220449ec7a772e3fc097a16634bf34d88dd218a3
[platform/upstream/btrfs-progs.git] / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20 #include "ctree.h"
21 #include "free-space-cache.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "extent_io.h"
25 #include "crc32c.h"
26 #include "bitops.h"
27
28 /*
29  * Kernel always uses PAGE_CACHE_SIZE for sectorsize, but we don't have
30  * anything like that in userspace and have to get the value from the
31  * filesystem
32  */
33 #define BITS_PER_BITMAP(sectorsize)             ((sectorsize) * 8)
34 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
35
36 static int link_free_space(struct btrfs_free_space_ctl *ctl,
37                            struct btrfs_free_space *info);
38 static void merge_space_tree(struct btrfs_free_space_ctl *ctl);
39
40 struct io_ctl {
41         void *cur, *orig;
42         void *buffer;
43         struct btrfs_root *root;
44         unsigned long size;
45         u64 total_size;
46         int index;
47         int num_pages;
48         unsigned check_crcs:1;
49 };
50
51 static int io_ctl_init(struct io_ctl *io_ctl, u64 size, u64 ino,
52                        struct btrfs_root *root)
53 {
54         memset(io_ctl, 0, sizeof(struct io_ctl));
55         io_ctl->num_pages = (size + root->sectorsize - 1) / root->sectorsize;
56         io_ctl->buffer = kzalloc(size, GFP_NOFS);
57         if (!io_ctl->buffer)
58                 return -ENOMEM;
59         io_ctl->total_size = size;
60         io_ctl->root = root;
61         if (ino != BTRFS_FREE_INO_OBJECTID)
62                 io_ctl->check_crcs = 1;
63         return 0;
64 }
65
66 static void io_ctl_free(struct io_ctl *io_ctl)
67 {
68         kfree(io_ctl->buffer);
69 }
70
71 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
72 {
73         if (io_ctl->cur) {
74                 io_ctl->cur = NULL;
75                 io_ctl->orig = NULL;
76         }
77 }
78
79 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
80 {
81         BUG_ON(io_ctl->index >= io_ctl->num_pages);
82         io_ctl->cur = io_ctl->buffer + (io_ctl->index++ * io_ctl->root->sectorsize);
83         io_ctl->orig = io_ctl->cur;
84         io_ctl->size = io_ctl->root->sectorsize;
85         if (clear)
86                 memset(io_ctl->cur, 0, io_ctl->root->sectorsize);
87 }
88
89 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
90 {
91         io_ctl_unmap_page(io_ctl);
92 }
93
94 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct btrfs_root *root,
95                                 struct btrfs_path *path, u64 ino)
96 {
97         struct extent_buffer *leaf;
98         struct btrfs_file_extent_item *fi;
99         struct btrfs_key key;
100         u64 bytenr, len;
101         u64 total_read = 0;
102         int ret = 0;
103
104         key.objectid = ino;
105         key.type = BTRFS_EXTENT_DATA_KEY;
106         key.offset = 0;
107
108         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
109         if (ret) {
110                 printf("Couldn't find file extent item for free space inode"
111                        " %Lu\n", ino);
112                 btrfs_release_path(path);
113                 return -EINVAL;
114         }
115
116         while (total_read < io_ctl->total_size) {
117                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
118                         ret = btrfs_next_leaf(root, path);
119                         if (ret) {
120                                 ret = -EINVAL;
121                                 break;
122                         }
123                 }
124                 leaf = path->nodes[0];
125
126                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
127                 if (key.objectid != ino) {
128                         ret = -EINVAL;
129                         break;
130                 }
131
132                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
133                         ret = -EINVAL;
134                         break;
135                 }
136
137                 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
138                                     struct btrfs_file_extent_item);
139                 if (btrfs_file_extent_type(path->nodes[0], fi) !=
140                     BTRFS_FILE_EXTENT_REG) {
141                         printf("Not the file extent type we wanted\n");
142                         ret = -EINVAL;
143                         break;
144                 }
145
146                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi) +
147                         btrfs_file_extent_offset(leaf, fi);
148                 len = btrfs_file_extent_num_bytes(leaf, fi);
149                 ret = read_data_from_disk(root->fs_info,
150                                           io_ctl->buffer + key.offset, bytenr,
151                                           len, 0);
152                 if (ret)
153                         break;
154                 total_read += len;
155                 path->slots[0]++;
156         }
157
158         btrfs_release_path(path);
159         return ret;
160 }
161
162 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
163 {
164         __le64 *gen;
165
166         /*
167          * Skip the crc area.  If we don't check crcs then we just have a 64bit
168          * chunk at the front of the first page.
169          */
170         if (io_ctl->check_crcs) {
171                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
172                 io_ctl->size -= sizeof(u64) +
173                         (sizeof(u32) * io_ctl->num_pages);
174         } else {
175                 io_ctl->cur += sizeof(u64);
176                 io_ctl->size -= sizeof(u64) * 2;
177         }
178
179         gen = io_ctl->cur;
180         if (le64_to_cpu(*gen) != generation) {
181                 printk("btrfs: space cache generation "
182                        "(%Lu) does not match inode (%Lu)\n", *gen,
183                        generation);
184                 io_ctl_unmap_page(io_ctl);
185                 return -EIO;
186         }
187         io_ctl->cur += sizeof(u64);
188         return 0;
189 }
190
191 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
192 {
193         u32 *tmp, val;
194         u32 crc = ~(u32)0;
195         unsigned offset = 0;
196
197         if (!io_ctl->check_crcs) {
198                 io_ctl_map_page(io_ctl, 0);
199                 return 0;
200         }
201
202         if (index == 0)
203                 offset = sizeof(u32) * io_ctl->num_pages;
204
205         tmp = io_ctl->buffer;
206         tmp += index;
207         val = *tmp;
208
209         io_ctl_map_page(io_ctl, 0);
210         crc = crc32c(crc, io_ctl->orig + offset, io_ctl->root->sectorsize - offset);
211         btrfs_csum_final(crc, (char *)&crc);
212         if (val != crc) {
213                 printk("btrfs: csum mismatch on free space cache\n");
214                 io_ctl_unmap_page(io_ctl);
215                 return -EIO;
216         }
217
218         return 0;
219 }
220
221 static int io_ctl_read_entry(struct io_ctl *io_ctl,
222                             struct btrfs_free_space *entry, u8 *type)
223 {
224         struct btrfs_free_space_entry *e;
225         int ret;
226
227         if (!io_ctl->cur) {
228                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
229                 if (ret)
230                         return ret;
231         }
232
233         e = io_ctl->cur;
234         entry->offset = le64_to_cpu(e->offset);
235         entry->bytes = le64_to_cpu(e->bytes);
236         *type = e->type;
237         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
238         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
239
240         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
241                 return 0;
242
243         io_ctl_unmap_page(io_ctl);
244
245         return 0;
246 }
247
248 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
249                               struct btrfs_free_space *entry)
250 {
251         int ret;
252
253         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
254         if (ret)
255                 return ret;
256
257         memcpy(entry->bitmap, io_ctl->cur, io_ctl->root->sectorsize);
258         io_ctl_unmap_page(io_ctl);
259
260         return 0;
261 }
262
263
264 static int __load_free_space_cache(struct btrfs_root *root,
265                             struct btrfs_free_space_ctl *ctl,
266                             struct btrfs_path *path, u64 offset)
267 {
268         struct btrfs_free_space_header *header;
269         struct btrfs_inode_item *inode_item;
270         struct extent_buffer *leaf;
271         struct io_ctl io_ctl;
272         struct btrfs_key key;
273         struct btrfs_key inode_location;
274         struct btrfs_disk_key disk_key;
275         struct btrfs_free_space *e, *n;
276         struct list_head bitmaps;
277         u64 num_entries;
278         u64 num_bitmaps;
279         u64 generation;
280         u64 inode_size;
281         u8 type;
282         int ret = 0;
283
284         INIT_LIST_HEAD(&bitmaps);
285
286         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
287         key.offset = offset;
288         key.type = 0;
289
290         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
291         if (ret < 0) {
292                 return 0;
293         } else if (ret > 0) {
294                 btrfs_release_path(path);
295                 return 0;
296         }
297
298         leaf = path->nodes[0];
299         header = btrfs_item_ptr(leaf, path->slots[0],
300                                 struct btrfs_free_space_header);
301         num_entries = btrfs_free_space_entries(leaf, header);
302         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
303         generation = btrfs_free_space_generation(leaf, header);
304         btrfs_free_space_key(leaf, header, &disk_key);
305         btrfs_disk_key_to_cpu(&inode_location, &disk_key);
306         btrfs_release_path(path);
307
308         ret = btrfs_search_slot(NULL, root, &inode_location, path, 0, 0);
309         if (ret) {
310                 printf("Couldn't find free space inode %d\n", ret);
311                 return 0;
312         }
313
314         leaf = path->nodes[0];
315         inode_item = btrfs_item_ptr(leaf, path->slots[0],
316                                     struct btrfs_inode_item);
317
318         inode_size = btrfs_inode_size(leaf, inode_item);
319         if (!inode_size || !btrfs_inode_generation(leaf, inode_item)) {
320                 btrfs_release_path(path);
321                 return 0;
322         }
323
324         if (btrfs_inode_generation(leaf, inode_item) != generation) {
325                 printf("free space inode generation (%llu) did not match "
326                        "free space cache generation (%llu)\n",
327                        (unsigned long long)btrfs_inode_generation(leaf,
328                                                                   inode_item),
329                        (unsigned long long)generation);
330                 btrfs_release_path(path);
331                 return 0;
332         }
333
334         btrfs_release_path(path);
335
336         if (!num_entries)
337                 return 0;
338
339         ret = io_ctl_init(&io_ctl, inode_size, inode_location.objectid, root);
340         if (ret)
341                 return ret;
342
343         ret = io_ctl_prepare_pages(&io_ctl, root, path,
344                                    inode_location.objectid);
345         if (ret)
346                 goto out;
347
348         ret = io_ctl_check_crc(&io_ctl, 0);
349         if (ret)
350                 goto free_cache;
351
352         ret = io_ctl_check_generation(&io_ctl, generation);
353         if (ret)
354                 goto free_cache;
355
356         while (num_entries) {
357                 e = calloc(1, sizeof(*e));
358                 if (!e)
359                         goto free_cache;
360
361                 ret = io_ctl_read_entry(&io_ctl, e, &type);
362                 if (ret) {
363                         free(e);
364                         goto free_cache;
365                 }
366
367                 if (!e->bytes) {
368                         free(e);
369                         goto free_cache;
370                 }
371
372                 if (type == BTRFS_FREE_SPACE_EXTENT) {
373                         ret = link_free_space(ctl, e);
374                         if (ret) {
375                                 printf("Duplicate entries in free space cache, dumping");
376                                 free(e);
377                                 goto free_cache;
378                         }
379                 } else {
380                         BUG_ON(!num_bitmaps);
381                         num_bitmaps--;
382                         e->bitmap = kzalloc(ctl->sectorsize, GFP_NOFS);
383                         if (!e->bitmap) {
384                                 free(e);
385                                 goto free_cache;
386                         }
387                         ret = link_free_space(ctl, e);
388                         ctl->total_bitmaps++;
389                         if (ret) {
390                                 printf("Duplicate entries in free space cache, dumping");
391                                 free(e->bitmap);
392                                 free(e);
393                                 goto free_cache;
394                         }
395                         list_add_tail(&e->list, &bitmaps);
396                 }
397
398                 num_entries--;
399         }
400
401         io_ctl_unmap_page(&io_ctl);
402
403         /*
404          * We add the bitmaps at the end of the entries in order that
405          * the bitmap entries are added to the cache.
406          */
407         list_for_each_entry_safe(e, n, &bitmaps, list) {
408                 list_del_init(&e->list);
409                 ret = io_ctl_read_bitmap(&io_ctl, e);
410                 if (ret)
411                         goto free_cache;
412         }
413
414         io_ctl_drop_pages(&io_ctl);
415         merge_space_tree(ctl);
416         ret = 1;
417 out:
418         io_ctl_free(&io_ctl);
419         return ret;
420 free_cache:
421         io_ctl_drop_pages(&io_ctl);
422         __btrfs_remove_free_space_cache(ctl);
423         goto out;
424 }
425
426 int load_free_space_cache(struct btrfs_fs_info *fs_info,
427                           struct btrfs_block_group_cache *block_group)
428 {
429         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
430         struct btrfs_path *path;
431         int ret = 0;
432
433         path = btrfs_alloc_path();
434         if (!path)
435                 return 0;
436
437         ret = __load_free_space_cache(fs_info->tree_root, ctl, path,
438                                       block_group->key.objectid);
439         btrfs_free_path(path);
440
441         if (ret < 0) {
442                 ret = 0;
443
444                 printf("failed to load free space cache for block group %llu\n",
445                         block_group->key.objectid);
446         }
447
448         return ret;
449 }
450
451 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
452                                           u64 offset)
453 {
454         BUG_ON(offset < bitmap_start);
455         offset -= bitmap_start;
456         return (unsigned long)(offset / unit);
457 }
458
459 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
460 {
461         return (unsigned long)(bytes / unit);
462 }
463
464 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
465                                    u64 offset)
466 {
467         u64 bitmap_start;
468         u64 bytes_per_bitmap;
469         u32 sectorsize = ctl->sectorsize;
470
471         bytes_per_bitmap = BITS_PER_BITMAP(sectorsize) * ctl->unit;
472         bitmap_start = offset - ctl->start;
473         bitmap_start = bitmap_start / bytes_per_bitmap;
474         bitmap_start *= bytes_per_bitmap;
475         bitmap_start += ctl->start;
476
477         return bitmap_start;
478 }
479
480 static int tree_insert_offset(struct rb_root *root, u64 offset,
481                               struct rb_node *node, int bitmap)
482 {
483         struct rb_node **p = &root->rb_node;
484         struct rb_node *parent = NULL;
485         struct btrfs_free_space *info;
486
487         while (*p) {
488                 parent = *p;
489                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
490
491                 if (offset < info->offset) {
492                         p = &(*p)->rb_left;
493                 } else if (offset > info->offset) {
494                         p = &(*p)->rb_right;
495                 } else {
496                         /*
497                          * we could have a bitmap entry and an extent entry
498                          * share the same offset.  If this is the case, we want
499                          * the extent entry to always be found first if we do a
500                          * linear search through the tree, since we want to have
501                          * the quickest allocation time, and allocating from an
502                          * extent is faster than allocating from a bitmap.  So
503                          * if we're inserting a bitmap and we find an entry at
504                          * this offset, we want to go right, or after this entry
505                          * logically.  If we are inserting an extent and we've
506                          * found a bitmap, we want to go left, or before
507                          * logically.
508                          */
509                         if (bitmap) {
510                                 if (info->bitmap)
511                                         return -EEXIST;
512                                 p = &(*p)->rb_right;
513                         } else {
514                                 if (!info->bitmap)
515                                         return -EEXIST;
516                                 p = &(*p)->rb_left;
517                         }
518                 }
519         }
520
521         rb_link_node(node, parent, p);
522         rb_insert_color(node, root);
523
524         return 0;
525 }
526
527 /*
528  * searches the tree for the given offset.
529  *
530  * fuzzy - If this is set, then we are trying to make an allocation, and we just
531  * want a section that has at least bytes size and comes at or after the given
532  * offset.
533  */
534 static struct btrfs_free_space *
535 tree_search_offset(struct btrfs_free_space_ctl *ctl,
536                    u64 offset, int bitmap_only, int fuzzy)
537 {
538         struct rb_node *n = ctl->free_space_offset.rb_node;
539         struct btrfs_free_space *entry, *prev = NULL;
540         u32 sectorsize = ctl->sectorsize;
541
542         /* find entry that is closest to the 'offset' */
543         while (1) {
544                 if (!n) {
545                         entry = NULL;
546                         break;
547                 }
548
549                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
550                 prev = entry;
551
552                 if (offset < entry->offset)
553                         n = n->rb_left;
554                 else if (offset > entry->offset)
555                         n = n->rb_right;
556                 else
557                         break;
558         }
559
560         if (bitmap_only) {
561                 if (!entry)
562                         return NULL;
563                 if (entry->bitmap)
564                         return entry;
565
566                 /*
567                  * bitmap entry and extent entry may share same offset,
568                  * in that case, bitmap entry comes after extent entry.
569                  */
570                 n = rb_next(n);
571                 if (!n)
572                         return NULL;
573                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
574                 if (entry->offset != offset)
575                         return NULL;
576
577                 WARN_ON(!entry->bitmap);
578                 return entry;
579         } else if (entry) {
580                 if (entry->bitmap) {
581                         /*
582                          * if previous extent entry covers the offset,
583                          * we should return it instead of the bitmap entry
584                          */
585                         n = rb_prev(&entry->offset_index);
586                         if (n) {
587                                 prev = rb_entry(n, struct btrfs_free_space,
588                                                 offset_index);
589                                 if (!prev->bitmap &&
590                                     prev->offset + prev->bytes > offset)
591                                         entry = prev;
592                         }
593                 }
594                 return entry;
595         }
596
597         if (!prev)
598                 return NULL;
599
600         /* find last entry before the 'offset' */
601         entry = prev;
602         if (entry->offset > offset) {
603                 n = rb_prev(&entry->offset_index);
604                 if (n) {
605                         entry = rb_entry(n, struct btrfs_free_space,
606                                         offset_index);
607                         BUG_ON(entry->offset > offset);
608                 } else {
609                         if (fuzzy)
610                                 return entry;
611                         else
612                                 return NULL;
613                 }
614         }
615
616         if (entry->bitmap) {
617                 n = rb_prev(&entry->offset_index);
618                 if (n) {
619                         prev = rb_entry(n, struct btrfs_free_space,
620                                         offset_index);
621                         if (!prev->bitmap &&
622                             prev->offset + prev->bytes > offset)
623                                 return prev;
624                 }
625                 if (entry->offset + BITS_PER_BITMAP(sectorsize) * ctl->unit > offset)
626                         return entry;
627         } else if (entry->offset + entry->bytes > offset)
628                 return entry;
629
630         if (!fuzzy)
631                 return NULL;
632
633         while (1) {
634                 if (entry->bitmap) {
635                         if (entry->offset + BITS_PER_BITMAP(sectorsize) *
636                             ctl->unit > offset)
637                                 break;
638                 } else {
639                         if (entry->offset + entry->bytes > offset)
640                                 break;
641                 }
642
643                 n = rb_next(&entry->offset_index);
644                 if (!n)
645                         return NULL;
646                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
647         }
648         return entry;
649 }
650
651 void unlink_free_space(struct btrfs_free_space_ctl *ctl,
652                        struct btrfs_free_space *info)
653 {
654         rb_erase(&info->offset_index, &ctl->free_space_offset);
655         ctl->free_extents--;
656         ctl->free_space -= info->bytes;
657 }
658
659 static int link_free_space(struct btrfs_free_space_ctl *ctl,
660                            struct btrfs_free_space *info)
661 {
662         int ret = 0;
663
664         BUG_ON(!info->bitmap && !info->bytes);
665         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
666                                  &info->offset_index, (info->bitmap != NULL));
667         if (ret)
668                 return ret;
669
670         ctl->free_space += info->bytes;
671         ctl->free_extents++;
672         return ret;
673 }
674
675 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
676                          struct btrfs_free_space *bitmap_info, u64 *offset,
677                          u64 *bytes)
678 {
679         unsigned long found_bits = 0;
680         unsigned long bits, i;
681         unsigned long next_zero;
682         u32 sectorsize = ctl->sectorsize;
683
684         i = offset_to_bit(bitmap_info->offset, ctl->unit,
685                           max_t(u64, *offset, bitmap_info->offset));
686         bits = bytes_to_bits(*bytes, ctl->unit);
687
688         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP(sectorsize)) {
689                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
690                                                BITS_PER_BITMAP(sectorsize), i);
691                 if ((next_zero - i) >= bits) {
692                         found_bits = next_zero - i;
693                         break;
694                 }
695                 i = next_zero;
696         }
697
698         if (found_bits) {
699                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
700                 *bytes = (u64)(found_bits) * ctl->unit;
701                 return 0;
702         }
703
704         return -1;
705 }
706
707 struct btrfs_free_space *
708 btrfs_find_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes)
709 {
710         return tree_search_offset(ctl, offset, 0, 0);
711 }
712
713 static void try_merge_free_space(struct btrfs_free_space_ctl *ctl,
714                                 struct btrfs_free_space *info)
715 {
716         struct btrfs_free_space *left_info;
717         struct btrfs_free_space *right_info;
718         u64 offset = info->offset;
719         u64 bytes = info->bytes;
720
721         /*
722          * first we want to see if there is free space adjacent to the range we
723          * are adding, if there is remove that struct and add a new one to
724          * cover the entire range
725          */
726         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
727         if (right_info && rb_prev(&right_info->offset_index))
728                 left_info = rb_entry(rb_prev(&right_info->offset_index),
729                                      struct btrfs_free_space, offset_index);
730         else
731                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
732
733         if (right_info && !right_info->bitmap) {
734                 unlink_free_space(ctl, right_info);
735                 info->bytes += right_info->bytes;
736                 free(right_info);
737         }
738
739         if (left_info && !left_info->bitmap &&
740             left_info->offset + left_info->bytes == offset) {
741                 unlink_free_space(ctl, left_info);
742                 info->offset = left_info->offset;
743                 info->bytes += left_info->bytes;
744                 free(left_info);
745         }
746 }
747
748 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
749                            u64 bytes)
750 {
751         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
752         struct btrfs_free_space *info;
753         struct rb_node *n;
754         int count = 0;
755
756         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
757                 info = rb_entry(n, struct btrfs_free_space, offset_index);
758                 if (info->bytes >= bytes && !block_group->ro)
759                         count++;
760                 printk("entry offset %llu, bytes %llu, bitmap %s\n",
761                        (unsigned long long)info->offset,
762                        (unsigned long long)info->bytes,
763                        (info->bitmap) ? "yes" : "no");
764         }
765         printk("%d blocks of free space at or bigger than bytes is \n", count);
766 }
767
768 int btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group,
769                               int sectorsize)
770 {
771         struct btrfs_free_space_ctl *ctl;
772
773         ctl = calloc(1, sizeof(*ctl));
774         if (!ctl)
775                 return -ENOMEM;
776
777         ctl->sectorsize = sectorsize;
778         ctl->unit = sectorsize;
779         ctl->start = block_group->key.objectid;
780         ctl->private = block_group;
781         block_group->free_space_ctl = ctl;
782
783         return 0;
784 }
785
786 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
787 {
788         struct btrfs_free_space *info;
789         struct rb_node *node;
790
791         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
792                 info = rb_entry(node, struct btrfs_free_space, offset_index);
793                 unlink_free_space(ctl, info);
794                 free(info->bitmap);
795                 free(info);
796         }
797 }
798
799 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
800 {
801         __btrfs_remove_free_space_cache(block_group->free_space_ctl);
802 }
803
804 static int btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, u64 offset,
805                                 u64 bytes)
806 {
807         struct btrfs_free_space *info;
808         int ret = 0;
809
810         info = calloc(1, sizeof(*info));
811         if (!info)
812                 return -ENOMEM;
813
814         info->offset = offset;
815         info->bytes = bytes;
816
817         try_merge_free_space(ctl, info);
818
819         ret = link_free_space(ctl, info);
820         if (ret) {
821                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
822                 BUG_ON(ret == -EEXIST);
823         }
824
825         return ret;
826 }
827
828 /*
829  * Merges all the free space cache and kills the bitmap entries since we just
830  * want to use the free space cache to verify it's correct, no reason to keep
831  * the bitmaps around to confuse things.
832  */
833 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
834 {
835         struct btrfs_free_space *e, *prev = NULL;
836         struct rb_node *n;
837         int ret;
838         u32 sectorsize = ctl->sectorsize;
839
840 again:
841         prev = NULL;
842         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
843                 e = rb_entry(n, struct btrfs_free_space, offset_index);
844                 if (e->bitmap) {
845                         u64 offset = e->offset, bytes = ctl->unit;
846                         u64 end;
847
848                         end = e->offset + (u64)(BITS_PER_BITMAP(sectorsize) * ctl->unit);
849
850                         unlink_free_space(ctl, e);
851                         while (!(search_bitmap(ctl, e, &offset, &bytes))) {
852                                 ret = btrfs_add_free_space(ctl, offset,
853                                                            bytes);
854                                 BUG_ON(ret);
855                                 offset += bytes;
856                                 if (offset >= end)
857                                         break;
858                                 bytes = ctl->unit;
859                         }
860                         free(e->bitmap);
861                         free(e);
862                         goto again;
863                 }
864                 if (!prev)
865                         goto next;
866                 if (prev->offset + prev->bytes == e->offset) {
867                         unlink_free_space(ctl, prev);
868                         unlink_free_space(ctl, e);
869                         prev->bytes += e->bytes;
870                         free(e);
871                         link_free_space(ctl, prev);
872                         goto again;
873                 }
874 next:
875                 prev = e;
876         }
877 }