Merge tag 'tty-3.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / bio.c
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>            /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS         4
40
41 static mempool_t *bio_split_pool __read_mostly;
42
43 /*
44  * if you change this list, also change bvec_alloc or things will
45  * break badly! cannot be bigger than what you can fit into an
46  * unsigned short
47  */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50         BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53
54 /*
55  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56  * IO code that does not need private memory pools.
57  */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62  * Our slab pool management
63  */
64 struct bio_slab {
65         struct kmem_cache *slab;
66         unsigned int slab_ref;
67         unsigned int slab_size;
68         char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76         unsigned int sz = sizeof(struct bio) + extra_size;
77         struct kmem_cache *slab = NULL;
78         struct bio_slab *bslab, *new_bio_slabs;
79         unsigned int new_bio_slab_max;
80         unsigned int i, entry = -1;
81
82         mutex_lock(&bio_slab_lock);
83
84         i = 0;
85         while (i < bio_slab_nr) {
86                 bslab = &bio_slabs[i];
87
88                 if (!bslab->slab && entry == -1)
89                         entry = i;
90                 else if (bslab->slab_size == sz) {
91                         slab = bslab->slab;
92                         bslab->slab_ref++;
93                         break;
94                 }
95                 i++;
96         }
97
98         if (slab)
99                 goto out_unlock;
100
101         if (bio_slab_nr == bio_slab_max && entry == -1) {
102                 new_bio_slab_max = bio_slab_max << 1;
103                 new_bio_slabs = krealloc(bio_slabs,
104                                          new_bio_slab_max * sizeof(struct bio_slab),
105                                          GFP_KERNEL);
106                 if (!new_bio_slabs)
107                         goto out_unlock;
108                 bio_slab_max = new_bio_slab_max;
109                 bio_slabs = new_bio_slabs;
110         }
111         if (entry == -1)
112                 entry = bio_slab_nr++;
113
114         bslab = &bio_slabs[entry];
115
116         snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117         slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118         if (!slab)
119                 goto out_unlock;
120
121         printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122         bslab->slab = slab;
123         bslab->slab_ref = 1;
124         bslab->slab_size = sz;
125 out_unlock:
126         mutex_unlock(&bio_slab_lock);
127         return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132         struct bio_slab *bslab = NULL;
133         unsigned int i;
134
135         mutex_lock(&bio_slab_lock);
136
137         for (i = 0; i < bio_slab_nr; i++) {
138                 if (bs->bio_slab == bio_slabs[i].slab) {
139                         bslab = &bio_slabs[i];
140                         break;
141                 }
142         }
143
144         if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145                 goto out;
146
147         WARN_ON(!bslab->slab_ref);
148
149         if (--bslab->slab_ref)
150                 goto out;
151
152         kmem_cache_destroy(bslab->slab);
153         bslab->slab = NULL;
154
155 out:
156         mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161         return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166         BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168         if (idx == BIOVEC_MAX_IDX)
169                 mempool_free(bv, pool);
170         else {
171                 struct biovec_slab *bvs = bvec_slabs + idx;
172
173                 kmem_cache_free(bvs->slab, bv);
174         }
175 }
176
177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178                            mempool_t *pool)
179 {
180         struct bio_vec *bvl;
181
182         /*
183          * see comment near bvec_array define!
184          */
185         switch (nr) {
186         case 1:
187                 *idx = 0;
188                 break;
189         case 2 ... 4:
190                 *idx = 1;
191                 break;
192         case 5 ... 16:
193                 *idx = 2;
194                 break;
195         case 17 ... 64:
196                 *idx = 3;
197                 break;
198         case 65 ... 128:
199                 *idx = 4;
200                 break;
201         case 129 ... BIO_MAX_PAGES:
202                 *idx = 5;
203                 break;
204         default:
205                 return NULL;
206         }
207
208         /*
209          * idx now points to the pool we want to allocate from. only the
210          * 1-vec entry pool is mempool backed.
211          */
212         if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214                 bvl = mempool_alloc(pool, gfp_mask);
215         } else {
216                 struct biovec_slab *bvs = bvec_slabs + *idx;
217                 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
219                 /*
220                  * Make this allocation restricted and don't dump info on
221                  * allocation failures, since we'll fallback to the mempool
222                  * in case of failure.
223                  */
224                 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225
226                 /*
227                  * Try a slab allocation. If this fails and __GFP_WAIT
228                  * is set, retry with the 1-entry mempool
229                  */
230                 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231                 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232                         *idx = BIOVEC_MAX_IDX;
233                         goto fallback;
234                 }
235         }
236
237         return bvl;
238 }
239
240 static void __bio_free(struct bio *bio)
241 {
242         bio_disassociate_task(bio);
243
244         if (bio_integrity(bio))
245                 bio_integrity_free(bio);
246 }
247
248 static void bio_free(struct bio *bio)
249 {
250         struct bio_set *bs = bio->bi_pool;
251         void *p;
252
253         __bio_free(bio);
254
255         if (bs) {
256                 if (bio_flagged(bio, BIO_OWNS_VEC))
257                         bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258
259                 /*
260                  * If we have front padding, adjust the bio pointer before freeing
261                  */
262                 p = bio;
263                 p -= bs->front_pad;
264
265                 mempool_free(p, bs->bio_pool);
266         } else {
267                 /* Bio was allocated by bio_kmalloc() */
268                 kfree(bio);
269         }
270 }
271
272 void bio_init(struct bio *bio)
273 {
274         memset(bio, 0, sizeof(*bio));
275         bio->bi_flags = 1 << BIO_UPTODATE;
276         atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279
280 /**
281  * bio_reset - reinitialize a bio
282  * @bio:        bio to reset
283  *
284  * Description:
285  *   After calling bio_reset(), @bio will be in the same state as a freshly
286  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
287  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
288  *   comment in struct bio.
289  */
290 void bio_reset(struct bio *bio)
291 {
292         unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
294         __bio_free(bio);
295
296         memset(bio, 0, BIO_RESET_BYTES);
297         bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_alloc_rescue(struct work_struct *work)
302 {
303         struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304         struct bio *bio;
305
306         while (1) {
307                 spin_lock(&bs->rescue_lock);
308                 bio = bio_list_pop(&bs->rescue_list);
309                 spin_unlock(&bs->rescue_lock);
310
311                 if (!bio)
312                         break;
313
314                 generic_make_request(bio);
315         }
316 }
317
318 static void punt_bios_to_rescuer(struct bio_set *bs)
319 {
320         struct bio_list punt, nopunt;
321         struct bio *bio;
322
323         /*
324          * In order to guarantee forward progress we must punt only bios that
325          * were allocated from this bio_set; otherwise, if there was a bio on
326          * there for a stacking driver higher up in the stack, processing it
327          * could require allocating bios from this bio_set, and doing that from
328          * our own rescuer would be bad.
329          *
330          * Since bio lists are singly linked, pop them all instead of trying to
331          * remove from the middle of the list:
332          */
333
334         bio_list_init(&punt);
335         bio_list_init(&nopunt);
336
337         while ((bio = bio_list_pop(current->bio_list)))
338                 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340         *current->bio_list = nopunt;
341
342         spin_lock(&bs->rescue_lock);
343         bio_list_merge(&bs->rescue_list, &punt);
344         spin_unlock(&bs->rescue_lock);
345
346         queue_work(bs->rescue_workqueue, &bs->rescue_work);
347 }
348
349 /**
350  * bio_alloc_bioset - allocate a bio for I/O
351  * @gfp_mask:   the GFP_ mask given to the slab allocator
352  * @nr_iovecs:  number of iovecs to pre-allocate
353  * @bs:         the bio_set to allocate from.
354  *
355  * Description:
356  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357  *   backed by the @bs's mempool.
358  *
359  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360  *   able to allocate a bio. This is due to the mempool guarantees. To make this
361  *   work, callers must never allocate more than 1 bio at a time from this pool.
362  *   Callers that need to allocate more than 1 bio must always submit the
363  *   previously allocated bio for IO before attempting to allocate a new one.
364  *   Failure to do so can cause deadlocks under memory pressure.
365  *
366  *   Note that when running under generic_make_request() (i.e. any block
367  *   driver), bios are not submitted until after you return - see the code in
368  *   generic_make_request() that converts recursion into iteration, to prevent
369  *   stack overflows.
370  *
371  *   This would normally mean allocating multiple bios under
372  *   generic_make_request() would be susceptible to deadlocks, but we have
373  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
374  *   thread.
375  *
376  *   However, we do not guarantee forward progress for allocations from other
377  *   mempools. Doing multiple allocations from the same mempool under
378  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
379  *   for per bio allocations.
380  *
381  *   RETURNS:
382  *   Pointer to new bio on success, NULL on failure.
383  */
384 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
385 {
386         gfp_t saved_gfp = gfp_mask;
387         unsigned front_pad;
388         unsigned inline_vecs;
389         unsigned long idx = BIO_POOL_NONE;
390         struct bio_vec *bvl = NULL;
391         struct bio *bio;
392         void *p;
393
394         if (!bs) {
395                 if (nr_iovecs > UIO_MAXIOV)
396                         return NULL;
397
398                 p = kmalloc(sizeof(struct bio) +
399                             nr_iovecs * sizeof(struct bio_vec),
400                             gfp_mask);
401                 front_pad = 0;
402                 inline_vecs = nr_iovecs;
403         } else {
404                 /*
405                  * generic_make_request() converts recursion to iteration; this
406                  * means if we're running beneath it, any bios we allocate and
407                  * submit will not be submitted (and thus freed) until after we
408                  * return.
409                  *
410                  * This exposes us to a potential deadlock if we allocate
411                  * multiple bios from the same bio_set() while running
412                  * underneath generic_make_request(). If we were to allocate
413                  * multiple bios (say a stacking block driver that was splitting
414                  * bios), we would deadlock if we exhausted the mempool's
415                  * reserve.
416                  *
417                  * We solve this, and guarantee forward progress, with a rescuer
418                  * workqueue per bio_set. If we go to allocate and there are
419                  * bios on current->bio_list, we first try the allocation
420                  * without __GFP_WAIT; if that fails, we punt those bios we
421                  * would be blocking to the rescuer workqueue before we retry
422                  * with the original gfp_flags.
423                  */
424
425                 if (current->bio_list && !bio_list_empty(current->bio_list))
426                         gfp_mask &= ~__GFP_WAIT;
427
428                 p = mempool_alloc(bs->bio_pool, gfp_mask);
429                 if (!p && gfp_mask != saved_gfp) {
430                         punt_bios_to_rescuer(bs);
431                         gfp_mask = saved_gfp;
432                         p = mempool_alloc(bs->bio_pool, gfp_mask);
433                 }
434
435                 front_pad = bs->front_pad;
436                 inline_vecs = BIO_INLINE_VECS;
437         }
438
439         if (unlikely(!p))
440                 return NULL;
441
442         bio = p + front_pad;
443         bio_init(bio);
444
445         if (nr_iovecs > inline_vecs) {
446                 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
447                 if (!bvl && gfp_mask != saved_gfp) {
448                         punt_bios_to_rescuer(bs);
449                         gfp_mask = saved_gfp;
450                         bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
451                 }
452
453                 if (unlikely(!bvl))
454                         goto err_free;
455
456                 bio->bi_flags |= 1 << BIO_OWNS_VEC;
457         } else if (nr_iovecs) {
458                 bvl = bio->bi_inline_vecs;
459         }
460
461         bio->bi_pool = bs;
462         bio->bi_flags |= idx << BIO_POOL_OFFSET;
463         bio->bi_max_vecs = nr_iovecs;
464         bio->bi_io_vec = bvl;
465         return bio;
466
467 err_free:
468         mempool_free(p, bs->bio_pool);
469         return NULL;
470 }
471 EXPORT_SYMBOL(bio_alloc_bioset);
472
473 void zero_fill_bio(struct bio *bio)
474 {
475         unsigned long flags;
476         struct bio_vec *bv;
477         int i;
478
479         bio_for_each_segment(bv, bio, i) {
480                 char *data = bvec_kmap_irq(bv, &flags);
481                 memset(data, 0, bv->bv_len);
482                 flush_dcache_page(bv->bv_page);
483                 bvec_kunmap_irq(data, &flags);
484         }
485 }
486 EXPORT_SYMBOL(zero_fill_bio);
487
488 /**
489  * bio_put - release a reference to a bio
490  * @bio:   bio to release reference to
491  *
492  * Description:
493  *   Put a reference to a &struct bio, either one you have gotten with
494  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
495  **/
496 void bio_put(struct bio *bio)
497 {
498         BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500         /*
501          * last put frees it
502          */
503         if (atomic_dec_and_test(&bio->bi_cnt))
504                 bio_free(bio);
505 }
506 EXPORT_SYMBOL(bio_put);
507
508 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
509 {
510         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511                 blk_recount_segments(q, bio);
512
513         return bio->bi_phys_segments;
514 }
515 EXPORT_SYMBOL(bio_phys_segments);
516
517 /**
518  *      __bio_clone     -       clone a bio
519  *      @bio: destination bio
520  *      @bio_src: bio to clone
521  *
522  *      Clone a &bio. Caller will own the returned bio, but not
523  *      the actual data it points to. Reference count of returned
524  *      bio will be one.
525  */
526 void __bio_clone(struct bio *bio, struct bio *bio_src)
527 {
528         memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
529                 bio_src->bi_max_vecs * sizeof(struct bio_vec));
530
531         /*
532          * most users will be overriding ->bi_bdev with a new target,
533          * so we don't set nor calculate new physical/hw segment counts here
534          */
535         bio->bi_sector = bio_src->bi_sector;
536         bio->bi_bdev = bio_src->bi_bdev;
537         bio->bi_flags |= 1 << BIO_CLONED;
538         bio->bi_rw = bio_src->bi_rw;
539         bio->bi_vcnt = bio_src->bi_vcnt;
540         bio->bi_size = bio_src->bi_size;
541         bio->bi_idx = bio_src->bi_idx;
542 }
543 EXPORT_SYMBOL(__bio_clone);
544
545 /**
546  *      bio_clone_bioset -      clone a bio
547  *      @bio: bio to clone
548  *      @gfp_mask: allocation priority
549  *      @bs: bio_set to allocate from
550  *
551  *      Like __bio_clone, only also allocates the returned bio
552  */
553 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
554                              struct bio_set *bs)
555 {
556         struct bio *b;
557
558         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
559         if (!b)
560                 return NULL;
561
562         __bio_clone(b, bio);
563
564         if (bio_integrity(bio)) {
565                 int ret;
566
567                 ret = bio_integrity_clone(b, bio, gfp_mask);
568
569                 if (ret < 0) {
570                         bio_put(b);
571                         return NULL;
572                 }
573         }
574
575         return b;
576 }
577 EXPORT_SYMBOL(bio_clone_bioset);
578
579 /**
580  *      bio_get_nr_vecs         - return approx number of vecs
581  *      @bdev:  I/O target
582  *
583  *      Return the approximate number of pages we can send to this target.
584  *      There's no guarantee that you will be able to fit this number of pages
585  *      into a bio, it does not account for dynamic restrictions that vary
586  *      on offset.
587  */
588 int bio_get_nr_vecs(struct block_device *bdev)
589 {
590         struct request_queue *q = bdev_get_queue(bdev);
591         int nr_pages;
592
593         nr_pages = min_t(unsigned,
594                      queue_max_segments(q),
595                      queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
596
597         return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
598
599 }
600 EXPORT_SYMBOL(bio_get_nr_vecs);
601
602 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
603                           *page, unsigned int len, unsigned int offset,
604                           unsigned int max_sectors)
605 {
606         int retried_segments = 0;
607         struct bio_vec *bvec;
608
609         /*
610          * cloned bio must not modify vec list
611          */
612         if (unlikely(bio_flagged(bio, BIO_CLONED)))
613                 return 0;
614
615         if (((bio->bi_size + len) >> 9) > max_sectors)
616                 return 0;
617
618         /*
619          * For filesystems with a blocksize smaller than the pagesize
620          * we will often be called with the same page as last time and
621          * a consecutive offset.  Optimize this special case.
622          */
623         if (bio->bi_vcnt > 0) {
624                 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
625
626                 if (page == prev->bv_page &&
627                     offset == prev->bv_offset + prev->bv_len) {
628                         unsigned int prev_bv_len = prev->bv_len;
629                         prev->bv_len += len;
630
631                         if (q->merge_bvec_fn) {
632                                 struct bvec_merge_data bvm = {
633                                         /* prev_bvec is already charged in
634                                            bi_size, discharge it in order to
635                                            simulate merging updated prev_bvec
636                                            as new bvec. */
637                                         .bi_bdev = bio->bi_bdev,
638                                         .bi_sector = bio->bi_sector,
639                                         .bi_size = bio->bi_size - prev_bv_len,
640                                         .bi_rw = bio->bi_rw,
641                                 };
642
643                                 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
644                                         prev->bv_len -= len;
645                                         return 0;
646                                 }
647                         }
648
649                         goto done;
650                 }
651         }
652
653         if (bio->bi_vcnt >= bio->bi_max_vecs)
654                 return 0;
655
656         /*
657          * we might lose a segment or two here, but rather that than
658          * make this too complex.
659          */
660
661         while (bio->bi_phys_segments >= queue_max_segments(q)) {
662
663                 if (retried_segments)
664                         return 0;
665
666                 retried_segments = 1;
667                 blk_recount_segments(q, bio);
668         }
669
670         /*
671          * setup the new entry, we might clear it again later if we
672          * cannot add the page
673          */
674         bvec = &bio->bi_io_vec[bio->bi_vcnt];
675         bvec->bv_page = page;
676         bvec->bv_len = len;
677         bvec->bv_offset = offset;
678
679         /*
680          * if queue has other restrictions (eg varying max sector size
681          * depending on offset), it can specify a merge_bvec_fn in the
682          * queue to get further control
683          */
684         if (q->merge_bvec_fn) {
685                 struct bvec_merge_data bvm = {
686                         .bi_bdev = bio->bi_bdev,
687                         .bi_sector = bio->bi_sector,
688                         .bi_size = bio->bi_size,
689                         .bi_rw = bio->bi_rw,
690                 };
691
692                 /*
693                  * merge_bvec_fn() returns number of bytes it can accept
694                  * at this offset
695                  */
696                 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
697                         bvec->bv_page = NULL;
698                         bvec->bv_len = 0;
699                         bvec->bv_offset = 0;
700                         return 0;
701                 }
702         }
703
704         /* If we may be able to merge these biovecs, force a recount */
705         if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
706                 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
707
708         bio->bi_vcnt++;
709         bio->bi_phys_segments++;
710  done:
711         bio->bi_size += len;
712         return len;
713 }
714
715 /**
716  *      bio_add_pc_page -       attempt to add page to bio
717  *      @q: the target queue
718  *      @bio: destination bio
719  *      @page: page to add
720  *      @len: vec entry length
721  *      @offset: vec entry offset
722  *
723  *      Attempt to add a page to the bio_vec maplist. This can fail for a
724  *      number of reasons, such as the bio being full or target block device
725  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
726  *      so it is always possible to add a single page to an empty bio.
727  *
728  *      This should only be used by REQ_PC bios.
729  */
730 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
731                     unsigned int len, unsigned int offset)
732 {
733         return __bio_add_page(q, bio, page, len, offset,
734                               queue_max_hw_sectors(q));
735 }
736 EXPORT_SYMBOL(bio_add_pc_page);
737
738 /**
739  *      bio_add_page    -       attempt to add page to bio
740  *      @bio: destination bio
741  *      @page: page to add
742  *      @len: vec entry length
743  *      @offset: vec entry offset
744  *
745  *      Attempt to add a page to the bio_vec maplist. This can fail for a
746  *      number of reasons, such as the bio being full or target block device
747  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
748  *      so it is always possible to add a single page to an empty bio.
749  */
750 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
751                  unsigned int offset)
752 {
753         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
754         return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
755 }
756 EXPORT_SYMBOL(bio_add_page);
757
758 struct submit_bio_ret {
759         struct completion event;
760         int error;
761 };
762
763 static void submit_bio_wait_endio(struct bio *bio, int error)
764 {
765         struct submit_bio_ret *ret = bio->bi_private;
766
767         ret->error = error;
768         complete(&ret->event);
769 }
770
771 /**
772  * submit_bio_wait - submit a bio, and wait until it completes
773  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
774  * @bio: The &struct bio which describes the I/O
775  *
776  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
777  * bio_endio() on failure.
778  */
779 int submit_bio_wait(int rw, struct bio *bio)
780 {
781         struct submit_bio_ret ret;
782
783         rw |= REQ_SYNC;
784         init_completion(&ret.event);
785         bio->bi_private = &ret;
786         bio->bi_end_io = submit_bio_wait_endio;
787         submit_bio(rw, bio);
788         wait_for_completion(&ret.event);
789
790         return ret.error;
791 }
792 EXPORT_SYMBOL(submit_bio_wait);
793
794 /**
795  * bio_advance - increment/complete a bio by some number of bytes
796  * @bio:        bio to advance
797  * @bytes:      number of bytes to complete
798  *
799  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
800  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
801  * be updated on the last bvec as well.
802  *
803  * @bio will then represent the remaining, uncompleted portion of the io.
804  */
805 void bio_advance(struct bio *bio, unsigned bytes)
806 {
807         if (bio_integrity(bio))
808                 bio_integrity_advance(bio, bytes);
809
810         bio->bi_sector += bytes >> 9;
811         bio->bi_size -= bytes;
812
813         if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
814                 return;
815
816         while (bytes) {
817                 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
818                         WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
819                                   bio->bi_idx, bio->bi_vcnt);
820                         break;
821                 }
822
823                 if (bytes >= bio_iovec(bio)->bv_len) {
824                         bytes -= bio_iovec(bio)->bv_len;
825                         bio->bi_idx++;
826                 } else {
827                         bio_iovec(bio)->bv_len -= bytes;
828                         bio_iovec(bio)->bv_offset += bytes;
829                         bytes = 0;
830                 }
831         }
832 }
833 EXPORT_SYMBOL(bio_advance);
834
835 /**
836  * bio_alloc_pages - allocates a single page for each bvec in a bio
837  * @bio: bio to allocate pages for
838  * @gfp_mask: flags for allocation
839  *
840  * Allocates pages up to @bio->bi_vcnt.
841  *
842  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
843  * freed.
844  */
845 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
846 {
847         int i;
848         struct bio_vec *bv;
849
850         bio_for_each_segment_all(bv, bio, i) {
851                 bv->bv_page = alloc_page(gfp_mask);
852                 if (!bv->bv_page) {
853                         while (--bv >= bio->bi_io_vec)
854                                 __free_page(bv->bv_page);
855                         return -ENOMEM;
856                 }
857         }
858
859         return 0;
860 }
861 EXPORT_SYMBOL(bio_alloc_pages);
862
863 /**
864  * bio_copy_data - copy contents of data buffers from one chain of bios to
865  * another
866  * @src: source bio list
867  * @dst: destination bio list
868  *
869  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
870  * @src and @dst as linked lists of bios.
871  *
872  * Stops when it reaches the end of either @src or @dst - that is, copies
873  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
874  */
875 void bio_copy_data(struct bio *dst, struct bio *src)
876 {
877         struct bio_vec *src_bv, *dst_bv;
878         unsigned src_offset, dst_offset, bytes;
879         void *src_p, *dst_p;
880
881         src_bv = bio_iovec(src);
882         dst_bv = bio_iovec(dst);
883
884         src_offset = src_bv->bv_offset;
885         dst_offset = dst_bv->bv_offset;
886
887         while (1) {
888                 if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
889                         src_bv++;
890                         if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
891                                 src = src->bi_next;
892                                 if (!src)
893                                         break;
894
895                                 src_bv = bio_iovec(src);
896                         }
897
898                         src_offset = src_bv->bv_offset;
899                 }
900
901                 if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
902                         dst_bv++;
903                         if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
904                                 dst = dst->bi_next;
905                                 if (!dst)
906                                         break;
907
908                                 dst_bv = bio_iovec(dst);
909                         }
910
911                         dst_offset = dst_bv->bv_offset;
912                 }
913
914                 bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
915                             src_bv->bv_offset + src_bv->bv_len - src_offset);
916
917                 src_p = kmap_atomic(src_bv->bv_page);
918                 dst_p = kmap_atomic(dst_bv->bv_page);
919
920                 memcpy(dst_p + dst_offset,
921                        src_p + src_offset,
922                        bytes);
923
924                 kunmap_atomic(dst_p);
925                 kunmap_atomic(src_p);
926
927                 src_offset += bytes;
928                 dst_offset += bytes;
929         }
930 }
931 EXPORT_SYMBOL(bio_copy_data);
932
933 struct bio_map_data {
934         struct bio_vec *iovecs;
935         struct sg_iovec *sgvecs;
936         int nr_sgvecs;
937         int is_our_pages;
938 };
939
940 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
941                              struct sg_iovec *iov, int iov_count,
942                              int is_our_pages)
943 {
944         memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
945         memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
946         bmd->nr_sgvecs = iov_count;
947         bmd->is_our_pages = is_our_pages;
948         bio->bi_private = bmd;
949 }
950
951 static void bio_free_map_data(struct bio_map_data *bmd)
952 {
953         kfree(bmd->iovecs);
954         kfree(bmd->sgvecs);
955         kfree(bmd);
956 }
957
958 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
959                                                unsigned int iov_count,
960                                                gfp_t gfp_mask)
961 {
962         struct bio_map_data *bmd;
963
964         if (iov_count > UIO_MAXIOV)
965                 return NULL;
966
967         bmd = kmalloc(sizeof(*bmd), gfp_mask);
968         if (!bmd)
969                 return NULL;
970
971         bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
972         if (!bmd->iovecs) {
973                 kfree(bmd);
974                 return NULL;
975         }
976
977         bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
978         if (bmd->sgvecs)
979                 return bmd;
980
981         kfree(bmd->iovecs);
982         kfree(bmd);
983         return NULL;
984 }
985
986 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
987                           struct sg_iovec *iov, int iov_count,
988                           int to_user, int from_user, int do_free_page)
989 {
990         int ret = 0, i;
991         struct bio_vec *bvec;
992         int iov_idx = 0;
993         unsigned int iov_off = 0;
994
995         bio_for_each_segment_all(bvec, bio, i) {
996                 char *bv_addr = page_address(bvec->bv_page);
997                 unsigned int bv_len = iovecs[i].bv_len;
998
999                 while (bv_len && iov_idx < iov_count) {
1000                         unsigned int bytes;
1001                         char __user *iov_addr;
1002
1003                         bytes = min_t(unsigned int,
1004                                       iov[iov_idx].iov_len - iov_off, bv_len);
1005                         iov_addr = iov[iov_idx].iov_base + iov_off;
1006
1007                         if (!ret) {
1008                                 if (to_user)
1009                                         ret = copy_to_user(iov_addr, bv_addr,
1010                                                            bytes);
1011
1012                                 if (from_user)
1013                                         ret = copy_from_user(bv_addr, iov_addr,
1014                                                              bytes);
1015
1016                                 if (ret)
1017                                         ret = -EFAULT;
1018                         }
1019
1020                         bv_len -= bytes;
1021                         bv_addr += bytes;
1022                         iov_addr += bytes;
1023                         iov_off += bytes;
1024
1025                         if (iov[iov_idx].iov_len == iov_off) {
1026                                 iov_idx++;
1027                                 iov_off = 0;
1028                         }
1029                 }
1030
1031                 if (do_free_page)
1032                         __free_page(bvec->bv_page);
1033         }
1034
1035         return ret;
1036 }
1037
1038 /**
1039  *      bio_uncopy_user -       finish previously mapped bio
1040  *      @bio: bio being terminated
1041  *
1042  *      Free pages allocated from bio_copy_user() and write back data
1043  *      to user space in case of a read.
1044  */
1045 int bio_uncopy_user(struct bio *bio)
1046 {
1047         struct bio_map_data *bmd = bio->bi_private;
1048         struct bio_vec *bvec;
1049         int ret = 0, i;
1050
1051         if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1052                 /*
1053                  * if we're in a workqueue, the request is orphaned, so
1054                  * don't copy into a random user address space, just free.
1055                  */
1056                 if (current->mm)
1057                         ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1058                                              bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1059                                              0, bmd->is_our_pages);
1060                 else if (bmd->is_our_pages)
1061                         bio_for_each_segment_all(bvec, bio, i)
1062                                 __free_page(bvec->bv_page);
1063         }
1064         bio_free_map_data(bmd);
1065         bio_put(bio);
1066         return ret;
1067 }
1068 EXPORT_SYMBOL(bio_uncopy_user);
1069
1070 /**
1071  *      bio_copy_user_iov       -       copy user data to bio
1072  *      @q: destination block queue
1073  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
1074  *      @iov:   the iovec.
1075  *      @iov_count: number of elements in the iovec
1076  *      @write_to_vm: bool indicating writing to pages or not
1077  *      @gfp_mask: memory allocation flags
1078  *
1079  *      Prepares and returns a bio for indirect user io, bouncing data
1080  *      to/from kernel pages as necessary. Must be paired with
1081  *      call bio_uncopy_user() on io completion.
1082  */
1083 struct bio *bio_copy_user_iov(struct request_queue *q,
1084                               struct rq_map_data *map_data,
1085                               struct sg_iovec *iov, int iov_count,
1086                               int write_to_vm, gfp_t gfp_mask)
1087 {
1088         struct bio_map_data *bmd;
1089         struct bio_vec *bvec;
1090         struct page *page;
1091         struct bio *bio;
1092         int i, ret;
1093         int nr_pages = 0;
1094         unsigned int len = 0;
1095         unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1096
1097         for (i = 0; i < iov_count; i++) {
1098                 unsigned long uaddr;
1099                 unsigned long end;
1100                 unsigned long start;
1101
1102                 uaddr = (unsigned long)iov[i].iov_base;
1103                 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104                 start = uaddr >> PAGE_SHIFT;
1105
1106                 /*
1107                  * Overflow, abort
1108                  */
1109                 if (end < start)
1110                         return ERR_PTR(-EINVAL);
1111
1112                 nr_pages += end - start;
1113                 len += iov[i].iov_len;
1114         }
1115
1116         if (offset)
1117                 nr_pages++;
1118
1119         bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1120         if (!bmd)
1121                 return ERR_PTR(-ENOMEM);
1122
1123         ret = -ENOMEM;
1124         bio = bio_kmalloc(gfp_mask, nr_pages);
1125         if (!bio)
1126                 goto out_bmd;
1127
1128         if (!write_to_vm)
1129                 bio->bi_rw |= REQ_WRITE;
1130
1131         ret = 0;
1132
1133         if (map_data) {
1134                 nr_pages = 1 << map_data->page_order;
1135                 i = map_data->offset / PAGE_SIZE;
1136         }
1137         while (len) {
1138                 unsigned int bytes = PAGE_SIZE;
1139
1140                 bytes -= offset;
1141
1142                 if (bytes > len)
1143                         bytes = len;
1144
1145                 if (map_data) {
1146                         if (i == map_data->nr_entries * nr_pages) {
1147                                 ret = -ENOMEM;
1148                                 break;
1149                         }
1150
1151                         page = map_data->pages[i / nr_pages];
1152                         page += (i % nr_pages);
1153
1154                         i++;
1155                 } else {
1156                         page = alloc_page(q->bounce_gfp | gfp_mask);
1157                         if (!page) {
1158                                 ret = -ENOMEM;
1159                                 break;
1160                         }
1161                 }
1162
1163                 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1164                         break;
1165
1166                 len -= bytes;
1167                 offset = 0;
1168         }
1169
1170         if (ret)
1171                 goto cleanup;
1172
1173         /*
1174          * success
1175          */
1176         if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1177             (map_data && map_data->from_user)) {
1178                 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1179                 if (ret)
1180                         goto cleanup;
1181         }
1182
1183         bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1184         return bio;
1185 cleanup:
1186         if (!map_data)
1187                 bio_for_each_segment_all(bvec, bio, i)
1188                         __free_page(bvec->bv_page);
1189
1190         bio_put(bio);
1191 out_bmd:
1192         bio_free_map_data(bmd);
1193         return ERR_PTR(ret);
1194 }
1195
1196 /**
1197  *      bio_copy_user   -       copy user data to bio
1198  *      @q: destination block queue
1199  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
1200  *      @uaddr: start of user address
1201  *      @len: length in bytes
1202  *      @write_to_vm: bool indicating writing to pages or not
1203  *      @gfp_mask: memory allocation flags
1204  *
1205  *      Prepares and returns a bio for indirect user io, bouncing data
1206  *      to/from kernel pages as necessary. Must be paired with
1207  *      call bio_uncopy_user() on io completion.
1208  */
1209 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1210                           unsigned long uaddr, unsigned int len,
1211                           int write_to_vm, gfp_t gfp_mask)
1212 {
1213         struct sg_iovec iov;
1214
1215         iov.iov_base = (void __user *)uaddr;
1216         iov.iov_len = len;
1217
1218         return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1219 }
1220 EXPORT_SYMBOL(bio_copy_user);
1221
1222 static struct bio *__bio_map_user_iov(struct request_queue *q,
1223                                       struct block_device *bdev,
1224                                       struct sg_iovec *iov, int iov_count,
1225                                       int write_to_vm, gfp_t gfp_mask)
1226 {
1227         int i, j;
1228         int nr_pages = 0;
1229         struct page **pages;
1230         struct bio *bio;
1231         int cur_page = 0;
1232         int ret, offset;
1233
1234         for (i = 0; i < iov_count; i++) {
1235                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1236                 unsigned long len = iov[i].iov_len;
1237                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1238                 unsigned long start = uaddr >> PAGE_SHIFT;
1239
1240                 /*
1241                  * Overflow, abort
1242                  */
1243                 if (end < start)
1244                         return ERR_PTR(-EINVAL);
1245
1246                 nr_pages += end - start;
1247                 /*
1248                  * buffer must be aligned to at least hardsector size for now
1249                  */
1250                 if (uaddr & queue_dma_alignment(q))
1251                         return ERR_PTR(-EINVAL);
1252         }
1253
1254         if (!nr_pages)
1255                 return ERR_PTR(-EINVAL);
1256
1257         bio = bio_kmalloc(gfp_mask, nr_pages);
1258         if (!bio)
1259                 return ERR_PTR(-ENOMEM);
1260
1261         ret = -ENOMEM;
1262         pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1263         if (!pages)
1264                 goto out;
1265
1266         for (i = 0; i < iov_count; i++) {
1267                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1268                 unsigned long len = iov[i].iov_len;
1269                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1270                 unsigned long start = uaddr >> PAGE_SHIFT;
1271                 const int local_nr_pages = end - start;
1272                 const int page_limit = cur_page + local_nr_pages;
1273
1274                 ret = get_user_pages_fast(uaddr, local_nr_pages,
1275                                 write_to_vm, &pages[cur_page]);
1276                 if (ret < local_nr_pages) {
1277                         ret = -EFAULT;
1278                         goto out_unmap;
1279                 }
1280
1281                 offset = uaddr & ~PAGE_MASK;
1282                 for (j = cur_page; j < page_limit; j++) {
1283                         unsigned int bytes = PAGE_SIZE - offset;
1284
1285                         if (len <= 0)
1286                                 break;
1287                         
1288                         if (bytes > len)
1289                                 bytes = len;
1290
1291                         /*
1292                          * sorry...
1293                          */
1294                         if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1295                                             bytes)
1296                                 break;
1297
1298                         len -= bytes;
1299                         offset = 0;
1300                 }
1301
1302                 cur_page = j;
1303                 /*
1304                  * release the pages we didn't map into the bio, if any
1305                  */
1306                 while (j < page_limit)
1307                         page_cache_release(pages[j++]);
1308         }
1309
1310         kfree(pages);
1311
1312         /*
1313          * set data direction, and check if mapped pages need bouncing
1314          */
1315         if (!write_to_vm)
1316                 bio->bi_rw |= REQ_WRITE;
1317
1318         bio->bi_bdev = bdev;
1319         bio->bi_flags |= (1 << BIO_USER_MAPPED);
1320         return bio;
1321
1322  out_unmap:
1323         for (i = 0; i < nr_pages; i++) {
1324                 if(!pages[i])
1325                         break;
1326                 page_cache_release(pages[i]);
1327         }
1328  out:
1329         kfree(pages);
1330         bio_put(bio);
1331         return ERR_PTR(ret);
1332 }
1333
1334 /**
1335  *      bio_map_user    -       map user address into bio
1336  *      @q: the struct request_queue for the bio
1337  *      @bdev: destination block device
1338  *      @uaddr: start of user address
1339  *      @len: length in bytes
1340  *      @write_to_vm: bool indicating writing to pages or not
1341  *      @gfp_mask: memory allocation flags
1342  *
1343  *      Map the user space address into a bio suitable for io to a block
1344  *      device. Returns an error pointer in case of error.
1345  */
1346 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1347                          unsigned long uaddr, unsigned int len, int write_to_vm,
1348                          gfp_t gfp_mask)
1349 {
1350         struct sg_iovec iov;
1351
1352         iov.iov_base = (void __user *)uaddr;
1353         iov.iov_len = len;
1354
1355         return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1356 }
1357 EXPORT_SYMBOL(bio_map_user);
1358
1359 /**
1360  *      bio_map_user_iov - map user sg_iovec table into bio
1361  *      @q: the struct request_queue for the bio
1362  *      @bdev: destination block device
1363  *      @iov:   the iovec.
1364  *      @iov_count: number of elements in the iovec
1365  *      @write_to_vm: bool indicating writing to pages or not
1366  *      @gfp_mask: memory allocation flags
1367  *
1368  *      Map the user space address into a bio suitable for io to a block
1369  *      device. Returns an error pointer in case of error.
1370  */
1371 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1372                              struct sg_iovec *iov, int iov_count,
1373                              int write_to_vm, gfp_t gfp_mask)
1374 {
1375         struct bio *bio;
1376
1377         bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1378                                  gfp_mask);
1379         if (IS_ERR(bio))
1380                 return bio;
1381
1382         /*
1383          * subtle -- if __bio_map_user() ended up bouncing a bio,
1384          * it would normally disappear when its bi_end_io is run.
1385          * however, we need it for the unmap, so grab an extra
1386          * reference to it
1387          */
1388         bio_get(bio);
1389
1390         return bio;
1391 }
1392
1393 static void __bio_unmap_user(struct bio *bio)
1394 {
1395         struct bio_vec *bvec;
1396         int i;
1397
1398         /*
1399          * make sure we dirty pages we wrote to
1400          */
1401         bio_for_each_segment_all(bvec, bio, i) {
1402                 if (bio_data_dir(bio) == READ)
1403                         set_page_dirty_lock(bvec->bv_page);
1404
1405                 page_cache_release(bvec->bv_page);
1406         }
1407
1408         bio_put(bio);
1409 }
1410
1411 /**
1412  *      bio_unmap_user  -       unmap a bio
1413  *      @bio:           the bio being unmapped
1414  *
1415  *      Unmap a bio previously mapped by bio_map_user(). Must be called with
1416  *      a process context.
1417  *
1418  *      bio_unmap_user() may sleep.
1419  */
1420 void bio_unmap_user(struct bio *bio)
1421 {
1422         __bio_unmap_user(bio);
1423         bio_put(bio);
1424 }
1425 EXPORT_SYMBOL(bio_unmap_user);
1426
1427 static void bio_map_kern_endio(struct bio *bio, int err)
1428 {
1429         bio_put(bio);
1430 }
1431
1432 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1433                                   unsigned int len, gfp_t gfp_mask)
1434 {
1435         unsigned long kaddr = (unsigned long)data;
1436         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1437         unsigned long start = kaddr >> PAGE_SHIFT;
1438         const int nr_pages = end - start;
1439         int offset, i;
1440         struct bio *bio;
1441
1442         bio = bio_kmalloc(gfp_mask, nr_pages);
1443         if (!bio)
1444                 return ERR_PTR(-ENOMEM);
1445
1446         offset = offset_in_page(kaddr);
1447         for (i = 0; i < nr_pages; i++) {
1448                 unsigned int bytes = PAGE_SIZE - offset;
1449
1450                 if (len <= 0)
1451                         break;
1452
1453                 if (bytes > len)
1454                         bytes = len;
1455
1456                 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1457                                     offset) < bytes)
1458                         break;
1459
1460                 data += bytes;
1461                 len -= bytes;
1462                 offset = 0;
1463         }
1464
1465         bio->bi_end_io = bio_map_kern_endio;
1466         return bio;
1467 }
1468
1469 /**
1470  *      bio_map_kern    -       map kernel address into bio
1471  *      @q: the struct request_queue for the bio
1472  *      @data: pointer to buffer to map
1473  *      @len: length in bytes
1474  *      @gfp_mask: allocation flags for bio allocation
1475  *
1476  *      Map the kernel address into a bio suitable for io to a block
1477  *      device. Returns an error pointer in case of error.
1478  */
1479 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1480                          gfp_t gfp_mask)
1481 {
1482         struct bio *bio;
1483
1484         bio = __bio_map_kern(q, data, len, gfp_mask);
1485         if (IS_ERR(bio))
1486                 return bio;
1487
1488         if (bio->bi_size == len)
1489                 return bio;
1490
1491         /*
1492          * Don't support partial mappings.
1493          */
1494         bio_put(bio);
1495         return ERR_PTR(-EINVAL);
1496 }
1497 EXPORT_SYMBOL(bio_map_kern);
1498
1499 static void bio_copy_kern_endio(struct bio *bio, int err)
1500 {
1501         struct bio_vec *bvec;
1502         const int read = bio_data_dir(bio) == READ;
1503         struct bio_map_data *bmd = bio->bi_private;
1504         int i;
1505         char *p = bmd->sgvecs[0].iov_base;
1506
1507         bio_for_each_segment_all(bvec, bio, i) {
1508                 char *addr = page_address(bvec->bv_page);
1509                 int len = bmd->iovecs[i].bv_len;
1510
1511                 if (read)
1512                         memcpy(p, addr, len);
1513
1514                 __free_page(bvec->bv_page);
1515                 p += len;
1516         }
1517
1518         bio_free_map_data(bmd);
1519         bio_put(bio);
1520 }
1521
1522 /**
1523  *      bio_copy_kern   -       copy kernel address into bio
1524  *      @q: the struct request_queue for the bio
1525  *      @data: pointer to buffer to copy
1526  *      @len: length in bytes
1527  *      @gfp_mask: allocation flags for bio and page allocation
1528  *      @reading: data direction is READ
1529  *
1530  *      copy the kernel address into a bio suitable for io to a block
1531  *      device. Returns an error pointer in case of error.
1532  */
1533 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1534                           gfp_t gfp_mask, int reading)
1535 {
1536         struct bio *bio;
1537         struct bio_vec *bvec;
1538         int i;
1539
1540         bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1541         if (IS_ERR(bio))
1542                 return bio;
1543
1544         if (!reading) {
1545                 void *p = data;
1546
1547                 bio_for_each_segment_all(bvec, bio, i) {
1548                         char *addr = page_address(bvec->bv_page);
1549
1550                         memcpy(addr, p, bvec->bv_len);
1551                         p += bvec->bv_len;
1552                 }
1553         }
1554
1555         bio->bi_end_io = bio_copy_kern_endio;
1556
1557         return bio;
1558 }
1559 EXPORT_SYMBOL(bio_copy_kern);
1560
1561 /*
1562  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1563  * for performing direct-IO in BIOs.
1564  *
1565  * The problem is that we cannot run set_page_dirty() from interrupt context
1566  * because the required locks are not interrupt-safe.  So what we can do is to
1567  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1568  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1569  * in process context.
1570  *
1571  * We special-case compound pages here: normally this means reads into hugetlb
1572  * pages.  The logic in here doesn't really work right for compound pages
1573  * because the VM does not uniformly chase down the head page in all cases.
1574  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1575  * handle them at all.  So we skip compound pages here at an early stage.
1576  *
1577  * Note that this code is very hard to test under normal circumstances because
1578  * direct-io pins the pages with get_user_pages().  This makes
1579  * is_page_cache_freeable return false, and the VM will not clean the pages.
1580  * But other code (eg, flusher threads) could clean the pages if they are mapped
1581  * pagecache.
1582  *
1583  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1584  * deferred bio dirtying paths.
1585  */
1586
1587 /*
1588  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1589  */
1590 void bio_set_pages_dirty(struct bio *bio)
1591 {
1592         struct bio_vec *bvec;
1593         int i;
1594
1595         bio_for_each_segment_all(bvec, bio, i) {
1596                 struct page *page = bvec->bv_page;
1597
1598                 if (page && !PageCompound(page))
1599                         set_page_dirty_lock(page);
1600         }
1601 }
1602
1603 static void bio_release_pages(struct bio *bio)
1604 {
1605         struct bio_vec *bvec;
1606         int i;
1607
1608         bio_for_each_segment_all(bvec, bio, i) {
1609                 struct page *page = bvec->bv_page;
1610
1611                 if (page)
1612                         put_page(page);
1613         }
1614 }
1615
1616 /*
1617  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1618  * If they are, then fine.  If, however, some pages are clean then they must
1619  * have been written out during the direct-IO read.  So we take another ref on
1620  * the BIO and the offending pages and re-dirty the pages in process context.
1621  *
1622  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1623  * here on.  It will run one page_cache_release() against each page and will
1624  * run one bio_put() against the BIO.
1625  */
1626
1627 static void bio_dirty_fn(struct work_struct *work);
1628
1629 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1630 static DEFINE_SPINLOCK(bio_dirty_lock);
1631 static struct bio *bio_dirty_list;
1632
1633 /*
1634  * This runs in process context
1635  */
1636 static void bio_dirty_fn(struct work_struct *work)
1637 {
1638         unsigned long flags;
1639         struct bio *bio;
1640
1641         spin_lock_irqsave(&bio_dirty_lock, flags);
1642         bio = bio_dirty_list;
1643         bio_dirty_list = NULL;
1644         spin_unlock_irqrestore(&bio_dirty_lock, flags);
1645
1646         while (bio) {
1647                 struct bio *next = bio->bi_private;
1648
1649                 bio_set_pages_dirty(bio);
1650                 bio_release_pages(bio);
1651                 bio_put(bio);
1652                 bio = next;
1653         }
1654 }
1655
1656 void bio_check_pages_dirty(struct bio *bio)
1657 {
1658         struct bio_vec *bvec;
1659         int nr_clean_pages = 0;
1660         int i;
1661
1662         bio_for_each_segment_all(bvec, bio, i) {
1663                 struct page *page = bvec->bv_page;
1664
1665                 if (PageDirty(page) || PageCompound(page)) {
1666                         page_cache_release(page);
1667                         bvec->bv_page = NULL;
1668                 } else {
1669                         nr_clean_pages++;
1670                 }
1671         }
1672
1673         if (nr_clean_pages) {
1674                 unsigned long flags;
1675
1676                 spin_lock_irqsave(&bio_dirty_lock, flags);
1677                 bio->bi_private = bio_dirty_list;
1678                 bio_dirty_list = bio;
1679                 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1680                 schedule_work(&bio_dirty_work);
1681         } else {
1682                 bio_put(bio);
1683         }
1684 }
1685
1686 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1687 void bio_flush_dcache_pages(struct bio *bi)
1688 {
1689         int i;
1690         struct bio_vec *bvec;
1691
1692         bio_for_each_segment(bvec, bi, i)
1693                 flush_dcache_page(bvec->bv_page);
1694 }
1695 EXPORT_SYMBOL(bio_flush_dcache_pages);
1696 #endif
1697
1698 /**
1699  * bio_endio - end I/O on a bio
1700  * @bio:        bio
1701  * @error:      error, if any
1702  *
1703  * Description:
1704  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1705  *   preferred way to end I/O on a bio, it takes care of clearing
1706  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1707  *   established -Exxxx (-EIO, for instance) error values in case
1708  *   something went wrong. No one should call bi_end_io() directly on a
1709  *   bio unless they own it and thus know that it has an end_io
1710  *   function.
1711  **/
1712 void bio_endio(struct bio *bio, int error)
1713 {
1714         if (error)
1715                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1716         else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1717                 error = -EIO;
1718
1719         if (bio->bi_end_io)
1720                 bio->bi_end_io(bio, error);
1721 }
1722 EXPORT_SYMBOL(bio_endio);
1723
1724 void bio_pair_release(struct bio_pair *bp)
1725 {
1726         if (atomic_dec_and_test(&bp->cnt)) {
1727                 struct bio *master = bp->bio1.bi_private;
1728
1729                 bio_endio(master, bp->error);
1730                 mempool_free(bp, bp->bio2.bi_private);
1731         }
1732 }
1733 EXPORT_SYMBOL(bio_pair_release);
1734
1735 static void bio_pair_end_1(struct bio *bi, int err)
1736 {
1737         struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1738
1739         if (err)
1740                 bp->error = err;
1741
1742         bio_pair_release(bp);
1743 }
1744
1745 static void bio_pair_end_2(struct bio *bi, int err)
1746 {
1747         struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1748
1749         if (err)
1750                 bp->error = err;
1751
1752         bio_pair_release(bp);
1753 }
1754
1755 /*
1756  * split a bio - only worry about a bio with a single page in its iovec
1757  */
1758 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1759 {
1760         struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1761
1762         if (!bp)
1763                 return bp;
1764
1765         trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1766                                 bi->bi_sector + first_sectors);
1767
1768         BUG_ON(bio_segments(bi) > 1);
1769         atomic_set(&bp->cnt, 3);
1770         bp->error = 0;
1771         bp->bio1 = *bi;
1772         bp->bio2 = *bi;
1773         bp->bio2.bi_sector += first_sectors;
1774         bp->bio2.bi_size -= first_sectors << 9;
1775         bp->bio1.bi_size = first_sectors << 9;
1776
1777         if (bi->bi_vcnt != 0) {
1778                 bp->bv1 = *bio_iovec(bi);
1779                 bp->bv2 = *bio_iovec(bi);
1780
1781                 if (bio_is_rw(bi)) {
1782                         bp->bv2.bv_offset += first_sectors << 9;
1783                         bp->bv2.bv_len -= first_sectors << 9;
1784                         bp->bv1.bv_len = first_sectors << 9;
1785                 }
1786
1787                 bp->bio1.bi_io_vec = &bp->bv1;
1788                 bp->bio2.bi_io_vec = &bp->bv2;
1789
1790                 bp->bio1.bi_max_vecs = 1;
1791                 bp->bio2.bi_max_vecs = 1;
1792         }
1793
1794         bp->bio1.bi_end_io = bio_pair_end_1;
1795         bp->bio2.bi_end_io = bio_pair_end_2;
1796
1797         bp->bio1.bi_private = bi;
1798         bp->bio2.bi_private = bio_split_pool;
1799
1800         if (bio_integrity(bi))
1801                 bio_integrity_split(bi, bp, first_sectors);
1802
1803         return bp;
1804 }
1805 EXPORT_SYMBOL(bio_split);
1806
1807 /**
1808  * bio_trim - trim a bio
1809  * @bio:        bio to trim
1810  * @offset:     number of sectors to trim from the front of @bio
1811  * @size:       size we want to trim @bio to, in sectors
1812  */
1813 void bio_trim(struct bio *bio, int offset, int size)
1814 {
1815         /* 'bio' is a cloned bio which we need to trim to match
1816          * the given offset and size.
1817          * This requires adjusting bi_sector, bi_size, and bi_io_vec
1818          */
1819         int i;
1820         struct bio_vec *bvec;
1821         int sofar = 0;
1822
1823         size <<= 9;
1824         if (offset == 0 && size == bio->bi_size)
1825                 return;
1826
1827         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1828
1829         bio_advance(bio, offset << 9);
1830
1831         bio->bi_size = size;
1832
1833         /* avoid any complications with bi_idx being non-zero*/
1834         if (bio->bi_idx) {
1835                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
1836                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
1837                 bio->bi_vcnt -= bio->bi_idx;
1838                 bio->bi_idx = 0;
1839         }
1840         /* Make sure vcnt and last bv are not too big */
1841         bio_for_each_segment(bvec, bio, i) {
1842                 if (sofar + bvec->bv_len > size)
1843                         bvec->bv_len = size - sofar;
1844                 if (bvec->bv_len == 0) {
1845                         bio->bi_vcnt = i;
1846                         break;
1847                 }
1848                 sofar += bvec->bv_len;
1849         }
1850 }
1851 EXPORT_SYMBOL_GPL(bio_trim);
1852
1853 /**
1854  *      bio_sector_offset - Find hardware sector offset in bio
1855  *      @bio:           bio to inspect
1856  *      @index:         bio_vec index
1857  *      @offset:        offset in bv_page
1858  *
1859  *      Return the number of hardware sectors between beginning of bio
1860  *      and an end point indicated by a bio_vec index and an offset
1861  *      within that vector's page.
1862  */
1863 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1864                            unsigned int offset)
1865 {
1866         unsigned int sector_sz;
1867         struct bio_vec *bv;
1868         sector_t sectors;
1869         int i;
1870
1871         sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1872         sectors = 0;
1873
1874         if (index >= bio->bi_idx)
1875                 index = bio->bi_vcnt - 1;
1876
1877         bio_for_each_segment_all(bv, bio, i) {
1878                 if (i == index) {
1879                         if (offset > bv->bv_offset)
1880                                 sectors += (offset - bv->bv_offset) / sector_sz;
1881                         break;
1882                 }
1883
1884                 sectors += bv->bv_len / sector_sz;
1885         }
1886
1887         return sectors;
1888 }
1889 EXPORT_SYMBOL(bio_sector_offset);
1890
1891 /*
1892  * create memory pools for biovec's in a bio_set.
1893  * use the global biovec slabs created for general use.
1894  */
1895 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1896 {
1897         struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1898
1899         return mempool_create_slab_pool(pool_entries, bp->slab);
1900 }
1901
1902 void bioset_free(struct bio_set *bs)
1903 {
1904         if (bs->rescue_workqueue)
1905                 destroy_workqueue(bs->rescue_workqueue);
1906
1907         if (bs->bio_pool)
1908                 mempool_destroy(bs->bio_pool);
1909
1910         if (bs->bvec_pool)
1911                 mempool_destroy(bs->bvec_pool);
1912
1913         bioset_integrity_free(bs);
1914         bio_put_slab(bs);
1915
1916         kfree(bs);
1917 }
1918 EXPORT_SYMBOL(bioset_free);
1919
1920 /**
1921  * bioset_create  - Create a bio_set
1922  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1923  * @front_pad:  Number of bytes to allocate in front of the returned bio
1924  *
1925  * Description:
1926  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1927  *    to ask for a number of bytes to be allocated in front of the bio.
1928  *    Front pad allocation is useful for embedding the bio inside
1929  *    another structure, to avoid allocating extra data to go with the bio.
1930  *    Note that the bio must be embedded at the END of that structure always,
1931  *    or things will break badly.
1932  */
1933 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1934 {
1935         unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1936         struct bio_set *bs;
1937
1938         bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1939         if (!bs)
1940                 return NULL;
1941
1942         bs->front_pad = front_pad;
1943
1944         spin_lock_init(&bs->rescue_lock);
1945         bio_list_init(&bs->rescue_list);
1946         INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1947
1948         bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1949         if (!bs->bio_slab) {
1950                 kfree(bs);
1951                 return NULL;
1952         }
1953
1954         bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1955         if (!bs->bio_pool)
1956                 goto bad;
1957
1958         bs->bvec_pool = biovec_create_pool(bs, pool_size);
1959         if (!bs->bvec_pool)
1960                 goto bad;
1961
1962         bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1963         if (!bs->rescue_workqueue)
1964                 goto bad;
1965
1966         return bs;
1967 bad:
1968         bioset_free(bs);
1969         return NULL;
1970 }
1971 EXPORT_SYMBOL(bioset_create);
1972
1973 #ifdef CONFIG_BLK_CGROUP
1974 /**
1975  * bio_associate_current - associate a bio with %current
1976  * @bio: target bio
1977  *
1978  * Associate @bio with %current if it hasn't been associated yet.  Block
1979  * layer will treat @bio as if it were issued by %current no matter which
1980  * task actually issues it.
1981  *
1982  * This function takes an extra reference of @task's io_context and blkcg
1983  * which will be put when @bio is released.  The caller must own @bio,
1984  * ensure %current->io_context exists, and is responsible for synchronizing
1985  * calls to this function.
1986  */
1987 int bio_associate_current(struct bio *bio)
1988 {
1989         struct io_context *ioc;
1990         struct cgroup_subsys_state *css;
1991
1992         if (bio->bi_ioc)
1993                 return -EBUSY;
1994
1995         ioc = current->io_context;
1996         if (!ioc)
1997                 return -ENOENT;
1998
1999         /* acquire active ref on @ioc and associate */
2000         get_io_context_active(ioc);
2001         bio->bi_ioc = ioc;
2002
2003         /* associate blkcg if exists */
2004         rcu_read_lock();
2005         css = task_css(current, blkio_subsys_id);
2006         if (css && css_tryget(css))
2007                 bio->bi_css = css;
2008         rcu_read_unlock();
2009
2010         return 0;
2011 }
2012
2013 /**
2014  * bio_disassociate_task - undo bio_associate_current()
2015  * @bio: target bio
2016  */
2017 void bio_disassociate_task(struct bio *bio)
2018 {
2019         if (bio->bi_ioc) {
2020                 put_io_context(bio->bi_ioc);
2021                 bio->bi_ioc = NULL;
2022         }
2023         if (bio->bi_css) {
2024                 css_put(bio->bi_css);
2025                 bio->bi_css = NULL;
2026         }
2027 }
2028
2029 #endif /* CONFIG_BLK_CGROUP */
2030
2031 static void __init biovec_init_slabs(void)
2032 {
2033         int i;
2034
2035         for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2036                 int size;
2037                 struct biovec_slab *bvs = bvec_slabs + i;
2038
2039                 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2040                         bvs->slab = NULL;
2041                         continue;
2042                 }
2043
2044                 size = bvs->nr_vecs * sizeof(struct bio_vec);
2045                 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2046                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2047         }
2048 }
2049
2050 static int __init init_bio(void)
2051 {
2052         bio_slab_max = 2;
2053         bio_slab_nr = 0;
2054         bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2055         if (!bio_slabs)
2056                 panic("bio: can't allocate bios\n");
2057
2058         bio_integrity_init();
2059         biovec_init_slabs();
2060
2061         fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2062         if (!fs_bio_set)
2063                 panic("bio: can't allocate bios\n");
2064
2065         if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2066                 panic("bio: can't create integrity pool\n");
2067
2068         bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2069                                                      sizeof(struct bio_pair));
2070         if (!bio_split_pool)
2071                 panic("bio: can't create split pool\n");
2072
2073         return 0;
2074 }
2075 subsys_initcall(init_bio);