Merge tag 'uml-for-linus-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18
19 struct workqueue_struct *afs_async_calls;
20
21 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
22 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_process_async_call(struct work_struct *);
24 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
26 static int afs_deliver_cm_op_id(struct afs_call *);
27
28 /* asynchronous incoming call initial processing */
29 static const struct afs_call_type afs_RXCMxxxx = {
30         .name           = "CB.xxxx",
31         .deliver        = afs_deliver_cm_op_id,
32 };
33
34 /*
35  * open an RxRPC socket and bind it to be a server for callback notifications
36  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37  */
38 int afs_open_socket(struct afs_net *net)
39 {
40         struct sockaddr_rxrpc srx;
41         struct socket *socket;
42         int ret;
43
44         _enter("");
45
46         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
47         if (ret < 0)
48                 goto error_1;
49
50         socket->sk->sk_allocation = GFP_NOFS;
51
52         /* bind the callback manager's address to make this a server socket */
53         memset(&srx, 0, sizeof(srx));
54         srx.srx_family                  = AF_RXRPC;
55         srx.srx_service                 = CM_SERVICE;
56         srx.transport_type              = SOCK_DGRAM;
57         srx.transport_len               = sizeof(srx.transport.sin6);
58         srx.transport.sin6.sin6_family  = AF_INET6;
59         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
60
61         ret = rxrpc_sock_set_min_security_level(socket->sk,
62                                                 RXRPC_SECURITY_ENCRYPT);
63         if (ret < 0)
64                 goto error_2;
65
66         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67         if (ret == -EADDRINUSE) {
68                 srx.transport.sin6.sin6_port = 0;
69                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70         }
71         if (ret < 0)
72                 goto error_2;
73
74         srx.srx_service = YFS_CM_SERVICE;
75         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76         if (ret < 0)
77                 goto error_2;
78
79         /* Ideally, we'd turn on service upgrade here, but we can't because
80          * OpenAFS is buggy and leaks the userStatus field from packet to
81          * packet and between FS packets and CB packets - so if we try to do an
82          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83          * it sends back to us.
84          */
85
86         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87                                            afs_rx_discard_new_call);
88
89         ret = kernel_listen(socket, INT_MAX);
90         if (ret < 0)
91                 goto error_2;
92
93         net->socket = socket;
94         afs_charge_preallocation(&net->charge_preallocation_work);
95         _leave(" = 0");
96         return 0;
97
98 error_2:
99         sock_release(socket);
100 error_1:
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * close the RxRPC socket AFS was using
107  */
108 void afs_close_socket(struct afs_net *net)
109 {
110         _enter("");
111
112         kernel_listen(net->socket, 0);
113         flush_workqueue(afs_async_calls);
114
115         if (net->spare_incoming_call) {
116                 afs_put_call(net->spare_incoming_call);
117                 net->spare_incoming_call = NULL;
118         }
119
120         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121         wait_var_event(&net->nr_outstanding_calls,
122                        !atomic_read(&net->nr_outstanding_calls));
123         _debug("no outstanding calls");
124
125         kernel_sock_shutdown(net->socket, SHUT_RDWR);
126         flush_workqueue(afs_async_calls);
127         sock_release(net->socket);
128
129         _debug("dework");
130         _leave("");
131 }
132
133 /*
134  * Allocate a call.
135  */
136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137                                        const struct afs_call_type *type,
138                                        gfp_t gfp)
139 {
140         struct afs_call *call;
141         int o;
142
143         call = kzalloc(sizeof(*call), gfp);
144         if (!call)
145                 return NULL;
146
147         call->type = type;
148         call->net = net;
149         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150         refcount_set(&call->ref, 1);
151         INIT_WORK(&call->async_work, afs_process_async_call);
152         init_waitqueue_head(&call->waitq);
153         spin_lock_init(&call->state_lock);
154         call->iter = &call->def_iter;
155
156         o = atomic_inc_return(&net->nr_outstanding_calls);
157         trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
158                        __builtin_return_address(0));
159         return call;
160 }
161
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167         struct afs_net *net = call->net;
168         unsigned int debug_id = call->debug_id;
169         bool zero;
170         int r, o;
171
172         zero = __refcount_dec_and_test(&call->ref, &r);
173         o = atomic_read(&net->nr_outstanding_calls);
174         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
175                        __builtin_return_address(0));
176
177         if (zero) {
178                 ASSERT(!work_pending(&call->async_work));
179                 ASSERT(call->type->name != NULL);
180
181                 if (call->rxcall) {
182                         rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
183                         rxrpc_kernel_put_call(net->socket, call->rxcall);
184                         call->rxcall = NULL;
185                 }
186                 if (call->type->destructor)
187                         call->type->destructor(call);
188
189                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
190                 afs_put_addrlist(call->alist);
191                 kfree(call->request);
192
193                 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
194                                __builtin_return_address(0));
195                 kfree(call);
196
197                 o = atomic_dec_return(&net->nr_outstanding_calls);
198                 if (o == 0)
199                         wake_up_var(&net->nr_outstanding_calls);
200         }
201 }
202
203 static struct afs_call *afs_get_call(struct afs_call *call,
204                                      enum afs_call_trace why)
205 {
206         int r;
207
208         __refcount_inc(&call->ref, &r);
209
210         trace_afs_call(call->debug_id, why, r + 1,
211                        atomic_read(&call->net->nr_outstanding_calls),
212                        __builtin_return_address(0));
213         return call;
214 }
215
216 /*
217  * Queue the call for actual work.
218  */
219 static void afs_queue_call_work(struct afs_call *call)
220 {
221         if (call->type->work) {
222                 INIT_WORK(&call->work, call->type->work);
223
224                 afs_get_call(call, afs_call_trace_work);
225                 if (!queue_work(afs_wq, &call->work))
226                         afs_put_call(call);
227         }
228 }
229
230 /*
231  * allocate a call with flat request and reply buffers
232  */
233 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
234                                      const struct afs_call_type *type,
235                                      size_t request_size, size_t reply_max)
236 {
237         struct afs_call *call;
238
239         call = afs_alloc_call(net, type, GFP_NOFS);
240         if (!call)
241                 goto nomem_call;
242
243         if (request_size) {
244                 call->request_size = request_size;
245                 call->request = kmalloc(request_size, GFP_NOFS);
246                 if (!call->request)
247                         goto nomem_free;
248         }
249
250         if (reply_max) {
251                 call->reply_max = reply_max;
252                 call->buffer = kmalloc(reply_max, GFP_NOFS);
253                 if (!call->buffer)
254                         goto nomem_free;
255         }
256
257         afs_extract_to_buf(call, call->reply_max);
258         call->operation_ID = type->op;
259         init_waitqueue_head(&call->waitq);
260         return call;
261
262 nomem_free:
263         afs_put_call(call);
264 nomem_call:
265         return NULL;
266 }
267
268 /*
269  * clean up a call with flat buffer
270  */
271 void afs_flat_call_destructor(struct afs_call *call)
272 {
273         _enter("");
274
275         kfree(call->request);
276         call->request = NULL;
277         kfree(call->buffer);
278         call->buffer = NULL;
279 }
280
281 /*
282  * Advance the AFS call state when the RxRPC call ends the transmit phase.
283  */
284 static void afs_notify_end_request_tx(struct sock *sock,
285                                       struct rxrpc_call *rxcall,
286                                       unsigned long call_user_ID)
287 {
288         struct afs_call *call = (struct afs_call *)call_user_ID;
289
290         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
291 }
292
293 /*
294  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
295  * error is stored into the call struct, which the caller must check for.
296  */
297 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
298 {
299         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
300         struct rxrpc_call *rxcall;
301         struct msghdr msg;
302         struct kvec iov[1];
303         size_t len;
304         s64 tx_total_len;
305         int ret;
306
307         _enter(",{%pISp},", &srx->transport);
308
309         ASSERT(call->type != NULL);
310         ASSERT(call->type->name != NULL);
311
312         _debug("____MAKE %p{%s,%x} [%d]____",
313                call, call->type->name, key_serial(call->key),
314                atomic_read(&call->net->nr_outstanding_calls));
315
316         call->addr_ix = ac->index;
317         call->alist = afs_get_addrlist(ac->alist);
318
319         /* Work out the length we're going to transmit.  This is awkward for
320          * calls such as FS.StoreData where there's an extra injection of data
321          * after the initial fixed part.
322          */
323         tx_total_len = call->request_size;
324         if (call->write_iter)
325                 tx_total_len += iov_iter_count(call->write_iter);
326
327         /* If the call is going to be asynchronous, we need an extra ref for
328          * the call to hold itself so the caller need not hang on to its ref.
329          */
330         if (call->async) {
331                 afs_get_call(call, afs_call_trace_get);
332                 call->drop_ref = true;
333         }
334
335         /* create a call */
336         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
337                                          (unsigned long)call,
338                                          tx_total_len, gfp,
339                                          (call->async ?
340                                           afs_wake_up_async_call :
341                                           afs_wake_up_call_waiter),
342                                          call->upgrade,
343                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
344                                           RXRPC_UNINTERRUPTIBLE),
345                                          call->debug_id);
346         if (IS_ERR(rxcall)) {
347                 ret = PTR_ERR(rxcall);
348                 call->error = ret;
349                 goto error_kill_call;
350         }
351
352         call->rxcall = rxcall;
353
354         if (call->max_lifespan)
355                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
356                                           call->max_lifespan);
357         call->issue_time = ktime_get_real();
358
359         /* send the request */
360         iov[0].iov_base = call->request;
361         iov[0].iov_len  = call->request_size;
362
363         msg.msg_name            = NULL;
364         msg.msg_namelen         = 0;
365         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
366         msg.msg_control         = NULL;
367         msg.msg_controllen      = 0;
368         msg.msg_flags           = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
369
370         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
371                                      &msg, call->request_size,
372                                      afs_notify_end_request_tx);
373         if (ret < 0)
374                 goto error_do_abort;
375
376         if (call->write_iter) {
377                 msg.msg_iter = *call->write_iter;
378                 msg.msg_flags &= ~MSG_MORE;
379                 trace_afs_send_data(call, &msg);
380
381                 ret = rxrpc_kernel_send_data(call->net->socket,
382                                              call->rxcall, &msg,
383                                              iov_iter_count(&msg.msg_iter),
384                                              afs_notify_end_request_tx);
385                 *call->write_iter = msg.msg_iter;
386
387                 trace_afs_sent_data(call, &msg, ret);
388                 if (ret < 0)
389                         goto error_do_abort;
390         }
391
392         /* Note that at this point, we may have received the reply or an abort
393          * - and an asynchronous call may already have completed.
394          *
395          * afs_wait_for_call_to_complete(call, ac)
396          * must be called to synchronously clean up.
397          */
398         return;
399
400 error_do_abort:
401         if (ret != -ECONNABORTED) {
402                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
403                                         RX_USER_ABORT, ret,
404                                         afs_abort_send_data_error);
405         } else {
406                 len = 0;
407                 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
408                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
409                                        &msg.msg_iter, &len, false,
410                                        &call->abort_code, &call->service_id);
411                 ac->abort_code = call->abort_code;
412                 ac->responded = true;
413         }
414         call->error = ret;
415         trace_afs_call_done(call);
416 error_kill_call:
417         if (call->type->done)
418                 call->type->done(call);
419
420         /* We need to dispose of the extra ref we grabbed for an async call.
421          * The call, however, might be queued on afs_async_calls and we need to
422          * make sure we don't get any more notifications that might requeue it.
423          */
424         if (call->rxcall)
425                 rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
426         if (call->async) {
427                 if (cancel_work_sync(&call->async_work))
428                         afs_put_call(call);
429                 afs_put_call(call);
430         }
431
432         ac->error = ret;
433         call->state = AFS_CALL_COMPLETE;
434         _leave(" = %d", ret);
435 }
436
437 /*
438  * Log remote abort codes that indicate that we have a protocol disagreement
439  * with the server.
440  */
441 static void afs_log_error(struct afs_call *call, s32 remote_abort)
442 {
443         static int max = 0;
444         const char *msg;
445         int m;
446
447         switch (remote_abort) {
448         case RX_EOF:             msg = "unexpected EOF";        break;
449         case RXGEN_CC_MARSHAL:   msg = "client marshalling";    break;
450         case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";  break;
451         case RXGEN_SS_MARSHAL:   msg = "server marshalling";    break;
452         case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";  break;
453         case RXGEN_DECODE:       msg = "opcode decode";         break;
454         case RXGEN_SS_XDRFREE:   msg = "server XDR cleanup";    break;
455         case RXGEN_CC_XDRFREE:   msg = "client XDR cleanup";    break;
456         case -32:                msg = "insufficient data";     break;
457         default:
458                 return;
459         }
460
461         m = max;
462         if (m < 3) {
463                 max = m + 1;
464                 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
465                           msg, call->type->name,
466                           &call->alist->addrs[call->addr_ix].transport);
467         }
468 }
469
470 /*
471  * deliver messages to a call
472  */
473 static void afs_deliver_to_call(struct afs_call *call)
474 {
475         enum afs_call_state state;
476         size_t len;
477         u32 abort_code, remote_abort = 0;
478         int ret;
479
480         _enter("%s", call->type->name);
481
482         while (state = READ_ONCE(call->state),
483                state == AFS_CALL_CL_AWAIT_REPLY ||
484                state == AFS_CALL_SV_AWAIT_OP_ID ||
485                state == AFS_CALL_SV_AWAIT_REQUEST ||
486                state == AFS_CALL_SV_AWAIT_ACK
487                ) {
488                 if (state == AFS_CALL_SV_AWAIT_ACK) {
489                         len = 0;
490                         iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
491                         ret = rxrpc_kernel_recv_data(call->net->socket,
492                                                      call->rxcall, &call->def_iter,
493                                                      &len, false, &remote_abort,
494                                                      &call->service_id);
495                         trace_afs_receive_data(call, &call->def_iter, false, ret);
496
497                         if (ret == -EINPROGRESS || ret == -EAGAIN)
498                                 return;
499                         if (ret < 0 || ret == 1) {
500                                 if (ret == 1)
501                                         ret = 0;
502                                 goto call_complete;
503                         }
504                         return;
505                 }
506
507                 ret = call->type->deliver(call);
508                 state = READ_ONCE(call->state);
509                 if (ret == 0 && call->unmarshalling_error)
510                         ret = -EBADMSG;
511                 switch (ret) {
512                 case 0:
513                         afs_queue_call_work(call);
514                         if (state == AFS_CALL_CL_PROC_REPLY) {
515                                 if (call->op)
516                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
517                                                 &call->op->server->flags);
518                                 goto call_complete;
519                         }
520                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
521                         goto done;
522                 case -EINPROGRESS:
523                 case -EAGAIN:
524                         goto out;
525                 case -ECONNABORTED:
526                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
527                         afs_log_error(call, call->abort_code);
528                         goto done;
529                 case -ENOTSUPP:
530                         abort_code = RXGEN_OPCODE;
531                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
532                                                 abort_code, ret,
533                                                 afs_abort_op_not_supported);
534                         goto local_abort;
535                 case -EIO:
536                         pr_err("kAFS: Call %u in bad state %u\n",
537                                call->debug_id, state);
538                         fallthrough;
539                 case -ENODATA:
540                 case -EBADMSG:
541                 case -EMSGSIZE:
542                 case -ENOMEM:
543                 case -EFAULT:
544                         abort_code = RXGEN_CC_UNMARSHAL;
545                         if (state != AFS_CALL_CL_AWAIT_REPLY)
546                                 abort_code = RXGEN_SS_UNMARSHAL;
547                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
548                                                 abort_code, ret,
549                                                 afs_abort_unmarshal_error);
550                         goto local_abort;
551                 default:
552                         abort_code = RX_CALL_DEAD;
553                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
554                                                 abort_code, ret,
555                                                 afs_abort_general_error);
556                         goto local_abort;
557                 }
558         }
559
560 done:
561         if (call->type->done)
562                 call->type->done(call);
563 out:
564         _leave("");
565         return;
566
567 local_abort:
568         abort_code = 0;
569 call_complete:
570         afs_set_call_complete(call, ret, remote_abort);
571         state = AFS_CALL_COMPLETE;
572         goto done;
573 }
574
575 /*
576  * Wait synchronously for a call to complete and clean up the call struct.
577  */
578 long afs_wait_for_call_to_complete(struct afs_call *call,
579                                    struct afs_addr_cursor *ac)
580 {
581         long ret;
582         bool rxrpc_complete = false;
583
584         DECLARE_WAITQUEUE(myself, current);
585
586         _enter("");
587
588         ret = call->error;
589         if (ret < 0)
590                 goto out;
591
592         add_wait_queue(&call->waitq, &myself);
593         for (;;) {
594                 set_current_state(TASK_UNINTERRUPTIBLE);
595
596                 /* deliver any messages that are in the queue */
597                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
598                     call->need_attention) {
599                         call->need_attention = false;
600                         __set_current_state(TASK_RUNNING);
601                         afs_deliver_to_call(call);
602                         continue;
603                 }
604
605                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
606                         break;
607
608                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
609                         /* rxrpc terminated the call. */
610                         rxrpc_complete = true;
611                         break;
612                 }
613
614                 schedule();
615         }
616
617         remove_wait_queue(&call->waitq, &myself);
618         __set_current_state(TASK_RUNNING);
619
620         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
621                 if (rxrpc_complete) {
622                         afs_set_call_complete(call, call->error, call->abort_code);
623                 } else {
624                         /* Kill off the call if it's still live. */
625                         _debug("call interrupted");
626                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
627                                                     RX_USER_ABORT, -EINTR,
628                                                     afs_abort_interrupted))
629                                 afs_set_call_complete(call, -EINTR, 0);
630                 }
631         }
632
633         spin_lock_bh(&call->state_lock);
634         ac->abort_code = call->abort_code;
635         ac->error = call->error;
636         spin_unlock_bh(&call->state_lock);
637
638         ret = ac->error;
639         switch (ret) {
640         case 0:
641                 ret = call->ret0;
642                 call->ret0 = 0;
643
644                 fallthrough;
645         case -ECONNABORTED:
646                 ac->responded = true;
647                 break;
648         }
649
650 out:
651         _debug("call complete");
652         afs_put_call(call);
653         _leave(" = %p", (void *)ret);
654         return ret;
655 }
656
657 /*
658  * wake up a waiting call
659  */
660 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
661                                     unsigned long call_user_ID)
662 {
663         struct afs_call *call = (struct afs_call *)call_user_ID;
664
665         call->need_attention = true;
666         wake_up(&call->waitq);
667 }
668
669 /*
670  * wake up an asynchronous call
671  */
672 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
673                                    unsigned long call_user_ID)
674 {
675         struct afs_call *call = (struct afs_call *)call_user_ID;
676         int r;
677
678         trace_afs_notify_call(rxcall, call);
679         call->need_attention = true;
680
681         if (__refcount_inc_not_zero(&call->ref, &r)) {
682                 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
683                                atomic_read(&call->net->nr_outstanding_calls),
684                                __builtin_return_address(0));
685
686                 if (!queue_work(afs_async_calls, &call->async_work))
687                         afs_put_call(call);
688         }
689 }
690
691 /*
692  * Perform I/O processing on an asynchronous call.  The work item carries a ref
693  * to the call struct that we either need to release or to pass on.
694  */
695 static void afs_process_async_call(struct work_struct *work)
696 {
697         struct afs_call *call = container_of(work, struct afs_call, async_work);
698
699         _enter("");
700
701         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
702                 call->need_attention = false;
703                 afs_deliver_to_call(call);
704         }
705
706         afs_put_call(call);
707         _leave("");
708 }
709
710 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
711 {
712         struct afs_call *call = (struct afs_call *)user_call_ID;
713
714         call->rxcall = rxcall;
715 }
716
717 /*
718  * Charge the incoming call preallocation.
719  */
720 void afs_charge_preallocation(struct work_struct *work)
721 {
722         struct afs_net *net =
723                 container_of(work, struct afs_net, charge_preallocation_work);
724         struct afs_call *call = net->spare_incoming_call;
725
726         for (;;) {
727                 if (!call) {
728                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
729                         if (!call)
730                                 break;
731
732                         call->drop_ref = true;
733                         call->async = true;
734                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
735                         init_waitqueue_head(&call->waitq);
736                         afs_extract_to_tmp(call);
737                 }
738
739                 if (rxrpc_kernel_charge_accept(net->socket,
740                                                afs_wake_up_async_call,
741                                                afs_rx_attach,
742                                                (unsigned long)call,
743                                                GFP_KERNEL,
744                                                call->debug_id) < 0)
745                         break;
746                 call = NULL;
747         }
748         net->spare_incoming_call = call;
749 }
750
751 /*
752  * Discard a preallocated call when a socket is shut down.
753  */
754 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
755                                     unsigned long user_call_ID)
756 {
757         struct afs_call *call = (struct afs_call *)user_call_ID;
758
759         call->rxcall = NULL;
760         afs_put_call(call);
761 }
762
763 /*
764  * Notification of an incoming call.
765  */
766 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
767                             unsigned long user_call_ID)
768 {
769         struct afs_net *net = afs_sock2net(sk);
770
771         queue_work(afs_wq, &net->charge_preallocation_work);
772 }
773
774 /*
775  * Grab the operation ID from an incoming cache manager call.  The socket
776  * buffer is discarded on error or if we don't yet have sufficient data.
777  */
778 static int afs_deliver_cm_op_id(struct afs_call *call)
779 {
780         int ret;
781
782         _enter("{%zu}", iov_iter_count(call->iter));
783
784         /* the operation ID forms the first four bytes of the request data */
785         ret = afs_extract_data(call, true);
786         if (ret < 0)
787                 return ret;
788
789         call->operation_ID = ntohl(call->tmp);
790         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
791
792         /* ask the cache manager to route the call (it'll change the call type
793          * if successful) */
794         if (!afs_cm_incoming_call(call))
795                 return -ENOTSUPP;
796
797         trace_afs_cb_call(call);
798
799         /* pass responsibility for the remainer of this message off to the
800          * cache manager op */
801         return call->type->deliver(call);
802 }
803
804 /*
805  * Advance the AFS call state when an RxRPC service call ends the transmit
806  * phase.
807  */
808 static void afs_notify_end_reply_tx(struct sock *sock,
809                                     struct rxrpc_call *rxcall,
810                                     unsigned long call_user_ID)
811 {
812         struct afs_call *call = (struct afs_call *)call_user_ID;
813
814         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
815 }
816
817 /*
818  * send an empty reply
819  */
820 void afs_send_empty_reply(struct afs_call *call)
821 {
822         struct afs_net *net = call->net;
823         struct msghdr msg;
824
825         _enter("");
826
827         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
828
829         msg.msg_name            = NULL;
830         msg.msg_namelen         = 0;
831         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
832         msg.msg_control         = NULL;
833         msg.msg_controllen      = 0;
834         msg.msg_flags           = 0;
835
836         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
837                                        afs_notify_end_reply_tx)) {
838         case 0:
839                 _leave(" [replied]");
840                 return;
841
842         case -ENOMEM:
843                 _debug("oom");
844                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
845                                         RXGEN_SS_MARSHAL, -ENOMEM,
846                                         afs_abort_oom);
847                 fallthrough;
848         default:
849                 _leave(" [error]");
850                 return;
851         }
852 }
853
854 /*
855  * send a simple reply
856  */
857 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
858 {
859         struct afs_net *net = call->net;
860         struct msghdr msg;
861         struct kvec iov[1];
862         int n;
863
864         _enter("");
865
866         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
867
868         iov[0].iov_base         = (void *) buf;
869         iov[0].iov_len          = len;
870         msg.msg_name            = NULL;
871         msg.msg_namelen         = 0;
872         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
873         msg.msg_control         = NULL;
874         msg.msg_controllen      = 0;
875         msg.msg_flags           = 0;
876
877         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
878                                    afs_notify_end_reply_tx);
879         if (n >= 0) {
880                 /* Success */
881                 _leave(" [replied]");
882                 return;
883         }
884
885         if (n == -ENOMEM) {
886                 _debug("oom");
887                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
888                                         RXGEN_SS_MARSHAL, -ENOMEM,
889                                         afs_abort_oom);
890         }
891         _leave(" [error]");
892 }
893
894 /*
895  * Extract a piece of data from the received data socket buffers.
896  */
897 int afs_extract_data(struct afs_call *call, bool want_more)
898 {
899         struct afs_net *net = call->net;
900         struct iov_iter *iter = call->iter;
901         enum afs_call_state state;
902         u32 remote_abort = 0;
903         int ret;
904
905         _enter("{%s,%zu,%zu},%d",
906                call->type->name, call->iov_len, iov_iter_count(iter), want_more);
907
908         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
909                                      &call->iov_len, want_more, &remote_abort,
910                                      &call->service_id);
911         trace_afs_receive_data(call, call->iter, want_more, ret);
912         if (ret == 0 || ret == -EAGAIN)
913                 return ret;
914
915         state = READ_ONCE(call->state);
916         if (ret == 1) {
917                 switch (state) {
918                 case AFS_CALL_CL_AWAIT_REPLY:
919                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
920                         break;
921                 case AFS_CALL_SV_AWAIT_REQUEST:
922                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
923                         break;
924                 case AFS_CALL_COMPLETE:
925                         kdebug("prem complete %d", call->error);
926                         return afs_io_error(call, afs_io_error_extract);
927                 default:
928                         break;
929                 }
930                 return 0;
931         }
932
933         afs_set_call_complete(call, ret, remote_abort);
934         return ret;
935 }
936
937 /*
938  * Log protocol error production.
939  */
940 noinline int afs_protocol_error(struct afs_call *call,
941                                 enum afs_eproto_cause cause)
942 {
943         trace_afs_protocol_error(call, cause);
944         if (call)
945                 call->unmarshalling_error = true;
946         return -EBADMSG;
947 }