btrfs-progs: cleanup nonsense ret value assignment
[platform/upstream/btrfs-progs.git] / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20 #include "ctree.h"
21 #include "free-space-cache.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "extent_io.h"
25 #include "crc32c.h"
26 #include "bitops.h"
27
28 #define CACHE_SECTORSIZE        4096
29 #define BITS_PER_BITMAP         (CACHE_SECTORSIZE * 8)
30 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
31
32 static int link_free_space(struct btrfs_free_space_ctl *ctl,
33                            struct btrfs_free_space *info);
34 static void merge_space_tree(struct btrfs_free_space_ctl *ctl);
35
36 struct io_ctl {
37         void *cur, *orig;
38         void *buffer;
39         struct btrfs_root *root;
40         unsigned long size;
41         u64 total_size;
42         int index;
43         int num_pages;
44         unsigned check_crcs:1;
45 };
46
47 static int io_ctl_init(struct io_ctl *io_ctl, u64 size, u64 ino,
48                        struct btrfs_root *root)
49 {
50         memset(io_ctl, 0, sizeof(struct io_ctl));
51         io_ctl->num_pages = (size + CACHE_SECTORSIZE - 1) / CACHE_SECTORSIZE;
52         io_ctl->buffer = kzalloc(size, GFP_NOFS);
53         if (!io_ctl->buffer)
54                 return -ENOMEM;
55         io_ctl->total_size = size;
56         io_ctl->root = root;
57         if (ino != BTRFS_FREE_INO_OBJECTID)
58                 io_ctl->check_crcs = 1;
59         return 0;
60 }
61
62 static void io_ctl_free(struct io_ctl *io_ctl)
63 {
64         kfree(io_ctl->buffer);
65 }
66
67 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
68 {
69         if (io_ctl->cur) {
70                 io_ctl->cur = NULL;
71                 io_ctl->orig = NULL;
72         }
73 }
74
75 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
76 {
77         BUG_ON(io_ctl->index >= io_ctl->num_pages);
78         io_ctl->cur = io_ctl->buffer + (io_ctl->index++ * CACHE_SECTORSIZE);
79         io_ctl->orig = io_ctl->cur;
80         io_ctl->size = CACHE_SECTORSIZE;
81         if (clear)
82                 memset(io_ctl->cur, 0, CACHE_SECTORSIZE);
83 }
84
85 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
86 {
87         io_ctl_unmap_page(io_ctl);
88 }
89
90 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct btrfs_root *root,
91                                 struct btrfs_path *path, u64 ino)
92 {
93         struct extent_buffer *leaf;
94         struct btrfs_file_extent_item *fi;
95         struct btrfs_key key;
96         u64 bytenr, len;
97         u64 total_read = 0;
98         int ret = 0;
99
100         key.objectid = ino;
101         key.type = BTRFS_EXTENT_DATA_KEY;
102         key.offset = 0;
103
104         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
105         if (ret) {
106                 printf("Couldn't find file extent item for free space inode"
107                        " %Lu\n", ino);
108                 btrfs_release_path(path);
109                 return -EINVAL;
110         }
111
112         while (total_read < io_ctl->total_size) {
113                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
114                         ret = btrfs_next_leaf(root, path);
115                         if (ret) {
116                                 ret = -EINVAL;
117                                 break;
118                         }
119                 }
120                 leaf = path->nodes[0];
121
122                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
123                 if (key.objectid != ino) {
124                         ret = -EINVAL;
125                         break;
126                 }
127
128                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
129                         ret = -EINVAL;
130                         break;
131                 }
132
133                 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
134                                     struct btrfs_file_extent_item);
135                 if (btrfs_file_extent_type(path->nodes[0], fi) !=
136                     BTRFS_FILE_EXTENT_REG) {
137                         printf("Not the file extent type we wanted\n");
138                         ret = -EINVAL;
139                         break;
140                 }
141
142                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi) +
143                         btrfs_file_extent_offset(leaf, fi);
144                 len = btrfs_file_extent_num_bytes(leaf, fi);
145                 ret = read_data_from_disk(root->fs_info,
146                                           io_ctl->buffer + key.offset, bytenr,
147                                           len, 0);
148                 if (ret)
149                         break;
150                 total_read += len;
151                 path->slots[0]++;
152         }
153
154         btrfs_release_path(path);
155         return ret;
156 }
157
158 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
159 {
160         __le64 *gen;
161
162         /*
163          * Skip the crc area.  If we don't check crcs then we just have a 64bit
164          * chunk at the front of the first page.
165          */
166         if (io_ctl->check_crcs) {
167                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
168                 io_ctl->size -= sizeof(u64) +
169                         (sizeof(u32) * io_ctl->num_pages);
170         } else {
171                 io_ctl->cur += sizeof(u64);
172                 io_ctl->size -= sizeof(u64) * 2;
173         }
174
175         gen = io_ctl->cur;
176         if (le64_to_cpu(*gen) != generation) {
177                 printk("btrfs: space cache generation "
178                        "(%Lu) does not match inode (%Lu)\n", *gen,
179                        generation);
180                 io_ctl_unmap_page(io_ctl);
181                 return -EIO;
182         }
183         io_ctl->cur += sizeof(u64);
184         return 0;
185 }
186
187 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
188 {
189         u32 *tmp, val;
190         u32 crc = ~(u32)0;
191         unsigned offset = 0;
192
193         if (!io_ctl->check_crcs) {
194                 io_ctl_map_page(io_ctl, 0);
195                 return 0;
196         }
197
198         if (index == 0)
199                 offset = sizeof(u32) * io_ctl->num_pages;
200
201         tmp = io_ctl->buffer;
202         tmp += index;
203         val = *tmp;
204
205         io_ctl_map_page(io_ctl, 0);
206         crc = crc32c(crc, io_ctl->orig + offset, CACHE_SECTORSIZE - offset);
207         btrfs_csum_final(crc, (char *)&crc);
208         if (val != crc) {
209                 printk("btrfs: csum mismatch on free space cache\n");
210                 io_ctl_unmap_page(io_ctl);
211                 return -EIO;
212         }
213
214         return 0;
215 }
216
217 static int io_ctl_read_entry(struct io_ctl *io_ctl,
218                             struct btrfs_free_space *entry, u8 *type)
219 {
220         struct btrfs_free_space_entry *e;
221         int ret;
222
223         if (!io_ctl->cur) {
224                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
225                 if (ret)
226                         return ret;
227         }
228
229         e = io_ctl->cur;
230         entry->offset = le64_to_cpu(e->offset);
231         entry->bytes = le64_to_cpu(e->bytes);
232         *type = e->type;
233         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
234         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
235
236         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
237                 return 0;
238
239         io_ctl_unmap_page(io_ctl);
240
241         return 0;
242 }
243
244 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
245                               struct btrfs_free_space *entry)
246 {
247         int ret;
248
249         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
250         if (ret)
251                 return ret;
252
253         memcpy(entry->bitmap, io_ctl->cur, CACHE_SECTORSIZE);
254         io_ctl_unmap_page(io_ctl);
255
256         return 0;
257 }
258
259
260 static int __load_free_space_cache(struct btrfs_root *root,
261                             struct btrfs_free_space_ctl *ctl,
262                             struct btrfs_path *path, u64 offset)
263 {
264         struct btrfs_free_space_header *header;
265         struct btrfs_inode_item *inode_item;
266         struct extent_buffer *leaf;
267         struct io_ctl io_ctl;
268         struct btrfs_key key;
269         struct btrfs_key inode_location;
270         struct btrfs_disk_key disk_key;
271         struct btrfs_free_space *e, *n;
272         struct list_head bitmaps;
273         u64 num_entries;
274         u64 num_bitmaps;
275         u64 generation;
276         u64 inode_size;
277         u8 type;
278         int ret = 0;
279
280         INIT_LIST_HEAD(&bitmaps);
281
282         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283         key.offset = offset;
284         key.type = 0;
285
286         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
287         if (ret < 0) {
288                 return 0;
289         } else if (ret > 0) {
290                 btrfs_release_path(path);
291                 return 0;
292         }
293
294         leaf = path->nodes[0];
295         header = btrfs_item_ptr(leaf, path->slots[0],
296                                 struct btrfs_free_space_header);
297         num_entries = btrfs_free_space_entries(leaf, header);
298         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
299         generation = btrfs_free_space_generation(leaf, header);
300         btrfs_free_space_key(leaf, header, &disk_key);
301         btrfs_disk_key_to_cpu(&inode_location, &disk_key);
302         btrfs_release_path(path);
303
304         ret = btrfs_search_slot(NULL, root, &inode_location, path, 0, 0);
305         if (ret) {
306                 printf("Couldn't find free space inode %d\n", ret);
307                 return 0;
308         }
309
310         leaf = path->nodes[0];
311         inode_item = btrfs_item_ptr(leaf, path->slots[0],
312                                     struct btrfs_inode_item);
313         if (btrfs_inode_generation(leaf, inode_item) != generation) {
314                 printf("free space inode generation (%llu) did not match "
315                        "free space cache generation (%llu)\n",
316                        (unsigned long long)btrfs_inode_generation(leaf,
317                                                                   inode_item),
318                        (unsigned long long)generation);
319                 btrfs_release_path(path);
320                 return 0;
321         }
322
323         inode_size = btrfs_inode_size(leaf, inode_item);
324         btrfs_release_path(path);
325         if (inode_size == 0)
326                 return 0;
327
328         if (!num_entries)
329                 return 0;
330
331         ret = io_ctl_init(&io_ctl, inode_size, inode_location.objectid, root);
332         if (ret)
333                 return ret;
334
335         ret = io_ctl_prepare_pages(&io_ctl, root, path,
336                                    inode_location.objectid);
337         if (ret)
338                 goto out;
339
340         ret = io_ctl_check_crc(&io_ctl, 0);
341         if (ret)
342                 goto free_cache;
343
344         ret = io_ctl_check_generation(&io_ctl, generation);
345         if (ret)
346                 goto free_cache;
347
348         while (num_entries) {
349                 e = calloc(1, sizeof(*e));
350                 if (!e)
351                         goto free_cache;
352
353                 ret = io_ctl_read_entry(&io_ctl, e, &type);
354                 if (ret) {
355                         free(e);
356                         goto free_cache;
357                 }
358
359                 if (!e->bytes) {
360                         free(e);
361                         goto free_cache;
362                 }
363
364                 if (type == BTRFS_FREE_SPACE_EXTENT) {
365                         ret = link_free_space(ctl, e);
366                         if (ret) {
367                                 printf("Duplicate entries in free space cache, dumping");
368                                 free(e);
369                                 goto free_cache;
370                         }
371                 } else {
372                         BUG_ON(!num_bitmaps);
373                         num_bitmaps--;
374                         e->bitmap = kzalloc(CACHE_SECTORSIZE, GFP_NOFS);
375                         if (!e->bitmap) {
376                                 free(e);
377                                 goto free_cache;
378                         }
379                         ret = link_free_space(ctl, e);
380                         ctl->total_bitmaps++;
381                         if (ret) {
382                                 printf("Duplicate entries in free space cache, dumping");
383                                 free(e->bitmap);
384                                 free(e);
385                                 goto free_cache;
386                         }
387                         list_add_tail(&e->list, &bitmaps);
388                 }
389
390                 num_entries--;
391         }
392
393         io_ctl_unmap_page(&io_ctl);
394
395         /*
396          * We add the bitmaps at the end of the entries in order that
397          * the bitmap entries are added to the cache.
398          */
399         list_for_each_entry_safe(e, n, &bitmaps, list) {
400                 list_del_init(&e->list);
401                 ret = io_ctl_read_bitmap(&io_ctl, e);
402                 if (ret)
403                         goto free_cache;
404         }
405
406         io_ctl_drop_pages(&io_ctl);
407         merge_space_tree(ctl);
408         ret = 1;
409 out:
410         io_ctl_free(&io_ctl);
411         return ret;
412 free_cache:
413         io_ctl_drop_pages(&io_ctl);
414         __btrfs_remove_free_space_cache(ctl);
415         goto out;
416 }
417
418 int load_free_space_cache(struct btrfs_fs_info *fs_info,
419                           struct btrfs_block_group_cache *block_group)
420 {
421         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
422         struct btrfs_path *path;
423         int ret = 0;
424
425         path = btrfs_alloc_path();
426         if (!path)
427                 return 0;
428
429         ret = __load_free_space_cache(fs_info->tree_root, ctl, path,
430                                       block_group->key.objectid);
431         btrfs_free_path(path);
432
433         if (ret < 0) {
434                 ret = 0;
435
436                 printf("failed to load free space cache for block group %llu\n",
437                         block_group->key.objectid);
438         }
439
440         return ret;
441 }
442
443 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
444                                           u64 offset)
445 {
446         BUG_ON(offset < bitmap_start);
447         offset -= bitmap_start;
448         return (unsigned long)(offset / unit);
449 }
450
451 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
452 {
453         return (unsigned long)(bytes / unit);
454 }
455
456 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
457                                    u64 offset)
458 {
459         u64 bitmap_start;
460         u64 bytes_per_bitmap;
461
462         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
463         bitmap_start = offset - ctl->start;
464         bitmap_start = bitmap_start / bytes_per_bitmap;
465         bitmap_start *= bytes_per_bitmap;
466         bitmap_start += ctl->start;
467
468         return bitmap_start;
469 }
470
471 static int tree_insert_offset(struct rb_root *root, u64 offset,
472                               struct rb_node *node, int bitmap)
473 {
474         struct rb_node **p = &root->rb_node;
475         struct rb_node *parent = NULL;
476         struct btrfs_free_space *info;
477
478         while (*p) {
479                 parent = *p;
480                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
481
482                 if (offset < info->offset) {
483                         p = &(*p)->rb_left;
484                 } else if (offset > info->offset) {
485                         p = &(*p)->rb_right;
486                 } else {
487                         /*
488                          * we could have a bitmap entry and an extent entry
489                          * share the same offset.  If this is the case, we want
490                          * the extent entry to always be found first if we do a
491                          * linear search through the tree, since we want to have
492                          * the quickest allocation time, and allocating from an
493                          * extent is faster than allocating from a bitmap.  So
494                          * if we're inserting a bitmap and we find an entry at
495                          * this offset, we want to go right, or after this entry
496                          * logically.  If we are inserting an extent and we've
497                          * found a bitmap, we want to go left, or before
498                          * logically.
499                          */
500                         if (bitmap) {
501                                 if (info->bitmap)
502                                         return -EEXIST;
503                                 p = &(*p)->rb_right;
504                         } else {
505                                 if (!info->bitmap)
506                                         return -EEXIST;
507                                 p = &(*p)->rb_left;
508                         }
509                 }
510         }
511
512         rb_link_node(node, parent, p);
513         rb_insert_color(node, root);
514
515         return 0;
516 }
517
518 /*
519  * searches the tree for the given offset.
520  *
521  * fuzzy - If this is set, then we are trying to make an allocation, and we just
522  * want a section that has at least bytes size and comes at or after the given
523  * offset.
524  */
525 static struct btrfs_free_space *
526 tree_search_offset(struct btrfs_free_space_ctl *ctl,
527                    u64 offset, int bitmap_only, int fuzzy)
528 {
529         struct rb_node *n = ctl->free_space_offset.rb_node;
530         struct btrfs_free_space *entry, *prev = NULL;
531
532         /* find entry that is closest to the 'offset' */
533         while (1) {
534                 if (!n) {
535                         entry = NULL;
536                         break;
537                 }
538
539                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
540                 prev = entry;
541
542                 if (offset < entry->offset)
543                         n = n->rb_left;
544                 else if (offset > entry->offset)
545                         n = n->rb_right;
546                 else
547                         break;
548         }
549
550         if (bitmap_only) {
551                 if (!entry)
552                         return NULL;
553                 if (entry->bitmap)
554                         return entry;
555
556                 /*
557                  * bitmap entry and extent entry may share same offset,
558                  * in that case, bitmap entry comes after extent entry.
559                  */
560                 n = rb_next(n);
561                 if (!n)
562                         return NULL;
563                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
564                 if (entry->offset != offset)
565                         return NULL;
566
567                 WARN_ON(!entry->bitmap);
568                 return entry;
569         } else if (entry) {
570                 if (entry->bitmap) {
571                         /*
572                          * if previous extent entry covers the offset,
573                          * we should return it instead of the bitmap entry
574                          */
575                         n = rb_prev(&entry->offset_index);
576                         if (n) {
577                                 prev = rb_entry(n, struct btrfs_free_space,
578                                                 offset_index);
579                                 if (!prev->bitmap &&
580                                     prev->offset + prev->bytes > offset)
581                                         entry = prev;
582                         }
583                 }
584                 return entry;
585         }
586
587         if (!prev)
588                 return NULL;
589
590         /* find last entry before the 'offset' */
591         entry = prev;
592         if (entry->offset > offset) {
593                 n = rb_prev(&entry->offset_index);
594                 if (n) {
595                         entry = rb_entry(n, struct btrfs_free_space,
596                                         offset_index);
597                         BUG_ON(entry->offset > offset);
598                 } else {
599                         if (fuzzy)
600                                 return entry;
601                         else
602                                 return NULL;
603                 }
604         }
605
606         if (entry->bitmap) {
607                 n = rb_prev(&entry->offset_index);
608                 if (n) {
609                         prev = rb_entry(n, struct btrfs_free_space,
610                                         offset_index);
611                         if (!prev->bitmap &&
612                             prev->offset + prev->bytes > offset)
613                                 return prev;
614                 }
615                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
616                         return entry;
617         } else if (entry->offset + entry->bytes > offset)
618                 return entry;
619
620         if (!fuzzy)
621                 return NULL;
622
623         while (1) {
624                 if (entry->bitmap) {
625                         if (entry->offset + BITS_PER_BITMAP *
626                             ctl->unit > offset)
627                                 break;
628                 } else {
629                         if (entry->offset + entry->bytes > offset)
630                                 break;
631                 }
632
633                 n = rb_next(&entry->offset_index);
634                 if (!n)
635                         return NULL;
636                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
637         }
638         return entry;
639 }
640
641 void unlink_free_space(struct btrfs_free_space_ctl *ctl,
642                        struct btrfs_free_space *info)
643 {
644         rb_erase(&info->offset_index, &ctl->free_space_offset);
645         ctl->free_extents--;
646         ctl->free_space -= info->bytes;
647 }
648
649 static int link_free_space(struct btrfs_free_space_ctl *ctl,
650                            struct btrfs_free_space *info)
651 {
652         int ret = 0;
653
654         BUG_ON(!info->bitmap && !info->bytes);
655         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
656                                  &info->offset_index, (info->bitmap != NULL));
657         if (ret)
658                 return ret;
659
660         ctl->free_space += info->bytes;
661         ctl->free_extents++;
662         return ret;
663 }
664
665 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
666                          struct btrfs_free_space *bitmap_info, u64 *offset,
667                          u64 *bytes)
668 {
669         unsigned long found_bits = 0;
670         unsigned long bits, i;
671         unsigned long next_zero;
672
673         i = offset_to_bit(bitmap_info->offset, ctl->unit,
674                           max_t(u64, *offset, bitmap_info->offset));
675         bits = bytes_to_bits(*bytes, ctl->unit);
676
677         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
678                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
679                                                BITS_PER_BITMAP, i);
680                 if ((next_zero - i) >= bits) {
681                         found_bits = next_zero - i;
682                         break;
683                 }
684                 i = next_zero;
685         }
686
687         if (found_bits) {
688                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
689                 *bytes = (u64)(found_bits) * ctl->unit;
690                 return 0;
691         }
692
693         return -1;
694 }
695
696 struct btrfs_free_space *
697 btrfs_find_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes)
698 {
699         return tree_search_offset(ctl, offset, 0, 0);
700 }
701
702 static void try_merge_free_space(struct btrfs_free_space_ctl *ctl,
703                                 struct btrfs_free_space *info)
704 {
705         struct btrfs_free_space *left_info;
706         struct btrfs_free_space *right_info;
707         u64 offset = info->offset;
708         u64 bytes = info->bytes;
709
710         /*
711          * first we want to see if there is free space adjacent to the range we
712          * are adding, if there is remove that struct and add a new one to
713          * cover the entire range
714          */
715         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
716         if (right_info && rb_prev(&right_info->offset_index))
717                 left_info = rb_entry(rb_prev(&right_info->offset_index),
718                                      struct btrfs_free_space, offset_index);
719         else
720                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
721
722         if (right_info && !right_info->bitmap) {
723                 unlink_free_space(ctl, right_info);
724                 info->bytes += right_info->bytes;
725                 free(right_info);
726         }
727
728         if (left_info && !left_info->bitmap &&
729             left_info->offset + left_info->bytes == offset) {
730                 unlink_free_space(ctl, left_info);
731                 info->offset = left_info->offset;
732                 info->bytes += left_info->bytes;
733                 free(left_info);
734         }
735 }
736
737 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
738                            u64 bytes)
739 {
740         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
741         struct btrfs_free_space *info;
742         struct rb_node *n;
743         int count = 0;
744
745         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
746                 info = rb_entry(n, struct btrfs_free_space, offset_index);
747                 if (info->bytes >= bytes && !block_group->ro)
748                         count++;
749                 printk("entry offset %llu, bytes %llu, bitmap %s\n",
750                        (unsigned long long)info->offset,
751                        (unsigned long long)info->bytes,
752                        (info->bitmap) ? "yes" : "no");
753         }
754         printk("%d blocks of free space at or bigger than bytes is \n", count);
755 }
756
757 int btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group,
758                               int sectorsize)
759 {
760         struct btrfs_free_space_ctl *ctl;
761
762         ctl = calloc(1, sizeof(*ctl));
763         if (!ctl)
764                 return -ENOMEM;
765
766         ctl->unit = sectorsize;
767         ctl->start = block_group->key.objectid;
768         ctl->private = block_group;
769         block_group->free_space_ctl = ctl;
770
771         return 0;
772 }
773
774 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
775 {
776         struct btrfs_free_space *info;
777         struct rb_node *node;
778
779         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
780                 info = rb_entry(node, struct btrfs_free_space, offset_index);
781                 unlink_free_space(ctl, info);
782                 free(info->bitmap);
783                 free(info);
784         }
785 }
786
787 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
788 {
789         __btrfs_remove_free_space_cache(block_group->free_space_ctl);
790 }
791
792 static int btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, u64 offset,
793                                 u64 bytes)
794 {
795         struct btrfs_free_space *info;
796         int ret = 0;
797
798         info = calloc(1, sizeof(*info));
799         if (!info)
800                 return -ENOMEM;
801
802         info->offset = offset;
803         info->bytes = bytes;
804
805         try_merge_free_space(ctl, info);
806
807         ret = link_free_space(ctl, info);
808         if (ret) {
809                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
810                 BUG_ON(ret == -EEXIST);
811         }
812
813         return ret;
814 }
815
816 /*
817  * Merges all the free space cache and kills the bitmap entries since we just
818  * want to use the free space cache to verify it's correct, no reason to keep
819  * the bitmaps around to confuse things.
820  */
821 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
822 {
823         struct btrfs_free_space *e, *prev = NULL;
824         struct rb_node *n;
825         int ret;
826
827 again:
828         prev = NULL;
829         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
830                 e = rb_entry(n, struct btrfs_free_space, offset_index);
831                 if (e->bitmap) {
832                         u64 offset = e->offset, bytes = ctl->unit;
833                         u64 end;
834
835                         end = e->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
836
837                         unlink_free_space(ctl, e);
838                         while (!(search_bitmap(ctl, e, &offset, &bytes))) {
839                                 ret = btrfs_add_free_space(ctl, offset,
840                                                            bytes);
841                                 BUG_ON(ret);
842                                 offset += bytes;
843                                 if (offset >= end)
844                                         break;
845                                 bytes = ctl->unit;
846                         }
847                         free(e->bitmap);
848                         free(e);
849                         goto again;
850                 }
851                 if (!prev)
852                         goto next;
853                 if (prev->offset + prev->bytes == e->offset) {
854                         unlink_free_space(ctl, prev);
855                         unlink_free_space(ctl, e);
856                         prev->bytes += e->bytes;
857                         free(e);
858                         link_free_space(ctl, prev);
859                         goto again;
860                 }
861 next:
862                 prev = e;
863         }
864 }