btrfs-progs: convert-tests: Update to use test framework infrastructure.
[platform/upstream/btrfs-progs.git] / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20 #include "ctree.h"
21 #include "free-space-cache.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "extent_io.h"
25 #include "crc32c.h"
26 #include "bitops.h"
27
28 /*
29  * Kernel always uses PAGE_CACHE_SIZE for sectorsize, but we don't have
30  * anything like that in userspace and have to get the value from the
31  * filesystem
32  */
33 #define BITS_PER_BITMAP(sectorsize)             ((sectorsize) * 8)
34 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
35
36 static int link_free_space(struct btrfs_free_space_ctl *ctl,
37                            struct btrfs_free_space *info);
38 static void merge_space_tree(struct btrfs_free_space_ctl *ctl);
39
40 struct io_ctl {
41         void *cur, *orig;
42         void *buffer;
43         struct btrfs_root *root;
44         unsigned long size;
45         u64 total_size;
46         int index;
47         int num_pages;
48         unsigned check_crcs:1;
49 };
50
51 static int io_ctl_init(struct io_ctl *io_ctl, u64 size, u64 ino,
52                        struct btrfs_root *root)
53 {
54         memset(io_ctl, 0, sizeof(struct io_ctl));
55         io_ctl->num_pages = (size + root->sectorsize - 1) / root->sectorsize;
56         io_ctl->buffer = kzalloc(size, GFP_NOFS);
57         if (!io_ctl->buffer)
58                 return -ENOMEM;
59         io_ctl->total_size = size;
60         io_ctl->root = root;
61         if (ino != BTRFS_FREE_INO_OBJECTID)
62                 io_ctl->check_crcs = 1;
63         return 0;
64 }
65
66 static void io_ctl_free(struct io_ctl *io_ctl)
67 {
68         kfree(io_ctl->buffer);
69 }
70
71 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
72 {
73         if (io_ctl->cur) {
74                 io_ctl->cur = NULL;
75                 io_ctl->orig = NULL;
76         }
77 }
78
79 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
80 {
81         BUG_ON(io_ctl->index >= io_ctl->num_pages);
82         io_ctl->cur = io_ctl->buffer + (io_ctl->index++ * io_ctl->root->sectorsize);
83         io_ctl->orig = io_ctl->cur;
84         io_ctl->size = io_ctl->root->sectorsize;
85         if (clear)
86                 memset(io_ctl->cur, 0, io_ctl->root->sectorsize);
87 }
88
89 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
90 {
91         io_ctl_unmap_page(io_ctl);
92 }
93
94 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct btrfs_root *root,
95                                 struct btrfs_path *path, u64 ino)
96 {
97         struct extent_buffer *leaf;
98         struct btrfs_file_extent_item *fi;
99         struct btrfs_key key;
100         u64 bytenr, len;
101         u64 total_read = 0;
102         int ret = 0;
103
104         key.objectid = ino;
105         key.type = BTRFS_EXTENT_DATA_KEY;
106         key.offset = 0;
107
108         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
109         if (ret) {
110                 printf("Couldn't find file extent item for free space inode"
111                        " %Lu\n", ino);
112                 btrfs_release_path(path);
113                 return -EINVAL;
114         }
115
116         while (total_read < io_ctl->total_size) {
117                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
118                         ret = btrfs_next_leaf(root, path);
119                         if (ret) {
120                                 ret = -EINVAL;
121                                 break;
122                         }
123                 }
124                 leaf = path->nodes[0];
125
126                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
127                 if (key.objectid != ino) {
128                         ret = -EINVAL;
129                         break;
130                 }
131
132                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
133                         ret = -EINVAL;
134                         break;
135                 }
136
137                 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
138                                     struct btrfs_file_extent_item);
139                 if (btrfs_file_extent_type(path->nodes[0], fi) !=
140                     BTRFS_FILE_EXTENT_REG) {
141                         printf("Not the file extent type we wanted\n");
142                         ret = -EINVAL;
143                         break;
144                 }
145
146                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi) +
147                         btrfs_file_extent_offset(leaf, fi);
148                 len = btrfs_file_extent_num_bytes(leaf, fi);
149                 ret = read_data_from_disk(root->fs_info,
150                                           io_ctl->buffer + key.offset, bytenr,
151                                           len, 0);
152                 if (ret)
153                         break;
154                 total_read += len;
155                 path->slots[0]++;
156         }
157
158         btrfs_release_path(path);
159         return ret;
160 }
161
162 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
163 {
164         __le64 *gen;
165
166         /*
167          * Skip the crc area.  If we don't check crcs then we just have a 64bit
168          * chunk at the front of the first page.
169          */
170         if (io_ctl->check_crcs) {
171                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
172                 io_ctl->size -= sizeof(u64) +
173                         (sizeof(u32) * io_ctl->num_pages);
174         } else {
175                 io_ctl->cur += sizeof(u64);
176                 io_ctl->size -= sizeof(u64) * 2;
177         }
178
179         gen = io_ctl->cur;
180         if (le64_to_cpu(*gen) != generation) {
181                 printk("btrfs: space cache generation "
182                        "(%Lu) does not match inode (%Lu)\n", *gen,
183                        generation);
184                 io_ctl_unmap_page(io_ctl);
185                 return -EIO;
186         }
187         io_ctl->cur += sizeof(u64);
188         return 0;
189 }
190
191 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
192 {
193         u32 *tmp, val;
194         u32 crc = ~(u32)0;
195         unsigned offset = 0;
196
197         if (!io_ctl->check_crcs) {
198                 io_ctl_map_page(io_ctl, 0);
199                 return 0;
200         }
201
202         if (index == 0)
203                 offset = sizeof(u32) * io_ctl->num_pages;
204
205         tmp = io_ctl->buffer;
206         tmp += index;
207         val = *tmp;
208
209         io_ctl_map_page(io_ctl, 0);
210         crc = crc32c(crc, io_ctl->orig + offset, io_ctl->root->sectorsize - offset);
211         btrfs_csum_final(crc, (char *)&crc);
212         if (val != crc) {
213                 printk("btrfs: csum mismatch on free space cache\n");
214                 io_ctl_unmap_page(io_ctl);
215                 return -EIO;
216         }
217
218         return 0;
219 }
220
221 static int io_ctl_read_entry(struct io_ctl *io_ctl,
222                             struct btrfs_free_space *entry, u8 *type)
223 {
224         struct btrfs_free_space_entry *e;
225         int ret;
226
227         if (!io_ctl->cur) {
228                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
229                 if (ret)
230                         return ret;
231         }
232
233         e = io_ctl->cur;
234         entry->offset = le64_to_cpu(e->offset);
235         entry->bytes = le64_to_cpu(e->bytes);
236         *type = e->type;
237         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
238         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
239
240         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
241                 return 0;
242
243         io_ctl_unmap_page(io_ctl);
244
245         return 0;
246 }
247
248 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
249                               struct btrfs_free_space *entry)
250 {
251         int ret;
252
253         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
254         if (ret)
255                 return ret;
256
257         memcpy(entry->bitmap, io_ctl->cur, io_ctl->root->sectorsize);
258         io_ctl_unmap_page(io_ctl);
259
260         return 0;
261 }
262
263
264 static int __load_free_space_cache(struct btrfs_root *root,
265                             struct btrfs_free_space_ctl *ctl,
266                             struct btrfs_path *path, u64 offset)
267 {
268         struct btrfs_free_space_header *header;
269         struct btrfs_inode_item *inode_item;
270         struct extent_buffer *leaf;
271         struct io_ctl io_ctl;
272         struct btrfs_key key;
273         struct btrfs_key inode_location;
274         struct btrfs_disk_key disk_key;
275         struct btrfs_free_space *e, *n;
276         struct list_head bitmaps;
277         u64 num_entries;
278         u64 num_bitmaps;
279         u64 generation;
280         u64 inode_size;
281         u8 type;
282         int ret = 0;
283
284         INIT_LIST_HEAD(&bitmaps);
285
286         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
287         key.offset = offset;
288         key.type = 0;
289
290         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
291         if (ret < 0) {
292                 return 0;
293         } else if (ret > 0) {
294                 btrfs_release_path(path);
295                 return 0;
296         }
297
298         leaf = path->nodes[0];
299         header = btrfs_item_ptr(leaf, path->slots[0],
300                                 struct btrfs_free_space_header);
301         num_entries = btrfs_free_space_entries(leaf, header);
302         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
303         generation = btrfs_free_space_generation(leaf, header);
304         btrfs_free_space_key(leaf, header, &disk_key);
305         btrfs_disk_key_to_cpu(&inode_location, &disk_key);
306         btrfs_release_path(path);
307
308         ret = btrfs_search_slot(NULL, root, &inode_location, path, 0, 0);
309         if (ret) {
310                 printf("Couldn't find free space inode %d\n", ret);
311                 return 0;
312         }
313
314         leaf = path->nodes[0];
315         inode_item = btrfs_item_ptr(leaf, path->slots[0],
316                                     struct btrfs_inode_item);
317
318         inode_size = btrfs_inode_size(leaf, inode_item);
319         if (!inode_size || !btrfs_inode_generation(leaf, inode_item)) {
320                 btrfs_release_path(path);
321                 return 0;
322         }
323
324         if (btrfs_inode_generation(leaf, inode_item) != generation) {
325                 printf("free space inode generation (%llu) did not match "
326                        "free space cache generation (%llu)\n",
327                        (unsigned long long)btrfs_inode_generation(leaf,
328                                                                   inode_item),
329                        (unsigned long long)generation);
330                 btrfs_release_path(path);
331                 return 0;
332         }
333
334         btrfs_release_path(path);
335
336         if (!num_entries)
337                 return 0;
338
339         ret = io_ctl_init(&io_ctl, inode_size, inode_location.objectid, root);
340         if (ret)
341                 return ret;
342
343         ret = io_ctl_prepare_pages(&io_ctl, root, path,
344                                    inode_location.objectid);
345         if (ret)
346                 goto out;
347
348         ret = io_ctl_check_crc(&io_ctl, 0);
349         if (ret)
350                 goto free_cache;
351
352         ret = io_ctl_check_generation(&io_ctl, generation);
353         if (ret)
354                 goto free_cache;
355
356         while (num_entries) {
357                 e = calloc(1, sizeof(*e));
358                 if (!e)
359                         goto free_cache;
360
361                 ret = io_ctl_read_entry(&io_ctl, e, &type);
362                 if (ret) {
363                         free(e);
364                         goto free_cache;
365                 }
366
367                 if (!e->bytes) {
368                         free(e);
369                         goto free_cache;
370                 }
371
372                 if (type == BTRFS_FREE_SPACE_EXTENT) {
373                         ret = link_free_space(ctl, e);
374                         if (ret) {
375                                 printf("Duplicate entries in free space cache, dumping");
376                                 free(e);
377                                 goto free_cache;
378                         }
379                 } else {
380                         BUG_ON(!num_bitmaps);
381                         num_bitmaps--;
382                         e->bitmap = kzalloc(ctl->sectorsize, GFP_NOFS);
383                         if (!e->bitmap) {
384                                 free(e);
385                                 goto free_cache;
386                         }
387                         ret = link_free_space(ctl, e);
388                         ctl->total_bitmaps++;
389                         if (ret) {
390                                 printf("Duplicate entries in free space cache, dumping");
391                                 free(e->bitmap);
392                                 free(e);
393                                 goto free_cache;
394                         }
395                         list_add_tail(&e->list, &bitmaps);
396                 }
397
398                 num_entries--;
399         }
400
401         io_ctl_unmap_page(&io_ctl);
402
403         /*
404          * We add the bitmaps at the end of the entries in order that
405          * the bitmap entries are added to the cache.
406          */
407         list_for_each_entry_safe(e, n, &bitmaps, list) {
408                 list_del_init(&e->list);
409                 ret = io_ctl_read_bitmap(&io_ctl, e);
410                 if (ret)
411                         goto free_cache;
412         }
413
414         io_ctl_drop_pages(&io_ctl);
415         merge_space_tree(ctl);
416         ret = 1;
417 out:
418         io_ctl_free(&io_ctl);
419         return ret;
420 free_cache:
421         io_ctl_drop_pages(&io_ctl);
422         __btrfs_remove_free_space_cache(ctl);
423         goto out;
424 }
425
426 int load_free_space_cache(struct btrfs_fs_info *fs_info,
427                           struct btrfs_block_group_cache *block_group)
428 {
429         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
430         struct btrfs_path *path;
431         int ret = 0;
432
433         path = btrfs_alloc_path();
434         if (!path)
435                 return 0;
436
437         ret = __load_free_space_cache(fs_info->tree_root, ctl, path,
438                                       block_group->key.objectid);
439         btrfs_free_path(path);
440
441         if (ret < 0) {
442                 ret = 0;
443
444                 printf("failed to load free space cache for block group %llu\n",
445                         block_group->key.objectid);
446         }
447
448         return ret;
449 }
450
451 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
452                                           u64 offset)
453 {
454         BUG_ON(offset < bitmap_start);
455         offset -= bitmap_start;
456         return (unsigned long)(offset / unit);
457 }
458
459 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
460 {
461         return (unsigned long)(bytes / unit);
462 }
463
464 static int tree_insert_offset(struct rb_root *root, u64 offset,
465                               struct rb_node *node, int bitmap)
466 {
467         struct rb_node **p = &root->rb_node;
468         struct rb_node *parent = NULL;
469         struct btrfs_free_space *info;
470
471         while (*p) {
472                 parent = *p;
473                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
474
475                 if (offset < info->offset) {
476                         p = &(*p)->rb_left;
477                 } else if (offset > info->offset) {
478                         p = &(*p)->rb_right;
479                 } else {
480                         /*
481                          * we could have a bitmap entry and an extent entry
482                          * share the same offset.  If this is the case, we want
483                          * the extent entry to always be found first if we do a
484                          * linear search through the tree, since we want to have
485                          * the quickest allocation time, and allocating from an
486                          * extent is faster than allocating from a bitmap.  So
487                          * if we're inserting a bitmap and we find an entry at
488                          * this offset, we want to go right, or after this entry
489                          * logically.  If we are inserting an extent and we've
490                          * found a bitmap, we want to go left, or before
491                          * logically.
492                          */
493                         if (bitmap) {
494                                 if (info->bitmap)
495                                         return -EEXIST;
496                                 p = &(*p)->rb_right;
497                         } else {
498                                 if (!info->bitmap)
499                                         return -EEXIST;
500                                 p = &(*p)->rb_left;
501                         }
502                 }
503         }
504
505         rb_link_node(node, parent, p);
506         rb_insert_color(node, root);
507
508         return 0;
509 }
510
511 /*
512  * searches the tree for the given offset.
513  *
514  * fuzzy - If this is set, then we are trying to make an allocation, and we just
515  * want a section that has at least bytes size and comes at or after the given
516  * offset.
517  */
518 static struct btrfs_free_space *
519 tree_search_offset(struct btrfs_free_space_ctl *ctl,
520                    u64 offset, int bitmap_only, int fuzzy)
521 {
522         struct rb_node *n = ctl->free_space_offset.rb_node;
523         struct btrfs_free_space *entry, *prev = NULL;
524         u32 sectorsize = ctl->sectorsize;
525
526         /* find entry that is closest to the 'offset' */
527         while (1) {
528                 if (!n) {
529                         entry = NULL;
530                         break;
531                 }
532
533                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
534                 prev = entry;
535
536                 if (offset < entry->offset)
537                         n = n->rb_left;
538                 else if (offset > entry->offset)
539                         n = n->rb_right;
540                 else
541                         break;
542         }
543
544         if (bitmap_only) {
545                 if (!entry)
546                         return NULL;
547                 if (entry->bitmap)
548                         return entry;
549
550                 /*
551                  * bitmap entry and extent entry may share same offset,
552                  * in that case, bitmap entry comes after extent entry.
553                  */
554                 n = rb_next(n);
555                 if (!n)
556                         return NULL;
557                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
558                 if (entry->offset != offset)
559                         return NULL;
560
561                 WARN_ON(!entry->bitmap);
562                 return entry;
563         } else if (entry) {
564                 if (entry->bitmap) {
565                         /*
566                          * if previous extent entry covers the offset,
567                          * we should return it instead of the bitmap entry
568                          */
569                         n = rb_prev(&entry->offset_index);
570                         if (n) {
571                                 prev = rb_entry(n, struct btrfs_free_space,
572                                                 offset_index);
573                                 if (!prev->bitmap &&
574                                     prev->offset + prev->bytes > offset)
575                                         entry = prev;
576                         }
577                 }
578                 return entry;
579         }
580
581         if (!prev)
582                 return NULL;
583
584         /* find last entry before the 'offset' */
585         entry = prev;
586         if (entry->offset > offset) {
587                 n = rb_prev(&entry->offset_index);
588                 if (n) {
589                         entry = rb_entry(n, struct btrfs_free_space,
590                                         offset_index);
591                         BUG_ON(entry->offset > offset);
592                 } else {
593                         if (fuzzy)
594                                 return entry;
595                         else
596                                 return NULL;
597                 }
598         }
599
600         if (entry->bitmap) {
601                 n = rb_prev(&entry->offset_index);
602                 if (n) {
603                         prev = rb_entry(n, struct btrfs_free_space,
604                                         offset_index);
605                         if (!prev->bitmap &&
606                             prev->offset + prev->bytes > offset)
607                                 return prev;
608                 }
609                 if (entry->offset + BITS_PER_BITMAP(sectorsize) * ctl->unit > offset)
610                         return entry;
611         } else if (entry->offset + entry->bytes > offset)
612                 return entry;
613
614         if (!fuzzy)
615                 return NULL;
616
617         while (1) {
618                 if (entry->bitmap) {
619                         if (entry->offset + BITS_PER_BITMAP(sectorsize) *
620                             ctl->unit > offset)
621                                 break;
622                 } else {
623                         if (entry->offset + entry->bytes > offset)
624                                 break;
625                 }
626
627                 n = rb_next(&entry->offset_index);
628                 if (!n)
629                         return NULL;
630                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
631         }
632         return entry;
633 }
634
635 void unlink_free_space(struct btrfs_free_space_ctl *ctl,
636                        struct btrfs_free_space *info)
637 {
638         rb_erase(&info->offset_index, &ctl->free_space_offset);
639         ctl->free_extents--;
640         ctl->free_space -= info->bytes;
641 }
642
643 static int link_free_space(struct btrfs_free_space_ctl *ctl,
644                            struct btrfs_free_space *info)
645 {
646         int ret = 0;
647
648         BUG_ON(!info->bitmap && !info->bytes);
649         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
650                                  &info->offset_index, (info->bitmap != NULL));
651         if (ret)
652                 return ret;
653
654         ctl->free_space += info->bytes;
655         ctl->free_extents++;
656         return ret;
657 }
658
659 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
660                          struct btrfs_free_space *bitmap_info, u64 *offset,
661                          u64 *bytes)
662 {
663         unsigned long found_bits = 0;
664         unsigned long bits, i;
665         unsigned long next_zero;
666         u32 sectorsize = ctl->sectorsize;
667
668         i = offset_to_bit(bitmap_info->offset, ctl->unit,
669                           max_t(u64, *offset, bitmap_info->offset));
670         bits = bytes_to_bits(*bytes, ctl->unit);
671
672         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP(sectorsize)) {
673                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
674                                                BITS_PER_BITMAP(sectorsize), i);
675                 if ((next_zero - i) >= bits) {
676                         found_bits = next_zero - i;
677                         break;
678                 }
679                 i = next_zero;
680         }
681
682         if (found_bits) {
683                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
684                 *bytes = (u64)(found_bits) * ctl->unit;
685                 return 0;
686         }
687
688         return -1;
689 }
690
691 struct btrfs_free_space *
692 btrfs_find_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes)
693 {
694         return tree_search_offset(ctl, offset, 0, 0);
695 }
696
697 static void try_merge_free_space(struct btrfs_free_space_ctl *ctl,
698                                 struct btrfs_free_space *info)
699 {
700         struct btrfs_free_space *left_info;
701         struct btrfs_free_space *right_info;
702         u64 offset = info->offset;
703         u64 bytes = info->bytes;
704
705         /*
706          * first we want to see if there is free space adjacent to the range we
707          * are adding, if there is remove that struct and add a new one to
708          * cover the entire range
709          */
710         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
711         if (right_info && rb_prev(&right_info->offset_index))
712                 left_info = rb_entry(rb_prev(&right_info->offset_index),
713                                      struct btrfs_free_space, offset_index);
714         else
715                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
716
717         if (right_info && !right_info->bitmap) {
718                 unlink_free_space(ctl, right_info);
719                 info->bytes += right_info->bytes;
720                 free(right_info);
721         }
722
723         if (left_info && !left_info->bitmap &&
724             left_info->offset + left_info->bytes == offset) {
725                 unlink_free_space(ctl, left_info);
726                 info->offset = left_info->offset;
727                 info->bytes += left_info->bytes;
728                 free(left_info);
729         }
730 }
731
732 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
733                            u64 bytes)
734 {
735         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
736         struct btrfs_free_space *info;
737         struct rb_node *n;
738         int count = 0;
739
740         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
741                 info = rb_entry(n, struct btrfs_free_space, offset_index);
742                 if (info->bytes >= bytes && !block_group->ro)
743                         count++;
744                 printk("entry offset %llu, bytes %llu, bitmap %s\n",
745                        (unsigned long long)info->offset,
746                        (unsigned long long)info->bytes,
747                        (info->bitmap) ? "yes" : "no");
748         }
749         printk("%d blocks of free space at or bigger than bytes is \n", count);
750 }
751
752 int btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group,
753                               int sectorsize)
754 {
755         struct btrfs_free_space_ctl *ctl;
756
757         ctl = calloc(1, sizeof(*ctl));
758         if (!ctl)
759                 return -ENOMEM;
760
761         ctl->sectorsize = sectorsize;
762         ctl->unit = sectorsize;
763         ctl->start = block_group->key.objectid;
764         ctl->private = block_group;
765         block_group->free_space_ctl = ctl;
766
767         return 0;
768 }
769
770 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
771 {
772         struct btrfs_free_space *info;
773         struct rb_node *node;
774
775         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
776                 info = rb_entry(node, struct btrfs_free_space, offset_index);
777                 unlink_free_space(ctl, info);
778                 free(info->bitmap);
779                 free(info);
780         }
781 }
782
783 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
784 {
785         __btrfs_remove_free_space_cache(block_group->free_space_ctl);
786 }
787
788 static int btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, u64 offset,
789                                 u64 bytes)
790 {
791         struct btrfs_free_space *info;
792         int ret = 0;
793
794         info = calloc(1, sizeof(*info));
795         if (!info)
796                 return -ENOMEM;
797
798         info->offset = offset;
799         info->bytes = bytes;
800
801         try_merge_free_space(ctl, info);
802
803         ret = link_free_space(ctl, info);
804         if (ret) {
805                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
806                 BUG_ON(ret == -EEXIST);
807         }
808
809         return ret;
810 }
811
812 /*
813  * Merges all the free space cache and kills the bitmap entries since we just
814  * want to use the free space cache to verify it's correct, no reason to keep
815  * the bitmaps around to confuse things.
816  */
817 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
818 {
819         struct btrfs_free_space *e, *prev = NULL;
820         struct rb_node *n;
821         int ret;
822         u32 sectorsize = ctl->sectorsize;
823
824 again:
825         prev = NULL;
826         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
827                 e = rb_entry(n, struct btrfs_free_space, offset_index);
828                 if (e->bitmap) {
829                         u64 offset = e->offset, bytes = ctl->unit;
830                         u64 end;
831
832                         end = e->offset + (u64)(BITS_PER_BITMAP(sectorsize) * ctl->unit);
833
834                         unlink_free_space(ctl, e);
835                         while (!(search_bitmap(ctl, e, &offset, &bytes))) {
836                                 ret = btrfs_add_free_space(ctl, offset,
837                                                            bytes);
838                                 BUG_ON(ret);
839                                 offset += bytes;
840                                 if (offset >= end)
841                                         break;
842                                 bytes = ctl->unit;
843                         }
844                         free(e->bitmap);
845                         free(e);
846                         goto again;
847                 }
848                 if (!prev)
849                         goto next;
850                 if (prev->offset + prev->bytes == e->offset) {
851                         unlink_free_space(ctl, prev);
852                         unlink_free_space(ctl, e);
853                         prev->bytes += e->bytes;
854                         free(e);
855                         link_free_space(ctl, prev);
856                         goto again;
857                 }
858 next:
859                 prev = e;
860         }
861 }