Btrfs-progs: add type root to label property
[platform/upstream/btrfs-progs.git] / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20 #include "ctree.h"
21 #include "free-space-cache.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "extent_io.h"
25 #include "crc32c.h"
26 #include "bitops.h"
27
28 #define CACHE_SECTORSIZE        4096
29 #define BITS_PER_BITMAP         (CACHE_SECTORSIZE * 8)
30 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
31
32 static int link_free_space(struct btrfs_free_space_ctl *ctl,
33                            struct btrfs_free_space *info);
34 static void merge_space_tree(struct btrfs_free_space_ctl *ctl);
35
36 struct io_ctl {
37         void *cur, *orig;
38         void *buffer;
39         struct btrfs_root *root;
40         unsigned long size;
41         u64 total_size;
42         int index;
43         int num_pages;
44         unsigned check_crcs:1;
45 };
46
47 static int io_ctl_init(struct io_ctl *io_ctl, u64 size, u64 ino,
48                        struct btrfs_root *root)
49 {
50         memset(io_ctl, 0, sizeof(struct io_ctl));
51         io_ctl->num_pages = (size + CACHE_SECTORSIZE - 1) / CACHE_SECTORSIZE;
52         io_ctl->buffer = kzalloc(size, GFP_NOFS);
53         if (!io_ctl->buffer)
54                 return -ENOMEM;
55         io_ctl->total_size = size;
56         io_ctl->root = root;
57         if (ino != BTRFS_FREE_INO_OBJECTID)
58                 io_ctl->check_crcs = 1;
59         return 0;
60 }
61
62 static void io_ctl_free(struct io_ctl *io_ctl)
63 {
64         kfree(io_ctl->buffer);
65 }
66
67 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
68 {
69         if (io_ctl->cur) {
70                 io_ctl->cur = NULL;
71                 io_ctl->orig = NULL;
72         }
73 }
74
75 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
76 {
77         BUG_ON(io_ctl->index >= io_ctl->num_pages);
78         io_ctl->cur = io_ctl->buffer + (io_ctl->index++ * CACHE_SECTORSIZE);
79         io_ctl->orig = io_ctl->cur;
80         io_ctl->size = CACHE_SECTORSIZE;
81         if (clear)
82                 memset(io_ctl->cur, 0, CACHE_SECTORSIZE);
83 }
84
85 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
86 {
87         io_ctl_unmap_page(io_ctl);
88 }
89
90 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct btrfs_root *root,
91                                 struct btrfs_path *path, u64 ino)
92 {
93         struct extent_buffer *leaf;
94         struct btrfs_file_extent_item *fi;
95         struct btrfs_key key;
96         u64 bytenr, len;
97         u64 total_read = 0;
98         int ret = 0;
99
100         key.objectid = ino;
101         key.type = BTRFS_EXTENT_DATA_KEY;
102         key.offset = 0;
103
104         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
105         if (ret) {
106                 printf("Couldn't find file extent item for free space inode"
107                        " %Lu\n", ino);
108                 btrfs_release_path(path);
109                 return -EINVAL;
110         }
111
112         while (total_read < io_ctl->total_size) {
113                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
114                         ret = btrfs_next_leaf(root, path);
115                         if (ret) {
116                                 ret = -EINVAL;
117                                 break;
118                         }
119                 }
120                 leaf = path->nodes[0];
121
122                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
123                 if (key.objectid != ino) {
124                         ret = -EINVAL;
125                         break;
126                 }
127
128                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
129                         ret = -EINVAL;
130                         break;
131                 }
132
133                 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
134                                     struct btrfs_file_extent_item);
135                 if (btrfs_file_extent_type(path->nodes[0], fi) !=
136                     BTRFS_FILE_EXTENT_REG) {
137                         printf("Not the file extent type we wanted\n");
138                         ret = -EINVAL;
139                         break;
140                 }
141
142                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi) +
143                         btrfs_file_extent_offset(leaf, fi);
144                 len = btrfs_file_extent_num_bytes(leaf, fi);
145                 ret = read_data_from_disk(root->fs_info,
146                                           io_ctl->buffer + key.offset, bytenr,
147                                           len, 0);
148                 if (ret)
149                         break;
150                 total_read += len;
151                 path->slots[0]++;
152         }
153
154         btrfs_release_path(path);
155         return ret;
156 }
157
158 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
159 {
160         __le64 *gen;
161
162         /*
163          * Skip the crc area.  If we don't check crcs then we just have a 64bit
164          * chunk at the front of the first page.
165          */
166         if (io_ctl->check_crcs) {
167                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
168                 io_ctl->size -= sizeof(u64) +
169                         (sizeof(u32) * io_ctl->num_pages);
170         } else {
171                 io_ctl->cur += sizeof(u64);
172                 io_ctl->size -= sizeof(u64) * 2;
173         }
174
175         gen = io_ctl->cur;
176         if (le64_to_cpu(*gen) != generation) {
177                 printk("btrfs: space cache generation "
178                        "(%Lu) does not match inode (%Lu)\n", *gen,
179                        generation);
180                 io_ctl_unmap_page(io_ctl);
181                 return -EIO;
182         }
183         io_ctl->cur += sizeof(u64);
184         return 0;
185 }
186
187 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
188 {
189         u32 *tmp, val;
190         u32 crc = ~(u32)0;
191         unsigned offset = 0;
192
193         if (!io_ctl->check_crcs) {
194                 io_ctl_map_page(io_ctl, 0);
195                 return 0;
196         }
197
198         if (index == 0)
199                 offset = sizeof(u32) * io_ctl->num_pages;
200
201         tmp = io_ctl->buffer;
202         tmp += index;
203         val = *tmp;
204
205         io_ctl_map_page(io_ctl, 0);
206         crc = crc32c(crc, io_ctl->orig + offset, CACHE_SECTORSIZE - offset);
207         btrfs_csum_final(crc, (char *)&crc);
208         if (val != crc) {
209                 printk("btrfs: csum mismatch on free space cache\n");
210                 io_ctl_unmap_page(io_ctl);
211                 return -EIO;
212         }
213
214         return 0;
215 }
216
217 static int io_ctl_read_entry(struct io_ctl *io_ctl,
218                             struct btrfs_free_space *entry, u8 *type)
219 {
220         struct btrfs_free_space_entry *e;
221         int ret;
222
223         if (!io_ctl->cur) {
224                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
225                 if (ret)
226                         return ret;
227         }
228
229         e = io_ctl->cur;
230         entry->offset = le64_to_cpu(e->offset);
231         entry->bytes = le64_to_cpu(e->bytes);
232         *type = e->type;
233         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
234         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
235
236         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
237                 return 0;
238
239         io_ctl_unmap_page(io_ctl);
240
241         return 0;
242 }
243
244 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
245                               struct btrfs_free_space *entry)
246 {
247         int ret;
248
249         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
250         if (ret)
251                 return ret;
252
253         memcpy(entry->bitmap, io_ctl->cur, CACHE_SECTORSIZE);
254         io_ctl_unmap_page(io_ctl);
255
256         return 0;
257 }
258
259
260 static int __load_free_space_cache(struct btrfs_root *root,
261                             struct btrfs_free_space_ctl *ctl,
262                             struct btrfs_path *path, u64 offset)
263 {
264         struct btrfs_free_space_header *header;
265         struct btrfs_inode_item *inode_item;
266         struct extent_buffer *leaf;
267         struct io_ctl io_ctl;
268         struct btrfs_key key;
269         struct btrfs_key inode_location;
270         struct btrfs_disk_key disk_key;
271         struct btrfs_free_space *e, *n;
272         struct list_head bitmaps;
273         u64 num_entries;
274         u64 num_bitmaps;
275         u64 generation;
276         u64 inode_size;
277         u8 type;
278         int ret = 0;
279
280         INIT_LIST_HEAD(&bitmaps);
281
282         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283         key.offset = offset;
284         key.type = 0;
285
286         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
287         if (ret < 0) {
288                 return 0;
289         } else if (ret > 0) {
290                 btrfs_release_path(path);
291                 return 0;
292         }
293
294         ret = -1;
295
296         leaf = path->nodes[0];
297         header = btrfs_item_ptr(leaf, path->slots[0],
298                                 struct btrfs_free_space_header);
299         num_entries = btrfs_free_space_entries(leaf, header);
300         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
301         generation = btrfs_free_space_generation(leaf, header);
302         btrfs_free_space_key(leaf, header, &disk_key);
303         btrfs_disk_key_to_cpu(&inode_location, &disk_key);
304         btrfs_release_path(path);
305
306         ret = btrfs_search_slot(NULL, root, &inode_location, path, 0, 0);
307         if (ret) {
308                 printf("Couldn't find free space inode %d\n", ret);
309                 return 0;
310         }
311
312         leaf = path->nodes[0];
313         inode_item = btrfs_item_ptr(leaf, path->slots[0],
314                                     struct btrfs_inode_item);
315         if (btrfs_inode_generation(leaf, inode_item) != generation) {
316                 printf("free space inode generation (%llu) did not match "
317                        "free space cache generation (%llu)\n",
318                        (unsigned long long)btrfs_inode_generation(leaf,
319                                                                   inode_item),
320                        (unsigned long long)generation);
321                 btrfs_release_path(path);
322                 return 0;
323         }
324
325         inode_size = btrfs_inode_size(leaf, inode_item);
326         btrfs_release_path(path);
327         if (inode_size == 0)
328                 return 0;
329
330         if (!num_entries)
331                 return 0;
332
333         ret = io_ctl_init(&io_ctl, inode_size, inode_location.objectid, root);
334         if (ret)
335                 return ret;
336
337         ret = io_ctl_prepare_pages(&io_ctl, root, path,
338                                    inode_location.objectid);
339         if (ret)
340                 goto out;
341
342         ret = io_ctl_check_crc(&io_ctl, 0);
343         if (ret)
344                 goto free_cache;
345
346         ret = io_ctl_check_generation(&io_ctl, generation);
347         if (ret)
348                 goto free_cache;
349
350         while (num_entries) {
351                 e = calloc(1, sizeof(*e));
352                 if (!e)
353                         goto free_cache;
354
355                 ret = io_ctl_read_entry(&io_ctl, e, &type);
356                 if (ret) {
357                         free(e);
358                         goto free_cache;
359                 }
360
361                 if (!e->bytes) {
362                         free(e);
363                         goto free_cache;
364                 }
365
366                 if (type == BTRFS_FREE_SPACE_EXTENT) {
367                         ret = link_free_space(ctl, e);
368                         if (ret) {
369                                 printf("Duplicate entries in free space cache, dumping");
370                                 free(e);
371                                 goto free_cache;
372                         }
373                 } else {
374                         BUG_ON(!num_bitmaps);
375                         num_bitmaps--;
376                         e->bitmap = kzalloc(CACHE_SECTORSIZE, GFP_NOFS);
377                         if (!e->bitmap) {
378                                 free(e);
379                                 goto free_cache;
380                         }
381                         ret = link_free_space(ctl, e);
382                         ctl->total_bitmaps++;
383                         if (ret) {
384                                 printf("Duplicate entries in free space cache, dumping");
385                                 free(e->bitmap);
386                                 free(e);
387                                 goto free_cache;
388                         }
389                         list_add_tail(&e->list, &bitmaps);
390                 }
391
392                 num_entries--;
393         }
394
395         io_ctl_unmap_page(&io_ctl);
396
397         /*
398          * We add the bitmaps at the end of the entries in order that
399          * the bitmap entries are added to the cache.
400          */
401         list_for_each_entry_safe(e, n, &bitmaps, list) {
402                 list_del_init(&e->list);
403                 ret = io_ctl_read_bitmap(&io_ctl, e);
404                 if (ret)
405                         goto free_cache;
406         }
407
408         io_ctl_drop_pages(&io_ctl);
409         merge_space_tree(ctl);
410         ret = 1;
411 out:
412         io_ctl_free(&io_ctl);
413         return ret;
414 free_cache:
415         io_ctl_drop_pages(&io_ctl);
416         __btrfs_remove_free_space_cache(ctl);
417         goto out;
418 }
419
420 int load_free_space_cache(struct btrfs_fs_info *fs_info,
421                           struct btrfs_block_group_cache *block_group)
422 {
423         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
424         struct btrfs_path *path;
425         int ret = 0;
426
427         path = btrfs_alloc_path();
428         if (!path)
429                 return 0;
430
431         ret = __load_free_space_cache(fs_info->tree_root, ctl, path,
432                                       block_group->key.objectid);
433         btrfs_free_path(path);
434
435         if (ret < 0) {
436                 ret = 0;
437
438                 printf("failed to load free space cache for block group %llu\n",
439                         block_group->key.objectid);
440         }
441
442         return ret;
443 }
444
445 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
446                                           u64 offset)
447 {
448         BUG_ON(offset < bitmap_start);
449         offset -= bitmap_start;
450         return (unsigned long)(offset / unit);
451 }
452
453 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
454 {
455         return (unsigned long)(bytes / unit);
456 }
457
458 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
459                                    u64 offset)
460 {
461         u64 bitmap_start;
462         u64 bytes_per_bitmap;
463
464         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
465         bitmap_start = offset - ctl->start;
466         bitmap_start = bitmap_start / bytes_per_bitmap;
467         bitmap_start *= bytes_per_bitmap;
468         bitmap_start += ctl->start;
469
470         return bitmap_start;
471 }
472
473 static int tree_insert_offset(struct rb_root *root, u64 offset,
474                               struct rb_node *node, int bitmap)
475 {
476         struct rb_node **p = &root->rb_node;
477         struct rb_node *parent = NULL;
478         struct btrfs_free_space *info;
479
480         while (*p) {
481                 parent = *p;
482                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
483
484                 if (offset < info->offset) {
485                         p = &(*p)->rb_left;
486                 } else if (offset > info->offset) {
487                         p = &(*p)->rb_right;
488                 } else {
489                         /*
490                          * we could have a bitmap entry and an extent entry
491                          * share the same offset.  If this is the case, we want
492                          * the extent entry to always be found first if we do a
493                          * linear search through the tree, since we want to have
494                          * the quickest allocation time, and allocating from an
495                          * extent is faster than allocating from a bitmap.  So
496                          * if we're inserting a bitmap and we find an entry at
497                          * this offset, we want to go right, or after this entry
498                          * logically.  If we are inserting an extent and we've
499                          * found a bitmap, we want to go left, or before
500                          * logically.
501                          */
502                         if (bitmap) {
503                                 if (info->bitmap)
504                                         return -EEXIST;
505                                 p = &(*p)->rb_right;
506                         } else {
507                                 if (!info->bitmap)
508                                         return -EEXIST;
509                                 p = &(*p)->rb_left;
510                         }
511                 }
512         }
513
514         rb_link_node(node, parent, p);
515         rb_insert_color(node, root);
516
517         return 0;
518 }
519
520 /*
521  * searches the tree for the given offset.
522  *
523  * fuzzy - If this is set, then we are trying to make an allocation, and we just
524  * want a section that has at least bytes size and comes at or after the given
525  * offset.
526  */
527 static struct btrfs_free_space *
528 tree_search_offset(struct btrfs_free_space_ctl *ctl,
529                    u64 offset, int bitmap_only, int fuzzy)
530 {
531         struct rb_node *n = ctl->free_space_offset.rb_node;
532         struct btrfs_free_space *entry, *prev = NULL;
533
534         /* find entry that is closest to the 'offset' */
535         while (1) {
536                 if (!n) {
537                         entry = NULL;
538                         break;
539                 }
540
541                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
542                 prev = entry;
543
544                 if (offset < entry->offset)
545                         n = n->rb_left;
546                 else if (offset > entry->offset)
547                         n = n->rb_right;
548                 else
549                         break;
550         }
551
552         if (bitmap_only) {
553                 if (!entry)
554                         return NULL;
555                 if (entry->bitmap)
556                         return entry;
557
558                 /*
559                  * bitmap entry and extent entry may share same offset,
560                  * in that case, bitmap entry comes after extent entry.
561                  */
562                 n = rb_next(n);
563                 if (!n)
564                         return NULL;
565                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
566                 if (entry->offset != offset)
567                         return NULL;
568
569                 WARN_ON(!entry->bitmap);
570                 return entry;
571         } else if (entry) {
572                 if (entry->bitmap) {
573                         /*
574                          * if previous extent entry covers the offset,
575                          * we should return it instead of the bitmap entry
576                          */
577                         n = rb_prev(&entry->offset_index);
578                         if (n) {
579                                 prev = rb_entry(n, struct btrfs_free_space,
580                                                 offset_index);
581                                 if (!prev->bitmap &&
582                                     prev->offset + prev->bytes > offset)
583                                         entry = prev;
584                         }
585                 }
586                 return entry;
587         }
588
589         if (!prev)
590                 return NULL;
591
592         /* find last entry before the 'offset' */
593         entry = prev;
594         if (entry->offset > offset) {
595                 n = rb_prev(&entry->offset_index);
596                 if (n) {
597                         entry = rb_entry(n, struct btrfs_free_space,
598                                         offset_index);
599                         BUG_ON(entry->offset > offset);
600                 } else {
601                         if (fuzzy)
602                                 return entry;
603                         else
604                                 return NULL;
605                 }
606         }
607
608         if (entry->bitmap) {
609                 n = rb_prev(&entry->offset_index);
610                 if (n) {
611                         prev = rb_entry(n, struct btrfs_free_space,
612                                         offset_index);
613                         if (!prev->bitmap &&
614                             prev->offset + prev->bytes > offset)
615                                 return prev;
616                 }
617                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
618                         return entry;
619         } else if (entry->offset + entry->bytes > offset)
620                 return entry;
621
622         if (!fuzzy)
623                 return NULL;
624
625         while (1) {
626                 if (entry->bitmap) {
627                         if (entry->offset + BITS_PER_BITMAP *
628                             ctl->unit > offset)
629                                 break;
630                 } else {
631                         if (entry->offset + entry->bytes > offset)
632                                 break;
633                 }
634
635                 n = rb_next(&entry->offset_index);
636                 if (!n)
637                         return NULL;
638                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
639         }
640         return entry;
641 }
642
643 void unlink_free_space(struct btrfs_free_space_ctl *ctl,
644                        struct btrfs_free_space *info)
645 {
646         rb_erase(&info->offset_index, &ctl->free_space_offset);
647         ctl->free_extents--;
648         ctl->free_space -= info->bytes;
649 }
650
651 static int link_free_space(struct btrfs_free_space_ctl *ctl,
652                            struct btrfs_free_space *info)
653 {
654         int ret = 0;
655
656         BUG_ON(!info->bitmap && !info->bytes);
657         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
658                                  &info->offset_index, (info->bitmap != NULL));
659         if (ret)
660                 return ret;
661
662         ctl->free_space += info->bytes;
663         ctl->free_extents++;
664         return ret;
665 }
666
667 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
668                          struct btrfs_free_space *bitmap_info, u64 *offset,
669                          u64 *bytes)
670 {
671         unsigned long found_bits = 0;
672         unsigned long bits, i;
673         unsigned long next_zero;
674
675         i = offset_to_bit(bitmap_info->offset, ctl->unit,
676                           max_t(u64, *offset, bitmap_info->offset));
677         bits = bytes_to_bits(*bytes, ctl->unit);
678
679         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
680                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
681                                                BITS_PER_BITMAP, i);
682                 if ((next_zero - i) >= bits) {
683                         found_bits = next_zero - i;
684                         break;
685                 }
686                 i = next_zero;
687         }
688
689         if (found_bits) {
690                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
691                 *bytes = (u64)(found_bits) * ctl->unit;
692                 return 0;
693         }
694
695         return -1;
696 }
697
698 struct btrfs_free_space *
699 btrfs_find_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes)
700 {
701         return tree_search_offset(ctl, offset, 0, 0);
702 }
703
704 static void try_merge_free_space(struct btrfs_free_space_ctl *ctl,
705                                 struct btrfs_free_space *info)
706 {
707         struct btrfs_free_space *left_info;
708         struct btrfs_free_space *right_info;
709         u64 offset = info->offset;
710         u64 bytes = info->bytes;
711
712         /*
713          * first we want to see if there is free space adjacent to the range we
714          * are adding, if there is remove that struct and add a new one to
715          * cover the entire range
716          */
717         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
718         if (right_info && rb_prev(&right_info->offset_index))
719                 left_info = rb_entry(rb_prev(&right_info->offset_index),
720                                      struct btrfs_free_space, offset_index);
721         else
722                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
723
724         if (right_info && !right_info->bitmap) {
725                 unlink_free_space(ctl, right_info);
726                 info->bytes += right_info->bytes;
727                 free(right_info);
728         }
729
730         if (left_info && !left_info->bitmap &&
731             left_info->offset + left_info->bytes == offset) {
732                 unlink_free_space(ctl, left_info);
733                 info->offset = left_info->offset;
734                 info->bytes += left_info->bytes;
735                 free(left_info);
736         }
737 }
738
739 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
740                            u64 bytes)
741 {
742         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
743         struct btrfs_free_space *info;
744         struct rb_node *n;
745         int count = 0;
746
747         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
748                 info = rb_entry(n, struct btrfs_free_space, offset_index);
749                 if (info->bytes >= bytes && !block_group->ro)
750                         count++;
751                 printk("entry offset %llu, bytes %llu, bitmap %s\n",
752                        (unsigned long long)info->offset,
753                        (unsigned long long)info->bytes,
754                        (info->bitmap) ? "yes" : "no");
755         }
756         printk("%d blocks of free space at or bigger than bytes is \n", count);
757 }
758
759 int btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group,
760                               int sectorsize)
761 {
762         struct btrfs_free_space_ctl *ctl;
763
764         ctl = calloc(1, sizeof(*ctl));
765         if (!ctl)
766                 return -ENOMEM;
767
768         ctl->unit = sectorsize;
769         ctl->start = block_group->key.objectid;
770         ctl->private = block_group;
771         block_group->free_space_ctl = ctl;
772
773         return 0;
774 }
775
776 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
777 {
778         struct btrfs_free_space *info;
779         struct rb_node *node;
780
781         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
782                 info = rb_entry(node, struct btrfs_free_space, offset_index);
783                 unlink_free_space(ctl, info);
784                 free(info->bitmap);
785                 free(info);
786         }
787 }
788
789 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
790 {
791         __btrfs_remove_free_space_cache(block_group->free_space_ctl);
792 }
793
794 static int btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, u64 offset,
795                                 u64 bytes)
796 {
797         struct btrfs_free_space *info;
798         int ret = 0;
799
800         info = calloc(1, sizeof(*info));
801         if (!info)
802                 return -ENOMEM;
803
804         info->offset = offset;
805         info->bytes = bytes;
806
807         try_merge_free_space(ctl, info);
808
809         ret = link_free_space(ctl, info);
810         if (ret) {
811                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
812                 BUG_ON(ret == -EEXIST);
813         }
814
815         return ret;
816 }
817
818 /*
819  * Merges all the free space cache and kills the bitmap entries since we just
820  * want to use the free space cache to verify it's correct, no reason to keep
821  * the bitmaps around to confuse things.
822  */
823 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
824 {
825         struct btrfs_free_space *e, *prev = NULL;
826         struct rb_node *n;
827         int ret;
828
829 again:
830         prev = NULL;
831         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
832                 e = rb_entry(n, struct btrfs_free_space, offset_index);
833                 if (e->bitmap) {
834                         u64 offset = e->offset, bytes = ctl->unit;
835                         u64 end;
836
837                         end = e->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
838
839                         unlink_free_space(ctl, e);
840                         while (!(search_bitmap(ctl, e, &offset, &bytes))) {
841                                 ret = btrfs_add_free_space(ctl, offset,
842                                                            bytes);
843                                 BUG_ON(ret);
844                                 offset += bytes;
845                                 if (offset >= end)
846                                         break;
847                                 bytes = ctl->unit;
848                         }
849                         free(e->bitmap);
850                         free(e);
851                         goto again;
852                 }
853                 if (!prev)
854                         goto next;
855                 if (prev->offset + prev->bytes == e->offset) {
856                         unlink_free_space(ctl, prev);
857                         unlink_free_space(ctl, e);
858                         prev->bytes += e->bytes;
859                         free(e);
860                         link_free_space(ctl, prev);
861                         goto again;
862                 }
863 next:
864                 prev = e;
865         }
866 }