1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
12 #include <net/af_rxrpc.h>
15 #include "protocol_yfs.h"
17 struct workqueue_struct *afs_async_calls;
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_delete_async_call(struct work_struct *);
22 static void afs_process_async_call(struct work_struct *);
23 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
25 static int afs_deliver_cm_op_id(struct afs_call *);
27 /* asynchronous incoming call initial processing */
28 static const struct afs_call_type afs_RXCMxxxx = {
30 .deliver = afs_deliver_cm_op_id,
34 * open an RxRPC socket and bind it to be a server for callback notifications
35 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37 int afs_open_socket(struct afs_net *net)
39 struct sockaddr_rxrpc srx;
40 struct socket *socket;
41 unsigned int min_level;
46 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
50 socket->sk->sk_allocation = GFP_NOFS;
52 /* bind the callback manager's address to make this a server socket */
53 memset(&srx, 0, sizeof(srx));
54 srx.srx_family = AF_RXRPC;
55 srx.srx_service = CM_SERVICE;
56 srx.transport_type = SOCK_DGRAM;
57 srx.transport_len = sizeof(srx.transport.sin6);
58 srx.transport.sin6.sin6_family = AF_INET6;
59 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
61 min_level = RXRPC_SECURITY_ENCRYPT;
62 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
63 (void *)&min_level, sizeof(min_level));
67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 if (ret == -EADDRINUSE) {
69 srx.transport.sin6.sin6_port = 0;
70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
75 srx.srx_service = YFS_CM_SERVICE;
76 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
80 /* Ideally, we'd turn on service upgrade here, but we can't because
81 * OpenAFS is buggy and leaks the userStatus field from packet to
82 * packet and between FS packets and CB packets - so if we try to do an
83 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84 * it sends back to us.
87 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 afs_rx_discard_new_call);
90 ret = kernel_listen(socket, INT_MAX);
95 afs_charge_preallocation(&net->charge_preallocation_work);
100 sock_release(socket);
102 _leave(" = %d", ret);
107 * close the RxRPC socket AFS was using
109 void afs_close_socket(struct afs_net *net)
113 kernel_listen(net->socket, 0);
114 flush_workqueue(afs_async_calls);
116 if (net->spare_incoming_call) {
117 afs_put_call(net->spare_incoming_call);
118 net->spare_incoming_call = NULL;
121 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
122 wait_var_event(&net->nr_outstanding_calls,
123 !atomic_read(&net->nr_outstanding_calls));
124 _debug("no outstanding calls");
126 kernel_sock_shutdown(net->socket, SHUT_RDWR);
127 flush_workqueue(afs_async_calls);
128 sock_release(net->socket);
137 static struct afs_call *afs_alloc_call(struct afs_net *net,
138 const struct afs_call_type *type,
141 struct afs_call *call;
144 call = kzalloc(sizeof(*call), gfp);
150 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
151 atomic_set(&call->usage, 1);
152 INIT_WORK(&call->async_work, afs_process_async_call);
153 init_waitqueue_head(&call->waitq);
154 spin_lock_init(&call->state_lock);
155 call->_iter = &call->iter;
157 o = atomic_inc_return(&net->nr_outstanding_calls);
158 trace_afs_call(call, afs_call_trace_alloc, 1, o,
159 __builtin_return_address(0));
164 * Dispose of a reference on a call.
166 void afs_put_call(struct afs_call *call)
168 struct afs_net *net = call->net;
169 int n = atomic_dec_return(&call->usage);
170 int o = atomic_read(&net->nr_outstanding_calls);
172 trace_afs_call(call, afs_call_trace_put, n + 1, o,
173 __builtin_return_address(0));
177 ASSERT(!work_pending(&call->async_work));
178 ASSERT(call->type->name != NULL);
181 rxrpc_kernel_end_call(net->socket, call->rxcall);
184 if (call->type->destructor)
185 call->type->destructor(call);
187 afs_put_server(call->net, call->server, afs_server_trace_put_call);
188 afs_put_cb_interest(call->net, call->cbi);
189 afs_put_addrlist(call->alist);
190 kfree(call->request);
192 trace_afs_call(call, afs_call_trace_free, 0, o,
193 __builtin_return_address(0));
196 o = atomic_dec_return(&net->nr_outstanding_calls);
198 wake_up_var(&net->nr_outstanding_calls);
202 static struct afs_call *afs_get_call(struct afs_call *call,
203 enum afs_call_trace why)
205 int u = atomic_inc_return(&call->usage);
207 trace_afs_call(call, why, u,
208 atomic_read(&call->net->nr_outstanding_calls),
209 __builtin_return_address(0));
214 * Queue the call for actual work.
216 static void afs_queue_call_work(struct afs_call *call)
218 if (call->type->work) {
219 INIT_WORK(&call->work, call->type->work);
221 afs_get_call(call, afs_call_trace_work);
222 if (!queue_work(afs_wq, &call->work))
228 * allocate a call with flat request and reply buffers
230 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
231 const struct afs_call_type *type,
232 size_t request_size, size_t reply_max)
234 struct afs_call *call;
236 call = afs_alloc_call(net, type, GFP_NOFS);
241 call->request_size = request_size;
242 call->request = kmalloc(request_size, GFP_NOFS);
248 call->reply_max = reply_max;
249 call->buffer = kmalloc(reply_max, GFP_NOFS);
254 afs_extract_to_buf(call, call->reply_max);
255 call->operation_ID = type->op;
256 init_waitqueue_head(&call->waitq);
266 * clean up a call with flat buffer
268 void afs_flat_call_destructor(struct afs_call *call)
272 kfree(call->request);
273 call->request = NULL;
278 #define AFS_BVEC_MAX 8
281 * Load the given bvec with the next few pages.
283 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
284 struct bio_vec *bv, pgoff_t first, pgoff_t last,
287 struct page *pages[AFS_BVEC_MAX];
288 unsigned int nr, n, i, to, bytes = 0;
290 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
291 n = find_get_pages_contig(call->mapping, first, nr, pages);
292 ASSERTCMP(n, ==, nr);
294 msg->msg_flags |= MSG_MORE;
295 for (i = 0; i < nr; i++) {
297 if (first + i >= last) {
299 msg->msg_flags &= ~MSG_MORE;
301 bv[i].bv_page = pages[i];
302 bv[i].bv_len = to - offset;
303 bv[i].bv_offset = offset;
304 bytes += to - offset;
308 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
312 * Advance the AFS call state when the RxRPC call ends the transmit phase.
314 static void afs_notify_end_request_tx(struct sock *sock,
315 struct rxrpc_call *rxcall,
316 unsigned long call_user_ID)
318 struct afs_call *call = (struct afs_call *)call_user_ID;
320 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
324 * attach the data from a bunch of pages on an inode to a call
326 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
328 struct bio_vec bv[AFS_BVEC_MAX];
329 unsigned int bytes, nr, loop, offset;
330 pgoff_t first = call->first, last = call->last;
333 offset = call->first_offset;
334 call->first_offset = 0;
337 afs_load_bvec(call, msg, bv, first, last, offset);
338 trace_afs_send_pages(call, msg, first, last, offset);
341 bytes = msg->msg_iter.count;
342 nr = msg->msg_iter.nr_segs;
344 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
345 bytes, afs_notify_end_request_tx);
346 for (loop = 0; loop < nr; loop++)
347 put_page(bv[loop].bv_page);
352 } while (first <= last);
354 trace_afs_sent_pages(call, call->first, last, first, ret);
359 * Initiate a call and synchronously queue up the parameters for dispatch. Any
360 * error is stored into the call struct, which the caller must check for.
362 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
364 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
365 struct rxrpc_call *rxcall;
371 _enter(",{%pISp},", &srx->transport);
373 ASSERT(call->type != NULL);
374 ASSERT(call->type->name != NULL);
376 _debug("____MAKE %p{%s,%x} [%d]____",
377 call, call->type->name, key_serial(call->key),
378 atomic_read(&call->net->nr_outstanding_calls));
380 call->addr_ix = ac->index;
381 call->alist = afs_get_addrlist(ac->alist);
383 /* Work out the length we're going to transmit. This is awkward for
384 * calls such as FS.StoreData where there's an extra injection of data
385 * after the initial fixed part.
387 tx_total_len = call->request_size;
388 if (call->send_pages) {
389 if (call->last == call->first) {
390 tx_total_len += call->last_to - call->first_offset;
392 /* It looks mathematically like you should be able to
393 * combine the following lines with the ones above, but
394 * unsigned arithmetic is fun when it wraps...
396 tx_total_len += PAGE_SIZE - call->first_offset;
397 tx_total_len += call->last_to;
398 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
402 /* If the call is going to be asynchronous, we need an extra ref for
403 * the call to hold itself so the caller need not hang on to its ref.
406 afs_get_call(call, afs_call_trace_get);
409 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
413 afs_wake_up_async_call :
414 afs_wake_up_call_waiter),
418 if (IS_ERR(rxcall)) {
419 ret = PTR_ERR(rxcall);
421 goto error_kill_call;
424 call->rxcall = rxcall;
426 if (call->max_lifespan)
427 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
430 /* send the request */
431 iov[0].iov_base = call->request;
432 iov[0].iov_len = call->request_size;
436 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
437 msg.msg_control = NULL;
438 msg.msg_controllen = 0;
439 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
441 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
442 &msg, call->request_size,
443 afs_notify_end_request_tx);
447 if (call->send_pages) {
448 ret = afs_send_pages(call, &msg);
453 /* Note that at this point, we may have received the reply or an abort
454 * - and an asynchronous call may already have completed.
456 * afs_wait_for_call_to_complete(call, ac)
457 * must be called to synchronously clean up.
462 if (ret != -ECONNABORTED) {
463 rxrpc_kernel_abort_call(call->net->socket, rxcall,
464 RX_USER_ABORT, ret, "KSD");
466 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
467 rxrpc_kernel_recv_data(call->net->socket, rxcall,
468 &msg.msg_iter, false,
469 &call->abort_code, &call->service_id);
470 ac->abort_code = call->abort_code;
471 ac->responded = true;
474 trace_afs_call_done(call);
476 if (call->type->done)
477 call->type->done(call);
479 /* We need to dispose of the extra ref we grabbed for an async call.
480 * The call, however, might be queued on afs_async_calls and we need to
481 * make sure we don't get any more notifications that might requeue it.
484 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
488 if (cancel_work_sync(&call->async_work))
494 call->state = AFS_CALL_COMPLETE;
495 _leave(" = %d", ret);
499 * deliver messages to a call
501 static void afs_deliver_to_call(struct afs_call *call)
503 enum afs_call_state state;
504 u32 abort_code, remote_abort = 0;
507 _enter("%s", call->type->name);
509 while (state = READ_ONCE(call->state),
510 state == AFS_CALL_CL_AWAIT_REPLY ||
511 state == AFS_CALL_SV_AWAIT_OP_ID ||
512 state == AFS_CALL_SV_AWAIT_REQUEST ||
513 state == AFS_CALL_SV_AWAIT_ACK
515 if (state == AFS_CALL_SV_AWAIT_ACK) {
516 iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
517 ret = rxrpc_kernel_recv_data(call->net->socket,
518 call->rxcall, &call->iter,
519 false, &remote_abort,
521 trace_afs_receive_data(call, &call->iter, false, ret);
523 if (ret == -EINPROGRESS || ret == -EAGAIN)
525 if (ret < 0 || ret == 1) {
533 if (!call->have_reply_time &&
534 rxrpc_kernel_get_reply_time(call->net->socket,
537 call->have_reply_time = true;
539 ret = call->type->deliver(call);
540 state = READ_ONCE(call->state);
543 afs_queue_call_work(call);
544 if (state == AFS_CALL_CL_PROC_REPLY) {
546 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
547 &call->cbi->server->flags);
550 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
556 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
559 abort_code = RXGEN_OPCODE;
560 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
561 abort_code, ret, "KIV");
564 pr_err("kAFS: Call %u in bad state %u\n",
565 call->debug_id, state);
570 abort_code = RXGEN_CC_UNMARSHAL;
571 if (state != AFS_CALL_CL_AWAIT_REPLY)
572 abort_code = RXGEN_SS_UNMARSHAL;
573 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
574 abort_code, ret, "KUM");
577 abort_code = RX_USER_ABORT;
578 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
579 abort_code, ret, "KER");
585 if (call->type->done)
586 call->type->done(call);
587 if (state == AFS_CALL_COMPLETE && call->incoming)
596 afs_set_call_complete(call, ret, remote_abort);
597 state = AFS_CALL_COMPLETE;
602 * Wait synchronously for a call to complete and clean up the call struct.
604 long afs_wait_for_call_to_complete(struct afs_call *call,
605 struct afs_addr_cursor *ac)
607 signed long rtt2, timeout;
609 bool stalled = false;
612 bool rxrpc_complete = false;
614 DECLARE_WAITQUEUE(myself, current);
622 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
623 rtt2 = nsecs_to_jiffies64(rtt) * 2;
628 rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life);
630 add_wait_queue(&call->waitq, &myself);
632 set_current_state(TASK_UNINTERRUPTIBLE);
634 /* deliver any messages that are in the queue */
635 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
636 call->need_attention) {
637 call->need_attention = false;
638 __set_current_state(TASK_RUNNING);
639 afs_deliver_to_call(call);
643 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
646 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) {
647 /* rxrpc terminated the call. */
648 rxrpc_complete = true;
652 if (call->intr && timeout == 0 &&
653 life == last_life && signal_pending(current)) {
656 __set_current_state(TASK_RUNNING);
657 rxrpc_kernel_probe_life(call->net->socket, call->rxcall);
663 if (life != last_life) {
669 timeout = schedule_timeout(timeout);
672 remove_wait_queue(&call->waitq, &myself);
673 __set_current_state(TASK_RUNNING);
675 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
676 if (rxrpc_complete) {
677 afs_set_call_complete(call, call->error, call->abort_code);
679 /* Kill off the call if it's still live. */
680 _debug("call interrupted");
681 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
682 RX_USER_ABORT, -EINTR, "KWI"))
683 afs_set_call_complete(call, -EINTR, 0);
687 spin_lock_bh(&call->state_lock);
688 ac->abort_code = call->abort_code;
689 ac->error = call->error;
690 spin_unlock_bh(&call->state_lock);
700 ac->responded = true;
705 _debug("call complete");
707 _leave(" = %p", (void *)ret);
712 * wake up a waiting call
714 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
715 unsigned long call_user_ID)
717 struct afs_call *call = (struct afs_call *)call_user_ID;
719 call->need_attention = true;
720 wake_up(&call->waitq);
724 * wake up an asynchronous call
726 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
727 unsigned long call_user_ID)
729 struct afs_call *call = (struct afs_call *)call_user_ID;
732 trace_afs_notify_call(rxcall, call);
733 call->need_attention = true;
735 u = atomic_fetch_add_unless(&call->usage, 1, 0);
737 trace_afs_call(call, afs_call_trace_wake, u,
738 atomic_read(&call->net->nr_outstanding_calls),
739 __builtin_return_address(0));
741 if (!queue_work(afs_async_calls, &call->async_work))
747 * Delete an asynchronous call. The work item carries a ref to the call struct
748 * that we need to release.
750 static void afs_delete_async_call(struct work_struct *work)
752 struct afs_call *call = container_of(work, struct afs_call, async_work);
762 * Perform I/O processing on an asynchronous call. The work item carries a ref
763 * to the call struct that we either need to release or to pass on.
765 static void afs_process_async_call(struct work_struct *work)
767 struct afs_call *call = container_of(work, struct afs_call, async_work);
771 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
772 call->need_attention = false;
773 afs_deliver_to_call(call);
776 if (call->state == AFS_CALL_COMPLETE) {
777 /* We have two refs to release - one from the alloc and one
778 * queued with the work item - and we can't just deallocate the
779 * call because the work item may be queued again.
781 call->async_work.func = afs_delete_async_call;
782 if (!queue_work(afs_async_calls, &call->async_work))
790 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
792 struct afs_call *call = (struct afs_call *)user_call_ID;
794 call->rxcall = rxcall;
798 * Charge the incoming call preallocation.
800 void afs_charge_preallocation(struct work_struct *work)
802 struct afs_net *net =
803 container_of(work, struct afs_net, charge_preallocation_work);
804 struct afs_call *call = net->spare_incoming_call;
808 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
813 call->state = AFS_CALL_SV_AWAIT_OP_ID;
814 init_waitqueue_head(&call->waitq);
815 afs_extract_to_tmp(call);
818 if (rxrpc_kernel_charge_accept(net->socket,
819 afs_wake_up_async_call,
827 net->spare_incoming_call = call;
831 * Discard a preallocated call when a socket is shut down.
833 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
834 unsigned long user_call_ID)
836 struct afs_call *call = (struct afs_call *)user_call_ID;
843 * Notification of an incoming call.
845 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
846 unsigned long user_call_ID)
848 struct afs_net *net = afs_sock2net(sk);
850 queue_work(afs_wq, &net->charge_preallocation_work);
854 * Grab the operation ID from an incoming cache manager call. The socket
855 * buffer is discarded on error or if we don't yet have sufficient data.
857 static int afs_deliver_cm_op_id(struct afs_call *call)
861 _enter("{%zu}", iov_iter_count(call->_iter));
863 /* the operation ID forms the first four bytes of the request data */
864 ret = afs_extract_data(call, true);
868 call->operation_ID = ntohl(call->tmp);
869 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
871 /* ask the cache manager to route the call (it'll change the call type
873 if (!afs_cm_incoming_call(call))
876 trace_afs_cb_call(call);
878 /* pass responsibility for the remainer of this message off to the
879 * cache manager op */
880 return call->type->deliver(call);
884 * Advance the AFS call state when an RxRPC service call ends the transmit
887 static void afs_notify_end_reply_tx(struct sock *sock,
888 struct rxrpc_call *rxcall,
889 unsigned long call_user_ID)
891 struct afs_call *call = (struct afs_call *)call_user_ID;
893 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
897 * send an empty reply
899 void afs_send_empty_reply(struct afs_call *call)
901 struct afs_net *net = call->net;
906 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
910 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
911 msg.msg_control = NULL;
912 msg.msg_controllen = 0;
915 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
916 afs_notify_end_reply_tx)) {
918 _leave(" [replied]");
923 rxrpc_kernel_abort_call(net->socket, call->rxcall,
924 RX_USER_ABORT, -ENOMEM, "KOO");
933 * send a simple reply
935 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
937 struct afs_net *net = call->net;
944 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
946 iov[0].iov_base = (void *) buf;
947 iov[0].iov_len = len;
950 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
951 msg.msg_control = NULL;
952 msg.msg_controllen = 0;
955 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
956 afs_notify_end_reply_tx);
959 _leave(" [replied]");
965 rxrpc_kernel_abort_call(net->socket, call->rxcall,
966 RX_USER_ABORT, -ENOMEM, "KOO");
972 * Extract a piece of data from the received data socket buffers.
974 int afs_extract_data(struct afs_call *call, bool want_more)
976 struct afs_net *net = call->net;
977 struct iov_iter *iter = call->_iter;
978 enum afs_call_state state;
979 u32 remote_abort = 0;
982 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
984 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
985 want_more, &remote_abort,
987 if (ret == 0 || ret == -EAGAIN)
990 state = READ_ONCE(call->state);
993 case AFS_CALL_CL_AWAIT_REPLY:
994 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
996 case AFS_CALL_SV_AWAIT_REQUEST:
997 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
999 case AFS_CALL_COMPLETE:
1000 kdebug("prem complete %d", call->error);
1001 return afs_io_error(call, afs_io_error_extract);
1008 afs_set_call_complete(call, ret, remote_abort);
1013 * Log protocol error production.
1015 noinline int afs_protocol_error(struct afs_call *call, int error,
1016 enum afs_eproto_cause cause)
1018 trace_afs_protocol_error(call, error, cause);