701124c3e0b140060316682c31faee40d395de05
[platform/kernel/linux-rpi.git] / fs / btrfs / backref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20
21 struct extent_inode_elem {
22         u64 inum;
23         u64 offset;
24         struct extent_inode_elem *next;
25 };
26
27 static int check_extent_in_eb(const struct btrfs_key *key,
28                               const struct extent_buffer *eb,
29                               const struct btrfs_file_extent_item *fi,
30                               u64 extent_item_pos,
31                               struct extent_inode_elem **eie,
32                               bool ignore_offset)
33 {
34         u64 offset = 0;
35         struct extent_inode_elem *e;
36
37         if (!ignore_offset &&
38             !btrfs_file_extent_compression(eb, fi) &&
39             !btrfs_file_extent_encryption(eb, fi) &&
40             !btrfs_file_extent_other_encoding(eb, fi)) {
41                 u64 data_offset;
42                 u64 data_len;
43
44                 data_offset = btrfs_file_extent_offset(eb, fi);
45                 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47                 if (extent_item_pos < data_offset ||
48                     extent_item_pos >= data_offset + data_len)
49                         return 1;
50                 offset = extent_item_pos - data_offset;
51         }
52
53         e = kmalloc(sizeof(*e), GFP_NOFS);
54         if (!e)
55                 return -ENOMEM;
56
57         e->next = *eie;
58         e->inum = key->objectid;
59         e->offset = key->offset + offset;
60         *eie = e;
61
62         return 0;
63 }
64
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67         struct extent_inode_elem *eie_next;
68
69         for (; eie; eie = eie_next) {
70                 eie_next = eie->next;
71                 kfree(eie);
72         }
73 }
74
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76                              u64 wanted_disk_byte, u64 extent_item_pos,
77                              struct extent_inode_elem **eie,
78                              bool ignore_offset)
79 {
80         u64 disk_byte;
81         struct btrfs_key key;
82         struct btrfs_file_extent_item *fi;
83         int slot;
84         int nritems;
85         int extent_type;
86         int ret;
87
88         /*
89          * from the shared data ref, we only have the leaf but we need
90          * the key. thus, we must look into all items and see that we
91          * find one (some) with a reference to our extent item.
92          */
93         nritems = btrfs_header_nritems(eb);
94         for (slot = 0; slot < nritems; ++slot) {
95                 btrfs_item_key_to_cpu(eb, &key, slot);
96                 if (key.type != BTRFS_EXTENT_DATA_KEY)
97                         continue;
98                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99                 extent_type = btrfs_file_extent_type(eb, fi);
100                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101                         continue;
102                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104                 if (disk_byte != wanted_disk_byte)
105                         continue;
106
107                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108                 if (ret < 0)
109                         return ret;
110         }
111
112         return 0;
113 }
114
115 struct preftree {
116         struct rb_root_cached root;
117         unsigned int count;
118 };
119
120 #define PREFTREE_INIT   { .root = RB_ROOT_CACHED, .count = 0 }
121
122 struct preftrees {
123         struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124         struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125         struct preftree indirect_missing_keys;
126 };
127
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137         u64 root_objectid;
138         u64 inum;
139         int share_count;
140 };
141
142 static inline int extent_is_shared(struct share_check *sc)
143 {
144         return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148
149 int __init btrfs_prelim_ref_init(void)
150 {
151         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152                                         sizeof(struct prelim_ref),
153                                         0,
154                                         SLAB_MEM_SPREAD,
155                                         NULL);
156         if (!btrfs_prelim_ref_cache)
157                 return -ENOMEM;
158         return 0;
159 }
160
161 void __cold btrfs_prelim_ref_exit(void)
162 {
163         kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165
166 static void free_pref(struct prelim_ref *ref)
167 {
168         kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
176 static int prelim_ref_compare(struct prelim_ref *ref1,
177                               struct prelim_ref *ref2)
178 {
179         if (ref1->level < ref2->level)
180                 return -1;
181         if (ref1->level > ref2->level)
182                 return 1;
183         if (ref1->root_id < ref2->root_id)
184                 return -1;
185         if (ref1->root_id > ref2->root_id)
186                 return 1;
187         if (ref1->key_for_search.type < ref2->key_for_search.type)
188                 return -1;
189         if (ref1->key_for_search.type > ref2->key_for_search.type)
190                 return 1;
191         if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192                 return -1;
193         if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194                 return 1;
195         if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196                 return -1;
197         if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198                 return 1;
199         if (ref1->parent < ref2->parent)
200                 return -1;
201         if (ref1->parent > ref2->parent)
202                 return 1;
203
204         return 0;
205 }
206
207 static void update_share_count(struct share_check *sc, int oldcount,
208                                int newcount)
209 {
210         if ((!sc) || (oldcount == 0 && newcount < 1))
211                 return;
212
213         if (oldcount > 0 && newcount < 1)
214                 sc->share_count--;
215         else if (oldcount < 1 && newcount > 0)
216                 sc->share_count++;
217 }
218
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225                               struct preftree *preftree,
226                               struct prelim_ref *newref,
227                               struct share_check *sc)
228 {
229         struct rb_root_cached *root;
230         struct rb_node **p;
231         struct rb_node *parent = NULL;
232         struct prelim_ref *ref;
233         int result;
234         bool leftmost = true;
235
236         root = &preftree->root;
237         p = &root->rb_root.rb_node;
238
239         while (*p) {
240                 parent = *p;
241                 ref = rb_entry(parent, struct prelim_ref, rbnode);
242                 result = prelim_ref_compare(ref, newref);
243                 if (result < 0) {
244                         p = &(*p)->rb_left;
245                 } else if (result > 0) {
246                         p = &(*p)->rb_right;
247                         leftmost = false;
248                 } else {
249                         /* Identical refs, merge them and free @newref */
250                         struct extent_inode_elem *eie = ref->inode_list;
251
252                         while (eie && eie->next)
253                                 eie = eie->next;
254
255                         if (!eie)
256                                 ref->inode_list = newref->inode_list;
257                         else
258                                 eie->next = newref->inode_list;
259                         trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260                                                      preftree->count);
261                         /*
262                          * A delayed ref can have newref->count < 0.
263                          * The ref->count is updated to follow any
264                          * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265                          */
266                         update_share_count(sc, ref->count,
267                                            ref->count + newref->count);
268                         ref->count += newref->count;
269                         free_pref(newref);
270                         return;
271                 }
272         }
273
274         update_share_count(sc, 0, newref->count);
275         preftree->count++;
276         trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277         rb_link_node(&newref->rbnode, parent, p);
278         rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280
281 /*
282  * Release the entire tree.  We don't care about internal consistency so
283  * just free everything and then reset the tree root.
284  */
285 static void prelim_release(struct preftree *preftree)
286 {
287         struct prelim_ref *ref, *next_ref;
288
289         rbtree_postorder_for_each_entry_safe(ref, next_ref,
290                                              &preftree->root.rb_root, rbnode)
291                 free_pref(ref);
292
293         preftree->root = RB_ROOT_CACHED;
294         preftree->count = 0;
295 }
296
297 /*
298  * the rules for all callers of this function are:
299  * - obtaining the parent is the goal
300  * - if you add a key, you must know that it is a correct key
301  * - if you cannot add the parent or a correct key, then we will look into the
302  *   block later to set a correct key
303  *
304  * delayed refs
305  * ============
306  *        backref type | shared | indirect | shared | indirect
307  * information         |   tree |     tree |   data |     data
308  * --------------------+--------+----------+--------+----------
309  *      parent logical |    y   |     -    |    -   |     -
310  *      key to resolve |    -   |     y    |    y   |     y
311  *  tree block logical |    -   |     -    |    -   |     -
312  *  root for resolving |    y   |     y    |    y   |     y
313  *
314  * - column 1:       we've the parent -> done
315  * - column 2, 3, 4: we use the key to find the parent
316  *
317  * on disk refs (inline or keyed)
318  * ==============================
319  *        backref type | shared | indirect | shared | indirect
320  * information         |   tree |     tree |   data |     data
321  * --------------------+--------+----------+--------+----------
322  *      parent logical |    y   |     -    |    y   |     -
323  *      key to resolve |    -   |     -    |    -   |     y
324  *  tree block logical |    y   |     y    |    y   |     y
325  *  root for resolving |    -   |     y    |    y   |     y
326  *
327  * - column 1, 3: we've the parent -> done
328  * - column 2:    we take the first key from the block to find the parent
329  *                (see add_missing_keys)
330  * - column 4:    we use the key to find the parent
331  *
332  * additional information that's available but not required to find the parent
333  * block might help in merging entries to gain some speed.
334  */
335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336                           struct preftree *preftree, u64 root_id,
337                           const struct btrfs_key *key, int level, u64 parent,
338                           u64 wanted_disk_byte, int count,
339                           struct share_check *sc, gfp_t gfp_mask)
340 {
341         struct prelim_ref *ref;
342
343         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344                 return 0;
345
346         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347         if (!ref)
348                 return -ENOMEM;
349
350         ref->root_id = root_id;
351         if (key)
352                 ref->key_for_search = *key;
353         else
354                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355
356         ref->inode_list = NULL;
357         ref->level = level;
358         ref->count = count;
359         ref->parent = parent;
360         ref->wanted_disk_byte = wanted_disk_byte;
361         prelim_ref_insert(fs_info, preftree, ref, sc);
362         return extent_is_shared(sc);
363 }
364
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367                           struct preftrees *preftrees, int level, u64 parent,
368                           u64 wanted_disk_byte, int count,
369                           struct share_check *sc, gfp_t gfp_mask)
370 {
371         return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372                               parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377                             struct preftrees *preftrees, u64 root_id,
378                             const struct btrfs_key *key, int level,
379                             u64 wanted_disk_byte, int count,
380                             struct share_check *sc, gfp_t gfp_mask)
381 {
382         struct preftree *tree = &preftrees->indirect;
383
384         if (!key)
385                 tree = &preftrees->indirect_missing_keys;
386         return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387                               wanted_disk_byte, count, sc, gfp_mask);
388 }
389
390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392         struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393         struct rb_node *parent = NULL;
394         struct prelim_ref *ref = NULL;
395         struct prelim_ref target = {};
396         int result;
397
398         target.parent = bytenr;
399
400         while (*p) {
401                 parent = *p;
402                 ref = rb_entry(parent, struct prelim_ref, rbnode);
403                 result = prelim_ref_compare(ref, &target);
404
405                 if (result < 0)
406                         p = &(*p)->rb_left;
407                 else if (result > 0)
408                         p = &(*p)->rb_right;
409                 else
410                         return 1;
411         }
412         return 0;
413 }
414
415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416                            struct ulist *parents,
417                            struct preftrees *preftrees, struct prelim_ref *ref,
418                            int level, u64 time_seq, const u64 *extent_item_pos,
419                            bool ignore_offset)
420 {
421         int ret = 0;
422         int slot;
423         struct extent_buffer *eb;
424         struct btrfs_key key;
425         struct btrfs_key *key_for_search = &ref->key_for_search;
426         struct btrfs_file_extent_item *fi;
427         struct extent_inode_elem *eie = NULL, *old = NULL;
428         u64 disk_byte;
429         u64 wanted_disk_byte = ref->wanted_disk_byte;
430         u64 count = 0;
431         u64 data_offset;
432
433         if (level != 0) {
434                 eb = path->nodes[level];
435                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436                 if (ret < 0)
437                         return ret;
438                 return 0;
439         }
440
441         /*
442          * 1. We normally enter this function with the path already pointing to
443          *    the first item to check. But sometimes, we may enter it with
444          *    slot == nritems.
445          * 2. We are searching for normal backref but bytenr of this leaf
446          *    matches shared data backref
447          * 3. The leaf owner is not equal to the root we are searching
448          *
449          * For these cases, go to the next leaf before we continue.
450          */
451         eb = path->nodes[0];
452         if (path->slots[0] >= btrfs_header_nritems(eb) ||
453             is_shared_data_backref(preftrees, eb->start) ||
454             ref->root_id != btrfs_header_owner(eb)) {
455                 if (time_seq == SEQ_LAST)
456                         ret = btrfs_next_leaf(root, path);
457                 else
458                         ret = btrfs_next_old_leaf(root, path, time_seq);
459         }
460
461         while (!ret && count < ref->count) {
462                 eb = path->nodes[0];
463                 slot = path->slots[0];
464
465                 btrfs_item_key_to_cpu(eb, &key, slot);
466
467                 if (key.objectid != key_for_search->objectid ||
468                     key.type != BTRFS_EXTENT_DATA_KEY)
469                         break;
470
471                 /*
472                  * We are searching for normal backref but bytenr of this leaf
473                  * matches shared data backref, OR
474                  * the leaf owner is not equal to the root we are searching for
475                  */
476                 if (slot == 0 &&
477                     (is_shared_data_backref(preftrees, eb->start) ||
478                      ref->root_id != btrfs_header_owner(eb))) {
479                         if (time_seq == SEQ_LAST)
480                                 ret = btrfs_next_leaf(root, path);
481                         else
482                                 ret = btrfs_next_old_leaf(root, path, time_seq);
483                         continue;
484                 }
485                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487                 data_offset = btrfs_file_extent_offset(eb, fi);
488
489                 if (disk_byte == wanted_disk_byte) {
490                         eie = NULL;
491                         old = NULL;
492                         if (ref->key_for_search.offset == key.offset - data_offset)
493                                 count++;
494                         else
495                                 goto next;
496                         if (extent_item_pos) {
497                                 ret = check_extent_in_eb(&key, eb, fi,
498                                                 *extent_item_pos,
499                                                 &eie, ignore_offset);
500                                 if (ret < 0)
501                                         break;
502                         }
503                         if (ret > 0)
504                                 goto next;
505                         ret = ulist_add_merge_ptr(parents, eb->start,
506                                                   eie, (void **)&old, GFP_NOFS);
507                         if (ret < 0)
508                                 break;
509                         if (!ret && extent_item_pos) {
510                                 while (old->next)
511                                         old = old->next;
512                                 old->next = eie;
513                         }
514                         eie = NULL;
515                 }
516 next:
517                 if (time_seq == SEQ_LAST)
518                         ret = btrfs_next_item(root, path);
519                 else
520                         ret = btrfs_next_old_item(root, path, time_seq);
521         }
522
523         if (ret > 0)
524                 ret = 0;
525         else if (ret < 0)
526                 free_inode_elem_list(eie);
527         return ret;
528 }
529
530 /*
531  * resolve an indirect backref in the form (root_id, key, level)
532  * to a logical address
533  */
534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535                                 struct btrfs_path *path, u64 time_seq,
536                                 struct preftrees *preftrees,
537                                 struct prelim_ref *ref, struct ulist *parents,
538                                 const u64 *extent_item_pos, bool ignore_offset)
539 {
540         struct btrfs_root *root;
541         struct extent_buffer *eb;
542         int ret = 0;
543         int root_level;
544         int level = ref->level;
545         struct btrfs_key search_key = ref->key_for_search;
546
547         /*
548          * If we're search_commit_root we could possibly be holding locks on
549          * other tree nodes.  This happens when qgroups does backref walks when
550          * adding new delayed refs.  To deal with this we need to look in cache
551          * for the root, and if we don't find it then we need to search the
552          * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
553          * here.
554          */
555         if (path->search_commit_root)
556                 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
557         else
558                 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559         if (IS_ERR(root)) {
560                 ret = PTR_ERR(root);
561                 goto out_free;
562         }
563
564         if (!path->search_commit_root &&
565             test_bit(BTRFS_ROOT_DELETING, &root->state)) {
566                 ret = -ENOENT;
567                 goto out;
568         }
569
570         if (btrfs_is_testing(fs_info)) {
571                 ret = -ENOENT;
572                 goto out;
573         }
574
575         if (path->search_commit_root)
576                 root_level = btrfs_header_level(root->commit_root);
577         else if (time_seq == SEQ_LAST)
578                 root_level = btrfs_header_level(root->node);
579         else
580                 root_level = btrfs_old_root_level(root, time_seq);
581
582         if (root_level + 1 == level)
583                 goto out;
584
585         /*
586          * We can often find data backrefs with an offset that is too large
587          * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588          * subtracting a file's offset with the data offset of its
589          * corresponding extent data item. This can happen for example in the
590          * clone ioctl.
591          *
592          * So if we detect such case we set the search key's offset to zero to
593          * make sure we will find the matching file extent item at
594          * add_all_parents(), otherwise we will miss it because the offset
595          * taken form the backref is much larger then the offset of the file
596          * extent item. This can make us scan a very large number of file
597          * extent items, but at least it will not make us miss any.
598          *
599          * This is an ugly workaround for a behaviour that should have never
600          * existed, but it does and a fix for the clone ioctl would touch a lot
601          * of places, cause backwards incompatibility and would not fix the
602          * problem for extents cloned with older kernels.
603          */
604         if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
605             search_key.offset >= LLONG_MAX)
606                 search_key.offset = 0;
607         path->lowest_level = level;
608         if (time_seq == SEQ_LAST)
609                 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610         else
611                 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612
613         btrfs_debug(fs_info,
614                 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615                  ref->root_id, level, ref->count, ret,
616                  ref->key_for_search.objectid, ref->key_for_search.type,
617                  ref->key_for_search.offset);
618         if (ret < 0)
619                 goto out;
620
621         eb = path->nodes[level];
622         while (!eb) {
623                 if (WARN_ON(!level)) {
624                         ret = 1;
625                         goto out;
626                 }
627                 level--;
628                 eb = path->nodes[level];
629         }
630
631         ret = add_all_parents(root, path, parents, preftrees, ref, level,
632                               time_seq, extent_item_pos, ignore_offset);
633 out:
634         btrfs_put_root(root);
635 out_free:
636         path->lowest_level = 0;
637         btrfs_release_path(path);
638         return ret;
639 }
640
641 static struct extent_inode_elem *
642 unode_aux_to_inode_list(struct ulist_node *node)
643 {
644         if (!node)
645                 return NULL;
646         return (struct extent_inode_elem *)(uintptr_t)node->aux;
647 }
648
649 /*
650  * We maintain three separate rbtrees: one for direct refs, one for
651  * indirect refs which have a key, and one for indirect refs which do not
652  * have a key. Each tree does merge on insertion.
653  *
654  * Once all of the references are located, we iterate over the tree of
655  * indirect refs with missing keys. An appropriate key is located and
656  * the ref is moved onto the tree for indirect refs. After all missing
657  * keys are thus located, we iterate over the indirect ref tree, resolve
658  * each reference, and then insert the resolved reference onto the
659  * direct tree (merging there too).
660  *
661  * New backrefs (i.e., for parent nodes) are added to the appropriate
662  * rbtree as they are encountered. The new backrefs are subsequently
663  * resolved as above.
664  */
665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
666                                  struct btrfs_path *path, u64 time_seq,
667                                  struct preftrees *preftrees,
668                                  const u64 *extent_item_pos,
669                                  struct share_check *sc, bool ignore_offset)
670 {
671         int err;
672         int ret = 0;
673         struct ulist *parents;
674         struct ulist_node *node;
675         struct ulist_iterator uiter;
676         struct rb_node *rnode;
677
678         parents = ulist_alloc(GFP_NOFS);
679         if (!parents)
680                 return -ENOMEM;
681
682         /*
683          * We could trade memory usage for performance here by iterating
684          * the tree, allocating new refs for each insertion, and then
685          * freeing the entire indirect tree when we're done.  In some test
686          * cases, the tree can grow quite large (~200k objects).
687          */
688         while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689                 struct prelim_ref *ref;
690
691                 ref = rb_entry(rnode, struct prelim_ref, rbnode);
692                 if (WARN(ref->parent,
693                          "BUG: direct ref found in indirect tree")) {
694                         ret = -EINVAL;
695                         goto out;
696                 }
697
698                 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699                 preftrees->indirect.count--;
700
701                 if (ref->count == 0) {
702                         free_pref(ref);
703                         continue;
704                 }
705
706                 if (sc && sc->root_objectid &&
707                     ref->root_id != sc->root_objectid) {
708                         free_pref(ref);
709                         ret = BACKREF_FOUND_SHARED;
710                         goto out;
711                 }
712                 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
713                                            ref, parents, extent_item_pos,
714                                            ignore_offset);
715                 /*
716                  * we can only tolerate ENOENT,otherwise,we should catch error
717                  * and return directly.
718                  */
719                 if (err == -ENOENT) {
720                         prelim_ref_insert(fs_info, &preftrees->direct, ref,
721                                           NULL);
722                         continue;
723                 } else if (err) {
724                         free_pref(ref);
725                         ret = err;
726                         goto out;
727                 }
728
729                 /* we put the first parent into the ref at hand */
730                 ULIST_ITER_INIT(&uiter);
731                 node = ulist_next(parents, &uiter);
732                 ref->parent = node ? node->val : 0;
733                 ref->inode_list = unode_aux_to_inode_list(node);
734
735                 /* Add a prelim_ref(s) for any other parent(s). */
736                 while ((node = ulist_next(parents, &uiter))) {
737                         struct prelim_ref *new_ref;
738
739                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
740                                                    GFP_NOFS);
741                         if (!new_ref) {
742                                 free_pref(ref);
743                                 ret = -ENOMEM;
744                                 goto out;
745                         }
746                         memcpy(new_ref, ref, sizeof(*ref));
747                         new_ref->parent = node->val;
748                         new_ref->inode_list = unode_aux_to_inode_list(node);
749                         prelim_ref_insert(fs_info, &preftrees->direct,
750                                           new_ref, NULL);
751                 }
752
753                 /*
754                  * Now it's a direct ref, put it in the direct tree. We must
755                  * do this last because the ref could be merged/freed here.
756                  */
757                 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758
759                 ulist_reinit(parents);
760                 cond_resched();
761         }
762 out:
763         ulist_free(parents);
764         return ret;
765 }
766
767 /*
768  * read tree blocks and add keys where required.
769  */
770 static int add_missing_keys(struct btrfs_fs_info *fs_info,
771                             struct preftrees *preftrees, bool lock)
772 {
773         struct prelim_ref *ref;
774         struct extent_buffer *eb;
775         struct preftree *tree = &preftrees->indirect_missing_keys;
776         struct rb_node *node;
777
778         while ((node = rb_first_cached(&tree->root))) {
779                 ref = rb_entry(node, struct prelim_ref, rbnode);
780                 rb_erase_cached(node, &tree->root);
781
782                 BUG_ON(ref->parent);    /* should not be a direct ref */
783                 BUG_ON(ref->key_for_search.type);
784                 BUG_ON(!ref->wanted_disk_byte);
785
786                 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
787                                      ref->root_id, 0, ref->level - 1, NULL);
788                 if (IS_ERR(eb)) {
789                         free_pref(ref);
790                         return PTR_ERR(eb);
791                 } else if (!extent_buffer_uptodate(eb)) {
792                         free_pref(ref);
793                         free_extent_buffer(eb);
794                         return -EIO;
795                 }
796                 if (lock)
797                         btrfs_tree_read_lock(eb);
798                 if (btrfs_header_level(eb) == 0)
799                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
800                 else
801                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802                 if (lock)
803                         btrfs_tree_read_unlock(eb);
804                 free_extent_buffer(eb);
805                 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806                 cond_resched();
807         }
808         return 0;
809 }
810
811 /*
812  * add all currently queued delayed refs from this head whose seq nr is
813  * smaller or equal that seq to the list
814  */
815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
816                             struct btrfs_delayed_ref_head *head, u64 seq,
817                             struct preftrees *preftrees, struct share_check *sc)
818 {
819         struct btrfs_delayed_ref_node *node;
820         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821         struct btrfs_key key;
822         struct btrfs_key tmp_op_key;
823         struct rb_node *n;
824         int count;
825         int ret = 0;
826
827         if (extent_op && extent_op->update_key)
828                 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829
830         spin_lock(&head->lock);
831         for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832                 node = rb_entry(n, struct btrfs_delayed_ref_node,
833                                 ref_node);
834                 if (node->seq > seq)
835                         continue;
836
837                 switch (node->action) {
838                 case BTRFS_ADD_DELAYED_EXTENT:
839                 case BTRFS_UPDATE_DELAYED_HEAD:
840                         WARN_ON(1);
841                         continue;
842                 case BTRFS_ADD_DELAYED_REF:
843                         count = node->ref_mod;
844                         break;
845                 case BTRFS_DROP_DELAYED_REF:
846                         count = node->ref_mod * -1;
847                         break;
848                 default:
849                         BUG();
850                 }
851                 switch (node->type) {
852                 case BTRFS_TREE_BLOCK_REF_KEY: {
853                         /* NORMAL INDIRECT METADATA backref */
854                         struct btrfs_delayed_tree_ref *ref;
855
856                         ref = btrfs_delayed_node_to_tree_ref(node);
857                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
858                                                &tmp_op_key, ref->level + 1,
859                                                node->bytenr, count, sc,
860                                                GFP_ATOMIC);
861                         break;
862                 }
863                 case BTRFS_SHARED_BLOCK_REF_KEY: {
864                         /* SHARED DIRECT METADATA backref */
865                         struct btrfs_delayed_tree_ref *ref;
866
867                         ref = btrfs_delayed_node_to_tree_ref(node);
868
869                         ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870                                              ref->parent, node->bytenr, count,
871                                              sc, GFP_ATOMIC);
872                         break;
873                 }
874                 case BTRFS_EXTENT_DATA_REF_KEY: {
875                         /* NORMAL INDIRECT DATA backref */
876                         struct btrfs_delayed_data_ref *ref;
877                         ref = btrfs_delayed_node_to_data_ref(node);
878
879                         key.objectid = ref->objectid;
880                         key.type = BTRFS_EXTENT_DATA_KEY;
881                         key.offset = ref->offset;
882
883                         /*
884                          * Found a inum that doesn't match our known inum, we
885                          * know it's shared.
886                          */
887                         if (sc && sc->inum && ref->objectid != sc->inum) {
888                                 ret = BACKREF_FOUND_SHARED;
889                                 goto out;
890                         }
891
892                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
893                                                &key, 0, node->bytenr, count, sc,
894                                                GFP_ATOMIC);
895                         break;
896                 }
897                 case BTRFS_SHARED_DATA_REF_KEY: {
898                         /* SHARED DIRECT FULL backref */
899                         struct btrfs_delayed_data_ref *ref;
900
901                         ref = btrfs_delayed_node_to_data_ref(node);
902
903                         ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904                                              node->bytenr, count, sc,
905                                              GFP_ATOMIC);
906                         break;
907                 }
908                 default:
909                         WARN_ON(1);
910                 }
911                 /*
912                  * We must ignore BACKREF_FOUND_SHARED until all delayed
913                  * refs have been checked.
914                  */
915                 if (ret && (ret != BACKREF_FOUND_SHARED))
916                         break;
917         }
918         if (!ret)
919                 ret = extent_is_shared(sc);
920 out:
921         spin_unlock(&head->lock);
922         return ret;
923 }
924
925 /*
926  * add all inline backrefs for bytenr to the list
927  *
928  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929  */
930 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931                            struct btrfs_path *path, u64 bytenr,
932                            int *info_level, struct preftrees *preftrees,
933                            struct share_check *sc)
934 {
935         int ret = 0;
936         int slot;
937         struct extent_buffer *leaf;
938         struct btrfs_key key;
939         struct btrfs_key found_key;
940         unsigned long ptr;
941         unsigned long end;
942         struct btrfs_extent_item *ei;
943         u64 flags;
944         u64 item_size;
945
946         /*
947          * enumerate all inline refs
948          */
949         leaf = path->nodes[0];
950         slot = path->slots[0];
951
952         item_size = btrfs_item_size_nr(leaf, slot);
953         BUG_ON(item_size < sizeof(*ei));
954
955         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956         flags = btrfs_extent_flags(leaf, ei);
957         btrfs_item_key_to_cpu(leaf, &found_key, slot);
958
959         ptr = (unsigned long)(ei + 1);
960         end = (unsigned long)ei + item_size;
961
962         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
963             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964                 struct btrfs_tree_block_info *info;
965
966                 info = (struct btrfs_tree_block_info *)ptr;
967                 *info_level = btrfs_tree_block_level(leaf, info);
968                 ptr += sizeof(struct btrfs_tree_block_info);
969                 BUG_ON(ptr > end);
970         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
971                 *info_level = found_key.offset;
972         } else {
973                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
974         }
975
976         while (ptr < end) {
977                 struct btrfs_extent_inline_ref *iref;
978                 u64 offset;
979                 int type;
980
981                 iref = (struct btrfs_extent_inline_ref *)ptr;
982                 type = btrfs_get_extent_inline_ref_type(leaf, iref,
983                                                         BTRFS_REF_TYPE_ANY);
984                 if (type == BTRFS_REF_TYPE_INVALID)
985                         return -EUCLEAN;
986
987                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
988
989                 switch (type) {
990                 case BTRFS_SHARED_BLOCK_REF_KEY:
991                         ret = add_direct_ref(fs_info, preftrees,
992                                              *info_level + 1, offset,
993                                              bytenr, 1, NULL, GFP_NOFS);
994                         break;
995                 case BTRFS_SHARED_DATA_REF_KEY: {
996                         struct btrfs_shared_data_ref *sdref;
997                         int count;
998
999                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1000                         count = btrfs_shared_data_ref_count(leaf, sdref);
1001
1002                         ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003                                              bytenr, count, sc, GFP_NOFS);
1004                         break;
1005                 }
1006                 case BTRFS_TREE_BLOCK_REF_KEY:
1007                         ret = add_indirect_ref(fs_info, preftrees, offset,
1008                                                NULL, *info_level + 1,
1009                                                bytenr, 1, NULL, GFP_NOFS);
1010                         break;
1011                 case BTRFS_EXTENT_DATA_REF_KEY: {
1012                         struct btrfs_extent_data_ref *dref;
1013                         int count;
1014                         u64 root;
1015
1016                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1017                         count = btrfs_extent_data_ref_count(leaf, dref);
1018                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1019                                                                       dref);
1020                         key.type = BTRFS_EXTENT_DATA_KEY;
1021                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022
1023                         if (sc && sc->inum && key.objectid != sc->inum) {
1024                                 ret = BACKREF_FOUND_SHARED;
1025                                 break;
1026                         }
1027
1028                         root = btrfs_extent_data_ref_root(leaf, dref);
1029
1030                         ret = add_indirect_ref(fs_info, preftrees, root,
1031                                                &key, 0, bytenr, count,
1032                                                sc, GFP_NOFS);
1033                         break;
1034                 }
1035                 default:
1036                         WARN_ON(1);
1037                 }
1038                 if (ret)
1039                         return ret;
1040                 ptr += btrfs_extent_inline_ref_size(type);
1041         }
1042
1043         return 0;
1044 }
1045
1046 /*
1047  * add all non-inline backrefs for bytenr to the list
1048  *
1049  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050  */
1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1052                           struct btrfs_path *path, u64 bytenr,
1053                           int info_level, struct preftrees *preftrees,
1054                           struct share_check *sc)
1055 {
1056         struct btrfs_root *extent_root = fs_info->extent_root;
1057         int ret;
1058         int slot;
1059         struct extent_buffer *leaf;
1060         struct btrfs_key key;
1061
1062         while (1) {
1063                 ret = btrfs_next_item(extent_root, path);
1064                 if (ret < 0)
1065                         break;
1066                 if (ret) {
1067                         ret = 0;
1068                         break;
1069                 }
1070
1071                 slot = path->slots[0];
1072                 leaf = path->nodes[0];
1073                 btrfs_item_key_to_cpu(leaf, &key, slot);
1074
1075                 if (key.objectid != bytenr)
1076                         break;
1077                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1078                         continue;
1079                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1080                         break;
1081
1082                 switch (key.type) {
1083                 case BTRFS_SHARED_BLOCK_REF_KEY:
1084                         /* SHARED DIRECT METADATA backref */
1085                         ret = add_direct_ref(fs_info, preftrees,
1086                                              info_level + 1, key.offset,
1087                                              bytenr, 1, NULL, GFP_NOFS);
1088                         break;
1089                 case BTRFS_SHARED_DATA_REF_KEY: {
1090                         /* SHARED DIRECT FULL backref */
1091                         struct btrfs_shared_data_ref *sdref;
1092                         int count;
1093
1094                         sdref = btrfs_item_ptr(leaf, slot,
1095                                               struct btrfs_shared_data_ref);
1096                         count = btrfs_shared_data_ref_count(leaf, sdref);
1097                         ret = add_direct_ref(fs_info, preftrees, 0,
1098                                              key.offset, bytenr, count,
1099                                              sc, GFP_NOFS);
1100                         break;
1101                 }
1102                 case BTRFS_TREE_BLOCK_REF_KEY:
1103                         /* NORMAL INDIRECT METADATA backref */
1104                         ret = add_indirect_ref(fs_info, preftrees, key.offset,
1105                                                NULL, info_level + 1, bytenr,
1106                                                1, NULL, GFP_NOFS);
1107                         break;
1108                 case BTRFS_EXTENT_DATA_REF_KEY: {
1109                         /* NORMAL INDIRECT DATA backref */
1110                         struct btrfs_extent_data_ref *dref;
1111                         int count;
1112                         u64 root;
1113
1114                         dref = btrfs_item_ptr(leaf, slot,
1115                                               struct btrfs_extent_data_ref);
1116                         count = btrfs_extent_data_ref_count(leaf, dref);
1117                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1118                                                                       dref);
1119                         key.type = BTRFS_EXTENT_DATA_KEY;
1120                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121
1122                         if (sc && sc->inum && key.objectid != sc->inum) {
1123                                 ret = BACKREF_FOUND_SHARED;
1124                                 break;
1125                         }
1126
1127                         root = btrfs_extent_data_ref_root(leaf, dref);
1128                         ret = add_indirect_ref(fs_info, preftrees, root,
1129                                                &key, 0, bytenr, count,
1130                                                sc, GFP_NOFS);
1131                         break;
1132                 }
1133                 default:
1134                         WARN_ON(1);
1135                 }
1136                 if (ret)
1137                         return ret;
1138
1139         }
1140
1141         return ret;
1142 }
1143
1144 /*
1145  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147  * indirect refs to their parent bytenr.
1148  * When roots are found, they're added to the roots list
1149  *
1150  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151  * much like trans == NULL case, the difference only lies in it will not
1152  * commit root.
1153  * The special case is for qgroup to search roots in commit_transaction().
1154  *
1155  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156  * shared extent is detected.
1157  *
1158  * Otherwise this returns 0 for success and <0 for an error.
1159  *
1160  * If ignore_offset is set to false, only extent refs whose offsets match
1161  * extent_item_pos are returned.  If true, every extent ref is returned
1162  * and extent_item_pos is ignored.
1163  *
1164  * FIXME some caching might speed things up
1165  */
1166 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1167                              struct btrfs_fs_info *fs_info, u64 bytenr,
1168                              u64 time_seq, struct ulist *refs,
1169                              struct ulist *roots, const u64 *extent_item_pos,
1170                              struct share_check *sc, bool ignore_offset)
1171 {
1172         struct btrfs_key key;
1173         struct btrfs_path *path;
1174         struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175         struct btrfs_delayed_ref_head *head;
1176         int info_level = 0;
1177         int ret;
1178         struct prelim_ref *ref;
1179         struct rb_node *node;
1180         struct extent_inode_elem *eie = NULL;
1181         struct preftrees preftrees = {
1182                 .direct = PREFTREE_INIT,
1183                 .indirect = PREFTREE_INIT,
1184                 .indirect_missing_keys = PREFTREE_INIT
1185         };
1186
1187         key.objectid = bytenr;
1188         key.offset = (u64)-1;
1189         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1190                 key.type = BTRFS_METADATA_ITEM_KEY;
1191         else
1192                 key.type = BTRFS_EXTENT_ITEM_KEY;
1193
1194         path = btrfs_alloc_path();
1195         if (!path)
1196                 return -ENOMEM;
1197         if (!trans) {
1198                 path->search_commit_root = 1;
1199                 path->skip_locking = 1;
1200         }
1201
1202         if (time_seq == SEQ_LAST)
1203                 path->skip_locking = 1;
1204
1205         /*
1206          * grab both a lock on the path and a lock on the delayed ref head.
1207          * We need both to get a consistent picture of how the refs look
1208          * at a specified point in time
1209          */
1210 again:
1211         head = NULL;
1212
1213         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1214         if (ret < 0)
1215                 goto out;
1216         BUG_ON(ret == 0);
1217
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219         if (trans && likely(trans->type != __TRANS_DUMMY) &&
1220             time_seq != SEQ_LAST) {
1221 #else
1222         if (trans && time_seq != SEQ_LAST) {
1223 #endif
1224                 /*
1225                  * look if there are updates for this ref queued and lock the
1226                  * head
1227                  */
1228                 delayed_refs = &trans->transaction->delayed_refs;
1229                 spin_lock(&delayed_refs->lock);
1230                 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231                 if (head) {
1232                         if (!mutex_trylock(&head->mutex)) {
1233                                 refcount_inc(&head->refs);
1234                                 spin_unlock(&delayed_refs->lock);
1235
1236                                 btrfs_release_path(path);
1237
1238                                 /*
1239                                  * Mutex was contended, block until it's
1240                                  * released and try again
1241                                  */
1242                                 mutex_lock(&head->mutex);
1243                                 mutex_unlock(&head->mutex);
1244                                 btrfs_put_delayed_ref_head(head);
1245                                 goto again;
1246                         }
1247                         spin_unlock(&delayed_refs->lock);
1248                         ret = add_delayed_refs(fs_info, head, time_seq,
1249                                                &preftrees, sc);
1250                         mutex_unlock(&head->mutex);
1251                         if (ret)
1252                                 goto out;
1253                 } else {
1254                         spin_unlock(&delayed_refs->lock);
1255                 }
1256         }
1257
1258         if (path->slots[0]) {
1259                 struct extent_buffer *leaf;
1260                 int slot;
1261
1262                 path->slots[0]--;
1263                 leaf = path->nodes[0];
1264                 slot = path->slots[0];
1265                 btrfs_item_key_to_cpu(leaf, &key, slot);
1266                 if (key.objectid == bytenr &&
1267                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1268                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1269                         ret = add_inline_refs(fs_info, path, bytenr,
1270                                               &info_level, &preftrees, sc);
1271                         if (ret)
1272                                 goto out;
1273                         ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1274                                              &preftrees, sc);
1275                         if (ret)
1276                                 goto out;
1277                 }
1278         }
1279
1280         btrfs_release_path(path);
1281
1282         ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283         if (ret)
1284                 goto out;
1285
1286         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287
1288         ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289                                     extent_item_pos, sc, ignore_offset);
1290         if (ret)
1291                 goto out;
1292
1293         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294
1295         /*
1296          * This walks the tree of merged and resolved refs. Tree blocks are
1297          * read in as needed. Unique entries are added to the ulist, and
1298          * the list of found roots is updated.
1299          *
1300          * We release the entire tree in one go before returning.
1301          */
1302         node = rb_first_cached(&preftrees.direct.root);
1303         while (node) {
1304                 ref = rb_entry(node, struct prelim_ref, rbnode);
1305                 node = rb_next(&ref->rbnode);
1306                 /*
1307                  * ref->count < 0 can happen here if there are delayed
1308                  * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309                  * prelim_ref_insert() relies on this when merging
1310                  * identical refs to keep the overall count correct.
1311                  * prelim_ref_insert() will merge only those refs
1312                  * which compare identically.  Any refs having
1313                  * e.g. different offsets would not be merged,
1314                  * and would retain their original ref->count < 0.
1315                  */
1316                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317                         if (sc && sc->root_objectid &&
1318                             ref->root_id != sc->root_objectid) {
1319                                 ret = BACKREF_FOUND_SHARED;
1320                                 goto out;
1321                         }
1322
1323                         /* no parent == root of tree */
1324                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325                         if (ret < 0)
1326                                 goto out;
1327                 }
1328                 if (ref->count && ref->parent) {
1329                         if (extent_item_pos && !ref->inode_list &&
1330                             ref->level == 0) {
1331                                 struct extent_buffer *eb;
1332
1333                                 eb = read_tree_block(fs_info, ref->parent, 0,
1334                                                      0, ref->level, NULL);
1335                                 if (IS_ERR(eb)) {
1336                                         ret = PTR_ERR(eb);
1337                                         goto out;
1338                                 } else if (!extent_buffer_uptodate(eb)) {
1339                                         free_extent_buffer(eb);
1340                                         ret = -EIO;
1341                                         goto out;
1342                                 }
1343
1344                                 if (!path->skip_locking)
1345                                         btrfs_tree_read_lock(eb);
1346                                 ret = find_extent_in_eb(eb, bytenr,
1347                                                         *extent_item_pos, &eie, ignore_offset);
1348                                 if (!path->skip_locking)
1349                                         btrfs_tree_read_unlock(eb);
1350                                 free_extent_buffer(eb);
1351                                 if (ret < 0)
1352                                         goto out;
1353                                 ref->inode_list = eie;
1354                         }
1355                         ret = ulist_add_merge_ptr(refs, ref->parent,
1356                                                   ref->inode_list,
1357                                                   (void **)&eie, GFP_NOFS);
1358                         if (ret < 0)
1359                                 goto out;
1360                         if (!ret && extent_item_pos) {
1361                                 /*
1362                                  * we've recorded that parent, so we must extend
1363                                  * its inode list here
1364                                  */
1365                                 BUG_ON(!eie);
1366                                 while (eie->next)
1367                                         eie = eie->next;
1368                                 eie->next = ref->inode_list;
1369                         }
1370                         eie = NULL;
1371                 }
1372                 cond_resched();
1373         }
1374
1375 out:
1376         btrfs_free_path(path);
1377
1378         prelim_release(&preftrees.direct);
1379         prelim_release(&preftrees.indirect);
1380         prelim_release(&preftrees.indirect_missing_keys);
1381
1382         if (ret < 0)
1383                 free_inode_elem_list(eie);
1384         return ret;
1385 }
1386
1387 static void free_leaf_list(struct ulist *blocks)
1388 {
1389         struct ulist_node *node = NULL;
1390         struct extent_inode_elem *eie;
1391         struct ulist_iterator uiter;
1392
1393         ULIST_ITER_INIT(&uiter);
1394         while ((node = ulist_next(blocks, &uiter))) {
1395                 if (!node->aux)
1396                         continue;
1397                 eie = unode_aux_to_inode_list(node);
1398                 free_inode_elem_list(eie);
1399                 node->aux = 0;
1400         }
1401
1402         ulist_free(blocks);
1403 }
1404
1405 /*
1406  * Finds all leafs with a reference to the specified combination of bytenr and
1407  * offset. key_list_head will point to a list of corresponding keys (caller must
1408  * free each list element). The leafs will be stored in the leafs ulist, which
1409  * must be freed with ulist_free.
1410  *
1411  * returns 0 on success, <0 on error
1412  */
1413 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1414                          struct btrfs_fs_info *fs_info, u64 bytenr,
1415                          u64 time_seq, struct ulist **leafs,
1416                          const u64 *extent_item_pos, bool ignore_offset)
1417 {
1418         int ret;
1419
1420         *leafs = ulist_alloc(GFP_NOFS);
1421         if (!*leafs)
1422                 return -ENOMEM;
1423
1424         ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1425                                 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1426         if (ret < 0 && ret != -ENOENT) {
1427                 free_leaf_list(*leafs);
1428                 return ret;
1429         }
1430
1431         return 0;
1432 }
1433
1434 /*
1435  * walk all backrefs for a given extent to find all roots that reference this
1436  * extent. Walking a backref means finding all extents that reference this
1437  * extent and in turn walk the backrefs of those, too. Naturally this is a
1438  * recursive process, but here it is implemented in an iterative fashion: We
1439  * find all referencing extents for the extent in question and put them on a
1440  * list. In turn, we find all referencing extents for those, further appending
1441  * to the list. The way we iterate the list allows adding more elements after
1442  * the current while iterating. The process stops when we reach the end of the
1443  * list. Found roots are added to the roots list.
1444  *
1445  * returns 0 on success, < 0 on error.
1446  */
1447 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1448                                      struct btrfs_fs_info *fs_info, u64 bytenr,
1449                                      u64 time_seq, struct ulist **roots,
1450                                      bool ignore_offset)
1451 {
1452         struct ulist *tmp;
1453         struct ulist_node *node = NULL;
1454         struct ulist_iterator uiter;
1455         int ret;
1456
1457         tmp = ulist_alloc(GFP_NOFS);
1458         if (!tmp)
1459                 return -ENOMEM;
1460         *roots = ulist_alloc(GFP_NOFS);
1461         if (!*roots) {
1462                 ulist_free(tmp);
1463                 return -ENOMEM;
1464         }
1465
1466         ULIST_ITER_INIT(&uiter);
1467         while (1) {
1468                 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1469                                         tmp, *roots, NULL, NULL, ignore_offset);
1470                 if (ret < 0 && ret != -ENOENT) {
1471                         ulist_free(tmp);
1472                         ulist_free(*roots);
1473                         *roots = NULL;
1474                         return ret;
1475                 }
1476                 node = ulist_next(tmp, &uiter);
1477                 if (!node)
1478                         break;
1479                 bytenr = node->val;
1480                 cond_resched();
1481         }
1482
1483         ulist_free(tmp);
1484         return 0;
1485 }
1486
1487 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1488                          struct btrfs_fs_info *fs_info, u64 bytenr,
1489                          u64 time_seq, struct ulist **roots,
1490                          bool ignore_offset)
1491 {
1492         int ret;
1493
1494         if (!trans)
1495                 down_read(&fs_info->commit_root_sem);
1496         ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1497                                         time_seq, roots, ignore_offset);
1498         if (!trans)
1499                 up_read(&fs_info->commit_root_sem);
1500         return ret;
1501 }
1502
1503 /**
1504  * Check if an extent is shared or not
1505  *
1506  * @root:   root inode belongs to
1507  * @inum:   inode number of the inode whose extent we are checking
1508  * @bytenr: logical bytenr of the extent we are checking
1509  * @roots:  list of roots this extent is shared among
1510  * @tmp:    temporary list used for iteration
1511  *
1512  * btrfs_check_shared uses the backref walking code but will short
1513  * circuit as soon as it finds a root or inode that doesn't match the
1514  * one passed in. This provides a significant performance benefit for
1515  * callers (such as fiemap) which want to know whether the extent is
1516  * shared but do not need a ref count.
1517  *
1518  * This attempts to attach to the running transaction in order to account for
1519  * delayed refs, but continues on even when no running transaction exists.
1520  *
1521  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1522  */
1523 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1524                 struct ulist *roots, struct ulist *tmp)
1525 {
1526         struct btrfs_fs_info *fs_info = root->fs_info;
1527         struct btrfs_trans_handle *trans;
1528         struct ulist_iterator uiter;
1529         struct ulist_node *node;
1530         struct seq_list elem = SEQ_LIST_INIT(elem);
1531         int ret = 0;
1532         struct share_check shared = {
1533                 .root_objectid = root->root_key.objectid,
1534                 .inum = inum,
1535                 .share_count = 0,
1536         };
1537
1538         ulist_init(roots);
1539         ulist_init(tmp);
1540
1541         trans = btrfs_join_transaction_nostart(root);
1542         if (IS_ERR(trans)) {
1543                 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1544                         ret = PTR_ERR(trans);
1545                         goto out;
1546                 }
1547                 trans = NULL;
1548                 down_read(&fs_info->commit_root_sem);
1549         } else {
1550                 btrfs_get_tree_mod_seq(fs_info, &elem);
1551         }
1552
1553         ULIST_ITER_INIT(&uiter);
1554         while (1) {
1555                 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1556                                         roots, NULL, &shared, false);
1557                 if (ret == BACKREF_FOUND_SHARED) {
1558                         /* this is the only condition under which we return 1 */
1559                         ret = 1;
1560                         break;
1561                 }
1562                 if (ret < 0 && ret != -ENOENT)
1563                         break;
1564                 ret = 0;
1565                 node = ulist_next(tmp, &uiter);
1566                 if (!node)
1567                         break;
1568                 bytenr = node->val;
1569                 shared.share_count = 0;
1570                 cond_resched();
1571         }
1572
1573         if (trans) {
1574                 btrfs_put_tree_mod_seq(fs_info, &elem);
1575                 btrfs_end_transaction(trans);
1576         } else {
1577                 up_read(&fs_info->commit_root_sem);
1578         }
1579 out:
1580         ulist_release(roots);
1581         ulist_release(tmp);
1582         return ret;
1583 }
1584
1585 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1586                           u64 start_off, struct btrfs_path *path,
1587                           struct btrfs_inode_extref **ret_extref,
1588                           u64 *found_off)
1589 {
1590         int ret, slot;
1591         struct btrfs_key key;
1592         struct btrfs_key found_key;
1593         struct btrfs_inode_extref *extref;
1594         const struct extent_buffer *leaf;
1595         unsigned long ptr;
1596
1597         key.objectid = inode_objectid;
1598         key.type = BTRFS_INODE_EXTREF_KEY;
1599         key.offset = start_off;
1600
1601         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602         if (ret < 0)
1603                 return ret;
1604
1605         while (1) {
1606                 leaf = path->nodes[0];
1607                 slot = path->slots[0];
1608                 if (slot >= btrfs_header_nritems(leaf)) {
1609                         /*
1610                          * If the item at offset is not found,
1611                          * btrfs_search_slot will point us to the slot
1612                          * where it should be inserted. In our case
1613                          * that will be the slot directly before the
1614                          * next INODE_REF_KEY_V2 item. In the case
1615                          * that we're pointing to the last slot in a
1616                          * leaf, we must move one leaf over.
1617                          */
1618                         ret = btrfs_next_leaf(root, path);
1619                         if (ret) {
1620                                 if (ret >= 1)
1621                                         ret = -ENOENT;
1622                                 break;
1623                         }
1624                         continue;
1625                 }
1626
1627                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1628
1629                 /*
1630                  * Check that we're still looking at an extended ref key for
1631                  * this particular objectid. If we have different
1632                  * objectid or type then there are no more to be found
1633                  * in the tree and we can exit.
1634                  */
1635                 ret = -ENOENT;
1636                 if (found_key.objectid != inode_objectid)
1637                         break;
1638                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1639                         break;
1640
1641                 ret = 0;
1642                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1643                 extref = (struct btrfs_inode_extref *)ptr;
1644                 *ret_extref = extref;
1645                 if (found_off)
1646                         *found_off = found_key.offset;
1647                 break;
1648         }
1649
1650         return ret;
1651 }
1652
1653 /*
1654  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1655  * Elements of the path are separated by '/' and the path is guaranteed to be
1656  * 0-terminated. the path is only given within the current file system.
1657  * Therefore, it never starts with a '/'. the caller is responsible to provide
1658  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1659  * the start point of the resulting string is returned. this pointer is within
1660  * dest, normally.
1661  * in case the path buffer would overflow, the pointer is decremented further
1662  * as if output was written to the buffer, though no more output is actually
1663  * generated. that way, the caller can determine how much space would be
1664  * required for the path to fit into the buffer. in that case, the returned
1665  * value will be smaller than dest. callers must check this!
1666  */
1667 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1668                         u32 name_len, unsigned long name_off,
1669                         struct extent_buffer *eb_in, u64 parent,
1670                         char *dest, u32 size)
1671 {
1672         int slot;
1673         u64 next_inum;
1674         int ret;
1675         s64 bytes_left = ((s64)size) - 1;
1676         struct extent_buffer *eb = eb_in;
1677         struct btrfs_key found_key;
1678         struct btrfs_inode_ref *iref;
1679
1680         if (bytes_left >= 0)
1681                 dest[bytes_left] = '\0';
1682
1683         while (1) {
1684                 bytes_left -= name_len;
1685                 if (bytes_left >= 0)
1686                         read_extent_buffer(eb, dest + bytes_left,
1687                                            name_off, name_len);
1688                 if (eb != eb_in) {
1689                         if (!path->skip_locking)
1690                                 btrfs_tree_read_unlock(eb);
1691                         free_extent_buffer(eb);
1692                 }
1693                 ret = btrfs_find_item(fs_root, path, parent, 0,
1694                                 BTRFS_INODE_REF_KEY, &found_key);
1695                 if (ret > 0)
1696                         ret = -ENOENT;
1697                 if (ret)
1698                         break;
1699
1700                 next_inum = found_key.offset;
1701
1702                 /* regular exit ahead */
1703                 if (parent == next_inum)
1704                         break;
1705
1706                 slot = path->slots[0];
1707                 eb = path->nodes[0];
1708                 /* make sure we can use eb after releasing the path */
1709                 if (eb != eb_in) {
1710                         path->nodes[0] = NULL;
1711                         path->locks[0] = 0;
1712                 }
1713                 btrfs_release_path(path);
1714                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1715
1716                 name_len = btrfs_inode_ref_name_len(eb, iref);
1717                 name_off = (unsigned long)(iref + 1);
1718
1719                 parent = next_inum;
1720                 --bytes_left;
1721                 if (bytes_left >= 0)
1722                         dest[bytes_left] = '/';
1723         }
1724
1725         btrfs_release_path(path);
1726
1727         if (ret)
1728                 return ERR_PTR(ret);
1729
1730         return dest + bytes_left;
1731 }
1732
1733 /*
1734  * this makes the path point to (logical EXTENT_ITEM *)
1735  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1736  * tree blocks and <0 on error.
1737  */
1738 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1739                         struct btrfs_path *path, struct btrfs_key *found_key,
1740                         u64 *flags_ret)
1741 {
1742         int ret;
1743         u64 flags;
1744         u64 size = 0;
1745         u32 item_size;
1746         const struct extent_buffer *eb;
1747         struct btrfs_extent_item *ei;
1748         struct btrfs_key key;
1749
1750         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1751                 key.type = BTRFS_METADATA_ITEM_KEY;
1752         else
1753                 key.type = BTRFS_EXTENT_ITEM_KEY;
1754         key.objectid = logical;
1755         key.offset = (u64)-1;
1756
1757         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1758         if (ret < 0)
1759                 return ret;
1760
1761         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1762         if (ret) {
1763                 if (ret > 0)
1764                         ret = -ENOENT;
1765                 return ret;
1766         }
1767         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1768         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1769                 size = fs_info->nodesize;
1770         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1771                 size = found_key->offset;
1772
1773         if (found_key->objectid > logical ||
1774             found_key->objectid + size <= logical) {
1775                 btrfs_debug(fs_info,
1776                         "logical %llu is not within any extent", logical);
1777                 return -ENOENT;
1778         }
1779
1780         eb = path->nodes[0];
1781         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1782         BUG_ON(item_size < sizeof(*ei));
1783
1784         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1785         flags = btrfs_extent_flags(eb, ei);
1786
1787         btrfs_debug(fs_info,
1788                 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1789                  logical, logical - found_key->objectid, found_key->objectid,
1790                  found_key->offset, flags, item_size);
1791
1792         WARN_ON(!flags_ret);
1793         if (flags_ret) {
1794                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1795                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1796                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1797                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1798                 else
1799                         BUG();
1800                 return 0;
1801         }
1802
1803         return -EIO;
1804 }
1805
1806 /*
1807  * helper function to iterate extent inline refs. ptr must point to a 0 value
1808  * for the first call and may be modified. it is used to track state.
1809  * if more refs exist, 0 is returned and the next call to
1810  * get_extent_inline_ref must pass the modified ptr parameter to get the
1811  * next ref. after the last ref was processed, 1 is returned.
1812  * returns <0 on error
1813  */
1814 static int get_extent_inline_ref(unsigned long *ptr,
1815                                  const struct extent_buffer *eb,
1816                                  const struct btrfs_key *key,
1817                                  const struct btrfs_extent_item *ei,
1818                                  u32 item_size,
1819                                  struct btrfs_extent_inline_ref **out_eiref,
1820                                  int *out_type)
1821 {
1822         unsigned long end;
1823         u64 flags;
1824         struct btrfs_tree_block_info *info;
1825
1826         if (!*ptr) {
1827                 /* first call */
1828                 flags = btrfs_extent_flags(eb, ei);
1829                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1830                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1831                                 /* a skinny metadata extent */
1832                                 *out_eiref =
1833                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1834                         } else {
1835                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1836                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1837                                 *out_eiref =
1838                                    (struct btrfs_extent_inline_ref *)(info + 1);
1839                         }
1840                 } else {
1841                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1842                 }
1843                 *ptr = (unsigned long)*out_eiref;
1844                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1845                         return -ENOENT;
1846         }
1847
1848         end = (unsigned long)ei + item_size;
1849         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1850         *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1851                                                      BTRFS_REF_TYPE_ANY);
1852         if (*out_type == BTRFS_REF_TYPE_INVALID)
1853                 return -EUCLEAN;
1854
1855         *ptr += btrfs_extent_inline_ref_size(*out_type);
1856         WARN_ON(*ptr > end);
1857         if (*ptr == end)
1858                 return 1; /* last */
1859
1860         return 0;
1861 }
1862
1863 /*
1864  * reads the tree block backref for an extent. tree level and root are returned
1865  * through out_level and out_root. ptr must point to a 0 value for the first
1866  * call and may be modified (see get_extent_inline_ref comment).
1867  * returns 0 if data was provided, 1 if there was no more data to provide or
1868  * <0 on error.
1869  */
1870 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1871                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1872                             u32 item_size, u64 *out_root, u8 *out_level)
1873 {
1874         int ret;
1875         int type;
1876         struct btrfs_extent_inline_ref *eiref;
1877
1878         if (*ptr == (unsigned long)-1)
1879                 return 1;
1880
1881         while (1) {
1882                 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1883                                               &eiref, &type);
1884                 if (ret < 0)
1885                         return ret;
1886
1887                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1888                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1889                         break;
1890
1891                 if (ret == 1)
1892                         return 1;
1893         }
1894
1895         /* we can treat both ref types equally here */
1896         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1897
1898         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1899                 struct btrfs_tree_block_info *info;
1900
1901                 info = (struct btrfs_tree_block_info *)(ei + 1);
1902                 *out_level = btrfs_tree_block_level(eb, info);
1903         } else {
1904                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1905                 *out_level = (u8)key->offset;
1906         }
1907
1908         if (ret == 1)
1909                 *ptr = (unsigned long)-1;
1910
1911         return 0;
1912 }
1913
1914 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1915                              struct extent_inode_elem *inode_list,
1916                              u64 root, u64 extent_item_objectid,
1917                              iterate_extent_inodes_t *iterate, void *ctx)
1918 {
1919         struct extent_inode_elem *eie;
1920         int ret = 0;
1921
1922         for (eie = inode_list; eie; eie = eie->next) {
1923                 btrfs_debug(fs_info,
1924                             "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1925                             extent_item_objectid, eie->inum,
1926                             eie->offset, root);
1927                 ret = iterate(eie->inum, eie->offset, root, ctx);
1928                 if (ret) {
1929                         btrfs_debug(fs_info,
1930                                     "stopping iteration for %llu due to ret=%d",
1931                                     extent_item_objectid, ret);
1932                         break;
1933                 }
1934         }
1935
1936         return ret;
1937 }
1938
1939 /*
1940  * calls iterate() for every inode that references the extent identified by
1941  * the given parameters.
1942  * when the iterator function returns a non-zero value, iteration stops.
1943  */
1944 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1945                                 u64 extent_item_objectid, u64 extent_item_pos,
1946                                 int search_commit_root,
1947                                 iterate_extent_inodes_t *iterate, void *ctx,
1948                                 bool ignore_offset)
1949 {
1950         int ret;
1951         struct btrfs_trans_handle *trans = NULL;
1952         struct ulist *refs = NULL;
1953         struct ulist *roots = NULL;
1954         struct ulist_node *ref_node = NULL;
1955         struct ulist_node *root_node = NULL;
1956         struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1957         struct ulist_iterator ref_uiter;
1958         struct ulist_iterator root_uiter;
1959
1960         btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1961                         extent_item_objectid);
1962
1963         if (!search_commit_root) {
1964                 trans = btrfs_attach_transaction(fs_info->extent_root);
1965                 if (IS_ERR(trans)) {
1966                         if (PTR_ERR(trans) != -ENOENT &&
1967                             PTR_ERR(trans) != -EROFS)
1968                                 return PTR_ERR(trans);
1969                         trans = NULL;
1970                 }
1971         }
1972
1973         if (trans)
1974                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1975         else
1976                 down_read(&fs_info->commit_root_sem);
1977
1978         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1979                                    tree_mod_seq_elem.seq, &refs,
1980                                    &extent_item_pos, ignore_offset);
1981         if (ret)
1982                 goto out;
1983
1984         ULIST_ITER_INIT(&ref_uiter);
1985         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1986                 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1987                                                 tree_mod_seq_elem.seq, &roots,
1988                                                 ignore_offset);
1989                 if (ret)
1990                         break;
1991                 ULIST_ITER_INIT(&root_uiter);
1992                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1993                         btrfs_debug(fs_info,
1994                                     "root %llu references leaf %llu, data list %#llx",
1995                                     root_node->val, ref_node->val,
1996                                     ref_node->aux);
1997                         ret = iterate_leaf_refs(fs_info,
1998                                                 (struct extent_inode_elem *)
1999                                                 (uintptr_t)ref_node->aux,
2000                                                 root_node->val,
2001                                                 extent_item_objectid,
2002                                                 iterate, ctx);
2003                 }
2004                 ulist_free(roots);
2005         }
2006
2007         free_leaf_list(refs);
2008 out:
2009         if (trans) {
2010                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2011                 btrfs_end_transaction(trans);
2012         } else {
2013                 up_read(&fs_info->commit_root_sem);
2014         }
2015
2016         return ret;
2017 }
2018
2019 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2020                                 struct btrfs_path *path,
2021                                 iterate_extent_inodes_t *iterate, void *ctx,
2022                                 bool ignore_offset)
2023 {
2024         int ret;
2025         u64 extent_item_pos;
2026         u64 flags = 0;
2027         struct btrfs_key found_key;
2028         int search_commit_root = path->search_commit_root;
2029
2030         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2031         btrfs_release_path(path);
2032         if (ret < 0)
2033                 return ret;
2034         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2035                 return -EINVAL;
2036
2037         extent_item_pos = logical - found_key.objectid;
2038         ret = iterate_extent_inodes(fs_info, found_key.objectid,
2039                                         extent_item_pos, search_commit_root,
2040                                         iterate, ctx, ignore_offset);
2041
2042         return ret;
2043 }
2044
2045 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2046                               struct extent_buffer *eb, void *ctx);
2047
2048 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2049                               struct btrfs_path *path,
2050                               iterate_irefs_t *iterate, void *ctx)
2051 {
2052         int ret = 0;
2053         int slot;
2054         u32 cur;
2055         u32 len;
2056         u32 name_len;
2057         u64 parent = 0;
2058         int found = 0;
2059         struct extent_buffer *eb;
2060         struct btrfs_item *item;
2061         struct btrfs_inode_ref *iref;
2062         struct btrfs_key found_key;
2063
2064         while (!ret) {
2065                 ret = btrfs_find_item(fs_root, path, inum,
2066                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2067                                 &found_key);
2068
2069                 if (ret < 0)
2070                         break;
2071                 if (ret) {
2072                         ret = found ? 0 : -ENOENT;
2073                         break;
2074                 }
2075                 ++found;
2076
2077                 parent = found_key.offset;
2078                 slot = path->slots[0];
2079                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2080                 if (!eb) {
2081                         ret = -ENOMEM;
2082                         break;
2083                 }
2084                 btrfs_release_path(path);
2085
2086                 item = btrfs_item_nr(slot);
2087                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2088
2089                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2090                         name_len = btrfs_inode_ref_name_len(eb, iref);
2091                         /* path must be released before calling iterate()! */
2092                         btrfs_debug(fs_root->fs_info,
2093                                 "following ref at offset %u for inode %llu in tree %llu",
2094                                 cur, found_key.objectid,
2095                                 fs_root->root_key.objectid);
2096                         ret = iterate(parent, name_len,
2097                                       (unsigned long)(iref + 1), eb, ctx);
2098                         if (ret)
2099                                 break;
2100                         len = sizeof(*iref) + name_len;
2101                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
2102                 }
2103                 free_extent_buffer(eb);
2104         }
2105
2106         btrfs_release_path(path);
2107
2108         return ret;
2109 }
2110
2111 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2112                                  struct btrfs_path *path,
2113                                  iterate_irefs_t *iterate, void *ctx)
2114 {
2115         int ret;
2116         int slot;
2117         u64 offset = 0;
2118         u64 parent;
2119         int found = 0;
2120         struct extent_buffer *eb;
2121         struct btrfs_inode_extref *extref;
2122         u32 item_size;
2123         u32 cur_offset;
2124         unsigned long ptr;
2125
2126         while (1) {
2127                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2128                                             &offset);
2129                 if (ret < 0)
2130                         break;
2131                 if (ret) {
2132                         ret = found ? 0 : -ENOENT;
2133                         break;
2134                 }
2135                 ++found;
2136
2137                 slot = path->slots[0];
2138                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2139                 if (!eb) {
2140                         ret = -ENOMEM;
2141                         break;
2142                 }
2143                 btrfs_release_path(path);
2144
2145                 item_size = btrfs_item_size_nr(eb, slot);
2146                 ptr = btrfs_item_ptr_offset(eb, slot);
2147                 cur_offset = 0;
2148
2149                 while (cur_offset < item_size) {
2150                         u32 name_len;
2151
2152                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2153                         parent = btrfs_inode_extref_parent(eb, extref);
2154                         name_len = btrfs_inode_extref_name_len(eb, extref);
2155                         ret = iterate(parent, name_len,
2156                                       (unsigned long)&extref->name, eb, ctx);
2157                         if (ret)
2158                                 break;
2159
2160                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
2161                         cur_offset += sizeof(*extref);
2162                 }
2163                 free_extent_buffer(eb);
2164
2165                 offset++;
2166         }
2167
2168         btrfs_release_path(path);
2169
2170         return ret;
2171 }
2172
2173 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2174                          struct btrfs_path *path, iterate_irefs_t *iterate,
2175                          void *ctx)
2176 {
2177         int ret;
2178         int found_refs = 0;
2179
2180         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2181         if (!ret)
2182                 ++found_refs;
2183         else if (ret != -ENOENT)
2184                 return ret;
2185
2186         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2187         if (ret == -ENOENT && found_refs)
2188                 return 0;
2189
2190         return ret;
2191 }
2192
2193 /*
2194  * returns 0 if the path could be dumped (probably truncated)
2195  * returns <0 in case of an error
2196  */
2197 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2198                          struct extent_buffer *eb, void *ctx)
2199 {
2200         struct inode_fs_paths *ipath = ctx;
2201         char *fspath;
2202         char *fspath_min;
2203         int i = ipath->fspath->elem_cnt;
2204         const int s_ptr = sizeof(char *);
2205         u32 bytes_left;
2206
2207         bytes_left = ipath->fspath->bytes_left > s_ptr ?
2208                                         ipath->fspath->bytes_left - s_ptr : 0;
2209
2210         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2211         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2212                                    name_off, eb, inum, fspath_min, bytes_left);
2213         if (IS_ERR(fspath))
2214                 return PTR_ERR(fspath);
2215
2216         if (fspath > fspath_min) {
2217                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2218                 ++ipath->fspath->elem_cnt;
2219                 ipath->fspath->bytes_left = fspath - fspath_min;
2220         } else {
2221                 ++ipath->fspath->elem_missed;
2222                 ipath->fspath->bytes_missing += fspath_min - fspath;
2223                 ipath->fspath->bytes_left = 0;
2224         }
2225
2226         return 0;
2227 }
2228
2229 /*
2230  * this dumps all file system paths to the inode into the ipath struct, provided
2231  * is has been created large enough. each path is zero-terminated and accessed
2232  * from ipath->fspath->val[i].
2233  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2234  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2235  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2236  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2237  * have been needed to return all paths.
2238  */
2239 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2240 {
2241         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2242                              inode_to_path, ipath);
2243 }
2244
2245 struct btrfs_data_container *init_data_container(u32 total_bytes)
2246 {
2247         struct btrfs_data_container *data;
2248         size_t alloc_bytes;
2249
2250         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2251         data = kvmalloc(alloc_bytes, GFP_KERNEL);
2252         if (!data)
2253                 return ERR_PTR(-ENOMEM);
2254
2255         if (total_bytes >= sizeof(*data)) {
2256                 data->bytes_left = total_bytes - sizeof(*data);
2257                 data->bytes_missing = 0;
2258         } else {
2259                 data->bytes_missing = sizeof(*data) - total_bytes;
2260                 data->bytes_left = 0;
2261         }
2262
2263         data->elem_cnt = 0;
2264         data->elem_missed = 0;
2265
2266         return data;
2267 }
2268
2269 /*
2270  * allocates space to return multiple file system paths for an inode.
2271  * total_bytes to allocate are passed, note that space usable for actual path
2272  * information will be total_bytes - sizeof(struct inode_fs_paths).
2273  * the returned pointer must be freed with free_ipath() in the end.
2274  */
2275 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2276                                         struct btrfs_path *path)
2277 {
2278         struct inode_fs_paths *ifp;
2279         struct btrfs_data_container *fspath;
2280
2281         fspath = init_data_container(total_bytes);
2282         if (IS_ERR(fspath))
2283                 return ERR_CAST(fspath);
2284
2285         ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2286         if (!ifp) {
2287                 kvfree(fspath);
2288                 return ERR_PTR(-ENOMEM);
2289         }
2290
2291         ifp->btrfs_path = path;
2292         ifp->fspath = fspath;
2293         ifp->fs_root = fs_root;
2294
2295         return ifp;
2296 }
2297
2298 void free_ipath(struct inode_fs_paths *ipath)
2299 {
2300         if (!ipath)
2301                 return;
2302         kvfree(ipath->fspath);
2303         kfree(ipath);
2304 }
2305
2306 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2307                 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2308 {
2309         struct btrfs_backref_iter *ret;
2310
2311         ret = kzalloc(sizeof(*ret), gfp_flag);
2312         if (!ret)
2313                 return NULL;
2314
2315         ret->path = btrfs_alloc_path();
2316         if (!ret->path) {
2317                 kfree(ret);
2318                 return NULL;
2319         }
2320
2321         /* Current backref iterator only supports iteration in commit root */
2322         ret->path->search_commit_root = 1;
2323         ret->path->skip_locking = 1;
2324         ret->fs_info = fs_info;
2325
2326         return ret;
2327 }
2328
2329 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2330 {
2331         struct btrfs_fs_info *fs_info = iter->fs_info;
2332         struct btrfs_path *path = iter->path;
2333         struct btrfs_extent_item *ei;
2334         struct btrfs_key key;
2335         int ret;
2336
2337         key.objectid = bytenr;
2338         key.type = BTRFS_METADATA_ITEM_KEY;
2339         key.offset = (u64)-1;
2340         iter->bytenr = bytenr;
2341
2342         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2343         if (ret < 0)
2344                 return ret;
2345         if (ret == 0) {
2346                 ret = -EUCLEAN;
2347                 goto release;
2348         }
2349         if (path->slots[0] == 0) {
2350                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2351                 ret = -EUCLEAN;
2352                 goto release;
2353         }
2354         path->slots[0]--;
2355
2356         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2357         if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2358              key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2359                 ret = -ENOENT;
2360                 goto release;
2361         }
2362         memcpy(&iter->cur_key, &key, sizeof(key));
2363         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2364                                                     path->slots[0]);
2365         iter->end_ptr = (u32)(iter->item_ptr +
2366                         btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2367         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2368                             struct btrfs_extent_item);
2369
2370         /*
2371          * Only support iteration on tree backref yet.
2372          *
2373          * This is an extra precaution for non skinny-metadata, where
2374          * EXTENT_ITEM is also used for tree blocks, that we can only use
2375          * extent flags to determine if it's a tree block.
2376          */
2377         if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2378                 ret = -ENOTSUPP;
2379                 goto release;
2380         }
2381         iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2382
2383         /* If there is no inline backref, go search for keyed backref */
2384         if (iter->cur_ptr >= iter->end_ptr) {
2385                 ret = btrfs_next_item(fs_info->extent_root, path);
2386
2387                 /* No inline nor keyed ref */
2388                 if (ret > 0) {
2389                         ret = -ENOENT;
2390                         goto release;
2391                 }
2392                 if (ret < 0)
2393                         goto release;
2394
2395                 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2396                                 path->slots[0]);
2397                 if (iter->cur_key.objectid != bytenr ||
2398                     (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2399                      iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2400                         ret = -ENOENT;
2401                         goto release;
2402                 }
2403                 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2404                                                            path->slots[0]);
2405                 iter->item_ptr = iter->cur_ptr;
2406                 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2407                                       path->nodes[0], path->slots[0]));
2408         }
2409
2410         return 0;
2411 release:
2412         btrfs_backref_iter_release(iter);
2413         return ret;
2414 }
2415
2416 /*
2417  * Go to the next backref item of current bytenr, can be either inlined or
2418  * keyed.
2419  *
2420  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2421  *
2422  * Return 0 if we get next backref without problem.
2423  * Return >0 if there is no extra backref for this bytenr.
2424  * Return <0 if there is something wrong happened.
2425  */
2426 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2427 {
2428         struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2429         struct btrfs_path *path = iter->path;
2430         struct btrfs_extent_inline_ref *iref;
2431         int ret;
2432         u32 size;
2433
2434         if (btrfs_backref_iter_is_inline_ref(iter)) {
2435                 /* We're still inside the inline refs */
2436                 ASSERT(iter->cur_ptr < iter->end_ptr);
2437
2438                 if (btrfs_backref_has_tree_block_info(iter)) {
2439                         /* First tree block info */
2440                         size = sizeof(struct btrfs_tree_block_info);
2441                 } else {
2442                         /* Use inline ref type to determine the size */
2443                         int type;
2444
2445                         iref = (struct btrfs_extent_inline_ref *)
2446                                 ((unsigned long)iter->cur_ptr);
2447                         type = btrfs_extent_inline_ref_type(eb, iref);
2448
2449                         size = btrfs_extent_inline_ref_size(type);
2450                 }
2451                 iter->cur_ptr += size;
2452                 if (iter->cur_ptr < iter->end_ptr)
2453                         return 0;
2454
2455                 /* All inline items iterated, fall through */
2456         }
2457
2458         /* We're at keyed items, there is no inline item, go to the next one */
2459         ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2460         if (ret)
2461                 return ret;
2462
2463         btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2464         if (iter->cur_key.objectid != iter->bytenr ||
2465             (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2466              iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2467                 return 1;
2468         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2469                                         path->slots[0]);
2470         iter->cur_ptr = iter->item_ptr;
2471         iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2472                                                 path->slots[0]);
2473         return 0;
2474 }
2475
2476 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2477                               struct btrfs_backref_cache *cache, int is_reloc)
2478 {
2479         int i;
2480
2481         cache->rb_root = RB_ROOT;
2482         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2483                 INIT_LIST_HEAD(&cache->pending[i]);
2484         INIT_LIST_HEAD(&cache->changed);
2485         INIT_LIST_HEAD(&cache->detached);
2486         INIT_LIST_HEAD(&cache->leaves);
2487         INIT_LIST_HEAD(&cache->pending_edge);
2488         INIT_LIST_HEAD(&cache->useless_node);
2489         cache->fs_info = fs_info;
2490         cache->is_reloc = is_reloc;
2491 }
2492
2493 struct btrfs_backref_node *btrfs_backref_alloc_node(
2494                 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2495 {
2496         struct btrfs_backref_node *node;
2497
2498         ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2499         node = kzalloc(sizeof(*node), GFP_NOFS);
2500         if (!node)
2501                 return node;
2502
2503         INIT_LIST_HEAD(&node->list);
2504         INIT_LIST_HEAD(&node->upper);
2505         INIT_LIST_HEAD(&node->lower);
2506         RB_CLEAR_NODE(&node->rb_node);
2507         cache->nr_nodes++;
2508         node->level = level;
2509         node->bytenr = bytenr;
2510
2511         return node;
2512 }
2513
2514 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2515                 struct btrfs_backref_cache *cache)
2516 {
2517         struct btrfs_backref_edge *edge;
2518
2519         edge = kzalloc(sizeof(*edge), GFP_NOFS);
2520         if (edge)
2521                 cache->nr_edges++;
2522         return edge;
2523 }
2524
2525 /*
2526  * Drop the backref node from cache, also cleaning up all its
2527  * upper edges and any uncached nodes in the path.
2528  *
2529  * This cleanup happens bottom up, thus the node should either
2530  * be the lowest node in the cache or a detached node.
2531  */
2532 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2533                                 struct btrfs_backref_node *node)
2534 {
2535         struct btrfs_backref_node *upper;
2536         struct btrfs_backref_edge *edge;
2537
2538         if (!node)
2539                 return;
2540
2541         BUG_ON(!node->lowest && !node->detached);
2542         while (!list_empty(&node->upper)) {
2543                 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2544                                   list[LOWER]);
2545                 upper = edge->node[UPPER];
2546                 list_del(&edge->list[LOWER]);
2547                 list_del(&edge->list[UPPER]);
2548                 btrfs_backref_free_edge(cache, edge);
2549
2550                 /*
2551                  * Add the node to leaf node list if no other child block
2552                  * cached.
2553                  */
2554                 if (list_empty(&upper->lower)) {
2555                         list_add_tail(&upper->lower, &cache->leaves);
2556                         upper->lowest = 1;
2557                 }
2558         }
2559
2560         btrfs_backref_drop_node(cache, node);
2561 }
2562
2563 /*
2564  * Release all nodes/edges from current cache
2565  */
2566 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2567 {
2568         struct btrfs_backref_node *node;
2569         int i;
2570
2571         while (!list_empty(&cache->detached)) {
2572                 node = list_entry(cache->detached.next,
2573                                   struct btrfs_backref_node, list);
2574                 btrfs_backref_cleanup_node(cache, node);
2575         }
2576
2577         while (!list_empty(&cache->leaves)) {
2578                 node = list_entry(cache->leaves.next,
2579                                   struct btrfs_backref_node, lower);
2580                 btrfs_backref_cleanup_node(cache, node);
2581         }
2582
2583         cache->last_trans = 0;
2584
2585         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2586                 ASSERT(list_empty(&cache->pending[i]));
2587         ASSERT(list_empty(&cache->pending_edge));
2588         ASSERT(list_empty(&cache->useless_node));
2589         ASSERT(list_empty(&cache->changed));
2590         ASSERT(list_empty(&cache->detached));
2591         ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2592         ASSERT(!cache->nr_nodes);
2593         ASSERT(!cache->nr_edges);
2594 }
2595
2596 /*
2597  * Handle direct tree backref
2598  *
2599  * Direct tree backref means, the backref item shows its parent bytenr
2600  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2601  *
2602  * @ref_key:    The converted backref key.
2603  *              For keyed backref, it's the item key.
2604  *              For inlined backref, objectid is the bytenr,
2605  *              type is btrfs_inline_ref_type, offset is
2606  *              btrfs_inline_ref_offset.
2607  */
2608 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2609                                       struct btrfs_key *ref_key,
2610                                       struct btrfs_backref_node *cur)
2611 {
2612         struct btrfs_backref_edge *edge;
2613         struct btrfs_backref_node *upper;
2614         struct rb_node *rb_node;
2615
2616         ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2617
2618         /* Only reloc root uses backref pointing to itself */
2619         if (ref_key->objectid == ref_key->offset) {
2620                 struct btrfs_root *root;
2621
2622                 cur->is_reloc_root = 1;
2623                 /* Only reloc backref cache cares about a specific root */
2624                 if (cache->is_reloc) {
2625                         root = find_reloc_root(cache->fs_info, cur->bytenr);
2626                         if (WARN_ON(!root))
2627                                 return -ENOENT;
2628                         cur->root = root;
2629                 } else {
2630                         /*
2631                          * For generic purpose backref cache, reloc root node
2632                          * is useless.
2633                          */
2634                         list_add(&cur->list, &cache->useless_node);
2635                 }
2636                 return 0;
2637         }
2638
2639         edge = btrfs_backref_alloc_edge(cache);
2640         if (!edge)
2641                 return -ENOMEM;
2642
2643         rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2644         if (!rb_node) {
2645                 /* Parent node not yet cached */
2646                 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2647                                            cur->level + 1);
2648                 if (!upper) {
2649                         btrfs_backref_free_edge(cache, edge);
2650                         return -ENOMEM;
2651                 }
2652
2653                 /*
2654                  *  Backrefs for the upper level block isn't cached, add the
2655                  *  block to pending list
2656                  */
2657                 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2658         } else {
2659                 /* Parent node already cached */
2660                 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2661                 ASSERT(upper->checked);
2662                 INIT_LIST_HEAD(&edge->list[UPPER]);
2663         }
2664         btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2665         return 0;
2666 }
2667
2668 /*
2669  * Handle indirect tree backref
2670  *
2671  * Indirect tree backref means, we only know which tree the node belongs to.
2672  * We still need to do a tree search to find out the parents. This is for
2673  * TREE_BLOCK_REF backref (keyed or inlined).
2674  *
2675  * @ref_key:    The same as @ref_key in  handle_direct_tree_backref()
2676  * @tree_key:   The first key of this tree block.
2677  * @path:       A clean (released) path, to avoid allocating path everytime
2678  *              the function get called.
2679  */
2680 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2681                                         struct btrfs_path *path,
2682                                         struct btrfs_key *ref_key,
2683                                         struct btrfs_key *tree_key,
2684                                         struct btrfs_backref_node *cur)
2685 {
2686         struct btrfs_fs_info *fs_info = cache->fs_info;
2687         struct btrfs_backref_node *upper;
2688         struct btrfs_backref_node *lower;
2689         struct btrfs_backref_edge *edge;
2690         struct extent_buffer *eb;
2691         struct btrfs_root *root;
2692         struct rb_node *rb_node;
2693         int level;
2694         bool need_check = true;
2695         int ret;
2696
2697         root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2698         if (IS_ERR(root))
2699                 return PTR_ERR(root);
2700         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2701                 cur->cowonly = 1;
2702
2703         if (btrfs_root_level(&root->root_item) == cur->level) {
2704                 /* Tree root */
2705                 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2706                 /*
2707                  * For reloc backref cache, we may ignore reloc root.  But for
2708                  * general purpose backref cache, we can't rely on
2709                  * btrfs_should_ignore_reloc_root() as it may conflict with
2710                  * current running relocation and lead to missing root.
2711                  *
2712                  * For general purpose backref cache, reloc root detection is
2713                  * completely relying on direct backref (key->offset is parent
2714                  * bytenr), thus only do such check for reloc cache.
2715                  */
2716                 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2717                         btrfs_put_root(root);
2718                         list_add(&cur->list, &cache->useless_node);
2719                 } else {
2720                         cur->root = root;
2721                 }
2722                 return 0;
2723         }
2724
2725         level = cur->level + 1;
2726
2727         /* Search the tree to find parent blocks referring to the block */
2728         path->search_commit_root = 1;
2729         path->skip_locking = 1;
2730         path->lowest_level = level;
2731         ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2732         path->lowest_level = 0;
2733         if (ret < 0) {
2734                 btrfs_put_root(root);
2735                 return ret;
2736         }
2737         if (ret > 0 && path->slots[level] > 0)
2738                 path->slots[level]--;
2739
2740         eb = path->nodes[level];
2741         if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2742                 btrfs_err(fs_info,
2743 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2744                           cur->bytenr, level - 1, root->root_key.objectid,
2745                           tree_key->objectid, tree_key->type, tree_key->offset);
2746                 btrfs_put_root(root);
2747                 ret = -ENOENT;
2748                 goto out;
2749         }
2750         lower = cur;
2751
2752         /* Add all nodes and edges in the path */
2753         for (; level < BTRFS_MAX_LEVEL; level++) {
2754                 if (!path->nodes[level]) {
2755                         ASSERT(btrfs_root_bytenr(&root->root_item) ==
2756                                lower->bytenr);
2757                         /* Same as previous should_ignore_reloc_root() call */
2758                         if (btrfs_should_ignore_reloc_root(root) &&
2759                             cache->is_reloc) {
2760                                 btrfs_put_root(root);
2761                                 list_add(&lower->list, &cache->useless_node);
2762                         } else {
2763                                 lower->root = root;
2764                         }
2765                         break;
2766                 }
2767
2768                 edge = btrfs_backref_alloc_edge(cache);
2769                 if (!edge) {
2770                         btrfs_put_root(root);
2771                         ret = -ENOMEM;
2772                         goto out;
2773                 }
2774
2775                 eb = path->nodes[level];
2776                 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2777                 if (!rb_node) {
2778                         upper = btrfs_backref_alloc_node(cache, eb->start,
2779                                                          lower->level + 1);
2780                         if (!upper) {
2781                                 btrfs_put_root(root);
2782                                 btrfs_backref_free_edge(cache, edge);
2783                                 ret = -ENOMEM;
2784                                 goto out;
2785                         }
2786                         upper->owner = btrfs_header_owner(eb);
2787                         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2788                                 upper->cowonly = 1;
2789
2790                         /*
2791                          * If we know the block isn't shared we can avoid
2792                          * checking its backrefs.
2793                          */
2794                         if (btrfs_block_can_be_shared(root, eb))
2795                                 upper->checked = 0;
2796                         else
2797                                 upper->checked = 1;
2798
2799                         /*
2800                          * Add the block to pending list if we need to check its
2801                          * backrefs, we only do this once while walking up a
2802                          * tree as we will catch anything else later on.
2803                          */
2804                         if (!upper->checked && need_check) {
2805                                 need_check = false;
2806                                 list_add_tail(&edge->list[UPPER],
2807                                               &cache->pending_edge);
2808                         } else {
2809                                 if (upper->checked)
2810                                         need_check = true;
2811                                 INIT_LIST_HEAD(&edge->list[UPPER]);
2812                         }
2813                 } else {
2814                         upper = rb_entry(rb_node, struct btrfs_backref_node,
2815                                          rb_node);
2816                         ASSERT(upper->checked);
2817                         INIT_LIST_HEAD(&edge->list[UPPER]);
2818                         if (!upper->owner)
2819                                 upper->owner = btrfs_header_owner(eb);
2820                 }
2821                 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2822
2823                 if (rb_node) {
2824                         btrfs_put_root(root);
2825                         break;
2826                 }
2827                 lower = upper;
2828                 upper = NULL;
2829         }
2830 out:
2831         btrfs_release_path(path);
2832         return ret;
2833 }
2834
2835 /*
2836  * Add backref node @cur into @cache.
2837  *
2838  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2839  *       links aren't yet bi-directional. Needs to finish such links.
2840  *       Use btrfs_backref_finish_upper_links() to finish such linkage.
2841  *
2842  * @path:       Released path for indirect tree backref lookup
2843  * @iter:       Released backref iter for extent tree search
2844  * @node_key:   The first key of the tree block
2845  */
2846 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2847                                 struct btrfs_path *path,
2848                                 struct btrfs_backref_iter *iter,
2849                                 struct btrfs_key *node_key,
2850                                 struct btrfs_backref_node *cur)
2851 {
2852         struct btrfs_fs_info *fs_info = cache->fs_info;
2853         struct btrfs_backref_edge *edge;
2854         struct btrfs_backref_node *exist;
2855         int ret;
2856
2857         ret = btrfs_backref_iter_start(iter, cur->bytenr);
2858         if (ret < 0)
2859                 return ret;
2860         /*
2861          * We skip the first btrfs_tree_block_info, as we don't use the key
2862          * stored in it, but fetch it from the tree block
2863          */
2864         if (btrfs_backref_has_tree_block_info(iter)) {
2865                 ret = btrfs_backref_iter_next(iter);
2866                 if (ret < 0)
2867                         goto out;
2868                 /* No extra backref? This means the tree block is corrupted */
2869                 if (ret > 0) {
2870                         ret = -EUCLEAN;
2871                         goto out;
2872                 }
2873         }
2874         WARN_ON(cur->checked);
2875         if (!list_empty(&cur->upper)) {
2876                 /*
2877                  * The backref was added previously when processing backref of
2878                  * type BTRFS_TREE_BLOCK_REF_KEY
2879                  */
2880                 ASSERT(list_is_singular(&cur->upper));
2881                 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2882                                   list[LOWER]);
2883                 ASSERT(list_empty(&edge->list[UPPER]));
2884                 exist = edge->node[UPPER];
2885                 /*
2886                  * Add the upper level block to pending list if we need check
2887                  * its backrefs
2888                  */
2889                 if (!exist->checked)
2890                         list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2891         } else {
2892                 exist = NULL;
2893         }
2894
2895         for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2896                 struct extent_buffer *eb;
2897                 struct btrfs_key key;
2898                 int type;
2899
2900                 cond_resched();
2901                 eb = btrfs_backref_get_eb(iter);
2902
2903                 key.objectid = iter->bytenr;
2904                 if (btrfs_backref_iter_is_inline_ref(iter)) {
2905                         struct btrfs_extent_inline_ref *iref;
2906
2907                         /* Update key for inline backref */
2908                         iref = (struct btrfs_extent_inline_ref *)
2909                                 ((unsigned long)iter->cur_ptr);
2910                         type = btrfs_get_extent_inline_ref_type(eb, iref,
2911                                                         BTRFS_REF_TYPE_BLOCK);
2912                         if (type == BTRFS_REF_TYPE_INVALID) {
2913                                 ret = -EUCLEAN;
2914                                 goto out;
2915                         }
2916                         key.type = type;
2917                         key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2918                 } else {
2919                         key.type = iter->cur_key.type;
2920                         key.offset = iter->cur_key.offset;
2921                 }
2922
2923                 /*
2924                  * Parent node found and matches current inline ref, no need to
2925                  * rebuild this node for this inline ref
2926                  */
2927                 if (exist &&
2928                     ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2929                       exist->owner == key.offset) ||
2930                      (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2931                       exist->bytenr == key.offset))) {
2932                         exist = NULL;
2933                         continue;
2934                 }
2935
2936                 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2937                 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2938                         ret = handle_direct_tree_backref(cache, &key, cur);
2939                         if (ret < 0)
2940                                 goto out;
2941                         continue;
2942                 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2943                         ret = -EINVAL;
2944                         btrfs_print_v0_err(fs_info);
2945                         btrfs_handle_fs_error(fs_info, ret, NULL);
2946                         goto out;
2947                 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2948                         continue;
2949                 }
2950
2951                 /*
2952                  * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2953                  * means the root objectid. We need to search the tree to get
2954                  * its parent bytenr.
2955                  */
2956                 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2957                                                    cur);
2958                 if (ret < 0)
2959                         goto out;
2960         }
2961         ret = 0;
2962         cur->checked = 1;
2963         WARN_ON(exist);
2964 out:
2965         btrfs_backref_iter_release(iter);
2966         return ret;
2967 }
2968
2969 /*
2970  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2971  */
2972 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2973                                      struct btrfs_backref_node *start)
2974 {
2975         struct list_head *useless_node = &cache->useless_node;
2976         struct btrfs_backref_edge *edge;
2977         struct rb_node *rb_node;
2978         LIST_HEAD(pending_edge);
2979
2980         ASSERT(start->checked);
2981
2982         /* Insert this node to cache if it's not COW-only */
2983         if (!start->cowonly) {
2984                 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2985                                            &start->rb_node);
2986                 if (rb_node)
2987                         btrfs_backref_panic(cache->fs_info, start->bytenr,
2988                                             -EEXIST);
2989                 list_add_tail(&start->lower, &cache->leaves);
2990         }
2991
2992         /*
2993          * Use breadth first search to iterate all related edges.
2994          *
2995          * The starting points are all the edges of this node
2996          */
2997         list_for_each_entry(edge, &start->upper, list[LOWER])
2998                 list_add_tail(&edge->list[UPPER], &pending_edge);
2999
3000         while (!list_empty(&pending_edge)) {
3001                 struct btrfs_backref_node *upper;
3002                 struct btrfs_backref_node *lower;
3003
3004                 edge = list_first_entry(&pending_edge,
3005                                 struct btrfs_backref_edge, list[UPPER]);
3006                 list_del_init(&edge->list[UPPER]);
3007                 upper = edge->node[UPPER];
3008                 lower = edge->node[LOWER];
3009
3010                 /* Parent is detached, no need to keep any edges */
3011                 if (upper->detached) {
3012                         list_del(&edge->list[LOWER]);
3013                         btrfs_backref_free_edge(cache, edge);
3014
3015                         /* Lower node is orphan, queue for cleanup */
3016                         if (list_empty(&lower->upper))
3017                                 list_add(&lower->list, useless_node);
3018                         continue;
3019                 }
3020
3021                 /*
3022                  * All new nodes added in current build_backref_tree() haven't
3023                  * been linked to the cache rb tree.
3024                  * So if we have upper->rb_node populated, this means a cache
3025                  * hit. We only need to link the edge, as @upper and all its
3026                  * parents have already been linked.
3027                  */
3028                 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3029                         if (upper->lowest) {
3030                                 list_del_init(&upper->lower);
3031                                 upper->lowest = 0;
3032                         }
3033
3034                         list_add_tail(&edge->list[UPPER], &upper->lower);
3035                         continue;
3036                 }
3037
3038                 /* Sanity check, we shouldn't have any unchecked nodes */
3039                 if (!upper->checked) {
3040                         ASSERT(0);
3041                         return -EUCLEAN;
3042                 }
3043
3044                 /* Sanity check, COW-only node has non-COW-only parent */
3045                 if (start->cowonly != upper->cowonly) {
3046                         ASSERT(0);
3047                         return -EUCLEAN;
3048                 }
3049
3050                 /* Only cache non-COW-only (subvolume trees) tree blocks */
3051                 if (!upper->cowonly) {
3052                         rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3053                                                    &upper->rb_node);
3054                         if (rb_node) {
3055                                 btrfs_backref_panic(cache->fs_info,
3056                                                 upper->bytenr, -EEXIST);
3057                                 return -EUCLEAN;
3058                         }
3059                 }
3060
3061                 list_add_tail(&edge->list[UPPER], &upper->lower);
3062
3063                 /*
3064                  * Also queue all the parent edges of this uncached node
3065                  * to finish the upper linkage
3066                  */
3067                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3068                         list_add_tail(&edge->list[UPPER], &pending_edge);
3069         }
3070         return 0;
3071 }
3072
3073 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3074                                  struct btrfs_backref_node *node)
3075 {
3076         struct btrfs_backref_node *lower;
3077         struct btrfs_backref_node *upper;
3078         struct btrfs_backref_edge *edge;
3079
3080         while (!list_empty(&cache->useless_node)) {
3081                 lower = list_first_entry(&cache->useless_node,
3082                                    struct btrfs_backref_node, list);
3083                 list_del_init(&lower->list);
3084         }
3085         while (!list_empty(&cache->pending_edge)) {
3086                 edge = list_first_entry(&cache->pending_edge,
3087                                 struct btrfs_backref_edge, list[UPPER]);
3088                 list_del(&edge->list[UPPER]);
3089                 list_del(&edge->list[LOWER]);
3090                 lower = edge->node[LOWER];
3091                 upper = edge->node[UPPER];
3092                 btrfs_backref_free_edge(cache, edge);
3093
3094                 /*
3095                  * Lower is no longer linked to any upper backref nodes and
3096                  * isn't in the cache, we can free it ourselves.
3097                  */
3098                 if (list_empty(&lower->upper) &&
3099                     RB_EMPTY_NODE(&lower->rb_node))
3100                         list_add(&lower->list, &cache->useless_node);
3101
3102                 if (!RB_EMPTY_NODE(&upper->rb_node))
3103                         continue;
3104
3105                 /* Add this guy's upper edges to the list to process */
3106                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3107                         list_add_tail(&edge->list[UPPER],
3108                                       &cache->pending_edge);
3109                 if (list_empty(&upper->upper))
3110                         list_add(&upper->list, &cache->useless_node);
3111         }
3112
3113         while (!list_empty(&cache->useless_node)) {
3114                 lower = list_first_entry(&cache->useless_node,
3115                                    struct btrfs_backref_node, list);
3116                 list_del_init(&lower->list);
3117                 if (lower == node)
3118                         node = NULL;
3119                 btrfs_backref_drop_node(cache, lower);
3120         }
3121
3122         btrfs_backref_cleanup_node(cache, node);
3123         ASSERT(list_empty(&cache->useless_node) &&
3124                list_empty(&cache->pending_edge));
3125 }