1 /* Maintain an RxRPC server socket to do AFS communications through
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
16 #include <net/af_rxrpc.h>
17 #include <rxrpc/packet.h>
21 struct socket *afs_socket; /* my RxRPC socket */
22 static struct workqueue_struct *afs_async_calls;
23 static struct afs_call *afs_spare_incoming_call;
24 atomic_t afs_outstanding_calls;
26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
27 static int afs_wait_for_call_to_complete(struct afs_call *);
28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
29 static void afs_process_async_call(struct work_struct *);
30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
32 static int afs_deliver_cm_op_id(struct afs_call *);
34 /* asynchronous incoming call initial processing */
35 static const struct afs_call_type afs_RXCMxxxx = {
37 .deliver = afs_deliver_cm_op_id,
38 .abort_to_error = afs_abort_to_error,
41 static void afs_charge_preallocation(struct work_struct *);
43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
45 static int afs_wait_atomic_t(atomic_t *p)
52 * open an RxRPC socket and bind it to be a server for callback notifications
53 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
55 int afs_open_socket(void)
57 struct sockaddr_rxrpc srx;
58 struct socket *socket;
64 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
68 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
72 socket->sk->sk_allocation = GFP_NOFS;
74 /* bind the callback manager's address to make this a server socket */
75 srx.srx_family = AF_RXRPC;
76 srx.srx_service = CM_SERVICE;
77 srx.transport_type = SOCK_DGRAM;
78 srx.transport_len = sizeof(srx.transport.sin);
79 srx.transport.sin.sin_family = AF_INET;
80 srx.transport.sin.sin_port = htons(AFS_CM_PORT);
81 memset(&srx.transport.sin.sin_addr, 0,
82 sizeof(srx.transport.sin.sin_addr));
84 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
88 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
89 afs_rx_discard_new_call);
91 ret = kernel_listen(socket, INT_MAX);
96 afs_charge_preallocation(NULL);
101 sock_release(socket);
103 destroy_workqueue(afs_async_calls);
105 _leave(" = %d", ret);
110 * close the RxRPC socket AFS was using
112 void afs_close_socket(void)
116 kernel_listen(afs_socket, 0);
117 flush_workqueue(afs_async_calls);
119 if (afs_spare_incoming_call) {
120 afs_put_call(afs_spare_incoming_call);
121 afs_spare_incoming_call = NULL;
124 _debug("outstanding %u", atomic_read(&afs_outstanding_calls));
125 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
126 TASK_UNINTERRUPTIBLE);
127 _debug("no outstanding calls");
129 kernel_sock_shutdown(afs_socket, SHUT_RDWR);
130 flush_workqueue(afs_async_calls);
131 sock_release(afs_socket);
134 destroy_workqueue(afs_async_calls);
141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
144 struct afs_call *call;
147 call = kzalloc(sizeof(*call), gfp);
152 atomic_set(&call->usage, 1);
153 INIT_WORK(&call->async_work, afs_process_async_call);
154 init_waitqueue_head(&call->waitq);
156 o = atomic_inc_return(&afs_outstanding_calls);
157 trace_afs_call(call, afs_call_trace_alloc, 1, o,
158 __builtin_return_address(0));
163 * Dispose of a reference on a call.
165 void afs_put_call(struct afs_call *call)
167 int n = atomic_dec_return(&call->usage);
168 int o = atomic_read(&afs_outstanding_calls);
170 trace_afs_call(call, afs_call_trace_put, n + 1, o,
171 __builtin_return_address(0));
175 ASSERT(!work_pending(&call->async_work));
176 ASSERT(call->type->name != NULL);
179 rxrpc_kernel_end_call(afs_socket, call->rxcall);
182 if (call->type->destructor)
183 call->type->destructor(call);
185 kfree(call->request);
188 o = atomic_dec_return(&afs_outstanding_calls);
189 trace_afs_call(call, afs_call_trace_free, 0, o,
190 __builtin_return_address(0));
192 wake_up_atomic_t(&afs_outstanding_calls);
197 * Queue the call for actual work. Returns 0 unconditionally for convenience.
199 int afs_queue_call_work(struct afs_call *call)
201 int u = atomic_inc_return(&call->usage);
203 trace_afs_call(call, afs_call_trace_work, u,
204 atomic_read(&afs_outstanding_calls),
205 __builtin_return_address(0));
207 INIT_WORK(&call->work, call->type->work);
209 if (!queue_work(afs_wq, &call->work))
215 * allocate a call with flat request and reply buffers
217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
218 size_t request_size, size_t reply_max)
220 struct afs_call *call;
222 call = afs_alloc_call(type, GFP_NOFS);
227 call->request_size = request_size;
228 call->request = kmalloc(request_size, GFP_NOFS);
234 call->reply_max = reply_max;
235 call->buffer = kmalloc(reply_max, GFP_NOFS);
240 init_waitqueue_head(&call->waitq);
250 * clean up a call with flat buffer
252 void afs_flat_call_destructor(struct afs_call *call)
256 kfree(call->request);
257 call->request = NULL;
262 #define AFS_BVEC_MAX 8
265 * Load the given bvec with the next few pages.
267 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
268 struct bio_vec *bv, pgoff_t first, pgoff_t last,
271 struct page *pages[AFS_BVEC_MAX];
272 unsigned int nr, n, i, to, bytes = 0;
274 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
275 n = find_get_pages_contig(call->mapping, first, nr, pages);
276 ASSERTCMP(n, ==, nr);
278 msg->msg_flags |= MSG_MORE;
279 for (i = 0; i < nr; i++) {
281 if (first + i >= last) {
283 msg->msg_flags &= ~MSG_MORE;
285 bv[i].bv_page = pages[i];
286 bv[i].bv_len = to - offset;
287 bv[i].bv_offset = offset;
288 bytes += to - offset;
292 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
296 * attach the data from a bunch of pages on an inode to a call
298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
300 struct bio_vec bv[AFS_BVEC_MAX];
301 unsigned int bytes, nr, loop, offset;
302 pgoff_t first = call->first, last = call->last;
305 offset = call->first_offset;
306 call->first_offset = 0;
309 afs_load_bvec(call, msg, bv, first, last, offset);
311 bytes = msg->msg_iter.count;
312 nr = msg->msg_iter.nr_segs;
314 /* Have to change the state *before* sending the last
315 * packet as RxRPC might give us the reply before it
316 * returns from sending the request.
318 if (first + nr - 1 >= last)
319 call->state = AFS_CALL_AWAIT_REPLY;
320 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
322 for (loop = 0; loop < nr; loop++)
323 put_page(bv[loop].bv_page);
328 } while (first <= last);
336 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
339 struct sockaddr_rxrpc srx;
340 struct rxrpc_call *rxcall;
348 _enter("%x,{%d},", addr->s_addr, ntohs(call->port));
350 ASSERT(call->type != NULL);
351 ASSERT(call->type->name != NULL);
353 _debug("____MAKE %p{%s,%x} [%d]____",
354 call, call->type->name, key_serial(call->key),
355 atomic_read(&afs_outstanding_calls));
359 memset(&srx, 0, sizeof(srx));
360 srx.srx_family = AF_RXRPC;
361 srx.srx_service = call->service_id;
362 srx.transport_type = SOCK_DGRAM;
363 srx.transport_len = sizeof(srx.transport.sin);
364 srx.transport.sin.sin_family = AF_INET;
365 srx.transport.sin.sin_port = call->port;
366 memcpy(&srx.transport.sin.sin_addr, addr, 4);
368 /* Work out the length we're going to transmit. This is awkward for
369 * calls such as FS.StoreData where there's an extra injection of data
370 * after the initial fixed part.
372 tx_total_len = call->request_size;
373 if (call->send_pages) {
374 tx_total_len += call->last_to - call->first_offset;
375 tx_total_len += (call->last - call->first) * PAGE_SIZE;
379 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
383 afs_wake_up_async_call :
384 afs_wake_up_call_waiter));
386 if (IS_ERR(rxcall)) {
387 ret = PTR_ERR(rxcall);
388 goto error_kill_call;
391 call->rxcall = rxcall;
393 /* send the request */
394 iov[0].iov_base = call->request;
395 iov[0].iov_len = call->request_size;
399 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
401 msg.msg_control = NULL;
402 msg.msg_controllen = 0;
403 msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
405 /* We have to change the state *before* sending the last packet as
406 * rxrpc might give us the reply before it returns from sending the
407 * request. Further, if the send fails, we may already have been given
408 * a notification and may have collected it.
410 if (!call->send_pages)
411 call->state = AFS_CALL_AWAIT_REPLY;
412 ret = rxrpc_kernel_send_data(afs_socket, rxcall,
413 &msg, call->request_size);
417 if (call->send_pages) {
418 ret = afs_send_pages(call, &msg);
423 /* at this point, an async call may no longer exist as it may have
424 * already completed */
428 return afs_wait_for_call_to_complete(call);
431 call->state = AFS_CALL_COMPLETE;
432 if (ret != -ECONNABORTED) {
433 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
438 rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
440 ret = call->type->abort_to_error(abort_code);
444 _leave(" = %d", ret);
449 * deliver messages to a call
451 static void afs_deliver_to_call(struct afs_call *call)
456 _enter("%s", call->type->name);
458 while (call->state == AFS_CALL_AWAIT_REPLY ||
459 call->state == AFS_CALL_AWAIT_OP_ID ||
460 call->state == AFS_CALL_AWAIT_REQUEST ||
461 call->state == AFS_CALL_AWAIT_ACK
463 if (call->state == AFS_CALL_AWAIT_ACK) {
465 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
466 NULL, 0, &offset, false,
468 trace_afs_recv_data(call, 0, offset, false, ret);
470 if (ret == -EINPROGRESS || ret == -EAGAIN)
472 if (ret == 1 || ret < 0) {
473 call->state = AFS_CALL_COMPLETE;
479 ret = call->type->deliver(call);
482 if (call->state == AFS_CALL_AWAIT_REPLY)
483 call->state = AFS_CALL_COMPLETE;
491 abort_code = RX_CALL_DEAD;
492 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
493 abort_code, ret, "KNC");
496 abort_code = RXGEN_OPCODE;
497 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
498 abort_code, ret, "KIV");
504 abort_code = RXGEN_CC_UNMARSHAL;
505 if (call->state != AFS_CALL_AWAIT_REPLY)
506 abort_code = RXGEN_SS_UNMARSHAL;
507 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
508 abort_code, -EBADMSG, "KUM");
514 if (call->state == AFS_CALL_COMPLETE && call->incoming)
523 call->state = AFS_CALL_COMPLETE;
528 * wait synchronously for a call to complete
530 static int afs_wait_for_call_to_complete(struct afs_call *call)
534 DECLARE_WAITQUEUE(myself, current);
538 add_wait_queue(&call->waitq, &myself);
540 set_current_state(TASK_INTERRUPTIBLE);
542 /* deliver any messages that are in the queue */
543 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
544 call->need_attention = false;
545 __set_current_state(TASK_RUNNING);
546 afs_deliver_to_call(call);
550 if (call->state == AFS_CALL_COMPLETE ||
551 signal_pending(current))
556 remove_wait_queue(&call->waitq, &myself);
557 __set_current_state(TASK_RUNNING);
559 /* Kill off the call if it's still live. */
560 if (call->state < AFS_CALL_COMPLETE) {
561 _debug("call interrupted");
562 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
563 RX_USER_ABORT, -EINTR, "KWI");
567 _debug("call complete");
569 _leave(" = %d", ret);
574 * wake up a waiting call
576 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
577 unsigned long call_user_ID)
579 struct afs_call *call = (struct afs_call *)call_user_ID;
581 call->need_attention = true;
582 wake_up(&call->waitq);
586 * wake up an asynchronous call
588 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
589 unsigned long call_user_ID)
591 struct afs_call *call = (struct afs_call *)call_user_ID;
594 trace_afs_notify_call(rxcall, call);
595 call->need_attention = true;
597 u = __atomic_add_unless(&call->usage, 1, 0);
599 trace_afs_call(call, afs_call_trace_wake, u,
600 atomic_read(&afs_outstanding_calls),
601 __builtin_return_address(0));
603 if (!queue_work(afs_async_calls, &call->async_work))
609 * Delete an asynchronous call. The work item carries a ref to the call struct
610 * that we need to release.
612 static void afs_delete_async_call(struct work_struct *work)
614 struct afs_call *call = container_of(work, struct afs_call, async_work);
624 * Perform I/O processing on an asynchronous call. The work item carries a ref
625 * to the call struct that we either need to release or to pass on.
627 static void afs_process_async_call(struct work_struct *work)
629 struct afs_call *call = container_of(work, struct afs_call, async_work);
633 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
634 call->need_attention = false;
635 afs_deliver_to_call(call);
638 if (call->state == AFS_CALL_COMPLETE) {
641 /* We have two refs to release - one from the alloc and one
642 * queued with the work item - and we can't just deallocate the
643 * call because the work item may be queued again.
645 call->async_work.func = afs_delete_async_call;
646 if (!queue_work(afs_async_calls, &call->async_work))
654 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
656 struct afs_call *call = (struct afs_call *)user_call_ID;
658 call->rxcall = rxcall;
662 * Charge the incoming call preallocation.
664 static void afs_charge_preallocation(struct work_struct *work)
666 struct afs_call *call = afs_spare_incoming_call;
670 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
675 call->state = AFS_CALL_AWAIT_OP_ID;
676 init_waitqueue_head(&call->waitq);
679 if (rxrpc_kernel_charge_accept(afs_socket,
680 afs_wake_up_async_call,
687 afs_spare_incoming_call = call;
691 * Discard a preallocated call when a socket is shut down.
693 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
694 unsigned long user_call_ID)
696 struct afs_call *call = (struct afs_call *)user_call_ID;
703 * Notification of an incoming call.
705 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
706 unsigned long user_call_ID)
708 queue_work(afs_wq, &afs_charge_preallocation_work);
712 * Grab the operation ID from an incoming cache manager call. The socket
713 * buffer is discarded on error or if we don't yet have sufficient data.
715 static int afs_deliver_cm_op_id(struct afs_call *call)
719 _enter("{%zu}", call->offset);
721 ASSERTCMP(call->offset, <, 4);
723 /* the operation ID forms the first four bytes of the request data */
724 ret = afs_extract_data(call, &call->tmp, 4, true);
728 call->operation_ID = ntohl(call->tmp);
729 call->state = AFS_CALL_AWAIT_REQUEST;
732 /* ask the cache manager to route the call (it'll change the call type
734 if (!afs_cm_incoming_call(call))
737 trace_afs_cb_call(call);
739 /* pass responsibility for the remainer of this message off to the
740 * cache manager op */
741 return call->type->deliver(call);
745 * send an empty reply
747 void afs_send_empty_reply(struct afs_call *call)
753 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0);
757 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
758 msg.msg_control = NULL;
759 msg.msg_controllen = 0;
762 call->state = AFS_CALL_AWAIT_ACK;
763 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
765 _leave(" [replied]");
770 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
771 RX_USER_ABORT, -ENOMEM, "KOO");
779 * send a simple reply
781 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
789 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len);
791 iov[0].iov_base = (void *) buf;
792 iov[0].iov_len = len;
795 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
796 msg.msg_control = NULL;
797 msg.msg_controllen = 0;
800 call->state = AFS_CALL_AWAIT_ACK;
801 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
804 _leave(" [replied]");
810 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
811 RX_USER_ABORT, -ENOMEM, "KOO");
817 * Extract a piece of data from the received data socket buffers.
819 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
824 _enter("{%s,%zu},,%zu,%d",
825 call->type->name, call->offset, count, want_more);
827 ASSERTCMP(call->offset, <=, count);
829 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
830 buf, count, &call->offset,
831 want_more, &call->abort_code);
832 trace_afs_recv_data(call, count, call->offset, want_more, ret);
833 if (ret == 0 || ret == -EAGAIN)
837 switch (call->state) {
838 case AFS_CALL_AWAIT_REPLY:
839 call->state = AFS_CALL_COMPLETE;
841 case AFS_CALL_AWAIT_REQUEST:
842 call->state = AFS_CALL_REPLYING;
850 if (ret == -ECONNABORTED)
851 call->error = call->type->abort_to_error(call->abort_code);
854 call->state = AFS_CALL_COMPLETE;