks allowed now)
924 inode = lookup_free_space_inode(block_group, path);
926 mutex_lock(&trans->transaction->cache_write_mutex);
928 * Make sure our free space cache IO is done before removing the
931 spin_lock(&trans->transaction->dirty_bgs_lock);
932 if (!list_empty(&block_group->io_list)) {
933 list_del_init(&block_group->io_list);
935 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
937 spin_unlock(&trans->transaction->dirty_bgs_lock);
938 btrfs_wait_cache_io(trans, block_group, path);
939 btrfs_put_block_group(block_group);
940 spin_lock(&trans->transaction->dirty_bgs_lock);
943 if (!list_empty(&block_group->dirty_list)) {
944 list_del_init(&block_group->dirty_list);
946 btrfs_put_block_group(block_group);
948 spin_unlock(&trans->transaction->dirty_bgs_lock);
949 mutex_unlock(&trans->transaction->cache_write_mutex);
951 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
955 write_lock(&fs_info->block_group_cache_lock);
956 rb_erase_cached(&block_group->cache_node,
957 &fs_info->block_group_cache_tree);
958 RB_CLEAR_NODE(&block_group->cache_node);
960 /* Once for the block groups rbtree */
961 btrfs_put_block_group(block_group);
963 write_unlock(&fs_info->block_group_cache_lock);
965 down_write(&block_group->space_info->groups_sem);
967 * we must use list_del_init so people can check to see if they
968 * are still on the list after taking the semaphore
970 list_del_init(&block_group->list);
971 if (list_empty(&block_group->space_info->block_groups[index])) {
972 kobj = block_group->space_info->block_group_kobjs[index];
973 block_group->space_info->block_group_kobjs[index] = NULL;
974 clear_avail_alloc_bits(fs_info, block_group->flags);
976 up_write(&block_group->space_info->groups_sem);
977 clear_incompat_bg_bits(fs_info, block_group->flags);
983 if (block_group->cached == BTRFS_CACHE_STARTED)
984 btrfs_wait_block_group_cache_done(block_group);
986 write_lock(&fs_info->block_group_cache_lock);
987 caching_ctl = btrfs_get_caching_control(block_group);
989 struct btrfs_caching_control *ctl;
991 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
992 if (ctl->block_group == block_group) {
994 refcount_inc(&caching_ctl->count);
1000 list_del_init(&caching_ctl->list);
1001 write_unlock(&fs_info->block_group_cache_lock);
1004 /* Once for the caching bgs list and once for us. */
1005 btrfs_put_caching_control(caching_ctl);
1006 btrfs_put_caching_control(caching_ctl);
1009 spin_lock(&trans->transaction->dirty_bgs_lock);
1010 WARN_ON(!list_empty(&block_group->dirty_list));
1011 WARN_ON(!list_empty(&block_group->io_list));
1012 spin_unlock(&trans->transaction->dirty_bgs_lock);
1014 btrfs_remove_free_space_cache(block_group);
1016 spin_lock(&block_group->space_info->lock);
1017 list_del_init(&block_group->ro_list);
1019 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1020 WARN_ON(block_group->space_info->total_bytes
1021 < block_group->length);
1022 WARN_ON(block_group->space_info->bytes_readonly
1023 < block_group->length - block_group->zone_unusable);
1024 WARN_ON(block_group->space_info->bytes_zone_unusable
1025 < block_group->zone_unusable);
1026 WARN_ON(block_group->space_info->disk_total
1027 < block_group->length * factor);
1028 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1029 &block_group->runtime_flags) &&
1030 block_group->space_info->active_total_bytes
1031 < block_group->length);
1033 block_group->space_info->total_bytes -= block_group->length;
1034 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1035 block_group->space_info->active_total_bytes -= block_group->length;
1036 block_group->space_info->bytes_readonly -=
1037 (block_group->length - block_group->zone_unusable);
1038 block_group->space_info->bytes_zone_unusable -=
1039 block_group->zone_unusable;
1040 block_group->space_info->disk_total -= block_group->length * factor;
1042 spin_unlock(&block_group->space_info->lock);
1045 * Remove the free space for the block group from the free space tree
1046 * and the block group's item from the extent tree before marking the
1047 * block group as removed. This is to prevent races with tasks that
1048 * freeze and unfreeze a block group, this task and another task
1049 * allocating a new block group - the unfreeze task ends up removing
1050 * the block group's extent map before the task calling this function
1051 * deletes the block group item from the extent tree, allowing for
1052 * another task to attempt to create another block group with the same
1053 * item key (and failing with -EEXIST and a transaction abort).
1055 ret = remove_block_group_free_space(trans, block_group);
1059 ret = remove_block_group_item(trans, path, block_group);
1063 spin_lock(&block_group->lock);
1064 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1067 * At this point trimming or scrub can't start on this block group,
1068 * because we removed the block group from the rbtree
1069 * fs_info->block_group_cache_tree so no one can't find it anymore and
1070 * even if someone already got this block group before we removed it
1071 * from the rbtree, they have already incremented block_group->frozen -
1072 * if they didn't, for the trimming case they won't find any free space
1073 * entries because we already removed them all when we called
1074 * btrfs_remove_free_space_cache().
1076 * And we must not remove the extent map from the fs_info->mapping_tree
1077 * to prevent the same logical address range and physical device space
1078 * ranges from being reused for a new block group. This is needed to
1079 * avoid races with trimming and scrub.
1081 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1082 * completely transactionless, so while it is trimming a range the
1083 * currently running transaction might finish and a new one start,
1084 * allowing for new block groups to be created that can reuse the same
1085 * physical device locations unless we take this special care.
1087 * There may also be an implicit trim operation if the file system
1088 * is mounted with -odiscard. The same protections must remain
1089 * in place until the extents have been discarded completely when
1090 * the transaction commit has completed.
1092 remove_em = (atomic_read(&block_group->frozen) == 0);
1093 spin_unlock(&block_group->lock);
1096 struct extent_map_tree *em_tree;
1098 em_tree = &fs_info->mapping_tree;
1099 write_lock(&em_tree->lock);
1100 remove_extent_mapping(em_tree, em);
1101 write_unlock(&em_tree->lock);
1102 /* once for the tree */
1103 free_extent_map(em);
1107 /* Once for the lookup reference */
1108 btrfs_put_block_group(block_group);
1110 btrfs_delayed_refs_rsv_release(fs_info, 1);
1111 btrfs_free_path(path);
1115 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1116 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1118 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1119 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1120 struct extent_map *em;
1121 struct map_lookup *map;
1122 unsigned int num_items;
1124 read_lock(&em_tree->lock);
1125 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1126 read_unlock(&em_tree->lock);
1127 ASSERT(em && em->start == chunk_offset);
1130 * We need to reserve 3 + N units from the metadata space info in order
1131 * to remove a block group (done at btrfs_remove_chunk() and at
1132 * btrfs_remove_block_group()), which are used for:
1134 * 1 unit for adding the free space inode's orphan (located in the tree
1136 * 1 unit for deleting the block group item (located in the extent
1138 * 1 unit for deleting the free space item (located in tree of tree
1140 * N units for deleting N device extent items corresponding to each
1141 * stripe (located in the device tree).
1143 * In order to remove a block group we also need to reserve units in the
1144 * system space info in order to update the chunk tree (update one or
1145 * more device items and remove one chunk item), but this is done at
1146 * btrfs_remove_chunk() through a call to check_system_chunk().
1148 map = em->map_lookup;
1149 num_items = 3 + map->num_stripes;
1150 free_extent_map(em);
1152 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1156 * Mark block group @cache read-only, so later write won't happen to block
1159 * If @force is not set, this function will only mark the block group readonly
1160 * if we have enough free space (1M) in other metadata/system block groups.
1161 * If @force is not set, this function will mark the block group readonly
1162 * without checking free space.
1164 * NOTE: This function doesn't care if other block groups can contain all the
1165 * data in this block group. That check should be done by relocation routine,
1166 * not this function.
1168 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1170 struct btrfs_space_info *sinfo = cache->space_info;
1174 spin_lock(&sinfo->lock);
1175 spin_lock(&cache->lock);
1177 if (cache->swap_extents) {
1188 num_bytes = cache->length - cache->reserved - cache->pinned -
1189 cache->bytes_super - cache->zone_unusable - cache->used;
1192 * Data never overcommits, even in mixed mode, so do just the straight
1193 * check of left over space in how much we have allocated.
1197 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1198 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1201 * Here we make sure if we mark this bg RO, we still have enough
1202 * free space as buffer.
1204 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1208 * We overcommit metadata, so we need to do the
1209 * btrfs_can_overcommit check here, and we need to pass in
1210 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1211 * leeway to allow us to mark this block group as read only.
1213 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1214 BTRFS_RESERVE_NO_FLUSH))
1219 sinfo->bytes_readonly += num_bytes;
1220 if (btrfs_is_zoned(cache->fs_info)) {
1221 /* Migrate zone_unusable bytes to readonly */
1222 sinfo->bytes_readonly += cache->zone_unusable;
1223 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1224 cache->zone_unusable = 0;
1227 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1230 spin_unlock(&cache->lock);
1231 spin_unlock(&sinfo->lock);
1232 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233 btrfs_info(cache->fs_info,
1234 "unable to make block group %llu ro", cache->start);
1235 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1240 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1241 struct btrfs_block_group *bg)
1243 struct btrfs_fs_info *fs_info = bg->fs_info;
1244 struct btrfs_transaction *prev_trans = NULL;
1245 const u64 start = bg->start;
1246 const u64 end = start + bg->length - 1;
1249 spin_lock(&fs_info->trans_lock);
1250 if (trans->transaction->list.prev != &fs_info->trans_list) {
1251 prev_trans = list_last_entry(&trans->transaction->list,
1252 struct btrfs_transaction, list);
1253 refcount_inc(&prev_trans->use_count);
1255 spin_unlock(&fs_info->trans_lock);
1258 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1259 * btrfs_finish_extent_commit(). If we are at transaction N, another
1260 * task might be running finish_extent_commit() for the previous
1261 * transaction N - 1, and have seen a range belonging to the block
1262 * group in pinned_extents before we were able to clear the whole block
1263 * group range from pinned_extents. This means that task can lookup for
1264 * the block group after we unpinned it from pinned_extents and removed
1265 * it, leading to a BUG_ON() at unpin_extent_range().
1267 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1269 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1275 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1278 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1280 btrfs_put_transaction(prev_trans);
1286 * Process the unused_bgs list and remove any that don't have any allocated
1287 * space inside of them.
1289 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1291 struct btrfs_block_group *block_group;
1292 struct btrfs_space_info *space_info;
1293 struct btrfs_trans_handle *trans;
1294 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1297 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1300 if (btrfs_fs_closing(fs_info))
1304 * Long running balances can keep us blocked here for eternity, so
1305 * simply skip deletion if we're unable to get the mutex.
1307 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1310 spin_lock(&fs_info->unused_bgs_lock);
1311 while (!list_empty(&fs_info->unused_bgs)) {
1314 block_group = list_first_entry(&fs_info->unused_bgs,
1315 struct btrfs_block_group,
1317 list_del_init(&block_group->bg_list);
1319 space_info = block_group->space_info;
1321 if (ret || btrfs_mixed_space_info(space_info)) {
1322 btrfs_put_block_group(block_group);
1325 spin_unlock(&fs_info->unused_bgs_lock);
1327 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1329 /* Don't want to race with allocators so take the groups_sem */
1330 down_write(&space_info->groups_sem);
1333 * Async discard moves the final block group discard to be prior
1334 * to the unused_bgs code path. Therefore, if it's not fully
1335 * trimmed, punt it back to the async discard lists.
1337 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1338 !btrfs_is_free_space_trimmed(block_group)) {
1339 trace_btrfs_skip_unused_block_group(block_group);
1340 up_write(&space_info->groups_sem);
1341 /* Requeue if we failed because of async discard */
1342 btrfs_discard_queue_work(&fs_info->discard_ctl,
1347 spin_lock(&block_group->lock);
1348 if (block_group->reserved || block_group->pinned ||
1349 block_group->used || block_group->ro ||
1350 list_is_singular(&block_group->list)) {
1352 * We want to bail if we made new allocations or have
1353 * outstanding allocations in this block group. We do
1354 * the ro check in case balance is currently acting on
1357 trace_btrfs_skip_unused_block_group(block_group);
1358 spin_unlock(&block_group->lock);
1359 up_write(&space_info->groups_sem);
1362 spin_unlock(&block_group->lock);
1364 /* We don't want to force the issue, only flip if it's ok. */
1365 ret = inc_block_group_ro(block_group, 0);
1366 up_write(&space_info->groups_sem);
1372 ret = btrfs_zone_finish(block_group);
1374 btrfs_dec_block_group_ro(block_group);
1381 * Want to do this before we do anything else so we can recover
1382 * properly if we fail to join the transaction.
1384 trans = btrfs_start_trans_remove_block_group(fs_info,
1385 block_group->start);
1386 if (IS_ERR(trans)) {
1387 btrfs_dec_block_group_ro(block_group);
1388 ret = PTR_ERR(trans);
1393 * We could have pending pinned extents for this block group,
1394 * just delete them, we don't care about them anymore.
1396 if (!clean_pinned_extents(trans, block_group)) {
1397 btrfs_dec_block_group_ro(block_group);
1402 * At this point, the block_group is read only and should fail
1403 * new allocations. However, btrfs_finish_extent_commit() can
1404 * cause this block_group to be placed back on the discard
1405 * lists because now the block_group isn't fully discarded.
1406 * Bail here and try again later after discarding everything.
1408 spin_lock(&fs_info->discard_ctl.lock);
1409 if (!list_empty(&block_group->discard_list)) {
1410 spin_unlock(&fs_info->discard_ctl.lock);
1411 btrfs_dec_block_group_ro(block_group);
1412 btrfs_discard_queue_work(&fs_info->discard_ctl,
1416 spin_unlock(&fs_info->discard_ctl.lock);
1418 /* Reset pinned so btrfs_put_block_group doesn't complain */
1419 spin_lock(&space_info->lock);
1420 spin_lock(&block_group->lock);
1422 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1423 -block_group->pinned);
1424 space_info->bytes_readonly += block_group->pinned;
1425 block_group->pinned = 0;
1427 spin_unlock(&block_group->lock);
1428 spin_unlock(&space_info->lock);
1431 * The normal path here is an unused block group is passed here,
1432 * then trimming is handled in the transaction commit path.
1433 * Async discard interposes before this to do the trimming
1434 * before coming down the unused block group path as trimming
1435 * will no longer be done later in the transaction commit path.
1437 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1441 * DISCARD can flip during remount. On zoned filesystems, we
1442 * need to reset sequential-required zones.
1444 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1445 btrfs_is_zoned(fs_info);
1447 /* Implicit trim during transaction commit. */
1449 btrfs_freeze_block_group(block_group);
1452 * Btrfs_remove_chunk will abort the transaction if things go
1455 ret = btrfs_remove_chunk(trans, block_group->start);
1459 btrfs_unfreeze_block_group(block_group);
1464 * If we're not mounted with -odiscard, we can just forget
1465 * about this block group. Otherwise we'll need to wait
1466 * until transaction commit to do the actual discard.
1469 spin_lock(&fs_info->unused_bgs_lock);
1471 * A concurrent scrub might have added us to the list
1472 * fs_info->unused_bgs, so use a list_move operation
1473 * to add the block group to the deleted_bgs list.
1475 list_move(&block_group->bg_list,
1476 &trans->transaction->deleted_bgs);
1477 spin_unlock(&fs_info->unused_bgs_lock);
1478 btrfs_get_block_group(block_group);
1481 btrfs_end_transaction(trans);
1483 btrfs_put_block_group(block_group);
1484 spin_lock(&fs_info->unused_bgs_lock);
1486 spin_unlock(&fs_info->unused_bgs_lock);
1487 mutex_unlock(&fs_info->reclaim_bgs_lock);
1491 btrfs_end_transaction(trans);
1492 mutex_unlock(&fs_info->reclaim_bgs_lock);
1493 btrfs_put_block_group(block_group);
1494 btrfs_discard_punt_unused_bgs_list(fs_info);
1497 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1499 struct btrfs_fs_info *fs_info = bg->fs_info;
1501 spin_lock(&fs_info->unused_bgs_lock);
1502 if (list_empty(&bg->bg_list)) {
1503 btrfs_get_block_group(bg);
1504 trace_btrfs_add_unused_block_group(bg);
1505 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1507 spin_unlock(&fs_info->unused_bgs_lock);
1511 * We want block groups with a low number of used bytes to be in the beginning
1512 * of the list, so they will get reclaimed first.
1514 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1515 const struct list_head *b)
1517 const struct btrfs_block_group *bg1, *bg2;
1519 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1520 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1522 return bg1->used > bg2->used;
1525 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1527 if (btrfs_is_zoned(fs_info))
1528 return btrfs_zoned_should_reclaim(fs_info);
1532 void btrfs_reclaim_bgs_work(struct work_struct *work)
1534 struct btrfs_fs_info *fs_info =
1535 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1536 struct btrfs_block_group *bg;
1537 struct btrfs_space_info *space_info;
1539 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1542 if (btrfs_fs_closing(fs_info))
1545 if (!btrfs_should_reclaim(fs_info))
1548 sb_start_write(fs_info->sb);
1550 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1551 sb_end_write(fs_info->sb);
1556 * Long running balances can keep us blocked here for eternity, so
1557 * simply skip reclaim if we're unable to get the mutex.
1559 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1560 btrfs_exclop_finish(fs_info);
1561 sb_end_write(fs_info->sb);
1565 spin_lock(&fs_info->unused_bgs_lock);
1567 * Sort happens under lock because we can't simply splice it and sort.
1568 * The block groups might still be in use and reachable via bg_list,
1569 * and their presence in the reclaim_bgs list must be preserved.
1571 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1572 while (!list_empty(&fs_info->reclaim_bgs)) {
1576 bg = list_first_entry(&fs_info->reclaim_bgs,
1577 struct btrfs_block_group,
1579 list_del_init(&bg->bg_list);
1581 space_info = bg->space_info;
1582 spin_unlock(&fs_info->unused_bgs_lock);
1584 /* Don't race with allocators so take the groups_sem */
1585 down_write(&space_info->groups_sem);
1587 spin_lock(&bg->lock);
1588 if (bg->reserved || bg->pinned || bg->ro) {
1590 * We want to bail if we made new allocations or have
1591 * outstanding allocations in this block group. We do
1592 * the ro check in case balance is currently acting on
1595 spin_unlock(&bg->lock);
1596 up_write(&space_info->groups_sem);
1599 spin_unlock(&bg->lock);
1601 /* Get out fast, in case we're unmounting the filesystem */
1602 if (btrfs_fs_closing(fs_info)) {
1603 up_write(&space_info->groups_sem);
1608 * Cache the zone_unusable value before turning the block group
1609 * to read only. As soon as the blog group is read only it's
1610 * zone_unusable value gets moved to the block group's read-only
1611 * bytes and isn't available for calculations anymore.
1613 zone_unusable = bg->zone_unusable;
1614 ret = inc_block_group_ro(bg, 0);
1615 up_write(&space_info->groups_sem);
1620 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1621 bg->start, div_u64(bg->used * 100, bg->length),
1622 div64_u64(zone_unusable * 100, bg->length));
1623 trace_btrfs_reclaim_block_group(bg);
1624 ret = btrfs_relocate_chunk(fs_info, bg->start);
1626 btrfs_dec_block_group_ro(bg);
1627 btrfs_err(fs_info, "error relocating chunk %llu",
1632 btrfs_put_block_group(bg);
1633 spin_lock(&fs_info->unused_bgs_lock);
1635 spin_unlock(&fs_info->unused_bgs_lock);
1636 mutex_unlock(&fs_info->reclaim_bgs_lock);
1637 btrfs_exclop_finish(fs_info);
1638 sb_end_write(fs_info->sb);
1641 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1643 spin_lock(&fs_info->unused_bgs_lock);
1644 if (!list_empty(&fs_info->reclaim_bgs))
1645 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1646 spin_unlock(&fs_info->unused_bgs_lock);
1649 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1651 struct btrfs_fs_info *fs_info = bg->fs_info;
1653 spin_lock(&fs_info->unused_bgs_lock);
1654 if (list_empty(&bg->bg_list)) {
1655 btrfs_get_block_group(bg);
1656 trace_btrfs_add_reclaim_block_group(bg);
1657 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1659 spin_unlock(&fs_info->unused_bgs_lock);
1662 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1663 struct btrfs_path *path)
1665 struct extent_map_tree *em_tree;
1666 struct extent_map *em;
1667 struct btrfs_block_group_item bg;
1668 struct extent_buffer *leaf;
1673 slot = path->slots[0];
1674 leaf = path->nodes[0];
1676 em_tree = &fs_info->mapping_tree;
1677 read_lock(&em_tree->lock);
1678 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1679 read_unlock(&em_tree->lock);
1682 "logical %llu len %llu found bg but no related chunk",
1683 key->objectid, key->offset);
1687 if (em->start != key->objectid || em->len != key->offset) {
1689 "block group %llu len %llu mismatch with chunk %llu len %llu",
1690 key->objectid, key->offset, em->start, em->len);
1695 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1697 flags = btrfs_stack_block_group_flags(&bg) &
1698 BTRFS_BLOCK_GROUP_TYPE_MASK;
1700 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1702 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1703 key->objectid, key->offset, flags,
1704 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1709 free_extent_map(em);
1713 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1714 struct btrfs_path *path,
1715 struct btrfs_key *key)
1717 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1719 struct btrfs_key found_key;
1721 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1722 if (found_key.objectid >= key->objectid &&
1723 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1724 return read_bg_from_eb(fs_info, &found_key, path);
1730 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1732 u64 extra_flags = chunk_to_extended(flags) &
1733 BTRFS_EXTENDED_PROFILE_MASK;
1735 write_seqlock(&fs_info->profiles_lock);
1736 if (flags & BTRFS_BLOCK_GROUP_DATA)
1737 fs_info->avail_data_alloc_bits |= extra_flags;
1738 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1739 fs_info->avail_metadata_alloc_bits |= extra_flags;
1740 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1741 fs_info->avail_system_alloc_bits |= extra_flags;
1742 write_sequnlock(&fs_info->profiles_lock);
1746 * Map a physical disk address to a list of logical addresses
1748 * @fs_info: the filesystem
1749 * @chunk_start: logical address of block group
1750 * @bdev: physical device to resolve, can be NULL to indicate any device
1751 * @physical: physical address to map to logical addresses
1752 * @logical: return array of logical addresses which map to @physical
1753 * @naddrs: length of @logical
1754 * @stripe_len: size of IO stripe for the given block group
1756 * Maps a particular @physical disk address to a list of @logical addresses.
1757 * Used primarily to exclude those portions of a block group that contain super
1760 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1761 struct block_device *bdev, u64 physical, u64 **logical,
1762 int *naddrs, int *stripe_len)
1764 struct extent_map *em;
1765 struct map_lookup *map;
1768 u64 data_stripe_length;
1773 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1777 map = em->map_lookup;
1778 data_stripe_length = em->orig_block_len;
1779 io_stripe_size = map->stripe_len;
1780 chunk_start = em->start;
1782 /* For RAID5/6 adjust to a full IO stripe length */
1783 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1784 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1786 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1792 for (i = 0; i < map->num_stripes; i++) {
1793 bool already_inserted = false;
1798 if (!in_range(physical, map->stripes[i].physical,
1799 data_stripe_length))
1802 if (bdev && map->stripes[i].dev->bdev != bdev)
1805 stripe_nr = physical - map->stripes[i].physical;
1806 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1808 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1809 BTRFS_BLOCK_GROUP_RAID10)) {
1810 stripe_nr = stripe_nr * map->num_stripes + i;
1811 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1814 * The remaining case would be for RAID56, multiply by
1815 * nr_data_stripes(). Alternatively, just use rmap_len below
1816 * instead of map->stripe_len
1819 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1821 /* Ensure we don't add duplicate addresses */
1822 for (j = 0; j < nr; j++) {
1823 if (buf[j] == bytenr) {
1824 already_inserted = true;
1829 if (!already_inserted)
1835 *stripe_len = io_stripe_size;
1837 free_extent_map(em);
1841 static int exclude_super_stripes(struct btrfs_block_group *cache)
1843 struct btrfs_fs_info *fs_info = cache->fs_info;
1844 const bool zoned = btrfs_is_zoned(fs_info);
1850 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1851 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1852 cache->bytes_super += stripe_len;
1853 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1859 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1860 bytenr = btrfs_sb_offset(i);
1861 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1862 bytenr, &logical, &nr, &stripe_len);
1866 /* Shouldn't have super stripes in sequential zones */
1869 "zoned: block group %llu must not contain super block",
1875 u64 len = min_t(u64, stripe_len,
1876 cache->start + cache->length - logical[nr]);
1878 cache->bytes_super += len;
1879 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1892 static struct btrfs_block_group *btrfs_create_block_group_cache(
1893 struct btrfs_fs_info *fs_info, u64 start)
1895 struct btrfs_block_group *cache;
1897 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1901 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1903 if (!cache->free_space_ctl) {
1908 cache->start = start;
1910 cache->fs_info = fs_info;
1911 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1913 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1915 refcount_set(&cache->refs, 1);
1916 spin_lock_init(&cache->lock);
1917 init_rwsem(&cache->data_rwsem);
1918 INIT_LIST_HEAD(&cache->list);
1919 INIT_LIST_HEAD(&cache->cluster_list);
1920 INIT_LIST_HEAD(&cache->bg_list);
1921 INIT_LIST_HEAD(&cache->ro_list);
1922 INIT_LIST_HEAD(&cache->discard_list);
1923 INIT_LIST_HEAD(&cache->dirty_list);
1924 INIT_LIST_HEAD(&cache->io_list);
1925 INIT_LIST_HEAD(&cache->active_bg_list);
1926 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1927 atomic_set(&cache->frozen, 0);
1928 mutex_init(&cache->free_space_lock);
1929 cache->full_stripe_locks_root.root = RB_ROOT;
1930 mutex_init(&cache->full_stripe_locks_root.lock);
1936 * Iterate all chunks and verify that each of them has the corresponding block
1939 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1941 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1942 struct extent_map *em;
1943 struct btrfs_block_group *bg;
1948 read_lock(&map_tree->lock);
1950 * lookup_extent_mapping will return the first extent map
1951 * intersecting the range, so setting @len to 1 is enough to
1952 * get the first chunk.
1954 em = lookup_extent_mapping(map_tree, start, 1);
1955 read_unlock(&map_tree->lock);
1959 bg = btrfs_lookup_block_group(fs_info, em->start);
1962 "chunk start=%llu len=%llu doesn't have corresponding block group",
1963 em->start, em->len);
1965 free_extent_map(em);
1968 if (bg->start != em->start || bg->length != em->len ||
1969 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1970 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1972 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1974 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1975 bg->start, bg->length,
1976 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1978 free_extent_map(em);
1979 btrfs_put_block_group(bg);
1982 start = em->start + em->len;
1983 free_extent_map(em);
1984 btrfs_put_block_group(bg);
1989 static int read_one_block_group(struct btrfs_fs_info *info,
1990 struct btrfs_block_group_item *bgi,
1991 const struct btrfs_key *key,
1994 struct btrfs_block_group *cache;
1995 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1998 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2000 cache = btrfs_create_block_group_cache(info, key->objectid);
2004 cache->length = key->offset;
2005 cache->used = btrfs_stack_block_group_used(bgi);
2006 cache->flags = btrfs_stack_block_group_flags(bgi);
2007 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2009 set_free_space_tree_thresholds(cache);
2013 * When we mount with old space cache, we need to
2014 * set BTRFS_DC_CLEAR and set dirty flag.
2016 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2017 * truncate the old free space cache inode and
2019 * b) Setting 'dirty flag' makes sure that we flush
2020 * the new space cache info onto disk.
2022 if (btrfs_test_opt(info, SPACE_CACHE))
2023 cache->disk_cache_state = BTRFS_DC_CLEAR;
2025 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2026 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2028 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2034 ret = btrfs_load_block_group_zone_info(cache, false);
2036 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2042 * We need to exclude the super stripes now so that the space info has
2043 * super bytes accounted for, otherwise we'll think we have more space
2044 * than we actually do.
2046 ret = exclude_super_stripes(cache);
2048 /* We may have excluded something, so call this just in case. */
2049 btrfs_free_excluded_extents(cache);
2054 * For zoned filesystem, space after the allocation offset is the only
2055 * free space for a block group. So, we don't need any caching work.
2056 * btrfs_calc_zone_unusable() will set the amount of free space and
2057 * zone_unusable space.
2059 * For regular filesystem, check for two cases, either we are full, and
2060 * therefore don't need to bother with the caching work since we won't
2061 * find any space, or we are empty, and we can just add all the space
2062 * in and be done with it. This saves us _a_lot_ of time, particularly
2065 if (btrfs_is_zoned(info)) {
2066 btrfs_calc_zone_unusable(cache);
2067 /* Should not have any excluded extents. Just in case, though. */
2068 btrfs_free_excluded_extents(cache);
2069 } else if (cache->length == cache->used) {
2070 cache->cached = BTRFS_CACHE_FINISHED;
2071 btrfs_free_excluded_extents(cache);
2072 } else if (cache->used == 0) {
2073 cache->cached = BTRFS_CACHE_FINISHED;
2074 add_new_free_space(cache, cache->start,
2075 cache->start + cache->length);
2076 btrfs_free_excluded_extents(cache);
2079 ret = btrfs_add_block_group_cache(info, cache);
2081 btrfs_remove_free_space_cache(cache);
2084 trace_btrfs_add_block_group(info, cache, 0);
2085 btrfs_add_bg_to_space_info(info, cache);
2087 set_avail_alloc_bits(info, cache->flags);
2088 if (btrfs_chunk_writeable(info, cache->start)) {
2089 if (cache->used == 0) {
2090 ASSERT(list_empty(&cache->bg_list));
2091 if (btrfs_test_opt(info, DISCARD_ASYNC))
2092 btrfs_discard_queue_work(&info->discard_ctl, cache);
2094 btrfs_mark_bg_unused(cache);
2097 inc_block_group_ro(cache, 1);
2102 btrfs_put_block_group(cache);
2106 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2108 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2109 struct rb_node *node;
2112 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2113 struct extent_map *em;
2114 struct map_lookup *map;
2115 struct btrfs_block_group *bg;
2117 em = rb_entry(node, struct extent_map, rb_node);
2118 map = em->map_lookup;
2119 bg = btrfs_create_block_group_cache(fs_info, em->start);
2125 /* Fill dummy cache as FULL */
2126 bg->length = em->len;
2127 bg->flags = map->type;
2128 bg->cached = BTRFS_CACHE_FINISHED;
2130 bg->flags = map->type;
2131 ret = btrfs_add_block_group_cache(fs_info, bg);
2133 * We may have some valid block group cache added already, in
2134 * that case we skip to the next one.
2136 if (ret == -EEXIST) {
2138 btrfs_put_block_group(bg);
2143 btrfs_remove_free_space_cache(bg);
2144 btrfs_put_block_group(bg);
2148 btrfs_add_bg_to_space_info(fs_info, bg);
2150 set_avail_alloc_bits(fs_info, bg->flags);
2153 btrfs_init_global_block_rsv(fs_info);
2157 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2159 struct btrfs_root *root = btrfs_block_group_root(info);
2160 struct btrfs_path *path;
2162 struct btrfs_block_group *cache;
2163 struct btrfs_space_info *space_info;
2164 struct btrfs_key key;
2169 * Either no extent root (with ibadroots rescue option) or we have
2170 * unsupported RO options. The fs can never be mounted read-write, so no
2171 * need to waste time searching block group items.
2173 * This also allows new extent tree related changes to be RO compat,
2174 * no need for a full incompat flag.
2176 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2177 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2178 return fill_dummy_bgs(info);
2182 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2183 path = btrfs_alloc_path();
2187 cache_gen = btrfs_super_cache_generation(info->super_copy);
2188 if (btrfs_test_opt(info, SPACE_CACHE) &&
2189 btrfs_super_generation(info->super_copy) != cache_gen)
2191 if (btrfs_test_opt(info, CLEAR_CACHE))
2195 struct btrfs_block_group_item bgi;
2196 struct extent_buffer *leaf;
2199 ret = find_first_block_group(info, path, &key);
2205 leaf = path->nodes[0];
2206 slot = path->slots[0];
2208 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2211 btrfs_item_key_to_cpu(leaf, &key, slot);
2212 btrfs_release_path(path);
2213 ret = read_one_block_group(info, &bgi, &key, need_clear);
2216 key.objectid += key.offset;
2219 btrfs_release_path(path);
2221 list_for_each_entry(space_info, &info->space_info, list) {
2224 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2225 if (list_empty(&space_info->block_groups[i]))
2227 cache = list_first_entry(&space_info->block_groups[i],
2228 struct btrfs_block_group,
2230 btrfs_sysfs_add_block_group_type(cache);
2233 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2234 (BTRFS_BLOCK_GROUP_RAID10 |
2235 BTRFS_BLOCK_GROUP_RAID1_MASK |
2236 BTRFS_BLOCK_GROUP_RAID56_MASK |
2237 BTRFS_BLOCK_GROUP_DUP)))
2240 * Avoid allocating from un-mirrored block group if there are
2241 * mirrored block groups.
2243 list_for_each_entry(cache,
2244 &space_info->block_groups[BTRFS_RAID_RAID0],
2246 inc_block_group_ro(cache, 1);
2247 list_for_each_entry(cache,
2248 &space_info->block_groups[BTRFS_RAID_SINGLE],
2250 inc_block_group_ro(cache, 1);
2253 btrfs_init_global_block_rsv(info);
2254 ret = check_chunk_block_group_mappings(info);
2256 btrfs_free_path(path);
2258 * We've hit some error while reading the extent tree, and have
2259 * rescue=ibadroots mount option.
2260 * Try to fill the tree using dummy block groups so that the user can
2261 * continue to mount and grab their data.
2263 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2264 ret = fill_dummy_bgs(info);
2269 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2272 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2275 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2276 struct btrfs_block_group *block_group)
2278 struct btrfs_fs_info *fs_info = trans->fs_info;
2279 struct btrfs_block_group_item bgi;
2280 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2281 struct btrfs_key key;
2283 spin_lock(&block_group->lock);
2284 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2285 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2286 block_group->global_root_id);
2287 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2288 key.objectid = block_group->start;
2289 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2290 key.offset = block_group->length;
2291 spin_unlock(&block_group->lock);
2293 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2296 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2297 struct btrfs_device *device, u64 chunk_offset,
2298 u64 start, u64 num_bytes)
2300 struct btrfs_fs_info *fs_info = device->fs_info;
2301 struct btrfs_root *root = fs_info->dev_root;
2302 struct btrfs_path *path;
2303 struct btrfs_dev_extent *extent;
2304 struct extent_buffer *leaf;
2305 struct btrfs_key key;
2308 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2309 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2310 path = btrfs_alloc_path();
2314 key.objectid = device->devid;
2315 key.type = BTRFS_DEV_EXTENT_KEY;
2317 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2321 leaf = path->nodes[0];
2322 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2323 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2324 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2325 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2326 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2328 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2329 btrfs_mark_buffer_dirty(leaf);
2331 btrfs_free_path(path);
2336 * This function belongs to phase 2.
2338 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2341 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2342 u64 chunk_offset, u64 chunk_size)
2344 struct btrfs_fs_info *fs_info = trans->fs_info;
2345 struct btrfs_device *device;
2346 struct extent_map *em;
2347 struct map_lookup *map;
2353 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2357 map = em->map_lookup;
2358 stripe_size = em->orig_block_len;
2361 * Take the device list mutex to prevent races with the final phase of
2362 * a device replace operation that replaces the device object associated
2363 * with the map's stripes, because the device object's id can change
2364 * at any time during that final phase of the device replace operation
2365 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2366 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2367 * resulting in persisting a device extent item with such ID.
2369 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2370 for (i = 0; i < map->num_stripes; i++) {
2371 device = map->stripes[i].dev;
2372 dev_offset = map->stripes[i].physical;
2374 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2379 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2381 free_extent_map(em);
2386 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2389 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2392 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2394 struct btrfs_fs_info *fs_info = trans->fs_info;
2395 struct btrfs_block_group *block_group;
2398 while (!list_empty(&trans->new_bgs)) {
2401 block_group = list_first_entry(&trans->new_bgs,
2402 struct btrfs_block_group,
2407 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2409 ret = insert_block_group_item(trans, block_group);
2411 btrfs_abort_transaction(trans, ret);
2412 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2413 &block_group->runtime_flags)) {
2414 mutex_lock(&fs_info->chunk_mutex);
2415 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2416 mutex_unlock(&fs_info->chunk_mutex);
2418 btrfs_abort_transaction(trans, ret);
2420 ret = insert_dev_extents(trans, block_group->start,
2421 block_group->length);
2423 btrfs_abort_transaction(trans, ret);
2424 add_block_group_free_space(trans, block_group);
2427 * If we restriped during balance, we may have added a new raid
2428 * type, so now add the sysfs entries when it is safe to do so.
2429 * We don't have to worry about locking here as it's handled in
2430 * btrfs_sysfs_add_block_group_type.
2432 if (block_group->space_info->block_group_kobjs[index] == NULL)
2433 btrfs_sysfs_add_block_group_type(block_group);
2435 /* Already aborted the transaction if it failed. */
2437 btrfs_delayed_refs_rsv_release(fs_info, 1);
2438 list_del_init(&block_group->bg_list);
2440 btrfs_trans_release_chunk_metadata(trans);
2444 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2445 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2447 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2452 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2453 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2455 /* If we have a smaller fs index based on 128MiB. */
2456 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2459 offset = div64_u64(offset, div);
2460 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2464 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2465 u64 bytes_used, u64 type,
2466 u64 chunk_offset, u64 size)
2468 struct btrfs_fs_info *fs_info = trans->fs_info;
2469 struct btrfs_block_group *cache;
2472 btrfs_set_log_full_commit(trans);
2474 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2476 return ERR_PTR(-ENOMEM);
2478 cache->length = size;
2479 set_free_space_tree_thresholds(cache);
2480 cache->used = bytes_used;
2481 cache->flags = type;
2482 cache->cached = BTRFS_CACHE_FINISHED;
2483 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2485 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2486 cache->needs_free_space = 1;
2488 ret = btrfs_load_block_group_zone_info(cache, true);
2490 btrfs_put_block_group(cache);
2491 return ERR_PTR(ret);
2494 ret = exclude_super_stripes(cache);
2496 /* We may have excluded something, so call this just in case */
2497 btrfs_free_excluded_extents(cache);
2498 btrfs_put_block_group(cache);
2499 return ERR_PTR(ret);
2502 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2504 btrfs_free_excluded_extents(cache);
2507 * Ensure the corresponding space_info object is created and
2508 * assigned to our block group. We want our bg to be added to the rbtree
2509 * with its ->space_info set.
2511 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2512 ASSERT(cache->space_info);
2514 ret = btrfs_add_block_group_cache(fs_info, cache);
2516 btrfs_remove_free_space_cache(cache);
2517 btrfs_put_block_group(cache);
2518 return ERR_PTR(ret);
2522 * Now that our block group has its ->space_info set and is inserted in
2523 * the rbtree, update the space info's counters.
2525 trace_btrfs_add_block_group(fs_info, cache, 1);
2526 btrfs_add_bg_to_space_info(fs_info, cache);
2527 btrfs_update_global_block_rsv(fs_info);
2529 #ifdef CONFIG_BTRFS_DEBUG
2530 if (btrfs_should_fragment_free_space(cache)) {
2531 u64 new_bytes_used = size - bytes_used;
2533 cache->space_info->bytes_used += new_bytes_used >> 1;
2534 fragment_free_space(cache);
2538 list_add_tail(&cache->bg_list, &trans->new_bgs);
2539 trans->delayed_ref_updates++;
2540 btrfs_update_delayed_refs_rsv(trans);
2542 set_avail_alloc_bits(fs_info, type);
2547 * Mark one block group RO, can be called several times for the same block
2550 * @cache: the destination block group
2551 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2552 * ensure we still have some free space after marking this
2555 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2556 bool do_chunk_alloc)
2558 struct btrfs_fs_info *fs_info = cache->fs_info;
2559 struct btrfs_trans_handle *trans;
2560 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2563 bool dirty_bg_running;
2566 * This can only happen when we are doing read-only scrub on read-only
2568 * In that case we should not start a new transaction on read-only fs.
2569 * Thus here we skip all chunk allocations.
2571 if (sb_rdonly(fs_info->sb)) {
2572 mutex_lock(&fs_info->ro_block_group_mutex);
2573 ret = inc_block_group_ro(cache, 0);
2574 mutex_unlock(&fs_info->ro_block_group_mutex);
2579 trans = btrfs_join_transaction(root);
2581 return PTR_ERR(trans);
2583 dirty_bg_running = false;
2586 * We're not allowed to set block groups readonly after the dirty
2587 * block group cache has started writing. If it already started,
2588 * back off and let this transaction commit.
2590 mutex_lock(&fs_info->ro_block_group_mutex);
2591 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2592 u64 transid = trans->transid;
2594 mutex_unlock(&fs_info->ro_block_group_mutex);
2595 btrfs_end_transaction(trans);
2597 ret = btrfs_wait_for_commit(fs_info, transid);
2600 dirty_bg_running = true;
2602 } while (dirty_bg_running);
2604 if (do_chunk_alloc) {
2606 * If we are changing raid levels, try to allocate a
2607 * corresponding block group with the new raid level.
2609 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2610 if (alloc_flags != cache->flags) {
2611 ret = btrfs_chunk_alloc(trans, alloc_flags,
2614 * ENOSPC is allowed here, we may have enough space
2615 * already allocated at the new raid level to carry on
2624 ret = inc_block_group_ro(cache, 0);
2625 if (!do_chunk_alloc || ret == -ETXTBSY)
2629 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2630 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2634 * We have allocated a new chunk. We also need to activate that chunk to
2635 * grant metadata tickets for zoned filesystem.
2637 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2641 ret = inc_block_group_ro(cache, 0);
2642 if (ret == -ETXTBSY)
2645 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2646 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2647 mutex_lock(&fs_info->chunk_mutex);
2648 check_system_chunk(trans, alloc_flags);
2649 mutex_unlock(&fs_info->chunk_mutex);
2652 mutex_unlock(&fs_info->ro_block_group_mutex);
2654 btrfs_end_transaction(trans);
2658 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2660 struct btrfs_space_info *sinfo = cache->space_info;
2665 spin_lock(&sinfo->lock);
2666 spin_lock(&cache->lock);
2668 if (btrfs_is_zoned(cache->fs_info)) {
2669 /* Migrate zone_unusable bytes back */
2670 cache->zone_unusable =
2671 (cache->alloc_offset - cache->used) +
2672 (cache->length - cache->zone_capacity);
2673 sinfo->bytes_zone_unusable += cache->zone_unusable;
2674 sinfo->bytes_readonly -= cache->zone_unusable;
2676 num_bytes = cache->length - cache->reserved -
2677 cache->pinned - cache->bytes_super -
2678 cache->zone_unusable - cache->used;
2679 sinfo->bytes_readonly -= num_bytes;
2680 list_del_init(&cache->ro_list);
2682 spin_unlock(&cache->lock);
2683 spin_unlock(&sinfo->lock);
2686 static int update_block_group_item(struct btrfs_trans_handle *trans,
2687 struct btrfs_path *path,
2688 struct btrfs_block_group *cache)
2690 struct btrfs_fs_info *fs_info = trans->fs_info;
2692 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2694 struct extent_buffer *leaf;
2695 struct btrfs_block_group_item bgi;
2696 struct btrfs_key key;
2698 key.objectid = cache->start;
2699 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2700 key.offset = cache->length;
2702 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2709 leaf = path->nodes[0];
2710 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2711 btrfs_set_stack_block_group_used(&bgi, cache->used);
2712 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2713 cache->global_root_id);
2714 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2715 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2716 btrfs_mark_buffer_dirty(leaf);
2718 btrfs_release_path(path);
2723 static int cache_save_setup(struct btrfs_block_group *block_group,
2724 struct btrfs_trans_handle *trans,
2725 struct btrfs_path *path)
2727 struct btrfs_fs_info *fs_info = block_group->fs_info;
2728 struct btrfs_root *root = fs_info->tree_root;
2729 struct inode *inode = NULL;
2730 struct extent_changeset *data_reserved = NULL;
2732 int dcs = BTRFS_DC_ERROR;
2737 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2741 * If this block group is smaller than 100 megs don't bother caching the
2744 if (block_group->length < (100 * SZ_1M)) {
2745 spin_lock(&block_group->lock);
2746 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2747 spin_unlock(&block_group->lock);
2751 if (TRANS_ABORTED(trans))
2754 inode = lookup_free_space_inode(block_group, path);
2755 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2756 ret = PTR_ERR(inode);
2757 btrfs_release_path(path);
2761 if (IS_ERR(inode)) {
2765 if (block_group->ro)
2768 ret = create_free_space_inode(trans, block_group, path);
2775 * We want to set the generation to 0, that way if anything goes wrong
2776 * from here on out we know not to trust this cache when we load up next
2779 BTRFS_I(inode)->generation = 0;
2780 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2783 * So theoretically we could recover from this, simply set the
2784 * super cache generation to 0 so we know to invalidate the
2785 * cache, but then we'd have to keep track of the block groups
2786 * that fail this way so we know we _have_ to reset this cache
2787 * before the next commit or risk reading stale cache. So to
2788 * limit our exposure to horrible edge cases lets just abort the
2789 * transaction, this only happens in really bad situations
2792 btrfs_abort_transaction(trans, ret);
2797 /* We've already setup this transaction, go ahead and exit */
2798 if (block_group->cache_generation == trans->transid &&
2799 i_size_read(inode)) {
2800 dcs = BTRFS_DC_SETUP;
2804 if (i_size_read(inode) > 0) {
2805 ret = btrfs_check_trunc_cache_free_space(fs_info,
2806 &fs_info->global_block_rsv);
2810 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2815 spin_lock(&block_group->lock);
2816 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2817 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2819 * don't bother trying to write stuff out _if_
2820 * a) we're not cached,
2821 * b) we're with nospace_cache mount option,
2822 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2824 dcs = BTRFS_DC_WRITTEN;
2825 spin_unlock(&block_group->lock);
2828 spin_unlock(&block_group->lock);
2831 * We hit an ENOSPC when setting up the cache in this transaction, just
2832 * skip doing the setup, we've already cleared the cache so we're safe.
2834 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2840 * Try to preallocate enough space based on how big the block group is.
2841 * Keep in mind this has to include any pinned space which could end up
2842 * taking up quite a bit since it's not folded into the other space
2845 cache_size = div_u64(block_group->length, SZ_256M);
2850 cache_size *= fs_info->sectorsize;
2852 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2857 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2858 cache_size, cache_size,
2861 * Our cache requires contiguous chunks so that we don't modify a bunch
2862 * of metadata or split extents when writing the cache out, which means
2863 * we can enospc if we are heavily fragmented in addition to just normal
2864 * out of space conditions. So if we hit this just skip setting up any
2865 * other block groups for this transaction, maybe we'll unpin enough
2866 * space the next time around.
2869 dcs = BTRFS_DC_SETUP;
2870 else if (ret == -ENOSPC)
2871 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2876 btrfs_release_path(path);
2878 spin_lock(&block_group->lock);
2879 if (!ret && dcs == BTRFS_DC_SETUP)
2880 block_group->cache_generation = trans->transid;
2881 block_group->disk_cache_state = dcs;
2882 spin_unlock(&block_group->lock);
2884 extent_changeset_free(data_reserved);
2888 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2890 struct btrfs_fs_info *fs_info = trans->fs_info;
2891 struct btrfs_block_group *cache, *tmp;
2892 struct btrfs_transaction *cur_trans = trans->transaction;
2893 struct btrfs_path *path;
2895 if (list_empty(&cur_trans->dirty_bgs) ||
2896 !btrfs_test_opt(fs_info, SPACE_CACHE))
2899 path = btrfs_alloc_path();
2903 /* Could add new block groups, use _safe just in case */
2904 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2906 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2907 cache_save_setup(cache, trans, path);
2910 btrfs_free_path(path);
2915 * Transaction commit does final block group cache writeback during a critical
2916 * section where nothing is allowed to change the FS. This is required in
2917 * order for the cache to actually match the block group, but can introduce a
2918 * lot of latency into the commit.
2920 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2921 * There's a chance we'll have to redo some of it if the block group changes
2922 * again during the commit, but it greatly reduces the commit latency by
2923 * getting rid of the easy block groups while we're still allowing others to
2926 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2928 struct btrfs_fs_info *fs_info = trans->fs_info;
2929 struct btrfs_block_group *cache;
2930 struct btrfs_transaction *cur_trans = trans->transaction;
2933 struct btrfs_path *path = NULL;
2935 struct list_head *io = &cur_trans->io_bgs;
2938 spin_lock(&cur_trans->dirty_bgs_lock);
2939 if (list_empty(&cur_trans->dirty_bgs)) {
2940 spin_unlock(&cur_trans->dirty_bgs_lock);
2943 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2944 spin_unlock(&cur_trans->dirty_bgs_lock);
2947 /* Make sure all the block groups on our dirty list actually exist */
2948 btrfs_create_pending_block_groups(trans);
2951 path = btrfs_alloc_path();
2959 * cache_write_mutex is here only to save us from balance or automatic
2960 * removal of empty block groups deleting this block group while we are
2961 * writing out the cache
2963 mutex_lock(&trans->transaction->cache_write_mutex);
2964 while (!list_empty(&dirty)) {
2965 bool drop_reserve = true;
2967 cache = list_first_entry(&dirty, struct btrfs_block_group,
2970 * This can happen if something re-dirties a block group that
2971 * is already under IO. Just wait for it to finish and then do
2974 if (!list_empty(&cache->io_list)) {
2975 list_del_init(&cache->io_list);
2976 btrfs_wait_cache_io(trans, cache, path);
2977 btrfs_put_block_group(cache);
2982 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2983 * it should update the cache_state. Don't delete until after
2986 * Since we're not running in the commit critical section
2987 * we need the dirty_bgs_lock to protect from update_block_group
2989 spin_lock(&cur_trans->dirty_bgs_lock);
2990 list_del_init(&cache->dirty_list);
2991 spin_unlock(&cur_trans->dirty_bgs_lock);
2995 cache_save_setup(cache, trans, path);
2997 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2998 cache->io_ctl.inode = NULL;
2999 ret = btrfs_write_out_cache(trans, cache, path);
3000 if (ret == 0 && cache->io_ctl.inode) {
3004 * The cache_write_mutex is protecting the
3005 * io_list, also refer to the definition of
3006 * btrfs_transaction::io_bgs for more details
3008 list_add_tail(&cache->io_list, io);
3011 * If we failed to write the cache, the
3012 * generation will be bad and life goes on
3018 ret = update_block_group_item(trans, path, cache);
3020 * Our block group might still be attached to the list
3021 * of new block groups in the transaction handle of some
3022 * other task (struct btrfs_trans_handle->new_bgs). This
3023 * means its block group item isn't yet in the extent
3024 * tree. If this happens ignore the error, as we will
3025 * try again later in the critical section of the
3026 * transaction commit.
3028 if (ret == -ENOENT) {
3030 spin_lock(&cur_trans->dirty_bgs_lock);
3031 if (list_empty(&cache->dirty_list)) {
3032 list_add_tail(&cache->dirty_list,
3033 &cur_trans->dirty_bgs);
3034 btrfs_get_block_group(cache);
3035 drop_reserve = false;
3037 spin_unlock(&cur_trans->dirty_bgs_lock);
3039 btrfs_abort_transaction(trans, ret);
3043 /* If it's not on the io list, we need to put the block group */
3045 btrfs_put_block_group(cache);
3047 btrfs_delayed_refs_rsv_release(fs_info, 1);
3049 * Avoid blocking other tasks for too long. It might even save
3050 * us from writing caches for block groups that are going to be
3053 mutex_unlock(&trans->transaction->cache_write_mutex);
3056 mutex_lock(&trans->transaction->cache_write_mutex);
3058 mutex_unlock(&trans->transaction->cache_write_mutex);
3061 * Go through delayed refs for all the stuff we've just kicked off
3062 * and then loop back (just once)
3065 ret = btrfs_run_delayed_refs(trans, 0);
3066 if (!ret && loops == 0) {
3068 spin_lock(&cur_trans->dirty_bgs_lock);
3069 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3071 * dirty_bgs_lock protects us from concurrent block group
3072 * deletes too (not just cache_write_mutex).
3074 if (!list_empty(&dirty)) {
3075 spin_unlock(&cur_trans->dirty_bgs_lock);
3078 spin_unlock(&cur_trans->dirty_bgs_lock);
3082 spin_lock(&cur_trans->dirty_bgs_lock);
3083 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3084 spin_unlock(&cur_trans->dirty_bgs_lock);
3085 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3088 btrfs_free_path(path);
3092 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3094 struct btrfs_fs_info *fs_info = trans->fs_info;
3095 struct btrfs_block_group *cache;
3096 struct btrfs_transaction *cur_trans = trans->transaction;
3099 struct btrfs_path *path;
3100 struct list_head *io = &cur_trans->io_bgs;
3102 path = btrfs_alloc_path();
3107 * Even though we are in the critical section of the transaction commit,
3108 * we can still have concurrent tasks adding elements to this
3109 * transaction's list of dirty block groups. These tasks correspond to
3110 * endio free space workers started when writeback finishes for a
3111 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3112 * allocate new block groups as a result of COWing nodes of the root
3113 * tree when updating the free space inode. The writeback for the space
3114 * caches is triggered by an earlier call to
3115 * btrfs_start_dirty_block_groups() and iterations of the following
3117 * Also we want to do the cache_save_setup first and then run the
3118 * delayed refs to make sure we have the best chance at doing this all
3121 spin_lock(&cur_trans->dirty_bgs_lock);
3122 while (!list_empty(&cur_trans->dirty_bgs)) {
3123 cache = list_first_entry(&cur_trans->dirty_bgs,
3124 struct btrfs_block_group,
3128 * This can happen if cache_save_setup re-dirties a block group
3129 * that is already under IO. Just wait for it to finish and
3130 * then do it all again
3132 if (!list_empty(&cache->io_list)) {
3133 spin_unlock(&cur_trans->dirty_bgs_lock);
3134 list_del_init(&cache->io_list);
3135 btrfs_wait_cache_io(trans, cache, path);
3136 btrfs_put_block_group(cache);
3137 spin_lock(&cur_trans->dirty_bgs_lock);
3141 * Don't remove from the dirty list until after we've waited on
3144 list_del_init(&cache->dirty_list);
3145 spin_unlock(&cur_trans->dirty_bgs_lock);
3148 cache_save_setup(cache, trans, path);
3151 ret = btrfs_run_delayed_refs(trans,
3152 (unsigned long) -1);
3154 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3155 cache->io_ctl.inode = NULL;
3156 ret = btrfs_write_out_cache(trans, cache, path);
3157 if (ret == 0 && cache->io_ctl.inode) {
3159 list_add_tail(&cache->io_list, io);
3162 * If we failed to write the cache, the
3163 * generation will be bad and life goes on
3169 ret = update_block_group_item(trans, path, cache);
3171 * One of the free space endio workers might have
3172 * created a new block group while updating a free space
3173 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3174 * and hasn't released its transaction handle yet, in
3175 * which case the new block group is still attached to
3176 * its transaction handle and its creation has not
3177 * finished yet (no block group item in the extent tree
3178 * yet, etc). If this is the case, wait for all free
3179 * space endio workers to finish and retry. This is a
3180 * very rare case so no need for a more efficient and
3183 if (ret == -ENOENT) {
3184 wait_event(cur_trans->writer_wait,
3185 atomic_read(&cur_trans->num_writers) == 1);
3186 ret = update_block_group_item(trans, path, cache);
3189 btrfs_abort_transaction(trans, ret);
3192 /* If its not on the io list, we need to put the block group */
3194 btrfs_put_block_group(cache);
3195 btrfs_delayed_refs_rsv_release(fs_info, 1);
3196 spin_lock(&cur_trans->dirty_bgs_lock);
3198 spin_unlock(&cur_trans->dirty_bgs_lock);
3201 * Refer to the definition of io_bgs member for details why it's safe
3202 * to use it without any locking
3204 while (!list_empty(io)) {
3205 cache = list_first_entry(io, struct btrfs_block_group,
3207 list_del_init(&cache->io_list);
3208 btrfs_wait_cache_io(trans, cache, path);
3209 btrfs_put_block_group(cache);
3212 btrfs_free_path(path);
3216 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3219 const struct btrfs_space_info *space_info = bg->space_info;
3220 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3221 const u64 new_val = bg->used;
3222 const u64 old_val = new_val + bytes_freed;
3225 if (reclaim_thresh == 0)
3228 thresh = div_factor_fine(bg->length, reclaim_thresh);
3231 * If we were below the threshold before don't reclaim, we are likely a
3232 * brand new block group and we don't want to relocate new block groups.
3234 if (old_val < thresh)
3236 if (new_val >= thresh)
3241 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3242 u64 bytenr, u64 num_bytes, bool alloc)
3244 struct btrfs_fs_info *info = trans->fs_info;
3245 struct btrfs_block_group *cache = NULL;
3246 u64 total = num_bytes;
3252 /* Block accounting for super block */
3253 spin_lock(&info->delalloc_root_lock);
3254 old_val = btrfs_super_bytes_used(info->super_copy);
3256 old_val += num_bytes;
3258 old_val -= num_bytes;
3259 btrfs_set_super_bytes_used(info->super_copy, old_val);
3260 spin_unlock(&info->delalloc_root_lock);
3265 cache = btrfs_lookup_block_group(info, bytenr);
3270 factor = btrfs_bg_type_to_factor(cache->flags);
3273 * If this block group has free space cache written out, we
3274 * need to make sure to load it if we are removing space. This
3275 * is because we need the unpinning stage to actually add the
3276 * space back to the block group, otherwise we will leak space.
3278 if (!alloc && !btrfs_block_group_done(cache))
3279 btrfs_cache_block_group(cache, true);
3281 byte_in_group = bytenr - cache->start;
3282 WARN_ON(byte_in_group > cache->length);
3284 spin_lock(&cache->space_info->lock);
3285 spin_lock(&cache->lock);
3287 if (btrfs_test_opt(info, SPACE_CACHE) &&
3288 cache->disk_cache_state < BTRFS_DC_CLEAR)
3289 cache->disk_cache_state = BTRFS_DC_CLEAR;
3291 old_val = cache->used;
3292 num_bytes = min(total, cache->length - byte_in_group);
3294 old_val += num_bytes;
3295 cache->used = old_val;
3296 cache->reserved -= num_bytes;
3297 cache->space_info->bytes_reserved -= num_bytes;
3298 cache->space_info->bytes_used += num_bytes;
3299 cache->space_info->disk_used += num_bytes * factor;
3300 spin_unlock(&cache->lock);
3301 spin_unlock(&cache->space_info->lock);
3303 old_val -= num_bytes;
3304 cache->used = old_val;
3305 cache->pinned += num_bytes;
3306 btrfs_space_info_update_bytes_pinned(info,
3307 cache->space_info, num_bytes);
3308 cache->space_info->bytes_used -= num_bytes;
3309 cache->space_info->disk_used -= num_bytes * factor;
3311 reclaim = should_reclaim_block_group(cache, num_bytes);
3312 spin_unlock(&cache->lock);
3313 spin_unlock(&cache->space_info->lock);
3315 set_extent_dirty(&trans->transaction->pinned_extents,
3316 bytenr, bytenr + num_bytes - 1,
3317 GFP_NOFS | __GFP_NOFAIL);
3320 spin_lock(&trans->transaction->dirty_bgs_lock);
3321 if (list_empty(&cache->dirty_list)) {
3322 list_add_tail(&cache->dirty_list,
3323 &trans->transaction->dirty_bgs);
3324 trans->delayed_ref_updates++;
3325 btrfs_get_block_group(cache);
3327 spin_unlock(&trans->transaction->dirty_bgs_lock);
3330 * No longer have used bytes in this block group, queue it for
3331 * deletion. We do this after adding the block group to the
3332 * dirty list to avoid races between cleaner kthread and space
3335 if (!alloc && old_val == 0) {
3336 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3337 btrfs_mark_bg_unused(cache);
3338 } else if (!alloc && reclaim) {
3339 btrfs_mark_bg_to_reclaim(cache);
3342 btrfs_put_block_group(cache);
3344 bytenr += num_bytes;
3347 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3348 btrfs_update_delayed_refs_rsv(trans);
3353 * btrfs_add_reserved_bytes - update the block_group and space info counters
3354 * @cache: The cache we are manipulating
3355 * @ram_bytes: The number of bytes of file content, and will be same to
3356 * @num_bytes except for the compress path.
3357 * @num_bytes: The number of bytes in question
3358 * @delalloc: The blocks are allocated for the delalloc write
3360 * This is called by the allocator when it reserves space. If this is a
3361 * reservation and the block group has become read only we cannot make the
3362 * reservation and return -EAGAIN, otherwise this function always succeeds.
3364 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3365 u64 ram_bytes, u64 num_bytes, int delalloc)
3367 struct btrfs_space_info *space_info = cache->space_info;
3370 spin_lock(&space_info->lock);
3371 spin_lock(&cache->lock);
3375 cache->reserved += num_bytes;
3376 space_info->bytes_reserved += num_bytes;
3377 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3378 space_info->flags, num_bytes, 1);
3379 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3380 space_info, -ram_bytes);
3382 cache->delalloc_bytes += num_bytes;
3385 * Compression can use less space than we reserved, so wake
3386 * tickets if that happens
3388 if (num_bytes < ram_bytes)
3389 btrfs_try_granting_tickets(cache->fs_info, space_info);
3391 spin_unlock(&cache->lock);
3392 spin_unlock(&space_info->lock);
3397 * btrfs_free_reserved_bytes - update the block_group and space info counters
3398 * @cache: The cache we are manipulating
3399 * @num_bytes: The number of bytes in question
3400 * @delalloc: The blocks are allocated for the delalloc write
3402 * This is called by somebody who is freeing space that was never actually used
3403 * on disk. For example if you reserve some space for a new leaf in transaction
3404 * A and before transaction A commits you free that leaf, you call this with
3405 * reserve set to 0 in order to clear the reservation.
3407 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3408 u64 num_bytes, int delalloc)
3410 struct btrfs_space_info *space_info = cache->space_info;
3412 spin_lock(&space_info->lock);
3413 spin_lock(&cache->lock);
3415 space_info->bytes_readonly += num_bytes;
3416 cache->reserved -= num_bytes;
3417 space_info->bytes_reserved -= num_bytes;
3418 space_info->max_extent_size = 0;
3421 cache->delalloc_bytes -= num_bytes;
3422 spin_unlock(&cache->lock);
3424 btrfs_try_granting_tickets(cache->fs_info, space_info);
3425 spin_unlock(&space_info->lock);
3428 static void force_metadata_allocation(struct btrfs_fs_info *info)
3430 struct list_head *head = &info->space_info;
3431 struct btrfs_space_info *found;
3433 list_for_each_entry(found, head, list) {
3434 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3435 found->force_alloc = CHUNK_ALLOC_FORCE;
3439 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3440 struct btrfs_space_info *sinfo, int force)
3442 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3445 if (force == CHUNK_ALLOC_FORCE)
3449 * in limited mode, we want to have some free space up to
3450 * about 1% of the FS size.
3452 if (force == CHUNK_ALLOC_LIMITED) {
3453 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3454 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3456 if (sinfo->total_bytes - bytes_used < thresh)
3460 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3465 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3467 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3469 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3472 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3474 struct btrfs_block_group *bg;
3478 * Check if we have enough space in the system space info because we
3479 * will need to update device items in the chunk btree and insert a new
3480 * chunk item in the chunk btree as well. This will allocate a new
3481 * system block group if needed.
3483 check_system_chunk(trans, flags);
3485 bg = btrfs_create_chunk(trans, flags);
3491 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3493 * Normally we are not expected to fail with -ENOSPC here, since we have
3494 * previously reserved space in the system space_info and allocated one
3495 * new system chunk if necessary. However there are three exceptions:
3497 * 1) We may have enough free space in the system space_info but all the
3498 * existing system block groups have a profile which can not be used
3499 * for extent allocation.
3501 * This happens when mounting in degraded mode. For example we have a
3502 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3503 * using the other device in degraded mode. If we then allocate a chunk,
3504 * we may have enough free space in the existing system space_info, but
3505 * none of the block groups can be used for extent allocation since they
3506 * have a RAID1 profile, and because we are in degraded mode with a
3507 * single device, we are forced to allocate a new system chunk with a
3508 * SINGLE profile. Making check_system_chunk() iterate over all system
3509 * block groups and check if they have a usable profile and enough space
3510 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3511 * try again after forcing allocation of a new system chunk. Like this
3512 * we avoid paying the cost of that search in normal circumstances, when
3513 * we were not mounted in degraded mode;
3515 * 2) We had enough free space info the system space_info, and one suitable
3516 * block group to allocate from when we called check_system_chunk()
3517 * above. However right after we called it, the only system block group
3518 * with enough free space got turned into RO mode by a running scrub,
3519 * and in this case we have to allocate a new one and retry. We only
3520 * need do this allocate and retry once, since we have a transaction
3521 * handle and scrub uses the commit root to search for block groups;
3523 * 3) We had one system block group with enough free space when we called
3524 * check_system_chunk(), but after that, right before we tried to
3525 * allocate the last extent buffer we needed, a discard operation came
3526 * in and it temporarily removed the last free space entry from the
3527 * block group (discard removes a free space entry, discards it, and
3528 * then adds back the entry to the block group cache).
3530 if (ret == -ENOSPC) {
3531 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3532 struct btrfs_block_group *sys_bg;
3534 sys_bg = btrfs_create_chunk(trans, sys_flags);
3535 if (IS_ERR(sys_bg)) {
3536 ret = PTR_ERR(sys_bg);
3537 btrfs_abort_transaction(trans, ret);
3541 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3543 btrfs_abort_transaction(trans, ret);
3547 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3549 btrfs_abort_transaction(trans, ret);
3553 btrfs_abort_transaction(trans, ret);
3557 btrfs_trans_release_chunk_metadata(trans);
3560 return ERR_PTR(ret);
3562 btrfs_get_block_group(bg);
3567 * Chunk allocation is done in 2 phases:
3569 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3570 * the chunk, the chunk mapping, create its block group and add the items
3571 * that belong in the chunk btree to it - more specifically, we need to
3572 * update device items in the chunk btree and add a new chunk item to it.
3574 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3575 * group item to the extent btree and the device extent items to the devices
3578 * This is done to prevent deadlocks. For example when COWing a node from the
3579 * extent btree we are holding a write lock on the node's parent and if we
3580 * trigger chunk allocation and attempted to insert the new block group item
3581 * in the extent btree right way, we could deadlock because the path for the
3582 * insertion can include that parent node. At first glance it seems impossible
3583 * to trigger chunk allocation after starting a transaction since tasks should
3584 * reserve enough transaction units (metadata space), however while that is true
3585 * most of the time, chunk allocation may still be triggered for several reasons:
3587 * 1) When reserving metadata, we check if there is enough free space in the
3588 * metadata space_info and therefore don't trigger allocation of a new chunk.
3589 * However later when the task actually tries to COW an extent buffer from
3590 * the extent btree or from the device btree for example, it is forced to
3591 * allocate a new block group (chunk) because the only one that had enough
3592 * free space was just turned to RO mode by a running scrub for example (or
3593 * device replace, block group reclaim thread, etc), so we can not use it
3594 * for allocating an extent and end up being forced to allocate a new one;
3596 * 2) Because we only check that the metadata space_info has enough free bytes,
3597 * we end up not allocating a new metadata chunk in that case. However if
3598 * the filesystem was mounted in degraded mode, none of the existing block
3599 * groups might be suitable for extent allocation due to their incompatible
3600 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3601 * use a RAID1 profile, in degraded mode using a single device). In this case
3602 * when the task attempts to COW some extent buffer of the extent btree for
3603 * example, it will trigger allocation of a new metadata block group with a
3604 * suitable profile (SINGLE profile in the example of the degraded mount of
3605 * the RAID1 filesystem);
3607 * 3) The task has reserved enough transaction units / metadata space, but when
3608 * it attempts to COW an extent buffer from the extent or device btree for
3609 * example, it does not find any free extent in any metadata block group,
3610 * therefore forced to try to allocate a new metadata block group.
3611 * This is because some other task allocated all available extents in the
3612 * meanwhile - this typically happens with tasks that don't reserve space
3613 * properly, either intentionally or as a bug. One example where this is
3614 * done intentionally is fsync, as it does not reserve any transaction units
3615 * and ends up allocating a variable number of metadata extents for log
3616 * tree extent buffers;
3618 * 4) The task has reserved enough transaction units / metadata space, but right
3619 * before it tries to allocate the last extent buffer it needs, a discard
3620 * operation comes in and, temporarily, removes the last free space entry from
3621 * the only metadata block group that had free space (discard starts by
3622 * removing a free space entry from a block group, then does the discard
3623 * operation and, once it's done, it adds back the free space entry to the
3626 * We also need this 2 phases setup when adding a device to a filesystem with
3627 * a seed device - we must create new metadata and system chunks without adding
3628 * any of the block group items to the chunk, extent and device btrees. If we
3629 * did not do it this way, we would get ENOSPC when attempting to update those
3630 * btrees, since all the chunks from the seed device are read-only.
3632 * Phase 1 does the updates and insertions to the chunk btree because if we had
3633 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3634 * parallel, we risk having too many system chunks allocated by many tasks if
3635 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3636 * extreme case this leads to exhaustion of the system chunk array in the
3637 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3638 * and with RAID filesystems (so we have more device items in the chunk btree).
3639 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3640 * the system chunk array due to concurrent allocations") provides more details.
3642 * Allocation of system chunks does not happen through this function. A task that
3643 * needs to update the chunk btree (the only btree that uses system chunks), must
3644 * preallocate chunk space by calling either check_system_chunk() or
3645 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3646 * metadata chunk or when removing a chunk, while the later is used before doing
3647 * a modification to the chunk btree - use cases for the later are adding,
3648 * removing and resizing a device as well as relocation of a system chunk.
3649 * See the comment below for more details.
3651 * The reservation of system space, done through check_system_chunk(), as well
3652 * as all the updates and insertions into the chunk btree must be done while
3653 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3654 * an extent buffer from the chunks btree we never trigger allocation of a new
3655 * system chunk, which would result in a deadlock (trying to lock twice an
3656 * extent buffer of the chunk btree, first time before triggering the chunk
3657 * allocation and the second time during chunk allocation while attempting to
3658 * update the chunks btree). The system chunk array is also updated while holding
3659 * that mutex. The same logic applies to removing chunks - we must reserve system
3660 * space, update the chunk btree and the system chunk array in the superblock
3661 * while holding fs_info->chunk_mutex.
3663 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3665 * If @force is CHUNK_ALLOC_FORCE:
3666 * - return 1 if it successfully allocates a chunk,
3667 * - return errors including -ENOSPC otherwise.
3668 * If @force is NOT CHUNK_ALLOC_FORCE:
3669 * - return 0 if it doesn't need to allocate a new chunk,
3670 * - return 1 if it successfully allocates a chunk,
3671 * - return errors including -ENOSPC otherwise.
3673 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3674 enum btrfs_chunk_alloc_enum force)
3676 struct btrfs_fs_info *fs_info = trans->fs_info;
3677 struct btrfs_space_info *space_info;
3678 struct btrfs_block_group *ret_bg;
3679 bool wait_for_alloc = false;
3680 bool should_alloc = false;
3681 bool from_extent_allocation = false;
3684 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3685 from_extent_allocation = true;
3686 force = CHUNK_ALLOC_FORCE;
3689 /* Don't re-enter if we're already allocating a chunk */
3690 if (trans->allocating_chunk)
3693 * Allocation of system chunks can not happen through this path, as we
3694 * could end up in a deadlock if we are allocating a data or metadata
3695 * chunk and there is another task modifying the chunk btree.
3697 * This is because while we are holding the chunk mutex, we will attempt
3698 * to add the new chunk item to the chunk btree or update an existing
3699 * device item in the chunk btree, while the other task that is modifying
3700 * the chunk btree is attempting to COW an extent buffer while holding a
3701 * lock on it and on its parent - if the COW operation triggers a system
3702 * chunk allocation, then we can deadlock because we are holding the
3703 * chunk mutex and we may need to access that extent buffer or its parent
3704 * in order to add the chunk item or update a device item.
3706 * Tasks that want to modify the chunk tree should reserve system space
3707 * before updating the chunk btree, by calling either
3708 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3709 * It's possible that after a task reserves the space, it still ends up
3710 * here - this happens in the cases described above at do_chunk_alloc().
3711 * The task will have to either retry or fail.
3713 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3716 space_info = btrfs_find_space_info(fs_info, flags);
3720 spin_lock(&space_info->lock);
3721 if (force < space_info->force_alloc)
3722 force = space_info->force_alloc;
3723 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3724 if (space_info->full) {
3725 /* No more free physical space */
3730 spin_unlock(&space_info->lock);
3732 } else if (!should_alloc) {
3733 spin_unlock(&space_info->lock);
3735 } else if (space_info->chunk_alloc) {
3737 * Someone is already allocating, so we need to block
3738 * until this someone is finished and then loop to
3739 * recheck if we should continue with our allocation
3742 wait_for_alloc = true;
3743 force = CHUNK_ALLOC_NO_FORCE;
3744 spin_unlock(&space_info->lock);
3745 mutex_lock(&fs_info->chunk_mutex);
3746 mutex_unlock(&fs_info->chunk_mutex);
3748 /* Proceed with allocation */
3749 space_info->chunk_alloc = 1;
3750 wait_for_alloc = false;
3751 spin_unlock(&space_info->lock);
3755 } while (wait_for_alloc);
3757 mutex_lock(&fs_info->chunk_mutex);
3758 trans->allocating_chunk = true;
3761 * If we have mixed data/metadata chunks we want to make sure we keep
3762 * allocating mixed chunks instead of individual chunks.
3764 if (btrfs_mixed_space_info(space_info))
3765 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3768 * if we're doing a data chunk, go ahead and make sure that
3769 * we keep a reasonable number of metadata chunks allocated in the
3772 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3773 fs_info->data_chunk_allocations++;
3774 if (!(fs_info->data_chunk_allocations %
3775 fs_info->metadata_ratio))
3776 force_metadata_allocation(fs_info);
3779 ret_bg = do_chunk_alloc(trans, flags);
3780 trans->allocating_chunk = false;
3782 if (IS_ERR(ret_bg)) {
3783 ret = PTR_ERR(ret_bg);
3784 } else if (from_extent_allocation) {
3786 * New block group is likely to be used soon. Try to activate
3787 * it now. Failure is OK for now.
3789 btrfs_zone_activate(ret_bg);
3793 btrfs_put_block_group(ret_bg);
3795 spin_lock(&space_info->lock);
3798 space_info->full = 1;
3803 space_info->max_extent_size = 0;
3806 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3808 space_info->chunk_alloc = 0;
3809 spin_unlock(&space_info->lock);
3810 mutex_unlock(&fs_info->chunk_mutex);
3815 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3819 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3821 num_dev = fs_info->fs_devices->rw_devices;
3826 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3830 struct btrfs_fs_info *fs_info = trans->fs_info;
3831 struct btrfs_space_info *info;
3836 * Needed because we can end up allocating a system chunk and for an
3837 * atomic and race free space reservation in the chunk block reserve.
3839 lockdep_assert_held(&fs_info->chunk_mutex);
3841 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3842 spin_lock(&info->lock);
3843 left = info->total_bytes - btrfs_space_info_used(info, true);
3844 spin_unlock(&info->lock);
3846 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3847 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3849 btrfs_dump_space_info(fs_info, info, 0, 0);
3853 u64 flags = btrfs_system_alloc_profile(fs_info);
3854 struct btrfs_block_group *bg;
3857 * Ignore failure to create system chunk. We might end up not
3858 * needing it, as we might not need to COW all nodes/leafs from
3859 * the paths we visit in the chunk tree (they were already COWed
3860 * or created in the current transaction for example).
3862 bg = btrfs_create_chunk(trans, flags);
3867 * We have a new chunk. We also need to activate it for
3870 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3875 * If we fail to add the chunk item here, we end up
3876 * trying again at phase 2 of chunk allocation, at
3877 * btrfs_create_pending_block_groups(). So ignore
3878 * any error here. An ENOSPC here could happen, due to
3879 * the cases described at do_chunk_alloc() - the system
3880 * block group we just created was just turned into RO
3881 * mode by a scrub for example, or a running discard
3882 * temporarily removed its free space entries, etc.
3884 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3889 ret = btrfs_block_rsv_add(fs_info,
3890 &fs_info->chunk_block_rsv,
3891 bytes, BTRFS_RESERVE_NO_FLUSH);
3893 trans->chunk_bytes_reserved += bytes;
3898 * Reserve space in the system space for allocating or removing a chunk.
3899 * The caller must be holding fs_info->chunk_mutex.
3901 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3903 struct btrfs_fs_info *fs_info = trans->fs_info;
3904 const u64 num_devs = get_profile_num_devs(fs_info, type);
3907 /* num_devs device items to update and 1 chunk item to add or remove. */
3908 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3909 btrfs_calc_insert_metadata_size(fs_info, 1);
3911 reserve_chunk_space(trans, bytes, type);
3915 * Reserve space in the system space, if needed, for doing a modification to the
3918 * @trans: A transaction handle.
3919 * @is_item_insertion: Indicate if the modification is for inserting a new item
3920 * in the chunk btree or if it's for the deletion or update
3921 * of an existing item.
3923 * This is used in a context where we need to update the chunk btree outside
3924 * block group allocation and removal, to avoid a deadlock with a concurrent
3925 * task that is allocating a metadata or data block group and therefore needs to
3926 * update the chunk btree while holding the chunk mutex. After the update to the
3927 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3930 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3931 bool is_item_insertion)
3933 struct btrfs_fs_info *fs_info = trans->fs_info;
3936 if (is_item_insertion)
3937 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3939 bytes = btrfs_calc_metadata_size(fs_info, 1);
3941 mutex_lock(&fs_info->chunk_mutex);
3942 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3943 mutex_unlock(&fs_info->chunk_mutex);
3946 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3948 struct btrfs_block_group *block_group;
3950 block_group = btrfs_lookup_first_block_group(info, 0);
3951 while (block_group) {
3952 btrfs_wait_block_group_cache_done(block_group);
3953 spin_lock(&block_group->lock);
3954 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
3955 &block_group->runtime_flags)) {
3956 struct inode *inode = block_group->inode;
3958 block_group->inode = NULL;
3959 spin_unlock(&block_group->lock);
3961 ASSERT(block_group->io_ctl.inode == NULL);
3964 spin_unlock(&block_group->lock);
3966 block_group = btrfs_next_block_group(block_group);
3971 * Must be called only after stopping all workers, since we could have block
3972 * group caching kthreads running, and therefore they could race with us if we
3973 * freed the block groups before stopping them.
3975 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3977 struct btrfs_block_group *block_group;
3978 struct btrfs_space_info *space_info;
3979 struct btrfs_caching_control *caching_ctl;
3982 write_lock(&info->block_group_cache_lock);
3983 while (!list_empty(&info->caching_block_groups)) {
3984 caching_ctl = list_entry(info->caching_block_groups.next,
3985 struct btrfs_caching_control, list);
3986 list_del(&caching_ctl->list);
3987 btrfs_put_caching_control(caching_ctl);
3989 write_unlock(&info->block_group_cache_lock);
3991 spin_lock(&info->unused_bgs_lock);
3992 while (!list_empty(&info->unused_bgs)) {
3993 block_group = list_first_entry(&info->unused_bgs,
3994 struct btrfs_block_group,
3996 list_del_init(&block_group->bg_list);
3997 btrfs_put_block_group(block_group);
4000 while (!list_empty(&info->reclaim_bgs)) {
4001 block_group = list_first_entry(&info->reclaim_bgs,
4002 struct btrfs_block_group,
4004 list_del_init(&block_group->bg_list);
4005 btrfs_put_block_group(block_group);
4007 spin_unlock(&info->unused_bgs_lock);
4009 spin_lock(&info->zone_active_bgs_lock);
4010 while (!list_empty(&info->zone_active_bgs)) {
4011 block_group = list_first_entry(&info->zone_active_bgs,
4012 struct btrfs_block_group,
4014 list_del_init(&block_group->active_bg_list);
4015 btrfs_put_block_group(block_group);
4017 spin_unlock(&info->zone_active_bgs_lock);
4019 write_lock(&info->block_group_cache_lock);
4020 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4021 block_group = rb_entry(n, struct btrfs_block_group,
4023 rb_erase_cached(&block_group->cache_node,
4024 &info->block_group_cache_tree);
4025 RB_CLEAR_NODE(&block_group->cache_node);
4026 write_unlock(&info->block_group_cache_lock);
4028 down_write(&block_group->space_info->groups_sem);
4029 list_del(&block_group->list);
4030 up_write(&block_group->space_info->groups_sem);
4033 * We haven't cached this block group, which means we could
4034 * possibly have excluded extents on this block group.
4036 if (block_group->cached == BTRFS_CACHE_NO ||
4037 block_group->cached == BTRFS_CACHE_ERROR)
4038 btrfs_free_excluded_extents(block_group);
4040 btrfs_remove_free_space_cache(block_group);
4041 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4042 ASSERT(list_empty(&block_group->dirty_list));
4043 ASSERT(list_empty(&block_group->io_list));
4044 ASSERT(list_empty(&block_group->bg_list));
4045 ASSERT(refcount_read(&block_group->refs) == 1);
4046 ASSERT(block_group->swap_extents == 0);
4047 btrfs_put_block_group(block_group);
4049 write_lock(&info->block_group_cache_lock);
4051 write_unlock(&info->block_group_cache_lock);
4053 btrfs_release_global_block_rsv(info);
4055 while (!list_empty(&info->space_info)) {
4056 space_info = list_entry(info->space_info.next,
4057 struct btrfs_space_info,
4061 * Do not hide this behind enospc_debug, this is actually
4062 * important and indicates a real bug if this happens.
4064 if (WARN_ON(space_info->bytes_pinned > 0 ||
4065 space_info->bytes_may_use > 0))
4066 btrfs_dump_space_info(info, space_info, 0, 0);
4069 * If there was a failure to cleanup a log tree, very likely due
4070 * to an IO failure on a writeback attempt of one or more of its
4071 * extent buffers, we could not do proper (and cheap) unaccounting
4072 * of their reserved space, so don't warn on bytes_reserved > 0 in
4075 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4076 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4077 if (WARN_ON(space_info->bytes_reserved > 0))
4078 btrfs_dump_space_info(info, space_info, 0, 0);
4081 WARN_ON(space_info->reclaim_size > 0);
4082 list_del(&space_info->list);
4083 btrfs_sysfs_remove_space_info(space_info);
4088 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4090 atomic_inc(&cache->frozen);
4093 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4095 struct btrfs_fs_info *fs_info = block_group->fs_info;
4096 struct extent_map_tree *em_tree;
4097 struct extent_map *em;
4100 spin_lock(&block_group->lock);
4101 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4102 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4103 spin_unlock(&block_group->lock);
4106 em_tree = &fs_info->mapping_tree;
4107 write_lock(&em_tree->lock);
4108 em = lookup_extent_mapping(em_tree, block_group->start,
4110 BUG_ON(!em); /* logic error, can't happen */
4111 remove_extent_mapping(em_tree, em);
4112 write_unlock(&em_tree->lock);
4114 /* once for us and once for the tree */
4115 free_extent_map(em);
4116 free_extent_map(em);
4119 * We may have left one free space entry and other possible
4120 * tasks trimming this block group have left 1 entry each one.
4123 btrfs_remove_free_space_cache(block_group);
4127 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4131 spin_lock(&bg->lock);
4136 spin_unlock(&bg->lock);
4141 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4143 spin_lock(&bg->lock);
4145 ASSERT(bg->swap_extents >= amount);
4146 bg->swap_extents -= amount;
4147 spin_unlock(&bg->lock);