1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
4 * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/kernel.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
34 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
35 static int afs_unlink(struct inode *dir, struct dentry *dentry);
36 static int afs_link(struct dentry *from, struct inode *dir,
37 struct dentry *dentry);
38 static int afs_symlink(struct inode *dir, struct dentry *dentry,
40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
41 struct inode *new_dir, struct dentry *new_dentry,
43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
47 static int afs_dir_set_page_dirty(struct page *page)
49 BUG(); /* This should never happen. */
52 const struct file_operations afs_dir_file_operations = {
54 .release = afs_release,
55 .iterate_shared = afs_readdir,
57 .llseek = generic_file_llseek,
60 const struct inode_operations afs_dir_inode_operations = {
65 .symlink = afs_symlink,
69 .permission = afs_permission,
70 .getattr = afs_getattr,
71 .setattr = afs_setattr,
72 .listxattr = afs_listxattr,
75 const struct address_space_operations afs_dir_aops = {
76 .set_page_dirty = afs_dir_set_page_dirty,
77 .releasepage = afs_dir_releasepage,
78 .invalidatepage = afs_dir_invalidatepage,
81 const struct dentry_operations afs_fs_dentry_operations = {
82 .d_revalidate = afs_d_revalidate,
83 .d_delete = afs_d_delete,
84 .d_release = afs_d_release,
85 .d_automount = afs_d_automount,
89 struct afs_lookup_one_cookie {
90 struct dir_context ctx;
96 struct afs_lookup_cookie {
97 struct dir_context ctx;
101 unsigned short nr_fids;
102 struct afs_fid fids[50];
106 * check that a directory page is valid
108 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
111 struct afs_xdr_dir_page *dbuf;
115 /* Determine how many magic numbers there should be in this page, but
116 * we must take care because the directory may change size under us.
118 off = page_offset(page);
122 latter = i_size - off;
123 if (latter >= PAGE_SIZE)
127 qty /= sizeof(union afs_xdr_dir_block);
131 for (tmp = 0; tmp < qty; tmp++) {
132 if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
133 printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
134 __func__, dvnode->vfs_inode.i_ino, tmp, qty,
135 ntohs(dbuf->blocks[tmp].hdr.magic));
136 trace_afs_dir_check_failed(dvnode, off, i_size);
138 trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
142 /* Make sure each block is NUL terminated so we can reasonably
143 * use string functions on it. The filenames in the page
144 * *should* be NUL-terminated anyway.
146 ((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
152 afs_stat_v(dvnode, n_read_dir);
160 * Check the contents of a directory that we've just read.
162 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
164 struct afs_xdr_dir_page *dbuf;
165 unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
167 for (i = 0; i < req->nr_pages; i++)
168 if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
173 pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
174 dvnode->fid.vid, dvnode->fid.vnode,
175 req->file_size, req->len, req->actual_len, req->remain);
176 pr_warn("DIR %llx %x %x %x\n",
177 req->pos, req->index, req->nr_pages, req->offset);
179 for (i = 0; i < req->nr_pages; i++) {
180 dbuf = kmap(req->pages[i]);
181 for (j = 0; j < qty; j++) {
182 union afs_xdr_dir_block *block = &dbuf->blocks[j];
184 pr_warn("[%02x] %32phN\n", i * qty + j, block);
186 kunmap(req->pages[i]);
192 * open an AFS directory file
194 static int afs_dir_open(struct inode *inode, struct file *file)
196 _enter("{%lu}", inode->i_ino);
198 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
199 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
201 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
204 return afs_open(inode, file);
208 * Read the directory into the pagecache in one go, scrubbing the previous
209 * contents. The list of pages is returned, pinning them so that they don't
210 * get reclaimed during the iteration.
212 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
213 __acquires(&dvnode->validate_lock)
215 struct afs_read *req;
217 int nr_pages, nr_inline, i, n;
221 i_size = i_size_read(&dvnode->vfs_inode);
223 return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
224 if (i_size > 2048 * 1024) {
225 trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
226 return ERR_PTR(-EFBIG);
229 _enter("%llu", i_size);
231 /* Get a request record to hold the page list. We want to hold it
232 * inline if we can, but we don't want to make an order 1 allocation.
234 nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
235 nr_inline = nr_pages;
236 if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
239 req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
241 return ERR_PTR(-ENOMEM);
243 refcount_set(&req->usage, 1);
244 req->nr_pages = nr_pages;
245 req->actual_len = i_size; /* May change */
246 req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
247 req->data_version = dvnode->status.data_version; /* May change */
249 req->pages = req->array;
251 req->pages = kcalloc(nr_pages, sizeof(struct page *),
257 /* Get a list of all the pages that hold or will hold the directory
258 * content. We need to fill in any gaps that we might find where the
259 * memory reclaimer has been at work. If there are any gaps, we will
260 * need to reread the entire directory contents.
264 n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
267 _debug("find %u at %u/%u", n, i, req->nr_pages);
269 gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
271 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
272 afs_stat_v(dvnode, n_inval);
275 req->pages[i] = __page_cache_alloc(gfp);
278 ret = add_to_page_cache_lru(req->pages[i],
279 dvnode->vfs_inode.i_mapping,
284 set_page_private(req->pages[i], 1);
285 SetPagePrivate(req->pages[i]);
286 unlock_page(req->pages[i]);
291 } while (i < req->nr_pages);
293 /* If we're going to reload, we need to lock all the pages to prevent
297 if (down_read_killable(&dvnode->validate_lock) < 0)
300 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
303 up_read(&dvnode->validate_lock);
304 if (down_write_killable(&dvnode->validate_lock) < 0)
307 if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
308 trace_afs_reload_dir(dvnode);
309 ret = afs_fetch_data(dvnode, key, req);
313 task_io_account_read(PAGE_SIZE * req->nr_pages);
315 if (req->len < req->file_size)
316 goto content_has_grown;
318 /* Validate the data we just read. */
320 if (!afs_dir_check_pages(dvnode, req))
323 // TODO: Trim excess pages
325 set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
328 downgrade_write(&dvnode->validate_lock);
333 up_write(&dvnode->validate_lock);
336 _leave(" = %d", ret);
340 up_write(&dvnode->validate_lock);
346 * deal with one block in an AFS directory
348 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
349 struct dir_context *ctx,
350 union afs_xdr_dir_block *block,
353 union afs_xdr_dirent *dire;
354 unsigned offset, next, curr;
358 _enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
360 curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
362 /* walk through the block, an entry at a time */
363 for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
364 offset < AFS_DIR_SLOTS_PER_BLOCK;
369 /* skip entries marked unused in the bitmap */
370 if (!(block->hdr.bitmap[offset / 8] &
371 (1 << (offset % 8)))) {
372 _debug("ENT[%zu.%u]: unused",
373 blkoff / sizeof(union afs_xdr_dir_block), offset);
376 next * sizeof(union afs_xdr_dirent);
380 /* got a valid entry */
381 dire = &block->dirents[offset];
382 nlen = strnlen(dire->u.name,
384 offset * sizeof(union afs_xdr_dirent));
386 _debug("ENT[%zu.%u]: %s %zu \"%s\"",
387 blkoff / sizeof(union afs_xdr_dir_block), offset,
388 (offset < curr ? "skip" : "fill"),
391 /* work out where the next possible entry is */
392 for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) {
393 if (next >= AFS_DIR_SLOTS_PER_BLOCK) {
394 _debug("ENT[%zu.%u]:"
395 " %u travelled beyond end dir block"
397 blkoff / sizeof(union afs_xdr_dir_block),
398 offset, next, tmp, nlen);
399 return afs_bad(dvnode, afs_file_error_dir_over_end);
401 if (!(block->hdr.bitmap[next / 8] &
402 (1 << (next % 8)))) {
403 _debug("ENT[%zu.%u]:"
404 " %u unmarked extension (len %u/%zu)",
405 blkoff / sizeof(union afs_xdr_dir_block),
406 offset, next, tmp, nlen);
407 return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
410 _debug("ENT[%zu.%u]: ext %u/%zu",
411 blkoff / sizeof(union afs_xdr_dir_block),
416 /* skip if starts before the current position */
420 /* found the next entry */
421 if (!dir_emit(ctx, dire->u.name, nlen,
422 ntohl(dire->u.vnode),
423 (ctx->actor == afs_lookup_filldir ||
424 ctx->actor == afs_lookup_one_filldir)?
425 ntohl(dire->u.unique) : DT_UNKNOWN)) {
426 _leave(" = 0 [full]");
430 ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
433 _leave(" = 1 [more]");
438 * iterate through the data blob that lists the contents of an AFS directory
440 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
441 struct key *key, afs_dataversion_t *_dir_version)
443 struct afs_vnode *dvnode = AFS_FS_I(dir);
444 struct afs_xdr_dir_page *dbuf;
445 union afs_xdr_dir_block *dblock;
446 struct afs_read *req;
448 unsigned blkoff, limit;
451 _enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
453 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
454 _leave(" = -ESTALE");
458 req = afs_read_dir(dvnode, key);
461 *_dir_version = req->data_version;
463 /* round the file position up to the next entry boundary */
464 ctx->pos += sizeof(union afs_xdr_dirent) - 1;
465 ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
467 /* walk through the blocks in sequence */
469 while (ctx->pos < req->actual_len) {
470 blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
472 /* Fetch the appropriate page from the directory and re-add it
475 page = req->pages[blkoff / PAGE_SIZE];
477 ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
480 mark_page_accessed(page);
482 limit = blkoff & ~(PAGE_SIZE - 1);
486 /* deal with the individual blocks stashed on this page */
488 dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
489 sizeof(union afs_xdr_dir_block)];
490 ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
496 blkoff += sizeof(union afs_xdr_dir_block);
498 } while (ctx->pos < dir->i_size && blkoff < limit);
505 up_read(&dvnode->validate_lock);
507 _leave(" = %d", ret);
512 * read an AFS directory
514 static int afs_readdir(struct file *file, struct dir_context *ctx)
516 afs_dataversion_t dir_version;
518 return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
523 * Search the directory for a single name
524 * - if afs_dir_iterate_block() spots this function, it'll pass the FID
525 * uniquifier through dtype
527 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
528 int nlen, loff_t fpos, u64 ino, unsigned dtype)
530 struct afs_lookup_one_cookie *cookie =
531 container_of(ctx, struct afs_lookup_one_cookie, ctx);
533 _enter("{%s,%u},%s,%u,,%llu,%u",
534 cookie->name.name, cookie->name.len, name, nlen,
535 (unsigned long long) ino, dtype);
537 /* insanity checks first */
538 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
539 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
541 if (cookie->name.len != nlen ||
542 memcmp(cookie->name.name, name, nlen) != 0) {
547 cookie->fid.vnode = ino;
548 cookie->fid.unique = dtype;
551 _leave(" = -1 [found]");
556 * Do a lookup of a single name in a directory
557 * - just returns the FID the dentry name maps to if found
559 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
560 struct afs_fid *fid, struct key *key,
561 afs_dataversion_t *_dir_version)
563 struct afs_super_info *as = dir->i_sb->s_fs_info;
564 struct afs_lookup_one_cookie cookie = {
565 .ctx.actor = afs_lookup_one_filldir,
566 .name = dentry->d_name,
567 .fid.vid = as->volume->vid
571 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
573 /* search the directory */
574 ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
576 _leave(" = %d [iter]", ret);
582 _leave(" = -ENOENT [not found]");
587 _leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
592 * search the directory for a name
593 * - if afs_dir_iterate_block() spots this function, it'll pass the FID
594 * uniquifier through dtype
596 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
597 int nlen, loff_t fpos, u64 ino, unsigned dtype)
599 struct afs_lookup_cookie *cookie =
600 container_of(ctx, struct afs_lookup_cookie, ctx);
603 _enter("{%s,%u},%s,%u,,%llu,%u",
604 cookie->name.name, cookie->name.len, name, nlen,
605 (unsigned long long) ino, dtype);
607 /* insanity checks first */
608 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
609 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
612 if (cookie->nr_fids < 50) {
613 cookie->fids[cookie->nr_fids].vnode = ino;
614 cookie->fids[cookie->nr_fids].unique = dtype;
617 } else if (cookie->name.len == nlen &&
618 memcmp(cookie->name.name, name, nlen) == 0) {
619 cookie->fids[1].vnode = ino;
620 cookie->fids[1].unique = dtype;
622 if (cookie->one_only)
626 ret = cookie->nr_fids >= 50 ? -1 : 0;
627 _leave(" = %d", ret);
632 * Deal with the result of a successful lookup operation. Turn all the files
633 * into inodes and save the first one - which is the one we actually want.
635 static void afs_do_lookup_success(struct afs_operation *op)
637 struct afs_vnode_param *vp;
638 struct afs_vnode *vnode;
645 for (i = 0; i < op->nr_files; i++) {
649 abort_code = vp->scb.status.abort_code;
650 if (abort_code != 0) {
651 op->ac.abort_code = abort_code;
652 op->error = afs_abort_to_error(abort_code);
661 vp = &op->more_files[i - 2];
665 if (!vp->scb.have_status && !vp->scb.have_error)
668 _debug("do [%u]", i);
670 if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags))
671 afs_vnode_commit_status(op, vp);
672 } else if (vp->scb.status.abort_code == 0) {
673 inode = afs_iget(op, vp);
674 if (!IS_ERR(inode)) {
675 vnode = AFS_FS_I(inode);
676 afs_cache_permit(vnode, op->key,
677 0 /* Assume vnode->cb_break is 0 */ +
681 vp->put_vnode = true;
684 _debug("- abort %d %llx:%llx.%x",
685 vp->scb.status.abort_code,
686 vp->fid.vid, vp->fid.vnode, vp->fid.unique);
693 static const struct afs_operation_ops afs_inline_bulk_status_operation = {
694 .issue_afs_rpc = afs_fs_inline_bulk_status,
695 .issue_yfs_rpc = yfs_fs_inline_bulk_status,
696 .success = afs_do_lookup_success,
699 static const struct afs_operation_ops afs_lookup_fetch_status_operation = {
700 .issue_afs_rpc = afs_fs_fetch_status,
701 .issue_yfs_rpc = yfs_fs_fetch_status,
702 .success = afs_do_lookup_success,
703 .aborted = afs_check_for_remote_deletion,
707 * See if we know that the server we expect to use doesn't support
708 * FS.InlineBulkStatus.
710 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode)
712 struct afs_server_list *slist;
713 struct afs_volume *volume = dvnode->volume;
714 struct afs_server *server;
718 if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags))
722 slist = rcu_dereference(volume->servers);
724 for (i = 0; i < slist->nr_servers; i++) {
725 server = slist->servers[i].server;
726 if (server == dvnode->cb_server) {
727 if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
738 * Do a lookup in a directory. We make use of bulk lookup to query a slew of
739 * files in one go and create inodes for them. The inode of the file we were
740 * asked for is returned.
742 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
745 struct afs_lookup_cookie *cookie;
746 struct afs_vnode_param *vp;
747 struct afs_operation *op;
748 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
749 struct inode *inode = NULL, *ti;
750 afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
754 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
756 cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
758 return ERR_PTR(-ENOMEM);
760 for (i = 0; i < ARRAY_SIZE(cookie->fids); i++)
761 cookie->fids[i].vid = dvnode->fid.vid;
762 cookie->ctx.actor = afs_lookup_filldir;
763 cookie->name = dentry->d_name;
764 cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want
765 * and slot 1 for the directory */
767 if (!afs_server_supports_ibulk(dvnode))
768 cookie->one_only = true;
770 /* search the directory */
771 ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
775 dentry->d_fsdata = (void *)(unsigned long)data_version;
781 /* Check to see if we already have an inode for the primary fid. */
782 inode = ilookup5(dir->i_sb, cookie->fids[1].vnode,
783 afs_ilookup5_test_by_fid, &cookie->fids[1]);
785 goto out; /* We do */
787 /* Okay, we didn't find it. We need to query the server - and whilst
788 * we're doing that, we're going to attempt to look up a bunch of other
791 op = afs_alloc_operation(NULL, dvnode->volume);
797 afs_op_set_vnode(op, 0, dvnode);
798 afs_op_set_fid(op, 1, &cookie->fids[1]);
800 op->nr_files = cookie->nr_fids;
801 _debug("nr_files %u", op->nr_files);
803 /* Need space for examining all the selected files */
805 if (op->nr_files > 2) {
806 op->more_files = kvcalloc(op->nr_files - 2,
807 sizeof(struct afs_vnode_param),
812 for (i = 2; i < op->nr_files; i++) {
813 vp = &op->more_files[i - 2];
814 vp->fid = cookie->fids[i];
816 /* Find any inodes that already exist and get their
819 ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode,
820 afs_ilookup5_test_by_fid, &vp->fid);
821 if (!IS_ERR_OR_NULL(ti)) {
822 vnode = AFS_FS_I(ti);
823 vp->dv_before = vnode->status.data_version;
824 vp->cb_break_before = afs_calc_vnode_cb_break(vnode);
826 vp->put_vnode = true;
831 /* Try FS.InlineBulkStatus first. Abort codes for the individual
832 * lookups contained therein are stored in the reply without aborting
833 * the whole operation.
835 op->error = -ENOTSUPP;
836 if (!cookie->one_only) {
837 op->ops = &afs_inline_bulk_status_operation;
838 afs_begin_vnode_operation(op);
839 afs_wait_for_operation(op);
842 if (op->error == -ENOTSUPP) {
843 /* We could try FS.BulkStatus next, but this aborts the entire
844 * op if any of the lookups fails - so, for the moment, revert
845 * to FS.FetchStatus for op->file[1].
847 op->fetch_status.which = 1;
848 op->ops = &afs_lookup_fetch_status_operation;
849 afs_begin_vnode_operation(op);
850 afs_wait_for_operation(op);
852 inode = ERR_PTR(op->error);
855 if (op->error == 0) {
856 inode = &op->file[1].vnode->vfs_inode;
857 op->file[1].vnode = NULL;
860 if (op->file[0].scb.have_status)
861 dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version;
863 dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before;
864 ret = afs_put_operation(op);
868 return inode ?: ERR_PTR(ret);
872 * Look up an entry in a directory with @sys substitution.
874 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
877 struct afs_sysnames *subs;
878 struct afs_net *net = afs_i2net(dir);
880 char *buf, *p, *name;
885 ret = ERR_PTR(-ENOMEM);
886 p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
889 if (dentry->d_name.len > 4) {
890 memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
891 p += dentry->d_name.len - 4;
894 /* There is an ordered list of substitutes that we have to try. */
895 read_lock(&net->sysnames_lock);
896 subs = net->sysnames;
897 refcount_inc(&subs->usage);
898 read_unlock(&net->sysnames_lock);
900 for (i = 0; i < subs->nr; i++) {
901 name = subs->subs[i];
902 len = dentry->d_name.len - 4 + strlen(name);
903 if (len >= AFSNAMEMAX) {
904 ret = ERR_PTR(-ENAMETOOLONG);
909 ret = lookup_one_len(buf, dentry->d_parent, len);
910 if (IS_ERR(ret) || d_is_positive(ret))
915 /* We don't want to d_add() the @sys dentry here as we don't want to
916 * the cached dentry to hide changes to the sysnames list.
920 afs_put_sysnames(subs);
928 * look up an entry in a directory
930 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
933 struct afs_vnode *dvnode = AFS_FS_I(dir);
934 struct afs_fid fid = {};
940 _enter("{%llx:%llu},%p{%pd},",
941 dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
943 ASSERTCMP(d_inode(dentry), ==, NULL);
945 if (dentry->d_name.len >= AFSNAMEMAX) {
946 _leave(" = -ENAMETOOLONG");
947 return ERR_PTR(-ENAMETOOLONG);
950 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
951 _leave(" = -ESTALE");
952 return ERR_PTR(-ESTALE);
955 key = afs_request_key(dvnode->volume->cell);
957 _leave(" = %ld [key]", PTR_ERR(key));
958 return ERR_CAST(key);
961 ret = afs_validate(dvnode, key);
964 _leave(" = %d [val]", ret);
968 if (dentry->d_name.len >= 4 &&
969 dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
970 dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
971 dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
972 dentry->d_name.name[dentry->d_name.len - 1] == 's')
973 return afs_lookup_atsys(dir, dentry, key);
975 afs_stat_v(dvnode, n_lookup);
976 inode = afs_do_lookup(dir, dentry, key);
978 if (inode == ERR_PTR(-ENOENT))
979 inode = afs_try_auto_mntpt(dentry, dir);
981 if (!IS_ERR_OR_NULL(inode))
982 fid = AFS_FS_I(inode)->fid;
984 _debug("splice %p", dentry->d_inode);
985 d = d_splice_alias(inode, dentry);
986 if (!IS_ERR_OR_NULL(d)) {
987 d->d_fsdata = dentry->d_fsdata;
988 trace_afs_lookup(dvnode, &d->d_name, &fid);
990 trace_afs_lookup(dvnode, &dentry->d_name, &fid);
997 * Check the validity of a dentry under RCU conditions.
999 static int afs_d_revalidate_rcu(struct dentry *dentry)
1001 struct afs_vnode *dvnode, *vnode;
1002 struct dentry *parent;
1003 struct inode *dir, *inode;
1004 long dir_version, de_version;
1006 _enter("%p", dentry);
1008 /* Check the parent directory is still valid first. */
1009 parent = READ_ONCE(dentry->d_parent);
1010 dir = d_inode_rcu(parent);
1013 dvnode = AFS_FS_I(dir);
1014 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
1017 if (!afs_check_validity(dvnode))
1020 /* We only need to invalidate a dentry if the server's copy changed
1021 * behind our back. If we made the change, it's no problem. Note that
1022 * on a 32-bit system, we only have 32 bits in the dentry to store the
1025 dir_version = (long)READ_ONCE(dvnode->status.data_version);
1026 de_version = (long)READ_ONCE(dentry->d_fsdata);
1027 if (de_version != dir_version) {
1028 dir_version = (long)READ_ONCE(dvnode->invalid_before);
1029 if (de_version - dir_version < 0)
1033 /* Check to see if the vnode referred to by the dentry still
1036 if (d_really_is_positive(dentry)) {
1037 inode = d_inode_rcu(dentry);
1039 vnode = AFS_FS_I(inode);
1040 if (!afs_check_validity(vnode))
1045 return 1; /* Still valid */
1049 * check that a dentry lookup hit has found a valid entry
1050 * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1053 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1055 struct afs_vnode *vnode, *dir;
1057 struct dentry *parent;
1058 struct inode *inode;
1060 afs_dataversion_t dir_version, invalid_before;
1064 if (flags & LOOKUP_RCU)
1065 return afs_d_revalidate_rcu(dentry);
1067 if (d_really_is_positive(dentry)) {
1068 vnode = AFS_FS_I(d_inode(dentry));
1069 _enter("{v={%llx:%llu} n=%pd fl=%lx},",
1070 vnode->fid.vid, vnode->fid.vnode, dentry,
1073 _enter("{neg n=%pd}", dentry);
1076 key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1080 if (d_really_is_positive(dentry)) {
1081 inode = d_inode(dentry);
1083 vnode = AFS_FS_I(inode);
1084 afs_validate(vnode, key);
1085 if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1090 /* lock down the parent dentry so we can peer at it */
1091 parent = dget_parent(dentry);
1092 dir = AFS_FS_I(d_inode(parent));
1094 /* validate the parent directory */
1095 afs_validate(dir, key);
1097 if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1098 _debug("%pd: parent dir deleted", dentry);
1099 goto out_bad_parent;
1102 /* We only need to invalidate a dentry if the server's copy changed
1103 * behind our back. If we made the change, it's no problem. Note that
1104 * on a 32-bit system, we only have 32 bits in the dentry to store the
1107 dir_version = dir->status.data_version;
1108 de_version = (long)dentry->d_fsdata;
1109 if (de_version == (long)dir_version)
1110 goto out_valid_noupdate;
1112 invalid_before = dir->invalid_before;
1113 if (de_version - (long)invalid_before >= 0)
1116 _debug("dir modified");
1117 afs_stat_v(dir, n_reval);
1119 /* search the directory for this vnode */
1120 ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1123 /* the filename maps to something */
1124 if (d_really_is_negative(dentry))
1125 goto out_bad_parent;
1126 inode = d_inode(dentry);
1127 if (is_bad_inode(inode)) {
1128 printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1130 goto out_bad_parent;
1133 vnode = AFS_FS_I(inode);
1135 /* if the vnode ID has changed, then the dirent points to a
1137 if (fid.vnode != vnode->fid.vnode) {
1138 _debug("%pd: dirent changed [%llu != %llu]",
1144 /* if the vnode ID uniqifier has changed, then the file has
1145 * been deleted and replaced, and the original vnode ID has
1147 if (fid.unique != vnode->fid.unique) {
1148 _debug("%pd: file deleted (uq %u -> %u I:%u)",
1151 vnode->vfs_inode.i_generation);
1152 write_seqlock(&vnode->cb_lock);
1153 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1154 write_sequnlock(&vnode->cb_lock);
1160 /* the filename is unknown */
1161 _debug("%pd: dirent not found", dentry);
1162 if (d_really_is_positive(dentry))
1167 _debug("failed to iterate dir %pd: %d",
1169 goto out_bad_parent;
1173 dentry->d_fsdata = (void *)(unsigned long)dir_version;
1177 _leave(" = 1 [valid]");
1180 /* the dirent, if it exists, now points to a different vnode */
1182 spin_lock(&dentry->d_lock);
1183 dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1184 spin_unlock(&dentry->d_lock);
1187 _debug("dropping dentry %pd2", dentry);
1192 _leave(" = 0 [bad]");
1197 * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1199 * - called from dput() when d_count is going to 0.
1200 * - return 1 to request dentry be unhashed, 0 otherwise
1202 static int afs_d_delete(const struct dentry *dentry)
1204 _enter("%pd", dentry);
1206 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1209 if (d_really_is_positive(dentry) &&
1210 (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) ||
1211 test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1214 _leave(" = 0 [keep]");
1218 _leave(" = 1 [zap]");
1223 * Clean up sillyrename files on dentry removal.
1225 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1227 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1228 afs_silly_iput(dentry, inode);
1233 * handle dentry release
1235 void afs_d_release(struct dentry *dentry)
1237 _enter("%pd", dentry);
1240 void afs_check_for_remote_deletion(struct afs_operation *op)
1242 struct afs_vnode *vnode = op->file[0].vnode;
1244 switch (op->ac.abort_code) {
1246 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1247 afs_break_callback(vnode, afs_cb_break_for_deleted);
1252 * Create a new inode for create/mkdir/symlink
1254 static void afs_vnode_new_inode(struct afs_operation *op)
1256 struct afs_vnode_param *vp = &op->file[1];
1257 struct afs_vnode *vnode;
1258 struct inode *inode;
1262 ASSERTCMP(op->error, ==, 0);
1264 inode = afs_iget(op, vp);
1265 if (IS_ERR(inode)) {
1266 /* ENOMEM or EINTR at a really inconvenient time - just abandon
1267 * the new directory on the server.
1269 op->error = PTR_ERR(inode);
1273 vnode = AFS_FS_I(inode);
1274 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1276 afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb);
1277 d_instantiate(op->dentry, inode);
1280 static void afs_create_success(struct afs_operation *op)
1282 _enter("op=%08x", op->debug_id);
1283 op->ctime = op->file[0].scb.status.mtime_client;
1284 afs_vnode_commit_status(op, &op->file[0]);
1285 afs_update_dentry_version(op, &op->file[0], op->dentry);
1286 afs_vnode_new_inode(op);
1289 static void afs_create_edit_dir(struct afs_operation *op)
1291 struct afs_vnode_param *dvp = &op->file[0];
1292 struct afs_vnode_param *vp = &op->file[1];
1293 struct afs_vnode *dvnode = dvp->vnode;
1295 _enter("op=%08x", op->debug_id);
1297 down_write(&dvnode->validate_lock);
1298 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1299 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1300 afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid,
1302 up_write(&dvnode->validate_lock);
1305 static void afs_create_put(struct afs_operation *op)
1307 _enter("op=%08x", op->debug_id);
1313 static const struct afs_operation_ops afs_mkdir_operation = {
1314 .issue_afs_rpc = afs_fs_make_dir,
1315 .issue_yfs_rpc = yfs_fs_make_dir,
1316 .success = afs_create_success,
1317 .aborted = afs_check_for_remote_deletion,
1318 .edit_dir = afs_create_edit_dir,
1319 .put = afs_create_put,
1323 * create a directory on an AFS filesystem
1325 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1327 struct afs_operation *op;
1328 struct afs_vnode *dvnode = AFS_FS_I(dir);
1330 _enter("{%llx:%llu},{%pd},%ho",
1331 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1333 op = afs_alloc_operation(NULL, dvnode->volume);
1339 afs_op_set_vnode(op, 0, dvnode);
1340 op->file[0].dv_delta = 1;
1341 op->file[0].update_ctime = true;
1342 op->dentry = dentry;
1343 op->create.mode = S_IFDIR | mode;
1344 op->create.reason = afs_edit_dir_for_mkdir;
1345 op->ops = &afs_mkdir_operation;
1346 return afs_do_sync_operation(op);
1350 * Remove a subdir from a directory.
1352 static void afs_dir_remove_subdir(struct dentry *dentry)
1354 if (d_really_is_positive(dentry)) {
1355 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1357 clear_nlink(&vnode->vfs_inode);
1358 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1359 clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1360 clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1364 static void afs_rmdir_success(struct afs_operation *op)
1366 _enter("op=%08x", op->debug_id);
1367 op->ctime = op->file[0].scb.status.mtime_client;
1368 afs_vnode_commit_status(op, &op->file[0]);
1369 afs_update_dentry_version(op, &op->file[0], op->dentry);
1372 static void afs_rmdir_edit_dir(struct afs_operation *op)
1374 struct afs_vnode_param *dvp = &op->file[0];
1375 struct afs_vnode *dvnode = dvp->vnode;
1377 _enter("op=%08x", op->debug_id);
1378 afs_dir_remove_subdir(op->dentry);
1380 down_write(&dvnode->validate_lock);
1381 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1382 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1383 afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1384 afs_edit_dir_for_rmdir);
1385 up_write(&dvnode->validate_lock);
1388 static void afs_rmdir_put(struct afs_operation *op)
1390 _enter("op=%08x", op->debug_id);
1391 if (op->file[1].vnode)
1392 up_write(&op->file[1].vnode->rmdir_lock);
1395 static const struct afs_operation_ops afs_rmdir_operation = {
1396 .issue_afs_rpc = afs_fs_remove_dir,
1397 .issue_yfs_rpc = yfs_fs_remove_dir,
1398 .success = afs_rmdir_success,
1399 .aborted = afs_check_for_remote_deletion,
1400 .edit_dir = afs_rmdir_edit_dir,
1401 .put = afs_rmdir_put,
1405 * remove a directory from an AFS filesystem
1407 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1409 struct afs_operation *op;
1410 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1413 _enter("{%llx:%llu},{%pd}",
1414 dvnode->fid.vid, dvnode->fid.vnode, dentry);
1416 op = afs_alloc_operation(NULL, dvnode->volume);
1420 afs_op_set_vnode(op, 0, dvnode);
1421 op->file[0].dv_delta = 1;
1422 op->file[0].update_ctime = true;
1424 op->dentry = dentry;
1425 op->ops = &afs_rmdir_operation;
1427 /* Try to make sure we have a callback promise on the victim. */
1428 if (d_really_is_positive(dentry)) {
1429 vnode = AFS_FS_I(d_inode(dentry));
1430 ret = afs_validate(vnode, op->key);
1436 ret = down_write_killable(&vnode->rmdir_lock);
1439 op->file[1].vnode = vnode;
1442 return afs_do_sync_operation(op);
1445 return afs_put_operation(op);
1449 * Remove a link to a file or symlink from a directory.
1451 * If the file was not deleted due to excess hard links, the fileserver will
1452 * break the callback promise on the file - if it had one - before it returns
1453 * to us, and if it was deleted, it won't
1455 * However, if we didn't have a callback promise outstanding, or it was
1456 * outstanding on a different server, then it won't break it either...
1458 static void afs_dir_remove_link(struct afs_operation *op)
1460 struct afs_vnode *dvnode = op->file[0].vnode;
1461 struct afs_vnode *vnode = op->file[1].vnode;
1462 struct dentry *dentry = op->dentry;
1465 if (op->error != 0 ||
1466 (op->file[1].scb.have_status && op->file[1].scb.have_error))
1468 if (d_really_is_positive(dentry))
1471 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1473 } else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1474 write_seqlock(&vnode->cb_lock);
1475 drop_nlink(&vnode->vfs_inode);
1476 if (vnode->vfs_inode.i_nlink == 0) {
1477 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1478 __afs_break_callback(vnode, afs_cb_break_for_unlink);
1480 write_sequnlock(&vnode->cb_lock);
1482 afs_break_callback(vnode, afs_cb_break_for_unlink);
1484 if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1485 _debug("AFS_VNODE_DELETED");
1487 ret = afs_validate(vnode, op->key);
1492 _debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error);
1495 static void afs_unlink_success(struct afs_operation *op)
1497 _enter("op=%08x", op->debug_id);
1498 op->ctime = op->file[0].scb.status.mtime_client;
1499 afs_check_dir_conflict(op, &op->file[0]);
1500 afs_vnode_commit_status(op, &op->file[0]);
1501 afs_vnode_commit_status(op, &op->file[1]);
1502 afs_update_dentry_version(op, &op->file[0], op->dentry);
1503 afs_dir_remove_link(op);
1506 static void afs_unlink_edit_dir(struct afs_operation *op)
1508 struct afs_vnode_param *dvp = &op->file[0];
1509 struct afs_vnode *dvnode = dvp->vnode;
1511 _enter("op=%08x", op->debug_id);
1512 down_write(&dvnode->validate_lock);
1513 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1514 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1515 afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1516 afs_edit_dir_for_unlink);
1517 up_write(&dvnode->validate_lock);
1520 static void afs_unlink_put(struct afs_operation *op)
1522 _enter("op=%08x", op->debug_id);
1523 if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT)
1524 d_rehash(op->dentry);
1527 static const struct afs_operation_ops afs_unlink_operation = {
1528 .issue_afs_rpc = afs_fs_remove_file,
1529 .issue_yfs_rpc = yfs_fs_remove_file,
1530 .success = afs_unlink_success,
1531 .aborted = afs_check_for_remote_deletion,
1532 .edit_dir = afs_unlink_edit_dir,
1533 .put = afs_unlink_put,
1537 * Remove a file or symlink from an AFS filesystem.
1539 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1541 struct afs_operation *op;
1542 struct afs_vnode *dvnode = AFS_FS_I(dir);
1543 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1546 _enter("{%llx:%llu},{%pd}",
1547 dvnode->fid.vid, dvnode->fid.vnode, dentry);
1549 if (dentry->d_name.len >= AFSNAMEMAX)
1550 return -ENAMETOOLONG;
1552 op = afs_alloc_operation(NULL, dvnode->volume);
1556 afs_op_set_vnode(op, 0, dvnode);
1557 op->file[0].dv_delta = 1;
1558 op->file[0].update_ctime = true;
1560 /* Try to make sure we have a callback promise on the victim. */
1561 ret = afs_validate(vnode, op->key);
1567 spin_lock(&dentry->d_lock);
1568 if (d_count(dentry) > 1) {
1569 spin_unlock(&dentry->d_lock);
1570 /* Start asynchronous writeout of the inode */
1571 write_inode_now(d_inode(dentry), 0);
1572 op->error = afs_sillyrename(dvnode, vnode, dentry, op->key);
1575 if (!d_unhashed(dentry)) {
1576 /* Prevent a race with RCU lookup. */
1578 op->unlink.need_rehash = true;
1580 spin_unlock(&dentry->d_lock);
1582 op->file[1].vnode = vnode;
1583 op->file[1].update_ctime = true;
1584 op->file[1].op_unlinked = true;
1585 op->dentry = dentry;
1586 op->ops = &afs_unlink_operation;
1587 afs_begin_vnode_operation(op);
1588 afs_wait_for_operation(op);
1590 /* If there was a conflict with a third party, check the status of the
1593 if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) {
1594 op->file[1].update_ctime = false;
1595 op->fetch_status.which = 1;
1596 op->ops = &afs_fetch_status_operation;
1597 afs_begin_vnode_operation(op);
1598 afs_wait_for_operation(op);
1601 return afs_put_operation(op);
1604 return afs_put_operation(op);
1607 static const struct afs_operation_ops afs_create_operation = {
1608 .issue_afs_rpc = afs_fs_create_file,
1609 .issue_yfs_rpc = yfs_fs_create_file,
1610 .success = afs_create_success,
1611 .aborted = afs_check_for_remote_deletion,
1612 .edit_dir = afs_create_edit_dir,
1613 .put = afs_create_put,
1617 * create a regular file on an AFS filesystem
1619 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1622 struct afs_operation *op;
1623 struct afs_vnode *dvnode = AFS_FS_I(dir);
1624 int ret = -ENAMETOOLONG;
1626 _enter("{%llx:%llu},{%pd},%ho",
1627 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1629 if (dentry->d_name.len >= AFSNAMEMAX)
1632 op = afs_alloc_operation(NULL, dvnode->volume);
1638 afs_op_set_vnode(op, 0, dvnode);
1639 op->file[0].dv_delta = 1;
1640 op->file[0].update_ctime = true;
1642 op->dentry = dentry;
1643 op->create.mode = S_IFREG | mode;
1644 op->create.reason = afs_edit_dir_for_create;
1645 op->ops = &afs_create_operation;
1646 return afs_do_sync_operation(op);
1650 _leave(" = %d", ret);
1654 static void afs_link_success(struct afs_operation *op)
1656 struct afs_vnode_param *dvp = &op->file[0];
1657 struct afs_vnode_param *vp = &op->file[1];
1659 _enter("op=%08x", op->debug_id);
1660 op->ctime = dvp->scb.status.mtime_client;
1661 afs_vnode_commit_status(op, dvp);
1662 afs_vnode_commit_status(op, vp);
1663 afs_update_dentry_version(op, dvp, op->dentry);
1664 if (op->dentry_2->d_parent == op->dentry->d_parent)
1665 afs_update_dentry_version(op, dvp, op->dentry_2);
1666 ihold(&vp->vnode->vfs_inode);
1667 d_instantiate(op->dentry, &vp->vnode->vfs_inode);
1670 static void afs_link_put(struct afs_operation *op)
1672 _enter("op=%08x", op->debug_id);
1677 static const struct afs_operation_ops afs_link_operation = {
1678 .issue_afs_rpc = afs_fs_link,
1679 .issue_yfs_rpc = yfs_fs_link,
1680 .success = afs_link_success,
1681 .aborted = afs_check_for_remote_deletion,
1682 .edit_dir = afs_create_edit_dir,
1683 .put = afs_link_put,
1687 * create a hard link between files in an AFS filesystem
1689 static int afs_link(struct dentry *from, struct inode *dir,
1690 struct dentry *dentry)
1692 struct afs_operation *op;
1693 struct afs_vnode *dvnode = AFS_FS_I(dir);
1694 struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1695 int ret = -ENAMETOOLONG;
1697 _enter("{%llx:%llu},{%llx:%llu},{%pd}",
1698 vnode->fid.vid, vnode->fid.vnode,
1699 dvnode->fid.vid, dvnode->fid.vnode,
1702 if (dentry->d_name.len >= AFSNAMEMAX)
1705 op = afs_alloc_operation(NULL, dvnode->volume);
1711 afs_op_set_vnode(op, 0, dvnode);
1712 afs_op_set_vnode(op, 1, vnode);
1713 op->file[0].dv_delta = 1;
1714 op->file[0].update_ctime = true;
1715 op->file[1].update_ctime = true;
1717 op->dentry = dentry;
1718 op->dentry_2 = from;
1719 op->ops = &afs_link_operation;
1720 op->create.reason = afs_edit_dir_for_link;
1721 return afs_do_sync_operation(op);
1725 _leave(" = %d", ret);
1729 static const struct afs_operation_ops afs_symlink_operation = {
1730 .issue_afs_rpc = afs_fs_symlink,
1731 .issue_yfs_rpc = yfs_fs_symlink,
1732 .success = afs_create_success,
1733 .aborted = afs_check_for_remote_deletion,
1734 .edit_dir = afs_create_edit_dir,
1735 .put = afs_create_put,
1739 * create a symlink in an AFS filesystem
1741 static int afs_symlink(struct inode *dir, struct dentry *dentry,
1742 const char *content)
1744 struct afs_operation *op;
1745 struct afs_vnode *dvnode = AFS_FS_I(dir);
1748 _enter("{%llx:%llu},{%pd},%s",
1749 dvnode->fid.vid, dvnode->fid.vnode, dentry,
1752 ret = -ENAMETOOLONG;
1753 if (dentry->d_name.len >= AFSNAMEMAX)
1757 if (strlen(content) >= AFSPATHMAX)
1760 op = afs_alloc_operation(NULL, dvnode->volume);
1766 afs_op_set_vnode(op, 0, dvnode);
1767 op->file[0].dv_delta = 1;
1769 op->dentry = dentry;
1770 op->ops = &afs_symlink_operation;
1771 op->create.reason = afs_edit_dir_for_symlink;
1772 op->create.symlink = content;
1773 return afs_do_sync_operation(op);
1777 _leave(" = %d", ret);
1781 static void afs_rename_success(struct afs_operation *op)
1783 _enter("op=%08x", op->debug_id);
1785 op->ctime = op->file[0].scb.status.mtime_client;
1786 afs_check_dir_conflict(op, &op->file[1]);
1787 afs_vnode_commit_status(op, &op->file[0]);
1788 if (op->file[1].vnode != op->file[0].vnode) {
1789 op->ctime = op->file[1].scb.status.mtime_client;
1790 afs_vnode_commit_status(op, &op->file[1]);
1794 static void afs_rename_edit_dir(struct afs_operation *op)
1796 struct afs_vnode_param *orig_dvp = &op->file[0];
1797 struct afs_vnode_param *new_dvp = &op->file[1];
1798 struct afs_vnode *orig_dvnode = orig_dvp->vnode;
1799 struct afs_vnode *new_dvnode = new_dvp->vnode;
1800 struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry));
1801 struct dentry *old_dentry = op->dentry;
1802 struct dentry *new_dentry = op->dentry_2;
1803 struct inode *new_inode;
1805 _enter("op=%08x", op->debug_id);
1807 if (op->rename.rehash) {
1808 d_rehash(op->rename.rehash);
1809 op->rename.rehash = NULL;
1812 down_write(&orig_dvnode->validate_lock);
1813 if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) &&
1814 orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta)
1815 afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1816 afs_edit_dir_for_rename_0);
1818 if (new_dvnode != orig_dvnode) {
1819 up_write(&orig_dvnode->validate_lock);
1820 down_write(&new_dvnode->validate_lock);
1823 if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) &&
1824 new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) {
1825 if (!op->rename.new_negative)
1826 afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1827 afs_edit_dir_for_rename_1);
1829 afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1830 &vnode->fid, afs_edit_dir_for_rename_2);
1833 new_inode = d_inode(new_dentry);
1835 spin_lock(&new_inode->i_lock);
1836 if (new_inode->i_nlink > 0)
1837 drop_nlink(new_inode);
1838 spin_unlock(&new_inode->i_lock);
1841 /* Now we can update d_fsdata on the dentries to reflect their
1842 * new parent's data_version.
1844 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1845 * to update both dentries with opposing dir versions.
1847 afs_update_dentry_version(op, new_dvp, op->dentry);
1848 afs_update_dentry_version(op, new_dvp, op->dentry_2);
1850 d_move(old_dentry, new_dentry);
1852 up_write(&new_dvnode->validate_lock);
1855 static void afs_rename_put(struct afs_operation *op)
1857 _enter("op=%08x", op->debug_id);
1858 if (op->rename.rehash)
1859 d_rehash(op->rename.rehash);
1860 dput(op->rename.tmp);
1862 d_rehash(op->dentry);
1865 static const struct afs_operation_ops afs_rename_operation = {
1866 .issue_afs_rpc = afs_fs_rename,
1867 .issue_yfs_rpc = yfs_fs_rename,
1868 .success = afs_rename_success,
1869 .edit_dir = afs_rename_edit_dir,
1870 .put = afs_rename_put,
1874 * rename a file in an AFS filesystem and/or move it between directories
1876 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
1877 struct inode *new_dir, struct dentry *new_dentry,
1880 struct afs_operation *op;
1881 struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1887 /* Don't allow silly-rename files be moved around. */
1888 if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1891 vnode = AFS_FS_I(d_inode(old_dentry));
1892 orig_dvnode = AFS_FS_I(old_dir);
1893 new_dvnode = AFS_FS_I(new_dir);
1895 _enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1896 orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1897 vnode->fid.vid, vnode->fid.vnode,
1898 new_dvnode->fid.vid, new_dvnode->fid.vnode,
1901 op = afs_alloc_operation(NULL, orig_dvnode->volume);
1905 afs_op_set_vnode(op, 0, orig_dvnode);
1906 afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */
1907 op->file[0].dv_delta = 1;
1908 op->file[1].dv_delta = 1;
1909 op->file[0].update_ctime = true;
1910 op->file[1].update_ctime = true;
1912 op->dentry = old_dentry;
1913 op->dentry_2 = new_dentry;
1914 op->rename.new_negative = d_is_negative(new_dentry);
1915 op->ops = &afs_rename_operation;
1917 /* For non-directories, check whether the target is busy and if so,
1918 * make a copy of the dentry and then do a silly-rename. If the
1919 * silly-rename succeeds, the copied dentry is hashed and becomes the
1922 if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1923 /* To prevent any new references to the target during the
1924 * rename, we unhash the dentry in advance.
1926 if (!d_unhashed(new_dentry)) {
1928 op->rename.rehash = new_dentry;
1931 if (d_count(new_dentry) > 2) {
1932 /* copy the target dentry's name */
1934 op->rename.tmp = d_alloc(new_dentry->d_parent,
1935 &new_dentry->d_name);
1936 if (!op->rename.tmp)
1939 ret = afs_sillyrename(new_dvnode,
1940 AFS_FS_I(d_inode(new_dentry)),
1941 new_dentry, op->key);
1945 op->dentry_2 = op->rename.tmp;
1946 op->rename.rehash = NULL;
1947 op->rename.new_negative = true;
1951 /* This bit is potentially nasty as there's a potential race with
1952 * afs_d_revalidate{,_rcu}(). We have to change d_fsdata on the dentry
1953 * to reflect it's new parent's new data_version after the op, but
1954 * d_revalidate may see old_dentry between the op having taken place
1955 * and the version being updated.
1957 * So drop the old_dentry for now to make other threads go through
1958 * lookup instead - which we hold a lock against.
1962 return afs_do_sync_operation(op);
1965 return afs_put_operation(op);
1969 * Release a directory page and clean up its private state if it's not busy
1970 * - return true if the page can now be released, false if not
1972 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1974 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1976 _enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1978 set_page_private(page, 0);
1979 ClearPagePrivate(page);
1981 /* The directory will need reloading. */
1982 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1983 afs_stat_v(dvnode, n_relpg);
1988 * invalidate part or all of a page
1989 * - release a page and clean up its private data if offset is 0 (indicating
1992 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
1993 unsigned int length)
1995 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1997 _enter("{%lu},%u,%u", page->index, offset, length);
1999 BUG_ON(!PageLocked(page));
2001 /* The directory will need reloading. */
2002 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2003 afs_stat_v(dvnode, n_inval);
2005 /* we clean up only if the entire page is being invalidated */
2006 if (offset == 0 && length == PAGE_SIZE) {
2007 set_page_private(page, 0);
2008 ClearPagePrivate(page);