1 /* Maintain an RxRPC server socket to do AFS communications through
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
16 #include <net/af_rxrpc.h>
19 #include "protocol_yfs.h"
21 struct workqueue_struct *afs_async_calls;
23 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_delete_async_call(struct work_struct *);
26 static void afs_process_async_call(struct work_struct *);
27 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
29 static int afs_deliver_cm_op_id(struct afs_call *);
31 /* asynchronous incoming call initial processing */
32 static const struct afs_call_type afs_RXCMxxxx = {
34 .deliver = afs_deliver_cm_op_id,
38 * open an RxRPC socket and bind it to be a server for callback notifications
39 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
41 int afs_open_socket(struct afs_net *net)
43 struct sockaddr_rxrpc srx;
44 struct socket *socket;
45 unsigned int min_level;
50 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
54 socket->sk->sk_allocation = GFP_NOFS;
56 /* bind the callback manager's address to make this a server socket */
57 memset(&srx, 0, sizeof(srx));
58 srx.srx_family = AF_RXRPC;
59 srx.srx_service = CM_SERVICE;
60 srx.transport_type = SOCK_DGRAM;
61 srx.transport_len = sizeof(srx.transport.sin6);
62 srx.transport.sin6.sin6_family = AF_INET6;
63 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
65 min_level = RXRPC_SECURITY_ENCRYPT;
66 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
67 (void *)&min_level, sizeof(min_level));
71 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
72 if (ret == -EADDRINUSE) {
73 srx.transport.sin6.sin6_port = 0;
74 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
79 srx.srx_service = YFS_CM_SERVICE;
80 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
84 /* Ideally, we'd turn on service upgrade here, but we can't because
85 * OpenAFS is buggy and leaks the userStatus field from packet to
86 * packet and between FS packets and CB packets - so if we try to do an
87 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
88 * it sends back to us.
91 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
92 afs_rx_discard_new_call);
94 ret = kernel_listen(socket, INT_MAX);
99 afs_charge_preallocation(&net->charge_preallocation_work);
104 sock_release(socket);
106 _leave(" = %d", ret);
111 * close the RxRPC socket AFS was using
113 void afs_close_socket(struct afs_net *net)
117 kernel_listen(net->socket, 0);
118 flush_workqueue(afs_async_calls);
120 if (net->spare_incoming_call) {
121 afs_put_call(net->spare_incoming_call);
122 net->spare_incoming_call = NULL;
125 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
126 wait_var_event(&net->nr_outstanding_calls,
127 !atomic_read(&net->nr_outstanding_calls));
128 _debug("no outstanding calls");
130 kernel_sock_shutdown(net->socket, SHUT_RDWR);
131 flush_workqueue(afs_async_calls);
132 sock_release(net->socket);
141 static struct afs_call *afs_alloc_call(struct afs_net *net,
142 const struct afs_call_type *type,
145 struct afs_call *call;
148 call = kzalloc(sizeof(*call), gfp);
154 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
155 atomic_set(&call->usage, 1);
156 INIT_WORK(&call->async_work, afs_process_async_call);
157 init_waitqueue_head(&call->waitq);
158 spin_lock_init(&call->state_lock);
159 call->_iter = &call->iter;
161 o = atomic_inc_return(&net->nr_outstanding_calls);
162 trace_afs_call(call, afs_call_trace_alloc, 1, o,
163 __builtin_return_address(0));
168 * Dispose of a reference on a call.
170 void afs_put_call(struct afs_call *call)
172 struct afs_net *net = call->net;
173 int n = atomic_dec_return(&call->usage);
174 int o = atomic_read(&net->nr_outstanding_calls);
176 trace_afs_call(call, afs_call_trace_put, n + 1, o,
177 __builtin_return_address(0));
181 ASSERT(!work_pending(&call->async_work));
182 ASSERT(call->type->name != NULL);
185 rxrpc_kernel_end_call(net->socket, call->rxcall);
188 if (call->type->destructor)
189 call->type->destructor(call);
191 afs_put_server(call->net, call->cm_server);
192 afs_put_cb_interest(call->net, call->cbi);
193 afs_put_addrlist(call->alist);
194 kfree(call->request);
196 trace_afs_call(call, afs_call_trace_free, 0, o,
197 __builtin_return_address(0));
200 o = atomic_dec_return(&net->nr_outstanding_calls);
202 wake_up_var(&net->nr_outstanding_calls);
206 static struct afs_call *afs_get_call(struct afs_call *call,
207 enum afs_call_trace why)
209 int u = atomic_inc_return(&call->usage);
211 trace_afs_call(call, why, u,
212 atomic_read(&call->net->nr_outstanding_calls),
213 __builtin_return_address(0));
218 * Queue the call for actual work.
220 static void afs_queue_call_work(struct afs_call *call)
222 if (call->type->work) {
223 INIT_WORK(&call->work, call->type->work);
225 afs_get_call(call, afs_call_trace_work);
226 if (!queue_work(afs_wq, &call->work))
232 * allocate a call with flat request and reply buffers
234 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
235 const struct afs_call_type *type,
236 size_t request_size, size_t reply_max)
238 struct afs_call *call;
240 call = afs_alloc_call(net, type, GFP_NOFS);
245 call->request_size = request_size;
246 call->request = kmalloc(request_size, GFP_NOFS);
252 call->reply_max = reply_max;
253 call->buffer = kmalloc(reply_max, GFP_NOFS);
258 afs_extract_to_buf(call, call->reply_max);
259 call->operation_ID = type->op;
260 init_waitqueue_head(&call->waitq);
270 * clean up a call with flat buffer
272 void afs_flat_call_destructor(struct afs_call *call)
276 kfree(call->request);
277 call->request = NULL;
282 #define AFS_BVEC_MAX 8
285 * Load the given bvec with the next few pages.
287 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
288 struct bio_vec *bv, pgoff_t first, pgoff_t last,
291 struct page *pages[AFS_BVEC_MAX];
292 unsigned int nr, n, i, to, bytes = 0;
294 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
295 n = find_get_pages_contig(call->mapping, first, nr, pages);
296 ASSERTCMP(n, ==, nr);
298 msg->msg_flags |= MSG_MORE;
299 for (i = 0; i < nr; i++) {
301 if (first + i >= last) {
303 msg->msg_flags &= ~MSG_MORE;
305 bv[i].bv_page = pages[i];
306 bv[i].bv_len = to - offset;
307 bv[i].bv_offset = offset;
308 bytes += to - offset;
312 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
316 * Advance the AFS call state when the RxRPC call ends the transmit phase.
318 static void afs_notify_end_request_tx(struct sock *sock,
319 struct rxrpc_call *rxcall,
320 unsigned long call_user_ID)
322 struct afs_call *call = (struct afs_call *)call_user_ID;
324 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
328 * attach the data from a bunch of pages on an inode to a call
330 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
332 struct bio_vec bv[AFS_BVEC_MAX];
333 unsigned int bytes, nr, loop, offset;
334 pgoff_t first = call->first, last = call->last;
337 offset = call->first_offset;
338 call->first_offset = 0;
341 afs_load_bvec(call, msg, bv, first, last, offset);
342 trace_afs_send_pages(call, msg, first, last, offset);
345 bytes = msg->msg_iter.count;
346 nr = msg->msg_iter.nr_segs;
348 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
349 bytes, afs_notify_end_request_tx);
350 for (loop = 0; loop < nr; loop++)
351 put_page(bv[loop].bv_page);
356 } while (first <= last);
358 trace_afs_sent_pages(call, call->first, last, first, ret);
363 * Initiate a call and synchronously queue up the parameters for dispatch. Any
364 * error is stored into the call struct, which the caller must check for.
366 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
368 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
369 struct rxrpc_call *rxcall;
375 _enter(",{%pISp},", &srx->transport);
377 ASSERT(call->type != NULL);
378 ASSERT(call->type->name != NULL);
380 _debug("____MAKE %p{%s,%x} [%d]____",
381 call, call->type->name, key_serial(call->key),
382 atomic_read(&call->net->nr_outstanding_calls));
384 call->addr_ix = ac->index;
385 call->alist = afs_get_addrlist(ac->alist);
387 /* Work out the length we're going to transmit. This is awkward for
388 * calls such as FS.StoreData where there's an extra injection of data
389 * after the initial fixed part.
391 tx_total_len = call->request_size;
392 if (call->send_pages) {
393 if (call->last == call->first) {
394 tx_total_len += call->last_to - call->first_offset;
396 /* It looks mathematically like you should be able to
397 * combine the following lines with the ones above, but
398 * unsigned arithmetic is fun when it wraps...
400 tx_total_len += PAGE_SIZE - call->first_offset;
401 tx_total_len += call->last_to;
402 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
406 /* If the call is going to be asynchronous, we need an extra ref for
407 * the call to hold itself so the caller need not hang on to its ref.
410 afs_get_call(call, afs_call_trace_get);
413 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
417 afs_wake_up_async_call :
418 afs_wake_up_call_waiter),
422 if (IS_ERR(rxcall)) {
423 ret = PTR_ERR(rxcall);
425 goto error_kill_call;
428 call->rxcall = rxcall;
430 if (call->max_lifespan)
431 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
434 /* send the request */
435 iov[0].iov_base = call->request;
436 iov[0].iov_len = call->request_size;
440 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
441 msg.msg_control = NULL;
442 msg.msg_controllen = 0;
443 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
445 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
446 &msg, call->request_size,
447 afs_notify_end_request_tx);
451 if (call->send_pages) {
452 ret = afs_send_pages(call, &msg);
457 /* Note that at this point, we may have received the reply or an abort
458 * - and an asynchronous call may already have completed.
460 * afs_wait_for_call_to_complete(call, ac)
461 * must be called to synchronously clean up.
466 if (ret != -ECONNABORTED) {
467 rxrpc_kernel_abort_call(call->net->socket, rxcall,
468 RX_USER_ABORT, ret, "KSD");
470 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
471 rxrpc_kernel_recv_data(call->net->socket, rxcall,
472 &msg.msg_iter, false,
473 &call->abort_code, &call->service_id);
474 ac->abort_code = call->abort_code;
475 ac->responded = true;
478 trace_afs_call_done(call);
480 if (call->type->done)
481 call->type->done(call);
483 /* We need to dispose of the extra ref we grabbed for an async call.
484 * The call, however, might be queued on afs_async_calls and we need to
485 * make sure we don't get any more notifications that might requeue it.
488 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
492 if (cancel_work_sync(&call->async_work))
498 call->state = AFS_CALL_COMPLETE;
499 _leave(" = %d", ret);
503 * deliver messages to a call
505 static void afs_deliver_to_call(struct afs_call *call)
507 enum afs_call_state state;
508 u32 abort_code, remote_abort = 0;
511 _enter("%s", call->type->name);
513 while (state = READ_ONCE(call->state),
514 state == AFS_CALL_CL_AWAIT_REPLY ||
515 state == AFS_CALL_SV_AWAIT_OP_ID ||
516 state == AFS_CALL_SV_AWAIT_REQUEST ||
517 state == AFS_CALL_SV_AWAIT_ACK
519 if (state == AFS_CALL_SV_AWAIT_ACK) {
520 iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
521 ret = rxrpc_kernel_recv_data(call->net->socket,
522 call->rxcall, &call->iter,
523 false, &remote_abort,
525 trace_afs_receive_data(call, &call->iter, false, ret);
527 if (ret == -EINPROGRESS || ret == -EAGAIN)
529 if (ret < 0 || ret == 1) {
537 if (call->want_reply_time &&
538 rxrpc_kernel_get_reply_time(call->net->socket,
541 call->want_reply_time = false;
543 ret = call->type->deliver(call);
544 state = READ_ONCE(call->state);
547 afs_queue_call_work(call);
548 if (state == AFS_CALL_CL_PROC_REPLY) {
550 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
551 &call->cbi->server->flags);
554 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
560 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
563 abort_code = RXGEN_OPCODE;
564 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
565 abort_code, ret, "KIV");
568 pr_err("kAFS: Call %u in bad state %u\n",
569 call->debug_id, state);
574 abort_code = RXGEN_CC_UNMARSHAL;
575 if (state != AFS_CALL_CL_AWAIT_REPLY)
576 abort_code = RXGEN_SS_UNMARSHAL;
577 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
578 abort_code, ret, "KUM");
581 abort_code = RX_USER_ABORT;
582 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
583 abort_code, ret, "KER");
589 if (call->type->done)
590 call->type->done(call);
591 if (state == AFS_CALL_COMPLETE && call->incoming)
600 afs_set_call_complete(call, ret, remote_abort);
601 state = AFS_CALL_COMPLETE;
606 * Wait synchronously for a call to complete and clean up the call struct.
608 long afs_wait_for_call_to_complete(struct afs_call *call,
609 struct afs_addr_cursor *ac)
611 signed long rtt2, timeout;
613 bool stalled = false;
616 bool rxrpc_complete = false;
618 DECLARE_WAITQUEUE(myself, current);
626 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
627 rtt2 = nsecs_to_jiffies64(rtt) * 2;
632 rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life);
634 add_wait_queue(&call->waitq, &myself);
636 set_current_state(TASK_UNINTERRUPTIBLE);
638 /* deliver any messages that are in the queue */
639 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
640 call->need_attention) {
641 call->need_attention = false;
642 __set_current_state(TASK_RUNNING);
643 afs_deliver_to_call(call);
647 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
650 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) {
651 /* rxrpc terminated the call. */
652 rxrpc_complete = true;
656 if (call->intr && timeout == 0 &&
657 life == last_life && signal_pending(current)) {
660 __set_current_state(TASK_RUNNING);
661 rxrpc_kernel_probe_life(call->net->socket, call->rxcall);
667 if (life != last_life) {
673 timeout = schedule_timeout(timeout);
676 remove_wait_queue(&call->waitq, &myself);
677 __set_current_state(TASK_RUNNING);
679 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
680 if (rxrpc_complete) {
681 afs_set_call_complete(call, call->error, call->abort_code);
683 /* Kill off the call if it's still live. */
684 _debug("call interrupted");
685 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
686 RX_USER_ABORT, -EINTR, "KWI"))
687 afs_set_call_complete(call, -EINTR, 0);
691 spin_lock_bh(&call->state_lock);
692 ac->abort_code = call->abort_code;
693 ac->error = call->error;
694 spin_unlock_bh(&call->state_lock);
699 if (call->ret_reply0) {
700 ret = (long)call->reply[0];
701 call->reply[0] = NULL;
705 ac->responded = true;
710 _debug("call complete");
712 _leave(" = %p", (void *)ret);
717 * wake up a waiting call
719 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
720 unsigned long call_user_ID)
722 struct afs_call *call = (struct afs_call *)call_user_ID;
724 call->need_attention = true;
725 wake_up(&call->waitq);
729 * wake up an asynchronous call
731 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
732 unsigned long call_user_ID)
734 struct afs_call *call = (struct afs_call *)call_user_ID;
737 trace_afs_notify_call(rxcall, call);
738 call->need_attention = true;
740 u = atomic_fetch_add_unless(&call->usage, 1, 0);
742 trace_afs_call(call, afs_call_trace_wake, u,
743 atomic_read(&call->net->nr_outstanding_calls),
744 __builtin_return_address(0));
746 if (!queue_work(afs_async_calls, &call->async_work))
752 * Delete an asynchronous call. The work item carries a ref to the call struct
753 * that we need to release.
755 static void afs_delete_async_call(struct work_struct *work)
757 struct afs_call *call = container_of(work, struct afs_call, async_work);
767 * Perform I/O processing on an asynchronous call. The work item carries a ref
768 * to the call struct that we either need to release or to pass on.
770 static void afs_process_async_call(struct work_struct *work)
772 struct afs_call *call = container_of(work, struct afs_call, async_work);
776 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
777 call->need_attention = false;
778 afs_deliver_to_call(call);
781 if (call->state == AFS_CALL_COMPLETE) {
782 /* We have two refs to release - one from the alloc and one
783 * queued with the work item - and we can't just deallocate the
784 * call because the work item may be queued again.
786 call->async_work.func = afs_delete_async_call;
787 if (!queue_work(afs_async_calls, &call->async_work))
795 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
797 struct afs_call *call = (struct afs_call *)user_call_ID;
799 call->rxcall = rxcall;
803 * Charge the incoming call preallocation.
805 void afs_charge_preallocation(struct work_struct *work)
807 struct afs_net *net =
808 container_of(work, struct afs_net, charge_preallocation_work);
809 struct afs_call *call = net->spare_incoming_call;
813 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
818 call->state = AFS_CALL_SV_AWAIT_OP_ID;
819 init_waitqueue_head(&call->waitq);
820 afs_extract_to_tmp(call);
823 if (rxrpc_kernel_charge_accept(net->socket,
824 afs_wake_up_async_call,
832 net->spare_incoming_call = call;
836 * Discard a preallocated call when a socket is shut down.
838 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
839 unsigned long user_call_ID)
841 struct afs_call *call = (struct afs_call *)user_call_ID;
848 * Notification of an incoming call.
850 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
851 unsigned long user_call_ID)
853 struct afs_net *net = afs_sock2net(sk);
855 queue_work(afs_wq, &net->charge_preallocation_work);
859 * Grab the operation ID from an incoming cache manager call. The socket
860 * buffer is discarded on error or if we don't yet have sufficient data.
862 static int afs_deliver_cm_op_id(struct afs_call *call)
866 _enter("{%zu}", iov_iter_count(call->_iter));
868 /* the operation ID forms the first four bytes of the request data */
869 ret = afs_extract_data(call, true);
873 call->operation_ID = ntohl(call->tmp);
874 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
876 /* ask the cache manager to route the call (it'll change the call type
878 if (!afs_cm_incoming_call(call))
881 trace_afs_cb_call(call);
883 /* pass responsibility for the remainer of this message off to the
884 * cache manager op */
885 return call->type->deliver(call);
889 * Advance the AFS call state when an RxRPC service call ends the transmit
892 static void afs_notify_end_reply_tx(struct sock *sock,
893 struct rxrpc_call *rxcall,
894 unsigned long call_user_ID)
896 struct afs_call *call = (struct afs_call *)call_user_ID;
898 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
902 * send an empty reply
904 void afs_send_empty_reply(struct afs_call *call)
906 struct afs_net *net = call->net;
911 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
915 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
916 msg.msg_control = NULL;
917 msg.msg_controllen = 0;
920 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
921 afs_notify_end_reply_tx)) {
923 _leave(" [replied]");
928 rxrpc_kernel_abort_call(net->socket, call->rxcall,
929 RX_USER_ABORT, -ENOMEM, "KOO");
938 * send a simple reply
940 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
942 struct afs_net *net = call->net;
949 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
951 iov[0].iov_base = (void *) buf;
952 iov[0].iov_len = len;
955 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
956 msg.msg_control = NULL;
957 msg.msg_controllen = 0;
960 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
961 afs_notify_end_reply_tx);
964 _leave(" [replied]");
970 rxrpc_kernel_abort_call(net->socket, call->rxcall,
971 RX_USER_ABORT, -ENOMEM, "KOO");
977 * Extract a piece of data from the received data socket buffers.
979 int afs_extract_data(struct afs_call *call, bool want_more)
981 struct afs_net *net = call->net;
982 struct iov_iter *iter = call->_iter;
983 enum afs_call_state state;
984 u32 remote_abort = 0;
987 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
989 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
990 want_more, &remote_abort,
992 if (ret == 0 || ret == -EAGAIN)
995 state = READ_ONCE(call->state);
998 case AFS_CALL_CL_AWAIT_REPLY:
999 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
1001 case AFS_CALL_SV_AWAIT_REQUEST:
1002 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
1004 case AFS_CALL_COMPLETE:
1005 kdebug("prem complete %d", call->error);
1006 return afs_io_error(call, afs_io_error_extract);
1013 afs_set_call_complete(call, ret, remote_abort);
1018 * Log protocol error production.
1020 noinline int afs_protocol_error(struct afs_call *call, int error,
1021 enum afs_eproto_cause cause)
1023 trace_afs_protocol_error(call, error, cause);