1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
17 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
18 loff_t i_size, bool caching);
20 #ifdef CONFIG_AFS_FSCACHE
22 * Mark a page as having been made dirty and thus needing writeback. We also
23 * need to pin the cache object to write back to.
25 bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
27 return fscache_dirty_folio(mapping, folio,
28 afs_vnode_cache(AFS_FS_I(mapping->host)));
30 static void afs_folio_start_fscache(bool caching, struct folio *folio)
33 folio_start_fscache(folio);
36 static void afs_folio_start_fscache(bool caching, struct folio *folio)
42 * prepare to perform part of a write to a page
44 int afs_write_begin(struct file *file, struct address_space *mapping,
45 loff_t pos, unsigned len,
46 struct page **_page, void **fsdata)
48 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
56 _enter("{%llx:%llu},%llx,%x",
57 vnode->fid.vid, vnode->fid.vnode, pos, len);
59 /* Prefetch area to be written into the cache if we're caching this
60 * file. We need to do this before we get a lock on the page in case
61 * there's more than one writer competing for the same cache block.
63 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata);
67 index = folio_index(folio);
68 from = pos - index * PAGE_SIZE;
72 /* See if this page is already partially written in a way that we can
73 * merge the new write with.
75 if (folio_test_private(folio)) {
76 priv = (unsigned long)folio_get_private(folio);
77 f = afs_folio_dirty_from(folio, priv);
78 t = afs_folio_dirty_to(folio, priv);
81 if (folio_test_writeback(folio)) {
82 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
83 goto flush_conflicting_write;
85 /* If the file is being filled locally, allow inter-write
86 * spaces to be merged into writes. If it's not, only write
87 * back what the user gives us.
89 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
91 goto flush_conflicting_write;
94 *_page = folio_file_page(folio, pos / PAGE_SIZE);
98 /* The previous write and this write aren't adjacent or overlapping, so
101 flush_conflicting_write:
102 _debug("flush conflict");
103 ret = folio_write_one(folio);
107 ret = folio_lock_killable(folio);
114 _leave(" = %d", ret);
119 * finalise part of a write to a page
121 int afs_write_end(struct file *file, struct address_space *mapping,
122 loff_t pos, unsigned len, unsigned copied,
123 struct page *subpage, void *fsdata)
125 struct folio *folio = page_folio(subpage);
126 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
128 unsigned int f, from = offset_in_folio(folio, pos);
129 unsigned int t, to = from + copied;
130 loff_t i_size, write_end_pos;
132 _enter("{%llx:%llu},{%lx}",
133 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
135 if (!folio_test_uptodate(folio)) {
141 folio_mark_uptodate(folio);
147 write_end_pos = pos + copied;
149 i_size = i_size_read(&vnode->netfs.inode);
150 if (write_end_pos > i_size) {
151 write_seqlock(&vnode->cb_lock);
152 i_size = i_size_read(&vnode->netfs.inode);
153 if (write_end_pos > i_size)
154 afs_set_i_size(vnode, write_end_pos);
155 write_sequnlock(&vnode->cb_lock);
156 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
159 if (folio_test_private(folio)) {
160 priv = (unsigned long)folio_get_private(folio);
161 f = afs_folio_dirty_from(folio, priv);
162 t = afs_folio_dirty_to(folio, priv);
167 priv = afs_folio_dirty(folio, f, t);
168 folio_change_private(folio, (void *)priv);
169 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
171 priv = afs_folio_dirty(folio, from, to);
172 folio_attach_private(folio, (void *)priv);
173 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
176 if (folio_mark_dirty(folio))
177 _debug("dirtied %lx", folio_index(folio));
186 * kill all the pages in the given range
188 static void afs_kill_pages(struct address_space *mapping,
189 loff_t start, loff_t len)
191 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
193 pgoff_t index = start / PAGE_SIZE;
194 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
196 _enter("{%llx:%llu},%llx @%llx",
197 vnode->fid.vid, vnode->fid.vnode, len, start);
200 _debug("kill %lx (to %lx)", index, last);
202 folio = filemap_get_folio(mapping, index);
208 next = folio_next_index(folio);
210 folio_clear_uptodate(folio);
211 folio_end_writeback(folio);
213 generic_error_remove_page(mapping, &folio->page);
217 } while (index = next, index <= last);
223 * Redirty all the pages in a given range.
225 static void afs_redirty_pages(struct writeback_control *wbc,
226 struct address_space *mapping,
227 loff_t start, loff_t len)
229 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
231 pgoff_t index = start / PAGE_SIZE;
232 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
234 _enter("{%llx:%llu},%llx @%llx",
235 vnode->fid.vid, vnode->fid.vnode, len, start);
238 _debug("redirty %llx @%llx", len, start);
240 folio = filemap_get_folio(mapping, index);
246 next = index + folio_nr_pages(folio);
247 folio_redirty_for_writepage(wbc, folio);
248 folio_end_writeback(folio);
250 } while (index = next, index <= last);
256 * completion of write to server
258 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
260 struct address_space *mapping = vnode->netfs.inode.i_mapping;
264 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
266 _enter("{%llx:%llu},{%x @%llx}",
267 vnode->fid.vid, vnode->fid.vnode, len, start);
271 end = (start + len - 1) / PAGE_SIZE;
272 xas_for_each(&xas, folio, end) {
273 if (!folio_test_writeback(folio)) {
274 kdebug("bad %x @%llx page %lx %lx",
275 len, start, folio_index(folio), end);
276 ASSERT(folio_test_writeback(folio));
279 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
280 folio_detach_private(folio);
281 folio_end_writeback(folio);
286 afs_prune_wb_keys(vnode);
291 * Find a key to use for the writeback. We cached the keys used to author the
292 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
293 * and we need to start from there if it's set.
295 static int afs_get_writeback_key(struct afs_vnode *vnode,
296 struct afs_wb_key **_wbk)
298 struct afs_wb_key *wbk = NULL;
300 int ret = -ENOKEY, ret2;
302 spin_lock(&vnode->wb_lock);
304 p = (*_wbk)->vnode_link.next;
306 p = vnode->wb_keys.next;
308 while (p != &vnode->wb_keys) {
309 wbk = list_entry(p, struct afs_wb_key, vnode_link);
310 _debug("wbk %u", key_serial(wbk->key));
311 ret2 = key_validate(wbk->key);
313 refcount_inc(&wbk->usage);
314 _debug("USE WB KEY %u", key_serial(wbk->key));
324 spin_unlock(&vnode->wb_lock);
326 afs_put_wb_key(*_wbk);
331 static void afs_store_data_success(struct afs_operation *op)
333 struct afs_vnode *vnode = op->file[0].vnode;
335 op->ctime = op->file[0].scb.status.mtime_client;
336 afs_vnode_commit_status(op, &op->file[0]);
337 if (op->error == 0) {
338 if (!op->store.laundering)
339 afs_pages_written_back(vnode, op->store.pos, op->store.size);
340 afs_stat_v(vnode, n_stores);
341 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
345 static const struct afs_operation_ops afs_store_data_operation = {
346 .issue_afs_rpc = afs_fs_store_data,
347 .issue_yfs_rpc = yfs_fs_store_data,
348 .success = afs_store_data_success,
354 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357 struct afs_operation *op;
358 struct afs_wb_key *wbk = NULL;
359 loff_t size = iov_iter_count(iter);
362 _enter("%s{%llx:%llu.%u},%llx,%llx",
369 ret = afs_get_writeback_key(vnode, &wbk);
371 _leave(" = %d [no keys]", ret);
375 op = afs_alloc_operation(wbk->key, vnode->volume);
381 afs_op_set_vnode(op, 0, vnode);
382 op->file[0].dv_delta = 1;
383 op->file[0].modification = true;
384 op->store.write_iter = iter;
386 op->store.size = size;
387 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size);
388 op->store.laundering = laundering;
389 op->mtime = vnode->netfs.inode.i_mtime;
390 op->flags |= AFS_OPERATION_UNINTR;
391 op->ops = &afs_store_data_operation;
394 afs_begin_vnode_operation(op);
395 afs_wait_for_operation(op);
406 ret = afs_get_writeback_key(vnode, &wbk);
409 op->key = key_get(wbk->key);
416 _leave(" = %d", op->error);
417 return afs_put_operation(op);
421 * Extend the region to be written back to include subsequent contiguously
422 * dirty pages if possible, but don't sleep while doing so.
424 * If this page holds new content, then we can include filler zeros in the
427 static void afs_extend_writeback(struct address_space *mapping,
428 struct afs_vnode *vnode,
439 unsigned int psize, filler = 0;
442 pgoff_t index = (start + len) / PAGE_SIZE;
446 XA_STATE(xas, &mapping->i_pages, index);
450 /* Firstly, we gather up a batch of contiguous dirty pages
451 * under the RCU read lock - but we can't clear the dirty flags
452 * there if any of those pages are mapped.
456 xas_for_each(&xas, folio, ULONG_MAX) {
458 if (xas_retry(&xas, folio))
460 if (xa_is_value(folio))
462 if (folio_index(folio) != index)
465 if (!folio_try_get_rcu(folio)) {
470 /* Has the page moved or been split? */
471 if (unlikely(folio != xas_reload(&xas))) {
476 if (!folio_trylock(folio)) {
480 if (!folio_test_dirty(folio) ||
481 folio_test_writeback(folio) ||
482 folio_test_fscache(folio)) {
488 psize = folio_size(folio);
489 priv = (unsigned long)folio_get_private(folio);
490 f = afs_folio_dirty_from(folio, priv);
491 t = afs_folio_dirty_to(folio, priv);
492 if (f != 0 && !new_content) {
500 if (len >= max_len || *_count <= 0)
502 else if (t == psize || new_content)
505 index += folio_nr_pages(folio);
506 if (!pagevec_add(&pvec, &folio->page))
516 /* Now, if we obtained any pages, we can shift them to being
517 * writable and mark them for caching.
519 if (!pagevec_count(&pvec))
522 for (i = 0; i < pagevec_count(&pvec); i++) {
523 folio = page_folio(pvec.pages[i]);
524 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
526 if (!folio_clear_dirty_for_io(folio))
528 if (folio_start_writeback(folio))
530 afs_folio_start_fscache(caching, folio);
532 *_count -= folio_nr_pages(folio);
536 pagevec_release(&pvec);
544 * Synchronously write back the locked page and any subsequent non-locked dirty
547 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
548 struct writeback_control *wbc,
550 loff_t start, loff_t end)
552 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553 struct iov_iter iter;
555 unsigned int offset, to, len, max_len;
556 loff_t i_size = i_size_read(&vnode->netfs.inode);
557 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
559 long count = wbc->nr_to_write;
562 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
564 if (folio_start_writeback(folio))
566 afs_folio_start_fscache(caching, folio);
568 count -= folio_nr_pages(folio);
570 /* Find all consecutive lockable dirty pages that have contiguous
571 * written regions, stopping when we find a page that is not
572 * immediately lockable, is not dirty or is missing, or we reach the
575 priv = (unsigned long)folio_get_private(folio);
576 offset = afs_folio_dirty_from(folio, priv);
577 to = afs_folio_dirty_to(folio, priv);
578 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
582 if (start < i_size) {
583 /* Trim the write to the EOF; the extra data is ignored. Also
584 * put an upper limit on the size of a single storedata op.
586 max_len = 65536 * 4096;
587 max_len = min_t(unsigned long long, max_len, end - start + 1);
588 max_len = min_t(unsigned long long, max_len, i_size - start);
591 (to == folio_size(folio) || new_content))
592 afs_extend_writeback(mapping, vnode, &count,
593 start, max_len, new_content,
595 len = min_t(loff_t, len, max_len);
598 /* We now have a contiguous set of dirty pages, each with writeback
599 * set; the first page is still locked at this point, but all the rest
600 * have been unlocked.
604 if (start < i_size) {
605 _debug("write back %x @%llx [%llx]", len, start, i_size);
607 /* Speculatively write to the cache. We have to fix this up
608 * later if the store fails.
610 afs_write_to_cache(vnode, start, len, i_size, caching);
612 iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len);
613 ret = afs_store_data(vnode, &iter, start, false);
615 _debug("write discard %x @%llx [%llx]", len, start, i_size);
617 /* The dirty region was entirely beyond the EOF. */
618 fscache_clear_page_bits(mapping, start, len, caching);
619 afs_pages_written_back(vnode, start, len);
625 wbc->nr_to_write = count;
630 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
639 afs_redirty_pages(wbc, mapping, start, len);
640 mapping_set_error(mapping, ret);
645 afs_redirty_pages(wbc, mapping, start, len);
646 mapping_set_error(mapping, -ENOSPC);
656 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
657 afs_kill_pages(mapping, start, len);
658 mapping_set_error(mapping, ret);
662 _leave(" = %d", ret);
667 * write a page back to the server
668 * - the caller locked the page for us
670 int afs_writepage(struct page *subpage, struct writeback_control *wbc)
672 struct folio *folio = page_folio(subpage);
676 _enter("{%lx},", folio_index(folio));
678 #ifdef CONFIG_AFS_FSCACHE
679 folio_wait_fscache(folio);
682 start = folio_index(folio) * PAGE_SIZE;
683 ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc,
684 folio, start, LLONG_MAX - start);
686 _leave(" = %zd", ret);
695 * write a region of pages back to the server
697 static int afs_writepages_region(struct address_space *mapping,
698 struct writeback_control *wbc,
699 loff_t start, loff_t end, loff_t *_next)
702 struct page *head_page;
706 _enter("%llx,%llx,", start, end);
709 pgoff_t index = start / PAGE_SIZE;
711 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
712 PAGECACHE_TAG_DIRTY, 1, &head_page);
716 folio = page_folio(head_page);
717 start = folio_pos(folio); /* May regress with THPs */
719 _debug("wback %lx", folio_index(folio));
721 /* At this point we hold neither the i_pages lock nor the
722 * page lock: the page may be truncated or invalidated
723 * (changing page->mapping to NULL), or even swizzled
724 * back from swapper_space to tmpfs file mapping
726 if (wbc->sync_mode != WB_SYNC_NONE) {
727 ret = folio_lock_killable(folio);
733 if (!folio_trylock(folio)) {
739 if (folio_mapping(folio) != mapping ||
740 !folio_test_dirty(folio)) {
741 start += folio_size(folio);
747 if (folio_test_writeback(folio) ||
748 folio_test_fscache(folio)) {
750 if (wbc->sync_mode != WB_SYNC_NONE) {
751 folio_wait_writeback(folio);
752 #ifdef CONFIG_AFS_FSCACHE
753 folio_wait_fscache(folio);
756 start += folio_size(folio);
759 if (wbc->sync_mode == WB_SYNC_NONE) {
760 if (skips >= 5 || need_resched())
767 if (!folio_clear_dirty_for_io(folio))
769 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
772 _leave(" = %zd", ret);
779 } while (wbc->nr_to_write > 0);
782 _leave(" = 0 [%llx]", *_next);
787 * write some of the pending data back to the server
789 int afs_writepages(struct address_space *mapping,
790 struct writeback_control *wbc)
792 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
798 /* We have to be careful as we can end up racing with setattr()
799 * truncating the pagecache since the caller doesn't take a lock here
802 if (wbc->sync_mode == WB_SYNC_ALL)
803 down_read(&vnode->validate_lock);
804 else if (!down_read_trylock(&vnode->validate_lock))
807 if (wbc->range_cyclic) {
808 start = mapping->writeback_index * PAGE_SIZE;
809 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
811 mapping->writeback_index = next / PAGE_SIZE;
812 if (start > 0 && wbc->nr_to_write > 0) {
813 ret = afs_writepages_region(mapping, wbc, 0,
816 mapping->writeback_index =
820 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
821 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
822 if (wbc->nr_to_write > 0 && ret == 0)
823 mapping->writeback_index = next / PAGE_SIZE;
825 ret = afs_writepages_region(mapping, wbc,
826 wbc->range_start, wbc->range_end, &next);
829 up_read(&vnode->validate_lock);
830 _leave(" = %d", ret);
835 * write to an AFS file
837 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
839 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
840 struct afs_file *af = iocb->ki_filp->private_data;
842 size_t count = iov_iter_count(from);
844 _enter("{%llx:%llu},{%zu},",
845 vnode->fid.vid, vnode->fid.vnode, count);
847 if (IS_SWAPFILE(&vnode->netfs.inode)) {
849 "AFS: Attempt to write to active swap file!\n");
856 result = afs_validate(vnode, af->key);
860 result = generic_file_write_iter(iocb, from);
862 _leave(" = %zd", result);
867 * flush any dirty pages for this process, and check for write errors.
868 * - the return status from this call provides a reliable indication of
869 * whether any write errors occurred for this process.
871 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
873 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
874 struct afs_file *af = file->private_data;
877 _enter("{%llx:%llu},{n=%pD},%d",
878 vnode->fid.vid, vnode->fid.vnode, file,
881 ret = afs_validate(vnode, af->key);
885 return file_write_and_wait_range(file, start, end);
889 * notification that a previously read-only page is about to become writable
890 * - if it returns an error, the caller will deliver a bus error signal
892 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
894 struct folio *folio = page_folio(vmf->page);
895 struct file *file = vmf->vma->vm_file;
896 struct inode *inode = file_inode(file);
897 struct afs_vnode *vnode = AFS_FS_I(inode);
898 struct afs_file *af = file->private_data;
900 vm_fault_t ret = VM_FAULT_RETRY;
902 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
904 afs_validate(vnode, af->key);
906 sb_start_pagefault(inode->i_sb);
908 /* Wait for the page to be written to the cache before we allow it to
909 * be modified. We then assume the entire page will need writing back.
911 #ifdef CONFIG_AFS_FSCACHE
912 if (folio_test_fscache(folio) &&
913 folio_wait_fscache_killable(folio) < 0)
917 if (folio_wait_writeback_killable(folio))
920 if (folio_lock_killable(folio) < 0)
923 /* We mustn't change folio->private until writeback is complete as that
924 * details the portion of the page we need to write back and we might
925 * need to redirty the page if there's a problem.
927 if (folio_wait_writeback_killable(folio) < 0) {
932 priv = afs_folio_dirty(folio, 0, folio_size(folio));
933 priv = afs_folio_dirty_mmapped(priv);
934 if (folio_test_private(folio)) {
935 folio_change_private(folio, (void *)priv);
936 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
938 folio_attach_private(folio, (void *)priv);
939 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
941 file_update_time(file);
943 ret = VM_FAULT_LOCKED;
945 sb_end_pagefault(inode->i_sb);
950 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
952 void afs_prune_wb_keys(struct afs_vnode *vnode)
954 LIST_HEAD(graveyard);
955 struct afs_wb_key *wbk, *tmp;
957 /* Discard unused keys */
958 spin_lock(&vnode->wb_lock);
960 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
961 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
962 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
963 if (refcount_read(&wbk->usage) == 1)
964 list_move(&wbk->vnode_link, &graveyard);
968 spin_unlock(&vnode->wb_lock);
970 while (!list_empty(&graveyard)) {
971 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
972 list_del(&wbk->vnode_link);
978 * Clean up a page during invalidation.
980 int afs_launder_folio(struct folio *folio)
982 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
983 struct iov_iter iter;
984 struct bio_vec bv[1];
989 _enter("{%lx}", folio->index);
991 priv = (unsigned long)folio_get_private(folio);
992 if (folio_clear_dirty_for_io(folio)) {
994 t = folio_size(folio);
995 if (folio_test_private(folio)) {
996 f = afs_folio_dirty_from(folio, priv);
997 t = afs_folio_dirty_to(folio, priv);
1000 bv[0].bv_page = &folio->page;
1001 bv[0].bv_offset = f;
1002 bv[0].bv_len = t - f;
1003 iov_iter_bvec(&iter, ITER_SOURCE, bv, 1, bv[0].bv_len);
1005 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1006 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1009 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1010 folio_detach_private(folio);
1011 folio_wait_fscache(folio);
1016 * Deal with the completion of writing the data to the cache.
1018 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1021 struct afs_vnode *vnode = priv;
1023 if (IS_ERR_VALUE(transferred_or_error) &&
1024 transferred_or_error != -ENOBUFS)
1025 afs_invalidate_cache(vnode, 0);
1029 * Save the write to the cache also.
1031 static void afs_write_to_cache(struct afs_vnode *vnode,
1032 loff_t start, size_t len, loff_t i_size,
1035 fscache_write_to_cache(afs_vnode_cache(vnode),
1036 vnode->netfs.inode.i_mapping, start, len, i_size,
1037 afs_write_to_cache_done, vnode, caching);