1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/binfmt_elf.c
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
13 #include <linux/module.h>
14 #include <linux/kernel.h>
16 #include <linux/log2.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
57 #define user_long_t long
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
68 static int load_elf_binary(struct linux_binprm *bprm);
71 static int load_elf_library(struct file *);
73 #define load_elf_library NULL
77 * If we don't support core dumping, then supply a NULL so we
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
83 #define elf_core_dump NULL
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
89 #define ELF_MIN_ALIGN PAGE_SIZE
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS 0
96 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100 static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104 #ifdef CONFIG_COREDUMP
105 .core_dump = elf_core_dump,
106 .min_coredump = ELF_EXEC_PAGESIZE,
110 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112 static int set_brk(unsigned long start, unsigned long end, int prot)
114 start = ELF_PAGEALIGN(start);
115 end = ELF_PAGEALIGN(end);
118 * Map the last of the bss segment.
119 * If the header is requesting these pages to be
120 * executable, honour that (ppc32 needs this).
122 int error = vm_brk_flags(start, end - start,
123 prot & PROT_EXEC ? VM_EXEC : 0);
127 current->mm->start_brk = current->mm->brk = end;
131 /* We need to explicitly zero any fractional pages
132 after the data section (i.e. bss). This would
133 contain the junk from the file that should not
136 static int padzero(unsigned long elf_bss)
140 nbyte = ELF_PAGEOFFSET(elf_bss);
142 nbyte = ELF_MIN_ALIGN - nbyte;
143 if (clear_user((void __user *) elf_bss, nbyte))
149 /* Let's use some macros to make this stack manipulation a little clearer */
150 #ifdef CONFIG_STACK_GROWSUP
151 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
152 #define STACK_ROUND(sp, items) \
153 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
154 #define STACK_ALLOC(sp, len) ({ \
155 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
158 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
159 #define STACK_ROUND(sp, items) \
160 (((unsigned long) (sp - items)) &~ 15UL)
161 #define STACK_ALLOC(sp, len) (sp -= len)
164 #ifndef ELF_BASE_PLATFORM
166 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
167 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
168 * will be copied to the user stack in the same manner as AT_PLATFORM.
170 #define ELF_BASE_PLATFORM NULL
174 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
175 unsigned long interp_load_addr,
176 unsigned long e_entry, unsigned long phdr_addr)
178 struct mm_struct *mm = current->mm;
179 unsigned long p = bprm->p;
180 int argc = bprm->argc;
181 int envc = bprm->envc;
182 elf_addr_t __user *sp;
183 elf_addr_t __user *u_platform;
184 elf_addr_t __user *u_base_platform;
185 elf_addr_t __user *u_rand_bytes;
186 const char *k_platform = ELF_PLATFORM;
187 const char *k_base_platform = ELF_BASE_PLATFORM;
188 unsigned char k_rand_bytes[16];
190 elf_addr_t *elf_info;
191 elf_addr_t flags = 0;
193 const struct cred *cred = current_cred();
194 struct vm_area_struct *vma;
197 * In some cases (e.g. Hyper-Threading), we want to avoid L1
198 * evictions by the processes running on the same package. One
199 * thing we can do is to shuffle the initial stack for them.
202 p = arch_align_stack(p);
205 * If this architecture has a platform capability string, copy it
206 * to userspace. In some cases (Sparc), this info is impossible
207 * for userspace to get any other way, in others (i386) it is
212 size_t len = strlen(k_platform) + 1;
214 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 if (copy_to_user(u_platform, k_platform, len))
220 * If this architecture has a "base" platform capability
221 * string, copy it to userspace.
223 u_base_platform = NULL;
224 if (k_base_platform) {
225 size_t len = strlen(k_base_platform) + 1;
227 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
228 if (copy_to_user(u_base_platform, k_base_platform, len))
233 * Generate 16 random bytes for userspace PRNG seeding.
235 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
236 u_rand_bytes = (elf_addr_t __user *)
237 STACK_ALLOC(p, sizeof(k_rand_bytes));
238 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
241 /* Create the ELF interpreter info */
242 elf_info = (elf_addr_t *)mm->saved_auxv;
243 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
244 #define NEW_AUX_ENT(id, val) \
252 * ARCH_DLINFO must come first so PPC can do its special alignment of
254 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
255 * ARCH_DLINFO changes
259 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
260 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
261 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
262 NEW_AUX_ENT(AT_PHDR, phdr_addr);
263 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
264 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
265 NEW_AUX_ENT(AT_BASE, interp_load_addr);
266 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
267 flags |= AT_FLAGS_PRESERVE_ARGV0;
268 NEW_AUX_ENT(AT_FLAGS, flags);
269 NEW_AUX_ENT(AT_ENTRY, e_entry);
270 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
271 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
272 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
273 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
274 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
275 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
277 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
279 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
281 NEW_AUX_ENT(AT_PLATFORM,
282 (elf_addr_t)(unsigned long)u_platform);
284 if (k_base_platform) {
285 NEW_AUX_ENT(AT_BASE_PLATFORM,
286 (elf_addr_t)(unsigned long)u_base_platform);
288 if (bprm->have_execfd) {
289 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
292 /* AT_NULL is zero; clear the rest too */
293 memset(elf_info, 0, (char *)mm->saved_auxv +
294 sizeof(mm->saved_auxv) - (char *)elf_info);
296 /* And advance past the AT_NULL entry. */
299 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
300 sp = STACK_ADD(p, ei_index);
302 items = (argc + 1) + (envc + 1) + 1;
303 bprm->p = STACK_ROUND(sp, items);
305 /* Point sp at the lowest address on the stack */
306 #ifdef CONFIG_STACK_GROWSUP
307 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
308 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
310 sp = (elf_addr_t __user *)bprm->p;
315 * Grow the stack manually; some architectures have a limit on how
316 * far ahead a user-space access may be in order to grow the stack.
318 if (mmap_read_lock_killable(mm))
320 vma = find_extend_vma(mm, bprm->p);
321 mmap_read_unlock(mm);
325 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
326 if (put_user(argc, sp++))
329 /* Populate list of argv pointers back to argv strings. */
330 p = mm->arg_end = mm->arg_start;
333 if (put_user((elf_addr_t)p, sp++))
335 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
336 if (!len || len > MAX_ARG_STRLEN)
340 if (put_user(0, sp++))
344 /* Populate list of envp pointers back to envp strings. */
345 mm->env_end = mm->env_start = p;
348 if (put_user((elf_addr_t)p, sp++))
350 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
351 if (!len || len > MAX_ARG_STRLEN)
355 if (put_user(0, sp++))
359 /* Put the elf_info on the stack in the right place. */
360 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
365 static unsigned long elf_map(struct file *filep, unsigned long addr,
366 const struct elf_phdr *eppnt, int prot, int type,
367 unsigned long total_size)
369 unsigned long map_addr;
370 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
371 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
372 addr = ELF_PAGESTART(addr);
373 size = ELF_PAGEALIGN(size);
375 /* mmap() will return -EINVAL if given a zero size, but a
376 * segment with zero filesize is perfectly valid */
381 * total_size is the size of the ELF (interpreter) image.
382 * The _first_ mmap needs to know the full size, otherwise
383 * randomization might put this image into an overlapping
384 * position with the ELF binary image. (since size < total_size)
385 * So we first map the 'big' image - and unmap the remainder at
386 * the end. (which unmap is needed for ELF images with holes.)
389 total_size = ELF_PAGEALIGN(total_size);
390 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
391 if (!BAD_ADDR(map_addr))
392 vm_munmap(map_addr+size, total_size-size);
394 map_addr = vm_mmap(filep, addr, size, prot, type, off);
396 if ((type & MAP_FIXED_NOREPLACE) &&
397 PTR_ERR((void *)map_addr) == -EEXIST)
398 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
399 task_pid_nr(current), current->comm, (void *)addr);
404 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
406 elf_addr_t min_addr = -1;
407 elf_addr_t max_addr = 0;
408 bool pt_load = false;
411 for (i = 0; i < nr; i++) {
412 if (phdr[i].p_type == PT_LOAD) {
413 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
414 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
418 return pt_load ? (max_addr - min_addr) : 0;
421 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
425 rv = kernel_read(file, buf, len, &pos);
426 if (unlikely(rv != len)) {
427 return (rv < 0) ? rv : -EIO;
432 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
434 unsigned long alignment = 0;
437 for (i = 0; i < nr; i++) {
438 if (cmds[i].p_type == PT_LOAD) {
439 unsigned long p_align = cmds[i].p_align;
441 /* skip non-power of two alignments as invalid */
442 if (!is_power_of_2(p_align))
444 alignment = max(alignment, p_align);
448 /* ensure we align to at least one page */
449 return ELF_PAGEALIGN(alignment);
453 * load_elf_phdrs() - load ELF program headers
454 * @elf_ex: ELF header of the binary whose program headers should be loaded
455 * @elf_file: the opened ELF binary file
457 * Loads ELF program headers from the binary file elf_file, which has the ELF
458 * header pointed to by elf_ex, into a newly allocated array. The caller is
459 * responsible for freeing the allocated data. Returns NULL upon failure.
461 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
462 struct file *elf_file)
464 struct elf_phdr *elf_phdata = NULL;
469 * If the size of this structure has changed, then punt, since
470 * we will be doing the wrong thing.
472 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
475 /* Sanity check the number of program headers... */
476 /* ...and their total size. */
477 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
478 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
481 elf_phdata = kmalloc(size, GFP_KERNEL);
485 /* Read in the program headers */
486 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
496 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
499 * struct arch_elf_state - arch-specific ELF loading state
501 * This structure is used to preserve architecture specific data during
502 * the loading of an ELF file, throughout the checking of architecture
503 * specific ELF headers & through to the point where the ELF load is
504 * known to be proceeding (ie. SET_PERSONALITY).
506 * This implementation is a dummy for architectures which require no
509 struct arch_elf_state {
512 #define INIT_ARCH_ELF_STATE {}
515 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
516 * @ehdr: The main ELF header
517 * @phdr: The program header to check
518 * @elf: The open ELF file
519 * @is_interp: True if the phdr is from the interpreter of the ELF being
520 * loaded, else false.
521 * @state: Architecture-specific state preserved throughout the process
522 * of loading the ELF.
524 * Inspects the program header phdr to validate its correctness and/or
525 * suitability for the system. Called once per ELF program header in the
526 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
529 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
530 * with that return code.
532 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
533 struct elf_phdr *phdr,
534 struct file *elf, bool is_interp,
535 struct arch_elf_state *state)
537 /* Dummy implementation, always proceed */
542 * arch_check_elf() - check an ELF executable
543 * @ehdr: The main ELF header
544 * @has_interp: True if the ELF has an interpreter, else false.
545 * @interp_ehdr: The interpreter's ELF header
546 * @state: Architecture-specific state preserved throughout the process
547 * of loading the ELF.
549 * Provides a final opportunity for architecture code to reject the loading
550 * of the ELF & cause an exec syscall to return an error. This is called after
551 * all program headers to be checked by arch_elf_pt_proc have been.
553 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
554 * with that return code.
556 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
557 struct elfhdr *interp_ehdr,
558 struct arch_elf_state *state)
560 /* Dummy implementation, always proceed */
564 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
566 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
567 bool has_interp, bool is_interp)
578 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
581 /* This is much more generalized than the library routine read function,
582 so we keep this separate. Technically the library read function
583 is only provided so that we can read a.out libraries that have
586 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
587 struct file *interpreter,
588 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
589 struct arch_elf_state *arch_state)
591 struct elf_phdr *eppnt;
592 unsigned long load_addr = 0;
593 int load_addr_set = 0;
594 unsigned long last_bss = 0, elf_bss = 0;
596 unsigned long error = ~0UL;
597 unsigned long total_size;
600 /* First of all, some simple consistency checks */
601 if (interp_elf_ex->e_type != ET_EXEC &&
602 interp_elf_ex->e_type != ET_DYN)
604 if (!elf_check_arch(interp_elf_ex) ||
605 elf_check_fdpic(interp_elf_ex))
607 if (!interpreter->f_op->mmap)
610 total_size = total_mapping_size(interp_elf_phdata,
611 interp_elf_ex->e_phnum);
617 eppnt = interp_elf_phdata;
618 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
619 if (eppnt->p_type == PT_LOAD) {
620 int elf_type = MAP_PRIVATE;
621 int elf_prot = make_prot(eppnt->p_flags, arch_state,
623 unsigned long vaddr = 0;
624 unsigned long k, map_addr;
626 vaddr = eppnt->p_vaddr;
627 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
628 elf_type |= MAP_FIXED;
629 else if (no_base && interp_elf_ex->e_type == ET_DYN)
632 map_addr = elf_map(interpreter, load_addr + vaddr,
633 eppnt, elf_prot, elf_type, total_size);
636 if (BAD_ADDR(map_addr))
639 if (!load_addr_set &&
640 interp_elf_ex->e_type == ET_DYN) {
641 load_addr = map_addr - ELF_PAGESTART(vaddr);
646 * Check to see if the section's size will overflow the
647 * allowed task size. Note that p_filesz must always be
648 * <= p_memsize so it's only necessary to check p_memsz.
650 k = load_addr + eppnt->p_vaddr;
652 eppnt->p_filesz > eppnt->p_memsz ||
653 eppnt->p_memsz > TASK_SIZE ||
654 TASK_SIZE - eppnt->p_memsz < k) {
660 * Find the end of the file mapping for this phdr, and
661 * keep track of the largest address we see for this.
663 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
668 * Do the same thing for the memory mapping - between
669 * elf_bss and last_bss is the bss section.
671 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
680 * Now fill out the bss section: first pad the last page from
681 * the file up to the page boundary, and zero it from elf_bss
682 * up to the end of the page.
684 if (padzero(elf_bss)) {
689 * Next, align both the file and mem bss up to the page size,
690 * since this is where elf_bss was just zeroed up to, and where
691 * last_bss will end after the vm_brk_flags() below.
693 elf_bss = ELF_PAGEALIGN(elf_bss);
694 last_bss = ELF_PAGEALIGN(last_bss);
695 /* Finally, if there is still more bss to allocate, do it. */
696 if (last_bss > elf_bss) {
697 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
698 bss_prot & PROT_EXEC ? VM_EXEC : 0);
709 * These are the functions used to load ELF style executables and shared
710 * libraries. There is no binary dependent code anywhere else.
713 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
714 struct arch_elf_state *arch,
715 bool have_prev_type, u32 *prev_type)
718 const struct gnu_property *pr;
724 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
729 if (datasz < sizeof(*pr))
731 pr = (const struct gnu_property *)(data + o);
733 datasz -= sizeof(*pr);
735 if (pr->pr_datasz > datasz)
738 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
739 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
743 /* Properties are supposed to be unique and sorted on pr_type: */
744 if (have_prev_type && pr->pr_type <= *prev_type)
746 *prev_type = pr->pr_type;
748 ret = arch_parse_elf_property(pr->pr_type, data + o,
749 pr->pr_datasz, ELF_COMPAT, arch);
757 #define NOTE_DATA_SZ SZ_1K
758 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
759 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
761 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
762 struct arch_elf_state *arch)
765 struct elf_note nhdr;
766 char data[NOTE_DATA_SZ];
775 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
778 /* load_elf_binary() shouldn't call us unless this is true... */
779 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
782 /* If the properties are crazy large, that's too bad (for now): */
783 if (phdr->p_filesz > sizeof(note))
786 pos = phdr->p_offset;
787 n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
789 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
790 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
793 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
794 note.nhdr.n_namesz != NOTE_NAME_SZ ||
795 strncmp(note.data + sizeof(note.nhdr),
796 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
799 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
800 ELF_GNU_PROPERTY_ALIGN);
804 if (note.nhdr.n_descsz > n - off)
806 datasz = off + note.nhdr.n_descsz;
808 have_prev_type = false;
810 ret = parse_elf_property(note.data, &off, datasz, arch,
811 have_prev_type, &prev_type);
812 have_prev_type = true;
815 return ret == -ENOENT ? 0 : ret;
818 static int load_elf_binary(struct linux_binprm *bprm)
820 struct file *interpreter = NULL; /* to shut gcc up */
821 unsigned long load_bias = 0, phdr_addr = 0;
822 int first_pt_load = 1;
824 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
825 struct elf_phdr *elf_property_phdata = NULL;
826 unsigned long elf_bss, elf_brk;
829 unsigned long elf_entry;
830 unsigned long e_entry;
831 unsigned long interp_load_addr = 0;
832 unsigned long start_code, end_code, start_data, end_data;
833 unsigned long reloc_func_desc __maybe_unused = 0;
834 int executable_stack = EXSTACK_DEFAULT;
835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 struct elfhdr *interp_elf_ex = NULL;
837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 struct mm_struct *mm;
839 struct pt_regs *regs;
842 /* First of all, some simple consistency checks */
843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
848 if (!elf_check_arch(elf_ex))
850 if (elf_check_fdpic(elf_ex))
852 if (!bprm->file->f_op->mmap)
855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
859 elf_ppnt = elf_phdata;
860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 char *elf_interpreter;
863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 elf_property_phdata = elf_ppnt;
868 if (elf_ppnt->p_type != PT_INTERP)
872 * This is the program interpreter used for shared libraries -
873 * for now assume that this is an a.out format binary.
876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881 if (!elf_interpreter)
884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
887 goto out_free_interp;
888 /* make sure path is NULL terminated */
890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 goto out_free_interp;
893 interpreter = open_exec(elf_interpreter);
894 kfree(elf_interpreter);
895 retval = PTR_ERR(interpreter);
896 if (IS_ERR(interpreter))
900 * If the binary is not readable then enforce mm->dumpable = 0
901 * regardless of the interpreter's permissions.
903 would_dump(bprm, interpreter);
905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906 if (!interp_elf_ex) {
911 /* Get the exec headers */
912 retval = elf_read(interpreter, interp_elf_ex,
913 sizeof(*interp_elf_ex), 0);
915 goto out_free_dentry;
920 kfree(elf_interpreter);
924 elf_ppnt = elf_phdata;
925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 switch (elf_ppnt->p_type) {
928 if (elf_ppnt->p_flags & PF_X)
929 executable_stack = EXSTACK_ENABLE_X;
931 executable_stack = EXSTACK_DISABLE_X;
934 case PT_LOPROC ... PT_HIPROC:
935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
939 goto out_free_dentry;
943 /* Some simple consistency checks for the interpreter */
946 /* Not an ELF interpreter */
947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 goto out_free_dentry;
949 /* Verify the interpreter has a valid arch */
950 if (!elf_check_arch(interp_elf_ex) ||
951 elf_check_fdpic(interp_elf_ex))
952 goto out_free_dentry;
954 /* Load the interpreter program headers */
955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
957 if (!interp_elf_phdata)
958 goto out_free_dentry;
960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 elf_property_phdata = NULL;
962 elf_ppnt = interp_elf_phdata;
963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 switch (elf_ppnt->p_type) {
965 case PT_GNU_PROPERTY:
966 elf_property_phdata = elf_ppnt;
969 case PT_LOPROC ... PT_HIPROC:
970 retval = arch_elf_pt_proc(interp_elf_ex,
971 elf_ppnt, interpreter,
974 goto out_free_dentry;
979 retval = parse_elf_properties(interpreter ?: bprm->file,
980 elf_property_phdata, &arch_state);
982 goto out_free_dentry;
985 * Allow arch code to reject the ELF at this point, whilst it's
986 * still possible to return an error to the code that invoked
989 retval = arch_check_elf(elf_ex,
990 !!interpreter, interp_elf_ex,
993 goto out_free_dentry;
995 /* Flush all traces of the currently running executable */
996 retval = begin_new_exec(bprm);
998 goto out_free_dentry;
1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 may depend on the personality. */
1002 SET_PERSONALITY2(*elf_ex, &arch_state);
1003 if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 current->personality |= READ_IMPLIES_EXEC;
1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007 current->flags |= PF_RANDOMIZE;
1009 setup_new_exec(bprm);
1011 /* Do this so that we can load the interpreter, if need be. We will
1012 change some of these later */
1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1016 goto out_free_dentry;
1026 /* Now we do a little grungy work by mmapping the ELF image into
1027 the correct location in memory. */
1028 for(i = 0, elf_ppnt = elf_phdata;
1029 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1030 int elf_prot, elf_flags;
1031 unsigned long k, vaddr;
1032 unsigned long total_size = 0;
1033 unsigned long alignment;
1035 if (elf_ppnt->p_type != PT_LOAD)
1038 if (unlikely (elf_brk > elf_bss)) {
1039 unsigned long nbyte;
1041 /* There was a PT_LOAD segment with p_memsz > p_filesz
1042 before this one. Map anonymous pages, if needed,
1043 and clear the area. */
1044 retval = set_brk(elf_bss + load_bias,
1045 elf_brk + load_bias,
1048 goto out_free_dentry;
1049 nbyte = ELF_PAGEOFFSET(elf_bss);
1051 nbyte = ELF_MIN_ALIGN - nbyte;
1052 if (nbyte > elf_brk - elf_bss)
1053 nbyte = elf_brk - elf_bss;
1054 if (clear_user((void __user *)elf_bss +
1055 load_bias, nbyte)) {
1057 * This bss-zeroing can fail if the ELF
1058 * file specifies odd protections. So
1059 * we don't check the return value
1065 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1066 !!interpreter, false);
1068 elf_flags = MAP_PRIVATE;
1070 vaddr = elf_ppnt->p_vaddr;
1072 * The first time through the loop, first_pt_load is true:
1073 * layout will be calculated. Once set, use MAP_FIXED since
1074 * we know we've already safely mapped the entire region with
1075 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1077 if (!first_pt_load) {
1078 elf_flags |= MAP_FIXED;
1079 } else if (elf_ex->e_type == ET_EXEC) {
1081 * This logic is run once for the first LOAD Program
1082 * Header for ET_EXEC binaries. No special handling
1085 elf_flags |= MAP_FIXED_NOREPLACE;
1086 } else if (elf_ex->e_type == ET_DYN) {
1088 * This logic is run once for the first LOAD Program
1089 * Header for ET_DYN binaries to calculate the
1090 * randomization (load_bias) for all the LOAD
1093 * There are effectively two types of ET_DYN
1094 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1095 * and loaders (ET_DYN without INTERP, since they
1096 * _are_ the ELF interpreter). The loaders must
1097 * be loaded away from programs since the program
1098 * may otherwise collide with the loader (especially
1099 * for ET_EXEC which does not have a randomized
1100 * position). For example to handle invocations of
1101 * "./ld.so someprog" to test out a new version of
1102 * the loader, the subsequent program that the
1103 * loader loads must avoid the loader itself, so
1104 * they cannot share the same load range. Sufficient
1105 * room for the brk must be allocated with the
1106 * loader as well, since brk must be available with
1109 * Therefore, programs are loaded offset from
1110 * ELF_ET_DYN_BASE and loaders are loaded into the
1111 * independently randomized mmap region (0 load_bias
1112 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1115 load_bias = ELF_ET_DYN_BASE;
1116 if (current->flags & PF_RANDOMIZE)
1117 load_bias += arch_mmap_rnd();
1118 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1120 load_bias &= ~(alignment - 1);
1121 elf_flags |= MAP_FIXED_NOREPLACE;
1126 * Since load_bias is used for all subsequent loading
1127 * calculations, we must lower it by the first vaddr
1128 * so that the remaining calculations based on the
1129 * ELF vaddrs will be correctly offset. The result
1130 * is then page aligned.
1132 load_bias = ELF_PAGESTART(load_bias - vaddr);
1135 * Calculate the entire size of the ELF mapping
1136 * (total_size), used for the initial mapping,
1137 * due to load_addr_set which is set to true later
1138 * once the initial mapping is performed.
1140 * Note that this is only sensible when the LOAD
1141 * segments are contiguous (or overlapping). If
1142 * used for LOADs that are far apart, this would
1143 * cause the holes between LOADs to be mapped,
1144 * running the risk of having the mapping fail,
1145 * as it would be larger than the ELF file itself.
1147 * As a result, only ET_DYN does this, since
1148 * some ET_EXEC (e.g. ia64) may have large virtual
1149 * memory holes between LOADs.
1152 total_size = total_mapping_size(elf_phdata,
1156 goto out_free_dentry;
1160 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1161 elf_prot, elf_flags, total_size);
1162 if (BAD_ADDR(error)) {
1163 retval = IS_ERR_VALUE(error) ?
1164 PTR_ERR((void*)error) : -EINVAL;
1165 goto out_free_dentry;
1168 if (first_pt_load) {
1170 if (elf_ex->e_type == ET_DYN) {
1171 load_bias += error -
1172 ELF_PAGESTART(load_bias + vaddr);
1173 reloc_func_desc = load_bias;
1178 * Figure out which segment in the file contains the Program
1179 * Header table, and map to the associated memory address.
1181 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1182 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1183 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1187 k = elf_ppnt->p_vaddr;
1188 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1194 * Check to see if the section's size will overflow the
1195 * allowed task size. Note that p_filesz must always be
1196 * <= p_memsz so it is only necessary to check p_memsz.
1198 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1199 elf_ppnt->p_memsz > TASK_SIZE ||
1200 TASK_SIZE - elf_ppnt->p_memsz < k) {
1201 /* set_brk can never work. Avoid overflows. */
1203 goto out_free_dentry;
1206 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1210 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1214 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1216 bss_prot = elf_prot;
1221 e_entry = elf_ex->e_entry + load_bias;
1222 phdr_addr += load_bias;
1223 elf_bss += load_bias;
1224 elf_brk += load_bias;
1225 start_code += load_bias;
1226 end_code += load_bias;
1227 start_data += load_bias;
1228 end_data += load_bias;
1230 /* Calling set_brk effectively mmaps the pages that we need
1231 * for the bss and break sections. We must do this before
1232 * mapping in the interpreter, to make sure it doesn't wind
1233 * up getting placed where the bss needs to go.
1235 retval = set_brk(elf_bss, elf_brk, bss_prot);
1237 goto out_free_dentry;
1238 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1239 retval = -EFAULT; /* Nobody gets to see this, but.. */
1240 goto out_free_dentry;
1244 elf_entry = load_elf_interp(interp_elf_ex,
1246 load_bias, interp_elf_phdata,
1248 if (!IS_ERR_VALUE(elf_entry)) {
1250 * load_elf_interp() returns relocation
1253 interp_load_addr = elf_entry;
1254 elf_entry += interp_elf_ex->e_entry;
1256 if (BAD_ADDR(elf_entry)) {
1257 retval = IS_ERR_VALUE(elf_entry) ?
1258 (int)elf_entry : -EINVAL;
1259 goto out_free_dentry;
1261 reloc_func_desc = interp_load_addr;
1263 allow_write_access(interpreter);
1266 kfree(interp_elf_ex);
1267 kfree(interp_elf_phdata);
1269 elf_entry = e_entry;
1270 if (BAD_ADDR(elf_entry)) {
1272 goto out_free_dentry;
1278 set_binfmt(&elf_format);
1280 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1281 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1284 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1286 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1287 e_entry, phdr_addr);
1292 mm->end_code = end_code;
1293 mm->start_code = start_code;
1294 mm->start_data = start_data;
1295 mm->end_data = end_data;
1296 mm->start_stack = bprm->p;
1298 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1300 * For architectures with ELF randomization, when executing
1301 * a loader directly (i.e. no interpreter listed in ELF
1302 * headers), move the brk area out of the mmap region
1303 * (since it grows up, and may collide early with the stack
1304 * growing down), and into the unused ELF_ET_DYN_BASE region.
1306 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1307 elf_ex->e_type == ET_DYN && !interpreter) {
1308 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1311 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1312 #ifdef compat_brk_randomized
1313 current->brk_randomized = 1;
1317 if (current->personality & MMAP_PAGE_ZERO) {
1318 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1319 and some applications "depend" upon this behavior.
1320 Since we do not have the power to recompile these, we
1321 emulate the SVr4 behavior. Sigh. */
1322 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1323 MAP_FIXED | MAP_PRIVATE, 0);
1326 regs = current_pt_regs();
1327 #ifdef ELF_PLAT_INIT
1329 * The ABI may specify that certain registers be set up in special
1330 * ways (on i386 %edx is the address of a DT_FINI function, for
1331 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1332 * that the e_entry field is the address of the function descriptor
1333 * for the startup routine, rather than the address of the startup
1334 * routine itself. This macro performs whatever initialization to
1335 * the regs structure is required as well as any relocations to the
1336 * function descriptor entries when executing dynamically links apps.
1338 ELF_PLAT_INIT(regs, reloc_func_desc);
1341 finalize_exec(bprm);
1342 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1349 kfree(interp_elf_ex);
1350 kfree(interp_elf_phdata);
1352 allow_write_access(interpreter);
1360 #ifdef CONFIG_USELIB
1361 /* This is really simpleminded and specialized - we are loading an
1362 a.out library that is given an ELF header. */
1363 static int load_elf_library(struct file *file)
1365 struct elf_phdr *elf_phdata;
1366 struct elf_phdr *eppnt;
1367 unsigned long elf_bss, bss, len;
1368 int retval, error, i, j;
1369 struct elfhdr elf_ex;
1372 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1376 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1379 /* First of all, some simple consistency checks */
1380 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1381 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1383 if (elf_check_fdpic(&elf_ex))
1386 /* Now read in all of the header information */
1388 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1389 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1392 elf_phdata = kmalloc(j, GFP_KERNEL);
1398 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1402 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1403 if ((eppnt + i)->p_type == PT_LOAD)
1408 while (eppnt->p_type != PT_LOAD)
1411 /* Now use mmap to map the library into memory. */
1412 error = vm_mmap(file,
1413 ELF_PAGESTART(eppnt->p_vaddr),
1415 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1416 PROT_READ | PROT_WRITE | PROT_EXEC,
1417 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1419 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1420 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1423 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1424 if (padzero(elf_bss)) {
1429 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1430 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1432 error = vm_brk(len, bss - len);
1443 #endif /* #ifdef CONFIG_USELIB */
1445 #ifdef CONFIG_ELF_CORE
1449 * Modelled on fs/exec.c:aout_core_dump()
1450 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1453 /* An ELF note in memory */
1458 unsigned int datasz;
1462 static int notesize(struct memelfnote *en)
1466 sz = sizeof(struct elf_note);
1467 sz += roundup(strlen(en->name) + 1, 4);
1468 sz += roundup(en->datasz, 4);
1473 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1476 en.n_namesz = strlen(men->name) + 1;
1477 en.n_descsz = men->datasz;
1478 en.n_type = men->type;
1480 return dump_emit(cprm, &en, sizeof(en)) &&
1481 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1482 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1485 static void fill_elf_header(struct elfhdr *elf, int segs,
1486 u16 machine, u32 flags)
1488 memset(elf, 0, sizeof(*elf));
1490 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1491 elf->e_ident[EI_CLASS] = ELF_CLASS;
1492 elf->e_ident[EI_DATA] = ELF_DATA;
1493 elf->e_ident[EI_VERSION] = EV_CURRENT;
1494 elf->e_ident[EI_OSABI] = ELF_OSABI;
1496 elf->e_type = ET_CORE;
1497 elf->e_machine = machine;
1498 elf->e_version = EV_CURRENT;
1499 elf->e_phoff = sizeof(struct elfhdr);
1500 elf->e_flags = flags;
1501 elf->e_ehsize = sizeof(struct elfhdr);
1502 elf->e_phentsize = sizeof(struct elf_phdr);
1503 elf->e_phnum = segs;
1506 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1508 phdr->p_type = PT_NOTE;
1509 phdr->p_offset = offset;
1512 phdr->p_filesz = sz;
1518 static void fill_note(struct memelfnote *note, const char *name, int type,
1519 unsigned int sz, void *data)
1528 * fill up all the fields in prstatus from the given task struct, except
1529 * registers which need to be filled up separately.
1531 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1532 struct task_struct *p, long signr)
1534 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1535 prstatus->pr_sigpend = p->pending.signal.sig[0];
1536 prstatus->pr_sighold = p->blocked.sig[0];
1538 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1540 prstatus->pr_pid = task_pid_vnr(p);
1541 prstatus->pr_pgrp = task_pgrp_vnr(p);
1542 prstatus->pr_sid = task_session_vnr(p);
1543 if (thread_group_leader(p)) {
1544 struct task_cputime cputime;
1547 * This is the record for the group leader. It shows the
1548 * group-wide total, not its individual thread total.
1550 thread_group_cputime(p, &cputime);
1551 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1552 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1556 task_cputime(p, &utime, &stime);
1557 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1558 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1561 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1562 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1565 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1566 struct mm_struct *mm)
1568 const struct cred *cred;
1569 unsigned int i, len;
1572 /* first copy the parameters from user space */
1573 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1575 len = mm->arg_end - mm->arg_start;
1576 if (len >= ELF_PRARGSZ)
1577 len = ELF_PRARGSZ-1;
1578 if (copy_from_user(&psinfo->pr_psargs,
1579 (const char __user *)mm->arg_start, len))
1581 for(i = 0; i < len; i++)
1582 if (psinfo->pr_psargs[i] == 0)
1583 psinfo->pr_psargs[i] = ' ';
1584 psinfo->pr_psargs[len] = 0;
1587 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1589 psinfo->pr_pid = task_pid_vnr(p);
1590 psinfo->pr_pgrp = task_pgrp_vnr(p);
1591 psinfo->pr_sid = task_session_vnr(p);
1593 state = READ_ONCE(p->__state);
1594 i = state ? ffz(~state) + 1 : 0;
1595 psinfo->pr_state = i;
1596 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1597 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1598 psinfo->pr_nice = task_nice(p);
1599 psinfo->pr_flag = p->flags;
1601 cred = __task_cred(p);
1602 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1603 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1605 get_task_comm(psinfo->pr_fname, p);
1610 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1612 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1616 while (auxv[i - 2] != AT_NULL);
1617 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1620 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1621 const kernel_siginfo_t *siginfo)
1623 copy_siginfo_to_external(csigdata, siginfo);
1624 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1627 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1629 * Format of NT_FILE note:
1631 * long count -- how many files are mapped
1632 * long page_size -- units for file_ofs
1633 * array of [COUNT] elements of
1637 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1639 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1641 unsigned count, size, names_ofs, remaining, n;
1643 user_long_t *start_end_ofs;
1644 char *name_base, *name_curpos;
1647 /* *Estimated* file count and total data size needed */
1648 count = cprm->vma_count;
1649 if (count > UINT_MAX / 64)
1653 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1655 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1657 size = round_up(size, PAGE_SIZE);
1659 * "size" can be 0 here legitimately.
1660 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1662 data = kvmalloc(size, GFP_KERNEL);
1663 if (ZERO_OR_NULL_PTR(data))
1666 start_end_ofs = data + 2;
1667 name_base = name_curpos = ((char *)data) + names_ofs;
1668 remaining = size - names_ofs;
1670 for (i = 0; i < cprm->vma_count; i++) {
1671 struct core_vma_metadata *m = &cprm->vma_meta[i];
1673 const char *filename;
1678 filename = file_path(file, name_curpos, remaining);
1679 if (IS_ERR(filename)) {
1680 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1682 size = size * 5 / 4;
1688 /* file_path() fills at the end, move name down */
1689 /* n = strlen(filename) + 1: */
1690 n = (name_curpos + remaining) - filename;
1691 remaining = filename - name_curpos;
1692 memmove(name_curpos, filename, n);
1695 *start_end_ofs++ = m->start;
1696 *start_end_ofs++ = m->end;
1697 *start_end_ofs++ = m->pgoff;
1701 /* Now we know exact count of files, can store it */
1703 data[1] = PAGE_SIZE;
1705 * Count usually is less than mm->map_count,
1706 * we need to move filenames down.
1708 n = cprm->vma_count - count;
1710 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1711 memmove(name_base - shift_bytes, name_base,
1712 name_curpos - name_base);
1713 name_curpos -= shift_bytes;
1716 size = name_curpos - (char *)data;
1717 fill_note(note, "CORE", NT_FILE, size, data);
1721 #include <linux/regset.h>
1723 struct elf_thread_core_info {
1724 struct elf_thread_core_info *next;
1725 struct task_struct *task;
1726 struct elf_prstatus prstatus;
1727 struct memelfnote notes[];
1730 struct elf_note_info {
1731 struct elf_thread_core_info *thread;
1732 struct memelfnote psinfo;
1733 struct memelfnote signote;
1734 struct memelfnote auxv;
1735 struct memelfnote files;
1736 user_siginfo_t csigdata;
1741 #ifdef CORE_DUMP_USE_REGSET
1743 * When a regset has a writeback hook, we call it on each thread before
1744 * dumping user memory. On register window machines, this makes sure the
1745 * user memory backing the register data is up to date before we read it.
1747 static void do_thread_regset_writeback(struct task_struct *task,
1748 const struct user_regset *regset)
1750 if (regset->writeback)
1751 regset->writeback(task, regset, 1);
1754 #ifndef PRSTATUS_SIZE
1755 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1758 #ifndef SET_PR_FPVALID
1759 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1762 static int fill_thread_core_info(struct elf_thread_core_info *t,
1763 const struct user_regset_view *view,
1764 long signr, struct elf_note_info *info)
1766 unsigned int note_iter, view_iter;
1769 * NT_PRSTATUS is the one special case, because the regset data
1770 * goes into the pr_reg field inside the note contents, rather
1771 * than being the whole note contents. We fill the reset in here.
1772 * We assume that regset 0 is NT_PRSTATUS.
1774 fill_prstatus(&t->prstatus.common, t->task, signr);
1775 regset_get(t->task, &view->regsets[0],
1776 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1778 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1779 PRSTATUS_SIZE, &t->prstatus);
1780 info->size += notesize(&t->notes[0]);
1782 do_thread_regset_writeback(t->task, &view->regsets[0]);
1785 * Each other regset might generate a note too. For each regset
1786 * that has no core_note_type or is inactive, skip it.
1789 for (view_iter = 1; view_iter < view->n; ++view_iter) {
1790 const struct user_regset *regset = &view->regsets[view_iter];
1791 int note_type = regset->core_note_type;
1792 bool is_fpreg = note_type == NT_PRFPREG;
1796 do_thread_regset_writeback(t->task, regset);
1797 if (!note_type) // not for coredumps
1799 if (regset->active && regset->active(t->task, regset) <= 0)
1802 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1806 if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1810 SET_PR_FPVALID(&t->prstatus);
1812 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1813 note_type, ret, data);
1815 info->size += notesize(&t->notes[note_iter]);
1822 static int fill_thread_core_info(struct elf_thread_core_info *t,
1823 const struct user_regset_view *view,
1824 long signr, struct elf_note_info *info)
1826 struct task_struct *p = t->task;
1827 elf_fpregset_t *fpu;
1829 fill_prstatus(&t->prstatus.common, p, signr);
1830 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1832 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1834 info->size += notesize(&t->notes[0]);
1836 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1837 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1842 t->prstatus.pr_fpvalid = 1;
1843 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1844 info->size += notesize(&t->notes[1]);
1850 static int fill_note_info(struct elfhdr *elf, int phdrs,
1851 struct elf_note_info *info,
1852 struct coredump_params *cprm)
1854 struct task_struct *dump_task = current;
1855 const struct user_regset_view *view;
1856 struct elf_thread_core_info *t;
1857 struct elf_prpsinfo *psinfo;
1858 struct core_thread *ct;
1860 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1863 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1865 #ifdef CORE_DUMP_USE_REGSET
1866 view = task_user_regset_view(dump_task);
1869 * Figure out how many notes we're going to need for each thread.
1871 info->thread_notes = 0;
1872 for (int i = 0; i < view->n; ++i)
1873 if (view->regsets[i].core_note_type != 0)
1874 ++info->thread_notes;
1877 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1878 * since it is our one special case.
1880 if (unlikely(info->thread_notes == 0) ||
1881 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1887 * Initialize the ELF file header.
1889 fill_elf_header(elf, phdrs,
1890 view->e_machine, view->e_flags);
1893 info->thread_notes = 2;
1894 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1898 * Allocate a structure for each thread.
1900 info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1901 notes[info->thread_notes]),
1903 if (unlikely(!info->thread))
1906 info->thread->task = dump_task;
1907 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1908 t = kzalloc(offsetof(struct elf_thread_core_info,
1909 notes[info->thread_notes]),
1915 t->next = info->thread->next;
1916 info->thread->next = t;
1920 * Now fill in each thread's information.
1922 for (t = info->thread; t != NULL; t = t->next)
1923 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1927 * Fill in the two process-wide notes.
1929 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1930 info->size += notesize(&info->psinfo);
1932 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1933 info->size += notesize(&info->signote);
1935 fill_auxv_note(&info->auxv, current->mm);
1936 info->size += notesize(&info->auxv);
1938 if (fill_files_note(&info->files, cprm) == 0)
1939 info->size += notesize(&info->files);
1945 * Write all the notes for each thread. When writing the first thread, the
1946 * process-wide notes are interleaved after the first thread-specific note.
1948 static int write_note_info(struct elf_note_info *info,
1949 struct coredump_params *cprm)
1952 struct elf_thread_core_info *t = info->thread;
1957 if (!writenote(&t->notes[0], cprm))
1960 if (first && !writenote(&info->psinfo, cprm))
1962 if (first && !writenote(&info->signote, cprm))
1964 if (first && !writenote(&info->auxv, cprm))
1966 if (first && info->files.data &&
1967 !writenote(&info->files, cprm))
1970 for (i = 1; i < info->thread_notes; ++i)
1971 if (t->notes[i].data &&
1972 !writenote(&t->notes[i], cprm))
1982 static void free_note_info(struct elf_note_info *info)
1984 struct elf_thread_core_info *threads = info->thread;
1987 struct elf_thread_core_info *t = threads;
1989 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1990 for (i = 1; i < info->thread_notes; ++i)
1991 kfree(t->notes[i].data);
1994 kfree(info->psinfo.data);
1995 kvfree(info->files.data);
1998 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1999 elf_addr_t e_shoff, int segs)
2001 elf->e_shoff = e_shoff;
2002 elf->e_shentsize = sizeof(*shdr4extnum);
2004 elf->e_shstrndx = SHN_UNDEF;
2006 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2008 shdr4extnum->sh_type = SHT_NULL;
2009 shdr4extnum->sh_size = elf->e_shnum;
2010 shdr4extnum->sh_link = elf->e_shstrndx;
2011 shdr4extnum->sh_info = segs;
2017 * This is a two-pass process; first we find the offsets of the bits,
2018 * and then they are actually written out. If we run out of core limit
2021 static int elf_core_dump(struct coredump_params *cprm)
2026 loff_t offset = 0, dataoff;
2027 struct elf_note_info info = { };
2028 struct elf_phdr *phdr4note = NULL;
2029 struct elf_shdr *shdr4extnum = NULL;
2034 * The number of segs are recored into ELF header as 16bit value.
2035 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2037 segs = cprm->vma_count + elf_core_extra_phdrs();
2039 /* for notes section */
2042 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2043 * this, kernel supports extended numbering. Have a look at
2044 * include/linux/elf.h for further information. */
2045 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2048 * Collect all the non-memory information about the process for the
2049 * notes. This also sets up the file header.
2051 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2056 offset += sizeof(elf); /* Elf header */
2057 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2059 /* Write notes phdr entry */
2061 size_t sz = info.size;
2063 /* For cell spufs */
2064 sz += elf_coredump_extra_notes_size();
2066 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2070 fill_elf_note_phdr(phdr4note, sz, offset);
2074 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2076 offset += cprm->vma_data_size;
2077 offset += elf_core_extra_data_size();
2080 if (e_phnum == PN_XNUM) {
2081 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2084 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2089 if (!dump_emit(cprm, &elf, sizeof(elf)))
2092 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2095 /* Write program headers for segments dump */
2096 for (i = 0; i < cprm->vma_count; i++) {
2097 struct core_vma_metadata *meta = cprm->vma_meta + i;
2098 struct elf_phdr phdr;
2100 phdr.p_type = PT_LOAD;
2101 phdr.p_offset = offset;
2102 phdr.p_vaddr = meta->start;
2104 phdr.p_filesz = meta->dump_size;
2105 phdr.p_memsz = meta->end - meta->start;
2106 offset += phdr.p_filesz;
2108 if (meta->flags & VM_READ)
2109 phdr.p_flags |= PF_R;
2110 if (meta->flags & VM_WRITE)
2111 phdr.p_flags |= PF_W;
2112 if (meta->flags & VM_EXEC)
2113 phdr.p_flags |= PF_X;
2114 phdr.p_align = ELF_EXEC_PAGESIZE;
2116 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2120 if (!elf_core_write_extra_phdrs(cprm, offset))
2123 /* write out the notes section */
2124 if (!write_note_info(&info, cprm))
2127 /* For cell spufs */
2128 if (elf_coredump_extra_notes_write(cprm))
2132 dump_skip_to(cprm, dataoff);
2134 for (i = 0; i < cprm->vma_count; i++) {
2135 struct core_vma_metadata *meta = cprm->vma_meta + i;
2137 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2141 if (!elf_core_write_extra_data(cprm))
2144 if (e_phnum == PN_XNUM) {
2145 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2150 free_note_info(&info);
2156 #endif /* CONFIG_ELF_CORE */
2158 static int __init init_elf_binfmt(void)
2160 register_binfmt(&elf_format);
2164 static void __exit exit_elf_binfmt(void)
2166 /* Remove the COFF and ELF loaders. */
2167 unregister_binfmt(&elf_format);
2170 core_initcall(init_elf_binfmt);
2171 module_exit(exit_elf_binfmt);
2172 MODULE_LICENSE("GPL");
2174 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2175 #include "binfmt_elf_test.c"