rxrpc: Tidy up abort generation infrastructure
[platform/kernel/linux-rpi.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18
19 struct workqueue_struct *afs_async_calls;
20
21 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
22 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_process_async_call(struct work_struct *);
24 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
26 static int afs_deliver_cm_op_id(struct afs_call *);
27
28 /* asynchronous incoming call initial processing */
29 static const struct afs_call_type afs_RXCMxxxx = {
30         .name           = "CB.xxxx",
31         .deliver        = afs_deliver_cm_op_id,
32 };
33
34 /*
35  * open an RxRPC socket and bind it to be a server for callback notifications
36  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37  */
38 int afs_open_socket(struct afs_net *net)
39 {
40         struct sockaddr_rxrpc srx;
41         struct socket *socket;
42         int ret;
43
44         _enter("");
45
46         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
47         if (ret < 0)
48                 goto error_1;
49
50         socket->sk->sk_allocation = GFP_NOFS;
51
52         /* bind the callback manager's address to make this a server socket */
53         memset(&srx, 0, sizeof(srx));
54         srx.srx_family                  = AF_RXRPC;
55         srx.srx_service                 = CM_SERVICE;
56         srx.transport_type              = SOCK_DGRAM;
57         srx.transport_len               = sizeof(srx.transport.sin6);
58         srx.transport.sin6.sin6_family  = AF_INET6;
59         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
60
61         ret = rxrpc_sock_set_min_security_level(socket->sk,
62                                                 RXRPC_SECURITY_ENCRYPT);
63         if (ret < 0)
64                 goto error_2;
65
66         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67         if (ret == -EADDRINUSE) {
68                 srx.transport.sin6.sin6_port = 0;
69                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70         }
71         if (ret < 0)
72                 goto error_2;
73
74         srx.srx_service = YFS_CM_SERVICE;
75         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76         if (ret < 0)
77                 goto error_2;
78
79         /* Ideally, we'd turn on service upgrade here, but we can't because
80          * OpenAFS is buggy and leaks the userStatus field from packet to
81          * packet and between FS packets and CB packets - so if we try to do an
82          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83          * it sends back to us.
84          */
85
86         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87                                            afs_rx_discard_new_call);
88
89         ret = kernel_listen(socket, INT_MAX);
90         if (ret < 0)
91                 goto error_2;
92
93         net->socket = socket;
94         afs_charge_preallocation(&net->charge_preallocation_work);
95         _leave(" = 0");
96         return 0;
97
98 error_2:
99         sock_release(socket);
100 error_1:
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * close the RxRPC socket AFS was using
107  */
108 void afs_close_socket(struct afs_net *net)
109 {
110         _enter("");
111
112         kernel_listen(net->socket, 0);
113         flush_workqueue(afs_async_calls);
114
115         if (net->spare_incoming_call) {
116                 afs_put_call(net->spare_incoming_call);
117                 net->spare_incoming_call = NULL;
118         }
119
120         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121         wait_var_event(&net->nr_outstanding_calls,
122                        !atomic_read(&net->nr_outstanding_calls));
123         _debug("no outstanding calls");
124
125         kernel_sock_shutdown(net->socket, SHUT_RDWR);
126         flush_workqueue(afs_async_calls);
127         sock_release(net->socket);
128
129         _debug("dework");
130         _leave("");
131 }
132
133 /*
134  * Allocate a call.
135  */
136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137                                        const struct afs_call_type *type,
138                                        gfp_t gfp)
139 {
140         struct afs_call *call;
141         int o;
142
143         call = kzalloc(sizeof(*call), gfp);
144         if (!call)
145                 return NULL;
146
147         call->type = type;
148         call->net = net;
149         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150         refcount_set(&call->ref, 1);
151         INIT_WORK(&call->async_work, afs_process_async_call);
152         init_waitqueue_head(&call->waitq);
153         spin_lock_init(&call->state_lock);
154         call->iter = &call->def_iter;
155
156         o = atomic_inc_return(&net->nr_outstanding_calls);
157         trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
158                        __builtin_return_address(0));
159         return call;
160 }
161
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167         struct afs_net *net = call->net;
168         unsigned int debug_id = call->debug_id;
169         bool zero;
170         int r, o;
171
172         zero = __refcount_dec_and_test(&call->ref, &r);
173         o = atomic_read(&net->nr_outstanding_calls);
174         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
175                        __builtin_return_address(0));
176
177         if (zero) {
178                 ASSERT(!work_pending(&call->async_work));
179                 ASSERT(call->type->name != NULL);
180
181                 if (call->rxcall) {
182                         rxrpc_kernel_end_call(net->socket, call->rxcall);
183                         call->rxcall = NULL;
184                 }
185                 if (call->type->destructor)
186                         call->type->destructor(call);
187
188                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
189                 afs_put_addrlist(call->alist);
190                 kfree(call->request);
191
192                 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
193                                __builtin_return_address(0));
194                 kfree(call);
195
196                 o = atomic_dec_return(&net->nr_outstanding_calls);
197                 if (o == 0)
198                         wake_up_var(&net->nr_outstanding_calls);
199         }
200 }
201
202 static struct afs_call *afs_get_call(struct afs_call *call,
203                                      enum afs_call_trace why)
204 {
205         int r;
206
207         __refcount_inc(&call->ref, &r);
208
209         trace_afs_call(call->debug_id, why, r + 1,
210                        atomic_read(&call->net->nr_outstanding_calls),
211                        __builtin_return_address(0));
212         return call;
213 }
214
215 /*
216  * Queue the call for actual work.
217  */
218 static void afs_queue_call_work(struct afs_call *call)
219 {
220         if (call->type->work) {
221                 INIT_WORK(&call->work, call->type->work);
222
223                 afs_get_call(call, afs_call_trace_work);
224                 if (!queue_work(afs_wq, &call->work))
225                         afs_put_call(call);
226         }
227 }
228
229 /*
230  * allocate a call with flat request and reply buffers
231  */
232 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
233                                      const struct afs_call_type *type,
234                                      size_t request_size, size_t reply_max)
235 {
236         struct afs_call *call;
237
238         call = afs_alloc_call(net, type, GFP_NOFS);
239         if (!call)
240                 goto nomem_call;
241
242         if (request_size) {
243                 call->request_size = request_size;
244                 call->request = kmalloc(request_size, GFP_NOFS);
245                 if (!call->request)
246                         goto nomem_free;
247         }
248
249         if (reply_max) {
250                 call->reply_max = reply_max;
251                 call->buffer = kmalloc(reply_max, GFP_NOFS);
252                 if (!call->buffer)
253                         goto nomem_free;
254         }
255
256         afs_extract_to_buf(call, call->reply_max);
257         call->operation_ID = type->op;
258         init_waitqueue_head(&call->waitq);
259         return call;
260
261 nomem_free:
262         afs_put_call(call);
263 nomem_call:
264         return NULL;
265 }
266
267 /*
268  * clean up a call with flat buffer
269  */
270 void afs_flat_call_destructor(struct afs_call *call)
271 {
272         _enter("");
273
274         kfree(call->request);
275         call->request = NULL;
276         kfree(call->buffer);
277         call->buffer = NULL;
278 }
279
280 /*
281  * Advance the AFS call state when the RxRPC call ends the transmit phase.
282  */
283 static void afs_notify_end_request_tx(struct sock *sock,
284                                       struct rxrpc_call *rxcall,
285                                       unsigned long call_user_ID)
286 {
287         struct afs_call *call = (struct afs_call *)call_user_ID;
288
289         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
290 }
291
292 /*
293  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
294  * error is stored into the call struct, which the caller must check for.
295  */
296 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
297 {
298         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
299         struct rxrpc_call *rxcall;
300         struct msghdr msg;
301         struct kvec iov[1];
302         size_t len;
303         s64 tx_total_len;
304         int ret;
305
306         _enter(",{%pISp},", &srx->transport);
307
308         ASSERT(call->type != NULL);
309         ASSERT(call->type->name != NULL);
310
311         _debug("____MAKE %p{%s,%x} [%d]____",
312                call, call->type->name, key_serial(call->key),
313                atomic_read(&call->net->nr_outstanding_calls));
314
315         call->addr_ix = ac->index;
316         call->alist = afs_get_addrlist(ac->alist);
317
318         /* Work out the length we're going to transmit.  This is awkward for
319          * calls such as FS.StoreData where there's an extra injection of data
320          * after the initial fixed part.
321          */
322         tx_total_len = call->request_size;
323         if (call->write_iter)
324                 tx_total_len += iov_iter_count(call->write_iter);
325
326         /* If the call is going to be asynchronous, we need an extra ref for
327          * the call to hold itself so the caller need not hang on to its ref.
328          */
329         if (call->async) {
330                 afs_get_call(call, afs_call_trace_get);
331                 call->drop_ref = true;
332         }
333
334         /* create a call */
335         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
336                                          (unsigned long)call,
337                                          tx_total_len, gfp,
338                                          (call->async ?
339                                           afs_wake_up_async_call :
340                                           afs_wake_up_call_waiter),
341                                          call->upgrade,
342                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
343                                           RXRPC_UNINTERRUPTIBLE),
344                                          call->debug_id);
345         if (IS_ERR(rxcall)) {
346                 ret = PTR_ERR(rxcall);
347                 call->error = ret;
348                 goto error_kill_call;
349         }
350
351         call->rxcall = rxcall;
352
353         if (call->max_lifespan)
354                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
355                                           call->max_lifespan);
356         call->issue_time = ktime_get_real();
357
358         /* send the request */
359         iov[0].iov_base = call->request;
360         iov[0].iov_len  = call->request_size;
361
362         msg.msg_name            = NULL;
363         msg.msg_namelen         = 0;
364         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
365         msg.msg_control         = NULL;
366         msg.msg_controllen      = 0;
367         msg.msg_flags           = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
368
369         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
370                                      &msg, call->request_size,
371                                      afs_notify_end_request_tx);
372         if (ret < 0)
373                 goto error_do_abort;
374
375         if (call->write_iter) {
376                 msg.msg_iter = *call->write_iter;
377                 msg.msg_flags &= ~MSG_MORE;
378                 trace_afs_send_data(call, &msg);
379
380                 ret = rxrpc_kernel_send_data(call->net->socket,
381                                              call->rxcall, &msg,
382                                              iov_iter_count(&msg.msg_iter),
383                                              afs_notify_end_request_tx);
384                 *call->write_iter = msg.msg_iter;
385
386                 trace_afs_sent_data(call, &msg, ret);
387                 if (ret < 0)
388                         goto error_do_abort;
389         }
390
391         /* Note that at this point, we may have received the reply or an abort
392          * - and an asynchronous call may already have completed.
393          *
394          * afs_wait_for_call_to_complete(call, ac)
395          * must be called to synchronously clean up.
396          */
397         return;
398
399 error_do_abort:
400         if (ret != -ECONNABORTED) {
401                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
402                                         RX_USER_ABORT, ret,
403                                         afs_abort_send_data_error);
404         } else {
405                 len = 0;
406                 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
407                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
408                                        &msg.msg_iter, &len, false,
409                                        &call->abort_code, &call->service_id);
410                 ac->abort_code = call->abort_code;
411                 ac->responded = true;
412         }
413         call->error = ret;
414         trace_afs_call_done(call);
415 error_kill_call:
416         if (call->type->done)
417                 call->type->done(call);
418
419         /* We need to dispose of the extra ref we grabbed for an async call.
420          * The call, however, might be queued on afs_async_calls and we need to
421          * make sure we don't get any more notifications that might requeue it.
422          */
423         if (call->rxcall) {
424                 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
425                 call->rxcall = NULL;
426         }
427         if (call->async) {
428                 if (cancel_work_sync(&call->async_work))
429                         afs_put_call(call);
430                 afs_put_call(call);
431         }
432
433         ac->error = ret;
434         call->state = AFS_CALL_COMPLETE;
435         _leave(" = %d", ret);
436 }
437
438 /*
439  * Log remote abort codes that indicate that we have a protocol disagreement
440  * with the server.
441  */
442 static void afs_log_error(struct afs_call *call, s32 remote_abort)
443 {
444         static int max = 0;
445         const char *msg;
446         int m;
447
448         switch (remote_abort) {
449         case RX_EOF:             msg = "unexpected EOF";        break;
450         case RXGEN_CC_MARSHAL:   msg = "client marshalling";    break;
451         case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";  break;
452         case RXGEN_SS_MARSHAL:   msg = "server marshalling";    break;
453         case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";  break;
454         case RXGEN_DECODE:       msg = "opcode decode";         break;
455         case RXGEN_SS_XDRFREE:   msg = "server XDR cleanup";    break;
456         case RXGEN_CC_XDRFREE:   msg = "client XDR cleanup";    break;
457         case -32:                msg = "insufficient data";     break;
458         default:
459                 return;
460         }
461
462         m = max;
463         if (m < 3) {
464                 max = m + 1;
465                 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
466                           msg, call->type->name,
467                           &call->alist->addrs[call->addr_ix].transport);
468         }
469 }
470
471 /*
472  * deliver messages to a call
473  */
474 static void afs_deliver_to_call(struct afs_call *call)
475 {
476         enum afs_call_state state;
477         size_t len;
478         u32 abort_code, remote_abort = 0;
479         int ret;
480
481         _enter("%s", call->type->name);
482
483         while (state = READ_ONCE(call->state),
484                state == AFS_CALL_CL_AWAIT_REPLY ||
485                state == AFS_CALL_SV_AWAIT_OP_ID ||
486                state == AFS_CALL_SV_AWAIT_REQUEST ||
487                state == AFS_CALL_SV_AWAIT_ACK
488                ) {
489                 if (state == AFS_CALL_SV_AWAIT_ACK) {
490                         len = 0;
491                         iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
492                         ret = rxrpc_kernel_recv_data(call->net->socket,
493                                                      call->rxcall, &call->def_iter,
494                                                      &len, false, &remote_abort,
495                                                      &call->service_id);
496                         trace_afs_receive_data(call, &call->def_iter, false, ret);
497
498                         if (ret == -EINPROGRESS || ret == -EAGAIN)
499                                 return;
500                         if (ret < 0 || ret == 1) {
501                                 if (ret == 1)
502                                         ret = 0;
503                                 goto call_complete;
504                         }
505                         return;
506                 }
507
508                 ret = call->type->deliver(call);
509                 state = READ_ONCE(call->state);
510                 if (ret == 0 && call->unmarshalling_error)
511                         ret = -EBADMSG;
512                 switch (ret) {
513                 case 0:
514                         afs_queue_call_work(call);
515                         if (state == AFS_CALL_CL_PROC_REPLY) {
516                                 if (call->op)
517                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
518                                                 &call->op->server->flags);
519                                 goto call_complete;
520                         }
521                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
522                         goto done;
523                 case -EINPROGRESS:
524                 case -EAGAIN:
525                         goto out;
526                 case -ECONNABORTED:
527                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
528                         afs_log_error(call, call->abort_code);
529                         goto done;
530                 case -ENOTSUPP:
531                         abort_code = RXGEN_OPCODE;
532                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
533                                                 abort_code, ret,
534                                                 afs_abort_op_not_supported);
535                         goto local_abort;
536                 case -EIO:
537                         pr_err("kAFS: Call %u in bad state %u\n",
538                                call->debug_id, state);
539                         fallthrough;
540                 case -ENODATA:
541                 case -EBADMSG:
542                 case -EMSGSIZE:
543                 case -ENOMEM:
544                 case -EFAULT:
545                         abort_code = RXGEN_CC_UNMARSHAL;
546                         if (state != AFS_CALL_CL_AWAIT_REPLY)
547                                 abort_code = RXGEN_SS_UNMARSHAL;
548                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
549                                                 abort_code, ret,
550                                                 afs_abort_unmarshal_error);
551                         goto local_abort;
552                 default:
553                         abort_code = RX_CALL_DEAD;
554                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
555                                                 abort_code, ret,
556                                                 afs_abort_general_error);
557                         goto local_abort;
558                 }
559         }
560
561 done:
562         if (call->type->done)
563                 call->type->done(call);
564 out:
565         _leave("");
566         return;
567
568 local_abort:
569         abort_code = 0;
570 call_complete:
571         afs_set_call_complete(call, ret, remote_abort);
572         state = AFS_CALL_COMPLETE;
573         goto done;
574 }
575
576 /*
577  * Wait synchronously for a call to complete and clean up the call struct.
578  */
579 long afs_wait_for_call_to_complete(struct afs_call *call,
580                                    struct afs_addr_cursor *ac)
581 {
582         long ret;
583         bool rxrpc_complete = false;
584
585         DECLARE_WAITQUEUE(myself, current);
586
587         _enter("");
588
589         ret = call->error;
590         if (ret < 0)
591                 goto out;
592
593         add_wait_queue(&call->waitq, &myself);
594         for (;;) {
595                 set_current_state(TASK_UNINTERRUPTIBLE);
596
597                 /* deliver any messages that are in the queue */
598                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
599                     call->need_attention) {
600                         call->need_attention = false;
601                         __set_current_state(TASK_RUNNING);
602                         afs_deliver_to_call(call);
603                         continue;
604                 }
605
606                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
607                         break;
608
609                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
610                         /* rxrpc terminated the call. */
611                         rxrpc_complete = true;
612                         break;
613                 }
614
615                 schedule();
616         }
617
618         remove_wait_queue(&call->waitq, &myself);
619         __set_current_state(TASK_RUNNING);
620
621         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
622                 if (rxrpc_complete) {
623                         afs_set_call_complete(call, call->error, call->abort_code);
624                 } else {
625                         /* Kill off the call if it's still live. */
626                         _debug("call interrupted");
627                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
628                                                     RX_USER_ABORT, -EINTR,
629                                                     afs_abort_interrupted))
630                                 afs_set_call_complete(call, -EINTR, 0);
631                 }
632         }
633
634         spin_lock_bh(&call->state_lock);
635         ac->abort_code = call->abort_code;
636         ac->error = call->error;
637         spin_unlock_bh(&call->state_lock);
638
639         ret = ac->error;
640         switch (ret) {
641         case 0:
642                 ret = call->ret0;
643                 call->ret0 = 0;
644
645                 fallthrough;
646         case -ECONNABORTED:
647                 ac->responded = true;
648                 break;
649         }
650
651 out:
652         _debug("call complete");
653         afs_put_call(call);
654         _leave(" = %p", (void *)ret);
655         return ret;
656 }
657
658 /*
659  * wake up a waiting call
660  */
661 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
662                                     unsigned long call_user_ID)
663 {
664         struct afs_call *call = (struct afs_call *)call_user_ID;
665
666         call->need_attention = true;
667         wake_up(&call->waitq);
668 }
669
670 /*
671  * wake up an asynchronous call
672  */
673 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
674                                    unsigned long call_user_ID)
675 {
676         struct afs_call *call = (struct afs_call *)call_user_ID;
677         int r;
678
679         trace_afs_notify_call(rxcall, call);
680         call->need_attention = true;
681
682         if (__refcount_inc_not_zero(&call->ref, &r)) {
683                 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
684                                atomic_read(&call->net->nr_outstanding_calls),
685                                __builtin_return_address(0));
686
687                 if (!queue_work(afs_async_calls, &call->async_work))
688                         afs_put_call(call);
689         }
690 }
691
692 /*
693  * Perform I/O processing on an asynchronous call.  The work item carries a ref
694  * to the call struct that we either need to release or to pass on.
695  */
696 static void afs_process_async_call(struct work_struct *work)
697 {
698         struct afs_call *call = container_of(work, struct afs_call, async_work);
699
700         _enter("");
701
702         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
703                 call->need_attention = false;
704                 afs_deliver_to_call(call);
705         }
706
707         afs_put_call(call);
708         _leave("");
709 }
710
711 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
712 {
713         struct afs_call *call = (struct afs_call *)user_call_ID;
714
715         call->rxcall = rxcall;
716 }
717
718 /*
719  * Charge the incoming call preallocation.
720  */
721 void afs_charge_preallocation(struct work_struct *work)
722 {
723         struct afs_net *net =
724                 container_of(work, struct afs_net, charge_preallocation_work);
725         struct afs_call *call = net->spare_incoming_call;
726
727         for (;;) {
728                 if (!call) {
729                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
730                         if (!call)
731                                 break;
732
733                         call->drop_ref = true;
734                         call->async = true;
735                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
736                         init_waitqueue_head(&call->waitq);
737                         afs_extract_to_tmp(call);
738                 }
739
740                 if (rxrpc_kernel_charge_accept(net->socket,
741                                                afs_wake_up_async_call,
742                                                afs_rx_attach,
743                                                (unsigned long)call,
744                                                GFP_KERNEL,
745                                                call->debug_id) < 0)
746                         break;
747                 call = NULL;
748         }
749         net->spare_incoming_call = call;
750 }
751
752 /*
753  * Discard a preallocated call when a socket is shut down.
754  */
755 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
756                                     unsigned long user_call_ID)
757 {
758         struct afs_call *call = (struct afs_call *)user_call_ID;
759
760         call->rxcall = NULL;
761         afs_put_call(call);
762 }
763
764 /*
765  * Notification of an incoming call.
766  */
767 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
768                             unsigned long user_call_ID)
769 {
770         struct afs_net *net = afs_sock2net(sk);
771
772         queue_work(afs_wq, &net->charge_preallocation_work);
773 }
774
775 /*
776  * Grab the operation ID from an incoming cache manager call.  The socket
777  * buffer is discarded on error or if we don't yet have sufficient data.
778  */
779 static int afs_deliver_cm_op_id(struct afs_call *call)
780 {
781         int ret;
782
783         _enter("{%zu}", iov_iter_count(call->iter));
784
785         /* the operation ID forms the first four bytes of the request data */
786         ret = afs_extract_data(call, true);
787         if (ret < 0)
788                 return ret;
789
790         call->operation_ID = ntohl(call->tmp);
791         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
792
793         /* ask the cache manager to route the call (it'll change the call type
794          * if successful) */
795         if (!afs_cm_incoming_call(call))
796                 return -ENOTSUPP;
797
798         trace_afs_cb_call(call);
799
800         /* pass responsibility for the remainer of this message off to the
801          * cache manager op */
802         return call->type->deliver(call);
803 }
804
805 /*
806  * Advance the AFS call state when an RxRPC service call ends the transmit
807  * phase.
808  */
809 static void afs_notify_end_reply_tx(struct sock *sock,
810                                     struct rxrpc_call *rxcall,
811                                     unsigned long call_user_ID)
812 {
813         struct afs_call *call = (struct afs_call *)call_user_ID;
814
815         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
816 }
817
818 /*
819  * send an empty reply
820  */
821 void afs_send_empty_reply(struct afs_call *call)
822 {
823         struct afs_net *net = call->net;
824         struct msghdr msg;
825
826         _enter("");
827
828         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
829
830         msg.msg_name            = NULL;
831         msg.msg_namelen         = 0;
832         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
833         msg.msg_control         = NULL;
834         msg.msg_controllen      = 0;
835         msg.msg_flags           = 0;
836
837         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
838                                        afs_notify_end_reply_tx)) {
839         case 0:
840                 _leave(" [replied]");
841                 return;
842
843         case -ENOMEM:
844                 _debug("oom");
845                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
846                                         RXGEN_SS_MARSHAL, -ENOMEM,
847                                         afs_abort_oom);
848                 fallthrough;
849         default:
850                 _leave(" [error]");
851                 return;
852         }
853 }
854
855 /*
856  * send a simple reply
857  */
858 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
859 {
860         struct afs_net *net = call->net;
861         struct msghdr msg;
862         struct kvec iov[1];
863         int n;
864
865         _enter("");
866
867         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
868
869         iov[0].iov_base         = (void *) buf;
870         iov[0].iov_len          = len;
871         msg.msg_name            = NULL;
872         msg.msg_namelen         = 0;
873         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
874         msg.msg_control         = NULL;
875         msg.msg_controllen      = 0;
876         msg.msg_flags           = 0;
877
878         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
879                                    afs_notify_end_reply_tx);
880         if (n >= 0) {
881                 /* Success */
882                 _leave(" [replied]");
883                 return;
884         }
885
886         if (n == -ENOMEM) {
887                 _debug("oom");
888                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
889                                         RXGEN_SS_MARSHAL, -ENOMEM,
890                                         afs_abort_oom);
891         }
892         _leave(" [error]");
893 }
894
895 /*
896  * Extract a piece of data from the received data socket buffers.
897  */
898 int afs_extract_data(struct afs_call *call, bool want_more)
899 {
900         struct afs_net *net = call->net;
901         struct iov_iter *iter = call->iter;
902         enum afs_call_state state;
903         u32 remote_abort = 0;
904         int ret;
905
906         _enter("{%s,%zu,%zu},%d",
907                call->type->name, call->iov_len, iov_iter_count(iter), want_more);
908
909         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
910                                      &call->iov_len, want_more, &remote_abort,
911                                      &call->service_id);
912         if (ret == 0 || ret == -EAGAIN)
913                 return ret;
914
915         state = READ_ONCE(call->state);
916         if (ret == 1) {
917                 switch (state) {
918                 case AFS_CALL_CL_AWAIT_REPLY:
919                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
920                         break;
921                 case AFS_CALL_SV_AWAIT_REQUEST:
922                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
923                         break;
924                 case AFS_CALL_COMPLETE:
925                         kdebug("prem complete %d", call->error);
926                         return afs_io_error(call, afs_io_error_extract);
927                 default:
928                         break;
929                 }
930                 return 0;
931         }
932
933         afs_set_call_complete(call, ret, remote_abort);
934         return ret;
935 }
936
937 /*
938  * Log protocol error production.
939  */
940 noinline int afs_protocol_error(struct afs_call *call,
941                                 enum afs_eproto_cause cause)
942 {
943         trace_afs_protocol_error(call, cause);
944         if (call)
945                 call->unmarshalling_error = true;
946         return -EBADMSG;
947 }