1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
9 #include <linux/init.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
40 struct block_device bdev;
41 struct inode vfs_inode;
44 static const struct address_space_operations def_blk_aops;
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
48 return container_of(inode, struct bdev_inode, vfs_inode);
51 struct block_device *I_BDEV(struct inode *inode)
53 return &BDEV_I(inode)->bdev;
55 EXPORT_SYMBOL(I_BDEV);
57 static void bdev_write_inode(struct block_device *bdev)
59 struct inode *inode = bdev->bd_inode;
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
72 spin_lock(&inode->i_lock);
74 spin_unlock(&inode->i_lock);
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
86 truncate_inode_pages(mapping, 0);
88 EXPORT_SYMBOL(kill_bdev);
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
95 if (mapping->nrpages) {
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
103 cleancache_invalidate_inode(mapping);
105 EXPORT_SYMBOL(invalidate_bdev);
107 static void set_init_blocksize(struct block_device *bdev)
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
112 while (bsize < PAGE_SIZE) {
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
121 int set_blocksize(struct block_device *bdev, int size)
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
141 EXPORT_SYMBOL(set_blocksize);
143 int sb_set_blocksize(struct super_block *sb, int size)
145 if (set_blocksize(sb->s_bdev, size))
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
154 EXPORT_SYMBOL(sb_set_blocksize);
156 int sb_min_blocksize(struct super_block *sb, int size)
158 int minsize = bdev_logical_block_size(sb->s_bdev);
161 return sb_set_blocksize(sb, size);
164 EXPORT_SYMBOL(sb_min_blocksize);
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
176 static struct inode *bdev_file_inode(struct file *file)
178 return file->f_mapping->host;
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
191 #define DIO_INLINE_BIO_VECS 4
193 static void blkdev_bio_end_io_simple(struct bio *bio)
195 struct task_struct *waiter = bio->bi_private;
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
214 if ((pos | iov_iter_alignment(iter)) &
215 (bdev_logical_block_size(bdev) - 1))
218 if (nr_pages <= DIO_INLINE_BIO_VECS)
221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
227 bio_init(&bio, vecs, nr_pages);
228 bio_set_dev(&bio, bdev);
229 bio.bi_iter.bi_sector = pos >> 9;
230 bio.bi_write_hint = iocb->ki_hint;
231 bio.bi_private = current;
232 bio.bi_end_io = blkdev_bio_end_io_simple;
233 bio.bi_ioprio = iocb->ki_ioprio;
235 ret = bio_iov_iter_get_pages(&bio, iter);
238 ret = bio.bi_iter.bi_size;
240 if (iov_iter_rw(iter) == READ) {
241 bio.bi_opf = REQ_OP_READ;
242 if (iter_is_iovec(iter))
245 bio.bi_opf = dio_bio_write_op(iocb);
246 task_io_account_write(ret);
248 if (iocb->ki_flags & IOCB_HIPRI)
249 bio_set_polled(&bio, iocb);
251 qc = submit_bio(&bio);
253 set_current_state(TASK_UNINTERRUPTIBLE);
254 if (!READ_ONCE(bio.bi_private))
256 if (!(iocb->ki_flags & IOCB_HIPRI) ||
257 !blk_poll(bdev_get_queue(bdev), qc, true))
260 __set_current_state(TASK_RUNNING);
262 bio_release_pages(&bio, should_dirty);
263 if (unlikely(bio.bi_status))
264 ret = blk_status_to_errno(bio.bi_status);
267 if (vecs != inline_vecs)
278 struct task_struct *waiter;
283 bool should_dirty : 1;
288 static struct bio_set blkdev_dio_pool;
290 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
292 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
293 struct request_queue *q = bdev_get_queue(bdev);
295 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
298 static void blkdev_bio_end_io(struct bio *bio)
300 struct blkdev_dio *dio = bio->bi_private;
301 bool should_dirty = dio->should_dirty;
303 if (bio->bi_status && !dio->bio.bi_status)
304 dio->bio.bi_status = bio->bi_status;
306 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
308 struct kiocb *iocb = dio->iocb;
311 if (likely(!dio->bio.bi_status)) {
315 ret = blk_status_to_errno(dio->bio.bi_status);
318 dio->iocb->ki_complete(iocb, ret, 0);
322 struct task_struct *waiter = dio->waiter;
324 WRITE_ONCE(dio->waiter, NULL);
325 blk_wake_io_task(waiter);
330 bio_check_pages_dirty(bio);
332 bio_release_pages(bio, false);
338 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
340 struct file *file = iocb->ki_filp;
341 struct inode *inode = bdev_file_inode(file);
342 struct block_device *bdev = I_BDEV(inode);
343 struct blk_plug plug;
344 struct blkdev_dio *dio;
346 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
347 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
348 loff_t pos = iocb->ki_pos;
349 blk_qc_t qc = BLK_QC_T_NONE;
352 if ((pos | iov_iter_alignment(iter)) &
353 (bdev_logical_block_size(bdev) - 1))
356 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
358 dio = container_of(bio, struct blkdev_dio, bio);
359 dio->is_sync = is_sync = is_sync_kiocb(iocb);
361 dio->waiter = current;
368 dio->multi_bio = false;
369 dio->should_dirty = is_read && iter_is_iovec(iter);
372 * Don't plug for HIPRI/polled IO, as those should go straight
376 blk_start_plug(&plug);
379 bio_set_dev(bio, bdev);
380 bio->bi_iter.bi_sector = pos >> 9;
381 bio->bi_write_hint = iocb->ki_hint;
382 bio->bi_private = dio;
383 bio->bi_end_io = blkdev_bio_end_io;
384 bio->bi_ioprio = iocb->ki_ioprio;
386 ret = bio_iov_iter_get_pages(bio, iter);
388 bio->bi_status = BLK_STS_IOERR;
394 bio->bi_opf = REQ_OP_READ;
395 if (dio->should_dirty)
396 bio_set_pages_dirty(bio);
398 bio->bi_opf = dio_bio_write_op(iocb);
399 task_io_account_write(bio->bi_iter.bi_size);
402 dio->size += bio->bi_iter.bi_size;
403 pos += bio->bi_iter.bi_size;
405 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
409 if (iocb->ki_flags & IOCB_HIPRI) {
410 bio_set_polled(bio, iocb);
414 qc = submit_bio(bio);
417 WRITE_ONCE(iocb->ki_cookie, qc);
421 if (!dio->multi_bio) {
423 * AIO needs an extra reference to ensure the dio
424 * structure which is embedded into the first bio
429 dio->multi_bio = true;
430 atomic_set(&dio->ref, 2);
432 atomic_inc(&dio->ref);
436 bio = bio_alloc(GFP_KERNEL, nr_pages);
440 blk_finish_plug(&plug);
446 set_current_state(TASK_UNINTERRUPTIBLE);
447 if (!READ_ONCE(dio->waiter))
450 if (!(iocb->ki_flags & IOCB_HIPRI) ||
451 !blk_poll(bdev_get_queue(bdev), qc, true))
454 __set_current_state(TASK_RUNNING);
457 ret = blk_status_to_errno(dio->bio.bi_status);
466 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
470 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
473 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
474 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
476 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
479 static __init int blkdev_init(void)
481 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
483 module_init(blkdev_init);
485 int __sync_blockdev(struct block_device *bdev, int wait)
490 return filemap_flush(bdev->bd_inode->i_mapping);
491 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
495 * Write out and wait upon all the dirty data associated with a block
496 * device via its mapping. Does not take the superblock lock.
498 int sync_blockdev(struct block_device *bdev)
500 return __sync_blockdev(bdev, 1);
502 EXPORT_SYMBOL(sync_blockdev);
505 * Write out and wait upon all dirty data associated with this
506 * device. Filesystem data as well as the underlying block
507 * device. Takes the superblock lock.
509 int fsync_bdev(struct block_device *bdev)
511 struct super_block *sb = get_super(bdev);
513 int res = sync_filesystem(sb);
517 return sync_blockdev(bdev);
519 EXPORT_SYMBOL(fsync_bdev);
522 * freeze_bdev -- lock a filesystem and force it into a consistent state
523 * @bdev: blockdevice to lock
525 * If a superblock is found on this device, we take the s_umount semaphore
526 * on it to make sure nobody unmounts until the snapshot creation is done.
527 * The reference counter (bd_fsfreeze_count) guarantees that only the last
528 * unfreeze process can unfreeze the frozen filesystem actually when multiple
529 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
530 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
533 struct super_block *freeze_bdev(struct block_device *bdev)
535 struct super_block *sb;
538 mutex_lock(&bdev->bd_fsfreeze_mutex);
539 if (++bdev->bd_fsfreeze_count > 1) {
541 * We don't even need to grab a reference - the first call
542 * to freeze_bdev grab an active reference and only the last
543 * thaw_bdev drops it.
545 sb = get_super(bdev);
548 mutex_unlock(&bdev->bd_fsfreeze_mutex);
552 sb = get_active_super(bdev);
555 if (sb->s_op->freeze_super)
556 error = sb->s_op->freeze_super(sb);
558 error = freeze_super(sb);
560 deactivate_super(sb);
561 bdev->bd_fsfreeze_count--;
562 mutex_unlock(&bdev->bd_fsfreeze_mutex);
563 return ERR_PTR(error);
565 deactivate_super(sb);
568 mutex_unlock(&bdev->bd_fsfreeze_mutex);
569 return sb; /* thaw_bdev releases s->s_umount */
571 EXPORT_SYMBOL(freeze_bdev);
574 * thaw_bdev -- unlock filesystem
575 * @bdev: blockdevice to unlock
576 * @sb: associated superblock
578 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
580 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
584 mutex_lock(&bdev->bd_fsfreeze_mutex);
585 if (!bdev->bd_fsfreeze_count)
589 if (--bdev->bd_fsfreeze_count > 0)
595 if (sb->s_op->thaw_super)
596 error = sb->s_op->thaw_super(sb);
598 error = thaw_super(sb);
600 bdev->bd_fsfreeze_count++;
602 mutex_unlock(&bdev->bd_fsfreeze_mutex);
605 EXPORT_SYMBOL(thaw_bdev);
607 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
609 return block_write_full_page(page, blkdev_get_block, wbc);
612 static int blkdev_readpage(struct file * file, struct page * page)
614 return block_read_full_page(page, blkdev_get_block);
617 static void blkdev_readahead(struct readahead_control *rac)
619 mpage_readahead(rac, blkdev_get_block);
622 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
623 loff_t pos, unsigned len, unsigned flags,
624 struct page **pagep, void **fsdata)
626 return block_write_begin(mapping, pos, len, flags, pagep,
630 static int blkdev_write_end(struct file *file, struct address_space *mapping,
631 loff_t pos, unsigned len, unsigned copied,
632 struct page *page, void *fsdata)
635 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
645 * for a block special file file_inode(file)->i_size is zero
646 * so we compute the size by hand (just as in block_read/write above)
648 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
650 struct inode *bd_inode = bdev_file_inode(file);
653 inode_lock(bd_inode);
654 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
655 inode_unlock(bd_inode);
659 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
661 struct inode *bd_inode = bdev_file_inode(filp);
662 struct block_device *bdev = I_BDEV(bd_inode);
665 error = file_write_and_wait_range(filp, start, end);
670 * There is no need to serialise calls to blkdev_issue_flush with
671 * i_mutex and doing so causes performance issues with concurrent
672 * O_SYNC writers to a block device.
674 error = blkdev_issue_flush(bdev, GFP_KERNEL);
675 if (error == -EOPNOTSUPP)
680 EXPORT_SYMBOL(blkdev_fsync);
683 * bdev_read_page() - Start reading a page from a block device
684 * @bdev: The device to read the page from
685 * @sector: The offset on the device to read the page to (need not be aligned)
686 * @page: The page to read
688 * On entry, the page should be locked. It will be unlocked when the page
689 * has been read. If the block driver implements rw_page synchronously,
690 * that will be true on exit from this function, but it need not be.
692 * Errors returned by this function are usually "soft", eg out of memory, or
693 * queue full; callers should try a different route to read this page rather
694 * than propagate an error back up the stack.
696 * Return: negative errno if an error occurs, 0 if submission was successful.
698 int bdev_read_page(struct block_device *bdev, sector_t sector,
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
702 int result = -EOPNOTSUPP;
704 if (!ops->rw_page || bdev_get_integrity(bdev))
707 result = blk_queue_enter(bdev->bd_queue, 0);
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
712 blk_queue_exit(bdev->bd_queue);
717 * bdev_write_page() - Start writing a page to a block device
718 * @bdev: The device to write the page to
719 * @sector: The offset on the device to write the page to (need not be aligned)
720 * @page: The page to write
721 * @wbc: The writeback_control for the write
723 * On entry, the page should be locked and not currently under writeback.
724 * On exit, if the write started successfully, the page will be unlocked and
725 * under writeback. If the write failed already (eg the driver failed to
726 * queue the page to the device), the page will still be locked. If the
727 * caller is a ->writepage implementation, it will need to unlock the page.
729 * Errors returned by this function are usually "soft", eg out of memory, or
730 * queue full; callers should try a different route to write this page rather
731 * than propagate an error back up the stack.
733 * Return: negative errno if an error occurs, 0 if submission was successful.
735 int bdev_write_page(struct block_device *bdev, sector_t sector,
736 struct page *page, struct writeback_control *wbc)
739 const struct block_device_operations *ops = bdev->bd_disk->fops;
741 if (!ops->rw_page || bdev_get_integrity(bdev))
743 result = blk_queue_enter(bdev->bd_queue, 0);
747 set_page_writeback(page);
748 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
751 end_page_writeback(page);
753 clean_page_buffers(page);
756 blk_queue_exit(bdev->bd_queue);
764 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
765 static struct kmem_cache * bdev_cachep __read_mostly;
767 static struct inode *bdev_alloc_inode(struct super_block *sb)
769 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
772 return &ei->vfs_inode;
775 static void bdev_free_inode(struct inode *inode)
777 kmem_cache_free(bdev_cachep, BDEV_I(inode));
780 static void init_once(void *foo)
782 struct bdev_inode *ei = (struct bdev_inode *) foo;
783 struct block_device *bdev = &ei->bdev;
785 memset(bdev, 0, sizeof(*bdev));
786 mutex_init(&bdev->bd_mutex);
787 INIT_LIST_HEAD(&bdev->bd_list);
789 INIT_LIST_HEAD(&bdev->bd_holder_disks);
791 bdev->bd_bdi = &noop_backing_dev_info;
792 inode_init_once(&ei->vfs_inode);
793 /* Initialize mutex for freeze. */
794 mutex_init(&bdev->bd_fsfreeze_mutex);
797 static void bdev_evict_inode(struct inode *inode)
799 struct block_device *bdev = &BDEV_I(inode)->bdev;
800 truncate_inode_pages_final(&inode->i_data);
801 invalidate_inode_buffers(inode); /* is it needed here? */
803 spin_lock(&bdev_lock);
804 list_del_init(&bdev->bd_list);
805 spin_unlock(&bdev_lock);
806 /* Detach inode from wb early as bdi_put() may free bdi->wb */
807 inode_detach_wb(inode);
808 if (bdev->bd_bdi != &noop_backing_dev_info) {
809 bdi_put(bdev->bd_bdi);
810 bdev->bd_bdi = &noop_backing_dev_info;
814 static const struct super_operations bdev_sops = {
815 .statfs = simple_statfs,
816 .alloc_inode = bdev_alloc_inode,
817 .free_inode = bdev_free_inode,
818 .drop_inode = generic_delete_inode,
819 .evict_inode = bdev_evict_inode,
822 static int bd_init_fs_context(struct fs_context *fc)
824 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
827 fc->s_iflags |= SB_I_CGROUPWB;
828 ctx->ops = &bdev_sops;
832 static struct file_system_type bd_type = {
834 .init_fs_context = bd_init_fs_context,
835 .kill_sb = kill_anon_super,
838 struct super_block *blockdev_superblock __read_mostly;
839 EXPORT_SYMBOL_GPL(blockdev_superblock);
841 void __init bdev_cache_init(void)
844 static struct vfsmount *bd_mnt;
846 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
847 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
848 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
850 err = register_filesystem(&bd_type);
852 panic("Cannot register bdev pseudo-fs");
853 bd_mnt = kern_mount(&bd_type);
855 panic("Cannot create bdev pseudo-fs");
856 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
860 * Most likely _very_ bad one - but then it's hardly critical for small
861 * /dev and can be fixed when somebody will need really large one.
862 * Keep in mind that it will be fed through icache hash function too.
864 static inline unsigned long hash(dev_t dev)
866 return MAJOR(dev)+MINOR(dev);
869 static int bdev_test(struct inode *inode, void *data)
871 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
874 static int bdev_set(struct inode *inode, void *data)
876 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
880 static LIST_HEAD(all_bdevs);
882 struct block_device *bdget(dev_t dev)
884 struct block_device *bdev;
887 inode = iget5_locked(blockdev_superblock, hash(dev),
888 bdev_test, bdev_set, &dev);
893 bdev = &BDEV_I(inode)->bdev;
895 if (inode->i_state & I_NEW) {
896 bdev->bd_contains = NULL;
897 bdev->bd_super = NULL;
898 bdev->bd_inode = inode;
899 bdev->bd_block_size = i_blocksize(inode);
900 bdev->bd_part_count = 0;
901 bdev->bd_invalidated = 0;
902 inode->i_mode = S_IFBLK;
904 inode->i_bdev = bdev;
905 inode->i_data.a_ops = &def_blk_aops;
906 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
907 spin_lock(&bdev_lock);
908 list_add(&bdev->bd_list, &all_bdevs);
909 spin_unlock(&bdev_lock);
910 unlock_new_inode(inode);
915 EXPORT_SYMBOL(bdget);
918 * bdgrab -- Grab a reference to an already referenced block device
919 * @bdev: Block device to grab a reference to.
921 struct block_device *bdgrab(struct block_device *bdev)
923 ihold(bdev->bd_inode);
926 EXPORT_SYMBOL(bdgrab);
928 long nr_blockdev_pages(void)
930 struct block_device *bdev;
932 spin_lock(&bdev_lock);
933 list_for_each_entry(bdev, &all_bdevs, bd_list) {
934 ret += bdev->bd_inode->i_mapping->nrpages;
936 spin_unlock(&bdev_lock);
940 void bdput(struct block_device *bdev)
942 iput(bdev->bd_inode);
945 EXPORT_SYMBOL(bdput);
947 static struct block_device *bd_acquire(struct inode *inode)
949 struct block_device *bdev;
951 spin_lock(&bdev_lock);
952 bdev = inode->i_bdev;
953 if (bdev && !inode_unhashed(bdev->bd_inode)) {
955 spin_unlock(&bdev_lock);
958 spin_unlock(&bdev_lock);
961 * i_bdev references block device inode that was already shut down
962 * (corresponding device got removed). Remove the reference and look
963 * up block device inode again just in case new device got
964 * reestablished under the same device number.
969 bdev = bdget(inode->i_rdev);
971 spin_lock(&bdev_lock);
972 if (!inode->i_bdev) {
974 * We take an additional reference to bd_inode,
975 * and it's released in clear_inode() of inode.
976 * So, we can access it via ->i_mapping always
980 inode->i_bdev = bdev;
981 inode->i_mapping = bdev->bd_inode->i_mapping;
983 spin_unlock(&bdev_lock);
988 /* Call when you free inode */
990 void bd_forget(struct inode *inode)
992 struct block_device *bdev = NULL;
994 spin_lock(&bdev_lock);
995 if (!sb_is_blkdev_sb(inode->i_sb))
996 bdev = inode->i_bdev;
997 inode->i_bdev = NULL;
998 inode->i_mapping = &inode->i_data;
999 spin_unlock(&bdev_lock);
1006 * bd_may_claim - test whether a block device can be claimed
1007 * @bdev: block device of interest
1008 * @whole: whole block device containing @bdev, may equal @bdev
1009 * @holder: holder trying to claim @bdev
1011 * Test whether @bdev can be claimed by @holder.
1014 * spin_lock(&bdev_lock).
1017 * %true if @bdev can be claimed, %false otherwise.
1019 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1022 if (bdev->bd_holder == holder)
1023 return true; /* already a holder */
1024 else if (bdev->bd_holder != NULL)
1025 return false; /* held by someone else */
1026 else if (whole == bdev)
1027 return true; /* is a whole device which isn't held */
1029 else if (whole->bd_holder == bd_may_claim)
1030 return true; /* is a partition of a device that is being partitioned */
1031 else if (whole->bd_holder != NULL)
1032 return false; /* is a partition of a held device */
1034 return true; /* is a partition of an un-held device */
1038 * bd_prepare_to_claim - prepare to claim a block device
1039 * @bdev: block device of interest
1040 * @whole: the whole device containing @bdev, may equal @bdev
1041 * @holder: holder trying to claim @bdev
1043 * Prepare to claim @bdev. This function fails if @bdev is already
1044 * claimed by another holder and waits if another claiming is in
1045 * progress. This function doesn't actually claim. On successful
1046 * return, the caller has ownership of bd_claiming and bd_holder[s].
1049 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1050 * it multiple times.
1053 * 0 if @bdev can be claimed, -EBUSY otherwise.
1055 static int bd_prepare_to_claim(struct block_device *bdev,
1056 struct block_device *whole, void *holder)
1059 /* if someone else claimed, fail */
1060 if (!bd_may_claim(bdev, whole, holder))
1063 /* if claiming is already in progress, wait for it to finish */
1064 if (whole->bd_claiming) {
1065 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1068 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1069 spin_unlock(&bdev_lock);
1071 finish_wait(wq, &wait);
1072 spin_lock(&bdev_lock);
1080 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1082 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1087 * Now that we hold gendisk reference we make sure bdev we looked up is
1088 * not stale. If it is, it means device got removed and created before
1089 * we looked up gendisk and we fail open in such case. Associating
1090 * unhashed bdev with newly created gendisk could lead to two bdevs
1091 * (and thus two independent caches) being associated with one device
1094 if (inode_unhashed(bdev->bd_inode)) {
1095 put_disk_and_module(disk);
1102 * bd_start_claiming - start claiming a block device
1103 * @bdev: block device of interest
1104 * @holder: holder trying to claim @bdev
1106 * @bdev is about to be opened exclusively. Check @bdev can be opened
1107 * exclusively and mark that an exclusive open is in progress. Each
1108 * successful call to this function must be matched with a call to
1109 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1112 * This function is used to gain exclusive access to the block device
1113 * without actually causing other exclusive open attempts to fail. It
1114 * should be used when the open sequence itself requires exclusive
1115 * access but may subsequently fail.
1121 * Pointer to the block device containing @bdev on success, ERR_PTR()
1124 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1126 struct gendisk *disk;
1127 struct block_device *whole;
1133 * @bdev might not have been initialized properly yet, look up
1134 * and grab the outer block device the hard way.
1136 disk = bdev_get_gendisk(bdev, &partno);
1138 return ERR_PTR(-ENXIO);
1141 * Normally, @bdev should equal what's returned from bdget_disk()
1142 * if partno is 0; however, some drivers (floppy) use multiple
1143 * bdev's for the same physical device and @bdev may be one of the
1144 * aliases. Keep @bdev if partno is 0. This means claimer
1145 * tracking is broken for those devices but it has always been that
1149 whole = bdget_disk(disk, 0);
1151 whole = bdgrab(bdev);
1153 put_disk_and_module(disk);
1155 return ERR_PTR(-ENOMEM);
1157 /* prepare to claim, if successful, mark claiming in progress */
1158 spin_lock(&bdev_lock);
1160 err = bd_prepare_to_claim(bdev, whole, holder);
1162 whole->bd_claiming = holder;
1163 spin_unlock(&bdev_lock);
1166 spin_unlock(&bdev_lock);
1168 return ERR_PTR(err);
1171 EXPORT_SYMBOL(bd_start_claiming);
1173 static void bd_clear_claiming(struct block_device *whole, void *holder)
1175 lockdep_assert_held(&bdev_lock);
1176 /* tell others that we're done */
1177 BUG_ON(whole->bd_claiming != holder);
1178 whole->bd_claiming = NULL;
1179 wake_up_bit(&whole->bd_claiming, 0);
1183 * bd_finish_claiming - finish claiming of a block device
1184 * @bdev: block device of interest
1185 * @whole: whole block device (returned from bd_start_claiming())
1186 * @holder: holder that has claimed @bdev
1188 * Finish exclusive open of a block device. Mark the device as exlusively
1189 * open by the holder and wake up all waiters for exclusive open to finish.
1191 void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1194 spin_lock(&bdev_lock);
1195 BUG_ON(!bd_may_claim(bdev, whole, holder));
1197 * Note that for a whole device bd_holders will be incremented twice,
1198 * and bd_holder will be set to bd_may_claim before being set to holder
1200 whole->bd_holders++;
1201 whole->bd_holder = bd_may_claim;
1203 bdev->bd_holder = holder;
1204 bd_clear_claiming(whole, holder);
1205 spin_unlock(&bdev_lock);
1207 EXPORT_SYMBOL(bd_finish_claiming);
1210 * bd_abort_claiming - abort claiming of a block device
1211 * @bdev: block device of interest
1212 * @whole: whole block device (returned from bd_start_claiming())
1213 * @holder: holder that has claimed @bdev
1215 * Abort claiming of a block device when the exclusive open failed. This can be
1216 * also used when exclusive open is not actually desired and we just needed
1217 * to block other exclusive openers for a while.
1219 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1222 spin_lock(&bdev_lock);
1223 bd_clear_claiming(whole, holder);
1224 spin_unlock(&bdev_lock);
1226 EXPORT_SYMBOL(bd_abort_claiming);
1229 struct bd_holder_disk {
1230 struct list_head list;
1231 struct gendisk *disk;
1235 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1236 struct gendisk *disk)
1238 struct bd_holder_disk *holder;
1240 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1241 if (holder->disk == disk)
1246 static int add_symlink(struct kobject *from, struct kobject *to)
1248 return sysfs_create_link(from, to, kobject_name(to));
1251 static void del_symlink(struct kobject *from, struct kobject *to)
1253 sysfs_remove_link(from, kobject_name(to));
1257 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1258 * @bdev: the claimed slave bdev
1259 * @disk: the holding disk
1261 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1263 * This functions creates the following sysfs symlinks.
1265 * - from "slaves" directory of the holder @disk to the claimed @bdev
1266 * - from "holders" directory of the @bdev to the holder @disk
1268 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1269 * passed to bd_link_disk_holder(), then:
1271 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1272 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1274 * The caller must have claimed @bdev before calling this function and
1275 * ensure that both @bdev and @disk are valid during the creation and
1276 * lifetime of these symlinks.
1282 * 0 on success, -errno on failure.
1284 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1286 struct bd_holder_disk *holder;
1289 mutex_lock(&bdev->bd_mutex);
1291 WARN_ON_ONCE(!bdev->bd_holder);
1293 /* FIXME: remove the following once add_disk() handles errors */
1294 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1297 holder = bd_find_holder_disk(bdev, disk);
1303 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1309 INIT_LIST_HEAD(&holder->list);
1310 holder->disk = disk;
1313 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1317 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1321 * bdev could be deleted beneath us which would implicitly destroy
1322 * the holder directory. Hold on to it.
1324 kobject_get(bdev->bd_part->holder_dir);
1326 list_add(&holder->list, &bdev->bd_holder_disks);
1330 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1334 mutex_unlock(&bdev->bd_mutex);
1337 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1340 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1341 * @bdev: the calimed slave bdev
1342 * @disk: the holding disk
1344 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1349 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1351 struct bd_holder_disk *holder;
1353 mutex_lock(&bdev->bd_mutex);
1355 holder = bd_find_holder_disk(bdev, disk);
1357 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1358 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1359 del_symlink(bdev->bd_part->holder_dir,
1360 &disk_to_dev(disk)->kobj);
1361 kobject_put(bdev->bd_part->holder_dir);
1362 list_del_init(&holder->list);
1366 mutex_unlock(&bdev->bd_mutex);
1368 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1372 * flush_disk - invalidates all buffer-cache entries on a disk
1374 * @bdev: struct block device to be flushed
1375 * @kill_dirty: flag to guide handling of dirty inodes
1377 * Invalidates all buffer-cache entries on a disk. It should be called
1378 * when a disk has been changed -- either by a media change or online
1381 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1383 if (__invalidate_device(bdev, kill_dirty)) {
1384 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1385 "resized disk %s\n",
1386 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1388 bdev->bd_invalidated = 1;
1392 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1393 * @disk: struct gendisk to check
1394 * @bdev: struct bdev to adjust.
1395 * @verbose: if %true log a message about a size change if there is any
1397 * This routine checks to see if the bdev size does not match the disk size
1398 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1401 static void check_disk_size_change(struct gendisk *disk,
1402 struct block_device *bdev, bool verbose)
1404 loff_t disk_size, bdev_size;
1406 disk_size = (loff_t)get_capacity(disk) << 9;
1407 bdev_size = i_size_read(bdev->bd_inode);
1408 if (disk_size != bdev_size) {
1411 "%s: detected capacity change from %lld to %lld\n",
1412 disk->disk_name, bdev_size, disk_size);
1414 i_size_write(bdev->bd_inode, disk_size);
1415 if (bdev_size > disk_size)
1416 flush_disk(bdev, false);
1418 bdev->bd_invalidated = 0;
1422 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1423 * @disk: struct gendisk to be revalidated
1425 * This routine is a wrapper for lower-level driver's revalidate_disk
1426 * call-backs. It is used to do common pre and post operations needed
1427 * for all revalidate_disk operations.
1429 int revalidate_disk(struct gendisk *disk)
1433 if (disk->fops->revalidate_disk)
1434 ret = disk->fops->revalidate_disk(disk);
1437 * Hidden disks don't have associated bdev so there's no point in
1440 if (!(disk->flags & GENHD_FL_HIDDEN)) {
1441 struct block_device *bdev = bdget_disk(disk, 0);
1446 mutex_lock(&bdev->bd_mutex);
1447 check_disk_size_change(disk, bdev, ret == 0);
1448 mutex_unlock(&bdev->bd_mutex);
1453 EXPORT_SYMBOL(revalidate_disk);
1456 * This routine checks whether a removable media has been changed,
1457 * and invalidates all buffer-cache-entries in that case. This
1458 * is a relatively slow routine, so we have to try to minimize using
1459 * it. Thus it is called only upon a 'mount' or 'open'. This
1460 * is the best way of combining speed and utility, I think.
1461 * People changing diskettes in the middle of an operation deserve
1464 int check_disk_change(struct block_device *bdev)
1466 struct gendisk *disk = bdev->bd_disk;
1467 const struct block_device_operations *bdops = disk->fops;
1468 unsigned int events;
1470 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1471 DISK_EVENT_EJECT_REQUEST);
1472 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1475 flush_disk(bdev, true);
1476 if (bdops->revalidate_disk)
1477 bdops->revalidate_disk(bdev->bd_disk);
1481 EXPORT_SYMBOL(check_disk_change);
1483 void bd_set_size(struct block_device *bdev, loff_t size)
1485 inode_lock(bdev->bd_inode);
1486 i_size_write(bdev->bd_inode, size);
1487 inode_unlock(bdev->bd_inode);
1489 EXPORT_SYMBOL(bd_set_size);
1491 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1493 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1495 struct gendisk *disk = bdev->bd_disk;
1498 lockdep_assert_held(&bdev->bd_mutex);
1501 ret = blk_drop_partitions(bdev);
1506 * Historically we only set the capacity to zero for devices that
1507 * support partitions (independ of actually having partitions created).
1508 * Doing that is rather inconsistent, but changing it broke legacy
1509 * udisks polling for legacy ide-cdrom devices. Use the crude check
1510 * below to get the sane behavior for most device while not breaking
1511 * userspace for this particular setup.
1514 if (disk_part_scan_enabled(disk) ||
1515 !(disk->flags & GENHD_FL_REMOVABLE))
1516 set_capacity(disk, 0);
1518 if (disk->fops->revalidate_disk)
1519 disk->fops->revalidate_disk(disk);
1522 check_disk_size_change(disk, bdev, !invalidate);
1524 if (get_capacity(disk)) {
1525 ret = blk_add_partitions(disk, bdev);
1528 } else if (invalidate) {
1530 * Tell userspace that the media / partition table may have
1533 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1539 * Only exported for for loop and dasd for historic reasons. Don't use in new
1542 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1547 * mutex_lock(part->bd_mutex)
1548 * mutex_lock_nested(whole->bd_mutex, 1)
1551 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1553 struct gendisk *disk;
1557 bool first_open = false;
1559 if (mode & FMODE_READ)
1561 if (mode & FMODE_WRITE)
1564 * hooks: /n/, see "layering violations".
1567 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1577 disk = bdev_get_gendisk(bdev, &partno);
1581 disk_block_events(disk);
1582 mutex_lock_nested(&bdev->bd_mutex, for_part);
1583 if (!bdev->bd_openers) {
1585 bdev->bd_disk = disk;
1586 bdev->bd_queue = disk->queue;
1587 bdev->bd_contains = bdev;
1588 bdev->bd_partno = partno;
1592 bdev->bd_part = disk_get_part(disk, partno);
1597 if (disk->fops->open) {
1598 ret = disk->fops->open(bdev, mode);
1599 if (ret == -ERESTARTSYS) {
1600 /* Lost a race with 'disk' being
1601 * deleted, try again.
1604 disk_put_part(bdev->bd_part);
1605 bdev->bd_part = NULL;
1606 bdev->bd_disk = NULL;
1607 bdev->bd_queue = NULL;
1608 mutex_unlock(&bdev->bd_mutex);
1609 disk_unblock_events(disk);
1610 put_disk_and_module(disk);
1616 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1617 set_init_blocksize(bdev);
1621 * If the device is invalidated, rescan partition
1622 * if open succeeded or failed with -ENOMEDIUM.
1623 * The latter is necessary to prevent ghost
1624 * partitions on a removed medium.
1626 if (bdev->bd_invalidated &&
1627 (!ret || ret == -ENOMEDIUM))
1628 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1633 struct block_device *whole;
1634 whole = bdget_disk(disk, 0);
1639 ret = __blkdev_get(whole, mode, 1);
1642 bdev->bd_contains = whole;
1643 bdev->bd_part = disk_get_part(disk, partno);
1644 if (!(disk->flags & GENHD_FL_UP) ||
1645 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1649 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1650 set_init_blocksize(bdev);
1653 if (bdev->bd_bdi == &noop_backing_dev_info)
1654 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1656 if (bdev->bd_contains == bdev) {
1658 if (bdev->bd_disk->fops->open)
1659 ret = bdev->bd_disk->fops->open(bdev, mode);
1660 /* the same as first opener case, read comment there */
1661 if (bdev->bd_invalidated &&
1662 (!ret || ret == -ENOMEDIUM))
1663 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1665 goto out_unlock_bdev;
1670 bdev->bd_part_count++;
1671 mutex_unlock(&bdev->bd_mutex);
1672 disk_unblock_events(disk);
1673 /* only one opener holds refs to the module and disk */
1675 put_disk_and_module(disk);
1679 disk_put_part(bdev->bd_part);
1680 bdev->bd_disk = NULL;
1681 bdev->bd_part = NULL;
1682 bdev->bd_queue = NULL;
1683 if (bdev != bdev->bd_contains)
1684 __blkdev_put(bdev->bd_contains, mode, 1);
1685 bdev->bd_contains = NULL;
1687 mutex_unlock(&bdev->bd_mutex);
1688 disk_unblock_events(disk);
1689 put_disk_and_module(disk);
1697 * blkdev_get - open a block device
1698 * @bdev: block_device to open
1699 * @mode: FMODE_* mask
1700 * @holder: exclusive holder identifier
1702 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1703 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1704 * @holder is invalid. Exclusive opens may nest for the same @holder.
1706 * On success, the reference count of @bdev is unchanged. On failure,
1713 * 0 on success, -errno on failure.
1715 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1717 struct block_device *whole = NULL;
1720 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1722 if ((mode & FMODE_EXCL) && holder) {
1723 whole = bd_start_claiming(bdev, holder);
1724 if (IS_ERR(whole)) {
1726 return PTR_ERR(whole);
1730 res = __blkdev_get(bdev, mode, 0);
1733 struct gendisk *disk = whole->bd_disk;
1735 /* finish claiming */
1736 mutex_lock(&bdev->bd_mutex);
1738 bd_finish_claiming(bdev, whole, holder);
1740 bd_abort_claiming(bdev, whole, holder);
1742 * Block event polling for write claims if requested. Any
1743 * write holder makes the write_holder state stick until
1744 * all are released. This is good enough and tracking
1745 * individual writeable reference is too fragile given the
1746 * way @mode is used in blkdev_get/put().
1748 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1749 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1750 bdev->bd_write_holder = true;
1751 disk_block_events(disk);
1754 mutex_unlock(&bdev->bd_mutex);
1760 EXPORT_SYMBOL(blkdev_get);
1763 * blkdev_get_by_path - open a block device by name
1764 * @path: path to the block device to open
1765 * @mode: FMODE_* mask
1766 * @holder: exclusive holder identifier
1768 * Open the blockdevice described by the device file at @path. @mode
1769 * and @holder are identical to blkdev_get().
1771 * On success, the returned block_device has reference count of one.
1777 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1779 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1782 struct block_device *bdev;
1785 bdev = lookup_bdev(path);
1789 err = blkdev_get(bdev, mode, holder);
1791 return ERR_PTR(err);
1793 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1794 blkdev_put(bdev, mode);
1795 return ERR_PTR(-EACCES);
1800 EXPORT_SYMBOL(blkdev_get_by_path);
1803 * blkdev_get_by_dev - open a block device by device number
1804 * @dev: device number of block device to open
1805 * @mode: FMODE_* mask
1806 * @holder: exclusive holder identifier
1808 * Open the blockdevice described by device number @dev. @mode and
1809 * @holder are identical to blkdev_get().
1811 * Use it ONLY if you really do not have anything better - i.e. when
1812 * you are behind a truly sucky interface and all you are given is a
1813 * device number. _Never_ to be used for internal purposes. If you
1814 * ever need it - reconsider your API.
1816 * On success, the returned block_device has reference count of one.
1822 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1824 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1826 struct block_device *bdev;
1831 return ERR_PTR(-ENOMEM);
1833 err = blkdev_get(bdev, mode, holder);
1835 return ERR_PTR(err);
1839 EXPORT_SYMBOL(blkdev_get_by_dev);
1841 static int blkdev_open(struct inode * inode, struct file * filp)
1843 struct block_device *bdev;
1846 * Preserve backwards compatibility and allow large file access
1847 * even if userspace doesn't ask for it explicitly. Some mkfs
1848 * binary needs it. We might want to drop this workaround
1849 * during an unstable branch.
1851 filp->f_flags |= O_LARGEFILE;
1853 filp->f_mode |= FMODE_NOWAIT;
1855 if (filp->f_flags & O_NDELAY)
1856 filp->f_mode |= FMODE_NDELAY;
1857 if (filp->f_flags & O_EXCL)
1858 filp->f_mode |= FMODE_EXCL;
1859 if ((filp->f_flags & O_ACCMODE) == 3)
1860 filp->f_mode |= FMODE_WRITE_IOCTL;
1862 bdev = bd_acquire(inode);
1866 filp->f_mapping = bdev->bd_inode->i_mapping;
1867 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1869 return blkdev_get(bdev, filp->f_mode, filp);
1872 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1874 struct gendisk *disk = bdev->bd_disk;
1875 struct block_device *victim = NULL;
1878 * Sync early if it looks like we're the last one. If someone else
1879 * opens the block device between now and the decrement of bd_openers
1880 * then we did a sync that we didn't need to, but that's not the end
1881 * of the world and we want to avoid long (could be several minute)
1882 * syncs while holding the mutex.
1884 if (bdev->bd_openers == 1)
1885 sync_blockdev(bdev);
1887 mutex_lock_nested(&bdev->bd_mutex, for_part);
1889 bdev->bd_part_count--;
1891 if (!--bdev->bd_openers) {
1892 WARN_ON_ONCE(bdev->bd_holders);
1893 sync_blockdev(bdev);
1896 bdev_write_inode(bdev);
1898 if (bdev->bd_contains == bdev) {
1899 if (disk->fops->release)
1900 disk->fops->release(disk, mode);
1902 if (!bdev->bd_openers) {
1903 disk_put_part(bdev->bd_part);
1904 bdev->bd_part = NULL;
1905 bdev->bd_disk = NULL;
1906 if (bdev != bdev->bd_contains)
1907 victim = bdev->bd_contains;
1908 bdev->bd_contains = NULL;
1910 put_disk_and_module(disk);
1912 mutex_unlock(&bdev->bd_mutex);
1915 __blkdev_put(victim, mode, 1);
1918 void blkdev_put(struct block_device *bdev, fmode_t mode)
1920 mutex_lock(&bdev->bd_mutex);
1922 if (mode & FMODE_EXCL) {
1926 * Release a claim on the device. The holder fields
1927 * are protected with bdev_lock. bd_mutex is to
1928 * synchronize disk_holder unlinking.
1930 spin_lock(&bdev_lock);
1932 WARN_ON_ONCE(--bdev->bd_holders < 0);
1933 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1935 /* bd_contains might point to self, check in a separate step */
1936 if ((bdev_free = !bdev->bd_holders))
1937 bdev->bd_holder = NULL;
1938 if (!bdev->bd_contains->bd_holders)
1939 bdev->bd_contains->bd_holder = NULL;
1941 spin_unlock(&bdev_lock);
1944 * If this was the last claim, remove holder link and
1945 * unblock evpoll if it was a write holder.
1947 if (bdev_free && bdev->bd_write_holder) {
1948 disk_unblock_events(bdev->bd_disk);
1949 bdev->bd_write_holder = false;
1954 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1955 * event. This is to ensure detection of media removal commanded
1956 * from userland - e.g. eject(1).
1958 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1960 mutex_unlock(&bdev->bd_mutex);
1962 __blkdev_put(bdev, mode, 0);
1964 EXPORT_SYMBOL(blkdev_put);
1966 static int blkdev_close(struct inode * inode, struct file * filp)
1968 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1969 blkdev_put(bdev, filp->f_mode);
1973 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1975 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1976 fmode_t mode = file->f_mode;
1979 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1980 * to updated it before every ioctl.
1982 if (file->f_flags & O_NDELAY)
1983 mode |= FMODE_NDELAY;
1985 mode &= ~FMODE_NDELAY;
1987 return blkdev_ioctl(bdev, mode, cmd, arg);
1991 * Write data to the block device. Only intended for the block device itself
1992 * and the raw driver which basically is a fake block device.
1994 * Does not take i_mutex for the write and thus is not for general purpose
1997 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1999 struct file *file = iocb->ki_filp;
2000 struct inode *bd_inode = bdev_file_inode(file);
2001 loff_t size = i_size_read(bd_inode);
2002 struct blk_plug plug;
2005 if (bdev_read_only(I_BDEV(bd_inode)))
2008 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode))
2011 if (!iov_iter_count(from))
2014 if (iocb->ki_pos >= size)
2017 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
2020 iov_iter_truncate(from, size - iocb->ki_pos);
2022 blk_start_plug(&plug);
2023 ret = __generic_file_write_iter(iocb, from);
2025 ret = generic_write_sync(iocb, ret);
2026 blk_finish_plug(&plug);
2029 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2031 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2033 struct file *file = iocb->ki_filp;
2034 struct inode *bd_inode = bdev_file_inode(file);
2035 loff_t size = i_size_read(bd_inode);
2036 loff_t pos = iocb->ki_pos;
2042 iov_iter_truncate(to, size);
2043 return generic_file_read_iter(iocb, to);
2045 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2048 * Try to release a page associated with block device when the system
2049 * is under memory pressure.
2051 static int blkdev_releasepage(struct page *page, gfp_t wait)
2053 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2055 if (super && super->s_op->bdev_try_to_free_page)
2056 return super->s_op->bdev_try_to_free_page(super, page, wait);
2058 return try_to_free_buffers(page);
2061 static int blkdev_writepages(struct address_space *mapping,
2062 struct writeback_control *wbc)
2064 return generic_writepages(mapping, wbc);
2067 static const struct address_space_operations def_blk_aops = {
2068 .readpage = blkdev_readpage,
2069 .readahead = blkdev_readahead,
2070 .writepage = blkdev_writepage,
2071 .write_begin = blkdev_write_begin,
2072 .write_end = blkdev_write_end,
2073 .writepages = blkdev_writepages,
2074 .releasepage = blkdev_releasepage,
2075 .direct_IO = blkdev_direct_IO,
2076 .migratepage = buffer_migrate_page_norefs,
2077 .is_dirty_writeback = buffer_check_dirty_writeback,
2080 #define BLKDEV_FALLOC_FL_SUPPORTED \
2081 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2082 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2084 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2087 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2088 struct address_space *mapping;
2089 loff_t end = start + len - 1;
2093 /* Fail if we don't recognize the flags. */
2094 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2097 /* Don't go off the end of the device. */
2098 isize = i_size_read(bdev->bd_inode);
2102 if (mode & FALLOC_FL_KEEP_SIZE) {
2103 len = isize - start;
2104 end = start + len - 1;
2110 * Don't allow IO that isn't aligned to logical block size.
2112 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2115 /* Invalidate the page cache, including dirty pages. */
2116 mapping = bdev->bd_inode->i_mapping;
2117 truncate_inode_pages_range(mapping, start, end);
2120 case FALLOC_FL_ZERO_RANGE:
2121 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2122 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2123 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2125 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2126 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2127 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2129 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2130 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2140 * Invalidate again; if someone wandered in and dirtied a page,
2141 * the caller will be given -EBUSY. The third argument is
2142 * inclusive, so the rounding here is safe.
2144 return invalidate_inode_pages2_range(mapping,
2145 start >> PAGE_SHIFT,
2149 const struct file_operations def_blk_fops = {
2150 .open = blkdev_open,
2151 .release = blkdev_close,
2152 .llseek = block_llseek,
2153 .read_iter = blkdev_read_iter,
2154 .write_iter = blkdev_write_iter,
2155 .iopoll = blkdev_iopoll,
2156 .mmap = generic_file_mmap,
2157 .fsync = blkdev_fsync,
2158 .unlocked_ioctl = block_ioctl,
2159 #ifdef CONFIG_COMPAT
2160 .compat_ioctl = compat_blkdev_ioctl,
2162 .splice_read = generic_file_splice_read,
2163 .splice_write = iter_file_splice_write,
2164 .fallocate = blkdev_fallocate,
2168 * lookup_bdev - lookup a struct block_device by name
2169 * @pathname: special file representing the block device
2171 * Get a reference to the blockdevice at @pathname in the current
2172 * namespace if possible and return it. Return ERR_PTR(error)
2175 struct block_device *lookup_bdev(const char *pathname)
2177 struct block_device *bdev;
2178 struct inode *inode;
2182 if (!pathname || !*pathname)
2183 return ERR_PTR(-EINVAL);
2185 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2187 return ERR_PTR(error);
2189 inode = d_backing_inode(path.dentry);
2191 if (!S_ISBLK(inode->i_mode))
2194 if (!may_open_dev(&path))
2197 bdev = bd_acquire(inode);
2204 bdev = ERR_PTR(error);
2207 EXPORT_SYMBOL(lookup_bdev);
2209 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2211 struct super_block *sb = get_super(bdev);
2216 * no need to lock the super, get_super holds the
2217 * read mutex so the filesystem cannot go away
2218 * under us (->put_super runs with the write lock
2221 shrink_dcache_sb(sb);
2222 res = invalidate_inodes(sb, kill_dirty);
2225 invalidate_bdev(bdev);
2228 EXPORT_SYMBOL(__invalidate_device);
2230 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2232 struct inode *inode, *old_inode = NULL;
2234 spin_lock(&blockdev_superblock->s_inode_list_lock);
2235 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2236 struct address_space *mapping = inode->i_mapping;
2237 struct block_device *bdev;
2239 spin_lock(&inode->i_lock);
2240 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2241 mapping->nrpages == 0) {
2242 spin_unlock(&inode->i_lock);
2246 spin_unlock(&inode->i_lock);
2247 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2249 * We hold a reference to 'inode' so it couldn't have been
2250 * removed from s_inodes list while we dropped the
2251 * s_inode_list_lock We cannot iput the inode now as we can
2252 * be holding the last reference and we cannot iput it under
2253 * s_inode_list_lock. So we keep the reference and iput it
2258 bdev = I_BDEV(inode);
2260 mutex_lock(&bdev->bd_mutex);
2261 if (bdev->bd_openers)
2263 mutex_unlock(&bdev->bd_mutex);
2265 spin_lock(&blockdev_superblock->s_inode_list_lock);
2267 spin_unlock(&blockdev_superblock->s_inode_list_lock);