3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
5 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
36 #include "dtls_config.h"
37 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
39 #include <assert.h> /* assert() */
42 #warning "assertions are disabled"
50 * Some sanity checking code is included using assert(). On my FreeBSD
51 * system, this additional code can be removed by compiling with NDEBUG
52 * defined. Check your own systems manpage on assert() to see how to
53 * compile WITHOUT the sanity checking code on your system.
55 * UNROLLED TRANSFORM LOOP NOTE:
56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57 * loop version for the hash transform rounds (defined using macros
58 * later in this file). Either define on the command line, for example:
60 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
64 * #define SHA2_UNROLL_TRANSFORM
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
73 * Please make sure that your system defines BYTE_ORDER. If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
78 * If your system does not define the above, then you can do so by
81 * #define LITTLE_ENDIAN 1234
82 * #define BIG_ENDIAN 4321
84 * And for little-endian machines, add:
86 * #define BYTE_ORDER LITTLE_ENDIAN
88 * Or for big-endian machines:
90 * #define BYTE_ORDER BIG_ENDIAN
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
98 /* bergmann: define LITTLE_ENDIAN and BIG_ENDIAN to ease autoconf: */
100 #define LITTLE_ENDIAN 1234
103 #define BIG_ENDIAN 4321
107 # if defined(WORDS_BIGENDIAN) || (defined(AC_APPLE_UNIVERSAL_BUILD) && defined(__BIG_ENDIAN__))
108 # define BYTE_ORDER BIG_ENDIAN
109 # else /* WORDS_BIGENDIAN */
110 # define BYTE_ORDER LITTLE_ENDIAN
114 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
115 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
119 * Define the followingsha2_* types to types of the correct length on
120 * the native archtecture. Most BSD systems and Linux define u_intXX_t
121 * types. Machines with very recent ANSI C headers, can use the
122 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
123 * during compile or in the sha.h header file.
125 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
126 * will need to define these three typedefs below (and the appropriate
127 * ones in sha.h too) by hand according to their system architecture.
129 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
130 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
132 #ifdef SHA2_USE_INTTYPES_H
134 typedef uint8_t sha2_byte; /* Exactly 1 byte */
135 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
136 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
138 #else /* SHA2_USE_INTTYPES_H */
140 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
141 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
142 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
144 #endif /* SHA2_USE_INTTYPES_H */
147 /*** SHA-256/384/512 Various Length Definitions ***********************/
148 /* NOTE: Most of these are in sha2.h */
149 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
150 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
151 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
154 /*** ENDIAN REVERSAL MACROS *******************************************/
155 #if BYTE_ORDER == LITTLE_ENDIAN
156 #define REVERSE32(w,x) { \
157 sha2_word32 tmp = (w); \
158 tmp = (tmp >> 16) | (tmp << 16); \
159 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
161 #define REVERSE64(w,x) { \
162 sha2_word64 tmp = (w); \
163 tmp = (tmp >> 32) | (tmp << 32); \
164 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
165 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
166 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
167 ((tmp & 0x0000ffff0000ffffULL) << 16); \
169 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
172 * Macro for incrementally adding the unsigned 64-bit integer n to the
173 * unsigned 128-bit integer (represented using a two-element array of
176 #define ADDINC128(w,n) { \
177 (w)[0] += (sha2_word64)(n); \
178 if ((w)[0] < (n)) { \
184 * Macros for copying blocks of memory and for zeroing out ranges
185 * of memory. Using these macros makes it easy to switch from
186 * using memset()/memcpy() and using bzero()/bcopy().
188 * Please define either SHA2_USE_MEMSET_MEMCPY or define
189 * SHA2_USE_BZERO_BCOPY depending on which function set you
192 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
193 /* Default to memset()/memcpy() if no option is specified */
194 #define SHA2_USE_MEMSET_MEMCPY 1
196 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
197 /* Abort with an error if BOTH options are defined */
198 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
201 #ifdef SHA2_USE_MEMSET_MEMCPY
202 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
203 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
205 #ifdef SHA2_USE_BZERO_BCOPY
206 #define MEMSET_BZERO(p,l) bzero((p), (l))
207 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
211 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
213 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
215 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
216 * S is a ROTATION) because the SHA-256/384/512 description document
217 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
218 * same "backwards" definition.
220 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
221 #define R(b,x) ((x) >> (b))
222 /* 32-bit Rotate-right (used in SHA-256): */
223 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
224 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
225 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
227 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
228 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
229 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
231 /* Four of six logical functions used in SHA-256: */
232 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
233 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
234 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
235 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
237 /* Four of six logical functions used in SHA-384 and SHA-512: */
238 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
239 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
240 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
241 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
243 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
244 /* NOTE: These should not be accessed directly from outside this
245 * library -- they are intended for private internal visibility/use
248 void SHA512_Last(SHA512_CTX*);
249 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
250 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
253 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
254 /* Hash constant words K for SHA-256: */
255 const static sha2_word32 K256[64] = {
256 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
257 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
258 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
259 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
260 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
261 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
262 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
263 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
264 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
265 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
266 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
267 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
268 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
269 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
270 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
271 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
274 /* Initial hash value H for SHA-256: */
275 const static sha2_word32 sha256_initial_hash_value[8] = {
287 #if defined(WITH_SHA384) || defined(WITH_SHA512)
288 /* Hash constant words K for SHA-384 and SHA-512: */
289 const static sha2_word64 K512[80] = {
290 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
291 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
292 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
293 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
294 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
295 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
296 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
297 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
298 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
299 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
300 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
301 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
302 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
303 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
304 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
305 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
306 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
307 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
308 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
309 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
310 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
311 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
312 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
313 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
314 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
315 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
316 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
317 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
318 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
319 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
320 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
321 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
322 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
323 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
324 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
325 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
326 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
327 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
328 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
329 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
334 /* Initial hash value H for SHA-384 */
335 const static sha2_word64 sha384_initial_hash_value[8] = {
336 0xcbbb9d5dc1059ed8ULL,
337 0x629a292a367cd507ULL,
338 0x9159015a3070dd17ULL,
339 0x152fecd8f70e5939ULL,
340 0x67332667ffc00b31ULL,
341 0x8eb44a8768581511ULL,
342 0xdb0c2e0d64f98fa7ULL,
343 0x47b5481dbefa4fa4ULL
348 /* Initial hash value H for SHA-512 */
349 const static sha2_word64 sha512_initial_hash_value[8] = {
350 0x6a09e667f3bcc908ULL,
351 0xbb67ae8584caa73bULL,
352 0x3c6ef372fe94f82bULL,
353 0xa54ff53a5f1d36f1ULL,
354 0x510e527fade682d1ULL,
355 0x9b05688c2b3e6c1fULL,
356 0x1f83d9abfb41bd6bULL,
357 0x5be0cd19137e2179ULL
362 * Constant used by SHA256/384/512_End() functions for converting the
363 * digest to a readable hexadecimal character string:
365 static const char *sha2_hex_digits = "0123456789abcdef";
368 /*** SHA-256: *********************************************************/
370 void SHA256_Init(SHA256_CTX* context) {
371 if (context == (SHA256_CTX*)0) {
374 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
375 MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
376 context->bitcount = 0;
379 #ifdef SHA2_UNROLL_TRANSFORM
381 /* Unrolled SHA-256 round macros: */
383 #if BYTE_ORDER == LITTLE_ENDIAN
385 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
386 REVERSE32(*data++, W256[j]); \
387 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
390 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
394 #else /* BYTE_ORDER == LITTLE_ENDIAN */
396 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
397 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
398 K256[j] + (W256[j] = *data++); \
400 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
403 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
405 #define ROUND256(a,b,c,d,e,f,g,h) \
406 s0 = W256[(j+1)&0x0f]; \
407 s0 = sigma0_256(s0); \
408 s1 = W256[(j+14)&0x0f]; \
409 s1 = sigma1_256(s1); \
410 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
411 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
413 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
416 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
417 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
418 sha2_word32 T1, *W256;
421 W256 = (sha2_word32*)context->buffer;
423 /* Initialize registers with the prev. intermediate value */
424 a = context->state[0];
425 b = context->state[1];
426 c = context->state[2];
427 d = context->state[3];
428 e = context->state[4];
429 f = context->state[5];
430 g = context->state[6];
431 h = context->state[7];
435 /* Rounds 0 to 15 (unrolled): */
436 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
437 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
438 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
439 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
440 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
441 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
442 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
443 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
446 /* Now for the remaining rounds to 64: */
448 ROUND256(a,b,c,d,e,f,g,h);
449 ROUND256(h,a,b,c,d,e,f,g);
450 ROUND256(g,h,a,b,c,d,e,f);
451 ROUND256(f,g,h,a,b,c,d,e);
452 ROUND256(e,f,g,h,a,b,c,d);
453 ROUND256(d,e,f,g,h,a,b,c);
454 ROUND256(c,d,e,f,g,h,a,b);
455 ROUND256(b,c,d,e,f,g,h,a);
458 /* Compute the current intermediate hash value */
459 context->state[0] += a;
460 context->state[1] += b;
461 context->state[2] += c;
462 context->state[3] += d;
463 context->state[4] += e;
464 context->state[5] += f;
465 context->state[6] += g;
466 context->state[7] += h;
469 a = b = c = d = e = f = g = h = T1 = 0;
472 #else /* SHA2_UNROLL_TRANSFORM */
474 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
475 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
476 sha2_word32 T1, T2, *W256;
479 W256 = (sha2_word32*)context->buffer;
481 /* Initialize registers with the prev. intermediate value */
482 a = context->state[0];
483 b = context->state[1];
484 c = context->state[2];
485 d = context->state[3];
486 e = context->state[4];
487 f = context->state[5];
488 g = context->state[6];
489 h = context->state[7];
493 #if BYTE_ORDER == LITTLE_ENDIAN
494 /* Copy data while converting to host byte order */
495 REVERSE32(*data++,W256[j]);
496 /* Apply the SHA-256 compression function to update a..h */
497 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
498 #else /* BYTE_ORDER == LITTLE_ENDIAN */
499 /* Apply the SHA-256 compression function to update a..h with copy */
500 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
501 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
502 T2 = Sigma0_256(a) + Maj(a, b, c);
516 /* Part of the message block expansion: */
517 s0 = W256[(j+1)&0x0f];
519 s1 = W256[(j+14)&0x0f];
522 /* Apply the SHA-256 compression function to update a..h */
523 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
524 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
525 T2 = Sigma0_256(a) + Maj(a, b, c);
538 /* Compute the current intermediate hash value */
539 context->state[0] += a;
540 context->state[1] += b;
541 context->state[2] += c;
542 context->state[3] += d;
543 context->state[4] += e;
544 context->state[5] += f;
545 context->state[6] += g;
546 context->state[7] += h;
549 a = b = c = d = e = f = g = h = T1 = T2 = 0;
552 #endif /* SHA2_UNROLL_TRANSFORM */
554 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
555 unsigned int freespace, usedspace;
558 /* Calling with no data is valid - we do nothing */
563 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
565 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
567 /* Calculate how much free space is available in the buffer */
568 freespace = SHA256_BLOCK_LENGTH - usedspace;
570 if (len >= freespace) {
571 /* Fill the buffer completely and process it */
572 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
573 context->bitcount += freespace << 3;
576 SHA256_Transform(context, (sha2_word32*)context->buffer);
578 /* The buffer is not yet full */
579 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
580 context->bitcount += len << 3;
582 usedspace = freespace = 0;
586 while (len >= SHA256_BLOCK_LENGTH) {
587 /* Process as many complete blocks as we can */
588 SHA256_Transform(context, (sha2_word32*)data);
589 context->bitcount += SHA256_BLOCK_LENGTH << 3;
590 len -= SHA256_BLOCK_LENGTH;
591 data += SHA256_BLOCK_LENGTH;
594 /* There's left-overs, so save 'em */
595 MEMCPY_BCOPY(context->buffer, data, len);
596 context->bitcount += len << 3;
599 usedspace = freespace = 0;
602 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
603 sha2_word32 *d = (sha2_word32*)digest;
604 unsigned int usedspace;
607 assert(context != (SHA256_CTX*)0);
609 /* If no digest buffer is passed, we don't bother doing this: */
610 if (digest != (sha2_byte*)0) {
611 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
612 #if BYTE_ORDER == LITTLE_ENDIAN
613 /* Convert FROM host byte order */
614 REVERSE64(context->bitcount,context->bitcount);
617 /* Begin padding with a 1 bit: */
618 context->buffer[usedspace++] = 0x80;
620 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
621 /* Set-up for the last transform: */
622 MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
624 if (usedspace < SHA256_BLOCK_LENGTH) {
625 MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
627 /* Do second-to-last transform: */
628 SHA256_Transform(context, (sha2_word32*)context->buffer);
630 /* And set-up for the last transform: */
631 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
634 /* Set-up for the last transform: */
635 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
637 /* Begin padding with a 1 bit: */
638 *context->buffer = 0x80;
640 /* Set the bit count: */
641 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
643 /* Final transform: */
644 SHA256_Transform(context, (sha2_word32*)context->buffer);
646 #if BYTE_ORDER == LITTLE_ENDIAN
648 /* Convert TO host byte order */
650 for (j = 0; j < 8; j++) {
651 REVERSE32(context->state[j],context->state[j]);
652 *d++ = context->state[j];
656 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
660 /* Clean up state data: */
661 MEMSET_BZERO(context, sizeof(*context));
665 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
666 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
670 assert(context != (SHA256_CTX*)0);
672 if (buffer != (char*)0) {
673 SHA256_Final(digest, context);
675 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
676 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
677 *buffer++ = sha2_hex_digits[*d & 0x0f];
682 MEMSET_BZERO(context, sizeof(*context));
684 MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
688 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
691 SHA256_Init(&context);
692 SHA256_Update(&context, data, len);
693 return SHA256_End(&context, digest);
697 /*** SHA-512: *********************************************************/
699 void SHA512_Init(SHA512_CTX* context) {
700 if (context == (SHA512_CTX*)0) {
703 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
704 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
705 context->bitcount[0] = context->bitcount[1] = 0;
708 #ifdef SHA2_UNROLL_TRANSFORM
710 /* Unrolled SHA-512 round macros: */
711 #if BYTE_ORDER == LITTLE_ENDIAN
713 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
714 REVERSE64(*data++, W512[j]); \
715 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
718 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
722 #else /* BYTE_ORDER == LITTLE_ENDIAN */
724 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
725 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
726 K512[j] + (W512[j] = *data++); \
728 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
731 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
733 #define ROUND512(a,b,c,d,e,f,g,h) \
734 s0 = W512[(j+1)&0x0f]; \
735 s0 = sigma0_512(s0); \
736 s1 = W512[(j+14)&0x0f]; \
737 s1 = sigma1_512(s1); \
738 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
739 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
741 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
744 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
745 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
746 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
749 /* Initialize registers with the prev. intermediate value */
750 a = context->state[0];
751 b = context->state[1];
752 c = context->state[2];
753 d = context->state[3];
754 e = context->state[4];
755 f = context->state[5];
756 g = context->state[6];
757 h = context->state[7];
761 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
762 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
763 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
764 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
765 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
766 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
767 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
768 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
771 /* Now for the remaining rounds up to 79: */
773 ROUND512(a,b,c,d,e,f,g,h);
774 ROUND512(h,a,b,c,d,e,f,g);
775 ROUND512(g,h,a,b,c,d,e,f);
776 ROUND512(f,g,h,a,b,c,d,e);
777 ROUND512(e,f,g,h,a,b,c,d);
778 ROUND512(d,e,f,g,h,a,b,c);
779 ROUND512(c,d,e,f,g,h,a,b);
780 ROUND512(b,c,d,e,f,g,h,a);
783 /* Compute the current intermediate hash value */
784 context->state[0] += a;
785 context->state[1] += b;
786 context->state[2] += c;
787 context->state[3] += d;
788 context->state[4] += e;
789 context->state[5] += f;
790 context->state[6] += g;
791 context->state[7] += h;
794 a = b = c = d = e = f = g = h = T1 = 0;
797 #else /* SHA2_UNROLL_TRANSFORM */
799 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
800 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
801 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
804 /* Initialize registers with the prev. intermediate value */
805 a = context->state[0];
806 b = context->state[1];
807 c = context->state[2];
808 d = context->state[3];
809 e = context->state[4];
810 f = context->state[5];
811 g = context->state[6];
812 h = context->state[7];
816 #if BYTE_ORDER == LITTLE_ENDIAN
817 /* Convert TO host byte order */
818 REVERSE64(*data++, W512[j]);
819 /* Apply the SHA-512 compression function to update a..h */
820 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
821 #else /* BYTE_ORDER == LITTLE_ENDIAN */
822 /* Apply the SHA-512 compression function to update a..h with copy */
823 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
824 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
825 T2 = Sigma0_512(a) + Maj(a, b, c);
839 /* Part of the message block expansion: */
840 s0 = W512[(j+1)&0x0f];
842 s1 = W512[(j+14)&0x0f];
845 /* Apply the SHA-512 compression function to update a..h */
846 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
847 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
848 T2 = Sigma0_512(a) + Maj(a, b, c);
861 /* Compute the current intermediate hash value */
862 context->state[0] += a;
863 context->state[1] += b;
864 context->state[2] += c;
865 context->state[3] += d;
866 context->state[4] += e;
867 context->state[5] += f;
868 context->state[6] += g;
869 context->state[7] += h;
872 a = b = c = d = e = f = g = h = T1 = T2 = 0;
875 #endif /* SHA2_UNROLL_TRANSFORM */
877 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
878 unsigned int freespace, usedspace;
881 /* Calling with no data is valid - we do nothing */
886 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
888 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
890 /* Calculate how much free space is available in the buffer */
891 freespace = SHA512_BLOCK_LENGTH - usedspace;
893 if (len >= freespace) {
894 /* Fill the buffer completely and process it */
895 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
896 ADDINC128(context->bitcount, freespace << 3);
899 SHA512_Transform(context, (sha2_word64*)context->buffer);
901 /* The buffer is not yet full */
902 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
903 ADDINC128(context->bitcount, len << 3);
905 usedspace = freespace = 0;
909 while (len >= SHA512_BLOCK_LENGTH) {
910 /* Process as many complete blocks as we can */
911 SHA512_Transform(context, (sha2_word64*)data);
912 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
913 len -= SHA512_BLOCK_LENGTH;
914 data += SHA512_BLOCK_LENGTH;
917 /* There's left-overs, so save 'em */
918 MEMCPY_BCOPY(context->buffer, data, len);
919 ADDINC128(context->bitcount, len << 3);
922 usedspace = freespace = 0;
925 void SHA512_Last(SHA512_CTX* context) {
926 unsigned int usedspace;
928 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
929 #if BYTE_ORDER == LITTLE_ENDIAN
930 /* Convert FROM host byte order */
931 REVERSE64(context->bitcount[0],context->bitcount[0]);
932 REVERSE64(context->bitcount[1],context->bitcount[1]);
935 /* Begin padding with a 1 bit: */
936 context->buffer[usedspace++] = 0x80;
938 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
939 /* Set-up for the last transform: */
940 MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
942 if (usedspace < SHA512_BLOCK_LENGTH) {
943 MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
945 /* Do second-to-last transform: */
946 SHA512_Transform(context, (sha2_word64*)context->buffer);
948 /* And set-up for the last transform: */
949 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
952 /* Prepare for final transform: */
953 MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
955 /* Begin padding with a 1 bit: */
956 *context->buffer = 0x80;
958 /* Store the length of input data (in bits): */
959 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
960 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
962 /* Final transform: */
963 SHA512_Transform(context, (sha2_word64*)context->buffer);
966 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
967 sha2_word64 *d = (sha2_word64*)digest;
970 assert(context != (SHA512_CTX*)0);
972 /* If no digest buffer is passed, we don't bother doing this: */
973 if (digest != (sha2_byte*)0) {
974 SHA512_Last(context);
976 /* Save the hash data for output: */
977 #if BYTE_ORDER == LITTLE_ENDIAN
979 /* Convert TO host byte order */
981 for (j = 0; j < 8; j++) {
982 REVERSE64(context->state[j],context->state[j]);
983 *d++ = context->state[j];
987 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
991 /* Zero out state data */
992 MEMSET_BZERO(context, sizeof(context));
995 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
996 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
1000 assert(context != (SHA512_CTX*)0);
1002 if (buffer != (char*)0) {
1003 SHA512_Final(digest, context);
1005 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
1006 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1007 *buffer++ = sha2_hex_digits[*d & 0x0f];
1012 MEMSET_BZERO(context, sizeof(context));
1014 MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
1018 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
1021 SHA512_Init(&context);
1022 SHA512_Update(&context, data, len);
1023 return SHA512_End(&context, digest);
1027 /*** SHA-384: *********************************************************/
1029 void SHA384_Init(SHA384_CTX* context) {
1030 if (context == (SHA384_CTX*)0) {
1033 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
1034 MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
1035 context->bitcount[0] = context->bitcount[1] = 0;
1038 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1039 SHA512_Update((SHA512_CTX*)context, data, len);
1042 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1043 sha2_word64 *d = (sha2_word64*)digest;
1046 assert(context != (SHA384_CTX*)0);
1048 /* If no digest buffer is passed, we don't bother doing this: */
1049 if (digest != (sha2_byte*)0) {
1050 SHA512_Last((SHA512_CTX*)context);
1052 /* Save the hash data for output: */
1053 #if BYTE_ORDER == LITTLE_ENDIAN
1055 /* Convert TO host byte order */
1057 for (j = 0; j < 6; j++) {
1058 REVERSE64(context->state[j],context->state[j]);
1059 *d++ = context->state[j];
1063 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
1067 /* Zero out state data */
1068 MEMSET_BZERO(context, sizeof(context));
1071 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1072 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1076 assert(context != (SHA384_CTX*)0);
1078 if (buffer != (char*)0) {
1079 SHA384_Final(digest, context);
1081 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1082 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1083 *buffer++ = sha2_hex_digits[*d & 0x0f];
1088 MEMSET_BZERO(context, sizeof(context));
1090 MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
1094 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1097 SHA384_Init(&context);
1098 SHA384_Update(&context, data, len);
1099 return SHA384_End(&context, digest);