1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Reference Renderer
3 * -----------------------------------------------
5 * Copyright 2014 The Android Open Source Project
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
11 * http://www.apache.org/licenses/LICENSE-2.0
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
21 * \brief Reference rasterizer
22 *//*--------------------------------------------------------------------*/
24 #include "rrRasterizer.hpp"
26 #include "tcuVectorUtil.hpp"
31 inline deInt64 toSubpixelCoord (float v)
33 return (deInt64)(v * (1<<RASTERIZER_SUBPIXEL_BITS) + (v < 0.f ? -0.5f : 0.5f));
36 inline deInt64 toSubpixelCoord (deInt32 v)
38 return v << RASTERIZER_SUBPIXEL_BITS;
41 inline deInt32 ceilSubpixelToPixelCoord (deInt64 coord, bool fillEdge)
44 return (deInt32)((coord + ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS);
46 return (deInt32)((coord + (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS);
49 inline deInt32 floorSubpixelToPixelCoord (deInt64 coord, bool fillEdge)
52 return (deInt32)((coord - (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS);
54 return (deInt32)((coord - ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS);
57 static inline void initEdgeCCW (EdgeFunction& edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill, const deInt64 x0, const deInt64 y0, const deInt64 x1, const deInt64 y1)
59 // \note See EdgeFunction documentation for details.
61 const deInt64 xd = x1-x0;
62 const deInt64 yd = y1-y0;
63 bool inclusive = false; //!< Inclusive in CCW orientation.
66 inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0;
68 inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0;
72 edge.c = x0*y1 - y0*x1;
73 edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles
76 static inline void reverseEdge (EdgeFunction& edge)
81 edge.inclusive = !edge.inclusive;
84 static inline deInt64 evaluateEdge (const EdgeFunction& edge, const deInt64 x, const deInt64 y)
86 return edge.a*x + edge.b*y + edge.c;
89 static inline bool isInsideCCW (const EdgeFunction& edge, const deInt64 edgeVal)
91 return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0);
94 namespace LineRasterUtil
97 struct SubpixelLineSegment
99 const tcu::Vector<deInt64,2> m_v0;
100 const tcu::Vector<deInt64,2> m_v1;
102 SubpixelLineSegment (const tcu::Vector<deInt64,2>& v0, const tcu::Vector<deInt64,2>& v1)
108 tcu::Vector<deInt64,2> direction (void) const
116 LINE_SIDE_INTERSECT = 0,
121 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::Vec2& v)
123 return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y()));
126 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::IVec2& v)
128 return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y()));
131 #if defined(DE_DEBUG)
132 static bool isTheCenterOfTheFragment (const tcu::Vector<deInt64,2>& a)
134 const deUint64 pixelSize = 1ll << (RASTERIZER_SUBPIXEL_BITS);
135 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
136 return ((a.x() & (pixelSize-1)) == halfPixel &&
137 (a.y() & (pixelSize-1)) == halfPixel);
140 static bool inViewport (const tcu::IVec2& p, const tcu::IVec4& viewport)
142 return p.x() >= viewport.x() &&
143 p.y() >= viewport.y() &&
144 p.x() < viewport.x() + viewport.z() &&
145 p.y() < viewport.y() + viewport.w();
149 // returns true if vertex is on the left side of the line
150 static bool vertexOnLeftSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
152 const tcu::Vector<deInt64,2> u = l.direction();
153 const tcu::Vector<deInt64,2> v = ( p - l.m_v0);
154 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
155 return crossProduct < 0;
158 // returns true if vertex is on the right side of the line
159 static bool vertexOnRightSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
161 const tcu::Vector<deInt64,2> u = l.direction();
162 const tcu::Vector<deInt64,2> v = ( p - l.m_v0);
163 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
164 return crossProduct > 0;
167 // returns true if vertex is on the line
168 static bool vertexOnLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
170 const tcu::Vector<deInt64,2> u = l.direction();
171 const tcu::Vector<deInt64,2> v = ( p - l.m_v0);
172 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
173 return crossProduct == 0; // cross product == 0
176 // returns true if vertex is on the line segment
177 static bool vertexOnLineSegment (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
179 if (!vertexOnLine(p, l))
182 const tcu::Vector<deInt64,2> v = l.direction();
183 const tcu::Vector<deInt64,2> u1 = ( p - l.m_v0);
184 const tcu::Vector<deInt64,2> u2 = ( p - l.m_v1);
186 if (v.x() == 0 && v.y() == 0)
189 return tcu::dot( v, u1) >= 0 &&
190 tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0
193 static LINE_SIDE getVertexSide (const tcu::Vector<deInt64,2>& v, const SubpixelLineSegment& l)
195 if (vertexOnLeftSideOfLine(v, l))
196 return LINE_SIDE_LEFT;
197 else if (vertexOnRightSideOfLine(v, l))
198 return LINE_SIDE_RIGHT;
199 else if (vertexOnLine(v, l))
200 return LINE_SIDE_INTERSECT;
204 return LINE_SIDE_INTERSECT;
208 // returns true if angle between line and given cornerExitNormal is in range (-45, 45)
209 bool lineInCornerAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal)
211 // v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45)
212 const tcu::Vector<deInt64,2> v = line.direction();
213 const deInt64 dotProduct = dot(v, cornerExitNormal);
215 // dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2)
218 return 2 * dotProduct * dotProduct > tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal);
221 // returns true if angle between line and given cornerExitNormal is in range (-135, 135)
222 bool lineInCornerOutsideAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal)
224 // v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135)
225 const tcu::Vector<deInt64,2> v = line.direction();
226 const deInt64 dotProduct = dot(v, cornerExitNormal);
228 // dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2)
231 return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal);
234 bool doesLineSegmentExitDiamond (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& diamondCenter)
236 DE_ASSERT(isTheCenterOfTheFragment(diamondCenter));
238 // Diamond Center is at diamondCenter in subpixel coords
240 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
242 // Reject distant diamonds early
244 const tcu::Vector<deInt64,2> u = line.direction();
245 const tcu::Vector<deInt64,2> v = (diamondCenter - line.m_v0);
246 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
248 // crossProduct = |p| |l| sin(theta)
249 // distanceFromLine = |p| sin(theta)
250 // => distanceFromLine = crossProduct / |l|
252 // |distanceFromLine| > C
253 // => distanceFromLine^2 > C^2
254 // => crossProduct^2 / |l|^2 > C^2
255 // => crossProduct^2 > |l|^2 * C^2
257 const deInt64 floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64))
259 const deInt64 broadRejectDistance = 2 * halfPixel;
260 const deInt64 broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance;
261 const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64);
262 const deInt64 crossProductSquared = (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow
263 const deInt64 lineLengthSquared = tcu::lengthSquared(u);
264 const bool limitValueCouldOverflow = ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63;
265 const deInt64 limitValue = (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow
267 // only cross overflows
268 if (crossProductOverflows && !limitValueCouldOverflow)
271 // both representable
272 if (!crossProductOverflows && !limitValueCouldOverflow)
274 if (crossProductSquared > limitValue)
279 const struct DiamondBound
281 tcu::Vector<deInt64,2> p0;
282 tcu::Vector<deInt64,2> p1;
283 bool edgeInclusive; // would a point on the bound be inside of the region
286 { diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), false },
287 { diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), false },
288 { diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), true },
289 { diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), true },
292 const struct DiamondCorners
294 enum CORNER_EDGE_CASE_BEHAVIOR
296 CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting
297 CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit
298 CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside)
299 CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside)
301 enum CORNER_START_CASE_BEHAVIOR
303 CORNER_START_CASE_NONE, // the line starting point is outside, no exiting
304 CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside)
305 CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side.
306 CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side.
308 enum CORNER_END_CASE_BEHAVIOR
310 CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside)
311 CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside)
312 CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside)
313 CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside)
316 tcu::Vector<deInt64,2> dp;
317 bool pointInclusive; // would a point in this corner intersect with the region
318 CORNER_EDGE_CASE_BEHAVIOR lineBehavior; // would a line segment going through this corner intersect with the region
319 CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner
320 CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner
323 { tcu::Vector<deInt64,2>(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER, DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER},
324 { tcu::Vector<deInt64,2>(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE, DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION },
325 { tcu::Vector<deInt64,2>(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER, DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER },
326 { tcu::Vector<deInt64,2>(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT, DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE },
329 // Corner cases at the corners
330 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx)
332 const tcu::Vector<deInt64,2> p = diamondCenter + corners[ndx].dp;
333 const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line);
335 if (!intersectsAtCorner)
338 // line segment body intersects with the corner
339 if (p != line.m_v0 && p != line.m_v1)
341 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT)
344 // endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0
345 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER &&
346 (line.direction().x() * line.direction().y()) <= 0)
349 // endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0
350 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER &&
351 (line.direction().x() * line.direction().y()) > 0)
355 // line exits the area at the corner
356 if (lineInCornerAngleRange(line, corners[ndx].dp))
358 const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0;
359 const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1;
361 // starting point is inside the region and end endpoint is outside
362 if (startIsInside && endIsOutside)
366 // line end is at the corner
369 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION ||
370 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER ||
371 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER)
373 // did the line intersect the region
374 if (lineInCornerAngleRange(line, corners[ndx].dp))
378 // due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair
379 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER &&
380 line.direction().x() < 0 &&
381 line.direction().y() > 0)
383 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER &&
384 line.direction().x() > 0 &&
385 line.direction().y() > 0)
389 // line start is at the corner
392 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE)
394 // if the line is not going inside, it will exit
395 if (lineInCornerOutsideAngleRange(line, corners[ndx].dp))
399 // exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side.
400 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 &&
401 line.direction().x() > 0 &&
402 line.direction().y() > 0 &&
403 line.direction().y() <= line.direction().x())
406 // exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side.
407 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 &&
408 line.direction().x() > 0 &&
409 line.direction().y() <= 0 &&
410 -line.direction().y() <= line.direction().x())
415 // Does the line intersect boundary at the left == exits the diamond
416 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx)
418 const bool startVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
419 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)));
420 const bool endVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
421 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)));
423 // start must be on inside this half space (left or at the inclusive boundary)
424 if (!startVertexInside)
427 // end must be outside of this half-space (right or at non-inclusive boundary)
431 // Does the line via v0 and v1 intersect the line segment p0-p1
432 // <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line.
433 // Corners are not allowed, they are checked already
434 LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line);
435 LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line);
437 if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT &&
438 sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT &&
448 TriangleRasterizer::TriangleRasterizer (const tcu::IVec4& viewport, const int numSamples, const RasterizationState& state)
449 : m_viewport (viewport)
450 , m_numSamples (numSamples)
451 , m_winding (state.winding)
452 , m_horizontalFill (state.horizontalFill)
453 , m_verticalFill (state.verticalFill)
454 , m_face (FACETYPE_LAST)
458 /*--------------------------------------------------------------------*//*!
459 * \brief Initialize triangle rasterization
460 * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0.
461 * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1.
462 * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2.
463 *//*--------------------------------------------------------------------*/
464 void TriangleRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2)
470 // Positions in fixed-point coordinates.
471 const deInt64 x0 = toSubpixelCoord(v0.x());
472 const deInt64 y0 = toSubpixelCoord(v0.y());
473 const deInt64 x1 = toSubpixelCoord(v1.x());
474 const deInt64 y1 = toSubpixelCoord(v1.y());
475 const deInt64 x2 = toSubpixelCoord(v2.x());
476 const deInt64 y2 = toSubpixelCoord(v2.y());
478 // Initialize edge functions.
479 if (m_winding == WINDING_CCW)
481 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1);
482 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2);
483 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0);
488 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0);
489 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1);
490 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2);
494 const deInt64 s = evaluateEdge(m_edge01, x2, y2);
495 const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0);
496 m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK;
500 // Reverse edges so that we can use CCW area tests & interpolation
501 reverseEdge(m_edge01);
502 reverseEdge(m_edge12);
503 reverseEdge(m_edge20);
507 const deInt64 xMin = de::min(de::min(x0, x1), x2);
508 const deInt64 xMax = de::max(de::max(x0, x1), x2);
509 const deInt64 yMin = de::min(de::min(y0, y1), y2);
510 const deInt64 yMax = de::max(de::max(y0, y1), y2);
512 m_bboxMin.x() = floorSubpixelToPixelCoord (xMin, m_horizontalFill == FILL_LEFT);
513 m_bboxMin.y() = floorSubpixelToPixelCoord (yMin, m_verticalFill == FILL_BOTTOM);
514 m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, m_horizontalFill == FILL_RIGHT);
515 m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, m_verticalFill == FILL_TOP);
518 const int wX0 = m_viewport.x();
519 const int wY0 = m_viewport.y();
520 const int wX1 = wX0 + m_viewport.z() - 1;
521 const int wY1 = wY0 + m_viewport.w() -1;
523 m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1);
524 m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1);
525 m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1);
526 m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1);
528 m_curPos = m_bboxMin;
531 void TriangleRasterizer::rasterizeSingleSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
533 DE_ASSERT(maxFragmentPackets > 0);
535 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
538 // For depth interpolation; given barycentrics A, B, C = (1 - A - B)
539 // we can reformulate the usual z = z0*A + z1*B + z2*C into more
540 // stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2.
541 const float za = m_v0.z()-m_v2.z();
542 const float zb = m_v1.z()-m_v2.z();
543 const float zc = m_v2.z();
545 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
547 const int x0 = m_curPos.x();
548 const int y0 = m_curPos.y();
551 const deInt64 sx0 = toSubpixelCoord(x0) + halfPixel;
552 const deInt64 sx1 = toSubpixelCoord(x0+1) + halfPixel;
553 const deInt64 sy0 = toSubpixelCoord(y0) + halfPixel;
554 const deInt64 sy1 = toSubpixelCoord(y0+1) + halfPixel;
556 const deInt64 sx[4] = { sx0, sx1, sx0, sx1 };
557 const deInt64 sy[4] = { sy0, sy0, sy1, sy1 };
560 const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z();
561 const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w();
563 DE_ASSERT(x0 < m_viewport.x()+m_viewport.z());
564 DE_ASSERT(y0 < m_viewport.y()+m_viewport.w());
567 tcu::Vector<deInt64, 4> e01;
568 tcu::Vector<deInt64, 4> e12;
569 tcu::Vector<deInt64, 4> e20;
572 deUint64 coverage = 0;
574 // Evaluate edge values
575 for (int i = 0; i < 4; i++)
577 e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]);
578 e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]);
579 e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]);
582 // Compute coverage mask
583 coverage = setCoverageValue(coverage, 1, 0, 0, 0, isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) && isInsideCCW(m_edge20, e20[0]));
584 coverage = setCoverageValue(coverage, 1, 1, 0, 0, !outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) && isInsideCCW(m_edge20, e20[1]));
585 coverage = setCoverageValue(coverage, 1, 0, 1, 0, !outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) && isInsideCCW(m_edge20, e20[2]));
586 coverage = setCoverageValue(coverage, 1, 1, 1, 0, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) && isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3]));
588 // Advance to next location
590 if (m_curPos.x() > m_bboxMax.x())
593 m_curPos.x() = m_bboxMin.x();
597 continue; // Discard.
599 // Floating-point edge values for barycentrics etc.
600 const tcu::Vec4 e01f = e01.asFloat();
601 const tcu::Vec4 e12f = e12.asFloat();
602 const tcu::Vec4 e20f = e20.asFloat();
604 // Compute depth values.
607 const tcu::Vec4 edgeSum = e01f + e12f + e20f;
608 const tcu::Vec4 z0 = e12f / edgeSum;
609 const tcu::Vec4 z1 = e20f / edgeSum;
611 depthValues[packetNdx*4+0] = z0[0]*za + z1[0]*zb + zc;
612 depthValues[packetNdx*4+1] = z0[1]*za + z1[1]*zb + zc;
613 depthValues[packetNdx*4+2] = z0[2]*za + z1[2]*zb + zc;
614 depthValues[packetNdx*4+3] = z0[3]*za + z1[3]*zb + zc;
617 // Compute barycentrics and write out fragment packet
619 FragmentPacket& packet = fragmentPackets[packetNdx];
621 const tcu::Vec4 b0 = e12f * m_v0.w();
622 const tcu::Vec4 b1 = e20f * m_v1.w();
623 const tcu::Vec4 b2 = e01f * m_v2.w();
624 const tcu::Vec4 bSum = b0 + b1 + b2;
626 packet.position = tcu::IVec2(x0, y0);
627 packet.coverage = coverage;
628 packet.barycentric[0] = b0 / bSum;
629 packet.barycentric[1] = b1 / bSum;
630 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1];
636 DE_ASSERT(packetNdx <= maxFragmentPackets);
637 numPacketsRasterized = packetNdx;
640 // Sample positions - ordered as (x, y) list.
642 // \note Macros are used to eliminate function calls even in debug builds.
643 #define SAMPLE_POS_TO_SUBPIXEL_COORD(POS) \
644 (deInt64)((POS) * (1<<RASTERIZER_SUBPIXEL_BITS) + 0.5f)
646 #define SAMPLE_POS(X, Y) \
647 SAMPLE_POS_TO_SUBPIXEL_COORD(X), SAMPLE_POS_TO_SUBPIXEL_COORD(Y)
649 static const deInt64 s_samplePos2[] =
651 SAMPLE_POS(0.3f, 0.3f),
652 SAMPLE_POS(0.7f, 0.7f)
655 static const deInt64 s_samplePos4[] =
657 SAMPLE_POS(0.25f, 0.25f),
658 SAMPLE_POS(0.75f, 0.25f),
659 SAMPLE_POS(0.25f, 0.75f),
660 SAMPLE_POS(0.75f, 0.75f)
662 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos4) == 4*2);
664 static const deInt64 s_samplePos8[] =
666 SAMPLE_POS( 7.f/16.f, 9.f/16.f),
667 SAMPLE_POS( 9.f/16.f, 13.f/16.f),
668 SAMPLE_POS(11.f/16.f, 3.f/16.f),
669 SAMPLE_POS(13.f/16.f, 11.f/16.f),
670 SAMPLE_POS( 1.f/16.f, 7.f/16.f),
671 SAMPLE_POS( 5.f/16.f, 1.f/16.f),
672 SAMPLE_POS(15.f/16.f, 5.f/16.f),
673 SAMPLE_POS( 3.f/16.f, 15.f/16.f)
675 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos8) == 8*2);
677 static const deInt64 s_samplePos16[] =
679 SAMPLE_POS(1.f/8.f, 1.f/8.f),
680 SAMPLE_POS(3.f/8.f, 1.f/8.f),
681 SAMPLE_POS(5.f/8.f, 1.f/8.f),
682 SAMPLE_POS(7.f/8.f, 1.f/8.f),
683 SAMPLE_POS(1.f/8.f, 3.f/8.f),
684 SAMPLE_POS(3.f/8.f, 3.f/8.f),
685 SAMPLE_POS(5.f/8.f, 3.f/8.f),
686 SAMPLE_POS(7.f/8.f, 3.f/8.f),
687 SAMPLE_POS(1.f/8.f, 5.f/8.f),
688 SAMPLE_POS(3.f/8.f, 5.f/8.f),
689 SAMPLE_POS(5.f/8.f, 5.f/8.f),
690 SAMPLE_POS(7.f/8.f, 5.f/8.f),
691 SAMPLE_POS(1.f/8.f, 7.f/8.f),
692 SAMPLE_POS(3.f/8.f, 7.f/8.f),
693 SAMPLE_POS(5.f/8.f, 7.f/8.f),
694 SAMPLE_POS(7.f/8.f, 7.f/8.f)
696 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos16) == 16*2);
699 #undef SAMPLE_POS_TO_SUBPIXEL_COORD
701 template<int NumSamples>
702 void TriangleRasterizer::rasterizeMultiSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
704 DE_ASSERT(maxFragmentPackets > 0);
706 const deInt64* samplePos = DE_NULL;
707 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
710 // For depth interpolation, see rasterizeSingleSample
711 const float za = m_v0.z()-m_v2.z();
712 const float zb = m_v1.z()-m_v2.z();
713 const float zc = m_v2.z();
717 case 2: samplePos = s_samplePos2; break;
718 case 4: samplePos = s_samplePos4; break;
719 case 8: samplePos = s_samplePos8; break;
720 case 16: samplePos = s_samplePos16; break;
725 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
727 const int x0 = m_curPos.x();
728 const int y0 = m_curPos.y();
730 // Base subpixel coords
731 const deInt64 sx0 = toSubpixelCoord(x0);
732 const deInt64 sx1 = toSubpixelCoord(x0+1);
733 const deInt64 sy0 = toSubpixelCoord(y0);
734 const deInt64 sy1 = toSubpixelCoord(y0+1);
736 const deInt64 sx[4] = { sx0, sx1, sx0, sx1 };
737 const deInt64 sy[4] = { sy0, sy0, sy1, sy1 };
740 const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z();
741 const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w();
743 DE_ASSERT(x0 < m_viewport.x()+m_viewport.z());
744 DE_ASSERT(y0 < m_viewport.y()+m_viewport.w());
747 tcu::Vector<deInt64, 4> e01[NumSamples];
748 tcu::Vector<deInt64, 4> e12[NumSamples];
749 tcu::Vector<deInt64, 4> e20[NumSamples];
752 deUint64 coverage = 0;
754 // Evaluate edge values at sample positions
755 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
757 const deInt64 ox = samplePos[sampleNdx*2 + 0];
758 const deInt64 oy = samplePos[sampleNdx*2 + 1];
760 for (int fragNdx = 0; fragNdx < 4; fragNdx++)
762 e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy);
763 e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy);
764 e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy);
768 // Compute coverage mask
769 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
771 coverage = setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx, isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) && isInsideCCW(m_edge20, e20[sampleNdx][0]));
772 coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx, !outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) && isInsideCCW(m_edge12, e12[sampleNdx][1]) && isInsideCCW(m_edge20, e20[sampleNdx][1]));
773 coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx, !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) && isInsideCCW(m_edge12, e12[sampleNdx][2]) && isInsideCCW(m_edge20, e20[sampleNdx][2]));
774 coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) && isInsideCCW(m_edge12, e12[sampleNdx][3]) && isInsideCCW(m_edge20, e20[sampleNdx][3]));
777 // Advance to next location
779 if (m_curPos.x() > m_bboxMax.x())
782 m_curPos.x() = m_bboxMin.x();
786 continue; // Discard.
788 // Compute depth values.
791 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
793 // Floating-point edge values at sample coordinates.
794 const tcu::Vec4& e01f = e01[sampleNdx].asFloat();
795 const tcu::Vec4& e12f = e12[sampleNdx].asFloat();
796 const tcu::Vec4& e20f = e20[sampleNdx].asFloat();
798 const tcu::Vec4 edgeSum = e01f + e12f + e20f;
799 const tcu::Vec4 z0 = e12f / edgeSum;
800 const tcu::Vec4 z1 = e20f / edgeSum;
802 depthValues[(packetNdx*4+0)*NumSamples + sampleNdx] = z0[0]*za + z1[0]*zb + zc;
803 depthValues[(packetNdx*4+1)*NumSamples + sampleNdx] = z0[1]*za + z1[1]*zb + zc;
804 depthValues[(packetNdx*4+2)*NumSamples + sampleNdx] = z0[2]*za + z1[2]*zb + zc;
805 depthValues[(packetNdx*4+3)*NumSamples + sampleNdx] = z0[3]*za + z1[3]*zb + zc;
809 // Compute barycentrics and write out fragment packet
811 FragmentPacket& packet = fragmentPackets[packetNdx];
813 // Floating-point edge values at pixel center.
818 for (int i = 0; i < 4; i++)
820 e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel));
821 e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel));
822 e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel));
825 // Barycentrics & scale.
826 const tcu::Vec4 b0 = e12f * m_v0.w();
827 const tcu::Vec4 b1 = e20f * m_v1.w();
828 const tcu::Vec4 b2 = e01f * m_v2.w();
829 const tcu::Vec4 bSum = b0 + b1 + b2;
831 packet.position = tcu::IVec2(x0, y0);
832 packet.coverage = coverage;
833 packet.barycentric[0] = b0 / bSum;
834 packet.barycentric[1] = b1 / bSum;
835 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1];
841 DE_ASSERT(packetNdx <= maxFragmentPackets);
842 numPacketsRasterized = packetNdx;
845 void TriangleRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
847 DE_ASSERT(maxFragmentPackets > 0);
849 switch (m_numSamples)
851 case 1: rasterizeSingleSample (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break;
852 case 2: rasterizeMultiSample<2> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break;
853 case 4: rasterizeMultiSample<4> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break;
854 case 8: rasterizeMultiSample<8> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break;
855 case 16: rasterizeMultiSample<16> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break;
861 SingleSampleLineRasterizer::SingleSampleLineRasterizer (const tcu::IVec4& viewport)
862 : m_viewport (viewport)
863 , m_curRowFragment (0)
868 SingleSampleLineRasterizer::~SingleSampleLineRasterizer (void)
872 void SingleSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth)
874 const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y());
876 // Bounding box \note: with wide lines, the line is actually moved as in the spec
877 const deInt32 lineWidthPixels = (lineWidth > 1.0f) ? (deInt32)floor(lineWidth + 0.5f) : 1;
879 const tcu::Vector<deInt64,2> widthOffset = (isXMajor ? tcu::Vector<deInt64,2>(0, -1) : tcu::Vector<deInt64,2>(-1, 0)) * (toSubpixelCoord(lineWidthPixels - 1) / 2);
881 const deInt64 x0 = toSubpixelCoord(v0.x()) + widthOffset.x();
882 const deInt64 y0 = toSubpixelCoord(v0.y()) + widthOffset.y();
883 const deInt64 x1 = toSubpixelCoord(v1.x()) + widthOffset.x();
884 const deInt64 y1 = toSubpixelCoord(v1.y()) + widthOffset.y();
886 // line endpoints might be perturbed, add some margin
887 const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1);
888 const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1);
889 const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1);
890 const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1);
892 // Remove invisible area
896 // clamp to viewport in major direction
897 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1);
898 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1);
900 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
901 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
902 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
906 // clamp to viewport in major direction
907 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1);
908 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1);
910 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
911 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
912 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
915 m_lineWidth = lineWidth;
920 m_curPos = m_bboxMin;
921 m_curRowFragment = 0;
924 void SingleSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
926 DE_ASSERT(maxFragmentPackets > 0);
928 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
929 const deInt32 lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1;
930 const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y());
931 const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
932 const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x());
933 const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z());
934 const tcu::Vector<deInt64,2> widthOffset = -minorDirection.cast<deInt64>() * (toSubpixelCoord(lineWidth - 1) / 2);
935 const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()) + widthOffset;
936 const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()) + widthOffset;
937 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb);
941 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
943 const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel);
945 // Should current fragment be drawn? == does the segment exit this diamond?
946 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition))
948 const tcu::Vector<deInt64,2> pr = diamondPosition;
949 const float t = tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat());
951 // Rasterize on only fragments that are would end up in the viewport (i.e. visible)
952 const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x());
953 const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation);
954 const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth);
956 // Wide lines require multiple fragments.
957 for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++)
959 const int replicationId = rowFragBegin + m_curRowFragment;
960 const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId;
962 // We only rasterize visible area
963 DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport));
965 // Compute depth values.
968 const float za = m_v0.z();
969 const float zb = m_v1.z();
971 depthValues[packetNdx*4+0] = (1 - t) * za + t * zb;
972 depthValues[packetNdx*4+1] = 0;
973 depthValues[packetNdx*4+2] = 0;
974 depthValues[packetNdx*4+3] = 0;
978 // output this fragment
979 // \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates
980 FragmentPacket& packet = fragmentPackets[packetNdx];
982 const tcu::Vec4 b0 = tcu::Vec4(1 - t);
983 const tcu::Vec4 b1 = tcu::Vec4(t);
984 const tcu::Vec4 ooSum = 1.0f / (b0 + b1);
986 packet.position = fragmentPos;
987 packet.coverage = getCoverageBit(1, 0, 0, 0);
988 packet.barycentric[0] = b0 * ooSum;
989 packet.barycentric[1] = b1 * ooSum;
990 packet.barycentric[2] = tcu::Vec4(0.0f);
995 if (packetNdx == maxFragmentPackets)
997 m_curRowFragment++; // don't redraw this fragment again next time
998 numPacketsRasterized = packetNdx;
1003 m_curRowFragment = 0;
1007 if (m_curPos.x() > m_bboxMax.x())
1010 m_curPos.x() = m_bboxMin.x();
1014 DE_ASSERT(packetNdx <= maxFragmentPackets);
1015 numPacketsRasterized = packetNdx;
1018 MultiSampleLineRasterizer::MultiSampleLineRasterizer (const int numSamples, const tcu::IVec4& viewport)
1019 : m_numSamples (numSamples)
1020 , m_triangleRasterizer0 (viewport, m_numSamples, RasterizationState())
1021 , m_triangleRasterizer1 (viewport, m_numSamples, RasterizationState())
1025 MultiSampleLineRasterizer::~MultiSampleLineRasterizer ()
1029 void MultiSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth)
1031 // allow creation of single sampled rasterizer objects but do not allow using them
1032 DE_ASSERT(m_numSamples > 1);
1034 const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy());
1035 const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0]));
1036 const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0);
1037 const float offset = lineWidth / 2.0f;
1039 const tcu::Vec4 p0 = v0 + normal4 * offset;
1040 const tcu::Vec4 p1 = v0 - normal4 * offset;
1041 const tcu::Vec4 p2 = v1 - normal4 * offset;
1042 const tcu::Vec4 p3 = v1 + normal4 * offset;
1044 // Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line
1045 m_triangleRasterizer0.init(p0, p3, p2);
1046 m_triangleRasterizer1.init(p2, p1, p0);
1049 void MultiSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
1051 DE_ASSERT(maxFragmentPackets > 0);
1053 m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
1055 // Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2
1056 for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx)
1057 for (int fragNdx = 0; fragNdx < 4; fragNdx++)
1059 float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx];
1060 fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
1061 fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
1064 // rasterizer 0 filled the whole buffer?
1065 if (numPacketsRasterized == maxFragmentPackets)
1069 FragmentPacket* const nextFragmentPackets = fragmentPackets + numPacketsRasterized;
1070 float* nextDepthValues = (depthValues) ? (depthValues+4*numPacketsRasterized*m_numSamples) : (DE_NULL);
1071 int numPacketsRasterized2 = 0;
1073 m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized, numPacketsRasterized2);
1075 numPacketsRasterized += numPacketsRasterized2;
1077 // Fix swapped barycentrics in the second triangle
1078 for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx)
1079 for (int fragNdx = 0; fragNdx < 4; fragNdx++)
1081 float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx];
1082 nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
1083 nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
1085 // edge has reversed direction
1086 std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx], nextFragmentPackets[packNdx].barycentric[1][fragNdx]);
1091 LineExitDiamondGenerator::LineExitDiamondGenerator (void)
1095 LineExitDiamondGenerator::~LineExitDiamondGenerator (void)
1099 void LineExitDiamondGenerator::init (const tcu::Vec4& v0, const tcu::Vec4& v1)
1101 const deInt64 x0 = toSubpixelCoord(v0.x());
1102 const deInt64 y0 = toSubpixelCoord(v0.y());
1103 const deInt64 x1 = toSubpixelCoord(v1.x());
1104 const deInt64 y1 = toSubpixelCoord(v1.y());
1106 // line endpoints might be perturbed, add some margin
1107 const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1);
1108 const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1);
1109 const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1);
1110 const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1);
1112 m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, true);
1113 m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, true);
1114 m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, true);
1115 m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, true);
1120 m_curPos = m_bboxMin;
1123 void LineExitDiamondGenerator::rasterize (LineExitDiamond* const lineDiamonds, const int maxDiamonds, int& numWritten)
1125 DE_ASSERT(maxDiamonds > 0);
1127 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
1128 const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy());
1129 const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy());
1130 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb);
1134 while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds)
1136 const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel);
1138 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition))
1140 LineExitDiamond& packet = lineDiamonds[diamondNdx];
1141 packet.position = m_curPos;
1146 if (m_curPos.x() > m_bboxMax.x())
1149 m_curPos.x() = m_bboxMin.x();
1153 DE_ASSERT(diamondNdx <= maxDiamonds);
1154 numWritten = diamondNdx;