1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/binfmt_elf.c
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
13 #include <linux/module.h>
14 #include <linux/kernel.h>
16 #include <linux/log2.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
57 #define user_long_t long
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
68 static int load_elf_binary(struct linux_binprm *bprm);
71 static int load_elf_library(struct file *);
73 #define load_elf_library NULL
77 * If we don't support core dumping, then supply a NULL so we
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
83 #define elf_core_dump NULL
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
89 #define ELF_MIN_ALIGN PAGE_SIZE
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS 0
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100 static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104 .core_dump = elf_core_dump,
105 .min_coredump = ELF_EXEC_PAGESIZE,
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
110 static int set_brk(unsigned long start, unsigned long end, int prot)
112 start = ELF_PAGEALIGN(start);
113 end = ELF_PAGEALIGN(end);
116 * Map the last of the bss segment.
117 * If the header is requesting these pages to be
118 * executable, honour that (ppc32 needs this).
120 int error = vm_brk_flags(start, end - start,
121 prot & PROT_EXEC ? VM_EXEC : 0);
125 current->mm->start_brk = current->mm->brk = end;
129 /* We need to explicitly zero any fractional pages
130 after the data section (i.e. bss). This would
131 contain the junk from the file that should not
134 static int padzero(unsigned long elf_bss)
138 nbyte = ELF_PAGEOFFSET(elf_bss);
140 nbyte = ELF_MIN_ALIGN - nbyte;
141 if (clear_user((void __user *) elf_bss, nbyte))
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 (((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
162 #ifndef ELF_BASE_PLATFORM
164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166 * will be copied to the user stack in the same manner as AT_PLATFORM.
168 #define ELF_BASE_PLATFORM NULL
172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 unsigned long load_addr, unsigned long interp_load_addr,
174 unsigned long e_entry)
176 struct mm_struct *mm = current->mm;
177 unsigned long p = bprm->p;
178 int argc = bprm->argc;
179 int envc = bprm->envc;
180 elf_addr_t __user *sp;
181 elf_addr_t __user *u_platform;
182 elf_addr_t __user *u_base_platform;
183 elf_addr_t __user *u_rand_bytes;
184 const char *k_platform = ELF_PLATFORM;
185 const char *k_base_platform = ELF_BASE_PLATFORM;
186 unsigned char k_rand_bytes[16];
188 elf_addr_t *elf_info;
190 const struct cred *cred = current_cred();
191 struct vm_area_struct *vma;
194 * In some cases (e.g. Hyper-Threading), we want to avoid L1
195 * evictions by the processes running on the same package. One
196 * thing we can do is to shuffle the initial stack for them.
199 p = arch_align_stack(p);
202 * If this architecture has a platform capability string, copy it
203 * to userspace. In some cases (Sparc), this info is impossible
204 * for userspace to get any other way, in others (i386) it is
209 size_t len = strlen(k_platform) + 1;
211 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
212 if (copy_to_user(u_platform, k_platform, len))
217 * If this architecture has a "base" platform capability
218 * string, copy it to userspace.
220 u_base_platform = NULL;
221 if (k_base_platform) {
222 size_t len = strlen(k_base_platform) + 1;
224 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
225 if (copy_to_user(u_base_platform, k_base_platform, len))
230 * Generate 16 random bytes for userspace PRNG seeding.
232 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
233 u_rand_bytes = (elf_addr_t __user *)
234 STACK_ALLOC(p, sizeof(k_rand_bytes));
235 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
238 /* Create the ELF interpreter info */
239 elf_info = (elf_addr_t *)mm->saved_auxv;
240 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
241 #define NEW_AUX_ENT(id, val) \
249 * ARCH_DLINFO must come first so PPC can do its special alignment of
251 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
252 * ARCH_DLINFO changes
256 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
257 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
258 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
259 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
260 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
261 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
262 NEW_AUX_ENT(AT_BASE, interp_load_addr);
263 NEW_AUX_ENT(AT_FLAGS, 0);
264 NEW_AUX_ENT(AT_ENTRY, e_entry);
265 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
266 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
267 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
268 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
269 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
270 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
272 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
274 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
276 NEW_AUX_ENT(AT_PLATFORM,
277 (elf_addr_t)(unsigned long)u_platform);
279 if (k_base_platform) {
280 NEW_AUX_ENT(AT_BASE_PLATFORM,
281 (elf_addr_t)(unsigned long)u_base_platform);
283 if (bprm->have_execfd) {
284 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
287 /* AT_NULL is zero; clear the rest too */
288 memset(elf_info, 0, (char *)mm->saved_auxv +
289 sizeof(mm->saved_auxv) - (char *)elf_info);
291 /* And advance past the AT_NULL entry. */
294 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
295 sp = STACK_ADD(p, ei_index);
297 items = (argc + 1) + (envc + 1) + 1;
298 bprm->p = STACK_ROUND(sp, items);
300 /* Point sp at the lowest address on the stack */
301 #ifdef CONFIG_STACK_GROWSUP
302 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
303 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
305 sp = (elf_addr_t __user *)bprm->p;
310 * Grow the stack manually; some architectures have a limit on how
311 * far ahead a user-space access may be in order to grow the stack.
313 if (mmap_read_lock_killable(mm))
315 vma = find_extend_vma(mm, bprm->p);
316 mmap_read_unlock(mm);
320 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
321 if (put_user(argc, sp++))
324 /* Populate list of argv pointers back to argv strings. */
325 p = mm->arg_end = mm->arg_start;
328 if (put_user((elf_addr_t)p, sp++))
330 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 if (!len || len > MAX_ARG_STRLEN)
335 if (put_user(0, sp++))
339 /* Populate list of envp pointers back to envp strings. */
340 mm->env_end = mm->env_start = p;
343 if (put_user((elf_addr_t)p, sp++))
345 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
346 if (!len || len > MAX_ARG_STRLEN)
350 if (put_user(0, sp++))
354 /* Put the elf_info on the stack in the right place. */
355 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
360 static unsigned long elf_map(struct file *filep, unsigned long addr,
361 const struct elf_phdr *eppnt, int prot, int type,
362 unsigned long total_size)
364 unsigned long map_addr;
365 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
366 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
367 addr = ELF_PAGESTART(addr);
368 size = ELF_PAGEALIGN(size);
370 /* mmap() will return -EINVAL if given a zero size, but a
371 * segment with zero filesize is perfectly valid */
376 * total_size is the size of the ELF (interpreter) image.
377 * The _first_ mmap needs to know the full size, otherwise
378 * randomization might put this image into an overlapping
379 * position with the ELF binary image. (since size < total_size)
380 * So we first map the 'big' image - and unmap the remainder at
381 * the end. (which unmap is needed for ELF images with holes.)
384 total_size = ELF_PAGEALIGN(total_size);
385 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
386 if (!BAD_ADDR(map_addr))
387 vm_munmap(map_addr+size, total_size-size);
389 map_addr = vm_mmap(filep, addr, size, prot, type, off);
391 if ((type & MAP_FIXED_NOREPLACE) &&
392 PTR_ERR((void *)map_addr) == -EEXIST)
393 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
394 task_pid_nr(current), current->comm, (void *)addr);
399 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
401 int i, first_idx = -1, last_idx = -1;
403 for (i = 0; i < nr; i++) {
404 if (cmds[i].p_type == PT_LOAD) {
413 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
414 ELF_PAGESTART(cmds[first_idx].p_vaddr);
417 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
421 rv = kernel_read(file, buf, len, &pos);
422 if (unlikely(rv != len)) {
423 return (rv < 0) ? rv : -EIO;
428 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
430 unsigned long alignment = 0;
433 for (i = 0; i < nr; i++) {
434 if (cmds[i].p_type == PT_LOAD) {
435 unsigned long p_align = cmds[i].p_align;
437 /* skip non-power of two alignments as invalid */
438 if (!is_power_of_2(p_align))
440 alignment = max(alignment, p_align);
444 /* ensure we align to at least one page */
445 return ELF_PAGEALIGN(alignment);
449 * load_elf_phdrs() - load ELF program headers
450 * @elf_ex: ELF header of the binary whose program headers should be loaded
451 * @elf_file: the opened ELF binary file
453 * Loads ELF program headers from the binary file elf_file, which has the ELF
454 * header pointed to by elf_ex, into a newly allocated array. The caller is
455 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
457 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
458 struct file *elf_file)
460 struct elf_phdr *elf_phdata = NULL;
461 int retval, err = -1;
465 * If the size of this structure has changed, then punt, since
466 * we will be doing the wrong thing.
468 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
471 /* Sanity check the number of program headers... */
472 /* ...and their total size. */
473 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
474 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
477 elf_phdata = kmalloc(size, GFP_KERNEL);
481 /* Read in the program headers */
482 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
498 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
501 * struct arch_elf_state - arch-specific ELF loading state
503 * This structure is used to preserve architecture specific data during
504 * the loading of an ELF file, throughout the checking of architecture
505 * specific ELF headers & through to the point where the ELF load is
506 * known to be proceeding (ie. SET_PERSONALITY).
508 * This implementation is a dummy for architectures which require no
511 struct arch_elf_state {
514 #define INIT_ARCH_ELF_STATE {}
517 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
518 * @ehdr: The main ELF header
519 * @phdr: The program header to check
520 * @elf: The open ELF file
521 * @is_interp: True if the phdr is from the interpreter of the ELF being
522 * loaded, else false.
523 * @state: Architecture-specific state preserved throughout the process
524 * of loading the ELF.
526 * Inspects the program header phdr to validate its correctness and/or
527 * suitability for the system. Called once per ELF program header in the
528 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
531 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
532 * with that return code.
534 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
535 struct elf_phdr *phdr,
536 struct file *elf, bool is_interp,
537 struct arch_elf_state *state)
539 /* Dummy implementation, always proceed */
544 * arch_check_elf() - check an ELF executable
545 * @ehdr: The main ELF header
546 * @has_interp: True if the ELF has an interpreter, else false.
547 * @interp_ehdr: The interpreter's ELF header
548 * @state: Architecture-specific state preserved throughout the process
549 * of loading the ELF.
551 * Provides a final opportunity for architecture code to reject the loading
552 * of the ELF & cause an exec syscall to return an error. This is called after
553 * all program headers to be checked by arch_elf_pt_proc have been.
555 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
556 * with that return code.
558 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
559 struct elfhdr *interp_ehdr,
560 struct arch_elf_state *state)
562 /* Dummy implementation, always proceed */
566 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
568 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
569 bool has_interp, bool is_interp)
580 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
583 /* This is much more generalized than the library routine read function,
584 so we keep this separate. Technically the library read function
585 is only provided so that we can read a.out libraries that have
588 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
589 struct file *interpreter,
590 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
591 struct arch_elf_state *arch_state)
593 struct elf_phdr *eppnt;
594 unsigned long load_addr = 0;
595 int load_addr_set = 0;
596 unsigned long last_bss = 0, elf_bss = 0;
598 unsigned long error = ~0UL;
599 unsigned long total_size;
602 /* First of all, some simple consistency checks */
603 if (interp_elf_ex->e_type != ET_EXEC &&
604 interp_elf_ex->e_type != ET_DYN)
606 if (!elf_check_arch(interp_elf_ex) ||
607 elf_check_fdpic(interp_elf_ex))
609 if (!interpreter->f_op->mmap)
612 total_size = total_mapping_size(interp_elf_phdata,
613 interp_elf_ex->e_phnum);
619 eppnt = interp_elf_phdata;
620 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
621 if (eppnt->p_type == PT_LOAD) {
622 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
623 int elf_prot = make_prot(eppnt->p_flags, arch_state,
625 unsigned long vaddr = 0;
626 unsigned long k, map_addr;
628 vaddr = eppnt->p_vaddr;
629 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
630 elf_type |= MAP_FIXED_NOREPLACE;
631 else if (no_base && interp_elf_ex->e_type == ET_DYN)
634 map_addr = elf_map(interpreter, load_addr + vaddr,
635 eppnt, elf_prot, elf_type, total_size);
638 if (BAD_ADDR(map_addr))
641 if (!load_addr_set &&
642 interp_elf_ex->e_type == ET_DYN) {
643 load_addr = map_addr - ELF_PAGESTART(vaddr);
648 * Check to see if the section's size will overflow the
649 * allowed task size. Note that p_filesz must always be
650 * <= p_memsize so it's only necessary to check p_memsz.
652 k = load_addr + eppnt->p_vaddr;
654 eppnt->p_filesz > eppnt->p_memsz ||
655 eppnt->p_memsz > TASK_SIZE ||
656 TASK_SIZE - eppnt->p_memsz < k) {
662 * Find the end of the file mapping for this phdr, and
663 * keep track of the largest address we see for this.
665 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
670 * Do the same thing for the memory mapping - between
671 * elf_bss and last_bss is the bss section.
673 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
682 * Now fill out the bss section: first pad the last page from
683 * the file up to the page boundary, and zero it from elf_bss
684 * up to the end of the page.
686 if (padzero(elf_bss)) {
691 * Next, align both the file and mem bss up to the page size,
692 * since this is where elf_bss was just zeroed up to, and where
693 * last_bss will end after the vm_brk_flags() below.
695 elf_bss = ELF_PAGEALIGN(elf_bss);
696 last_bss = ELF_PAGEALIGN(last_bss);
697 /* Finally, if there is still more bss to allocate, do it. */
698 if (last_bss > elf_bss) {
699 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
700 bss_prot & PROT_EXEC ? VM_EXEC : 0);
711 * These are the functions used to load ELF style executables and shared
712 * libraries. There is no binary dependent code anywhere else.
715 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
716 struct arch_elf_state *arch,
717 bool have_prev_type, u32 *prev_type)
720 const struct gnu_property *pr;
726 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
731 if (datasz < sizeof(*pr))
733 pr = (const struct gnu_property *)(data + o);
735 datasz -= sizeof(*pr);
737 if (pr->pr_datasz > datasz)
740 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
741 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
745 /* Properties are supposed to be unique and sorted on pr_type: */
746 if (have_prev_type && pr->pr_type <= *prev_type)
748 *prev_type = pr->pr_type;
750 ret = arch_parse_elf_property(pr->pr_type, data + o,
751 pr->pr_datasz, ELF_COMPAT, arch);
759 #define NOTE_DATA_SZ SZ_1K
760 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
761 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
763 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
764 struct arch_elf_state *arch)
767 struct elf_note nhdr;
768 char data[NOTE_DATA_SZ];
777 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
780 /* load_elf_binary() shouldn't call us unless this is true... */
781 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
784 /* If the properties are crazy large, that's too bad (for now): */
785 if (phdr->p_filesz > sizeof(note))
788 pos = phdr->p_offset;
789 n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
791 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
792 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
795 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
796 note.nhdr.n_namesz != NOTE_NAME_SZ ||
797 strncmp(note.data + sizeof(note.nhdr),
798 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
801 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
802 ELF_GNU_PROPERTY_ALIGN);
806 if (note.nhdr.n_descsz > n - off)
808 datasz = off + note.nhdr.n_descsz;
810 have_prev_type = false;
812 ret = parse_elf_property(note.data, &off, datasz, arch,
813 have_prev_type, &prev_type);
814 have_prev_type = true;
817 return ret == -ENOENT ? 0 : ret;
820 static int load_elf_binary(struct linux_binprm *bprm)
822 struct file *interpreter = NULL; /* to shut gcc up */
823 unsigned long load_addr = 0, load_bias = 0;
824 int load_addr_set = 0;
826 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
827 struct elf_phdr *elf_property_phdata = NULL;
828 unsigned long elf_bss, elf_brk;
831 unsigned long elf_entry;
832 unsigned long e_entry;
833 unsigned long interp_load_addr = 0;
834 unsigned long start_code, end_code, start_data, end_data;
835 unsigned long reloc_func_desc __maybe_unused = 0;
836 int executable_stack = EXSTACK_DEFAULT;
837 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
838 struct elfhdr *interp_elf_ex = NULL;
839 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
840 struct mm_struct *mm;
841 struct pt_regs *regs;
844 /* First of all, some simple consistency checks */
845 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
848 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
850 if (!elf_check_arch(elf_ex))
852 if (elf_check_fdpic(elf_ex))
854 if (!bprm->file->f_op->mmap)
857 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
861 elf_ppnt = elf_phdata;
862 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
863 char *elf_interpreter;
865 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
866 elf_property_phdata = elf_ppnt;
870 if (elf_ppnt->p_type != PT_INTERP)
874 * This is the program interpreter used for shared libraries -
875 * for now assume that this is an a.out format binary.
878 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
882 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
883 if (!elf_interpreter)
886 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
889 goto out_free_interp;
890 /* make sure path is NULL terminated */
892 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
893 goto out_free_interp;
895 interpreter = open_exec(elf_interpreter);
896 kfree(elf_interpreter);
897 retval = PTR_ERR(interpreter);
898 if (IS_ERR(interpreter))
902 * If the binary is not readable then enforce mm->dumpable = 0
903 * regardless of the interpreter's permissions.
905 would_dump(bprm, interpreter);
907 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
908 if (!interp_elf_ex) {
913 /* Get the exec headers */
914 retval = elf_read(interpreter, interp_elf_ex,
915 sizeof(*interp_elf_ex), 0);
917 goto out_free_dentry;
922 kfree(elf_interpreter);
926 elf_ppnt = elf_phdata;
927 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
928 switch (elf_ppnt->p_type) {
930 if (elf_ppnt->p_flags & PF_X)
931 executable_stack = EXSTACK_ENABLE_X;
933 executable_stack = EXSTACK_DISABLE_X;
936 case PT_LOPROC ... PT_HIPROC:
937 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
941 goto out_free_dentry;
945 /* Some simple consistency checks for the interpreter */
948 /* Not an ELF interpreter */
949 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
950 goto out_free_dentry;
951 /* Verify the interpreter has a valid arch */
952 if (!elf_check_arch(interp_elf_ex) ||
953 elf_check_fdpic(interp_elf_ex))
954 goto out_free_dentry;
956 /* Load the interpreter program headers */
957 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
959 if (!interp_elf_phdata)
960 goto out_free_dentry;
962 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
963 elf_property_phdata = NULL;
964 elf_ppnt = interp_elf_phdata;
965 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
966 switch (elf_ppnt->p_type) {
967 case PT_GNU_PROPERTY:
968 elf_property_phdata = elf_ppnt;
971 case PT_LOPROC ... PT_HIPROC:
972 retval = arch_elf_pt_proc(interp_elf_ex,
973 elf_ppnt, interpreter,
976 goto out_free_dentry;
981 retval = parse_elf_properties(interpreter ?: bprm->file,
982 elf_property_phdata, &arch_state);
984 goto out_free_dentry;
987 * Allow arch code to reject the ELF at this point, whilst it's
988 * still possible to return an error to the code that invoked
991 retval = arch_check_elf(elf_ex,
992 !!interpreter, interp_elf_ex,
995 goto out_free_dentry;
997 /* Flush all traces of the currently running executable */
998 retval = begin_new_exec(bprm);
1000 goto out_free_dentry;
1002 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1003 may depend on the personality. */
1004 SET_PERSONALITY2(*elf_ex, &arch_state);
1005 if (elf_read_implies_exec(*elf_ex, executable_stack))
1006 current->personality |= READ_IMPLIES_EXEC;
1008 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1009 current->flags |= PF_RANDOMIZE;
1011 setup_new_exec(bprm);
1013 /* Do this so that we can load the interpreter, if need be. We will
1014 change some of these later */
1015 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1018 goto out_free_dentry;
1028 /* Now we do a little grungy work by mmapping the ELF image into
1029 the correct location in memory. */
1030 for(i = 0, elf_ppnt = elf_phdata;
1031 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1032 int elf_prot, elf_flags;
1033 unsigned long k, vaddr;
1034 unsigned long total_size = 0;
1035 unsigned long alignment;
1037 if (elf_ppnt->p_type != PT_LOAD)
1040 if (unlikely (elf_brk > elf_bss)) {
1041 unsigned long nbyte;
1043 /* There was a PT_LOAD segment with p_memsz > p_filesz
1044 before this one. Map anonymous pages, if needed,
1045 and clear the area. */
1046 retval = set_brk(elf_bss + load_bias,
1047 elf_brk + load_bias,
1050 goto out_free_dentry;
1051 nbyte = ELF_PAGEOFFSET(elf_bss);
1053 nbyte = ELF_MIN_ALIGN - nbyte;
1054 if (nbyte > elf_brk - elf_bss)
1055 nbyte = elf_brk - elf_bss;
1056 if (clear_user((void __user *)elf_bss +
1057 load_bias, nbyte)) {
1059 * This bss-zeroing can fail if the ELF
1060 * file specifies odd protections. So
1061 * we don't check the return value
1067 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1068 !!interpreter, false);
1070 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1072 vaddr = elf_ppnt->p_vaddr;
1074 * If we are loading ET_EXEC or we have already performed
1075 * the ET_DYN load_addr calculations, proceed normally.
1077 if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1078 elf_flags |= MAP_FIXED;
1079 } else if (elf_ex->e_type == ET_DYN) {
1081 * This logic is run once for the first LOAD Program
1082 * Header for ET_DYN binaries to calculate the
1083 * randomization (load_bias) for all the LOAD
1084 * Program Headers, and to calculate the entire
1085 * size of the ELF mapping (total_size). (Note that
1086 * load_addr_set is set to true later once the
1087 * initial mapping is performed.)
1089 * There are effectively two types of ET_DYN
1090 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1091 * and loaders (ET_DYN without INTERP, since they
1092 * _are_ the ELF interpreter). The loaders must
1093 * be loaded away from programs since the program
1094 * may otherwise collide with the loader (especially
1095 * for ET_EXEC which does not have a randomized
1096 * position). For example to handle invocations of
1097 * "./ld.so someprog" to test out a new version of
1098 * the loader, the subsequent program that the
1099 * loader loads must avoid the loader itself, so
1100 * they cannot share the same load range. Sufficient
1101 * room for the brk must be allocated with the
1102 * loader as well, since brk must be available with
1105 * Therefore, programs are loaded offset from
1106 * ELF_ET_DYN_BASE and loaders are loaded into the
1107 * independently randomized mmap region (0 load_bias
1108 * without MAP_FIXED).
1111 load_bias = ELF_ET_DYN_BASE;
1112 if (current->flags & PF_RANDOMIZE)
1113 load_bias += arch_mmap_rnd();
1114 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1116 load_bias &= ~(alignment - 1);
1117 elf_flags |= MAP_FIXED;
1122 * Since load_bias is used for all subsequent loading
1123 * calculations, we must lower it by the first vaddr
1124 * so that the remaining calculations based on the
1125 * ELF vaddrs will be correctly offset. The result
1126 * is then page aligned.
1128 load_bias = ELF_PAGESTART(load_bias - vaddr);
1130 total_size = total_mapping_size(elf_phdata,
1134 goto out_free_dentry;
1138 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1139 elf_prot, elf_flags, total_size);
1140 if (BAD_ADDR(error)) {
1141 retval = IS_ERR((void *)error) ?
1142 PTR_ERR((void*)error) : -EINVAL;
1143 goto out_free_dentry;
1146 if (!load_addr_set) {
1148 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1149 if (elf_ex->e_type == ET_DYN) {
1150 load_bias += error -
1151 ELF_PAGESTART(load_bias + vaddr);
1152 load_addr += load_bias;
1153 reloc_func_desc = load_bias;
1156 k = elf_ppnt->p_vaddr;
1157 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1163 * Check to see if the section's size will overflow the
1164 * allowed task size. Note that p_filesz must always be
1165 * <= p_memsz so it is only necessary to check p_memsz.
1167 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1168 elf_ppnt->p_memsz > TASK_SIZE ||
1169 TASK_SIZE - elf_ppnt->p_memsz < k) {
1170 /* set_brk can never work. Avoid overflows. */
1172 goto out_free_dentry;
1175 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1179 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1183 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1185 bss_prot = elf_prot;
1190 e_entry = elf_ex->e_entry + load_bias;
1191 elf_bss += load_bias;
1192 elf_brk += load_bias;
1193 start_code += load_bias;
1194 end_code += load_bias;
1195 start_data += load_bias;
1196 end_data += load_bias;
1198 /* Calling set_brk effectively mmaps the pages that we need
1199 * for the bss and break sections. We must do this before
1200 * mapping in the interpreter, to make sure it doesn't wind
1201 * up getting placed where the bss needs to go.
1203 retval = set_brk(elf_bss, elf_brk, bss_prot);
1205 goto out_free_dentry;
1206 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1207 retval = -EFAULT; /* Nobody gets to see this, but.. */
1208 goto out_free_dentry;
1212 elf_entry = load_elf_interp(interp_elf_ex,
1214 load_bias, interp_elf_phdata,
1216 if (!IS_ERR((void *)elf_entry)) {
1218 * load_elf_interp() returns relocation
1221 interp_load_addr = elf_entry;
1222 elf_entry += interp_elf_ex->e_entry;
1224 if (BAD_ADDR(elf_entry)) {
1225 retval = IS_ERR((void *)elf_entry) ?
1226 (int)elf_entry : -EINVAL;
1227 goto out_free_dentry;
1229 reloc_func_desc = interp_load_addr;
1231 allow_write_access(interpreter);
1234 kfree(interp_elf_ex);
1235 kfree(interp_elf_phdata);
1237 elf_entry = e_entry;
1238 if (BAD_ADDR(elf_entry)) {
1240 goto out_free_dentry;
1246 set_binfmt(&elf_format);
1248 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1249 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1252 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1254 retval = create_elf_tables(bprm, elf_ex,
1255 load_addr, interp_load_addr, e_entry);
1260 mm->end_code = end_code;
1261 mm->start_code = start_code;
1262 mm->start_data = start_data;
1263 mm->end_data = end_data;
1264 mm->start_stack = bprm->p;
1266 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1268 * For architectures with ELF randomization, when executing
1269 * a loader directly (i.e. no interpreter listed in ELF
1270 * headers), move the brk area out of the mmap region
1271 * (since it grows up, and may collide early with the stack
1272 * growing down), and into the unused ELF_ET_DYN_BASE region.
1274 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1275 elf_ex->e_type == ET_DYN && !interpreter) {
1276 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1279 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1280 #ifdef compat_brk_randomized
1281 current->brk_randomized = 1;
1285 if (current->personality & MMAP_PAGE_ZERO) {
1286 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1287 and some applications "depend" upon this behavior.
1288 Since we do not have the power to recompile these, we
1289 emulate the SVr4 behavior. Sigh. */
1290 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1291 MAP_FIXED | MAP_PRIVATE, 0);
1294 regs = current_pt_regs();
1295 #ifdef ELF_PLAT_INIT
1297 * The ABI may specify that certain registers be set up in special
1298 * ways (on i386 %edx is the address of a DT_FINI function, for
1299 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1300 * that the e_entry field is the address of the function descriptor
1301 * for the startup routine, rather than the address of the startup
1302 * routine itself. This macro performs whatever initialization to
1303 * the regs structure is required as well as any relocations to the
1304 * function descriptor entries when executing dynamically links apps.
1306 ELF_PLAT_INIT(regs, reloc_func_desc);
1309 finalize_exec(bprm);
1310 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1317 kfree(interp_elf_ex);
1318 kfree(interp_elf_phdata);
1319 allow_write_access(interpreter);
1327 #ifdef CONFIG_USELIB
1328 /* This is really simpleminded and specialized - we are loading an
1329 a.out library that is given an ELF header. */
1330 static int load_elf_library(struct file *file)
1332 struct elf_phdr *elf_phdata;
1333 struct elf_phdr *eppnt;
1334 unsigned long elf_bss, bss, len;
1335 int retval, error, i, j;
1336 struct elfhdr elf_ex;
1339 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1343 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1346 /* First of all, some simple consistency checks */
1347 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1348 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1350 if (elf_check_fdpic(&elf_ex))
1353 /* Now read in all of the header information */
1355 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1356 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1359 elf_phdata = kmalloc(j, GFP_KERNEL);
1365 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1369 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1370 if ((eppnt + i)->p_type == PT_LOAD)
1375 while (eppnt->p_type != PT_LOAD)
1378 /* Now use mmap to map the library into memory. */
1379 error = vm_mmap(file,
1380 ELF_PAGESTART(eppnt->p_vaddr),
1382 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1383 PROT_READ | PROT_WRITE | PROT_EXEC,
1384 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1386 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1387 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1390 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1391 if (padzero(elf_bss)) {
1396 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1397 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1399 error = vm_brk(len, bss - len);
1410 #endif /* #ifdef CONFIG_USELIB */
1412 #ifdef CONFIG_ELF_CORE
1416 * Modelled on fs/exec.c:aout_core_dump()
1417 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1420 /* An ELF note in memory */
1425 unsigned int datasz;
1429 static int notesize(struct memelfnote *en)
1433 sz = sizeof(struct elf_note);
1434 sz += roundup(strlen(en->name) + 1, 4);
1435 sz += roundup(en->datasz, 4);
1440 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1443 en.n_namesz = strlen(men->name) + 1;
1444 en.n_descsz = men->datasz;
1445 en.n_type = men->type;
1447 return dump_emit(cprm, &en, sizeof(en)) &&
1448 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1449 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1452 static void fill_elf_header(struct elfhdr *elf, int segs,
1453 u16 machine, u32 flags)
1455 memset(elf, 0, sizeof(*elf));
1457 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1458 elf->e_ident[EI_CLASS] = ELF_CLASS;
1459 elf->e_ident[EI_DATA] = ELF_DATA;
1460 elf->e_ident[EI_VERSION] = EV_CURRENT;
1461 elf->e_ident[EI_OSABI] = ELF_OSABI;
1463 elf->e_type = ET_CORE;
1464 elf->e_machine = machine;
1465 elf->e_version = EV_CURRENT;
1466 elf->e_phoff = sizeof(struct elfhdr);
1467 elf->e_flags = flags;
1468 elf->e_ehsize = sizeof(struct elfhdr);
1469 elf->e_phentsize = sizeof(struct elf_phdr);
1470 elf->e_phnum = segs;
1473 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1475 phdr->p_type = PT_NOTE;
1476 phdr->p_offset = offset;
1479 phdr->p_filesz = sz;
1485 static void fill_note(struct memelfnote *note, const char *name, int type,
1486 unsigned int sz, void *data)
1495 * fill up all the fields in prstatus from the given task struct, except
1496 * registers which need to be filled up separately.
1498 static void fill_prstatus(struct elf_prstatus *prstatus,
1499 struct task_struct *p, long signr)
1501 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1502 prstatus->pr_sigpend = p->pending.signal.sig[0];
1503 prstatus->pr_sighold = p->blocked.sig[0];
1505 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1507 prstatus->pr_pid = task_pid_vnr(p);
1508 prstatus->pr_pgrp = task_pgrp_vnr(p);
1509 prstatus->pr_sid = task_session_vnr(p);
1510 if (thread_group_leader(p)) {
1511 struct task_cputime cputime;
1514 * This is the record for the group leader. It shows the
1515 * group-wide total, not its individual thread total.
1517 thread_group_cputime(p, &cputime);
1518 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1519 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1523 task_cputime(p, &utime, &stime);
1524 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1525 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1528 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1529 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1532 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1533 struct mm_struct *mm)
1535 const struct cred *cred;
1536 unsigned int i, len;
1538 /* first copy the parameters from user space */
1539 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1541 len = mm->arg_end - mm->arg_start;
1542 if (len >= ELF_PRARGSZ)
1543 len = ELF_PRARGSZ-1;
1544 if (copy_from_user(&psinfo->pr_psargs,
1545 (const char __user *)mm->arg_start, len))
1547 for(i = 0; i < len; i++)
1548 if (psinfo->pr_psargs[i] == 0)
1549 psinfo->pr_psargs[i] = ' ';
1550 psinfo->pr_psargs[len] = 0;
1553 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1555 psinfo->pr_pid = task_pid_vnr(p);
1556 psinfo->pr_pgrp = task_pgrp_vnr(p);
1557 psinfo->pr_sid = task_session_vnr(p);
1559 i = p->state ? ffz(~p->state) + 1 : 0;
1560 psinfo->pr_state = i;
1561 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1562 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1563 psinfo->pr_nice = task_nice(p);
1564 psinfo->pr_flag = p->flags;
1566 cred = __task_cred(p);
1567 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1568 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1570 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1575 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1577 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1581 while (auxv[i - 2] != AT_NULL);
1582 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1585 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1586 const kernel_siginfo_t *siginfo)
1588 copy_siginfo_to_external(csigdata, siginfo);
1589 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1592 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1594 * Format of NT_FILE note:
1596 * long count -- how many files are mapped
1597 * long page_size -- units for file_ofs
1598 * array of [COUNT] elements of
1602 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1604 static int fill_files_note(struct memelfnote *note)
1606 struct mm_struct *mm = current->mm;
1607 struct vm_area_struct *vma;
1608 unsigned count, size, names_ofs, remaining, n;
1610 user_long_t *start_end_ofs;
1611 char *name_base, *name_curpos;
1613 /* *Estimated* file count and total data size needed */
1614 count = mm->map_count;
1615 if (count > UINT_MAX / 64)
1619 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1621 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1623 size = round_up(size, PAGE_SIZE);
1625 * "size" can be 0 here legitimately.
1626 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1628 data = kvmalloc(size, GFP_KERNEL);
1629 if (ZERO_OR_NULL_PTR(data))
1632 start_end_ofs = data + 2;
1633 name_base = name_curpos = ((char *)data) + names_ofs;
1634 remaining = size - names_ofs;
1636 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1638 const char *filename;
1640 file = vma->vm_file;
1643 filename = file_path(file, name_curpos, remaining);
1644 if (IS_ERR(filename)) {
1645 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1647 size = size * 5 / 4;
1653 /* file_path() fills at the end, move name down */
1654 /* n = strlen(filename) + 1: */
1655 n = (name_curpos + remaining) - filename;
1656 remaining = filename - name_curpos;
1657 memmove(name_curpos, filename, n);
1660 *start_end_ofs++ = vma->vm_start;
1661 *start_end_ofs++ = vma->vm_end;
1662 *start_end_ofs++ = vma->vm_pgoff;
1666 /* Now we know exact count of files, can store it */
1668 data[1] = PAGE_SIZE;
1670 * Count usually is less than mm->map_count,
1671 * we need to move filenames down.
1673 n = mm->map_count - count;
1675 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1676 memmove(name_base - shift_bytes, name_base,
1677 name_curpos - name_base);
1678 name_curpos -= shift_bytes;
1681 size = name_curpos - (char *)data;
1682 fill_note(note, "CORE", NT_FILE, size, data);
1686 #ifdef CORE_DUMP_USE_REGSET
1687 #include <linux/regset.h>
1689 struct elf_thread_core_info {
1690 struct elf_thread_core_info *next;
1691 struct task_struct *task;
1692 struct elf_prstatus prstatus;
1693 struct memelfnote notes[];
1696 struct elf_note_info {
1697 struct elf_thread_core_info *thread;
1698 struct memelfnote psinfo;
1699 struct memelfnote signote;
1700 struct memelfnote auxv;
1701 struct memelfnote files;
1702 user_siginfo_t csigdata;
1708 * When a regset has a writeback hook, we call it on each thread before
1709 * dumping user memory. On register window machines, this makes sure the
1710 * user memory backing the register data is up to date before we read it.
1712 static void do_thread_regset_writeback(struct task_struct *task,
1713 const struct user_regset *regset)
1715 if (regset->writeback)
1716 regset->writeback(task, regset, 1);
1719 #ifndef PRSTATUS_SIZE
1720 #define PRSTATUS_SIZE(S, R) sizeof(S)
1723 #ifndef SET_PR_FPVALID
1724 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1727 static int fill_thread_core_info(struct elf_thread_core_info *t,
1728 const struct user_regset_view *view,
1729 long signr, size_t *total)
1735 * NT_PRSTATUS is the one special case, because the regset data
1736 * goes into the pr_reg field inside the note contents, rather
1737 * than being the whole note contents. We fill the reset in here.
1738 * We assume that regset 0 is NT_PRSTATUS.
1740 fill_prstatus(&t->prstatus, t->task, signr);
1741 regset0_size = regset_get(t->task, &view->regsets[0],
1742 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1743 if (regset0_size < 0)
1746 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1747 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1748 *total += notesize(&t->notes[0]);
1750 do_thread_regset_writeback(t->task, &view->regsets[0]);
1753 * Each other regset might generate a note too. For each regset
1754 * that has no core_note_type or is inactive, we leave t->notes[i]
1755 * all zero and we'll know to skip writing it later.
1757 for (i = 1; i < view->n; ++i) {
1758 const struct user_regset *regset = &view->regsets[i];
1759 int note_type = regset->core_note_type;
1760 bool is_fpreg = note_type == NT_PRFPREG;
1764 do_thread_regset_writeback(t->task, regset);
1765 if (!note_type) // not for coredumps
1767 if (regset->active && regset->active(t->task, regset) <= 0)
1770 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1775 SET_PR_FPVALID(&t->prstatus, 1, regset0_size);
1777 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1778 note_type, ret, data);
1780 *total += notesize(&t->notes[i]);
1786 static int fill_note_info(struct elfhdr *elf, int phdrs,
1787 struct elf_note_info *info,
1788 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1790 struct task_struct *dump_task = current;
1791 const struct user_regset_view *view = task_user_regset_view(dump_task);
1792 struct elf_thread_core_info *t;
1793 struct elf_prpsinfo *psinfo;
1794 struct core_thread *ct;
1798 info->thread = NULL;
1800 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1801 if (psinfo == NULL) {
1802 info->psinfo.data = NULL; /* So we don't free this wrongly */
1806 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1809 * Figure out how many notes we're going to need for each thread.
1811 info->thread_notes = 0;
1812 for (i = 0; i < view->n; ++i)
1813 if (view->regsets[i].core_note_type != 0)
1814 ++info->thread_notes;
1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1818 * since it is our one special case.
1820 if (unlikely(info->thread_notes == 0) ||
1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1827 * Initialize the ELF file header.
1829 fill_elf_header(elf, phdrs,
1830 view->e_machine, view->e_flags);
1833 * Allocate a structure for each thread.
1835 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1836 t = kzalloc(offsetof(struct elf_thread_core_info,
1837 notes[info->thread_notes]),
1843 if (ct->task == dump_task || !info->thread) {
1844 t->next = info->thread;
1848 * Make sure to keep the original task at
1849 * the head of the list.
1851 t->next = info->thread->next;
1852 info->thread->next = t;
1857 * Now fill in each thread's information.
1859 for (t = info->thread; t != NULL; t = t->next)
1860 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1864 * Fill in the two process-wide notes.
1866 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1867 info->size += notesize(&info->psinfo);
1869 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1870 info->size += notesize(&info->signote);
1872 fill_auxv_note(&info->auxv, current->mm);
1873 info->size += notesize(&info->auxv);
1875 if (fill_files_note(&info->files) == 0)
1876 info->size += notesize(&info->files);
1881 static size_t get_note_info_size(struct elf_note_info *info)
1887 * Write all the notes for each thread. When writing the first thread, the
1888 * process-wide notes are interleaved after the first thread-specific note.
1890 static int write_note_info(struct elf_note_info *info,
1891 struct coredump_params *cprm)
1894 struct elf_thread_core_info *t = info->thread;
1899 if (!writenote(&t->notes[0], cprm))
1902 if (first && !writenote(&info->psinfo, cprm))
1904 if (first && !writenote(&info->signote, cprm))
1906 if (first && !writenote(&info->auxv, cprm))
1908 if (first && info->files.data &&
1909 !writenote(&info->files, cprm))
1912 for (i = 1; i < info->thread_notes; ++i)
1913 if (t->notes[i].data &&
1914 !writenote(&t->notes[i], cprm))
1924 static void free_note_info(struct elf_note_info *info)
1926 struct elf_thread_core_info *threads = info->thread;
1929 struct elf_thread_core_info *t = threads;
1931 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1932 for (i = 1; i < info->thread_notes; ++i)
1933 kfree(t->notes[i].data);
1936 kfree(info->psinfo.data);
1937 kvfree(info->files.data);
1942 /* Here is the structure in which status of each thread is captured. */
1943 struct elf_thread_status
1945 struct list_head list;
1946 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1947 elf_fpregset_t fpu; /* NT_PRFPREG */
1948 struct task_struct *thread;
1949 struct memelfnote notes[3];
1954 * In order to add the specific thread information for the elf file format,
1955 * we need to keep a linked list of every threads pr_status and then create
1956 * a single section for them in the final core file.
1958 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1961 struct task_struct *p = t->thread;
1964 fill_prstatus(&t->prstatus, p, signr);
1965 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1967 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1970 sz += notesize(&t->notes[0]);
1972 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1974 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1977 sz += notesize(&t->notes[1]);
1982 struct elf_note_info {
1983 struct memelfnote *notes;
1984 struct memelfnote *notes_files;
1985 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1986 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1987 struct list_head thread_list;
1988 elf_fpregset_t *fpu;
1989 user_siginfo_t csigdata;
1990 int thread_status_size;
1994 static int elf_note_info_init(struct elf_note_info *info)
1996 memset(info, 0, sizeof(*info));
1997 INIT_LIST_HEAD(&info->thread_list);
1999 /* Allocate space for ELF notes */
2000 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2003 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2006 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2007 if (!info->prstatus)
2009 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2015 static int fill_note_info(struct elfhdr *elf, int phdrs,
2016 struct elf_note_info *info,
2017 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2019 struct core_thread *ct;
2020 struct elf_thread_status *ets;
2022 if (!elf_note_info_init(info))
2025 for (ct = current->mm->core_state->dumper.next;
2026 ct; ct = ct->next) {
2027 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2031 ets->thread = ct->task;
2032 list_add(&ets->list, &info->thread_list);
2035 list_for_each_entry(ets, &info->thread_list, list) {
2038 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2039 info->thread_status_size += sz;
2041 /* now collect the dump for the current */
2042 memset(info->prstatus, 0, sizeof(*info->prstatus));
2043 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2044 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2047 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2050 * Set up the notes in similar form to SVR4 core dumps made
2051 * with info from their /proc.
2054 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2055 sizeof(*info->prstatus), info->prstatus);
2056 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2057 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2058 sizeof(*info->psinfo), info->psinfo);
2060 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2061 fill_auxv_note(info->notes + 3, current->mm);
2064 if (fill_files_note(info->notes + info->numnote) == 0) {
2065 info->notes_files = info->notes + info->numnote;
2069 /* Try to dump the FPU. */
2070 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2072 if (info->prstatus->pr_fpvalid)
2073 fill_note(info->notes + info->numnote++,
2074 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2078 static size_t get_note_info_size(struct elf_note_info *info)
2083 for (i = 0; i < info->numnote; i++)
2084 sz += notesize(info->notes + i);
2086 sz += info->thread_status_size;
2091 static int write_note_info(struct elf_note_info *info,
2092 struct coredump_params *cprm)
2094 struct elf_thread_status *ets;
2097 for (i = 0; i < info->numnote; i++)
2098 if (!writenote(info->notes + i, cprm))
2101 /* write out the thread status notes section */
2102 list_for_each_entry(ets, &info->thread_list, list) {
2103 for (i = 0; i < ets->num_notes; i++)
2104 if (!writenote(&ets->notes[i], cprm))
2111 static void free_note_info(struct elf_note_info *info)
2113 while (!list_empty(&info->thread_list)) {
2114 struct list_head *tmp = info->thread_list.next;
2116 kfree(list_entry(tmp, struct elf_thread_status, list));
2119 /* Free data possibly allocated by fill_files_note(): */
2120 if (info->notes_files)
2121 kvfree(info->notes_files->data);
2123 kfree(info->prstatus);
2124 kfree(info->psinfo);
2131 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2132 elf_addr_t e_shoff, int segs)
2134 elf->e_shoff = e_shoff;
2135 elf->e_shentsize = sizeof(*shdr4extnum);
2137 elf->e_shstrndx = SHN_UNDEF;
2139 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2141 shdr4extnum->sh_type = SHT_NULL;
2142 shdr4extnum->sh_size = elf->e_shnum;
2143 shdr4extnum->sh_link = elf->e_shstrndx;
2144 shdr4extnum->sh_info = segs;
2150 * This is a two-pass process; first we find the offsets of the bits,
2151 * and then they are actually written out. If we run out of core limit
2154 static int elf_core_dump(struct coredump_params *cprm)
2157 int vma_count, segs, i;
2158 size_t vma_data_size;
2160 loff_t offset = 0, dataoff;
2161 struct elf_note_info info = { };
2162 struct elf_phdr *phdr4note = NULL;
2163 struct elf_shdr *shdr4extnum = NULL;
2166 struct core_vma_metadata *vma_meta;
2168 if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size))
2172 * The number of segs are recored into ELF header as 16bit value.
2173 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2175 segs = vma_count + elf_core_extra_phdrs();
2177 /* for notes section */
2180 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2181 * this, kernel supports extended numbering. Have a look at
2182 * include/linux/elf.h for further information. */
2183 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2186 * Collect all the non-memory information about the process for the
2187 * notes. This also sets up the file header.
2189 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2194 offset += sizeof(elf); /* Elf header */
2195 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2197 /* Write notes phdr entry */
2199 size_t sz = get_note_info_size(&info);
2201 /* For cell spufs */
2202 sz += elf_coredump_extra_notes_size();
2204 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2208 fill_elf_note_phdr(phdr4note, sz, offset);
2212 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2214 offset += vma_data_size;
2215 offset += elf_core_extra_data_size();
2218 if (e_phnum == PN_XNUM) {
2219 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2222 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2227 if (!dump_emit(cprm, &elf, sizeof(elf)))
2230 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2233 /* Write program headers for segments dump */
2234 for (i = 0; i < vma_count; i++) {
2235 struct core_vma_metadata *meta = vma_meta + i;
2236 struct elf_phdr phdr;
2238 phdr.p_type = PT_LOAD;
2239 phdr.p_offset = offset;
2240 phdr.p_vaddr = meta->start;
2242 phdr.p_filesz = meta->dump_size;
2243 phdr.p_memsz = meta->end - meta->start;
2244 offset += phdr.p_filesz;
2246 if (meta->flags & VM_READ)
2247 phdr.p_flags |= PF_R;
2248 if (meta->flags & VM_WRITE)
2249 phdr.p_flags |= PF_W;
2250 if (meta->flags & VM_EXEC)
2251 phdr.p_flags |= PF_X;
2252 phdr.p_align = ELF_EXEC_PAGESIZE;
2254 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2258 if (!elf_core_write_extra_phdrs(cprm, offset))
2261 /* write out the notes section */
2262 if (!write_note_info(&info, cprm))
2265 /* For cell spufs */
2266 if (elf_coredump_extra_notes_write(cprm))
2270 if (!dump_skip(cprm, dataoff - cprm->pos))
2273 for (i = 0; i < vma_count; i++) {
2274 struct core_vma_metadata *meta = vma_meta + i;
2276 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2279 dump_truncate(cprm);
2281 if (!elf_core_write_extra_data(cprm))
2284 if (e_phnum == PN_XNUM) {
2285 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2290 free_note_info(&info);
2297 #endif /* CONFIG_ELF_CORE */
2299 static int __init init_elf_binfmt(void)
2301 register_binfmt(&elf_format);
2305 static void __exit exit_elf_binfmt(void)
2307 /* Remove the COFF and ELF loaders. */
2308 unregister_binfmt(&elf_format);
2311 core_initcall(init_elf_binfmt);
2312 module_exit(exit_elf_binfmt);
2313 MODULE_LICENSE("GPL");