Merge tag 'sched_urgent_for_v5.15_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / fs / afs / write.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17
18 /*
19  * mark a page as having been made dirty and thus needing writeback
20  */
21 int afs_set_page_dirty(struct page *page)
22 {
23         _enter("");
24         return __set_page_dirty_nobuffers(page);
25 }
26
27 /*
28  * prepare to perform part of a write to a page
29  */
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31                     loff_t pos, unsigned len, unsigned flags,
32                     struct page **_page, void **fsdata)
33 {
34         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35         struct page *page;
36         unsigned long priv;
37         unsigned f, from;
38         unsigned t, to;
39         pgoff_t index;
40         int ret;
41
42         _enter("{%llx:%llu},%llx,%x",
43                vnode->fid.vid, vnode->fid.vnode, pos, len);
44
45         /* Prefetch area to be written into the cache if we're caching this
46          * file.  We need to do this before we get a lock on the page in case
47          * there's more than one writer competing for the same cache block.
48          */
49         ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
50                                 &afs_req_ops, NULL);
51         if (ret < 0)
52                 return ret;
53
54         index = page->index;
55         from = pos - index * PAGE_SIZE;
56         to = from + len;
57
58 try_again:
59         /* See if this page is already partially written in a way that we can
60          * merge the new write with.
61          */
62         if (PagePrivate(page)) {
63                 priv = page_private(page);
64                 f = afs_page_dirty_from(page, priv);
65                 t = afs_page_dirty_to(page, priv);
66                 ASSERTCMP(f, <=, t);
67
68                 if (PageWriteback(page)) {
69                         trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70                         goto flush_conflicting_write;
71                 }
72                 /* If the file is being filled locally, allow inter-write
73                  * spaces to be merged into writes.  If it's not, only write
74                  * back what the user gives us.
75                  */
76                 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77                     (to < f || from > t))
78                         goto flush_conflicting_write;
79         }
80
81         *_page = page;
82         _leave(" = 0");
83         return 0;
84
85         /* The previous write and this write aren't adjacent or overlapping, so
86          * flush the page out.
87          */
88 flush_conflicting_write:
89         _debug("flush conflict");
90         ret = write_one_page(page);
91         if (ret < 0)
92                 goto error;
93
94         ret = lock_page_killable(page);
95         if (ret < 0)
96                 goto error;
97         goto try_again;
98
99 error:
100         put_page(page);
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * finalise part of a write to a page
107  */
108 int afs_write_end(struct file *file, struct address_space *mapping,
109                   loff_t pos, unsigned len, unsigned copied,
110                   struct page *page, void *fsdata)
111 {
112         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113         unsigned long priv;
114         unsigned int f, from = pos & (thp_size(page) - 1);
115         unsigned int t, to = from + copied;
116         loff_t i_size, maybe_i_size;
117
118         _enter("{%llx:%llu},{%lx}",
119                vnode->fid.vid, vnode->fid.vnode, page->index);
120
121         if (!PageUptodate(page)) {
122                 if (copied < len) {
123                         copied = 0;
124                         goto out;
125                 }
126
127                 SetPageUptodate(page);
128         }
129
130         if (copied == 0)
131                 goto out;
132
133         maybe_i_size = pos + copied;
134
135         i_size = i_size_read(&vnode->vfs_inode);
136         if (maybe_i_size > i_size) {
137                 write_seqlock(&vnode->cb_lock);
138                 i_size = i_size_read(&vnode->vfs_inode);
139                 if (maybe_i_size > i_size)
140                         afs_set_i_size(vnode, maybe_i_size);
141                 write_sequnlock(&vnode->cb_lock);
142         }
143
144         if (PagePrivate(page)) {
145                 priv = page_private(page);
146                 f = afs_page_dirty_from(page, priv);
147                 t = afs_page_dirty_to(page, priv);
148                 if (from < f)
149                         f = from;
150                 if (to > t)
151                         t = to;
152                 priv = afs_page_dirty(page, f, t);
153                 set_page_private(page, priv);
154                 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
155         } else {
156                 priv = afs_page_dirty(page, from, to);
157                 attach_page_private(page, (void *)priv);
158                 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
159         }
160
161         if (set_page_dirty(page))
162                 _debug("dirtied %lx", page->index);
163
164 out:
165         unlock_page(page);
166         put_page(page);
167         return copied;
168 }
169
170 /*
171  * kill all the pages in the given range
172  */
173 static void afs_kill_pages(struct address_space *mapping,
174                            loff_t start, loff_t len)
175 {
176         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
177         struct pagevec pv;
178         unsigned int loop, psize;
179
180         _enter("{%llx:%llu},%llx @%llx",
181                vnode->fid.vid, vnode->fid.vnode, len, start);
182
183         pagevec_init(&pv);
184
185         do {
186                 _debug("kill %llx @%llx", len, start);
187
188                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189                                               PAGEVEC_SIZE, pv.pages);
190                 if (pv.nr == 0)
191                         break;
192
193                 for (loop = 0; loop < pv.nr; loop++) {
194                         struct page *page = pv.pages[loop];
195
196                         if (page->index * PAGE_SIZE >= start + len)
197                                 break;
198
199                         psize = thp_size(page);
200                         start += psize;
201                         len -= psize;
202                         ClearPageUptodate(page);
203                         end_page_writeback(page);
204                         lock_page(page);
205                         generic_error_remove_page(mapping, page);
206                         unlock_page(page);
207                 }
208
209                 __pagevec_release(&pv);
210         } while (len > 0);
211
212         _leave("");
213 }
214
215 /*
216  * Redirty all the pages in a given range.
217  */
218 static void afs_redirty_pages(struct writeback_control *wbc,
219                               struct address_space *mapping,
220                               loff_t start, loff_t len)
221 {
222         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
223         struct pagevec pv;
224         unsigned int loop, psize;
225
226         _enter("{%llx:%llu},%llx @%llx",
227                vnode->fid.vid, vnode->fid.vnode, len, start);
228
229         pagevec_init(&pv);
230
231         do {
232                 _debug("redirty %llx @%llx", len, start);
233
234                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235                                               PAGEVEC_SIZE, pv.pages);
236                 if (pv.nr == 0)
237                         break;
238
239                 for (loop = 0; loop < pv.nr; loop++) {
240                         struct page *page = pv.pages[loop];
241
242                         if (page->index * PAGE_SIZE >= start + len)
243                                 break;
244
245                         psize = thp_size(page);
246                         start += psize;
247                         len -= psize;
248                         redirty_page_for_writepage(wbc, page);
249                         end_page_writeback(page);
250                 }
251
252                 __pagevec_release(&pv);
253         } while (len > 0);
254
255         _leave("");
256 }
257
258 /*
259  * completion of write to server
260  */
261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
262 {
263         struct address_space *mapping = vnode->vfs_inode.i_mapping;
264         struct page *page;
265         pgoff_t end;
266
267         XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
268
269         _enter("{%llx:%llu},{%x @%llx}",
270                vnode->fid.vid, vnode->fid.vnode, len, start);
271
272         rcu_read_lock();
273
274         end = (start + len - 1) / PAGE_SIZE;
275         xas_for_each(&xas, page, end) {
276                 if (!PageWriteback(page)) {
277                         kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278                         ASSERT(PageWriteback(page));
279                 }
280
281                 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282                 detach_page_private(page);
283                 page_endio(page, true, 0);
284         }
285
286         rcu_read_unlock();
287
288         afs_prune_wb_keys(vnode);
289         _leave("");
290 }
291
292 /*
293  * Find a key to use for the writeback.  We cached the keys used to author the
294  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
295  * and we need to start from there if it's set.
296  */
297 static int afs_get_writeback_key(struct afs_vnode *vnode,
298                                  struct afs_wb_key **_wbk)
299 {
300         struct afs_wb_key *wbk = NULL;
301         struct list_head *p;
302         int ret = -ENOKEY, ret2;
303
304         spin_lock(&vnode->wb_lock);
305         if (*_wbk)
306                 p = (*_wbk)->vnode_link.next;
307         else
308                 p = vnode->wb_keys.next;
309
310         while (p != &vnode->wb_keys) {
311                 wbk = list_entry(p, struct afs_wb_key, vnode_link);
312                 _debug("wbk %u", key_serial(wbk->key));
313                 ret2 = key_validate(wbk->key);
314                 if (ret2 == 0) {
315                         refcount_inc(&wbk->usage);
316                         _debug("USE WB KEY %u", key_serial(wbk->key));
317                         break;
318                 }
319
320                 wbk = NULL;
321                 if (ret == -ENOKEY)
322                         ret = ret2;
323                 p = p->next;
324         }
325
326         spin_unlock(&vnode->wb_lock);
327         if (*_wbk)
328                 afs_put_wb_key(*_wbk);
329         *_wbk = wbk;
330         return 0;
331 }
332
333 static void afs_store_data_success(struct afs_operation *op)
334 {
335         struct afs_vnode *vnode = op->file[0].vnode;
336
337         op->ctime = op->file[0].scb.status.mtime_client;
338         afs_vnode_commit_status(op, &op->file[0]);
339         if (op->error == 0) {
340                 if (!op->store.laundering)
341                         afs_pages_written_back(vnode, op->store.pos, op->store.size);
342                 afs_stat_v(vnode, n_stores);
343                 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
344         }
345 }
346
347 static const struct afs_operation_ops afs_store_data_operation = {
348         .issue_afs_rpc  = afs_fs_store_data,
349         .issue_yfs_rpc  = yfs_fs_store_data,
350         .success        = afs_store_data_success,
351 };
352
353 /*
354  * write to a file
355  */
356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357                           bool laundering)
358 {
359         struct afs_operation *op;
360         struct afs_wb_key *wbk = NULL;
361         loff_t size = iov_iter_count(iter), i_size;
362         int ret = -ENOKEY;
363
364         _enter("%s{%llx:%llu.%u},%llx,%llx",
365                vnode->volume->name,
366                vnode->fid.vid,
367                vnode->fid.vnode,
368                vnode->fid.unique,
369                size, pos);
370
371         ret = afs_get_writeback_key(vnode, &wbk);
372         if (ret) {
373                 _leave(" = %d [no keys]", ret);
374                 return ret;
375         }
376
377         op = afs_alloc_operation(wbk->key, vnode->volume);
378         if (IS_ERR(op)) {
379                 afs_put_wb_key(wbk);
380                 return -ENOMEM;
381         }
382
383         i_size = i_size_read(&vnode->vfs_inode);
384
385         afs_op_set_vnode(op, 0, vnode);
386         op->file[0].dv_delta = 1;
387         op->file[0].modification = true;
388         op->store.write_iter = iter;
389         op->store.pos = pos;
390         op->store.size = size;
391         op->store.i_size = max(pos + size, i_size);
392         op->store.laundering = laundering;
393         op->mtime = vnode->vfs_inode.i_mtime;
394         op->flags |= AFS_OPERATION_UNINTR;
395         op->ops = &afs_store_data_operation;
396
397 try_next_key:
398         afs_begin_vnode_operation(op);
399         afs_wait_for_operation(op);
400
401         switch (op->error) {
402         case -EACCES:
403         case -EPERM:
404         case -ENOKEY:
405         case -EKEYEXPIRED:
406         case -EKEYREJECTED:
407         case -EKEYREVOKED:
408                 _debug("next");
409
410                 ret = afs_get_writeback_key(vnode, &wbk);
411                 if (ret == 0) {
412                         key_put(op->key);
413                         op->key = key_get(wbk->key);
414                         goto try_next_key;
415                 }
416                 break;
417         }
418
419         afs_put_wb_key(wbk);
420         _leave(" = %d", op->error);
421         return afs_put_operation(op);
422 }
423
424 /*
425  * Extend the region to be written back to include subsequent contiguously
426  * dirty pages if possible, but don't sleep while doing so.
427  *
428  * If this page holds new content, then we can include filler zeros in the
429  * writeback.
430  */
431 static void afs_extend_writeback(struct address_space *mapping,
432                                  struct afs_vnode *vnode,
433                                  long *_count,
434                                  loff_t start,
435                                  loff_t max_len,
436                                  bool new_content,
437                                  unsigned int *_len)
438 {
439         struct pagevec pvec;
440         struct page *page;
441         unsigned long priv;
442         unsigned int psize, filler = 0;
443         unsigned int f, t;
444         loff_t len = *_len;
445         pgoff_t index = (start + len) / PAGE_SIZE;
446         bool stop = true;
447         unsigned int i;
448
449         XA_STATE(xas, &mapping->i_pages, index);
450         pagevec_init(&pvec);
451
452         do {
453                 /* Firstly, we gather up a batch of contiguous dirty pages
454                  * under the RCU read lock - but we can't clear the dirty flags
455                  * there if any of those pages are mapped.
456                  */
457                 rcu_read_lock();
458
459                 xas_for_each(&xas, page, ULONG_MAX) {
460                         stop = true;
461                         if (xas_retry(&xas, page))
462                                 continue;
463                         if (xa_is_value(page))
464                                 break;
465                         if (page->index != index)
466                                 break;
467
468                         if (!page_cache_get_speculative(page)) {
469                                 xas_reset(&xas);
470                                 continue;
471                         }
472
473                         /* Has the page moved or been split? */
474                         if (unlikely(page != xas_reload(&xas))) {
475                                 put_page(page);
476                                 break;
477                         }
478
479                         if (!trylock_page(page)) {
480                                 put_page(page);
481                                 break;
482                         }
483                         if (!PageDirty(page) || PageWriteback(page)) {
484                                 unlock_page(page);
485                                 put_page(page);
486                                 break;
487                         }
488
489                         psize = thp_size(page);
490                         priv = page_private(page);
491                         f = afs_page_dirty_from(page, priv);
492                         t = afs_page_dirty_to(page, priv);
493                         if (f != 0 && !new_content) {
494                                 unlock_page(page);
495                                 put_page(page);
496                                 break;
497                         }
498
499                         len += filler + t;
500                         filler = psize - t;
501                         if (len >= max_len || *_count <= 0)
502                                 stop = true;
503                         else if (t == psize || new_content)
504                                 stop = false;
505
506                         index += thp_nr_pages(page);
507                         if (!pagevec_add(&pvec, page))
508                                 break;
509                         if (stop)
510                                 break;
511                 }
512
513                 if (!stop)
514                         xas_pause(&xas);
515                 rcu_read_unlock();
516
517                 /* Now, if we obtained any pages, we can shift them to being
518                  * writable and mark them for caching.
519                  */
520                 if (!pagevec_count(&pvec))
521                         break;
522
523                 for (i = 0; i < pagevec_count(&pvec); i++) {
524                         page = pvec.pages[i];
525                         trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
526
527                         if (!clear_page_dirty_for_io(page))
528                                 BUG();
529                         if (test_set_page_writeback(page))
530                                 BUG();
531
532                         *_count -= thp_nr_pages(page);
533                         unlock_page(page);
534                 }
535
536                 pagevec_release(&pvec);
537                 cond_resched();
538         } while (!stop);
539
540         *_len = len;
541 }
542
543 /*
544  * Synchronously write back the locked page and any subsequent non-locked dirty
545  * pages.
546  */
547 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
548                                                struct writeback_control *wbc,
549                                                struct page *page,
550                                                loff_t start, loff_t end)
551 {
552         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553         struct iov_iter iter;
554         unsigned long priv;
555         unsigned int offset, to, len, max_len;
556         loff_t i_size = i_size_read(&vnode->vfs_inode);
557         bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558         long count = wbc->nr_to_write;
559         int ret;
560
561         _enter(",%lx,%llx-%llx", page->index, start, end);
562
563         if (test_set_page_writeback(page))
564                 BUG();
565
566         count -= thp_nr_pages(page);
567
568         /* Find all consecutive lockable dirty pages that have contiguous
569          * written regions, stopping when we find a page that is not
570          * immediately lockable, is not dirty or is missing, or we reach the
571          * end of the range.
572          */
573         priv = page_private(page);
574         offset = afs_page_dirty_from(page, priv);
575         to = afs_page_dirty_to(page, priv);
576         trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
577
578         len = to - offset;
579         start += offset;
580         if (start < i_size) {
581                 /* Trim the write to the EOF; the extra data is ignored.  Also
582                  * put an upper limit on the size of a single storedata op.
583                  */
584                 max_len = 65536 * 4096;
585                 max_len = min_t(unsigned long long, max_len, end - start + 1);
586                 max_len = min_t(unsigned long long, max_len, i_size - start);
587
588                 if (len < max_len &&
589                     (to == thp_size(page) || new_content))
590                         afs_extend_writeback(mapping, vnode, &count,
591                                              start, max_len, new_content, &len);
592                 len = min_t(loff_t, len, max_len);
593         }
594
595         /* We now have a contiguous set of dirty pages, each with writeback
596          * set; the first page is still locked at this point, but all the rest
597          * have been unlocked.
598          */
599         unlock_page(page);
600
601         if (start < i_size) {
602                 _debug("write back %x @%llx [%llx]", len, start, i_size);
603
604                 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
605                 ret = afs_store_data(vnode, &iter, start, false);
606         } else {
607                 _debug("write discard %x @%llx [%llx]", len, start, i_size);
608
609                 /* The dirty region was entirely beyond the EOF. */
610                 afs_pages_written_back(vnode, start, len);
611                 ret = 0;
612         }
613
614         switch (ret) {
615         case 0:
616                 wbc->nr_to_write = count;
617                 ret = len;
618                 break;
619
620         default:
621                 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
622                 fallthrough;
623         case -EACCES:
624         case -EPERM:
625         case -ENOKEY:
626         case -EKEYEXPIRED:
627         case -EKEYREJECTED:
628         case -EKEYREVOKED:
629                 afs_redirty_pages(wbc, mapping, start, len);
630                 mapping_set_error(mapping, ret);
631                 break;
632
633         case -EDQUOT:
634         case -ENOSPC:
635                 afs_redirty_pages(wbc, mapping, start, len);
636                 mapping_set_error(mapping, -ENOSPC);
637                 break;
638
639         case -EROFS:
640         case -EIO:
641         case -EREMOTEIO:
642         case -EFBIG:
643         case -ENOENT:
644         case -ENOMEDIUM:
645         case -ENXIO:
646                 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
647                 afs_kill_pages(mapping, start, len);
648                 mapping_set_error(mapping, ret);
649                 break;
650         }
651
652         _leave(" = %d", ret);
653         return ret;
654 }
655
656 /*
657  * write a page back to the server
658  * - the caller locked the page for us
659  */
660 int afs_writepage(struct page *page, struct writeback_control *wbc)
661 {
662         ssize_t ret;
663         loff_t start;
664
665         _enter("{%lx},", page->index);
666
667         start = page->index * PAGE_SIZE;
668         ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
669                                               start, LLONG_MAX - start);
670         if (ret < 0) {
671                 _leave(" = %zd", ret);
672                 return ret;
673         }
674
675         _leave(" = 0");
676         return 0;
677 }
678
679 /*
680  * write a region of pages back to the server
681  */
682 static int afs_writepages_region(struct address_space *mapping,
683                                  struct writeback_control *wbc,
684                                  loff_t start, loff_t end, loff_t *_next)
685 {
686         struct page *page;
687         ssize_t ret;
688         int n;
689
690         _enter("%llx,%llx,", start, end);
691
692         do {
693                 pgoff_t index = start / PAGE_SIZE;
694
695                 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
696                                              PAGECACHE_TAG_DIRTY, 1, &page);
697                 if (!n)
698                         break;
699
700                 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
701
702                 _debug("wback %lx", page->index);
703
704                 /* At this point we hold neither the i_pages lock nor the
705                  * page lock: the page may be truncated or invalidated
706                  * (changing page->mapping to NULL), or even swizzled
707                  * back from swapper_space to tmpfs file mapping
708                  */
709                 if (wbc->sync_mode != WB_SYNC_NONE) {
710                         ret = lock_page_killable(page);
711                         if (ret < 0) {
712                                 put_page(page);
713                                 return ret;
714                         }
715                 } else {
716                         if (!trylock_page(page)) {
717                                 put_page(page);
718                                 return 0;
719                         }
720                 }
721
722                 if (page->mapping != mapping || !PageDirty(page)) {
723                         start += thp_size(page);
724                         unlock_page(page);
725                         put_page(page);
726                         continue;
727                 }
728
729                 if (PageWriteback(page)) {
730                         unlock_page(page);
731                         if (wbc->sync_mode != WB_SYNC_NONE)
732                                 wait_on_page_writeback(page);
733                         put_page(page);
734                         continue;
735                 }
736
737                 if (!clear_page_dirty_for_io(page))
738                         BUG();
739                 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
740                 put_page(page);
741                 if (ret < 0) {
742                         _leave(" = %zd", ret);
743                         return ret;
744                 }
745
746                 start += ret;
747
748                 cond_resched();
749         } while (wbc->nr_to_write > 0);
750
751         *_next = start;
752         _leave(" = 0 [%llx]", *_next);
753         return 0;
754 }
755
756 /*
757  * write some of the pending data back to the server
758  */
759 int afs_writepages(struct address_space *mapping,
760                    struct writeback_control *wbc)
761 {
762         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
763         loff_t start, next;
764         int ret;
765
766         _enter("");
767
768         /* We have to be careful as we can end up racing with setattr()
769          * truncating the pagecache since the caller doesn't take a lock here
770          * to prevent it.
771          */
772         if (wbc->sync_mode == WB_SYNC_ALL)
773                 down_read(&vnode->validate_lock);
774         else if (!down_read_trylock(&vnode->validate_lock))
775                 return 0;
776
777         if (wbc->range_cyclic) {
778                 start = mapping->writeback_index * PAGE_SIZE;
779                 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
780                 if (ret == 0) {
781                         mapping->writeback_index = next / PAGE_SIZE;
782                         if (start > 0 && wbc->nr_to_write > 0) {
783                                 ret = afs_writepages_region(mapping, wbc, 0,
784                                                             start, &next);
785                                 if (ret == 0)
786                                         mapping->writeback_index =
787                                                 next / PAGE_SIZE;
788                         }
789                 }
790         } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
791                 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
792                 if (wbc->nr_to_write > 0 && ret == 0)
793                         mapping->writeback_index = next / PAGE_SIZE;
794         } else {
795                 ret = afs_writepages_region(mapping, wbc,
796                                             wbc->range_start, wbc->range_end, &next);
797         }
798
799         up_read(&vnode->validate_lock);
800         _leave(" = %d", ret);
801         return ret;
802 }
803
804 /*
805  * write to an AFS file
806  */
807 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
808 {
809         struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
810         struct afs_file *af = iocb->ki_filp->private_data;
811         ssize_t result;
812         size_t count = iov_iter_count(from);
813
814         _enter("{%llx:%llu},{%zu},",
815                vnode->fid.vid, vnode->fid.vnode, count);
816
817         if (IS_SWAPFILE(&vnode->vfs_inode)) {
818                 printk(KERN_INFO
819                        "AFS: Attempt to write to active swap file!\n");
820                 return -EBUSY;
821         }
822
823         if (!count)
824                 return 0;
825
826         result = afs_validate(vnode, af->key);
827         if (result < 0)
828                 return result;
829
830         result = generic_file_write_iter(iocb, from);
831
832         _leave(" = %zd", result);
833         return result;
834 }
835
836 /*
837  * flush any dirty pages for this process, and check for write errors.
838  * - the return status from this call provides a reliable indication of
839  *   whether any write errors occurred for this process.
840  */
841 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
842 {
843         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
844         struct afs_file *af = file->private_data;
845         int ret;
846
847         _enter("{%llx:%llu},{n=%pD},%d",
848                vnode->fid.vid, vnode->fid.vnode, file,
849                datasync);
850
851         ret = afs_validate(vnode, af->key);
852         if (ret < 0)
853                 return ret;
854
855         return file_write_and_wait_range(file, start, end);
856 }
857
858 /*
859  * notification that a previously read-only page is about to become writable
860  * - if it returns an error, the caller will deliver a bus error signal
861  */
862 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
863 {
864         struct page *page = thp_head(vmf->page);
865         struct file *file = vmf->vma->vm_file;
866         struct inode *inode = file_inode(file);
867         struct afs_vnode *vnode = AFS_FS_I(inode);
868         struct afs_file *af = file->private_data;
869         unsigned long priv;
870         vm_fault_t ret = VM_FAULT_RETRY;
871
872         _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
873
874         afs_validate(vnode, af->key);
875
876         sb_start_pagefault(inode->i_sb);
877
878         /* Wait for the page to be written to the cache before we allow it to
879          * be modified.  We then assume the entire page will need writing back.
880          */
881 #ifdef CONFIG_AFS_FSCACHE
882         if (PageFsCache(page) &&
883             wait_on_page_fscache_killable(page) < 0)
884                 goto out;
885 #endif
886
887         if (wait_on_page_writeback_killable(page))
888                 goto out;
889
890         if (lock_page_killable(page) < 0)
891                 goto out;
892
893         /* We mustn't change page->private until writeback is complete as that
894          * details the portion of the page we need to write back and we might
895          * need to redirty the page if there's a problem.
896          */
897         if (wait_on_page_writeback_killable(page) < 0) {
898                 unlock_page(page);
899                 goto out;
900         }
901
902         priv = afs_page_dirty(page, 0, thp_size(page));
903         priv = afs_page_dirty_mmapped(priv);
904         if (PagePrivate(page)) {
905                 set_page_private(page, priv);
906                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
907         } else {
908                 attach_page_private(page, (void *)priv);
909                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
910         }
911         file_update_time(file);
912
913         ret = VM_FAULT_LOCKED;
914 out:
915         sb_end_pagefault(inode->i_sb);
916         return ret;
917 }
918
919 /*
920  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
921  */
922 void afs_prune_wb_keys(struct afs_vnode *vnode)
923 {
924         LIST_HEAD(graveyard);
925         struct afs_wb_key *wbk, *tmp;
926
927         /* Discard unused keys */
928         spin_lock(&vnode->wb_lock);
929
930         if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
931             !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
932                 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
933                         if (refcount_read(&wbk->usage) == 1)
934                                 list_move(&wbk->vnode_link, &graveyard);
935                 }
936         }
937
938         spin_unlock(&vnode->wb_lock);
939
940         while (!list_empty(&graveyard)) {
941                 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
942                 list_del(&wbk->vnode_link);
943                 afs_put_wb_key(wbk);
944         }
945 }
946
947 /*
948  * Clean up a page during invalidation.
949  */
950 int afs_launder_page(struct page *page)
951 {
952         struct address_space *mapping = page->mapping;
953         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
954         struct iov_iter iter;
955         struct bio_vec bv[1];
956         unsigned long priv;
957         unsigned int f, t;
958         int ret = 0;
959
960         _enter("{%lx}", page->index);
961
962         priv = page_private(page);
963         if (clear_page_dirty_for_io(page)) {
964                 f = 0;
965                 t = thp_size(page);
966                 if (PagePrivate(page)) {
967                         f = afs_page_dirty_from(page, priv);
968                         t = afs_page_dirty_to(page, priv);
969                 }
970
971                 bv[0].bv_page = page;
972                 bv[0].bv_offset = f;
973                 bv[0].bv_len = t - f;
974                 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
975
976                 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
977                 ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
978                                      true);
979         }
980
981         trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
982         detach_page_private(page);
983         wait_on_page_fscache(page);
984         return ret;
985 }