Merge tag 'modules-for-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[platform/kernel/linux-rpi.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28         .name           = "CB.xxxx",
29         .deliver        = afs_deliver_cm_op_id,
30 };
31
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
36 int afs_open_socket(struct afs_net *net)
37 {
38         struct sockaddr_rxrpc srx;
39         struct socket *socket;
40         int ret;
41
42         _enter("");
43
44         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45         if (ret < 0)
46                 goto error_1;
47
48         socket->sk->sk_allocation = GFP_NOFS;
49
50         /* bind the callback manager's address to make this a server socket */
51         memset(&srx, 0, sizeof(srx));
52         srx.srx_family                  = AF_RXRPC;
53         srx.srx_service                 = CM_SERVICE;
54         srx.transport_type              = SOCK_DGRAM;
55         srx.transport_len               = sizeof(srx.transport.sin6);
56         srx.transport.sin6.sin6_family  = AF_INET6;
57         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
58
59         ret = rxrpc_sock_set_min_security_level(socket->sk,
60                                                 RXRPC_SECURITY_ENCRYPT);
61         if (ret < 0)
62                 goto error_2;
63
64         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65         if (ret == -EADDRINUSE) {
66                 srx.transport.sin6.sin6_port = 0;
67                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68         }
69         if (ret < 0)
70                 goto error_2;
71
72         srx.srx_service = YFS_CM_SERVICE;
73         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74         if (ret < 0)
75                 goto error_2;
76
77         /* Ideally, we'd turn on service upgrade here, but we can't because
78          * OpenAFS is buggy and leaks the userStatus field from packet to
79          * packet and between FS packets and CB packets - so if we try to do an
80          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81          * it sends back to us.
82          */
83
84         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85                                            afs_rx_discard_new_call);
86
87         ret = kernel_listen(socket, INT_MAX);
88         if (ret < 0)
89                 goto error_2;
90
91         net->socket = socket;
92         afs_charge_preallocation(&net->charge_preallocation_work);
93         _leave(" = 0");
94         return 0;
95
96 error_2:
97         sock_release(socket);
98 error_1:
99         _leave(" = %d", ret);
100         return ret;
101 }
102
103 /*
104  * close the RxRPC socket AFS was using
105  */
106 void afs_close_socket(struct afs_net *net)
107 {
108         _enter("");
109
110         kernel_listen(net->socket, 0);
111         flush_workqueue(afs_async_calls);
112
113         if (net->spare_incoming_call) {
114                 afs_put_call(net->spare_incoming_call);
115                 net->spare_incoming_call = NULL;
116         }
117
118         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119         wait_var_event(&net->nr_outstanding_calls,
120                        !atomic_read(&net->nr_outstanding_calls));
121         _debug("no outstanding calls");
122
123         kernel_sock_shutdown(net->socket, SHUT_RDWR);
124         flush_workqueue(afs_async_calls);
125         sock_release(net->socket);
126
127         _debug("dework");
128         _leave("");
129 }
130
131 /*
132  * Allocate a call.
133  */
134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135                                        const struct afs_call_type *type,
136                                        gfp_t gfp)
137 {
138         struct afs_call *call;
139         int o;
140
141         call = kzalloc(sizeof(*call), gfp);
142         if (!call)
143                 return NULL;
144
145         call->type = type;
146         call->net = net;
147         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148         atomic_set(&call->usage, 1);
149         INIT_WORK(&call->async_work, afs_process_async_call);
150         init_waitqueue_head(&call->waitq);
151         spin_lock_init(&call->state_lock);
152         call->iter = &call->def_iter;
153
154         o = atomic_inc_return(&net->nr_outstanding_calls);
155         trace_afs_call(call, afs_call_trace_alloc, 1, o,
156                        __builtin_return_address(0));
157         return call;
158 }
159
160 /*
161  * Dispose of a reference on a call.
162  */
163 void afs_put_call(struct afs_call *call)
164 {
165         struct afs_net *net = call->net;
166         int n = atomic_dec_return(&call->usage);
167         int o = atomic_read(&net->nr_outstanding_calls);
168
169         trace_afs_call(call, afs_call_trace_put, n, o,
170                        __builtin_return_address(0));
171
172         ASSERTCMP(n, >=, 0);
173         if (n == 0) {
174                 ASSERT(!work_pending(&call->async_work));
175                 ASSERT(call->type->name != NULL);
176
177                 if (call->rxcall) {
178                         rxrpc_kernel_end_call(net->socket, call->rxcall);
179                         call->rxcall = NULL;
180                 }
181                 if (call->type->destructor)
182                         call->type->destructor(call);
183
184                 afs_put_server(call->net, call->server, afs_server_trace_put_call);
185                 afs_put_cb_interest(call->net, call->cbi);
186                 afs_put_addrlist(call->alist);
187                 kfree(call->request);
188
189                 trace_afs_call(call, afs_call_trace_free, 0, o,
190                                __builtin_return_address(0));
191                 kfree(call);
192
193                 o = atomic_dec_return(&net->nr_outstanding_calls);
194                 if (o == 0)
195                         wake_up_var(&net->nr_outstanding_calls);
196         }
197 }
198
199 static struct afs_call *afs_get_call(struct afs_call *call,
200                                      enum afs_call_trace why)
201 {
202         int u = atomic_inc_return(&call->usage);
203
204         trace_afs_call(call, why, u,
205                        atomic_read(&call->net->nr_outstanding_calls),
206                        __builtin_return_address(0));
207         return call;
208 }
209
210 /*
211  * Queue the call for actual work.
212  */
213 static void afs_queue_call_work(struct afs_call *call)
214 {
215         if (call->type->work) {
216                 INIT_WORK(&call->work, call->type->work);
217
218                 afs_get_call(call, afs_call_trace_work);
219                 if (!queue_work(afs_wq, &call->work))
220                         afs_put_call(call);
221         }
222 }
223
224 /*
225  * allocate a call with flat request and reply buffers
226  */
227 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
228                                      const struct afs_call_type *type,
229                                      size_t request_size, size_t reply_max)
230 {
231         struct afs_call *call;
232
233         call = afs_alloc_call(net, type, GFP_NOFS);
234         if (!call)
235                 goto nomem_call;
236
237         if (request_size) {
238                 call->request_size = request_size;
239                 call->request = kmalloc(request_size, GFP_NOFS);
240                 if (!call->request)
241                         goto nomem_free;
242         }
243
244         if (reply_max) {
245                 call->reply_max = reply_max;
246                 call->buffer = kmalloc(reply_max, GFP_NOFS);
247                 if (!call->buffer)
248                         goto nomem_free;
249         }
250
251         afs_extract_to_buf(call, call->reply_max);
252         call->operation_ID = type->op;
253         init_waitqueue_head(&call->waitq);
254         return call;
255
256 nomem_free:
257         afs_put_call(call);
258 nomem_call:
259         return NULL;
260 }
261
262 /*
263  * clean up a call with flat buffer
264  */
265 void afs_flat_call_destructor(struct afs_call *call)
266 {
267         _enter("");
268
269         kfree(call->request);
270         call->request = NULL;
271         kfree(call->buffer);
272         call->buffer = NULL;
273 }
274
275 #define AFS_BVEC_MAX 8
276
277 /*
278  * Load the given bvec with the next few pages.
279  */
280 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
281                           struct bio_vec *bv, pgoff_t first, pgoff_t last,
282                           unsigned offset)
283 {
284         struct page *pages[AFS_BVEC_MAX];
285         unsigned int nr, n, i, to, bytes = 0;
286
287         nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
288         n = find_get_pages_contig(call->mapping, first, nr, pages);
289         ASSERTCMP(n, ==, nr);
290
291         msg->msg_flags |= MSG_MORE;
292         for (i = 0; i < nr; i++) {
293                 to = PAGE_SIZE;
294                 if (first + i >= last) {
295                         to = call->last_to;
296                         msg->msg_flags &= ~MSG_MORE;
297                 }
298                 bv[i].bv_page = pages[i];
299                 bv[i].bv_len = to - offset;
300                 bv[i].bv_offset = offset;
301                 bytes += to - offset;
302                 offset = 0;
303         }
304
305         iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
306 }
307
308 /*
309  * Advance the AFS call state when the RxRPC call ends the transmit phase.
310  */
311 static void afs_notify_end_request_tx(struct sock *sock,
312                                       struct rxrpc_call *rxcall,
313                                       unsigned long call_user_ID)
314 {
315         struct afs_call *call = (struct afs_call *)call_user_ID;
316
317         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
318 }
319
320 /*
321  * attach the data from a bunch of pages on an inode to a call
322  */
323 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
324 {
325         struct bio_vec bv[AFS_BVEC_MAX];
326         unsigned int bytes, nr, loop, offset;
327         pgoff_t first = call->first, last = call->last;
328         int ret;
329
330         offset = call->first_offset;
331         call->first_offset = 0;
332
333         do {
334                 afs_load_bvec(call, msg, bv, first, last, offset);
335                 trace_afs_send_pages(call, msg, first, last, offset);
336
337                 offset = 0;
338                 bytes = msg->msg_iter.count;
339                 nr = msg->msg_iter.nr_segs;
340
341                 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
342                                              bytes, afs_notify_end_request_tx);
343                 for (loop = 0; loop < nr; loop++)
344                         put_page(bv[loop].bv_page);
345                 if (ret < 0)
346                         break;
347
348                 first += nr;
349         } while (first <= last);
350
351         trace_afs_sent_pages(call, call->first, last, first, ret);
352         return ret;
353 }
354
355 /*
356  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
357  * error is stored into the call struct, which the caller must check for.
358  */
359 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
360 {
361         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
362         struct rxrpc_call *rxcall;
363         struct msghdr msg;
364         struct kvec iov[1];
365         s64 tx_total_len;
366         int ret;
367
368         _enter(",{%pISp},", &srx->transport);
369
370         ASSERT(call->type != NULL);
371         ASSERT(call->type->name != NULL);
372
373         _debug("____MAKE %p{%s,%x} [%d]____",
374                call, call->type->name, key_serial(call->key),
375                atomic_read(&call->net->nr_outstanding_calls));
376
377         call->addr_ix = ac->index;
378         call->alist = afs_get_addrlist(ac->alist);
379
380         /* Work out the length we're going to transmit.  This is awkward for
381          * calls such as FS.StoreData where there's an extra injection of data
382          * after the initial fixed part.
383          */
384         tx_total_len = call->request_size;
385         if (call->send_pages) {
386                 if (call->last == call->first) {
387                         tx_total_len += call->last_to - call->first_offset;
388                 } else {
389                         /* It looks mathematically like you should be able to
390                          * combine the following lines with the ones above, but
391                          * unsigned arithmetic is fun when it wraps...
392                          */
393                         tx_total_len += PAGE_SIZE - call->first_offset;
394                         tx_total_len += call->last_to;
395                         tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
396                 }
397         }
398
399         /* If the call is going to be asynchronous, we need an extra ref for
400          * the call to hold itself so the caller need not hang on to its ref.
401          */
402         if (call->async) {
403                 afs_get_call(call, afs_call_trace_get);
404                 call->drop_ref = true;
405         }
406
407         /* create a call */
408         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
409                                          (unsigned long)call,
410                                          tx_total_len, gfp,
411                                          (call->async ?
412                                           afs_wake_up_async_call :
413                                           afs_wake_up_call_waiter),
414                                          call->upgrade,
415                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
416                                           RXRPC_UNINTERRUPTIBLE),
417                                          call->debug_id);
418         if (IS_ERR(rxcall)) {
419                 ret = PTR_ERR(rxcall);
420                 call->error = ret;
421                 goto error_kill_call;
422         }
423
424         call->rxcall = rxcall;
425
426         if (call->max_lifespan)
427                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
428                                           call->max_lifespan);
429
430         /* send the request */
431         iov[0].iov_base = call->request;
432         iov[0].iov_len  = call->request_size;
433
434         msg.msg_name            = NULL;
435         msg.msg_namelen         = 0;
436         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
437         msg.msg_control         = NULL;
438         msg.msg_controllen      = 0;
439         msg.msg_flags           = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
440
441         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
442                                      &msg, call->request_size,
443                                      afs_notify_end_request_tx);
444         if (ret < 0)
445                 goto error_do_abort;
446
447         if (call->send_pages) {
448                 ret = afs_send_pages(call, &msg);
449                 if (ret < 0)
450                         goto error_do_abort;
451         }
452
453         /* Note that at this point, we may have received the reply or an abort
454          * - and an asynchronous call may already have completed.
455          *
456          * afs_wait_for_call_to_complete(call, ac)
457          * must be called to synchronously clean up.
458          */
459         return;
460
461 error_do_abort:
462         if (ret != -ECONNABORTED) {
463                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
464                                         RX_USER_ABORT, ret, "KSD");
465         } else {
466                 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
467                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
468                                        &msg.msg_iter, false,
469                                        &call->abort_code, &call->service_id);
470                 ac->abort_code = call->abort_code;
471                 ac->responded = true;
472         }
473         call->error = ret;
474         trace_afs_call_done(call);
475 error_kill_call:
476         if (call->type->done)
477                 call->type->done(call);
478
479         /* We need to dispose of the extra ref we grabbed for an async call.
480          * The call, however, might be queued on afs_async_calls and we need to
481          * make sure we don't get any more notifications that might requeue it.
482          */
483         if (call->rxcall) {
484                 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
485                 call->rxcall = NULL;
486         }
487         if (call->async) {
488                 if (cancel_work_sync(&call->async_work))
489                         afs_put_call(call);
490                 afs_put_call(call);
491         }
492
493         ac->error = ret;
494         call->state = AFS_CALL_COMPLETE;
495         _leave(" = %d", ret);
496 }
497
498 /*
499  * deliver messages to a call
500  */
501 static void afs_deliver_to_call(struct afs_call *call)
502 {
503         enum afs_call_state state;
504         u32 abort_code, remote_abort = 0;
505         int ret;
506
507         _enter("%s", call->type->name);
508
509         while (state = READ_ONCE(call->state),
510                state == AFS_CALL_CL_AWAIT_REPLY ||
511                state == AFS_CALL_SV_AWAIT_OP_ID ||
512                state == AFS_CALL_SV_AWAIT_REQUEST ||
513                state == AFS_CALL_SV_AWAIT_ACK
514                ) {
515                 if (state == AFS_CALL_SV_AWAIT_ACK) {
516                         iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
517                         ret = rxrpc_kernel_recv_data(call->net->socket,
518                                                      call->rxcall, &call->def_iter,
519                                                      false, &remote_abort,
520                                                      &call->service_id);
521                         trace_afs_receive_data(call, &call->def_iter, false, ret);
522
523                         if (ret == -EINPROGRESS || ret == -EAGAIN)
524                                 return;
525                         if (ret < 0 || ret == 1) {
526                                 if (ret == 1)
527                                         ret = 0;
528                                 goto call_complete;
529                         }
530                         return;
531                 }
532
533                 if (!call->have_reply_time &&
534                     rxrpc_kernel_get_reply_time(call->net->socket,
535                                                 call->rxcall,
536                                                 &call->reply_time))
537                         call->have_reply_time = true;
538
539                 ret = call->type->deliver(call);
540                 state = READ_ONCE(call->state);
541                 switch (ret) {
542                 case 0:
543                         afs_queue_call_work(call);
544                         if (state == AFS_CALL_CL_PROC_REPLY) {
545                                 if (call->cbi)
546                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
547                                                 &call->cbi->server->flags);
548                                 goto call_complete;
549                         }
550                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
551                         goto done;
552                 case -EINPROGRESS:
553                 case -EAGAIN:
554                         goto out;
555                 case -ECONNABORTED:
556                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
557                         goto done;
558                 case -ENOTSUPP:
559                         abort_code = RXGEN_OPCODE;
560                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
561                                                 abort_code, ret, "KIV");
562                         goto local_abort;
563                 case -EIO:
564                         pr_err("kAFS: Call %u in bad state %u\n",
565                                call->debug_id, state);
566                         /* Fall through */
567                 case -ENODATA:
568                 case -EBADMSG:
569                 case -EMSGSIZE:
570                         abort_code = RXGEN_CC_UNMARSHAL;
571                         if (state != AFS_CALL_CL_AWAIT_REPLY)
572                                 abort_code = RXGEN_SS_UNMARSHAL;
573                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
574                                                 abort_code, ret, "KUM");
575                         goto local_abort;
576                 default:
577                         abort_code = RX_USER_ABORT;
578                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
579                                                 abort_code, ret, "KER");
580                         goto local_abort;
581                 }
582         }
583
584 done:
585         if (call->type->done)
586                 call->type->done(call);
587 out:
588         _leave("");
589         return;
590
591 local_abort:
592         abort_code = 0;
593 call_complete:
594         afs_set_call_complete(call, ret, remote_abort);
595         state = AFS_CALL_COMPLETE;
596         goto done;
597 }
598
599 /*
600  * Wait synchronously for a call to complete and clean up the call struct.
601  */
602 long afs_wait_for_call_to_complete(struct afs_call *call,
603                                    struct afs_addr_cursor *ac)
604 {
605         long ret;
606         bool rxrpc_complete = false;
607
608         DECLARE_WAITQUEUE(myself, current);
609
610         _enter("");
611
612         ret = call->error;
613         if (ret < 0)
614                 goto out;
615
616         add_wait_queue(&call->waitq, &myself);
617         for (;;) {
618                 set_current_state(TASK_UNINTERRUPTIBLE);
619
620                 /* deliver any messages that are in the queue */
621                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
622                     call->need_attention) {
623                         call->need_attention = false;
624                         __set_current_state(TASK_RUNNING);
625                         afs_deliver_to_call(call);
626                         continue;
627                 }
628
629                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
630                         break;
631
632                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
633                         /* rxrpc terminated the call. */
634                         rxrpc_complete = true;
635                         break;
636                 }
637
638                 schedule();
639         }
640
641         remove_wait_queue(&call->waitq, &myself);
642         __set_current_state(TASK_RUNNING);
643
644         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
645                 if (rxrpc_complete) {
646                         afs_set_call_complete(call, call->error, call->abort_code);
647                 } else {
648                         /* Kill off the call if it's still live. */
649                         _debug("call interrupted");
650                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
651                                                     RX_USER_ABORT, -EINTR, "KWI"))
652                                 afs_set_call_complete(call, -EINTR, 0);
653                 }
654         }
655
656         spin_lock_bh(&call->state_lock);
657         ac->abort_code = call->abort_code;
658         ac->error = call->error;
659         spin_unlock_bh(&call->state_lock);
660
661         ret = ac->error;
662         switch (ret) {
663         case 0:
664                 ret = call->ret0;
665                 call->ret0 = 0;
666
667                 /* Fall through */
668         case -ECONNABORTED:
669                 ac->responded = true;
670                 break;
671         }
672
673 out:
674         _debug("call complete");
675         afs_put_call(call);
676         _leave(" = %p", (void *)ret);
677         return ret;
678 }
679
680 /*
681  * wake up a waiting call
682  */
683 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
684                                     unsigned long call_user_ID)
685 {
686         struct afs_call *call = (struct afs_call *)call_user_ID;
687
688         call->need_attention = true;
689         wake_up(&call->waitq);
690 }
691
692 /*
693  * wake up an asynchronous call
694  */
695 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
696                                    unsigned long call_user_ID)
697 {
698         struct afs_call *call = (struct afs_call *)call_user_ID;
699         int u;
700
701         trace_afs_notify_call(rxcall, call);
702         call->need_attention = true;
703
704         u = atomic_fetch_add_unless(&call->usage, 1, 0);
705         if (u != 0) {
706                 trace_afs_call(call, afs_call_trace_wake, u + 1,
707                                atomic_read(&call->net->nr_outstanding_calls),
708                                __builtin_return_address(0));
709
710                 if (!queue_work(afs_async_calls, &call->async_work))
711                         afs_put_call(call);
712         }
713 }
714
715 /*
716  * Perform I/O processing on an asynchronous call.  The work item carries a ref
717  * to the call struct that we either need to release or to pass on.
718  */
719 static void afs_process_async_call(struct work_struct *work)
720 {
721         struct afs_call *call = container_of(work, struct afs_call, async_work);
722
723         _enter("");
724
725         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
726                 call->need_attention = false;
727                 afs_deliver_to_call(call);
728         }
729
730         afs_put_call(call);
731         _leave("");
732 }
733
734 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
735 {
736         struct afs_call *call = (struct afs_call *)user_call_ID;
737
738         call->rxcall = rxcall;
739 }
740
741 /*
742  * Charge the incoming call preallocation.
743  */
744 void afs_charge_preallocation(struct work_struct *work)
745 {
746         struct afs_net *net =
747                 container_of(work, struct afs_net, charge_preallocation_work);
748         struct afs_call *call = net->spare_incoming_call;
749
750         for (;;) {
751                 if (!call) {
752                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
753                         if (!call)
754                                 break;
755
756                         call->drop_ref = true;
757                         call->async = true;
758                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
759                         init_waitqueue_head(&call->waitq);
760                         afs_extract_to_tmp(call);
761                 }
762
763                 if (rxrpc_kernel_charge_accept(net->socket,
764                                                afs_wake_up_async_call,
765                                                afs_rx_attach,
766                                                (unsigned long)call,
767                                                GFP_KERNEL,
768                                                call->debug_id) < 0)
769                         break;
770                 call = NULL;
771         }
772         net->spare_incoming_call = call;
773 }
774
775 /*
776  * Discard a preallocated call when a socket is shut down.
777  */
778 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
779                                     unsigned long user_call_ID)
780 {
781         struct afs_call *call = (struct afs_call *)user_call_ID;
782
783         call->rxcall = NULL;
784         afs_put_call(call);
785 }
786
787 /*
788  * Notification of an incoming call.
789  */
790 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
791                             unsigned long user_call_ID)
792 {
793         struct afs_net *net = afs_sock2net(sk);
794
795         queue_work(afs_wq, &net->charge_preallocation_work);
796 }
797
798 /*
799  * Grab the operation ID from an incoming cache manager call.  The socket
800  * buffer is discarded on error or if we don't yet have sufficient data.
801  */
802 static int afs_deliver_cm_op_id(struct afs_call *call)
803 {
804         int ret;
805
806         _enter("{%zu}", iov_iter_count(call->iter));
807
808         /* the operation ID forms the first four bytes of the request data */
809         ret = afs_extract_data(call, true);
810         if (ret < 0)
811                 return ret;
812
813         call->operation_ID = ntohl(call->tmp);
814         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
815
816         /* ask the cache manager to route the call (it'll change the call type
817          * if successful) */
818         if (!afs_cm_incoming_call(call))
819                 return -ENOTSUPP;
820
821         trace_afs_cb_call(call);
822
823         /* pass responsibility for the remainer of this message off to the
824          * cache manager op */
825         return call->type->deliver(call);
826 }
827
828 /*
829  * Advance the AFS call state when an RxRPC service call ends the transmit
830  * phase.
831  */
832 static void afs_notify_end_reply_tx(struct sock *sock,
833                                     struct rxrpc_call *rxcall,
834                                     unsigned long call_user_ID)
835 {
836         struct afs_call *call = (struct afs_call *)call_user_ID;
837
838         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
839 }
840
841 /*
842  * send an empty reply
843  */
844 void afs_send_empty_reply(struct afs_call *call)
845 {
846         struct afs_net *net = call->net;
847         struct msghdr msg;
848
849         _enter("");
850
851         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
852
853         msg.msg_name            = NULL;
854         msg.msg_namelen         = 0;
855         iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
856         msg.msg_control         = NULL;
857         msg.msg_controllen      = 0;
858         msg.msg_flags           = 0;
859
860         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
861                                        afs_notify_end_reply_tx)) {
862         case 0:
863                 _leave(" [replied]");
864                 return;
865
866         case -ENOMEM:
867                 _debug("oom");
868                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
869                                         RX_USER_ABORT, -ENOMEM, "KOO");
870                 /* Fall through */
871         default:
872                 _leave(" [error]");
873                 return;
874         }
875 }
876
877 /*
878  * send a simple reply
879  */
880 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
881 {
882         struct afs_net *net = call->net;
883         struct msghdr msg;
884         struct kvec iov[1];
885         int n;
886
887         _enter("");
888
889         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
890
891         iov[0].iov_base         = (void *) buf;
892         iov[0].iov_len          = len;
893         msg.msg_name            = NULL;
894         msg.msg_namelen         = 0;
895         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
896         msg.msg_control         = NULL;
897         msg.msg_controllen      = 0;
898         msg.msg_flags           = 0;
899
900         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
901                                    afs_notify_end_reply_tx);
902         if (n >= 0) {
903                 /* Success */
904                 _leave(" [replied]");
905                 return;
906         }
907
908         if (n == -ENOMEM) {
909                 _debug("oom");
910                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
911                                         RX_USER_ABORT, -ENOMEM, "KOO");
912         }
913         _leave(" [error]");
914 }
915
916 /*
917  * Extract a piece of data from the received data socket buffers.
918  */
919 int afs_extract_data(struct afs_call *call, bool want_more)
920 {
921         struct afs_net *net = call->net;
922         struct iov_iter *iter = call->iter;
923         enum afs_call_state state;
924         u32 remote_abort = 0;
925         int ret;
926
927         _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
928
929         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
930                                      want_more, &remote_abort,
931                                      &call->service_id);
932         if (ret == 0 || ret == -EAGAIN)
933                 return ret;
934
935         state = READ_ONCE(call->state);
936         if (ret == 1) {
937                 switch (state) {
938                 case AFS_CALL_CL_AWAIT_REPLY:
939                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
940                         break;
941                 case AFS_CALL_SV_AWAIT_REQUEST:
942                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
943                         break;
944                 case AFS_CALL_COMPLETE:
945                         kdebug("prem complete %d", call->error);
946                         return afs_io_error(call, afs_io_error_extract);
947                 default:
948                         break;
949                 }
950                 return 0;
951         }
952
953         afs_set_call_complete(call, ret, remote_abort);
954         return ret;
955 }
956
957 /*
958  * Log protocol error production.
959  */
960 noinline int afs_protocol_error(struct afs_call *call, int error,
961                                 enum afs_eproto_cause cause)
962 {
963         trace_afs_protocol_error(call, error, cause);
964         return error;
965 }