Merge vk-gl-cts/opengl-cts-4.6.0 into vk-gl-cts/master
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / spirv_assembly / vktSpvAsmInstructionTests.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  * Copyright (c) 2016 The Khronos Group Inc.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
23  *//*--------------------------------------------------------------------*/
24
25 #include "vktSpvAsmInstructionTests.hpp"
26
27 #include "tcuCommandLine.hpp"
28 #include "tcuFormatUtil.hpp"
29 #include "tcuFloat.hpp"
30 #include "tcuRGBA.hpp"
31 #include "tcuStringTemplate.hpp"
32 #include "tcuTestLog.hpp"
33 #include "tcuVectorUtil.hpp"
34 #include "tcuInterval.hpp"
35
36 #include "vkDefs.hpp"
37 #include "vkDeviceUtil.hpp"
38 #include "vkMemUtil.hpp"
39 #include "vkPlatform.hpp"
40 #include "vkPrograms.hpp"
41 #include "vkQueryUtil.hpp"
42 #include "vkRef.hpp"
43 #include "vkRefUtil.hpp"
44 #include "vkStrUtil.hpp"
45 #include "vkTypeUtil.hpp"
46
47 #include "deStringUtil.hpp"
48 #include "deUniquePtr.hpp"
49 #include "deMath.h"
50 #include "tcuStringTemplate.hpp"
51
52 #include "vktSpvAsmCrossStageInterfaceTests.hpp"
53 #include "vktSpvAsm8bitStorageTests.hpp"
54 #include "vktSpvAsm16bitStorageTests.hpp"
55 #include "vktSpvAsmUboMatrixPaddingTests.hpp"
56 #include "vktSpvAsmConditionalBranchTests.hpp"
57 #include "vktSpvAsmIndexingTests.hpp"
58 #include "vktSpvAsmImageSamplerTests.hpp"
59 #include "vktSpvAsmComputeShaderCase.hpp"
60 #include "vktSpvAsmComputeShaderTestUtil.hpp"
61 #include "vktSpvAsmGraphicsShaderTestUtil.hpp"
62 #include "vktSpvAsmVariablePointersTests.hpp"
63 #include "vktSpvAsmVariableInitTests.hpp"
64 #include "vktSpvAsmSpirvVersionTests.hpp"
65 #include "vktTestCaseUtil.hpp"
66 #include "vktSpvAsmLoopDepLenTests.hpp"
67 #include "vktSpvAsmLoopDepInfTests.hpp"
68
69 #include <cmath>
70 #include <limits>
71 #include <map>
72 #include <string>
73 #include <sstream>
74 #include <utility>
75 #include <stack>
76
77 namespace vkt
78 {
79 namespace SpirVAssembly
80 {
81
82 namespace
83 {
84
85 using namespace vk;
86 using std::map;
87 using std::string;
88 using std::vector;
89 using tcu::IVec3;
90 using tcu::IVec4;
91 using tcu::RGBA;
92 using tcu::TestLog;
93 using tcu::TestStatus;
94 using tcu::Vec4;
95 using de::UniquePtr;
96 using tcu::StringTemplate;
97 using tcu::Vec4;
98
99 template<typename T>
100 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
101 {
102         T* const typedPtr = (T*)dst;
103         for (int ndx = 0; ndx < numValues; ndx++)
104                 typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
105 }
106
107 // Filter is a function that returns true if a value should pass, false otherwise.
108 template<typename T, typename FilterT>
109 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, FilterT filter, int offset = 0)
110 {
111         T* const typedPtr = (T*)dst;
112         T value;
113         for (int ndx = 0; ndx < numValues; ndx++)
114         {
115                 do
116                         value = randomScalar<T>(rnd, minValue, maxValue);
117                 while (!filter(value));
118
119                 typedPtr[offset + ndx] = value;
120         }
121 }
122
123 // Gets a 64-bit integer with a more logarithmic distribution
124 deInt64 randomInt64LogDistributed (de::Random& rnd)
125 {
126         deInt64 val = rnd.getUint64();
127         val &= (1ull << rnd.getInt(1, 63)) - 1;
128         if (rnd.getBool())
129                 val = -val;
130         return val;
131 }
132
133 static void fillRandomInt64sLogDistributed (de::Random& rnd, vector<deInt64>& dst, int numValues)
134 {
135         for (int ndx = 0; ndx < numValues; ndx++)
136                 dst[ndx] = randomInt64LogDistributed(rnd);
137 }
138
139 template<typename FilterT>
140 static void fillRandomInt64sLogDistributed (de::Random& rnd, vector<deInt64>& dst, int numValues, FilterT filter)
141 {
142         for (int ndx = 0; ndx < numValues; ndx++)
143         {
144                 deInt64 value;
145                 do {
146                         value = randomInt64LogDistributed(rnd);
147                 } while (!filter(value));
148                 dst[ndx] = value;
149         }
150 }
151
152 inline bool filterNonNegative (const deInt64 value)
153 {
154         return value >= 0;
155 }
156
157 inline bool filterPositive (const deInt64 value)
158 {
159         return value > 0;
160 }
161
162 inline bool filterNotZero (const deInt64 value)
163 {
164         return value != 0;
165 }
166
167 static void floorAll (vector<float>& values)
168 {
169         for (size_t i = 0; i < values.size(); i++)
170                 values[i] = deFloatFloor(values[i]);
171 }
172
173 static void floorAll (vector<Vec4>& values)
174 {
175         for (size_t i = 0; i < values.size(); i++)
176                 values[i] = floor(values[i]);
177 }
178
179 struct CaseParameter
180 {
181         const char*             name;
182         string                  param;
183
184         CaseParameter   (const char* case_, const string& param_) : name(case_), param(param_) {}
185 };
186
187 // Assembly code used for testing LocalSize, OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
188 //
189 // #version 430
190 //
191 // layout(std140, set = 0, binding = 0) readonly buffer Input {
192 //   float elements[];
193 // } input_data;
194 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
195 //   float elements[];
196 // } output_data;
197 //
198 // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
199 //
200 // void main() {
201 //   uint x = gl_GlobalInvocationID.x;
202 //   output_data.elements[x] = -input_data.elements[x];
203 // }
204
205 static string getAsmForLocalSizeTest(bool useLiteralLocalSize, bool useSpecConstantWorkgroupSize, IVec3 workGroupSize, deUint32 ndx)
206 {
207         std::ostringstream out;
208         out << getComputeAsmShaderPreambleWithoutLocalSize();
209
210         if (useLiteralLocalSize)
211         {
212                 out << "OpExecutionMode %main LocalSize "
213                         << workGroupSize.x() << " " << workGroupSize.y() << " " << workGroupSize.z() << "\n";
214         }
215
216         out << "OpSource GLSL 430\n"
217                 "OpName %main           \"main\"\n"
218                 "OpName %id             \"gl_GlobalInvocationID\"\n"
219                 "OpDecorate %id BuiltIn GlobalInvocationId\n";
220
221         if (useSpecConstantWorkgroupSize)
222         {
223                 out << "OpDecorate %spec_0 SpecId 100\n"
224                         << "OpDecorate %spec_1 SpecId 101\n"
225                         << "OpDecorate %spec_2 SpecId 102\n"
226                         << "OpDecorate %gl_WorkGroupSize BuiltIn WorkgroupSize\n";
227         }
228
229         out << getComputeAsmInputOutputBufferTraits()
230                 << getComputeAsmCommonTypes()
231                 << getComputeAsmInputOutputBuffer()
232                 << "%id        = OpVariable %uvec3ptr Input\n"
233                 << "%zero      = OpConstant %i32 0 \n";
234
235         if (useSpecConstantWorkgroupSize)
236         {
237                 out     << "%spec_0   = OpSpecConstant %u32 "<< workGroupSize.x() << "\n"
238                         << "%spec_1   = OpSpecConstant %u32 "<< workGroupSize.y() << "\n"
239                         << "%spec_2   = OpSpecConstant %u32 "<< workGroupSize.z() << "\n"
240                         << "%gl_WorkGroupSize = OpSpecConstantComposite %uvec3 %spec_0 %spec_1 %spec_2\n";
241         }
242
243         out << "%main      = OpFunction %void None %voidf\n"
244                 << "%label     = OpLabel\n"
245                 << "%idval     = OpLoad %uvec3 %id\n"
246                 << "%ndx         = OpCompositeExtract %u32 %idval " << ndx << "\n"
247
248                         "%inloc     = OpAccessChain %f32ptr %indata %zero %ndx\n"
249                         "%inval     = OpLoad %f32 %inloc\n"
250                         "%neg       = OpFNegate %f32 %inval\n"
251                         "%outloc    = OpAccessChain %f32ptr %outdata %zero %ndx\n"
252                         "             OpStore %outloc %neg\n"
253                         "             OpReturn\n"
254                         "             OpFunctionEnd\n";
255         return out.str();
256 }
257
258 tcu::TestCaseGroup* createLocalSizeGroup (tcu::TestContext& testCtx)
259 {
260         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "localsize", ""));
261         ComputeShaderSpec                               spec;
262         de::Random                                              rnd                             (deStringHash(group->getName()));
263         const deUint32                                  numElements             = 64u;
264         vector<float>                                   positiveFloats  (numElements, 0);
265         vector<float>                                   negativeFloats  (numElements, 0);
266
267         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
268
269         for (size_t ndx = 0; ndx < numElements; ++ndx)
270                 negativeFloats[ndx] = -positiveFloats[ndx];
271
272         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
273         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
274
275         spec.numWorkGroups = IVec3(numElements, 1, 1);
276
277         spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(1, 1, 1), 0u);
278         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize", "", spec));
279
280         spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(1, 1, 1), 0u);
281         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize", "", spec));
282
283         spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(1, 1, 1), 0u);
284         group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize", "", spec));
285
286         spec.numWorkGroups = IVec3(1, 1, 1);
287
288         spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(numElements, 1, 1), 0u);
289         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize_x", "", spec));
290
291         spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(numElements, 1, 1), 0u);
292         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize_x", "", spec));
293
294         spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(numElements, 1, 1), 0u);
295         group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize_x", "", spec));
296
297         spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(1, numElements, 1), 1u);
298         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize_y", "", spec));
299
300         spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(1, numElements, 1), 1u);
301         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize_y", "", spec));
302
303         spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(1, numElements, 1), 1u);
304         group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize_y", "", spec));
305
306         spec.assembly = getAsmForLocalSizeTest(true, false, IVec3(1, 1, numElements), 2u);
307         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize_z", "", spec));
308
309         spec.assembly = getAsmForLocalSizeTest(true, true, IVec3(1, 1, numElements), 2u);
310         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize_z", "", spec));
311
312         spec.assembly = getAsmForLocalSizeTest(false, true, IVec3(1, 1, numElements), 2u);
313         group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize_z", "", spec));
314
315         return group.release();
316 }
317
318 tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
319 {
320         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
321         ComputeShaderSpec                               spec;
322         de::Random                                              rnd                             (deStringHash(group->getName()));
323         const int                                               numElements             = 100;
324         vector<float>                                   positiveFloats  (numElements, 0);
325         vector<float>                                   negativeFloats  (numElements, 0);
326
327         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
328
329         for (size_t ndx = 0; ndx < numElements; ++ndx)
330                 negativeFloats[ndx] = -positiveFloats[ndx];
331
332         spec.assembly =
333                 string(getComputeAsmShaderPreamble()) +
334
335                 "OpSource GLSL 430\n"
336                 "OpName %main           \"main\"\n"
337                 "OpName %id             \"gl_GlobalInvocationID\"\n"
338
339                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
340
341                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes())
342
343                 + string(getComputeAsmInputOutputBuffer()) +
344
345                 "%id        = OpVariable %uvec3ptr Input\n"
346                 "%zero      = OpConstant %i32 0\n"
347
348                 "%main      = OpFunction %void None %voidf\n"
349                 "%label     = OpLabel\n"
350                 "%idval     = OpLoad %uvec3 %id\n"
351                 "%x         = OpCompositeExtract %u32 %idval 0\n"
352
353                 "             OpNop\n" // Inside a function body
354
355                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
356                 "%inval     = OpLoad %f32 %inloc\n"
357                 "%neg       = OpFNegate %f32 %inval\n"
358                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
359                 "             OpStore %outloc %neg\n"
360                 "             OpReturn\n"
361                 "             OpFunctionEnd\n";
362         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
363         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
364         spec.numWorkGroups = IVec3(numElements, 1, 1);
365
366         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
367
368         return group.release();
369 }
370
371 bool compareFUnord (const std::vector<BufferSp>& inputs, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
372 {
373         if (outputAllocs.size() != 1)
374                 return false;
375
376         vector<deUint8> input1Bytes;
377         vector<deUint8> input2Bytes;
378         vector<deUint8> expectedBytes;
379
380         inputs[0]->getBytes(input1Bytes);
381         inputs[1]->getBytes(input2Bytes);
382         expectedOutputs[0]->getBytes(expectedBytes);
383
384         const deInt32* const    expectedOutputAsInt             = reinterpret_cast<const deInt32*>(&expectedBytes.front());
385         const deInt32* const    outputAsInt                             = static_cast<const deInt32*>(outputAllocs[0]->getHostPtr());
386         const float* const              input1AsFloat                   = reinterpret_cast<const float*>(&input1Bytes.front());
387         const float* const              input2AsFloat                   = reinterpret_cast<const float*>(&input2Bytes.front());
388         bool returnValue                                                                = true;
389
390         for (size_t idx = 0; idx < expectedBytes.size() / sizeof(deInt32); ++idx)
391         {
392                 if (outputAsInt[idx] != expectedOutputAsInt[idx])
393                 {
394                         log << TestLog::Message << "ERROR: Sub-case failed. inputs: " << input1AsFloat[idx] << "," << input2AsFloat[idx] << " output: " << outputAsInt[idx]<< " expected output: " << expectedOutputAsInt[idx] << TestLog::EndMessage;
395                         returnValue = false;
396                 }
397         }
398         return returnValue;
399 }
400
401 typedef VkBool32 (*compareFuncType) (float, float);
402
403 struct OpFUnordCase
404 {
405         const char*             name;
406         const char*             opCode;
407         compareFuncType compareFunc;
408
409                                         OpFUnordCase                    (const char* _name, const char* _opCode, compareFuncType _compareFunc)
410                                                 : name                          (_name)
411                                                 , opCode                        (_opCode)
412                                                 , compareFunc           (_compareFunc) {}
413 };
414
415 #define ADD_OPFUNORD_CASE(NAME, OPCODE, OPERATOR) \
416 do { \
417         struct compare_##NAME { static VkBool32 compare(float x, float y) { return (x OPERATOR y) ? VK_TRUE : VK_FALSE; } }; \
418         cases.push_back(OpFUnordCase(#NAME, OPCODE, compare_##NAME::compare)); \
419 } while (deGetFalse())
420
421 tcu::TestCaseGroup* createOpFUnordGroup (tcu::TestContext& testCtx)
422 {
423         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfunord", "Test the OpFUnord* opcodes"));
424         de::Random                                              rnd                             (deStringHash(group->getName()));
425         const int                                               numElements             = 100;
426         vector<OpFUnordCase>                    cases;
427
428         const StringTemplate                    shaderTemplate  (
429
430                 string(getComputeAsmShaderPreamble()) +
431
432                 "OpSource GLSL 430\n"
433                 "OpName %main           \"main\"\n"
434                 "OpName %id             \"gl_GlobalInvocationID\"\n"
435
436                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
437
438                 "OpDecorate %buf BufferBlock\n"
439                 "OpDecorate %buf2 BufferBlock\n"
440                 "OpDecorate %indata1 DescriptorSet 0\n"
441                 "OpDecorate %indata1 Binding 0\n"
442                 "OpDecorate %indata2 DescriptorSet 0\n"
443                 "OpDecorate %indata2 Binding 1\n"
444                 "OpDecorate %outdata DescriptorSet 0\n"
445                 "OpDecorate %outdata Binding 2\n"
446                 "OpDecorate %f32arr ArrayStride 4\n"
447                 "OpDecorate %i32arr ArrayStride 4\n"
448                 "OpMemberDecorate %buf 0 Offset 0\n"
449                 "OpMemberDecorate %buf2 0 Offset 0\n"
450
451                 + string(getComputeAsmCommonTypes()) +
452
453                 "%buf        = OpTypeStruct %f32arr\n"
454                 "%bufptr     = OpTypePointer Uniform %buf\n"
455                 "%indata1    = OpVariable %bufptr Uniform\n"
456                 "%indata2    = OpVariable %bufptr Uniform\n"
457
458                 "%buf2       = OpTypeStruct %i32arr\n"
459                 "%buf2ptr    = OpTypePointer Uniform %buf2\n"
460                 "%outdata    = OpVariable %buf2ptr Uniform\n"
461
462                 "%id        = OpVariable %uvec3ptr Input\n"
463                 "%zero      = OpConstant %i32 0\n"
464                 "%consti1   = OpConstant %i32 1\n"
465                 "%constf1   = OpConstant %f32 1.0\n"
466
467                 "%main      = OpFunction %void None %voidf\n"
468                 "%label     = OpLabel\n"
469                 "%idval     = OpLoad %uvec3 %id\n"
470                 "%x         = OpCompositeExtract %u32 %idval 0\n"
471
472                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
473                 "%inval1    = OpLoad %f32 %inloc1\n"
474                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
475                 "%inval2    = OpLoad %f32 %inloc2\n"
476                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
477
478                 "%result    = ${OPCODE} %bool %inval1 %inval2\n"
479                 "%int_res   = OpSelect %i32 %result %consti1 %zero\n"
480                 "             OpStore %outloc %int_res\n"
481
482                 "             OpReturn\n"
483                 "             OpFunctionEnd\n");
484
485         ADD_OPFUNORD_CASE(equal, "OpFUnordEqual", ==);
486         ADD_OPFUNORD_CASE(less, "OpFUnordLessThan", <);
487         ADD_OPFUNORD_CASE(lessequal, "OpFUnordLessThanEqual", <=);
488         ADD_OPFUNORD_CASE(greater, "OpFUnordGreaterThan", >);
489         ADD_OPFUNORD_CASE(greaterequal, "OpFUnordGreaterThanEqual", >=);
490         ADD_OPFUNORD_CASE(notequal, "OpFUnordNotEqual", !=);
491
492         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
493         {
494                 map<string, string>                     specializations;
495                 ComputeShaderSpec                       spec;
496                 const float                                     NaN                             = std::numeric_limits<float>::quiet_NaN();
497                 vector<float>                           inputFloats1    (numElements, 0);
498                 vector<float>                           inputFloats2    (numElements, 0);
499                 vector<deInt32>                         expectedInts    (numElements, 0);
500
501                 specializations["OPCODE"]       = cases[caseNdx].opCode;
502                 spec.assembly                           = shaderTemplate.specialize(specializations);
503
504                 fillRandomScalars(rnd, 1.f, 100.f, &inputFloats1[0], numElements);
505                 for (size_t ndx = 0; ndx < numElements; ++ndx)
506                 {
507                         switch (ndx % 6)
508                         {
509                                 case 0:         inputFloats2[ndx] = inputFloats1[ndx] + 1.0f; break;
510                                 case 1:         inputFloats2[ndx] = inputFloats1[ndx] - 1.0f; break;
511                                 case 2:         inputFloats2[ndx] = inputFloats1[ndx]; break;
512                                 case 3:         inputFloats2[ndx] = NaN; break;
513                                 case 4:         inputFloats2[ndx] = inputFloats1[ndx];  inputFloats1[ndx] = NaN; break;
514                                 case 5:         inputFloats2[ndx] = NaN;                                inputFloats1[ndx] = NaN; break;
515                         }
516                         expectedInts[ndx] = tcu::Float32(inputFloats1[ndx]).isNaN() || tcu::Float32(inputFloats2[ndx]).isNaN() || cases[caseNdx].compareFunc(inputFloats1[ndx], inputFloats2[ndx]);
517                 }
518
519                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
520                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
521                 spec.outputs.push_back(BufferSp(new Int32Buffer(expectedInts)));
522                 spec.numWorkGroups = IVec3(numElements, 1, 1);
523                 spec.verifyIO = &compareFUnord;
524                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
525         }
526
527         return group.release();
528 }
529
530 struct OpAtomicCase
531 {
532         const char*             name;
533         const char*             assembly;
534         const char*             retValAssembly;
535         OpAtomicType    opAtomic;
536         deInt32                 numOutputElements;
537
538                                         OpAtomicCase(const char* _name, const char* _assembly, const char* _retValAssembly, OpAtomicType _opAtomic, deInt32 _numOutputElements)
539                                                 : name                          (_name)
540                                                 , assembly                      (_assembly)
541                                                 , retValAssembly        (_retValAssembly)
542                                                 , opAtomic                      (_opAtomic)
543                                                 , numOutputElements     (_numOutputElements) {}
544 };
545
546 tcu::TestCaseGroup* createOpAtomicGroup (tcu::TestContext& testCtx, bool useStorageBuffer, int numElements = 65535, bool verifyReturnValues = false)
547 {
548         std::string                                             groupName                       ("opatomic");
549         if (useStorageBuffer)
550                 groupName += "_storage_buffer";
551         if (verifyReturnValues)
552                 groupName += "_return_values";
553         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, groupName.c_str(), "Test the OpAtomic* opcodes"));
554         vector<OpAtomicCase>                    cases;
555
556         const StringTemplate                    shaderTemplate  (
557
558                 string("OpCapability Shader\n") +
559                 (useStorageBuffer ? "OpExtension \"SPV_KHR_storage_buffer_storage_class\"\n" : "") +
560                 "OpMemoryModel Logical GLSL450\n"
561                 "OpEntryPoint GLCompute %main \"main\" %id\n"
562                 "OpExecutionMode %main LocalSize 1 1 1\n" +
563
564                 "OpSource GLSL 430\n"
565                 "OpName %main           \"main\"\n"
566                 "OpName %id             \"gl_GlobalInvocationID\"\n"
567
568                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
569
570                 "OpDecorate %buf ${BLOCK_DECORATION}\n"
571                 "OpDecorate %indata DescriptorSet 0\n"
572                 "OpDecorate %indata Binding 0\n"
573                 "OpDecorate %i32arr ArrayStride 4\n"
574                 "OpMemberDecorate %buf 0 Offset 0\n"
575
576                 "OpDecorate %sumbuf ${BLOCK_DECORATION}\n"
577                 "OpDecorate %sum DescriptorSet 0\n"
578                 "OpDecorate %sum Binding 1\n"
579                 "OpMemberDecorate %sumbuf 0 Coherent\n"
580                 "OpMemberDecorate %sumbuf 0 Offset 0\n"
581
582                 "${RETVAL_BUF_DECORATE}"
583
584                 + getComputeAsmCommonTypes("${BLOCK_POINTER_TYPE}") +
585
586                 "%buf       = OpTypeStruct %i32arr\n"
587                 "%bufptr    = OpTypePointer ${BLOCK_POINTER_TYPE} %buf\n"
588                 "%indata    = OpVariable %bufptr ${BLOCK_POINTER_TYPE}\n"
589
590                 "%sumbuf    = OpTypeStruct %i32arr\n"
591                 "%sumbufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %sumbuf\n"
592                 "%sum       = OpVariable %sumbufptr ${BLOCK_POINTER_TYPE}\n"
593
594                 "${RETVAL_BUF_DECL}"
595
596                 "%id        = OpVariable %uvec3ptr Input\n"
597                 "%minusone  = OpConstant %i32 -1\n"
598                 "%zero      = OpConstant %i32 0\n"
599                 "%one       = OpConstant %u32 1\n"
600                 "%two       = OpConstant %i32 2\n"
601
602                 "%main      = OpFunction %void None %voidf\n"
603                 "%label     = OpLabel\n"
604                 "%idval     = OpLoad %uvec3 %id\n"
605                 "%x         = OpCompositeExtract %u32 %idval 0\n"
606
607                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
608                 "%inval     = OpLoad %i32 %inloc\n"
609
610                 "%outloc    = OpAccessChain %i32ptr %sum %zero ${INDEX}\n"
611                 "${INSTRUCTION}"
612                 "${RETVAL_ASSEMBLY}"
613
614                 "             OpReturn\n"
615                 "             OpFunctionEnd\n");
616
617         #define ADD_OPATOMIC_CASE(NAME, ASSEMBLY, RETVAL_ASSEMBLY, OPATOMIC, NUM_OUTPUT_ELEMENTS) \
618         do { \
619                 DE_ASSERT((NUM_OUTPUT_ELEMENTS) == 1 || (NUM_OUTPUT_ELEMENTS) == numElements); \
620                 cases.push_back(OpAtomicCase(#NAME, ASSEMBLY, RETVAL_ASSEMBLY, OPATOMIC, NUM_OUTPUT_ELEMENTS)); \
621         } while (deGetFalse())
622         #define ADD_OPATOMIC_CASE_1(NAME, ASSEMBLY, RETVAL_ASSEMBLY, OPATOMIC) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, RETVAL_ASSEMBLY, OPATOMIC, 1)
623         #define ADD_OPATOMIC_CASE_N(NAME, ASSEMBLY, RETVAL_ASSEMBLY, OPATOMIC) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, RETVAL_ASSEMBLY, OPATOMIC, numElements)
624
625         ADD_OPATOMIC_CASE_1(iadd,       "%retv      = OpAtomicIAdd %i32 %outloc %one %zero %inval\n",
626                                                                 "             OpStore %retloc %retv\n", OPATOMIC_IADD );
627         ADD_OPATOMIC_CASE_1(isub,       "%retv      = OpAtomicISub %i32 %outloc %one %zero %inval\n",
628                                                                 "             OpStore %retloc %retv\n", OPATOMIC_ISUB );
629         ADD_OPATOMIC_CASE_1(iinc,       "%retv      = OpAtomicIIncrement %i32 %outloc %one %zero\n",
630                                                                 "             OpStore %retloc %retv\n", OPATOMIC_IINC );
631         ADD_OPATOMIC_CASE_1(idec,       "%retv      = OpAtomicIDecrement %i32 %outloc %one %zero\n",
632                                                                 "             OpStore %retloc %retv\n", OPATOMIC_IDEC );
633         if (!verifyReturnValues)
634         {
635                 ADD_OPATOMIC_CASE_N(load,       "%inval2    = OpAtomicLoad %i32 %inloc %one %zero\n"
636                                                                         "             OpStore %outloc %inval2\n", "", OPATOMIC_LOAD );
637                 ADD_OPATOMIC_CASE_N(store,      "             OpAtomicStore %outloc %one %zero %inval\n", "", OPATOMIC_STORE );
638         }
639
640         ADD_OPATOMIC_CASE_N(compex, "%even      = OpSMod %i32 %inval %two\n"
641                                                                 "             OpStore %outloc %even\n"
642                                                                 "%retv      = OpAtomicCompareExchange %i32 %outloc %one %zero %zero %minusone %zero\n",
643                                                                 "                         OpStore %retloc %retv\n", OPATOMIC_COMPEX );
644
645
646         #undef ADD_OPATOMIC_CASE
647         #undef ADD_OPATOMIC_CASE_1
648         #undef ADD_OPATOMIC_CASE_N
649
650         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
651         {
652                 map<string, string>                     specializations;
653                 ComputeShaderSpec                       spec;
654                 vector<deInt32>                         inputInts               (numElements, 0);
655                 vector<deInt32>                         expected                (cases[caseNdx].numOutputElements, -1);
656
657                 specializations["INDEX"]                                = (cases[caseNdx].numOutputElements == 1) ? "%zero" : "%x";
658                 specializations["INSTRUCTION"]                  = cases[caseNdx].assembly;
659                 specializations["BLOCK_DECORATION"]             = useStorageBuffer ? "Block" : "BufferBlock";
660                 specializations["BLOCK_POINTER_TYPE"]   = useStorageBuffer ? "StorageBuffer" : "Uniform";
661
662                 if (verifyReturnValues)
663                 {
664                         const StringTemplate blockDecoration    (
665                                 "\n"
666                                 "OpDecorate %retbuf ${BLOCK_DECORATION}\n"
667                                 "OpDecorate %ret DescriptorSet 0\n"
668                                 "OpDecorate %ret Binding 2\n"
669                                 "OpMemberDecorate %retbuf 0 Offset 0\n\n");
670
671                         const StringTemplate blockDeclaration   (
672                                 "\n"
673                                 "%retbuf    = OpTypeStruct %i32arr\n"
674                                 "%retbufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %retbuf\n"
675                                 "%ret       = OpVariable %retbufptr ${BLOCK_POINTER_TYPE}\n\n");
676
677                         specializations["RETVAL_ASSEMBLY"] =
678                                 "%retloc    = OpAccessChain %i32ptr %ret %zero %x\n"
679                                 + std::string(cases[caseNdx].retValAssembly);
680
681                         specializations["RETVAL_BUF_DECORATE"]  = blockDecoration.specialize(specializations);
682                         specializations["RETVAL_BUF_DECL"]              = blockDeclaration.specialize(specializations);
683                 }
684                 else
685                 {
686                         specializations["RETVAL_ASSEMBLY"]              = "";
687                         specializations["RETVAL_BUF_DECORATE"]  = "";
688                         specializations["RETVAL_BUF_DECL"]              = "";
689                 }
690
691                 spec.assembly                                                   = shaderTemplate.specialize(specializations);
692
693                 if (useStorageBuffer)
694                         spec.extensions.push_back("VK_KHR_storage_buffer_storage_class");
695
696                 spec.inputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_INPUT)));
697                 spec.outputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_EXPECTED)));
698                 if (verifyReturnValues)
699                         spec.outputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_ATOMIC_RET)));
700                 spec.numWorkGroups = IVec3(numElements, 1, 1);
701
702                 if (verifyReturnValues)
703                 {
704                         switch (cases[caseNdx].opAtomic)
705                         {
706                                 case OPATOMIC_IADD:
707                                         spec.verifyIO = OpAtomicBuffer::compareWithRetvals<OPATOMIC_IADD>;
708                                         break;
709                                 case OPATOMIC_ISUB:
710                                         spec.verifyIO = OpAtomicBuffer::compareWithRetvals<OPATOMIC_ISUB>;
711                                         break;
712                                 case OPATOMIC_IINC:
713                                         spec.verifyIO = OpAtomicBuffer::compareWithRetvals<OPATOMIC_IINC>;
714                                         break;
715                                 case OPATOMIC_IDEC:
716                                         spec.verifyIO = OpAtomicBuffer::compareWithRetvals<OPATOMIC_IDEC>;
717                                         break;
718                                 case OPATOMIC_COMPEX:
719                                         spec.verifyIO = OpAtomicBuffer::compareWithRetvals<OPATOMIC_COMPEX>;
720                                         break;
721                                 default:
722                                         DE_FATAL("Unsupported OpAtomic type for return value verification");
723                         }
724                 }
725                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
726         }
727
728         return group.release();
729 }
730
731 tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
732 {
733         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
734         ComputeShaderSpec                               spec;
735         de::Random                                              rnd                             (deStringHash(group->getName()));
736         const int                                               numElements             = 100;
737         vector<float>                                   positiveFloats  (numElements, 0);
738         vector<float>                                   negativeFloats  (numElements, 0);
739
740         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
741
742         for (size_t ndx = 0; ndx < numElements; ++ndx)
743                 negativeFloats[ndx] = -positiveFloats[ndx];
744
745         spec.assembly =
746                 string(getComputeAsmShaderPreamble()) +
747
748                 "%fname1 = OpString \"negateInputs.comp\"\n"
749                 "%fname2 = OpString \"negateInputs\"\n"
750
751                 "OpSource GLSL 430\n"
752                 "OpName %main           \"main\"\n"
753                 "OpName %id             \"gl_GlobalInvocationID\"\n"
754
755                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
756
757                 + string(getComputeAsmInputOutputBufferTraits()) +
758
759                 "OpLine %fname1 0 0\n" // At the earliest possible position
760
761                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
762
763                 "OpLine %fname1 0 1\n" // Multiple OpLines in sequence
764                 "OpLine %fname2 1 0\n" // Different filenames
765                 "OpLine %fname1 1000 100000\n"
766
767                 "%id        = OpVariable %uvec3ptr Input\n"
768                 "%zero      = OpConstant %i32 0\n"
769
770                 "OpLine %fname1 1 1\n" // Before a function
771
772                 "%main      = OpFunction %void None %voidf\n"
773                 "%label     = OpLabel\n"
774
775                 "OpLine %fname1 1 1\n" // In a function
776
777                 "%idval     = OpLoad %uvec3 %id\n"
778                 "%x         = OpCompositeExtract %u32 %idval 0\n"
779                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
780                 "%inval     = OpLoad %f32 %inloc\n"
781                 "%neg       = OpFNegate %f32 %inval\n"
782                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
783                 "             OpStore %outloc %neg\n"
784                 "             OpReturn\n"
785                 "             OpFunctionEnd\n";
786         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
787         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
788         spec.numWorkGroups = IVec3(numElements, 1, 1);
789
790         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
791
792         return group.release();
793 }
794
795 bool veryfiBinaryShader (const ProgramBinary& binary)
796 {
797         const size_t    paternCount                     = 3u;
798         bool paternsCheck[paternCount]          =
799         {
800                 false, false, false
801         };
802         const string patersns[paternCount]      =
803         {
804                 "VULKAN CTS",
805                 "Negative values",
806                 "Date: 2017/09/21"
807         };
808         size_t                  paternNdx               = 0u;
809
810         for (size_t ndx = 0u; ndx < binary.getSize(); ++ndx)
811         {
812                 if (false == paternsCheck[paternNdx] &&
813                         patersns[paternNdx][0] == static_cast<char>(binary.getBinary()[ndx]) &&
814                         deMemoryEqual((const char*)&binary.getBinary()[ndx], &patersns[paternNdx][0], patersns[paternNdx].length()))
815                 {
816                         paternsCheck[paternNdx]= true;
817                         paternNdx++;
818                         if (paternNdx == paternCount)
819                                 break;
820                 }
821         }
822
823         for (size_t ndx = 0u; ndx < paternCount; ++ndx)
824         {
825                 if (!paternsCheck[ndx])
826                         return false;
827         }
828
829         return true;
830 }
831
832 tcu::TestCaseGroup* createOpModuleProcessedGroup (tcu::TestContext& testCtx)
833 {
834         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opmoduleprocessed", "Test the OpModuleProcessed instruction"));
835         ComputeShaderSpec                               spec;
836         de::Random                                              rnd                             (deStringHash(group->getName()));
837         const int                                               numElements             = 10;
838         vector<float>                                   positiveFloats  (numElements, 0);
839         vector<float>                                   negativeFloats  (numElements, 0);
840
841         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
842
843         for (size_t ndx = 0; ndx < numElements; ++ndx)
844                 negativeFloats[ndx] = -positiveFloats[ndx];
845
846         spec.assembly =
847                 string(getComputeAsmShaderPreamble()) +
848                 "%fname = OpString \"negateInputs.comp\"\n"
849
850                 "OpSource GLSL 430\n"
851                 "OpName %main           \"main\"\n"
852                 "OpName %id             \"gl_GlobalInvocationID\"\n"
853                 "OpModuleProcessed \"VULKAN CTS\"\n"                                    //OpModuleProcessed;
854                 "OpModuleProcessed \"Negative values\"\n"
855                 "OpModuleProcessed \"Date: 2017/09/21\"\n"
856                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
857
858                 + string(getComputeAsmInputOutputBufferTraits())
859
860                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
861
862                 "OpLine %fname 0 1\n"
863
864                 "OpLine %fname 1000 1\n"
865
866                 "%id        = OpVariable %uvec3ptr Input\n"
867                 "%zero      = OpConstant %i32 0\n"
868                 "%main      = OpFunction %void None %voidf\n"
869
870                 "%label     = OpLabel\n"
871                 "%idval     = OpLoad %uvec3 %id\n"
872                 "%x         = OpCompositeExtract %u32 %idval 0\n"
873
874                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
875                 "%inval     = OpLoad %f32 %inloc\n"
876                 "%neg       = OpFNegate %f32 %inval\n"
877                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
878                 "             OpStore %outloc %neg\n"
879                 "             OpReturn\n"
880                 "             OpFunctionEnd\n";
881         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
882         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
883         spec.numWorkGroups = IVec3(numElements, 1, 1);
884         spec.verifyBinary = veryfiBinaryShader;
885         spec.spirvVersion = SPIRV_VERSION_1_3;
886
887         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpModuleProcessed Tests", spec));
888
889         return group.release();
890 }
891
892 tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
893 {
894         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
895         ComputeShaderSpec                               spec;
896         de::Random                                              rnd                             (deStringHash(group->getName()));
897         const int                                               numElements             = 100;
898         vector<float>                                   positiveFloats  (numElements, 0);
899         vector<float>                                   negativeFloats  (numElements, 0);
900
901         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
902
903         for (size_t ndx = 0; ndx < numElements; ++ndx)
904                 negativeFloats[ndx] = -positiveFloats[ndx];
905
906         spec.assembly =
907                 string(getComputeAsmShaderPreamble()) +
908
909                 "%fname = OpString \"negateInputs.comp\"\n"
910
911                 "OpSource GLSL 430\n"
912                 "OpName %main           \"main\"\n"
913                 "OpName %id             \"gl_GlobalInvocationID\"\n"
914
915                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
916
917                 + string(getComputeAsmInputOutputBufferTraits()) +
918
919                 "OpNoLine\n" // At the earliest possible position, without preceding OpLine
920
921                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
922
923                 "OpLine %fname 0 1\n"
924                 "OpNoLine\n" // Immediately following a preceding OpLine
925
926                 "OpLine %fname 1000 1\n"
927
928                 "%id        = OpVariable %uvec3ptr Input\n"
929                 "%zero      = OpConstant %i32 0\n"
930
931                 "OpNoLine\n" // Contents after the previous OpLine
932
933                 "%main      = OpFunction %void None %voidf\n"
934                 "%label     = OpLabel\n"
935                 "%idval     = OpLoad %uvec3 %id\n"
936                 "%x         = OpCompositeExtract %u32 %idval 0\n"
937
938                 "OpNoLine\n" // Multiple OpNoLine
939                 "OpNoLine\n"
940                 "OpNoLine\n"
941
942                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
943                 "%inval     = OpLoad %f32 %inloc\n"
944                 "%neg       = OpFNegate %f32 %inval\n"
945                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
946                 "             OpStore %outloc %neg\n"
947                 "             OpReturn\n"
948                 "             OpFunctionEnd\n";
949         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
950         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
951         spec.numWorkGroups = IVec3(numElements, 1, 1);
952
953         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
954
955         return group.release();
956 }
957
958 // Compare instruction for the contraction compute case.
959 // Returns true if the output is what is expected from the test case.
960 bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
961 {
962         if (outputAllocs.size() != 1)
963                 return false;
964
965         // Only size is needed because we are not comparing the exact values.
966         size_t byteSize = expectedOutputs[0]->getByteSize();
967
968         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
969
970         for(size_t i = 0; i < byteSize / sizeof(float); ++i) {
971                 if (outputAsFloat[i] != 0.f &&
972                         outputAsFloat[i] != -ldexp(1, -24)) {
973                         return false;
974                 }
975         }
976
977         return true;
978 }
979
980 tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
981 {
982         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
983         vector<CaseParameter>                   cases;
984         const int                                               numElements             = 100;
985         vector<float>                                   inputFloats1    (numElements, 0);
986         vector<float>                                   inputFloats2    (numElements, 0);
987         vector<float>                                   outputFloats    (numElements, 0);
988         const StringTemplate                    shaderTemplate  (
989                 string(getComputeAsmShaderPreamble()) +
990
991                 "OpName %main           \"main\"\n"
992                 "OpName %id             \"gl_GlobalInvocationID\"\n"
993
994                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
995
996                 "${DECORATION}\n"
997
998                 "OpDecorate %buf BufferBlock\n"
999                 "OpDecorate %indata1 DescriptorSet 0\n"
1000                 "OpDecorate %indata1 Binding 0\n"
1001                 "OpDecorate %indata2 DescriptorSet 0\n"
1002                 "OpDecorate %indata2 Binding 1\n"
1003                 "OpDecorate %outdata DescriptorSet 0\n"
1004                 "OpDecorate %outdata Binding 2\n"
1005                 "OpDecorate %f32arr ArrayStride 4\n"
1006                 "OpMemberDecorate %buf 0 Offset 0\n"
1007
1008                 + string(getComputeAsmCommonTypes()) +
1009
1010                 "%buf        = OpTypeStruct %f32arr\n"
1011                 "%bufptr     = OpTypePointer Uniform %buf\n"
1012                 "%indata1    = OpVariable %bufptr Uniform\n"
1013                 "%indata2    = OpVariable %bufptr Uniform\n"
1014                 "%outdata    = OpVariable %bufptr Uniform\n"
1015
1016                 "%id         = OpVariable %uvec3ptr Input\n"
1017                 "%zero       = OpConstant %i32 0\n"
1018                 "%c_f_m1     = OpConstant %f32 -1.\n"
1019
1020                 "%main       = OpFunction %void None %voidf\n"
1021                 "%label      = OpLabel\n"
1022                 "%idval      = OpLoad %uvec3 %id\n"
1023                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1024                 "%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
1025                 "%inval1     = OpLoad %f32 %inloc1\n"
1026                 "%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
1027                 "%inval2     = OpLoad %f32 %inloc2\n"
1028                 "%mul        = OpFMul %f32 %inval1 %inval2\n"
1029                 "%add        = OpFAdd %f32 %mul %c_f_m1\n"
1030                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1031                 "              OpStore %outloc %add\n"
1032                 "              OpReturn\n"
1033                 "              OpFunctionEnd\n");
1034
1035         cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
1036         cases.push_back(CaseParameter("addition",               "OpDecorate %add NoContraction"));
1037         cases.push_back(CaseParameter("both",                   "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
1038
1039         for (size_t ndx = 0; ndx < numElements; ++ndx)
1040         {
1041                 inputFloats1[ndx]       = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
1042                 inputFloats2[ndx]       = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
1043                 // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
1044                 // conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
1045                 // So the final result will be 0.f or 0x1p-24.
1046                 // If the operation is combined into a precise fused multiply-add, then the result would be
1047                 // 2^-46 (0xa8800000).
1048                 outputFloats[ndx]       = 0.f;
1049         }
1050
1051         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1052         {
1053                 map<string, string>             specializations;
1054                 ComputeShaderSpec               spec;
1055
1056                 specializations["DECORATION"] = cases[caseNdx].param;
1057                 spec.assembly = shaderTemplate.specialize(specializations);
1058                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1059                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1060                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1061                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1062                 // Check against the two possible answers based on rounding mode.
1063                 spec.verifyIO = &compareNoContractCase;
1064
1065                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1066         }
1067         return group.release();
1068 }
1069
1070 bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
1071 {
1072         if (outputAllocs.size() != 1)
1073                 return false;
1074
1075         vector<deUint8> expectedBytes;
1076         expectedOutputs[0]->getBytes(expectedBytes);
1077
1078         const float*    expectedOutputAsFloat   = reinterpret_cast<const float*>(&expectedBytes.front());
1079         const float*    outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
1080
1081         for (size_t idx = 0; idx < expectedBytes.size() / sizeof(float); ++idx)
1082         {
1083                 const float f0 = expectedOutputAsFloat[idx];
1084                 const float f1 = outputAsFloat[idx];
1085                 // \todo relative error needs to be fairly high because FRem may be implemented as
1086                 // (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
1087                 if (deFloatAbs((f1 - f0) / f0) > 0.02)
1088                         return false;
1089         }
1090
1091         return true;
1092 }
1093
1094 tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
1095 {
1096         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
1097         ComputeShaderSpec                               spec;
1098         de::Random                                              rnd                             (deStringHash(group->getName()));
1099         const int                                               numElements             = 200;
1100         vector<float>                                   inputFloats1    (numElements, 0);
1101         vector<float>                                   inputFloats2    (numElements, 0);
1102         vector<float>                                   outputFloats    (numElements, 0);
1103
1104         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
1105         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
1106
1107         for (size_t ndx = 0; ndx < numElements; ++ndx)
1108         {
1109                 // Guard against divisors near zero.
1110                 if (std::fabs(inputFloats2[ndx]) < 1e-3)
1111                         inputFloats2[ndx] = 8.f;
1112
1113                 // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
1114                 outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
1115         }
1116
1117         spec.assembly =
1118                 string(getComputeAsmShaderPreamble()) +
1119
1120                 "OpName %main           \"main\"\n"
1121                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1122
1123                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1124
1125                 "OpDecorate %buf BufferBlock\n"
1126                 "OpDecorate %indata1 DescriptorSet 0\n"
1127                 "OpDecorate %indata1 Binding 0\n"
1128                 "OpDecorate %indata2 DescriptorSet 0\n"
1129                 "OpDecorate %indata2 Binding 1\n"
1130                 "OpDecorate %outdata DescriptorSet 0\n"
1131                 "OpDecorate %outdata Binding 2\n"
1132                 "OpDecorate %f32arr ArrayStride 4\n"
1133                 "OpMemberDecorate %buf 0 Offset 0\n"
1134
1135                 + string(getComputeAsmCommonTypes()) +
1136
1137                 "%buf        = OpTypeStruct %f32arr\n"
1138                 "%bufptr     = OpTypePointer Uniform %buf\n"
1139                 "%indata1    = OpVariable %bufptr Uniform\n"
1140                 "%indata2    = OpVariable %bufptr Uniform\n"
1141                 "%outdata    = OpVariable %bufptr Uniform\n"
1142
1143                 "%id        = OpVariable %uvec3ptr Input\n"
1144                 "%zero      = OpConstant %i32 0\n"
1145
1146                 "%main      = OpFunction %void None %voidf\n"
1147                 "%label     = OpLabel\n"
1148                 "%idval     = OpLoad %uvec3 %id\n"
1149                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1150                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1151                 "%inval1    = OpLoad %f32 %inloc1\n"
1152                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1153                 "%inval2    = OpLoad %f32 %inloc2\n"
1154                 "%rem       = OpFRem %f32 %inval1 %inval2\n"
1155                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1156                 "             OpStore %outloc %rem\n"
1157                 "             OpReturn\n"
1158                 "             OpFunctionEnd\n";
1159
1160         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1161         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1162         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1163         spec.numWorkGroups = IVec3(numElements, 1, 1);
1164         spec.verifyIO = &compareFRem;
1165
1166         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1167
1168         return group.release();
1169 }
1170
1171 bool compareNMin (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
1172 {
1173         if (outputAllocs.size() != 1)
1174                 return false;
1175
1176         const BufferSp&                 expectedOutput                  (expectedOutputs[0]);
1177         std::vector<deUint8>    data;
1178         expectedOutput->getBytes(data);
1179
1180         const float* const              expectedOutputAsFloat   = reinterpret_cast<const float*>(&data.front());
1181         const float* const              outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
1182
1183         for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float); ++idx)
1184         {
1185                 const float f0 = expectedOutputAsFloat[idx];
1186                 const float f1 = outputAsFloat[idx];
1187
1188                 // For NMin, we accept NaN as output if both inputs were NaN.
1189                 // Otherwise the NaN is the wrong choise, as on architectures that
1190                 // do not handle NaN, those are huge values.
1191                 if (!(tcu::Float32(f1).isNaN() && tcu::Float32(f0).isNaN()) && deFloatAbs(f1 - f0) > 0.00001f)
1192                         return false;
1193         }
1194
1195         return true;
1196 }
1197
1198 tcu::TestCaseGroup* createOpNMinGroup (tcu::TestContext& testCtx)
1199 {
1200         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnmin", "Test the OpNMin instruction"));
1201         ComputeShaderSpec                               spec;
1202         de::Random                                              rnd                             (deStringHash(group->getName()));
1203         const int                                               numElements             = 200;
1204         vector<float>                                   inputFloats1    (numElements, 0);
1205         vector<float>                                   inputFloats2    (numElements, 0);
1206         vector<float>                                   outputFloats    (numElements, 0);
1207
1208         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
1209         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
1210
1211         // Make the first case a full-NAN case.
1212         inputFloats1[0] = TCU_NAN;
1213         inputFloats2[0] = TCU_NAN;
1214
1215         for (size_t ndx = 0; ndx < numElements; ++ndx)
1216         {
1217                 // By default, pick the smallest
1218                 outputFloats[ndx] = std::min(inputFloats1[ndx], inputFloats2[ndx]);
1219
1220                 // Make half of the cases NaN cases
1221                 if ((ndx & 1) == 0)
1222                 {
1223                         // Alternate between the NaN operand
1224                         if ((ndx & 2) == 0)
1225                         {
1226                                 outputFloats[ndx] = inputFloats2[ndx];
1227                                 inputFloats1[ndx] = TCU_NAN;
1228                         }
1229                         else
1230                         {
1231                                 outputFloats[ndx] = inputFloats1[ndx];
1232                                 inputFloats2[ndx] = TCU_NAN;
1233                         }
1234                 }
1235         }
1236
1237         spec.assembly =
1238                 "OpCapability Shader\n"
1239                 "%std450        = OpExtInstImport \"GLSL.std.450\"\n"
1240                 "OpMemoryModel Logical GLSL450\n"
1241                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1242                 "OpExecutionMode %main LocalSize 1 1 1\n"
1243
1244                 "OpName %main           \"main\"\n"
1245                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1246
1247                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1248
1249                 "OpDecorate %buf BufferBlock\n"
1250                 "OpDecorate %indata1 DescriptorSet 0\n"
1251                 "OpDecorate %indata1 Binding 0\n"
1252                 "OpDecorate %indata2 DescriptorSet 0\n"
1253                 "OpDecorate %indata2 Binding 1\n"
1254                 "OpDecorate %outdata DescriptorSet 0\n"
1255                 "OpDecorate %outdata Binding 2\n"
1256                 "OpDecorate %f32arr ArrayStride 4\n"
1257                 "OpMemberDecorate %buf 0 Offset 0\n"
1258
1259                 + string(getComputeAsmCommonTypes()) +
1260
1261                 "%buf        = OpTypeStruct %f32arr\n"
1262                 "%bufptr     = OpTypePointer Uniform %buf\n"
1263                 "%indata1    = OpVariable %bufptr Uniform\n"
1264                 "%indata2    = OpVariable %bufptr Uniform\n"
1265                 "%outdata    = OpVariable %bufptr Uniform\n"
1266
1267                 "%id        = OpVariable %uvec3ptr Input\n"
1268                 "%zero      = OpConstant %i32 0\n"
1269
1270                 "%main      = OpFunction %void None %voidf\n"
1271                 "%label     = OpLabel\n"
1272                 "%idval     = OpLoad %uvec3 %id\n"
1273                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1274                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1275                 "%inval1    = OpLoad %f32 %inloc1\n"
1276                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1277                 "%inval2    = OpLoad %f32 %inloc2\n"
1278                 "%rem       = OpExtInst %f32 %std450 NMin %inval1 %inval2\n"
1279                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1280                 "             OpStore %outloc %rem\n"
1281                 "             OpReturn\n"
1282                 "             OpFunctionEnd\n";
1283
1284         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1285         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1286         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1287         spec.numWorkGroups = IVec3(numElements, 1, 1);
1288         spec.verifyIO = &compareNMin;
1289
1290         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1291
1292         return group.release();
1293 }
1294
1295 bool compareNMax (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
1296 {
1297         if (outputAllocs.size() != 1)
1298                 return false;
1299
1300         const BufferSp&                 expectedOutput                  = expectedOutputs[0];
1301         std::vector<deUint8>    data;
1302         expectedOutput->getBytes(data);
1303
1304         const float* const              expectedOutputAsFloat   = reinterpret_cast<const float*>(&data.front());
1305         const float* const              outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
1306
1307         for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float); ++idx)
1308         {
1309                 const float f0 = expectedOutputAsFloat[idx];
1310                 const float f1 = outputAsFloat[idx];
1311
1312                 // For NMax, NaN is considered acceptable result, since in
1313                 // architectures that do not handle NaNs, those are huge values.
1314                 if (!tcu::Float32(f1).isNaN() && deFloatAbs(f1 - f0) > 0.00001f)
1315                         return false;
1316         }
1317
1318         return true;
1319 }
1320
1321 tcu::TestCaseGroup* createOpNMaxGroup (tcu::TestContext& testCtx)
1322 {
1323         de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "opnmax", "Test the OpNMax instruction"));
1324         ComputeShaderSpec                               spec;
1325         de::Random                                              rnd                             (deStringHash(group->getName()));
1326         const int                                               numElements             = 200;
1327         vector<float>                                   inputFloats1    (numElements, 0);
1328         vector<float>                                   inputFloats2    (numElements, 0);
1329         vector<float>                                   outputFloats    (numElements, 0);
1330
1331         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
1332         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
1333
1334         // Make the first case a full-NAN case.
1335         inputFloats1[0] = TCU_NAN;
1336         inputFloats2[0] = TCU_NAN;
1337
1338         for (size_t ndx = 0; ndx < numElements; ++ndx)
1339         {
1340                 // By default, pick the biggest
1341                 outputFloats[ndx] = std::max(inputFloats1[ndx], inputFloats2[ndx]);
1342
1343                 // Make half of the cases NaN cases
1344                 if ((ndx & 1) == 0)
1345                 {
1346                         // Alternate between the NaN operand
1347                         if ((ndx & 2) == 0)
1348                         {
1349                                 outputFloats[ndx] = inputFloats2[ndx];
1350                                 inputFloats1[ndx] = TCU_NAN;
1351                         }
1352                         else
1353                         {
1354                                 outputFloats[ndx] = inputFloats1[ndx];
1355                                 inputFloats2[ndx] = TCU_NAN;
1356                         }
1357                 }
1358         }
1359
1360         spec.assembly =
1361                 "OpCapability Shader\n"
1362                 "%std450        = OpExtInstImport \"GLSL.std.450\"\n"
1363                 "OpMemoryModel Logical GLSL450\n"
1364                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1365                 "OpExecutionMode %main LocalSize 1 1 1\n"
1366
1367                 "OpName %main           \"main\"\n"
1368                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1369
1370                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1371
1372                 "OpDecorate %buf BufferBlock\n"
1373                 "OpDecorate %indata1 DescriptorSet 0\n"
1374                 "OpDecorate %indata1 Binding 0\n"
1375                 "OpDecorate %indata2 DescriptorSet 0\n"
1376                 "OpDecorate %indata2 Binding 1\n"
1377                 "OpDecorate %outdata DescriptorSet 0\n"
1378                 "OpDecorate %outdata Binding 2\n"
1379                 "OpDecorate %f32arr ArrayStride 4\n"
1380                 "OpMemberDecorate %buf 0 Offset 0\n"
1381
1382                 + string(getComputeAsmCommonTypes()) +
1383
1384                 "%buf        = OpTypeStruct %f32arr\n"
1385                 "%bufptr     = OpTypePointer Uniform %buf\n"
1386                 "%indata1    = OpVariable %bufptr Uniform\n"
1387                 "%indata2    = OpVariable %bufptr Uniform\n"
1388                 "%outdata    = OpVariable %bufptr Uniform\n"
1389
1390                 "%id        = OpVariable %uvec3ptr Input\n"
1391                 "%zero      = OpConstant %i32 0\n"
1392
1393                 "%main      = OpFunction %void None %voidf\n"
1394                 "%label     = OpLabel\n"
1395                 "%idval     = OpLoad %uvec3 %id\n"
1396                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1397                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1398                 "%inval1    = OpLoad %f32 %inloc1\n"
1399                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1400                 "%inval2    = OpLoad %f32 %inloc2\n"
1401                 "%rem       = OpExtInst %f32 %std450 NMax %inval1 %inval2\n"
1402                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1403                 "             OpStore %outloc %rem\n"
1404                 "             OpReturn\n"
1405                 "             OpFunctionEnd\n";
1406
1407         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1408         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1409         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1410         spec.numWorkGroups = IVec3(numElements, 1, 1);
1411         spec.verifyIO = &compareNMax;
1412
1413         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1414
1415         return group.release();
1416 }
1417
1418 bool compareNClamp (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
1419 {
1420         if (outputAllocs.size() != 1)
1421                 return false;
1422
1423         const BufferSp&                 expectedOutput                  = expectedOutputs[0];
1424         std::vector<deUint8>    data;
1425         expectedOutput->getBytes(data);
1426
1427         const float* const              expectedOutputAsFloat   = reinterpret_cast<const float*>(&data.front());
1428         const float* const              outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
1429
1430         for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float) / 2; ++idx)
1431         {
1432                 const float e0 = expectedOutputAsFloat[idx * 2];
1433                 const float e1 = expectedOutputAsFloat[idx * 2 + 1];
1434                 const float res = outputAsFloat[idx];
1435
1436                 // For NClamp, we have two possible outcomes based on
1437                 // whether NaNs are handled or not.
1438                 // If either min or max value is NaN, the result is undefined,
1439                 // so this test doesn't stress those. If the clamped value is
1440                 // NaN, and NaNs are handled, the result is min; if NaNs are not
1441                 // handled, they are big values that result in max.
1442                 // If all three parameters are NaN, the result should be NaN.
1443                 if (!((tcu::Float32(e0).isNaN() && tcu::Float32(res).isNaN()) ||
1444                          (deFloatAbs(e0 - res) < 0.00001f) ||
1445                          (deFloatAbs(e1 - res) < 0.00001f)))
1446                         return false;
1447         }
1448
1449         return true;
1450 }
1451
1452 tcu::TestCaseGroup* createOpNClampGroup (tcu::TestContext& testCtx)
1453 {
1454         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnclamp", "Test the OpNClamp instruction"));
1455         ComputeShaderSpec                               spec;
1456         de::Random                                              rnd                             (deStringHash(group->getName()));
1457         const int                                               numElements             = 200;
1458         vector<float>                                   inputFloats1    (numElements, 0);
1459         vector<float>                                   inputFloats2    (numElements, 0);
1460         vector<float>                                   inputFloats3    (numElements, 0);
1461         vector<float>                                   outputFloats    (numElements * 2, 0);
1462
1463         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
1464         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
1465         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats3[0], numElements);
1466
1467         for (size_t ndx = 0; ndx < numElements; ++ndx)
1468         {
1469                 // Results are only defined if max value is bigger than min value.
1470                 if (inputFloats2[ndx] > inputFloats3[ndx])
1471                 {
1472                         float t = inputFloats2[ndx];
1473                         inputFloats2[ndx] = inputFloats3[ndx];
1474                         inputFloats3[ndx] = t;
1475                 }
1476
1477                 // By default, do the clamp, setting both possible answers
1478                 float defaultRes = std::min(std::max(inputFloats1[ndx], inputFloats2[ndx]), inputFloats3[ndx]);
1479
1480                 float maxResA = std::max(inputFloats1[ndx], inputFloats2[ndx]);
1481                 float maxResB = maxResA;
1482
1483                 // Alternate between the NaN cases
1484                 if (ndx & 1)
1485                 {
1486                         inputFloats1[ndx] = TCU_NAN;
1487                         // If NaN is handled, the result should be same as the clamp minimum.
1488                         // If NaN is not handled, the result should clamp to the clamp maximum.
1489                         maxResA = inputFloats2[ndx];
1490                         maxResB = inputFloats3[ndx];
1491                 }
1492                 else
1493                 {
1494                         // Not a NaN case - only one legal result.
1495                         maxResA = defaultRes;
1496                         maxResB = defaultRes;
1497                 }
1498
1499                 outputFloats[ndx * 2] = maxResA;
1500                 outputFloats[ndx * 2 + 1] = maxResB;
1501         }
1502
1503         // Make the first case a full-NAN case.
1504         inputFloats1[0] = TCU_NAN;
1505         inputFloats2[0] = TCU_NAN;
1506         inputFloats3[0] = TCU_NAN;
1507         outputFloats[0] = TCU_NAN;
1508         outputFloats[1] = TCU_NAN;
1509
1510         spec.assembly =
1511                 "OpCapability Shader\n"
1512                 "%std450        = OpExtInstImport \"GLSL.std.450\"\n"
1513                 "OpMemoryModel Logical GLSL450\n"
1514                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1515                 "OpExecutionMode %main LocalSize 1 1 1\n"
1516
1517                 "OpName %main           \"main\"\n"
1518                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1519
1520                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1521
1522                 "OpDecorate %buf BufferBlock\n"
1523                 "OpDecorate %indata1 DescriptorSet 0\n"
1524                 "OpDecorate %indata1 Binding 0\n"
1525                 "OpDecorate %indata2 DescriptorSet 0\n"
1526                 "OpDecorate %indata2 Binding 1\n"
1527                 "OpDecorate %indata3 DescriptorSet 0\n"
1528                 "OpDecorate %indata3 Binding 2\n"
1529                 "OpDecorate %outdata DescriptorSet 0\n"
1530                 "OpDecorate %outdata Binding 3\n"
1531                 "OpDecorate %f32arr ArrayStride 4\n"
1532                 "OpMemberDecorate %buf 0 Offset 0\n"
1533
1534                 + string(getComputeAsmCommonTypes()) +
1535
1536                 "%buf        = OpTypeStruct %f32arr\n"
1537                 "%bufptr     = OpTypePointer Uniform %buf\n"
1538                 "%indata1    = OpVariable %bufptr Uniform\n"
1539                 "%indata2    = OpVariable %bufptr Uniform\n"
1540                 "%indata3    = OpVariable %bufptr Uniform\n"
1541                 "%outdata    = OpVariable %bufptr Uniform\n"
1542
1543                 "%id        = OpVariable %uvec3ptr Input\n"
1544                 "%zero      = OpConstant %i32 0\n"
1545
1546                 "%main      = OpFunction %void None %voidf\n"
1547                 "%label     = OpLabel\n"
1548                 "%idval     = OpLoad %uvec3 %id\n"
1549                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1550                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1551                 "%inval1    = OpLoad %f32 %inloc1\n"
1552                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1553                 "%inval2    = OpLoad %f32 %inloc2\n"
1554                 "%inloc3    = OpAccessChain %f32ptr %indata3 %zero %x\n"
1555                 "%inval3    = OpLoad %f32 %inloc3\n"
1556                 "%rem       = OpExtInst %f32 %std450 NClamp %inval1 %inval2 %inval3\n"
1557                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1558                 "             OpStore %outloc %rem\n"
1559                 "             OpReturn\n"
1560                 "             OpFunctionEnd\n";
1561
1562         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1563         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1564         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1565         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1566         spec.numWorkGroups = IVec3(numElements, 1, 1);
1567         spec.verifyIO = &compareNClamp;
1568
1569         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1570
1571         return group.release();
1572 }
1573
1574 tcu::TestCaseGroup* createOpSRemComputeGroup (tcu::TestContext& testCtx, qpTestResult negFailResult)
1575 {
1576         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsrem", "Test the OpSRem instruction"));
1577         de::Random                                              rnd                             (deStringHash(group->getName()));
1578         const int                                               numElements             = 200;
1579
1580         const struct CaseParams
1581         {
1582                 const char*             name;
1583                 const char*             failMessage;            // customized status message
1584                 qpTestResult    failResult;                     // override status on failure
1585                 int                             op1Min, op1Max;         // operand ranges
1586                 int                             op2Min, op2Max;
1587         } cases[] =
1588         {
1589                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    0,              65536,  0,              100 },
1590                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  -65536, 65536,  -100,   100 },  // see below
1591         };
1592         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1593
1594         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1595         {
1596                 const CaseParams&       params          = cases[caseNdx];
1597                 ComputeShaderSpec       spec;
1598                 vector<deInt32>         inputInts1      (numElements, 0);
1599                 vector<deInt32>         inputInts2      (numElements, 0);
1600                 vector<deInt32>         outputInts      (numElements, 0);
1601
1602                 fillRandomScalars(rnd, params.op1Min, params.op1Max, &inputInts1[0], numElements);
1603                 fillRandomScalars(rnd, params.op2Min, params.op2Max, &inputInts2[0], numElements, filterNotZero);
1604
1605                 for (int ndx = 0; ndx < numElements; ++ndx)
1606                 {
1607                         // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
1608                         outputInts[ndx] = inputInts1[ndx] % inputInts2[ndx];
1609                 }
1610
1611                 spec.assembly =
1612                         string(getComputeAsmShaderPreamble()) +
1613
1614                         "OpName %main           \"main\"\n"
1615                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1616
1617                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1618
1619                         "OpDecorate %buf BufferBlock\n"
1620                         "OpDecorate %indata1 DescriptorSet 0\n"
1621                         "OpDecorate %indata1 Binding 0\n"
1622                         "OpDecorate %indata2 DescriptorSet 0\n"
1623                         "OpDecorate %indata2 Binding 1\n"
1624                         "OpDecorate %outdata DescriptorSet 0\n"
1625                         "OpDecorate %outdata Binding 2\n"
1626                         "OpDecorate %i32arr ArrayStride 4\n"
1627                         "OpMemberDecorate %buf 0 Offset 0\n"
1628
1629                         + string(getComputeAsmCommonTypes()) +
1630
1631                         "%buf        = OpTypeStruct %i32arr\n"
1632                         "%bufptr     = OpTypePointer Uniform %buf\n"
1633                         "%indata1    = OpVariable %bufptr Uniform\n"
1634                         "%indata2    = OpVariable %bufptr Uniform\n"
1635                         "%outdata    = OpVariable %bufptr Uniform\n"
1636
1637                         "%id        = OpVariable %uvec3ptr Input\n"
1638                         "%zero      = OpConstant %i32 0\n"
1639
1640                         "%main      = OpFunction %void None %voidf\n"
1641                         "%label     = OpLabel\n"
1642                         "%idval     = OpLoad %uvec3 %id\n"
1643                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1644                         "%inloc1    = OpAccessChain %i32ptr %indata1 %zero %x\n"
1645                         "%inval1    = OpLoad %i32 %inloc1\n"
1646                         "%inloc2    = OpAccessChain %i32ptr %indata2 %zero %x\n"
1647                         "%inval2    = OpLoad %i32 %inloc2\n"
1648                         "%rem       = OpSRem %i32 %inval1 %inval2\n"
1649                         "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1650                         "             OpStore %outloc %rem\n"
1651                         "             OpReturn\n"
1652                         "             OpFunctionEnd\n";
1653
1654                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts1)));
1655                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts2)));
1656                 spec.outputs.push_back  (BufferSp(new Int32Buffer(outputInts)));
1657                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1658                 spec.failResult                 = params.failResult;
1659                 spec.failMessage                = params.failMessage;
1660
1661                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec));
1662         }
1663
1664         return group.release();
1665 }
1666
1667 tcu::TestCaseGroup* createOpSRemComputeGroup64 (tcu::TestContext& testCtx, qpTestResult negFailResult)
1668 {
1669         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsrem64", "Test the 64-bit OpSRem instruction"));
1670         de::Random                                              rnd                             (deStringHash(group->getName()));
1671         const int                                               numElements             = 200;
1672
1673         const struct CaseParams
1674         {
1675                 const char*             name;
1676                 const char*             failMessage;            // customized status message
1677                 qpTestResult    failResult;                     // override status on failure
1678                 bool                    positive;
1679         } cases[] =
1680         {
1681                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    true },
1682                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  false },        // see below
1683         };
1684         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1685
1686         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1687         {
1688                 const CaseParams&       params          = cases[caseNdx];
1689                 ComputeShaderSpec       spec;
1690                 vector<deInt64>         inputInts1      (numElements, 0);
1691                 vector<deInt64>         inputInts2      (numElements, 0);
1692                 vector<deInt64>         outputInts      (numElements, 0);
1693
1694                 if (params.positive)
1695                 {
1696                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements, filterNonNegative);
1697                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterPositive);
1698                 }
1699                 else
1700                 {
1701                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements);
1702                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterNotZero);
1703                 }
1704
1705                 for (int ndx = 0; ndx < numElements; ++ndx)
1706                 {
1707                         // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
1708                         outputInts[ndx] = inputInts1[ndx] % inputInts2[ndx];
1709                 }
1710
1711                 spec.assembly =
1712                         "OpCapability Int64\n"
1713
1714                         + string(getComputeAsmShaderPreamble()) +
1715
1716                         "OpName %main           \"main\"\n"
1717                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1718
1719                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1720
1721                         "OpDecorate %buf BufferBlock\n"
1722                         "OpDecorate %indata1 DescriptorSet 0\n"
1723                         "OpDecorate %indata1 Binding 0\n"
1724                         "OpDecorate %indata2 DescriptorSet 0\n"
1725                         "OpDecorate %indata2 Binding 1\n"
1726                         "OpDecorate %outdata DescriptorSet 0\n"
1727                         "OpDecorate %outdata Binding 2\n"
1728                         "OpDecorate %i64arr ArrayStride 8\n"
1729                         "OpMemberDecorate %buf 0 Offset 0\n"
1730
1731                         + string(getComputeAsmCommonTypes())
1732                         + string(getComputeAsmCommonInt64Types()) +
1733
1734                         "%buf        = OpTypeStruct %i64arr\n"
1735                         "%bufptr     = OpTypePointer Uniform %buf\n"
1736                         "%indata1    = OpVariable %bufptr Uniform\n"
1737                         "%indata2    = OpVariable %bufptr Uniform\n"
1738                         "%outdata    = OpVariable %bufptr Uniform\n"
1739
1740                         "%id        = OpVariable %uvec3ptr Input\n"
1741                         "%zero      = OpConstant %i64 0\n"
1742
1743                         "%main      = OpFunction %void None %voidf\n"
1744                         "%label     = OpLabel\n"
1745                         "%idval     = OpLoad %uvec3 %id\n"
1746                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1747                         "%inloc1    = OpAccessChain %i64ptr %indata1 %zero %x\n"
1748                         "%inval1    = OpLoad %i64 %inloc1\n"
1749                         "%inloc2    = OpAccessChain %i64ptr %indata2 %zero %x\n"
1750                         "%inval2    = OpLoad %i64 %inloc2\n"
1751                         "%rem       = OpSRem %i64 %inval1 %inval2\n"
1752                         "%outloc    = OpAccessChain %i64ptr %outdata %zero %x\n"
1753                         "             OpStore %outloc %rem\n"
1754                         "             OpReturn\n"
1755                         "             OpFunctionEnd\n";
1756
1757                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts1)));
1758                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts2)));
1759                 spec.outputs.push_back  (BufferSp(new Int64Buffer(outputInts)));
1760                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1761                 spec.failResult                 = params.failResult;
1762                 spec.failMessage                = params.failMessage;
1763
1764                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec, COMPUTE_TEST_USES_INT64));
1765         }
1766
1767         return group.release();
1768 }
1769
1770 tcu::TestCaseGroup* createOpSModComputeGroup (tcu::TestContext& testCtx, qpTestResult negFailResult)
1771 {
1772         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsmod", "Test the OpSMod instruction"));
1773         de::Random                                              rnd                             (deStringHash(group->getName()));
1774         const int                                               numElements             = 200;
1775
1776         const struct CaseParams
1777         {
1778                 const char*             name;
1779                 const char*             failMessage;            // customized status message
1780                 qpTestResult    failResult;                     // override status on failure
1781                 int                             op1Min, op1Max;         // operand ranges
1782                 int                             op2Min, op2Max;
1783         } cases[] =
1784         {
1785                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    0,              65536,  0,              100 },
1786                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  -65536, 65536,  -100,   100 },  // see below
1787         };
1788         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1789
1790         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1791         {
1792                 const CaseParams&       params          = cases[caseNdx];
1793
1794                 ComputeShaderSpec       spec;
1795                 vector<deInt32>         inputInts1      (numElements, 0);
1796                 vector<deInt32>         inputInts2      (numElements, 0);
1797                 vector<deInt32>         outputInts      (numElements, 0);
1798
1799                 fillRandomScalars(rnd, params.op1Min, params.op1Max, &inputInts1[0], numElements);
1800                 fillRandomScalars(rnd, params.op2Min, params.op2Max, &inputInts2[0], numElements, filterNotZero);
1801
1802                 for (int ndx = 0; ndx < numElements; ++ndx)
1803                 {
1804                         deInt32 rem = inputInts1[ndx] % inputInts2[ndx];
1805                         if (rem == 0)
1806                         {
1807                                 outputInts[ndx] = 0;
1808                         }
1809                         else if ((inputInts1[ndx] >= 0) == (inputInts2[ndx] >= 0))
1810                         {
1811                                 // They have the same sign
1812                                 outputInts[ndx] = rem;
1813                         }
1814                         else
1815                         {
1816                                 // They have opposite sign.  The remainder operation takes the
1817                                 // sign inputInts1[ndx] but OpSMod is supposed to take ths sign
1818                                 // of inputInts2[ndx].  Adding inputInts2[ndx] will ensure that
1819                                 // the result has the correct sign and that it is still
1820                                 // congruent to inputInts1[ndx] modulo inputInts2[ndx]
1821                                 //
1822                                 // See also http://mathforum.org/library/drmath/view/52343.html
1823                                 outputInts[ndx] = rem + inputInts2[ndx];
1824                         }
1825                 }
1826
1827                 spec.assembly =
1828                         string(getComputeAsmShaderPreamble()) +
1829
1830                         "OpName %main           \"main\"\n"
1831                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1832
1833                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1834
1835                         "OpDecorate %buf BufferBlock\n"
1836                         "OpDecorate %indata1 DescriptorSet 0\n"
1837                         "OpDecorate %indata1 Binding 0\n"
1838                         "OpDecorate %indata2 DescriptorSet 0\n"
1839                         "OpDecorate %indata2 Binding 1\n"
1840                         "OpDecorate %outdata DescriptorSet 0\n"
1841                         "OpDecorate %outdata Binding 2\n"
1842                         "OpDecorate %i32arr ArrayStride 4\n"
1843                         "OpMemberDecorate %buf 0 Offset 0\n"
1844
1845                         + string(getComputeAsmCommonTypes()) +
1846
1847                         "%buf        = OpTypeStruct %i32arr\n"
1848                         "%bufptr     = OpTypePointer Uniform %buf\n"
1849                         "%indata1    = OpVariable %bufptr Uniform\n"
1850                         "%indata2    = OpVariable %bufptr Uniform\n"
1851                         "%outdata    = OpVariable %bufptr Uniform\n"
1852
1853                         "%id        = OpVariable %uvec3ptr Input\n"
1854                         "%zero      = OpConstant %i32 0\n"
1855
1856                         "%main      = OpFunction %void None %voidf\n"
1857                         "%label     = OpLabel\n"
1858                         "%idval     = OpLoad %uvec3 %id\n"
1859                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1860                         "%inloc1    = OpAccessChain %i32ptr %indata1 %zero %x\n"
1861                         "%inval1    = OpLoad %i32 %inloc1\n"
1862                         "%inloc2    = OpAccessChain %i32ptr %indata2 %zero %x\n"
1863                         "%inval2    = OpLoad %i32 %inloc2\n"
1864                         "%rem       = OpSMod %i32 %inval1 %inval2\n"
1865                         "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1866                         "             OpStore %outloc %rem\n"
1867                         "             OpReturn\n"
1868                         "             OpFunctionEnd\n";
1869
1870                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts1)));
1871                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts2)));
1872                 spec.outputs.push_back  (BufferSp(new Int32Buffer(outputInts)));
1873                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1874                 spec.failResult                 = params.failResult;
1875                 spec.failMessage                = params.failMessage;
1876
1877                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec));
1878         }
1879
1880         return group.release();
1881 }
1882
1883 tcu::TestCaseGroup* createOpSModComputeGroup64 (tcu::TestContext& testCtx, qpTestResult negFailResult)
1884 {
1885         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsmod64", "Test the OpSMod instruction"));
1886         de::Random                                              rnd                             (deStringHash(group->getName()));
1887         const int                                               numElements             = 200;
1888
1889         const struct CaseParams
1890         {
1891                 const char*             name;
1892                 const char*             failMessage;            // customized status message
1893                 qpTestResult    failResult;                     // override status on failure
1894                 bool                    positive;
1895         } cases[] =
1896         {
1897                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    true },
1898                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  false },        // see below
1899         };
1900         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1901
1902         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1903         {
1904                 const CaseParams&       params          = cases[caseNdx];
1905
1906                 ComputeShaderSpec       spec;
1907                 vector<deInt64>         inputInts1      (numElements, 0);
1908                 vector<deInt64>         inputInts2      (numElements, 0);
1909                 vector<deInt64>         outputInts      (numElements, 0);
1910
1911
1912                 if (params.positive)
1913                 {
1914                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements, filterNonNegative);
1915                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterPositive);
1916                 }
1917                 else
1918                 {
1919                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements);
1920                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterNotZero);
1921                 }
1922
1923                 for (int ndx = 0; ndx < numElements; ++ndx)
1924                 {
1925                         deInt64 rem = inputInts1[ndx] % inputInts2[ndx];
1926                         if (rem == 0)
1927                         {
1928                                 outputInts[ndx] = 0;
1929                         }
1930                         else if ((inputInts1[ndx] >= 0) == (inputInts2[ndx] >= 0))
1931                         {
1932                                 // They have the same sign
1933                                 outputInts[ndx] = rem;
1934                         }
1935                         else
1936                         {
1937                                 // They have opposite sign.  The remainder operation takes the
1938                                 // sign inputInts1[ndx] but OpSMod is supposed to take ths sign
1939                                 // of inputInts2[ndx].  Adding inputInts2[ndx] will ensure that
1940                                 // the result has the correct sign and that it is still
1941                                 // congruent to inputInts1[ndx] modulo inputInts2[ndx]
1942                                 //
1943                                 // See also http://mathforum.org/library/drmath/view/52343.html
1944                                 outputInts[ndx] = rem + inputInts2[ndx];
1945                         }
1946                 }
1947
1948                 spec.assembly =
1949                         "OpCapability Int64\n"
1950
1951                         + string(getComputeAsmShaderPreamble()) +
1952
1953                         "OpName %main           \"main\"\n"
1954                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1955
1956                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1957
1958                         "OpDecorate %buf BufferBlock\n"
1959                         "OpDecorate %indata1 DescriptorSet 0\n"
1960                         "OpDecorate %indata1 Binding 0\n"
1961                         "OpDecorate %indata2 DescriptorSet 0\n"
1962                         "OpDecorate %indata2 Binding 1\n"
1963                         "OpDecorate %outdata DescriptorSet 0\n"
1964                         "OpDecorate %outdata Binding 2\n"
1965                         "OpDecorate %i64arr ArrayStride 8\n"
1966                         "OpMemberDecorate %buf 0 Offset 0\n"
1967
1968                         + string(getComputeAsmCommonTypes())
1969                         + string(getComputeAsmCommonInt64Types()) +
1970
1971                         "%buf        = OpTypeStruct %i64arr\n"
1972                         "%bufptr     = OpTypePointer Uniform %buf\n"
1973                         "%indata1    = OpVariable %bufptr Uniform\n"
1974                         "%indata2    = OpVariable %bufptr Uniform\n"
1975                         "%outdata    = OpVariable %bufptr Uniform\n"
1976
1977                         "%id        = OpVariable %uvec3ptr Input\n"
1978                         "%zero      = OpConstant %i64 0\n"
1979
1980                         "%main      = OpFunction %void None %voidf\n"
1981                         "%label     = OpLabel\n"
1982                         "%idval     = OpLoad %uvec3 %id\n"
1983                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1984                         "%inloc1    = OpAccessChain %i64ptr %indata1 %zero %x\n"
1985                         "%inval1    = OpLoad %i64 %inloc1\n"
1986                         "%inloc2    = OpAccessChain %i64ptr %indata2 %zero %x\n"
1987                         "%inval2    = OpLoad %i64 %inloc2\n"
1988                         "%rem       = OpSMod %i64 %inval1 %inval2\n"
1989                         "%outloc    = OpAccessChain %i64ptr %outdata %zero %x\n"
1990                         "             OpStore %outloc %rem\n"
1991                         "             OpReturn\n"
1992                         "             OpFunctionEnd\n";
1993
1994                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts1)));
1995                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts2)));
1996                 spec.outputs.push_back  (BufferSp(new Int64Buffer(outputInts)));
1997                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1998                 spec.failResult                 = params.failResult;
1999                 spec.failMessage                = params.failMessage;
2000
2001                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec, COMPUTE_TEST_USES_INT64));
2002         }
2003
2004         return group.release();
2005 }
2006
2007 // Copy contents in the input buffer to the output buffer.
2008 tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
2009 {
2010         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
2011         de::Random                                              rnd                             (deStringHash(group->getName()));
2012         const int                                               numElements             = 100;
2013
2014         // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
2015         ComputeShaderSpec                               spec1;
2016         vector<Vec4>                                    inputFloats1    (numElements);
2017         vector<Vec4>                                    outputFloats1   (numElements);
2018
2019         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
2020
2021         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2022         floorAll(inputFloats1);
2023
2024         for (size_t ndx = 0; ndx < numElements; ++ndx)
2025                 outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
2026
2027         spec1.assembly =
2028                 string(getComputeAsmShaderPreamble()) +
2029
2030                 "OpName %main           \"main\"\n"
2031                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2032
2033                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2034                 "OpDecorate %vec4arr ArrayStride 16\n"
2035
2036                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2037
2038                 "%vec4       = OpTypeVector %f32 4\n"
2039                 "%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
2040                 "%vec4ptr_f  = OpTypePointer Function %vec4\n"
2041                 "%vec4arr    = OpTypeRuntimeArray %vec4\n"
2042                 "%buf        = OpTypeStruct %vec4arr\n"
2043                 "%bufptr     = OpTypePointer Uniform %buf\n"
2044                 "%indata     = OpVariable %bufptr Uniform\n"
2045                 "%outdata    = OpVariable %bufptr Uniform\n"
2046
2047                 "%id         = OpVariable %uvec3ptr Input\n"
2048                 "%zero       = OpConstant %i32 0\n"
2049                 "%c_f_0      = OpConstant %f32 0.\n"
2050                 "%c_f_0_5    = OpConstant %f32 0.5\n"
2051                 "%c_f_1_5    = OpConstant %f32 1.5\n"
2052                 "%c_f_2_5    = OpConstant %f32 2.5\n"
2053                 "%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
2054
2055                 "%main       = OpFunction %void None %voidf\n"
2056                 "%label      = OpLabel\n"
2057                 "%v_vec4     = OpVariable %vec4ptr_f Function\n"
2058                 "%idval      = OpLoad %uvec3 %id\n"
2059                 "%x          = OpCompositeExtract %u32 %idval 0\n"
2060                 "%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
2061                 "%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
2062                 "              OpCopyMemory %v_vec4 %inloc\n"
2063                 "%v_vec4_val = OpLoad %vec4 %v_vec4\n"
2064                 "%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
2065                 "              OpStore %outloc %add\n"
2066                 "              OpReturn\n"
2067                 "              OpFunctionEnd\n";
2068
2069         spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
2070         spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
2071         spec1.numWorkGroups = IVec3(numElements, 1, 1);
2072
2073         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
2074
2075         // The following case copies a float[100] variable from the input buffer to the output buffer.
2076         ComputeShaderSpec                               spec2;
2077         vector<float>                                   inputFloats2    (numElements);
2078         vector<float>                                   outputFloats2   (numElements);
2079
2080         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
2081
2082         for (size_t ndx = 0; ndx < numElements; ++ndx)
2083                 outputFloats2[ndx] = inputFloats2[ndx];
2084
2085         spec2.assembly =
2086                 string(getComputeAsmShaderPreamble()) +
2087
2088                 "OpName %main           \"main\"\n"
2089                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2090
2091                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2092                 "OpDecorate %f32arr100 ArrayStride 4\n"
2093
2094                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2095
2096                 "%hundred        = OpConstant %u32 100\n"
2097                 "%f32arr100      = OpTypeArray %f32 %hundred\n"
2098                 "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
2099                 "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
2100                 "%buf            = OpTypeStruct %f32arr100\n"
2101                 "%bufptr         = OpTypePointer Uniform %buf\n"
2102                 "%indata         = OpVariable %bufptr Uniform\n"
2103                 "%outdata        = OpVariable %bufptr Uniform\n"
2104
2105                 "%id             = OpVariable %uvec3ptr Input\n"
2106                 "%zero           = OpConstant %i32 0\n"
2107
2108                 "%main           = OpFunction %void None %voidf\n"
2109                 "%label          = OpLabel\n"
2110                 "%var            = OpVariable %f32arr100ptr_f Function\n"
2111                 "%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
2112                 "%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
2113                 "                  OpCopyMemory %var %inarr\n"
2114                 "                  OpCopyMemory %outarr %var\n"
2115                 "                  OpReturn\n"
2116                 "                  OpFunctionEnd\n";
2117
2118         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
2119         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
2120         spec2.numWorkGroups = IVec3(1, 1, 1);
2121
2122         group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
2123
2124         // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
2125         ComputeShaderSpec                               spec3;
2126         vector<float>                                   inputFloats3    (16);
2127         vector<float>                                   outputFloats3   (16);
2128
2129         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
2130
2131         for (size_t ndx = 0; ndx < 16; ++ndx)
2132                 outputFloats3[ndx] = inputFloats3[ndx];
2133
2134         spec3.assembly =
2135                 string(getComputeAsmShaderPreamble()) +
2136
2137                 "OpName %main           \"main\"\n"
2138                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2139
2140                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2141                 "OpMemberDecorate %buf 0 Offset 0\n"
2142                 "OpMemberDecorate %buf 1 Offset 16\n"
2143                 "OpMemberDecorate %buf 2 Offset 32\n"
2144                 "OpMemberDecorate %buf 3 Offset 48\n"
2145
2146                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2147
2148                 "%vec4      = OpTypeVector %f32 4\n"
2149                 "%buf       = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
2150                 "%bufptr    = OpTypePointer Uniform %buf\n"
2151                 "%indata    = OpVariable %bufptr Uniform\n"
2152                 "%outdata   = OpVariable %bufptr Uniform\n"
2153                 "%vec4stptr = OpTypePointer Function %buf\n"
2154
2155                 "%id        = OpVariable %uvec3ptr Input\n"
2156                 "%zero      = OpConstant %i32 0\n"
2157
2158                 "%main      = OpFunction %void None %voidf\n"
2159                 "%label     = OpLabel\n"
2160                 "%var       = OpVariable %vec4stptr Function\n"
2161                 "             OpCopyMemory %var %indata\n"
2162                 "             OpCopyMemory %outdata %var\n"
2163                 "             OpReturn\n"
2164                 "             OpFunctionEnd\n";
2165
2166         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
2167         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
2168         spec3.numWorkGroups = IVec3(1, 1, 1);
2169
2170         group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
2171
2172         // The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
2173         ComputeShaderSpec                               spec4;
2174         vector<float>                                   inputFloats4    (numElements);
2175         vector<float>                                   outputFloats4   (numElements);
2176
2177         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
2178
2179         for (size_t ndx = 0; ndx < numElements; ++ndx)
2180                 outputFloats4[ndx] = -inputFloats4[ndx];
2181
2182         spec4.assembly =
2183                 string(getComputeAsmShaderPreamble()) +
2184
2185                 "OpName %main           \"main\"\n"
2186                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2187
2188                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2189
2190                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2191
2192                 "%f32ptr_f  = OpTypePointer Function %f32\n"
2193                 "%id        = OpVariable %uvec3ptr Input\n"
2194                 "%zero      = OpConstant %i32 0\n"
2195
2196                 "%main      = OpFunction %void None %voidf\n"
2197                 "%label     = OpLabel\n"
2198                 "%var       = OpVariable %f32ptr_f Function\n"
2199                 "%idval     = OpLoad %uvec3 %id\n"
2200                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2201                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2202                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2203                 "             OpCopyMemory %var %inloc\n"
2204                 "%val       = OpLoad %f32 %var\n"
2205                 "%neg       = OpFNegate %f32 %val\n"
2206                 "             OpStore %outloc %neg\n"
2207                 "             OpReturn\n"
2208                 "             OpFunctionEnd\n";
2209
2210         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
2211         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
2212         spec4.numWorkGroups = IVec3(numElements, 1, 1);
2213
2214         group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
2215
2216         return group.release();
2217 }
2218
2219 tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
2220 {
2221         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
2222         ComputeShaderSpec                               spec;
2223         de::Random                                              rnd                             (deStringHash(group->getName()));
2224         const int                                               numElements             = 100;
2225         vector<float>                                   inputFloats             (numElements, 0);
2226         vector<float>                                   outputFloats    (numElements, 0);
2227
2228         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
2229
2230         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2231         floorAll(inputFloats);
2232
2233         for (size_t ndx = 0; ndx < numElements; ++ndx)
2234                 outputFloats[ndx] = inputFloats[ndx] + 7.5f;
2235
2236         spec.assembly =
2237                 string(getComputeAsmShaderPreamble()) +
2238
2239                 "OpName %main           \"main\"\n"
2240                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2241
2242                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2243
2244                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2245
2246                 "%fmat     = OpTypeMatrix %fvec3 3\n"
2247                 "%three    = OpConstant %u32 3\n"
2248                 "%farr     = OpTypeArray %f32 %three\n"
2249                 "%fst      = OpTypeStruct %f32 %f32\n"
2250
2251                 + string(getComputeAsmInputOutputBuffer()) +
2252
2253                 "%id            = OpVariable %uvec3ptr Input\n"
2254                 "%zero          = OpConstant %i32 0\n"
2255                 "%c_f           = OpConstant %f32 1.5\n"
2256                 "%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
2257                 "%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
2258                 "%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
2259                 "%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
2260
2261                 "%main          = OpFunction %void None %voidf\n"
2262                 "%label         = OpLabel\n"
2263                 "%c_f_copy      = OpCopyObject %f32   %c_f\n"
2264                 "%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
2265                 "%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
2266                 "%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
2267                 "%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
2268                 "%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
2269                 "%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
2270                 "%farr_elem     = OpCompositeExtract %f32 %c_farr_copy 2\n"
2271                 "%fst_elem      = OpCompositeExtract %f32 %c_fst_copy 1\n"
2272                 // Add up. 1.5 * 5 = 7.5.
2273                 "%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
2274                 "%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
2275                 "%add3          = OpFAdd %f32 %add2     %farr_elem\n"
2276                 "%add4          = OpFAdd %f32 %add3     %fst_elem\n"
2277
2278                 "%idval         = OpLoad %uvec3 %id\n"
2279                 "%x             = OpCompositeExtract %u32 %idval 0\n"
2280                 "%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
2281                 "%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
2282                 "%inval         = OpLoad %f32 %inloc\n"
2283                 "%add           = OpFAdd %f32 %add4 %inval\n"
2284                 "                 OpStore %outloc %add\n"
2285                 "                 OpReturn\n"
2286                 "                 OpFunctionEnd\n";
2287         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2288         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2289         spec.numWorkGroups = IVec3(numElements, 1, 1);
2290
2291         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
2292
2293         return group.release();
2294 }
2295 // Assembly code used for testing OpUnreachable is based on GLSL source code:
2296 //
2297 // #version 430
2298 //
2299 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2300 //   float elements[];
2301 // } input_data;
2302 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2303 //   float elements[];
2304 // } output_data;
2305 //
2306 // void not_called_func() {
2307 //   // place OpUnreachable here
2308 // }
2309 //
2310 // uint modulo4(uint val) {
2311 //   switch (val % uint(4)) {
2312 //     case 0:  return 3;
2313 //     case 1:  return 2;
2314 //     case 2:  return 1;
2315 //     case 3:  return 0;
2316 //     default: return 100; // place OpUnreachable here
2317 //   }
2318 // }
2319 //
2320 // uint const5() {
2321 //   return 5;
2322 //   // place OpUnreachable here
2323 // }
2324 //
2325 // void main() {
2326 //   uint x = gl_GlobalInvocationID.x;
2327 //   if (const5() > modulo4(1000)) {
2328 //     output_data.elements[x] = -input_data.elements[x];
2329 //   } else {
2330 //     // place OpUnreachable here
2331 //     output_data.elements[x] = input_data.elements[x];
2332 //   }
2333 // }
2334
2335 tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
2336 {
2337         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
2338         ComputeShaderSpec                               spec;
2339         de::Random                                              rnd                             (deStringHash(group->getName()));
2340         const int                                               numElements             = 100;
2341         vector<float>                                   positiveFloats  (numElements, 0);
2342         vector<float>                                   negativeFloats  (numElements, 0);
2343
2344         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2345
2346         for (size_t ndx = 0; ndx < numElements; ++ndx)
2347                 negativeFloats[ndx] = -positiveFloats[ndx];
2348
2349         spec.assembly =
2350                 string(getComputeAsmShaderPreamble()) +
2351
2352                 "OpSource GLSL 430\n"
2353                 "OpName %main            \"main\"\n"
2354                 "OpName %func_not_called_func \"not_called_func(\"\n"
2355                 "OpName %func_modulo4         \"modulo4(u1;\"\n"
2356                 "OpName %func_const5          \"const5(\"\n"
2357                 "OpName %id                   \"gl_GlobalInvocationID\"\n"
2358
2359                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2360
2361                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2362
2363                 "%u32ptr    = OpTypePointer Function %u32\n"
2364                 "%uintfuint = OpTypeFunction %u32 %u32ptr\n"
2365                 "%unitf     = OpTypeFunction %u32\n"
2366
2367                 "%id        = OpVariable %uvec3ptr Input\n"
2368                 "%zero      = OpConstant %u32 0\n"
2369                 "%one       = OpConstant %u32 1\n"
2370                 "%two       = OpConstant %u32 2\n"
2371                 "%three     = OpConstant %u32 3\n"
2372                 "%four      = OpConstant %u32 4\n"
2373                 "%five      = OpConstant %u32 5\n"
2374                 "%hundred   = OpConstant %u32 100\n"
2375                 "%thousand  = OpConstant %u32 1000\n"
2376
2377                 + string(getComputeAsmInputOutputBuffer()) +
2378
2379                 // Main()
2380                 "%main   = OpFunction %void None %voidf\n"
2381                 "%main_entry  = OpLabel\n"
2382                 "%v_thousand  = OpVariable %u32ptr Function %thousand\n"
2383                 "%idval       = OpLoad %uvec3 %id\n"
2384                 "%x           = OpCompositeExtract %u32 %idval 0\n"
2385                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2386                 "%inval       = OpLoad %f32 %inloc\n"
2387                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2388                 "%ret_const5  = OpFunctionCall %u32 %func_const5\n"
2389                 "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
2390                 "%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
2391                 "               OpSelectionMerge %if_end None\n"
2392                 "               OpBranchConditional %cmp_gt %if_true %if_false\n"
2393                 "%if_true     = OpLabel\n"
2394                 "%negate      = OpFNegate %f32 %inval\n"
2395                 "               OpStore %outloc %negate\n"
2396                 "               OpBranch %if_end\n"
2397                 "%if_false    = OpLabel\n"
2398                 "               OpUnreachable\n" // Unreachable else branch for if statement
2399                 "%if_end      = OpLabel\n"
2400                 "               OpReturn\n"
2401                 "               OpFunctionEnd\n"
2402
2403                 // not_called_function()
2404                 "%func_not_called_func  = OpFunction %void None %voidf\n"
2405                 "%not_called_func_entry = OpLabel\n"
2406                 "                         OpUnreachable\n" // Unreachable entry block in not called static function
2407                 "                         OpFunctionEnd\n"
2408
2409                 // modulo4()
2410                 "%func_modulo4  = OpFunction %u32 None %uintfuint\n"
2411                 "%valptr        = OpFunctionParameter %u32ptr\n"
2412                 "%modulo4_entry = OpLabel\n"
2413                 "%val           = OpLoad %u32 %valptr\n"
2414                 "%modulo        = OpUMod %u32 %val %four\n"
2415                 "                 OpSelectionMerge %switch_merge None\n"
2416                 "                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
2417                 "%case0         = OpLabel\n"
2418                 "                 OpReturnValue %three\n"
2419                 "%case1         = OpLabel\n"
2420                 "                 OpReturnValue %two\n"
2421                 "%case2         = OpLabel\n"
2422                 "                 OpReturnValue %one\n"
2423                 "%case3         = OpLabel\n"
2424                 "                 OpReturnValue %zero\n"
2425                 "%default       = OpLabel\n"
2426                 "                 OpUnreachable\n" // Unreachable default case for switch statement
2427                 "%switch_merge  = OpLabel\n"
2428                 "                 OpUnreachable\n" // Unreachable merge block for switch statement
2429                 "                 OpFunctionEnd\n"
2430
2431                 // const5()
2432                 "%func_const5  = OpFunction %u32 None %unitf\n"
2433                 "%const5_entry = OpLabel\n"
2434                 "                OpReturnValue %five\n"
2435                 "%unreachable  = OpLabel\n"
2436                 "                OpUnreachable\n" // Unreachable block in function
2437                 "                OpFunctionEnd\n";
2438         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2439         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2440         spec.numWorkGroups = IVec3(numElements, 1, 1);
2441
2442         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
2443
2444         return group.release();
2445 }
2446
2447 // Assembly code used for testing decoration group is based on GLSL source code:
2448 //
2449 // #version 430
2450 //
2451 // layout(std140, set = 0, binding = 0) readonly buffer Input0 {
2452 //   float elements[];
2453 // } input_data0;
2454 // layout(std140, set = 0, binding = 1) readonly buffer Input1 {
2455 //   float elements[];
2456 // } input_data1;
2457 // layout(std140, set = 0, binding = 2) readonly buffer Input2 {
2458 //   float elements[];
2459 // } input_data2;
2460 // layout(std140, set = 0, binding = 3) readonly buffer Input3 {
2461 //   float elements[];
2462 // } input_data3;
2463 // layout(std140, set = 0, binding = 4) readonly buffer Input4 {
2464 //   float elements[];
2465 // } input_data4;
2466 // layout(std140, set = 0, binding = 5) writeonly buffer Output {
2467 //   float elements[];
2468 // } output_data;
2469 //
2470 // void main() {
2471 //   uint x = gl_GlobalInvocationID.x;
2472 //   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
2473 // }
2474 tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
2475 {
2476         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
2477         ComputeShaderSpec                               spec;
2478         de::Random                                              rnd                             (deStringHash(group->getName()));
2479         const int                                               numElements             = 100;
2480         vector<float>                                   inputFloats0    (numElements, 0);
2481         vector<float>                                   inputFloats1    (numElements, 0);
2482         vector<float>                                   inputFloats2    (numElements, 0);
2483         vector<float>                                   inputFloats3    (numElements, 0);
2484         vector<float>                                   inputFloats4    (numElements, 0);
2485         vector<float>                                   outputFloats    (numElements, 0);
2486
2487         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
2488         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
2489         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
2490         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
2491         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
2492
2493         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2494         floorAll(inputFloats0);
2495         floorAll(inputFloats1);
2496         floorAll(inputFloats2);
2497         floorAll(inputFloats3);
2498         floorAll(inputFloats4);
2499
2500         for (size_t ndx = 0; ndx < numElements; ++ndx)
2501                 outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
2502
2503         spec.assembly =
2504                 string(getComputeAsmShaderPreamble()) +
2505
2506                 "OpSource GLSL 430\n"
2507                 "OpName %main \"main\"\n"
2508                 "OpName %id \"gl_GlobalInvocationID\"\n"
2509
2510                 // Not using group decoration on variable.
2511                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2512                 // Not using group decoration on type.
2513                 "OpDecorate %f32arr ArrayStride 4\n"
2514
2515                 "OpDecorate %groups BufferBlock\n"
2516                 "OpDecorate %groupm Offset 0\n"
2517                 "%groups = OpDecorationGroup\n"
2518                 "%groupm = OpDecorationGroup\n"
2519
2520                 // Group decoration on multiple structs.
2521                 "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
2522                 // Group decoration on multiple struct members.
2523                 "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
2524
2525                 "OpDecorate %group1 DescriptorSet 0\n"
2526                 "OpDecorate %group3 DescriptorSet 0\n"
2527                 "OpDecorate %group3 NonWritable\n"
2528                 "OpDecorate %group3 Restrict\n"
2529                 "%group0 = OpDecorationGroup\n"
2530                 "%group1 = OpDecorationGroup\n"
2531                 "%group3 = OpDecorationGroup\n"
2532
2533                 // Applying the same decoration group multiple times.
2534                 "OpGroupDecorate %group1 %outdata\n"
2535                 "OpGroupDecorate %group1 %outdata\n"
2536                 "OpGroupDecorate %group1 %outdata\n"
2537                 "OpDecorate %outdata DescriptorSet 0\n"
2538                 "OpDecorate %outdata Binding 5\n"
2539                 // Applying decoration group containing nothing.
2540                 "OpGroupDecorate %group0 %indata0\n"
2541                 "OpDecorate %indata0 DescriptorSet 0\n"
2542                 "OpDecorate %indata0 Binding 0\n"
2543                 // Applying decoration group containing one decoration.
2544                 "OpGroupDecorate %group1 %indata1\n"
2545                 "OpDecorate %indata1 Binding 1\n"
2546                 // Applying decoration group containing multiple decorations.
2547                 "OpGroupDecorate %group3 %indata2 %indata3\n"
2548                 "OpDecorate %indata2 Binding 2\n"
2549                 "OpDecorate %indata3 Binding 3\n"
2550                 // Applying multiple decoration groups (with overlapping).
2551                 "OpGroupDecorate %group0 %indata4\n"
2552                 "OpGroupDecorate %group1 %indata4\n"
2553                 "OpGroupDecorate %group3 %indata4\n"
2554                 "OpDecorate %indata4 Binding 4\n"
2555
2556                 + string(getComputeAsmCommonTypes()) +
2557
2558                 "%id   = OpVariable %uvec3ptr Input\n"
2559                 "%zero = OpConstant %i32 0\n"
2560
2561                 "%outbuf    = OpTypeStruct %f32arr\n"
2562                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
2563                 "%outdata   = OpVariable %outbufptr Uniform\n"
2564                 "%inbuf0    = OpTypeStruct %f32arr\n"
2565                 "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
2566                 "%indata0   = OpVariable %inbuf0ptr Uniform\n"
2567                 "%inbuf1    = OpTypeStruct %f32arr\n"
2568                 "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
2569                 "%indata1   = OpVariable %inbuf1ptr Uniform\n"
2570                 "%inbuf2    = OpTypeStruct %f32arr\n"
2571                 "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
2572                 "%indata2   = OpVariable %inbuf2ptr Uniform\n"
2573                 "%inbuf3    = OpTypeStruct %f32arr\n"
2574                 "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
2575                 "%indata3   = OpVariable %inbuf3ptr Uniform\n"
2576                 "%inbuf4    = OpTypeStruct %f32arr\n"
2577                 "%inbufptr  = OpTypePointer Uniform %inbuf4\n"
2578                 "%indata4   = OpVariable %inbufptr Uniform\n"
2579
2580                 "%main   = OpFunction %void None %voidf\n"
2581                 "%label  = OpLabel\n"
2582                 "%idval  = OpLoad %uvec3 %id\n"
2583                 "%x      = OpCompositeExtract %u32 %idval 0\n"
2584                 "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
2585                 "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
2586                 "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
2587                 "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
2588                 "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
2589                 "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
2590                 "%inval0 = OpLoad %f32 %inloc0\n"
2591                 "%inval1 = OpLoad %f32 %inloc1\n"
2592                 "%inval2 = OpLoad %f32 %inloc2\n"
2593                 "%inval3 = OpLoad %f32 %inloc3\n"
2594                 "%inval4 = OpLoad %f32 %inloc4\n"
2595                 "%add0   = OpFAdd %f32 %inval0 %inval1\n"
2596                 "%add1   = OpFAdd %f32 %add0 %inval2\n"
2597                 "%add2   = OpFAdd %f32 %add1 %inval3\n"
2598                 "%add    = OpFAdd %f32 %add2 %inval4\n"
2599                 "          OpStore %outloc %add\n"
2600                 "          OpReturn\n"
2601                 "          OpFunctionEnd\n";
2602         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
2603         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
2604         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
2605         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
2606         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
2607         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2608         spec.numWorkGroups = IVec3(numElements, 1, 1);
2609
2610         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
2611
2612         return group.release();
2613 }
2614
2615 struct SpecConstantTwoIntCase
2616 {
2617         const char*             caseName;
2618         const char*             scDefinition0;
2619         const char*             scDefinition1;
2620         const char*             scResultType;
2621         const char*             scOperation;
2622         deInt32                 scActualValue0;
2623         deInt32                 scActualValue1;
2624         const char*             resultOperation;
2625         vector<deInt32> expectedOutput;
2626
2627                                         SpecConstantTwoIntCase (const char* name,
2628                                                                                         const char* definition0,
2629                                                                                         const char* definition1,
2630                                                                                         const char* resultType,
2631                                                                                         const char* operation,
2632                                                                                         deInt32 value0,
2633                                                                                         deInt32 value1,
2634                                                                                         const char* resultOp,
2635                                                                                         const vector<deInt32>& output)
2636                                                 : caseName                      (name)
2637                                                 , scDefinition0         (definition0)
2638                                                 , scDefinition1         (definition1)
2639                                                 , scResultType          (resultType)
2640                                                 , scOperation           (operation)
2641                                                 , scActualValue0        (value0)
2642                                                 , scActualValue1        (value1)
2643                                                 , resultOperation       (resultOp)
2644                                                 , expectedOutput        (output) {}
2645 };
2646
2647 tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
2648 {
2649         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
2650         vector<SpecConstantTwoIntCase>  cases;
2651         de::Random                                              rnd                             (deStringHash(group->getName()));
2652         const int                                               numElements             = 100;
2653         vector<deInt32>                                 inputInts               (numElements, 0);
2654         vector<deInt32>                                 outputInts1             (numElements, 0);
2655         vector<deInt32>                                 outputInts2             (numElements, 0);
2656         vector<deInt32>                                 outputInts3             (numElements, 0);
2657         vector<deInt32>                                 outputInts4             (numElements, 0);
2658         const StringTemplate                    shaderTemplate  (
2659                 "${CAPABILITIES:opt}"
2660                 + string(getComputeAsmShaderPreamble()) +
2661
2662                 "OpName %main           \"main\"\n"
2663                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2664
2665                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2666                 "OpDecorate %sc_0  SpecId 0\n"
2667                 "OpDecorate %sc_1  SpecId 1\n"
2668                 "OpDecorate %i32arr ArrayStride 4\n"
2669
2670                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2671
2672                 "${OPTYPE_DEFINITIONS:opt}"
2673                 "%buf     = OpTypeStruct %i32arr\n"
2674                 "%bufptr  = OpTypePointer Uniform %buf\n"
2675                 "%indata    = OpVariable %bufptr Uniform\n"
2676                 "%outdata   = OpVariable %bufptr Uniform\n"
2677
2678                 "%id        = OpVariable %uvec3ptr Input\n"
2679                 "%zero      = OpConstant %i32 0\n"
2680
2681                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
2682                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
2683                 "%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
2684
2685                 "%main      = OpFunction %void None %voidf\n"
2686                 "%label     = OpLabel\n"
2687                 "${TYPE_CONVERT:opt}"
2688                 "%idval     = OpLoad %uvec3 %id\n"
2689                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2690                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
2691                 "%inval     = OpLoad %i32 %inloc\n"
2692                 "%final     = ${GEN_RESULT}\n"
2693                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
2694                 "             OpStore %outloc %final\n"
2695                 "             OpReturn\n"
2696                 "             OpFunctionEnd\n");
2697
2698         fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
2699
2700         for (size_t ndx = 0; ndx < numElements; ++ndx)
2701         {
2702                 outputInts1[ndx] = inputInts[ndx] + 42;
2703                 outputInts2[ndx] = inputInts[ndx];
2704                 outputInts3[ndx] = inputInts[ndx] - 11200;
2705                 outputInts4[ndx] = inputInts[ndx] + 1;
2706         }
2707
2708         const char addScToInput[]               = "OpIAdd %i32 %inval %sc_final";
2709         const char addSc32ToInput[]             = "OpIAdd %i32 %inval %sc_final32";
2710         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_final %inval %zero";
2711         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
2712
2713         cases.push_back(SpecConstantTwoIntCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                     62,             -20,    addScToInput,           outputInts1));
2714         cases.push_back(SpecConstantTwoIntCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                     100,    58,             addScToInput,           outputInts1));
2715         cases.push_back(SpecConstantTwoIntCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                     -2,             -21,    addScToInput,           outputInts1));
2716         cases.push_back(SpecConstantTwoIntCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                     -126,   -3,             addScToInput,           outputInts1));
2717         cases.push_back(SpecConstantTwoIntCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                     126,    3,              addScToInput,           outputInts1));
2718         cases.push_back(SpecConstantTwoIntCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
2719         cases.push_back(SpecConstantTwoIntCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
2720         cases.push_back(SpecConstantTwoIntCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                     342,    50,             addScToInput,           outputInts1));
2721         cases.push_back(SpecConstantTwoIntCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                     42,             63,             addScToInput,           outputInts1));
2722         cases.push_back(SpecConstantTwoIntCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                     34,             8,              addScToInput,           outputInts1));
2723         cases.push_back(SpecConstantTwoIntCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                     18,             56,             addScToInput,           outputInts1));
2724         cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
2725         cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
2726         cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                     21,             1,              addScToInput,           outputInts1));
2727         cases.push_back(SpecConstantTwoIntCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                     -20,    -10,    selectTrueUsingSc,      outputInts2));
2728         cases.push_back(SpecConstantTwoIntCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                     10,             20,             selectTrueUsingSc,      outputInts2));
2729         cases.push_back(SpecConstantTwoIntCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
2730         cases.push_back(SpecConstantTwoIntCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                     10,             5,              selectTrueUsingSc,      outputInts2));
2731         cases.push_back(SpecConstantTwoIntCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                     -10,    -10,    selectTrueUsingSc,      outputInts2));
2732         cases.push_back(SpecConstantTwoIntCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                     50,             100,    selectTrueUsingSc,      outputInts2));
2733         cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
2734         cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                     10,             10,             selectTrueUsingSc,      outputInts2));
2735         cases.push_back(SpecConstantTwoIntCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                     42,             24,             selectFalseUsingSc,     outputInts2));
2736         cases.push_back(SpecConstantTwoIntCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
2737         cases.push_back(SpecConstantTwoIntCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
2738         cases.push_back(SpecConstantTwoIntCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
2739         cases.push_back(SpecConstantTwoIntCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
2740         cases.push_back(SpecConstantTwoIntCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                           -42,    0,              addScToInput,           outputInts1));
2741         cases.push_back(SpecConstantTwoIntCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                           -43,    0,              addScToInput,           outputInts1));
2742         cases.push_back(SpecConstantTwoIntCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                           1,              0,              selectFalseUsingSc,     outputInts2));
2743         cases.push_back(SpecConstantTwoIntCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %zero",       1,              42,             addScToInput,           outputInts1));
2744         cases.push_back(SpecConstantTwoIntCase("sconvert",                              " %i32 0",              " %i32 0",              "%i16",         "SConvert             %sc_0",                           -11200, 0,              addSc32ToInput,         outputInts3));
2745         // -969998336 stored as 32-bit two's complement is the binary representation of -11200 as IEEE-754 Float
2746         cases.push_back(SpecConstantTwoIntCase("fconvert",                              " %f32 0",              " %f32 0",              "%f64",         "FConvert             %sc_0",                           -969998336, 0,  addSc32ToInput,         outputInts3));
2747
2748         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2749         {
2750                 map<string, string>             specializations;
2751                 ComputeShaderSpec               spec;
2752                 ComputeTestFeatures             features = COMPUTE_TEST_USES_NONE;
2753
2754                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
2755                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
2756                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
2757                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
2758                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
2759
2760                 // Special SPIR-V code for SConvert-case
2761                 if (strcmp(cases[caseNdx].caseName, "sconvert") == 0)
2762                 {
2763                         features                                                                = COMPUTE_TEST_USES_INT16;
2764                         specializations["CAPABILITIES"]                 = "OpCapability Int16\n";                                                       // Adds 16-bit integer capability
2765                         specializations["OPTYPE_DEFINITIONS"]   = "%i16 = OpTypeInt 16 1\n";                                            // Adds 16-bit integer type
2766                         specializations["TYPE_CONVERT"]                 = "%sc_final32 = OpSConvert %i32 %sc_final\n";          // Converts 16-bit integer to 32-bit integer
2767                 }
2768
2769                 // Special SPIR-V code for FConvert-case
2770                 if (strcmp(cases[caseNdx].caseName, "fconvert") == 0)
2771                 {
2772                         features                                                                = COMPUTE_TEST_USES_FLOAT64;
2773                         specializations["CAPABILITIES"]                 = "OpCapability Float64\n";                                                     // Adds 64-bit float capability
2774                         specializations["OPTYPE_DEFINITIONS"]   = "%f64 = OpTypeFloat 64\n";                                            // Adds 64-bit float type
2775                         specializations["TYPE_CONVERT"]                 = "%sc_final32 = OpConvertFToS %i32 %sc_final\n";       // Converts 64-bit float to 32-bit integer
2776                 }
2777
2778                 spec.assembly = shaderTemplate.specialize(specializations);
2779                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
2780                 spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
2781                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2782                 spec.specConstants.push_back(cases[caseNdx].scActualValue0);
2783                 spec.specConstants.push_back(cases[caseNdx].scActualValue1);
2784
2785                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec, features));
2786         }
2787
2788         ComputeShaderSpec                               spec;
2789
2790         spec.assembly =
2791                 string(getComputeAsmShaderPreamble()) +
2792
2793                 "OpName %main           \"main\"\n"
2794                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2795
2796                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2797                 "OpDecorate %sc_0  SpecId 0\n"
2798                 "OpDecorate %sc_1  SpecId 1\n"
2799                 "OpDecorate %sc_2  SpecId 2\n"
2800                 "OpDecorate %i32arr ArrayStride 4\n"
2801
2802                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2803
2804                 "%ivec3       = OpTypeVector %i32 3\n"
2805                 "%buf         = OpTypeStruct %i32arr\n"
2806                 "%bufptr      = OpTypePointer Uniform %buf\n"
2807                 "%indata      = OpVariable %bufptr Uniform\n"
2808                 "%outdata     = OpVariable %bufptr Uniform\n"
2809
2810                 "%id          = OpVariable %uvec3ptr Input\n"
2811                 "%zero        = OpConstant %i32 0\n"
2812                 "%ivec3_0     = OpConstantComposite %ivec3 %zero %zero %zero\n"
2813                 "%vec3_undef  = OpUndef %ivec3\n"
2814
2815                 "%sc_0        = OpSpecConstant %i32 0\n"
2816                 "%sc_1        = OpSpecConstant %i32 0\n"
2817                 "%sc_2        = OpSpecConstant %i32 0\n"
2818                 "%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0     0\n"                                                 // (sc_0, 0, 0)
2819                 "%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0     1\n"                                                 // (0, sc_1, 0)
2820                 "%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0     2\n"                                                 // (0, 0, sc_2)
2821                 "%sc_vec3_0_s = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %vec3_undef  0          0xFFFFFFFF 2\n"   // (sc_0, ???,  0)
2822                 "%sc_vec3_1_s = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_1   %vec3_undef  0xFFFFFFFF 1          0\n"   // (???,  sc_1, 0)
2823                 "%sc_vec3_2_s = OpSpecConstantOp %ivec3 VectorShuffle    %vec3_undef  %sc_vec3_2   5          0xFFFFFFFF 5\n"   // (sc_2, ???,  sc_2)
2824                 "%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0_s %sc_vec3_1_s 1 0 4\n"                                             // (0,    sc_0, sc_1)
2825                 "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2_s 5 1 2\n"                                             // (sc_2, sc_0, sc_1)
2826                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              0\n"                                                 // sc_2
2827                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              1\n"                                                 // sc_0
2828                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              2\n"                                                 // sc_1
2829                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"                                                              // (sc_2 - sc_0)
2830                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"                                                              // (sc_2 - sc_0) * sc_1
2831
2832                 "%main      = OpFunction %void None %voidf\n"
2833                 "%label     = OpLabel\n"
2834                 "%idval     = OpLoad %uvec3 %id\n"
2835                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2836                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
2837                 "%inval     = OpLoad %i32 %inloc\n"
2838                 "%final     = OpIAdd %i32 %inval %sc_final\n"
2839                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
2840                 "             OpStore %outloc %final\n"
2841                 "             OpReturn\n"
2842                 "             OpFunctionEnd\n";
2843         spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
2844         spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
2845         spec.numWorkGroups = IVec3(numElements, 1, 1);
2846         spec.specConstants.push_back(123);
2847         spec.specConstants.push_back(56);
2848         spec.specConstants.push_back(-77);
2849
2850         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
2851
2852         return group.release();
2853 }
2854
2855 void createOpPhiVartypeTests (de::MovePtr<tcu::TestCaseGroup>& group, tcu::TestContext& testCtx)
2856 {
2857         ComputeShaderSpec       specInt;
2858         ComputeShaderSpec       specFloat;
2859         ComputeShaderSpec       specVec3;
2860         ComputeShaderSpec       specMat4;
2861         ComputeShaderSpec       specArray;
2862         ComputeShaderSpec       specStruct;
2863         de::Random                      rnd                             (deStringHash(group->getName()));
2864         const int                       numElements             = 100;
2865         vector<float>           inputFloats             (numElements, 0);
2866         vector<float>           outputFloats    (numElements, 0);
2867
2868         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
2869
2870         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2871         floorAll(inputFloats);
2872
2873         for (size_t ndx = 0; ndx < numElements; ++ndx)
2874         {
2875                 // Just check if the value is positive or not
2876                 outputFloats[ndx] = (inputFloats[ndx] > 0) ? 1.0f : -1.0f;
2877         }
2878
2879         // All of the tests are of the form:
2880         //
2881         // testtype r
2882         //
2883         // if (inputdata > 0)
2884         //   r = 1
2885         // else
2886         //   r = -1
2887         //
2888         // return (float)r
2889
2890         specFloat.assembly =
2891                 string(getComputeAsmShaderPreamble()) +
2892
2893                 "OpSource GLSL 430\n"
2894                 "OpName %main \"main\"\n"
2895                 "OpName %id \"gl_GlobalInvocationID\"\n"
2896
2897                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2898
2899                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2900
2901                 "%id = OpVariable %uvec3ptr Input\n"
2902                 "%zero       = OpConstant %i32 0\n"
2903                 "%float_0    = OpConstant %f32 0.0\n"
2904                 "%float_1    = OpConstant %f32 1.0\n"
2905                 "%float_n1   = OpConstant %f32 -1.0\n"
2906
2907                 "%main     = OpFunction %void None %voidf\n"
2908                 "%entry    = OpLabel\n"
2909                 "%idval    = OpLoad %uvec3 %id\n"
2910                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2911                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2912                 "%inval    = OpLoad %f32 %inloc\n"
2913
2914                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2915                 "            OpSelectionMerge %cm None\n"
2916                 "            OpBranchConditional %comp %tb %fb\n"
2917                 "%tb       = OpLabel\n"
2918                 "            OpBranch %cm\n"
2919                 "%fb       = OpLabel\n"
2920                 "            OpBranch %cm\n"
2921                 "%cm       = OpLabel\n"
2922                 "%res      = OpPhi %f32 %float_1 %tb %float_n1 %fb\n"
2923
2924                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2925                 "            OpStore %outloc %res\n"
2926                 "            OpReturn\n"
2927
2928                 "            OpFunctionEnd\n";
2929         specFloat.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2930         specFloat.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2931         specFloat.numWorkGroups = IVec3(numElements, 1, 1);
2932
2933         specMat4.assembly =
2934                 string(getComputeAsmShaderPreamble()) +
2935
2936                 "OpSource GLSL 430\n"
2937                 "OpName %main \"main\"\n"
2938                 "OpName %id \"gl_GlobalInvocationID\"\n"
2939
2940                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2941
2942                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2943
2944                 "%id = OpVariable %uvec3ptr Input\n"
2945                 "%v4f32      = OpTypeVector %f32 4\n"
2946                 "%mat4v4f32  = OpTypeMatrix %v4f32 4\n"
2947                 "%zero       = OpConstant %i32 0\n"
2948                 "%float_0    = OpConstant %f32 0.0\n"
2949                 "%float_1    = OpConstant %f32 1.0\n"
2950                 "%float_n1   = OpConstant %f32 -1.0\n"
2951                 "%m11        = OpConstantComposite %v4f32 %float_1 %float_0 %float_0 %float_0\n"
2952                 "%m12        = OpConstantComposite %v4f32 %float_0 %float_1 %float_0 %float_0\n"
2953                 "%m13        = OpConstantComposite %v4f32 %float_0 %float_0 %float_1 %float_0\n"
2954                 "%m14        = OpConstantComposite %v4f32 %float_0 %float_0 %float_0 %float_1\n"
2955                 "%m1         = OpConstantComposite %mat4v4f32 %m11 %m12 %m13 %m14\n"
2956                 "%m21        = OpConstantComposite %v4f32 %float_n1 %float_0 %float_0 %float_0\n"
2957                 "%m22        = OpConstantComposite %v4f32 %float_0 %float_n1 %float_0 %float_0\n"
2958                 "%m23        = OpConstantComposite %v4f32 %float_0 %float_0 %float_n1 %float_0\n"
2959                 "%m24        = OpConstantComposite %v4f32 %float_0 %float_0 %float_0 %float_n1\n"
2960                 "%m2         = OpConstantComposite %mat4v4f32 %m21 %m22 %m23 %m24\n"
2961
2962                 "%main     = OpFunction %void None %voidf\n"
2963                 "%entry    = OpLabel\n"
2964                 "%idval    = OpLoad %uvec3 %id\n"
2965                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2966                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2967                 "%inval    = OpLoad %f32 %inloc\n"
2968
2969                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2970                 "            OpSelectionMerge %cm None\n"
2971                 "            OpBranchConditional %comp %tb %fb\n"
2972                 "%tb       = OpLabel\n"
2973                 "            OpBranch %cm\n"
2974                 "%fb       = OpLabel\n"
2975                 "            OpBranch %cm\n"
2976                 "%cm       = OpLabel\n"
2977                 "%mres     = OpPhi %mat4v4f32 %m1 %tb %m2 %fb\n"
2978                 "%res      = OpCompositeExtract %f32 %mres 2 2\n"
2979
2980                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2981                 "            OpStore %outloc %res\n"
2982                 "            OpReturn\n"
2983
2984                 "            OpFunctionEnd\n";
2985         specMat4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2986         specMat4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2987         specMat4.numWorkGroups = IVec3(numElements, 1, 1);
2988
2989         specVec3.assembly =
2990                 string(getComputeAsmShaderPreamble()) +
2991
2992                 "OpSource GLSL 430\n"
2993                 "OpName %main \"main\"\n"
2994                 "OpName %id \"gl_GlobalInvocationID\"\n"
2995
2996                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2997
2998                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2999
3000                 "%id = OpVariable %uvec3ptr Input\n"
3001                 "%zero       = OpConstant %i32 0\n"
3002                 "%float_0    = OpConstant %f32 0.0\n"
3003                 "%float_1    = OpConstant %f32 1.0\n"
3004                 "%float_n1   = OpConstant %f32 -1.0\n"
3005                 "%v1         = OpConstantComposite %fvec3 %float_1 %float_1 %float_1\n"
3006                 "%v2         = OpConstantComposite %fvec3 %float_n1 %float_n1 %float_n1\n"
3007
3008                 "%main     = OpFunction %void None %voidf\n"
3009                 "%entry    = OpLabel\n"
3010                 "%idval    = OpLoad %uvec3 %id\n"
3011                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3012                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3013                 "%inval    = OpLoad %f32 %inloc\n"
3014
3015                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
3016                 "            OpSelectionMerge %cm None\n"
3017                 "            OpBranchConditional %comp %tb %fb\n"
3018                 "%tb       = OpLabel\n"
3019                 "            OpBranch %cm\n"
3020                 "%fb       = OpLabel\n"
3021                 "            OpBranch %cm\n"
3022                 "%cm       = OpLabel\n"
3023                 "%vres     = OpPhi %fvec3 %v1 %tb %v2 %fb\n"
3024                 "%res      = OpCompositeExtract %f32 %vres 2\n"
3025
3026                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3027                 "            OpStore %outloc %res\n"
3028                 "            OpReturn\n"
3029
3030                 "            OpFunctionEnd\n";
3031         specVec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3032         specVec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3033         specVec3.numWorkGroups = IVec3(numElements, 1, 1);
3034
3035         specInt.assembly =
3036                 string(getComputeAsmShaderPreamble()) +
3037
3038                 "OpSource GLSL 430\n"
3039                 "OpName %main \"main\"\n"
3040                 "OpName %id \"gl_GlobalInvocationID\"\n"
3041
3042                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3043
3044                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3045
3046                 "%id = OpVariable %uvec3ptr Input\n"
3047                 "%zero       = OpConstant %i32 0\n"
3048                 "%float_0    = OpConstant %f32 0.0\n"
3049                 "%i1         = OpConstant %i32 1\n"
3050                 "%i2         = OpConstant %i32 -1\n"
3051
3052                 "%main     = OpFunction %void None %voidf\n"
3053                 "%entry    = OpLabel\n"
3054                 "%idval    = OpLoad %uvec3 %id\n"
3055                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3056                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3057                 "%inval    = OpLoad %f32 %inloc\n"
3058
3059                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
3060                 "            OpSelectionMerge %cm None\n"
3061                 "            OpBranchConditional %comp %tb %fb\n"
3062                 "%tb       = OpLabel\n"
3063                 "            OpBranch %cm\n"
3064                 "%fb       = OpLabel\n"
3065                 "            OpBranch %cm\n"
3066                 "%cm       = OpLabel\n"
3067                 "%ires     = OpPhi %i32 %i1 %tb %i2 %fb\n"
3068                 "%res      = OpConvertSToF %f32 %ires\n"
3069
3070                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3071                 "            OpStore %outloc %res\n"
3072                 "            OpReturn\n"
3073
3074                 "            OpFunctionEnd\n";
3075         specInt.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3076         specInt.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3077         specInt.numWorkGroups = IVec3(numElements, 1, 1);
3078
3079         specArray.assembly =
3080                 string(getComputeAsmShaderPreamble()) +
3081
3082                 "OpSource GLSL 430\n"
3083                 "OpName %main \"main\"\n"
3084                 "OpName %id \"gl_GlobalInvocationID\"\n"
3085
3086                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3087
3088                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3089
3090                 "%id = OpVariable %uvec3ptr Input\n"
3091                 "%zero       = OpConstant %i32 0\n"
3092                 "%u7         = OpConstant %u32 7\n"
3093                 "%float_0    = OpConstant %f32 0.0\n"
3094                 "%float_1    = OpConstant %f32 1.0\n"
3095                 "%float_n1   = OpConstant %f32 -1.0\n"
3096                 "%f32a7      = OpTypeArray %f32 %u7\n"
3097                 "%a1         = OpConstantComposite %f32a7 %float_1 %float_1 %float_1 %float_1 %float_1 %float_1 %float_1\n"
3098                 "%a2         = OpConstantComposite %f32a7 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1\n"
3099                 "%main     = OpFunction %void None %voidf\n"
3100                 "%entry    = OpLabel\n"
3101                 "%idval    = OpLoad %uvec3 %id\n"
3102                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3103                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3104                 "%inval    = OpLoad %f32 %inloc\n"
3105
3106                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
3107                 "            OpSelectionMerge %cm None\n"
3108                 "            OpBranchConditional %comp %tb %fb\n"
3109                 "%tb       = OpLabel\n"
3110                 "            OpBranch %cm\n"
3111                 "%fb       = OpLabel\n"
3112                 "            OpBranch %cm\n"
3113                 "%cm       = OpLabel\n"
3114                 "%ares     = OpPhi %f32a7 %a1 %tb %a2 %fb\n"
3115                 "%res      = OpCompositeExtract %f32 %ares 5\n"
3116
3117                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3118                 "            OpStore %outloc %res\n"
3119                 "            OpReturn\n"
3120
3121                 "            OpFunctionEnd\n";
3122         specArray.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3123         specArray.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3124         specArray.numWorkGroups = IVec3(numElements, 1, 1);
3125
3126         specStruct.assembly =
3127                 string(getComputeAsmShaderPreamble()) +
3128
3129                 "OpSource GLSL 430\n"
3130                 "OpName %main \"main\"\n"
3131                 "OpName %id \"gl_GlobalInvocationID\"\n"
3132
3133                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3134
3135                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3136
3137                 "%id = OpVariable %uvec3ptr Input\n"
3138                 "%zero       = OpConstant %i32 0\n"
3139                 "%float_0    = OpConstant %f32 0.0\n"
3140                 "%float_1    = OpConstant %f32 1.0\n"
3141                 "%float_n1   = OpConstant %f32 -1.0\n"
3142
3143                 "%v2f32      = OpTypeVector %f32 2\n"
3144                 "%Data2      = OpTypeStruct %f32 %v2f32\n"
3145                 "%Data       = OpTypeStruct %Data2 %f32\n"
3146
3147                 "%in1a       = OpConstantComposite %v2f32 %float_1 %float_1\n"
3148                 "%in1b       = OpConstantComposite %Data2 %float_1 %in1a\n"
3149                 "%s1         = OpConstantComposite %Data %in1b %float_1\n"
3150                 "%in2a       = OpConstantComposite %v2f32 %float_n1 %float_n1\n"
3151                 "%in2b       = OpConstantComposite %Data2 %float_n1 %in2a\n"
3152                 "%s2         = OpConstantComposite %Data %in2b %float_n1\n"
3153
3154                 "%main     = OpFunction %void None %voidf\n"
3155                 "%entry    = OpLabel\n"
3156                 "%idval    = OpLoad %uvec3 %id\n"
3157                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3158                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3159                 "%inval    = OpLoad %f32 %inloc\n"
3160
3161                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
3162                 "            OpSelectionMerge %cm None\n"
3163                 "            OpBranchConditional %comp %tb %fb\n"
3164                 "%tb       = OpLabel\n"
3165                 "            OpBranch %cm\n"
3166                 "%fb       = OpLabel\n"
3167                 "            OpBranch %cm\n"
3168                 "%cm       = OpLabel\n"
3169                 "%sres     = OpPhi %Data %s1 %tb %s2 %fb\n"
3170                 "%res      = OpCompositeExtract %f32 %sres 0 0\n"
3171
3172                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3173                 "            OpStore %outloc %res\n"
3174                 "            OpReturn\n"
3175
3176                 "            OpFunctionEnd\n";
3177         specStruct.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3178         specStruct.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3179         specStruct.numWorkGroups = IVec3(numElements, 1, 1);
3180
3181         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_int", "OpPhi with int variables", specInt));
3182         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_float", "OpPhi with float variables", specFloat));
3183         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_vec3", "OpPhi with vec3 variables", specVec3));
3184         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_mat4", "OpPhi with mat4 variables", specMat4));
3185         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_array", "OpPhi with array variables", specArray));
3186         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_struct", "OpPhi with struct variables", specStruct));
3187 }
3188
3189 string generateConstantDefinitions (int count)
3190 {
3191         std::ostringstream      r;
3192         for (int i = 0; i < count; i++)
3193                 r << "%cf" << (i * 10 + 5) << " = OpConstant %f32 " <<(i * 10 + 5) << ".0\n";
3194         r << "\n";
3195         return r.str();
3196 }
3197
3198 string generateSwitchCases (int count)
3199 {
3200         std::ostringstream      r;
3201         for (int i = 0; i < count; i++)
3202                 r << " " << i << " %case" << i;
3203         r << "\n";
3204         return r.str();
3205 }
3206
3207 string generateSwitchTargets (int count)
3208 {
3209         std::ostringstream      r;
3210         for (int i = 0; i < count; i++)
3211                 r << "%case" << i << " = OpLabel\n            OpBranch %phi\n";
3212         r << "\n";
3213         return r.str();
3214 }
3215
3216 string generateOpPhiParams (int count)
3217 {
3218         std::ostringstream      r;
3219         for (int i = 0; i < count; i++)
3220                 r << " %cf" << (i * 10 + 5) << " %case" << i;
3221         r << "\n";
3222         return r.str();
3223 }
3224
3225 string generateIntWidth (int value)
3226 {
3227         std::ostringstream      r;
3228         r << value;
3229         return r.str();
3230 }
3231
3232 // Expand input string by injecting "ABC" between the input
3233 // string characters. The acc/add/treshold parameters are used
3234 // to skip some of the injections to make the result less
3235 // uniform (and a lot shorter).
3236 string expandOpPhiCase5 (const string& s, int &acc, int add, int treshold)
3237 {
3238         std::ostringstream      res;
3239         const char*                     p = s.c_str();
3240
3241         while (*p)
3242         {
3243                 res << *p;
3244                 acc += add;
3245                 if (acc > treshold)
3246                 {
3247                         acc -= treshold;
3248                         res << "ABC";
3249                 }
3250                 p++;
3251         }
3252         return res.str();
3253 }
3254
3255 // Calculate expected result based on the code string
3256 float calcOpPhiCase5 (float val, const string& s)
3257 {
3258         const char*             p               = s.c_str();
3259         float                   x[8];
3260         bool                    b[8];
3261         const float             tv[8]   = { 0.5f, 1.5f, 3.5f, 7.5f, 15.5f, 31.5f, 63.5f, 127.5f };
3262         const float             v               = deFloatAbs(val);
3263         float                   res             = 0;
3264         int                             depth   = -1;
3265         int                             skip    = 0;
3266
3267         for (int i = 7; i >= 0; --i)
3268                 x[i] = std::fmod((float)v, (float)(2 << i));
3269         for (int i = 7; i >= 0; --i)
3270                 b[i] = x[i] > tv[i];
3271
3272         while (*p)
3273         {
3274                 if (*p == 'A')
3275                 {
3276                         depth++;
3277                         if (skip == 0 && b[depth])
3278                         {
3279                                 res++;
3280                         }
3281                         else
3282                                 skip++;
3283                 }
3284                 if (*p == 'B')
3285                 {
3286                         if (skip)
3287                                 skip--;
3288                         if (b[depth] || skip)
3289                                 skip++;
3290                 }
3291                 if (*p == 'C')
3292                 {
3293                         depth--;
3294                         if (skip)
3295                                 skip--;
3296                 }
3297                 p++;
3298         }
3299         return res;
3300 }
3301
3302 // In the code string, the letters represent the following:
3303 //
3304 // A:
3305 //     if (certain bit is set)
3306 //     {
3307 //       result++;
3308 //
3309 // B:
3310 //     } else {
3311 //
3312 // C:
3313 //     }
3314 //
3315 // examples:
3316 // AABCBC leads to if(){r++;if(){r++;}else{}}else{}
3317 // ABABCC leads to if(){r++;}else{if(){r++;}else{}}
3318 // ABCABC leads to if(){r++;}else{}if(){r++;}else{}
3319 //
3320 // Code generation gets a bit complicated due to the else-branches,
3321 // which do not generate new values. Thus, the generator needs to
3322 // keep track of the previous variable change seen by the else
3323 // branch.
3324 string generateOpPhiCase5 (const string& s)
3325 {
3326         std::stack<int>                         idStack;
3327         std::stack<std::string>         value;
3328         std::stack<std::string>         valueLabel;
3329         std::stack<std::string>         mergeLeft;
3330         std::stack<std::string>         mergeRight;
3331         std::ostringstream                      res;
3332         const char*                                     p                       = s.c_str();
3333         int                                                     depth           = -1;
3334         int                                                     currId          = 0;
3335         int                                                     iter            = 0;
3336
3337         idStack.push(-1);
3338         value.push("%f32_0");
3339         valueLabel.push("%f32_0 %entry");
3340
3341         while (*p)
3342         {
3343                 if (*p == 'A')
3344                 {
3345                         depth++;
3346                         currId = iter;
3347                         idStack.push(currId);
3348                         res << "\tOpSelectionMerge %m" << currId << " None\n";
3349                         res << "\tOpBranchConditional %b" << depth << " %t" << currId << " %f" << currId << "\n";
3350                         res << "%t" << currId << " = OpLabel\n";
3351                         res << "%rt" << currId << " = OpFAdd %f32 " << value.top() << " %f32_1\n";
3352                         std::ostringstream tag;
3353                         tag << "%rt" << currId;
3354                         value.push(tag.str());
3355                         tag << " %t" << currId;
3356                         valueLabel.push(tag.str());
3357                 }
3358
3359                 if (*p == 'B')
3360                 {
3361                         mergeLeft.push(valueLabel.top());
3362                         value.pop();
3363                         valueLabel.pop();
3364                         res << "\tOpBranch %m" << currId << "\n";
3365                         res << "%f" << currId << " = OpLabel\n";
3366                         std::ostringstream tag;
3367                         tag << value.top() << " %f" << currId;
3368                         valueLabel.pop();
3369                         valueLabel.push(tag.str());
3370                 }
3371
3372                 if (*p == 'C')
3373                 {
3374                         mergeRight.push(valueLabel.top());
3375                         res << "\tOpBranch %m" << currId << "\n";
3376                         res << "%m" << currId << " = OpLabel\n";
3377                         if (*(p + 1) == 0)
3378                                 res << "%res"; // last result goes to %res
3379                         else
3380                                 res << "%rm" << currId;
3381                         res << " = OpPhi %f32  " << mergeLeft.top() << "  " << mergeRight.top() << "\n";
3382                         std::ostringstream tag;
3383                         tag << "%rm" << currId;
3384                         value.pop();
3385                         value.push(tag.str());
3386                         tag << " %m" << currId;
3387                         valueLabel.pop();
3388                         valueLabel.push(tag.str());
3389                         mergeLeft.pop();
3390                         mergeRight.pop();
3391                         depth--;
3392                         idStack.pop();
3393                         currId = idStack.top();
3394                 }
3395                 p++;
3396                 iter++;
3397         }
3398         return res.str();
3399 }
3400
3401 tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
3402 {
3403         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
3404         ComputeShaderSpec                               spec1;
3405         ComputeShaderSpec                               spec2;
3406         ComputeShaderSpec                               spec3;
3407         ComputeShaderSpec                               spec4;
3408         ComputeShaderSpec                               spec5;
3409         de::Random                                              rnd                             (deStringHash(group->getName()));
3410         const int                                               numElements             = 100;
3411         vector<float>                                   inputFloats             (numElements, 0);
3412         vector<float>                                   outputFloats1   (numElements, 0);
3413         vector<float>                                   outputFloats2   (numElements, 0);
3414         vector<float>                                   outputFloats3   (numElements, 0);
3415         vector<float>                                   outputFloats4   (numElements, 0);
3416         vector<float>                                   outputFloats5   (numElements, 0);
3417         std::string                                             codestring              = "ABC";
3418         const int                                               test4Width              = 1024;
3419
3420         // Build case 5 code string. Each iteration makes the hierarchy more complicated.
3421         // 9 iterations with (7, 24) parameters makes the hierarchy 8 deep with about 1500 lines of
3422         // shader code.
3423         for (int i = 0, acc = 0; i < 9; i++)
3424                 codestring = expandOpPhiCase5(codestring, acc, 7, 24);
3425
3426         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
3427
3428         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3429         floorAll(inputFloats);
3430
3431         for (size_t ndx = 0; ndx < numElements; ++ndx)
3432         {
3433                 switch (ndx % 3)
3434                 {
3435                         case 0:         outputFloats1[ndx] = inputFloats[ndx] + 5.5f;   break;
3436                         case 1:         outputFloats1[ndx] = inputFloats[ndx] + 20.5f;  break;
3437                         case 2:         outputFloats1[ndx] = inputFloats[ndx] + 1.75f;  break;
3438                         default:        break;
3439                 }
3440                 outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
3441                 outputFloats3[ndx] = 8.5f - inputFloats[ndx];
3442
3443                 int index4 = (int)deFloor(deAbs((float)ndx * inputFloats[ndx]));
3444                 outputFloats4[ndx] = (float)(index4 % test4Width) * 10.0f + 5.0f;
3445
3446                 outputFloats5[ndx] = calcOpPhiCase5(inputFloats[ndx], codestring);
3447         }
3448
3449         spec1.assembly =
3450                 string(getComputeAsmShaderPreamble()) +
3451
3452                 "OpSource GLSL 430\n"
3453                 "OpName %main \"main\"\n"
3454                 "OpName %id \"gl_GlobalInvocationID\"\n"
3455
3456                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3457
3458                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3459
3460                 "%id = OpVariable %uvec3ptr Input\n"
3461                 "%zero       = OpConstant %i32 0\n"
3462                 "%three      = OpConstant %u32 3\n"
3463                 "%constf5p5  = OpConstant %f32 5.5\n"
3464                 "%constf20p5 = OpConstant %f32 20.5\n"
3465                 "%constf1p75 = OpConstant %f32 1.75\n"
3466                 "%constf8p5  = OpConstant %f32 8.5\n"
3467                 "%constf6p5  = OpConstant %f32 6.5\n"
3468
3469                 "%main     = OpFunction %void None %voidf\n"
3470                 "%entry    = OpLabel\n"
3471                 "%idval    = OpLoad %uvec3 %id\n"
3472                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3473                 "%selector = OpUMod %u32 %x %three\n"
3474                 "            OpSelectionMerge %phi None\n"
3475                 "            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
3476
3477                 // Case 1 before OpPhi.
3478                 "%case1    = OpLabel\n"
3479                 "            OpBranch %phi\n"
3480
3481                 "%default  = OpLabel\n"
3482                 "            OpUnreachable\n"
3483
3484                 "%phi      = OpLabel\n"
3485                 "%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
3486                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3487                 "%inval    = OpLoad %f32 %inloc\n"
3488                 "%add      = OpFAdd %f32 %inval %operand\n"
3489                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3490                 "            OpStore %outloc %add\n"
3491                 "            OpReturn\n"
3492
3493                 // Case 0 after OpPhi.
3494                 "%case0    = OpLabel\n"
3495                 "            OpBranch %phi\n"
3496
3497
3498                 // Case 2 after OpPhi.
3499                 "%case2    = OpLabel\n"
3500                 "            OpBranch %phi\n"
3501
3502                 "            OpFunctionEnd\n";
3503         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3504         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
3505         spec1.numWorkGroups = IVec3(numElements, 1, 1);
3506
3507         group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
3508
3509         spec2.assembly =
3510                 string(getComputeAsmShaderPreamble()) +
3511
3512                 "OpName %main \"main\"\n"
3513                 "OpName %id \"gl_GlobalInvocationID\"\n"
3514
3515                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3516
3517                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3518
3519                 "%id         = OpVariable %uvec3ptr Input\n"
3520                 "%zero       = OpConstant %i32 0\n"
3521                 "%one        = OpConstant %i32 1\n"
3522                 "%three      = OpConstant %i32 3\n"
3523                 "%constf6p5  = OpConstant %f32 6.5\n"
3524
3525                 "%main       = OpFunction %void None %voidf\n"
3526                 "%entry      = OpLabel\n"
3527                 "%idval      = OpLoad %uvec3 %id\n"
3528                 "%x          = OpCompositeExtract %u32 %idval 0\n"
3529                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
3530                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
3531                 "%inval      = OpLoad %f32 %inloc\n"
3532                 "              OpBranch %phi\n"
3533
3534                 "%phi        = OpLabel\n"
3535                 "%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
3536                 "%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
3537                 "%step_next  = OpIAdd %i32 %step %one\n"
3538                 "%accum_next = OpFAdd %f32 %accum %constf6p5\n"
3539                 "%still_loop = OpSLessThan %bool %step %three\n"
3540                 "              OpLoopMerge %exit %phi None\n"
3541                 "              OpBranchConditional %still_loop %phi %exit\n"
3542
3543                 "%exit       = OpLabel\n"
3544                 "              OpStore %outloc %accum\n"
3545                 "              OpReturn\n"
3546                 "              OpFunctionEnd\n";
3547         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3548         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
3549         spec2.numWorkGroups = IVec3(numElements, 1, 1);
3550
3551         group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
3552
3553         spec3.assembly =
3554                 string(getComputeAsmShaderPreamble()) +
3555
3556                 "OpName %main \"main\"\n"
3557                 "OpName %id \"gl_GlobalInvocationID\"\n"
3558
3559                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3560
3561                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3562
3563                 "%f32ptr_f   = OpTypePointer Function %f32\n"
3564                 "%id         = OpVariable %uvec3ptr Input\n"
3565                 "%true       = OpConstantTrue %bool\n"
3566                 "%false      = OpConstantFalse %bool\n"
3567                 "%zero       = OpConstant %i32 0\n"
3568                 "%constf8p5  = OpConstant %f32 8.5\n"
3569
3570                 "%main       = OpFunction %void None %voidf\n"
3571                 "%entry      = OpLabel\n"
3572                 "%b          = OpVariable %f32ptr_f Function %constf8p5\n"
3573                 "%idval      = OpLoad %uvec3 %id\n"
3574                 "%x          = OpCompositeExtract %u32 %idval 0\n"
3575                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
3576                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
3577                 "%a_init     = OpLoad %f32 %inloc\n"
3578                 "%b_init     = OpLoad %f32 %b\n"
3579                 "              OpBranch %phi\n"
3580
3581                 "%phi        = OpLabel\n"
3582                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
3583                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
3584                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
3585                 "              OpLoopMerge %exit %phi None\n"
3586                 "              OpBranchConditional %still_loop %phi %exit\n"
3587
3588                 "%exit       = OpLabel\n"
3589                 "%sub        = OpFSub %f32 %a_next %b_next\n"
3590                 "              OpStore %outloc %sub\n"
3591                 "              OpReturn\n"
3592                 "              OpFunctionEnd\n";
3593         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3594         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
3595         spec3.numWorkGroups = IVec3(numElements, 1, 1);
3596
3597         group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
3598
3599         spec4.assembly =
3600                 "OpCapability Shader\n"
3601                 "%ext = OpExtInstImport \"GLSL.std.450\"\n"
3602                 "OpMemoryModel Logical GLSL450\n"
3603                 "OpEntryPoint GLCompute %main \"main\" %id\n"
3604                 "OpExecutionMode %main LocalSize 1 1 1\n"
3605
3606                 "OpSource GLSL 430\n"
3607                 "OpName %main \"main\"\n"
3608                 "OpName %id \"gl_GlobalInvocationID\"\n"
3609
3610                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3611
3612                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3613
3614                 "%id       = OpVariable %uvec3ptr Input\n"
3615                 "%zero     = OpConstant %i32 0\n"
3616                 "%cimod    = OpConstant %u32 " + generateIntWidth(test4Width) + "\n"
3617
3618                 + generateConstantDefinitions(test4Width) +
3619
3620                 "%main     = OpFunction %void None %voidf\n"
3621                 "%entry    = OpLabel\n"
3622                 "%idval    = OpLoad %uvec3 %id\n"
3623                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3624                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3625                 "%inval    = OpLoad %f32 %inloc\n"
3626                 "%xf       = OpConvertUToF %f32 %x\n"
3627                 "%xm       = OpFMul %f32 %xf %inval\n"
3628                 "%xa       = OpExtInst %f32 %ext FAbs %xm\n"
3629                 "%xi       = OpConvertFToU %u32 %xa\n"
3630                 "%selector = OpUMod %u32 %xi %cimod\n"
3631                 "            OpSelectionMerge %phi None\n"
3632                 "            OpSwitch %selector %default "
3633
3634                 + generateSwitchCases(test4Width) +
3635
3636                 "%default  = OpLabel\n"
3637                 "            OpUnreachable\n"
3638
3639                 + generateSwitchTargets(test4Width) +
3640
3641                 "%phi      = OpLabel\n"
3642                 "%result   = OpPhi %f32"
3643
3644                 + generateOpPhiParams(test4Width) +
3645
3646                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3647                 "            OpStore %outloc %result\n"
3648                 "            OpReturn\n"
3649
3650                 "            OpFunctionEnd\n";
3651         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3652         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
3653         spec4.numWorkGroups = IVec3(numElements, 1, 1);
3654
3655         group->addChild(new SpvAsmComputeShaderCase(testCtx, "wide", "OpPhi with a lot of parameters", spec4));
3656
3657         spec5.assembly =
3658                 "OpCapability Shader\n"
3659                 "%ext      = OpExtInstImport \"GLSL.std.450\"\n"
3660                 "OpMemoryModel Logical GLSL450\n"
3661                 "OpEntryPoint GLCompute %main \"main\" %id\n"
3662                 "OpExecutionMode %main LocalSize 1 1 1\n"
3663                 "%code     = OpString \"" + codestring + "\"\n"
3664
3665                 "OpSource GLSL 430\n"
3666                 "OpName %main \"main\"\n"
3667                 "OpName %id \"gl_GlobalInvocationID\"\n"
3668
3669                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3670
3671                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3672
3673                 "%id       = OpVariable %uvec3ptr Input\n"
3674                 "%zero     = OpConstant %i32 0\n"
3675                 "%f32_0    = OpConstant %f32 0.0\n"
3676                 "%f32_0_5  = OpConstant %f32 0.5\n"
3677                 "%f32_1    = OpConstant %f32 1.0\n"
3678                 "%f32_1_5  = OpConstant %f32 1.5\n"
3679                 "%f32_2    = OpConstant %f32 2.0\n"
3680                 "%f32_3_5  = OpConstant %f32 3.5\n"
3681                 "%f32_4    = OpConstant %f32 4.0\n"
3682                 "%f32_7_5  = OpConstant %f32 7.5\n"
3683                 "%f32_8    = OpConstant %f32 8.0\n"
3684                 "%f32_15_5 = OpConstant %f32 15.5\n"
3685                 "%f32_16   = OpConstant %f32 16.0\n"
3686                 "%f32_31_5 = OpConstant %f32 31.5\n"
3687                 "%f32_32   = OpConstant %f32 32.0\n"
3688                 "%f32_63_5 = OpConstant %f32 63.5\n"
3689                 "%f32_64   = OpConstant %f32 64.0\n"
3690                 "%f32_127_5 = OpConstant %f32 127.5\n"
3691                 "%f32_128  = OpConstant %f32 128.0\n"
3692                 "%f32_256  = OpConstant %f32 256.0\n"
3693
3694                 "%main     = OpFunction %void None %voidf\n"
3695                 "%entry    = OpLabel\n"
3696                 "%idval    = OpLoad %uvec3 %id\n"
3697                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3698                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3699                 "%inval    = OpLoad %f32 %inloc\n"
3700
3701                 "%xabs     = OpExtInst %f32 %ext FAbs %inval\n"
3702                 "%x8       = OpFMod %f32 %xabs %f32_256\n"
3703                 "%x7       = OpFMod %f32 %xabs %f32_128\n"
3704                 "%x6       = OpFMod %f32 %xabs %f32_64\n"
3705                 "%x5       = OpFMod %f32 %xabs %f32_32\n"
3706                 "%x4       = OpFMod %f32 %xabs %f32_16\n"
3707                 "%x3       = OpFMod %f32 %xabs %f32_8\n"
3708                 "%x2       = OpFMod %f32 %xabs %f32_4\n"
3709                 "%x1       = OpFMod %f32 %xabs %f32_2\n"
3710
3711                 "%b7       = OpFOrdGreaterThanEqual %bool %x8 %f32_127_5\n"
3712                 "%b6       = OpFOrdGreaterThanEqual %bool %x7 %f32_63_5\n"
3713                 "%b5       = OpFOrdGreaterThanEqual %bool %x6 %f32_31_5\n"
3714                 "%b4       = OpFOrdGreaterThanEqual %bool %x5 %f32_15_5\n"
3715                 "%b3       = OpFOrdGreaterThanEqual %bool %x4 %f32_7_5\n"
3716                 "%b2       = OpFOrdGreaterThanEqual %bool %x3 %f32_3_5\n"
3717                 "%b1       = OpFOrdGreaterThanEqual %bool %x2 %f32_1_5\n"
3718                 "%b0       = OpFOrdGreaterThanEqual %bool %x1 %f32_0_5\n"
3719
3720                 + generateOpPhiCase5(codestring) +
3721
3722                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3723                 "            OpStore %outloc %res\n"
3724                 "            OpReturn\n"
3725
3726                 "            OpFunctionEnd\n";
3727         spec5.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3728         spec5.outputs.push_back(BufferSp(new Float32Buffer(outputFloats5)));
3729         spec5.numWorkGroups = IVec3(numElements, 1, 1);
3730
3731         group->addChild(new SpvAsmComputeShaderCase(testCtx, "nested", "Stress OpPhi with a lot of nesting", spec5));
3732
3733         createOpPhiVartypeTests(group, testCtx);
3734
3735         return group.release();
3736 }
3737
3738 // Assembly code used for testing block order is based on GLSL source code:
3739 //
3740 // #version 430
3741 //
3742 // layout(std140, set = 0, binding = 0) readonly buffer Input {
3743 //   float elements[];
3744 // } input_data;
3745 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
3746 //   float elements[];
3747 // } output_data;
3748 //
3749 // void main() {
3750 //   uint x = gl_GlobalInvocationID.x;
3751 //   output_data.elements[x] = input_data.elements[x];
3752 //   if (x > uint(50)) {
3753 //     switch (x % uint(3)) {
3754 //       case 0: output_data.elements[x] += 1.5f; break;
3755 //       case 1: output_data.elements[x] += 42.f; break;
3756 //       case 2: output_data.elements[x] -= 27.f; break;
3757 //       default: break;
3758 //     }
3759 //   } else {
3760 //     output_data.elements[x] = -input_data.elements[x];
3761 //   }
3762 // }
3763 tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
3764 {
3765         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
3766         ComputeShaderSpec                               spec;
3767         de::Random                                              rnd                             (deStringHash(group->getName()));
3768         const int                                               numElements             = 100;
3769         vector<float>                                   inputFloats             (numElements, 0);
3770         vector<float>                                   outputFloats    (numElements, 0);
3771
3772         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3773
3774         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3775         floorAll(inputFloats);
3776
3777         for (size_t ndx = 0; ndx <= 50; ++ndx)
3778                 outputFloats[ndx] = -inputFloats[ndx];
3779
3780         for (size_t ndx = 51; ndx < numElements; ++ndx)
3781         {
3782                 switch (ndx % 3)
3783                 {
3784                         case 0:         outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
3785                         case 1:         outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
3786                         case 2:         outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
3787                         default:        break;
3788                 }
3789         }
3790
3791         spec.assembly =
3792                 string(getComputeAsmShaderPreamble()) +
3793
3794                 "OpSource GLSL 430\n"
3795                 "OpName %main \"main\"\n"
3796                 "OpName %id \"gl_GlobalInvocationID\"\n"
3797
3798                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3799
3800                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
3801
3802                 "%u32ptr       = OpTypePointer Function %u32\n"
3803                 "%u32ptr_input = OpTypePointer Input %u32\n"
3804
3805                 + string(getComputeAsmInputOutputBuffer()) +
3806
3807                 "%id        = OpVariable %uvec3ptr Input\n"
3808                 "%zero      = OpConstant %i32 0\n"
3809                 "%const3    = OpConstant %u32 3\n"
3810                 "%const50   = OpConstant %u32 50\n"
3811                 "%constf1p5 = OpConstant %f32 1.5\n"
3812                 "%constf27  = OpConstant %f32 27.0\n"
3813                 "%constf42  = OpConstant %f32 42.0\n"
3814
3815                 "%main = OpFunction %void None %voidf\n"
3816
3817                 // entry block.
3818                 "%entry    = OpLabel\n"
3819
3820                 // Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
3821                 "%xvar     = OpVariable %u32ptr Function\n"
3822                 "%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
3823                 "%x        = OpLoad %u32 %xptr\n"
3824                 "            OpStore %xvar %x\n"
3825
3826                 "%cmp      = OpUGreaterThan %bool %x %const50\n"
3827                 "            OpSelectionMerge %if_merge None\n"
3828                 "            OpBranchConditional %cmp %if_true %if_false\n"
3829
3830                 // False branch for if-statement: placed in the middle of switch cases and before true branch.
3831                 "%if_false = OpLabel\n"
3832                 "%x_f      = OpLoad %u32 %xvar\n"
3833                 "%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
3834                 "%inval_f  = OpLoad %f32 %inloc_f\n"
3835                 "%negate   = OpFNegate %f32 %inval_f\n"
3836                 "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
3837                 "            OpStore %outloc_f %negate\n"
3838                 "            OpBranch %if_merge\n"
3839
3840                 // Merge block for if-statement: placed in the middle of true and false branch.
3841                 "%if_merge = OpLabel\n"
3842                 "            OpReturn\n"
3843
3844                 // True branch for if-statement: placed in the middle of swtich cases and after the false branch.
3845                 "%if_true  = OpLabel\n"
3846                 "%xval_t   = OpLoad %u32 %xvar\n"
3847                 "%mod      = OpUMod %u32 %xval_t %const3\n"
3848                 "            OpSelectionMerge %switch_merge None\n"
3849                 "            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
3850
3851                 // Merge block for switch-statement: placed before the case
3852                 // bodies.  But it must follow OpSwitch which dominates it.
3853                 "%switch_merge = OpLabel\n"
3854                 "                OpBranch %if_merge\n"
3855
3856                 // Case 1 for switch-statement: placed before case 0.
3857                 // It must follow the OpSwitch that dominates it.
3858                 "%case1    = OpLabel\n"
3859                 "%x_1      = OpLoad %u32 %xvar\n"
3860                 "%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
3861                 "%inval_1  = OpLoad %f32 %inloc_1\n"
3862                 "%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
3863                 "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
3864                 "            OpStore %outloc_1 %addf42\n"
3865                 "            OpBranch %switch_merge\n"
3866
3867                 // Case 2 for switch-statement.
3868                 "%case2    = OpLabel\n"
3869                 "%x_2      = OpLoad %u32 %xvar\n"
3870                 "%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
3871                 "%inval_2  = OpLoad %f32 %inloc_2\n"
3872                 "%subf27   = OpFSub %f32 %inval_2 %constf27\n"
3873                 "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
3874                 "            OpStore %outloc_2 %subf27\n"
3875                 "            OpBranch %switch_merge\n"
3876
3877                 // Default case for switch-statement: placed in the middle of normal cases.
3878                 "%default = OpLabel\n"
3879                 "           OpBranch %switch_merge\n"
3880
3881                 // Case 0 for switch-statement: out of order.
3882                 "%case0    = OpLabel\n"
3883                 "%x_0      = OpLoad %u32 %xvar\n"
3884                 "%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
3885                 "%inval_0  = OpLoad %f32 %inloc_0\n"
3886                 "%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
3887                 "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
3888                 "            OpStore %outloc_0 %addf1p5\n"
3889                 "            OpBranch %switch_merge\n"
3890
3891                 "            OpFunctionEnd\n";
3892         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3893         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3894         spec.numWorkGroups = IVec3(numElements, 1, 1);
3895
3896         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
3897
3898         return group.release();
3899 }
3900
3901 tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
3902 {
3903         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
3904         ComputeShaderSpec                               spec1;
3905         ComputeShaderSpec                               spec2;
3906         de::Random                                              rnd                             (deStringHash(group->getName()));
3907         const int                                               numElements             = 100;
3908         vector<float>                                   inputFloats             (numElements, 0);
3909         vector<float>                                   outputFloats1   (numElements, 0);
3910         vector<float>                                   outputFloats2   (numElements, 0);
3911         fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
3912
3913         for (size_t ndx = 0; ndx < numElements; ++ndx)
3914         {
3915                 outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
3916                 outputFloats2[ndx] = -inputFloats[ndx];
3917         }
3918
3919         const string assembly(
3920                 "OpCapability Shader\n"
3921                 "OpCapability ClipDistance\n"
3922                 "OpMemoryModel Logical GLSL450\n"
3923                 "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
3924                 "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
3925                 // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
3926                 "OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
3927                 "OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
3928                 "OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
3929
3930                 "OpName %comp_main1              \"entrypoint1\"\n"
3931                 "OpName %comp_main2              \"entrypoint2\"\n"
3932                 "OpName %vert_main               \"entrypoint2\"\n"
3933                 "OpName %id                      \"gl_GlobalInvocationID\"\n"
3934                 "OpName %vert_builtin_st         \"gl_PerVertex\"\n"
3935                 "OpName %vertexIndex             \"gl_VertexIndex\"\n"
3936                 "OpName %instanceIndex           \"gl_InstanceIndex\"\n"
3937                 "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
3938                 "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
3939                 "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
3940
3941                 "OpDecorate %id                      BuiltIn GlobalInvocationId\n"
3942                 "OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
3943                 "OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
3944                 "OpDecorate %vert_builtin_st         Block\n"
3945                 "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
3946                 "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
3947                 "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
3948
3949                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3950
3951                 "%zero       = OpConstant %i32 0\n"
3952                 "%one        = OpConstant %u32 1\n"
3953                 "%c_f32_1    = OpConstant %f32 1\n"
3954
3955                 "%i32inputptr         = OpTypePointer Input %i32\n"
3956                 "%vec4                = OpTypeVector %f32 4\n"
3957                 "%vec4ptr             = OpTypePointer Output %vec4\n"
3958                 "%f32arr1             = OpTypeArray %f32 %one\n"
3959                 "%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
3960                 "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
3961                 "%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
3962
3963                 "%id         = OpVariable %uvec3ptr Input\n"
3964                 "%vertexIndex = OpVariable %i32inputptr Input\n"
3965                 "%instanceIndex = OpVariable %i32inputptr Input\n"
3966                 "%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
3967
3968                 // gl_Position = vec4(1.);
3969                 "%vert_main  = OpFunction %void None %voidf\n"
3970                 "%vert_entry = OpLabel\n"
3971                 "%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
3972                 "              OpStore %position %c_vec4_1\n"
3973                 "              OpReturn\n"
3974                 "              OpFunctionEnd\n"
3975
3976                 // Double inputs.
3977                 "%comp_main1  = OpFunction %void None %voidf\n"
3978                 "%comp1_entry = OpLabel\n"
3979                 "%idval1      = OpLoad %uvec3 %id\n"
3980                 "%x1          = OpCompositeExtract %u32 %idval1 0\n"
3981                 "%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
3982                 "%inval1      = OpLoad %f32 %inloc1\n"
3983                 "%add         = OpFAdd %f32 %inval1 %inval1\n"
3984                 "%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
3985                 "               OpStore %outloc1 %add\n"
3986                 "               OpReturn\n"
3987                 "               OpFunctionEnd\n"
3988
3989                 // Negate inputs.
3990                 "%comp_main2  = OpFunction %void None %voidf\n"
3991                 "%comp2_entry = OpLabel\n"
3992                 "%idval2      = OpLoad %uvec3 %id\n"
3993                 "%x2          = OpCompositeExtract %u32 %idval2 0\n"
3994                 "%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
3995                 "%inval2      = OpLoad %f32 %inloc2\n"
3996                 "%neg         = OpFNegate %f32 %inval2\n"
3997                 "%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
3998                 "               OpStore %outloc2 %neg\n"
3999                 "               OpReturn\n"
4000                 "               OpFunctionEnd\n");
4001
4002         spec1.assembly = assembly;
4003         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4004         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
4005         spec1.numWorkGroups = IVec3(numElements, 1, 1);
4006         spec1.entryPoint = "entrypoint1";
4007
4008         spec2.assembly = assembly;
4009         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4010         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
4011         spec2.numWorkGroups = IVec3(numElements, 1, 1);
4012         spec2.entryPoint = "entrypoint2";
4013
4014         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
4015         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
4016
4017         return group.release();
4018 }
4019
4020 inline std::string makeLongUTF8String (size_t num4ByteChars)
4021 {
4022         // An example of a longest valid UTF-8 character.  Be explicit about the
4023         // character type because Microsoft compilers can otherwise interpret the
4024         // character string as being over wide (16-bit) characters. Ideally, we
4025         // would just use a C++11 UTF-8 string literal, but we want to support older
4026         // Microsoft compilers.
4027         const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
4028         std::string longString;
4029         longString.reserve(num4ByteChars * 4);
4030         for (size_t count = 0; count < num4ByteChars; count++)
4031         {
4032                 longString += earthAfrica;
4033         }
4034         return longString;
4035 }
4036
4037 tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
4038 {
4039         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
4040         vector<CaseParameter>                   cases;
4041         de::Random                                              rnd                             (deStringHash(group->getName()));
4042         const int                                               numElements             = 100;
4043         vector<float>                                   positiveFloats  (numElements, 0);
4044         vector<float>                                   negativeFloats  (numElements, 0);
4045         const StringTemplate                    shaderTemplate  (
4046                 "OpCapability Shader\n"
4047                 "OpMemoryModel Logical GLSL450\n"
4048
4049                 "OpEntryPoint GLCompute %main \"main\" %id\n"
4050                 "OpExecutionMode %main LocalSize 1 1 1\n"
4051
4052                 "${SOURCE}\n"
4053
4054                 "OpName %main           \"main\"\n"
4055                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4056
4057                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4058
4059                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4060
4061                 "%id        = OpVariable %uvec3ptr Input\n"
4062                 "%zero      = OpConstant %i32 0\n"
4063
4064                 "%main      = OpFunction %void None %voidf\n"
4065                 "%label     = OpLabel\n"
4066                 "%idval     = OpLoad %uvec3 %id\n"
4067                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4068                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4069                 "%inval     = OpLoad %f32 %inloc\n"
4070                 "%neg       = OpFNegate %f32 %inval\n"
4071                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4072                 "             OpStore %outloc %neg\n"
4073                 "             OpReturn\n"
4074                 "             OpFunctionEnd\n");
4075
4076         cases.push_back(CaseParameter("unknown_source",                                                 "OpSource Unknown 0"));
4077         cases.push_back(CaseParameter("wrong_source",                                                   "OpSource OpenCL_C 210"));
4078         cases.push_back(CaseParameter("normal_filename",                                                "%fname = OpString \"filename\"\n"
4079                                                                                                                                                         "OpSource GLSL 430 %fname"));
4080         cases.push_back(CaseParameter("empty_filename",                                                 "%fname = OpString \"\"\n"
4081                                                                                                                                                         "OpSource GLSL 430 %fname"));
4082         cases.push_back(CaseParameter("normal_source_code",                                             "%fname = OpString \"filename\"\n"
4083                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
4084         cases.push_back(CaseParameter("empty_source_code",                                              "%fname = OpString \"filename\"\n"
4085                                                                                                                                                         "OpSource GLSL 430 %fname \"\""));
4086         cases.push_back(CaseParameter("long_source_code",                                               "%fname = OpString \"filename\"\n"
4087                                                                                                                                                         "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
4088         cases.push_back(CaseParameter("utf8_source_code",                                               "%fname = OpString \"filename\"\n"
4089                                                                                                                                                         "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
4090         cases.push_back(CaseParameter("normal_sourcecontinued",                                 "%fname = OpString \"filename\"\n"
4091                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
4092                                                                                                                                                         "OpSourceContinued \"id main() {}\""));
4093         cases.push_back(CaseParameter("empty_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
4094                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
4095                                                                                                                                                         "OpSourceContinued \"\""));
4096         cases.push_back(CaseParameter("long_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
4097                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
4098                                                                                                                                                         "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
4099         cases.push_back(CaseParameter("utf8_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
4100                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
4101                                                                                                                                                         "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
4102         cases.push_back(CaseParameter("multi_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
4103                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\n\"\n"
4104                                                                                                                                                         "OpSourceContinued \"void\"\n"
4105                                                                                                                                                         "OpSourceContinued \"main()\"\n"
4106                                                                                                                                                         "OpSourceContinued \"{}\""));
4107         cases.push_back(CaseParameter("empty_source_before_sourcecontinued",    "%fname = OpString \"filename\"\n"
4108                                                                                                                                                         "OpSource GLSL 430 %fname \"\"\n"
4109                                                                                                                                                         "OpSourceContinued \"#version 430\nvoid main() {}\""));
4110
4111         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
4112
4113         for (size_t ndx = 0; ndx < numElements; ++ndx)
4114                 negativeFloats[ndx] = -positiveFloats[ndx];
4115
4116         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4117         {
4118                 map<string, string>             specializations;
4119                 ComputeShaderSpec               spec;
4120
4121                 specializations["SOURCE"] = cases[caseNdx].param;
4122                 spec.assembly = shaderTemplate.specialize(specializations);
4123                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
4124                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
4125                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4126
4127                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4128         }
4129
4130         return group.release();
4131 }
4132
4133 tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
4134 {
4135         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
4136         vector<CaseParameter>                   cases;
4137         de::Random                                              rnd                             (deStringHash(group->getName()));
4138         const int                                               numElements             = 100;
4139         vector<float>                                   inputFloats             (numElements, 0);
4140         vector<float>                                   outputFloats    (numElements, 0);
4141         const StringTemplate                    shaderTemplate  (
4142                 string(getComputeAsmShaderPreamble()) +
4143
4144                 "OpSourceExtension \"${EXTENSION}\"\n"
4145
4146                 "OpName %main           \"main\"\n"
4147                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4148
4149                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4150
4151                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4152
4153                 "%id        = OpVariable %uvec3ptr Input\n"
4154                 "%zero      = OpConstant %i32 0\n"
4155
4156                 "%main      = OpFunction %void None %voidf\n"
4157                 "%label     = OpLabel\n"
4158                 "%idval     = OpLoad %uvec3 %id\n"
4159                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4160                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4161                 "%inval     = OpLoad %f32 %inloc\n"
4162                 "%neg       = OpFNegate %f32 %inval\n"
4163                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4164                 "             OpStore %outloc %neg\n"
4165                 "             OpReturn\n"
4166                 "             OpFunctionEnd\n");
4167
4168         cases.push_back(CaseParameter("empty_extension",        ""));
4169         cases.push_back(CaseParameter("real_extension",         "GL_ARB_texture_rectangle"));
4170         cases.push_back(CaseParameter("fake_extension",         "GL_ARB_im_the_ultimate_extension"));
4171         cases.push_back(CaseParameter("utf8_extension",         "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
4172         cases.push_back(CaseParameter("long_extension",         makeLongUTF8String(65533) + "ccc")); // word count: 65535
4173
4174         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
4175
4176         for (size_t ndx = 0; ndx < numElements; ++ndx)
4177                 outputFloats[ndx] = -inputFloats[ndx];
4178
4179         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4180         {
4181                 map<string, string>             specializations;
4182                 ComputeShaderSpec               spec;
4183
4184                 specializations["EXTENSION"] = cases[caseNdx].param;
4185                 spec.assembly = shaderTemplate.specialize(specializations);
4186                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4187                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
4188                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4189
4190                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4191         }
4192
4193         return group.release();
4194 }
4195
4196 // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
4197 tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
4198 {
4199         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
4200         vector<CaseParameter>                   cases;
4201         de::Random                                              rnd                             (deStringHash(group->getName()));
4202         const int                                               numElements             = 100;
4203         vector<float>                                   positiveFloats  (numElements, 0);
4204         vector<float>                                   negativeFloats  (numElements, 0);
4205         const StringTemplate                    shaderTemplate  (
4206                 string(getComputeAsmShaderPreamble()) +
4207
4208                 "OpSource GLSL 430\n"
4209                 "OpName %main           \"main\"\n"
4210                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4211
4212                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4213
4214                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
4215                 "%uvec2     = OpTypeVector %u32 2\n"
4216                 "%bvec3     = OpTypeVector %bool 3\n"
4217                 "%fvec4     = OpTypeVector %f32 4\n"
4218                 "%fmat33    = OpTypeMatrix %fvec3 3\n"
4219                 "%const100  = OpConstant %u32 100\n"
4220                 "%uarr100   = OpTypeArray %i32 %const100\n"
4221                 "%struct    = OpTypeStruct %f32 %i32 %u32\n"
4222                 "%pointer   = OpTypePointer Function %i32\n"
4223                 + string(getComputeAsmInputOutputBuffer()) +
4224
4225                 "%null      = OpConstantNull ${TYPE}\n"
4226
4227                 "%id        = OpVariable %uvec3ptr Input\n"
4228                 "%zero      = OpConstant %i32 0\n"
4229
4230                 "%main      = OpFunction %void None %voidf\n"
4231                 "%label     = OpLabel\n"
4232                 "%idval     = OpLoad %uvec3 %id\n"
4233                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4234                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4235                 "%inval     = OpLoad %f32 %inloc\n"
4236                 "%neg       = OpFNegate %f32 %inval\n"
4237                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4238                 "             OpStore %outloc %neg\n"
4239                 "             OpReturn\n"
4240                 "             OpFunctionEnd\n");
4241
4242         cases.push_back(CaseParameter("bool",                   "%bool"));
4243         cases.push_back(CaseParameter("sint32",                 "%i32"));
4244         cases.push_back(CaseParameter("uint32",                 "%u32"));
4245         cases.push_back(CaseParameter("float32",                "%f32"));
4246         cases.push_back(CaseParameter("vec4float32",    "%fvec4"));
4247         cases.push_back(CaseParameter("vec3bool",               "%bvec3"));
4248         cases.push_back(CaseParameter("vec2uint32",             "%uvec2"));
4249         cases.push_back(CaseParameter("matrix",                 "%fmat33"));
4250         cases.push_back(CaseParameter("array",                  "%uarr100"));
4251         cases.push_back(CaseParameter("struct",                 "%struct"));
4252         cases.push_back(CaseParameter("pointer",                "%pointer"));
4253
4254         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
4255
4256         for (size_t ndx = 0; ndx < numElements; ++ndx)
4257                 negativeFloats[ndx] = -positiveFloats[ndx];
4258
4259         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4260         {
4261                 map<string, string>             specializations;
4262                 ComputeShaderSpec               spec;
4263
4264                 specializations["TYPE"] = cases[caseNdx].param;
4265                 spec.assembly = shaderTemplate.specialize(specializations);
4266                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
4267                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
4268                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4269
4270                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4271         }
4272
4273         return group.release();
4274 }
4275
4276 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
4277 tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
4278 {
4279         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
4280         vector<CaseParameter>                   cases;
4281         de::Random                                              rnd                             (deStringHash(group->getName()));
4282         const int                                               numElements             = 100;
4283         vector<float>                                   positiveFloats  (numElements, 0);
4284         vector<float>                                   negativeFloats  (numElements, 0);
4285         const StringTemplate                    shaderTemplate  (
4286                 string(getComputeAsmShaderPreamble()) +
4287
4288                 "OpSource GLSL 430\n"
4289                 "OpName %main           \"main\"\n"
4290                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4291
4292                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4293
4294                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4295
4296                 "%id        = OpVariable %uvec3ptr Input\n"
4297                 "%zero      = OpConstant %i32 0\n"
4298
4299                 "${CONSTANT}\n"
4300
4301                 "%main      = OpFunction %void None %voidf\n"
4302                 "%label     = OpLabel\n"
4303                 "%idval     = OpLoad %uvec3 %id\n"
4304                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4305                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4306                 "%inval     = OpLoad %f32 %inloc\n"
4307                 "%neg       = OpFNegate %f32 %inval\n"
4308                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4309                 "             OpStore %outloc %neg\n"
4310                 "             OpReturn\n"
4311                 "             OpFunctionEnd\n");
4312
4313         cases.push_back(CaseParameter("vector",                 "%five = OpConstant %u32 5\n"
4314                                                                                                         "%const = OpConstantComposite %uvec3 %five %zero %five"));
4315         cases.push_back(CaseParameter("matrix",                 "%m3fvec3 = OpTypeMatrix %fvec3 3\n"
4316                                                                                                         "%ten = OpConstant %f32 10.\n"
4317                                                                                                         "%fzero = OpConstant %f32 0.\n"
4318                                                                                                         "%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
4319                                                                                                         "%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
4320         cases.push_back(CaseParameter("struct",                 "%m2vec3 = OpTypeMatrix %fvec3 2\n"
4321                                                                                                         "%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
4322                                                                                                         "%fzero = OpConstant %f32 0.\n"
4323                                                                                                         "%one = OpConstant %f32 1.\n"
4324                                                                                                         "%point5 = OpConstant %f32 0.5\n"
4325                                                                                                         "%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
4326                                                                                                         "%mat = OpConstantComposite %m2vec3 %vec %vec\n"
4327                                                                                                         "%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
4328         cases.push_back(CaseParameter("nested_struct",  "%st1 = OpTypeStruct %u32 %f32\n"
4329                                                                                                         "%st2 = OpTypeStruct %i32 %i32\n"
4330                                                                                                         "%struct = OpTypeStruct %st1 %st2\n"
4331                                                                                                         "%point5 = OpConstant %f32 0.5\n"
4332                                                                                                         "%one = OpConstant %u32 1\n"
4333                                                                                                         "%ten = OpConstant %i32 10\n"
4334                                                                                                         "%st1val = OpConstantComposite %st1 %one %point5\n"
4335                                                                                                         "%st2val = OpConstantComposite %st2 %ten %ten\n"
4336                                                                                                         "%const = OpConstantComposite %struct %st1val %st2val"));
4337
4338         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
4339
4340         for (size_t ndx = 0; ndx < numElements; ++ndx)
4341                 negativeFloats[ndx] = -positiveFloats[ndx];
4342
4343         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4344         {
4345                 map<string, string>             specializations;
4346                 ComputeShaderSpec               spec;
4347
4348                 specializations["CONSTANT"] = cases[caseNdx].param;
4349                 spec.assembly = shaderTemplate.specialize(specializations);
4350                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
4351                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
4352                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4353
4354                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4355         }
4356
4357         return group.release();
4358 }
4359
4360 // Creates a floating point number with the given exponent, and significand
4361 // bits set. It can only create normalized numbers. Only the least significant
4362 // 24 bits of the significand will be examined. The final bit of the
4363 // significand will also be ignored. This allows alignment to be written
4364 // similarly to C99 hex-floats.
4365 // For example if you wanted to write 0x1.7f34p-12 you would call
4366 // constructNormalizedFloat(-12, 0x7f3400)
4367 float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
4368 {
4369         float f = 1.0f;
4370
4371         for (deInt32 idx = 0; idx < 23; ++idx)
4372         {
4373                 f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
4374                 significand <<= 1;
4375         }
4376
4377         return std::ldexp(f, exponent);
4378 }
4379
4380 // Compare instruction for the OpQuantizeF16 compute exact case.
4381 // Returns true if the output is what is expected from the test case.
4382 bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
4383 {
4384         if (outputAllocs.size() != 1)
4385                 return false;
4386
4387         // Only size is needed because we cannot compare Nans.
4388         size_t byteSize = expectedOutputs[0]->getByteSize();
4389
4390         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
4391
4392         if (byteSize != 4*sizeof(float)) {
4393                 return false;
4394         }
4395
4396         if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
4397                 *outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
4398                 return false;
4399         }
4400         outputAsFloat++;
4401
4402         if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
4403                 *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
4404                 return false;
4405         }
4406         outputAsFloat++;
4407
4408         if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
4409                 *outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
4410                 return false;
4411         }
4412         outputAsFloat++;
4413
4414         if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
4415                 *outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
4416                 return false;
4417         }
4418
4419         return true;
4420 }
4421
4422 // Checks that every output from a test-case is a float NaN.
4423 bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
4424 {
4425         if (outputAllocs.size() != 1)
4426                 return false;
4427
4428         // Only size is needed because we cannot compare Nans.
4429         size_t byteSize = expectedOutputs[0]->getByteSize();
4430
4431         const float* const      output_as_float = static_cast<const float*>(outputAllocs[0]->getHostPtr());
4432
4433         for (size_t idx = 0; idx < byteSize / sizeof(float); ++idx)
4434         {
4435                 if (!deFloatIsNaN(output_as_float[idx]))
4436                 {
4437                         return false;
4438                 }
4439         }
4440
4441         return true;
4442 }
4443
4444 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
4445 tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
4446 {
4447         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
4448
4449         const std::string shader (
4450                 string(getComputeAsmShaderPreamble()) +
4451
4452                 "OpSource GLSL 430\n"
4453                 "OpName %main           \"main\"\n"
4454                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4455
4456                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4457
4458                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4459
4460                 "%id        = OpVariable %uvec3ptr Input\n"
4461                 "%zero      = OpConstant %i32 0\n"
4462
4463                 "%main      = OpFunction %void None %voidf\n"
4464                 "%label     = OpLabel\n"
4465                 "%idval     = OpLoad %uvec3 %id\n"
4466                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4467                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4468                 "%inval     = OpLoad %f32 %inloc\n"
4469                 "%quant     = OpQuantizeToF16 %f32 %inval\n"
4470                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4471                 "             OpStore %outloc %quant\n"
4472                 "             OpReturn\n"
4473                 "             OpFunctionEnd\n");
4474
4475         {
4476                 ComputeShaderSpec       spec;
4477                 const deUint32          numElements             = 100;
4478                 vector<float>           infinities;
4479                 vector<float>           results;
4480
4481                 infinities.reserve(numElements);
4482                 results.reserve(numElements);
4483
4484                 for (size_t idx = 0; idx < numElements; ++idx)
4485                 {
4486                         switch(idx % 4)
4487                         {
4488                                 case 0:
4489                                         infinities.push_back(std::numeric_limits<float>::infinity());
4490                                         results.push_back(std::numeric_limits<float>::infinity());
4491                                         break;
4492                                 case 1:
4493                                         infinities.push_back(-std::numeric_limits<float>::infinity());
4494                                         results.push_back(-std::numeric_limits<float>::infinity());
4495                                         break;
4496                                 case 2:
4497                                         infinities.push_back(std::ldexp(1.0f, 16));
4498                                         results.push_back(std::numeric_limits<float>::infinity());
4499                                         break;
4500                                 case 3:
4501                                         infinities.push_back(std::ldexp(-1.0f, 32));
4502                                         results.push_back(-std::numeric_limits<float>::infinity());
4503                                         break;
4504                         }
4505                 }
4506
4507                 spec.assembly = shader;
4508                 spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
4509                 spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
4510                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4511
4512                 group->addChild(new SpvAsmComputeShaderCase(
4513                         testCtx, "infinities", "Check that infinities propagated and created", spec));
4514         }
4515
4516         {
4517                 ComputeShaderSpec       spec;
4518                 vector<float>           nans;
4519                 const deUint32          numElements             = 100;
4520
4521                 nans.reserve(numElements);
4522
4523                 for (size_t idx = 0; idx < numElements; ++idx)
4524                 {
4525                         if (idx % 2 == 0)
4526                         {
4527                                 nans.push_back(std::numeric_limits<float>::quiet_NaN());
4528                         }
4529                         else
4530                         {
4531                                 nans.push_back(-std::numeric_limits<float>::quiet_NaN());
4532                         }
4533                 }
4534
4535                 spec.assembly = shader;
4536                 spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
4537                 spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
4538                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4539                 spec.verifyIO = &compareNan;
4540
4541                 group->addChild(new SpvAsmComputeShaderCase(
4542                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
4543         }
4544
4545         {
4546                 ComputeShaderSpec       spec;
4547                 vector<float>           small;
4548                 vector<float>           zeros;
4549                 const deUint32          numElements             = 100;
4550
4551                 small.reserve(numElements);
4552                 zeros.reserve(numElements);
4553
4554                 for (size_t idx = 0; idx < numElements; ++idx)
4555                 {
4556                         switch(idx % 6)
4557                         {
4558                                 case 0:
4559                                         small.push_back(0.f);
4560                                         zeros.push_back(0.f);
4561                                         break;
4562                                 case 1:
4563                                         small.push_back(-0.f);
4564                                         zeros.push_back(-0.f);
4565                                         break;
4566                                 case 2:
4567                                         small.push_back(std::ldexp(1.0f, -16));
4568                                         zeros.push_back(0.f);
4569                                         break;
4570                                 case 3:
4571                                         small.push_back(std::ldexp(-1.0f, -32));
4572                                         zeros.push_back(-0.f);
4573                                         break;
4574                                 case 4:
4575                                         small.push_back(std::ldexp(1.0f, -127));
4576                                         zeros.push_back(0.f);
4577                                         break;
4578                                 case 5:
4579                                         small.push_back(-std::ldexp(1.0f, -128));
4580                                         zeros.push_back(-0.f);
4581                                         break;
4582                         }
4583                 }
4584
4585                 spec.assembly = shader;
4586                 spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
4587                 spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
4588                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4589
4590                 group->addChild(new SpvAsmComputeShaderCase(
4591                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
4592         }
4593
4594         {
4595                 ComputeShaderSpec       spec;
4596                 vector<float>           exact;
4597                 const deUint32          numElements             = 200;
4598
4599                 exact.reserve(numElements);
4600
4601                 for (size_t idx = 0; idx < numElements; ++idx)
4602                         exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
4603
4604                 spec.assembly = shader;
4605                 spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
4606                 spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
4607                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4608
4609                 group->addChild(new SpvAsmComputeShaderCase(
4610                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
4611         }
4612
4613         {
4614                 ComputeShaderSpec       spec;
4615                 vector<float>           inputs;
4616                 const deUint32          numElements             = 4;
4617
4618                 inputs.push_back(constructNormalizedFloat(8,    0x300300));
4619                 inputs.push_back(-constructNormalizedFloat(-7,  0x600800));
4620                 inputs.push_back(constructNormalizedFloat(2,    0x01E000));
4621                 inputs.push_back(constructNormalizedFloat(1,    0xFFE000));
4622
4623                 spec.assembly = shader;
4624                 spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
4625                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4626                 spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
4627                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4628
4629                 group->addChild(new SpvAsmComputeShaderCase(
4630                         testCtx, "rounded", "Check that are rounded when needed", spec));
4631         }
4632
4633         return group.release();
4634 }
4635
4636 tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
4637 {
4638         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
4639
4640         const std::string shader (
4641                 string(getComputeAsmShaderPreamble()) +
4642
4643                 "OpName %main           \"main\"\n"
4644                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4645
4646                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4647
4648                 "OpDecorate %sc_0  SpecId 0\n"
4649                 "OpDecorate %sc_1  SpecId 1\n"
4650                 "OpDecorate %sc_2  SpecId 2\n"
4651                 "OpDecorate %sc_3  SpecId 3\n"
4652                 "OpDecorate %sc_4  SpecId 4\n"
4653                 "OpDecorate %sc_5  SpecId 5\n"
4654
4655                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4656
4657                 "%id        = OpVariable %uvec3ptr Input\n"
4658                 "%zero      = OpConstant %i32 0\n"
4659                 "%c_u32_6   = OpConstant %u32 6\n"
4660
4661                 "%sc_0      = OpSpecConstant %f32 0.\n"
4662                 "%sc_1      = OpSpecConstant %f32 0.\n"
4663                 "%sc_2      = OpSpecConstant %f32 0.\n"
4664                 "%sc_3      = OpSpecConstant %f32 0.\n"
4665                 "%sc_4      = OpSpecConstant %f32 0.\n"
4666                 "%sc_5      = OpSpecConstant %f32 0.\n"
4667
4668                 "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
4669                 "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
4670                 "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
4671                 "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
4672                 "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
4673                 "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
4674
4675                 "%main      = OpFunction %void None %voidf\n"
4676                 "%label     = OpLabel\n"
4677                 "%idval     = OpLoad %uvec3 %id\n"
4678                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4679                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4680                 "%selector  = OpUMod %u32 %x %c_u32_6\n"
4681                 "            OpSelectionMerge %exit None\n"
4682                 "            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
4683
4684                 "%case0     = OpLabel\n"
4685                 "             OpStore %outloc %sc_0_quant\n"
4686                 "             OpBranch %exit\n"
4687
4688                 "%case1     = OpLabel\n"
4689                 "             OpStore %outloc %sc_1_quant\n"
4690                 "             OpBranch %exit\n"
4691
4692                 "%case2     = OpLabel\n"
4693                 "             OpStore %outloc %sc_2_quant\n"
4694                 "             OpBranch %exit\n"
4695
4696                 "%case3     = OpLabel\n"
4697                 "             OpStore %outloc %sc_3_quant\n"
4698                 "             OpBranch %exit\n"
4699
4700                 "%case4     = OpLabel\n"
4701                 "             OpStore %outloc %sc_4_quant\n"
4702                 "             OpBranch %exit\n"
4703
4704                 "%case5     = OpLabel\n"
4705                 "             OpStore %outloc %sc_5_quant\n"
4706                 "             OpBranch %exit\n"
4707
4708                 "%exit      = OpLabel\n"
4709                 "             OpReturn\n"
4710
4711                 "             OpFunctionEnd\n");
4712
4713         {
4714                 ComputeShaderSpec       spec;
4715                 const deUint8           numCases        = 4;
4716                 vector<float>           inputs          (numCases, 0.f);
4717                 vector<float>           outputs;
4718
4719                 spec.assembly           = shader;
4720                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4721
4722                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
4723                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
4724                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
4725                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
4726
4727                 outputs.push_back(std::numeric_limits<float>::infinity());
4728                 outputs.push_back(-std::numeric_limits<float>::infinity());
4729                 outputs.push_back(std::numeric_limits<float>::infinity());
4730                 outputs.push_back(-std::numeric_limits<float>::infinity());
4731
4732                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4733                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4734
4735                 group->addChild(new SpvAsmComputeShaderCase(
4736                         testCtx, "infinities", "Check that infinities propagated and created", spec));
4737         }
4738
4739         {
4740                 ComputeShaderSpec       spec;
4741                 const deUint8           numCases        = 2;
4742                 vector<float>           inputs          (numCases, 0.f);
4743                 vector<float>           outputs;
4744
4745                 spec.assembly           = shader;
4746                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4747                 spec.verifyIO           = &compareNan;
4748
4749                 outputs.push_back(std::numeric_limits<float>::quiet_NaN());
4750                 outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
4751
4752                 for (deUint8 idx = 0; idx < numCases; ++idx)
4753                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
4754
4755                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4756                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4757
4758                 group->addChild(new SpvAsmComputeShaderCase(
4759                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
4760         }
4761
4762         {
4763                 ComputeShaderSpec       spec;
4764                 const deUint8           numCases        = 6;
4765                 vector<float>           inputs          (numCases, 0.f);
4766                 vector<float>           outputs;
4767
4768                 spec.assembly           = shader;
4769                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4770
4771                 spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
4772                 spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
4773                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
4774                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
4775                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
4776                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
4777
4778                 outputs.push_back(0.f);
4779                 outputs.push_back(-0.f);
4780                 outputs.push_back(0.f);
4781                 outputs.push_back(-0.f);
4782                 outputs.push_back(0.f);
4783                 outputs.push_back(-0.f);
4784
4785                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4786                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4787
4788                 group->addChild(new SpvAsmComputeShaderCase(
4789                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
4790         }
4791
4792         {
4793                 ComputeShaderSpec       spec;
4794                 const deUint8           numCases        = 6;
4795                 vector<float>           inputs          (numCases, 0.f);
4796                 vector<float>           outputs;
4797
4798                 spec.assembly           = shader;
4799                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4800
4801                 for (deUint8 idx = 0; idx < 6; ++idx)
4802                 {
4803                         const float f = static_cast<float>(idx * 10 - 30) / 4.f;
4804                         spec.specConstants.push_back(bitwiseCast<deUint32>(f));
4805                         outputs.push_back(f);
4806                 }
4807
4808                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4809                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4810
4811                 group->addChild(new SpvAsmComputeShaderCase(
4812                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
4813         }
4814
4815         {
4816                 ComputeShaderSpec       spec;
4817                 const deUint8           numCases        = 4;
4818                 vector<float>           inputs          (numCases, 0.f);
4819                 vector<float>           outputs;
4820
4821                 spec.assembly           = shader;
4822                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4823                 spec.verifyIO           = &compareOpQuantizeF16ComputeExactCase;
4824
4825                 outputs.push_back(constructNormalizedFloat(8, 0x300300));
4826                 outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
4827                 outputs.push_back(constructNormalizedFloat(2, 0x01E000));
4828                 outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
4829
4830                 for (deUint8 idx = 0; idx < numCases; ++idx)
4831                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
4832
4833                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4834                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4835
4836                 group->addChild(new SpvAsmComputeShaderCase(
4837                         testCtx, "rounded", "Check that are rounded when needed", spec));
4838         }
4839
4840         return group.release();
4841 }
4842
4843 // Checks that constant null/composite values can be used in computation.
4844 tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
4845 {
4846         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
4847         ComputeShaderSpec                               spec;
4848         de::Random                                              rnd                             (deStringHash(group->getName()));
4849         const int                                               numElements             = 100;
4850         vector<float>                                   positiveFloats  (numElements, 0);
4851         vector<float>                                   negativeFloats  (numElements, 0);
4852
4853         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
4854
4855         for (size_t ndx = 0; ndx < numElements; ++ndx)
4856                 negativeFloats[ndx] = -positiveFloats[ndx];
4857
4858         spec.assembly =
4859                 "OpCapability Shader\n"
4860                 "%std450 = OpExtInstImport \"GLSL.std.450\"\n"
4861                 "OpMemoryModel Logical GLSL450\n"
4862                 "OpEntryPoint GLCompute %main \"main\" %id\n"
4863                 "OpExecutionMode %main LocalSize 1 1 1\n"
4864
4865                 "OpSource GLSL 430\n"
4866                 "OpName %main           \"main\"\n"
4867                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4868
4869                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4870
4871                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
4872
4873                 "%fmat      = OpTypeMatrix %fvec3 3\n"
4874                 "%ten       = OpConstant %u32 10\n"
4875                 "%f32arr10  = OpTypeArray %f32 %ten\n"
4876                 "%fst       = OpTypeStruct %f32 %f32\n"
4877
4878                 + string(getComputeAsmInputOutputBuffer()) +
4879
4880                 "%id        = OpVariable %uvec3ptr Input\n"
4881                 "%zero      = OpConstant %i32 0\n"
4882
4883                 // Create a bunch of null values
4884                 "%unull     = OpConstantNull %u32\n"
4885                 "%fnull     = OpConstantNull %f32\n"
4886                 "%vnull     = OpConstantNull %fvec3\n"
4887                 "%mnull     = OpConstantNull %fmat\n"
4888                 "%anull     = OpConstantNull %f32arr10\n"
4889                 "%snull     = OpConstantComposite %fst %fnull %fnull\n"
4890
4891                 "%main      = OpFunction %void None %voidf\n"
4892                 "%label     = OpLabel\n"
4893                 "%idval     = OpLoad %uvec3 %id\n"
4894                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4895                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4896                 "%inval     = OpLoad %f32 %inloc\n"
4897                 "%neg       = OpFNegate %f32 %inval\n"
4898
4899                 // Get the abs() of (a certain element of) those null values
4900                 "%unull_cov = OpConvertUToF %f32 %unull\n"
4901                 "%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
4902                 "%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
4903                 "%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
4904                 "%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
4905                 "%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
4906                 "%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
4907                 "%anull_3   = OpCompositeExtract %f32 %anull 3\n"
4908                 "%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
4909                 "%snull_1   = OpCompositeExtract %f32 %snull 1\n"
4910                 "%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
4911
4912                 // Add them all
4913                 "%add1      = OpFAdd %f32 %neg  %unull_abs\n"
4914                 "%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
4915                 "%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
4916                 "%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
4917                 "%add5      = OpFAdd %f32 %add4 %anull_abs\n"
4918                 "%final     = OpFAdd %f32 %add5 %snull_abs\n"
4919
4920                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4921                 "             OpStore %outloc %final\n" // write to output
4922                 "             OpReturn\n"
4923                 "             OpFunctionEnd\n";
4924         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
4925         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
4926         spec.numWorkGroups = IVec3(numElements, 1, 1);
4927
4928         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
4929
4930         return group.release();
4931 }
4932
4933 // Assembly code used for testing loop control is based on GLSL source code:
4934 // #version 430
4935 //
4936 // layout(std140, set = 0, binding = 0) readonly buffer Input {
4937 //   float elements[];
4938 // } input_data;
4939 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
4940 //   float elements[];
4941 // } output_data;
4942 //
4943 // void main() {
4944 //   uint x = gl_GlobalInvocationID.x;
4945 //   output_data.elements[x] = input_data.elements[x];
4946 //   for (uint i = 0; i < 4; ++i)
4947 //     output_data.elements[x] += 1.f;
4948 // }
4949 tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
4950 {
4951         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
4952         vector<CaseParameter>                   cases;
4953         de::Random                                              rnd                             (deStringHash(group->getName()));
4954         const int                                               numElements             = 100;
4955         vector<float>                                   inputFloats             (numElements, 0);
4956         vector<float>                                   outputFloats    (numElements, 0);
4957         const StringTemplate                    shaderTemplate  (
4958                 string(getComputeAsmShaderPreamble()) +
4959
4960                 "OpSource GLSL 430\n"
4961                 "OpName %main \"main\"\n"
4962                 "OpName %id \"gl_GlobalInvocationID\"\n"
4963
4964                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4965
4966                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4967
4968                 "%u32ptr      = OpTypePointer Function %u32\n"
4969
4970                 "%id          = OpVariable %uvec3ptr Input\n"
4971                 "%zero        = OpConstant %i32 0\n"
4972                 "%uzero       = OpConstant %u32 0\n"
4973                 "%one         = OpConstant %i32 1\n"
4974                 "%constf1     = OpConstant %f32 1.0\n"
4975                 "%four        = OpConstant %u32 4\n"
4976
4977                 "%main        = OpFunction %void None %voidf\n"
4978                 "%entry       = OpLabel\n"
4979                 "%i           = OpVariable %u32ptr Function\n"
4980                 "               OpStore %i %uzero\n"
4981
4982                 "%idval       = OpLoad %uvec3 %id\n"
4983                 "%x           = OpCompositeExtract %u32 %idval 0\n"
4984                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
4985                 "%inval       = OpLoad %f32 %inloc\n"
4986                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
4987                 "               OpStore %outloc %inval\n"
4988                 "               OpBranch %loop_entry\n"
4989
4990                 "%loop_entry  = OpLabel\n"
4991                 "%i_val       = OpLoad %u32 %i\n"
4992                 "%cmp_lt      = OpULessThan %bool %i_val %four\n"
4993                 "               OpLoopMerge %loop_merge %loop_body ${CONTROL}\n"
4994                 "               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
4995                 "%loop_body   = OpLabel\n"
4996                 "%outval      = OpLoad %f32 %outloc\n"
4997                 "%addf1       = OpFAdd %f32 %outval %constf1\n"
4998                 "               OpStore %outloc %addf1\n"
4999                 "%new_i       = OpIAdd %u32 %i_val %one\n"
5000                 "               OpStore %i %new_i\n"
5001                 "               OpBranch %loop_entry\n"
5002                 "%loop_merge  = OpLabel\n"
5003                 "               OpReturn\n"
5004                 "               OpFunctionEnd\n");
5005
5006         cases.push_back(CaseParameter("none",                           "None"));
5007         cases.push_back(CaseParameter("unroll",                         "Unroll"));
5008         cases.push_back(CaseParameter("dont_unroll",            "DontUnroll"));
5009         cases.push_back(CaseParameter("unroll_dont_unroll",     "Unroll|DontUnroll"));
5010
5011         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
5012
5013         for (size_t ndx = 0; ndx < numElements; ++ndx)
5014                 outputFloats[ndx] = inputFloats[ndx] + 4.f;
5015
5016         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5017         {
5018                 map<string, string>             specializations;
5019                 ComputeShaderSpec               spec;
5020
5021                 specializations["CONTROL"] = cases[caseNdx].param;
5022                 spec.assembly = shaderTemplate.specialize(specializations);
5023                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
5024                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
5025                 spec.numWorkGroups = IVec3(numElements, 1, 1);
5026
5027                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5028         }
5029
5030         group->addChild(new SpvAsmLoopControlDependencyLengthCase(testCtx, "dependency_length", "dependency_length"));
5031         group->addChild(new SpvAsmLoopControlDependencyInfiniteCase(testCtx, "dependency_infinite", "dependency_infinite"));
5032
5033         return group.release();
5034 }
5035
5036 // Assembly code used for testing selection control is based on GLSL source code:
5037 // #version 430
5038 //
5039 // layout(std140, set = 0, binding = 0) readonly buffer Input {
5040 //   float elements[];
5041 // } input_data;
5042 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
5043 //   float elements[];
5044 // } output_data;
5045 //
5046 // void main() {
5047 //   uint x = gl_GlobalInvocationID.x;
5048 //   float val = input_data.elements[x];
5049 //   if (val > 10.f)
5050 //     output_data.elements[x] = val + 1.f;
5051 //   else
5052 //     output_data.elements[x] = val - 1.f;
5053 // }
5054 tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
5055 {
5056         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
5057         vector<CaseParameter>                   cases;
5058         de::Random                                              rnd                             (deStringHash(group->getName()));
5059         const int                                               numElements             = 100;
5060         vector<float>                                   inputFloats             (numElements, 0);
5061         vector<float>                                   outputFloats    (numElements, 0);
5062         const StringTemplate                    shaderTemplate  (
5063                 string(getComputeAsmShaderPreamble()) +
5064
5065                 "OpSource GLSL 430\n"
5066                 "OpName %main \"main\"\n"
5067                 "OpName %id \"gl_GlobalInvocationID\"\n"
5068
5069                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5070
5071                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
5072
5073                 "%id       = OpVariable %uvec3ptr Input\n"
5074                 "%zero     = OpConstant %i32 0\n"
5075                 "%constf1  = OpConstant %f32 1.0\n"
5076                 "%constf10 = OpConstant %f32 10.0\n"
5077
5078                 "%main     = OpFunction %void None %voidf\n"
5079                 "%entry    = OpLabel\n"
5080                 "%idval    = OpLoad %uvec3 %id\n"
5081                 "%x        = OpCompositeExtract %u32 %idval 0\n"
5082                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
5083                 "%inval    = OpLoad %f32 %inloc\n"
5084                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
5085                 "%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
5086
5087                 "            OpSelectionMerge %if_end ${CONTROL}\n"
5088                 "            OpBranchConditional %cmp_gt %if_true %if_false\n"
5089                 "%if_true  = OpLabel\n"
5090                 "%addf1    = OpFAdd %f32 %inval %constf1\n"
5091                 "            OpStore %outloc %addf1\n"
5092                 "            OpBranch %if_end\n"
5093                 "%if_false = OpLabel\n"
5094                 "%subf1    = OpFSub %f32 %inval %constf1\n"
5095                 "            OpStore %outloc %subf1\n"
5096                 "            OpBranch %if_end\n"
5097                 "%if_end   = OpLabel\n"
5098                 "            OpReturn\n"
5099                 "            OpFunctionEnd\n");
5100
5101         cases.push_back(CaseParameter("none",                                   "None"));
5102         cases.push_back(CaseParameter("flatten",                                "Flatten"));
5103         cases.push_back(CaseParameter("dont_flatten",                   "DontFlatten"));
5104         cases.push_back(CaseParameter("flatten_dont_flatten",   "DontFlatten|Flatten"));
5105
5106         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
5107
5108         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
5109         floorAll(inputFloats);
5110
5111         for (size_t ndx = 0; ndx < numElements; ++ndx)
5112                 outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
5113
5114         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5115         {
5116                 map<string, string>             specializations;
5117                 ComputeShaderSpec               spec;
5118
5119                 specializations["CONTROL"] = cases[caseNdx].param;
5120                 spec.assembly = shaderTemplate.specialize(specializations);
5121                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
5122                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
5123                 spec.numWorkGroups = IVec3(numElements, 1, 1);
5124
5125                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5126         }
5127
5128         return group.release();
5129 }
5130
5131 tcu::TestCaseGroup* createOpNameGroup(tcu::TestContext& testCtx)
5132 {
5133         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opname", "Tests OpName cases"));
5134         de::MovePtr<tcu::TestCaseGroup> entryMainGroup  (new tcu::TestCaseGroup(testCtx, "entry_main", "OpName tests with entry main"));
5135         de::MovePtr<tcu::TestCaseGroup> entryNotGroup   (new tcu::TestCaseGroup(testCtx, "entry_rdc", "OpName tests with entry rdc"));
5136         vector<CaseParameter>                   cases;
5137         vector<string>                                  testFunc;
5138         de::Random                                              rnd                             (deStringHash(group->getName()));
5139         const int                                               numElements             = 100;
5140         vector<float>                                   inputFloats             (numElements, 0);
5141         vector<float>                                   outputFloats    (numElements, 0);
5142
5143         fillRandomScalars(rnd, -100.0f, 100.0f, &inputFloats[0], numElements);
5144
5145         for(size_t ndx = 0; ndx < numElements; ++ndx)
5146                 outputFloats[ndx] = -inputFloats[ndx];
5147
5148         const StringTemplate shaderTemplate (
5149                 "OpCapability Shader\n"
5150                 "OpMemoryModel Logical GLSL450\n"
5151                 "OpEntryPoint GLCompute %main \"${ENTRY}\" %id\n"
5152                 "OpExecutionMode %main LocalSize 1 1 1\n"
5153
5154                 "OpName %${FUNC_ID} \"${NAME}\"\n"
5155
5156                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5157
5158                 + string(getComputeAsmInputOutputBufferTraits())
5159
5160                 + string(getComputeAsmCommonTypes())
5161
5162                 + string(getComputeAsmInputOutputBuffer()) +
5163
5164                 "%id        = OpVariable %uvec3ptr Input\n"
5165                 "%zero      = OpConstant %i32 0\n"
5166
5167                 "%func      = OpFunction %void None %voidf\n"
5168                 "%5         = OpLabel\n"
5169                 "             OpReturn\n"
5170                 "             OpFunctionEnd\n"
5171
5172                 "%main      = OpFunction %void None %voidf\n"
5173                 "%entry     = OpLabel\n"
5174                 "%7         = OpFunctionCall %void %func\n"
5175
5176                 "%idval     = OpLoad %uvec3 %id\n"
5177                 "%x         = OpCompositeExtract %u32 %idval 0\n"
5178
5179                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
5180                 "%inval     = OpLoad %f32 %inloc\n"
5181                 "%neg       = OpFNegate %f32 %inval\n"
5182                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
5183                 "             OpStore %outloc %neg\n"
5184
5185
5186                 "             OpReturn\n"
5187                 "             OpFunctionEnd\n");
5188
5189         cases.push_back(CaseParameter("_is_main", "main"));
5190         cases.push_back(CaseParameter("_is_not_main", "not_main"));
5191
5192         testFunc.push_back("main");
5193         testFunc.push_back("func");
5194
5195         for(size_t fNdx = 0; fNdx < testFunc.size(); ++fNdx)
5196         {
5197                 for(size_t ndx = 0; ndx < cases.size(); ++ndx)
5198                 {
5199                         map<string, string>     specializations;
5200                         ComputeShaderSpec       spec;
5201
5202                         specializations["ENTRY"] = "main";
5203                         specializations["FUNC_ID"] = testFunc[fNdx];
5204                         specializations["NAME"] = cases[ndx].param;
5205                         spec.assembly = shaderTemplate.specialize(specializations);
5206                         spec.numWorkGroups = IVec3(numElements, 1, 1);
5207                         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
5208                         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
5209
5210                         entryMainGroup->addChild(new SpvAsmComputeShaderCase(testCtx, (testFunc[fNdx] + cases[ndx].name).c_str(), cases[ndx].name, spec));
5211                 }
5212         }
5213
5214         cases.push_back(CaseParameter("_is_entry", "rdc"));
5215
5216         for(size_t fNdx = 0; fNdx < testFunc.size(); ++fNdx)
5217         {
5218                 for(size_t ndx = 0; ndx < cases.size(); ++ndx)
5219                 {
5220                         map<string, string>     specializations;
5221                         ComputeShaderSpec       spec;
5222
5223                         specializations["ENTRY"] = "rdc";
5224                         specializations["FUNC_ID"] = testFunc[fNdx];
5225                         specializations["NAME"] = cases[ndx].param;
5226                         spec.assembly = shaderTemplate.specialize(specializations);
5227                         spec.numWorkGroups = IVec3(numElements, 1, 1);
5228                         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
5229                         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
5230                         spec.entryPoint = "rdc";
5231
5232                         entryNotGroup->addChild(new SpvAsmComputeShaderCase(testCtx, (testFunc[fNdx] + cases[ndx].name).c_str(), cases[ndx].name, spec));
5233                 }
5234         }
5235
5236         group->addChild(entryMainGroup.release());
5237         group->addChild(entryNotGroup.release());
5238
5239         return group.release();
5240 }
5241
5242 // Assembly code used for testing function control is based on GLSL source code:
5243 //
5244 // #version 430
5245 //
5246 // layout(std140, set = 0, binding = 0) readonly buffer Input {
5247 //   float elements[];
5248 // } input_data;
5249 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
5250 //   float elements[];
5251 // } output_data;
5252 //
5253 // float const10() { return 10.f; }
5254 //
5255 // void main() {
5256 //   uint x = gl_GlobalInvocationID.x;
5257 //   output_data.elements[x] = input_data.elements[x] + const10();
5258 // }
5259 tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
5260 {
5261         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
5262         vector<CaseParameter>                   cases;
5263         de::Random                                              rnd                             (deStringHash(group->getName()));
5264         const int                                               numElements             = 100;
5265         vector<float>                                   inputFloats             (numElements, 0);
5266         vector<float>                                   outputFloats    (numElements, 0);
5267         const StringTemplate                    shaderTemplate  (
5268                 string(getComputeAsmShaderPreamble()) +
5269
5270                 "OpSource GLSL 430\n"
5271                 "OpName %main \"main\"\n"
5272                 "OpName %func_const10 \"const10(\"\n"
5273                 "OpName %id \"gl_GlobalInvocationID\"\n"
5274
5275                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5276
5277                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
5278
5279                 "%f32f = OpTypeFunction %f32\n"
5280                 "%id = OpVariable %uvec3ptr Input\n"
5281                 "%zero = OpConstant %i32 0\n"
5282                 "%constf10 = OpConstant %f32 10.0\n"
5283
5284                 "%main         = OpFunction %void None %voidf\n"
5285                 "%entry        = OpLabel\n"
5286                 "%idval        = OpLoad %uvec3 %id\n"
5287                 "%x            = OpCompositeExtract %u32 %idval 0\n"
5288                 "%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
5289                 "%inval        = OpLoad %f32 %inloc\n"
5290                 "%ret_10       = OpFunctionCall %f32 %func_const10\n"
5291                 "%fadd         = OpFAdd %f32 %inval %ret_10\n"
5292                 "%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
5293                 "                OpStore %outloc %fadd\n"
5294                 "                OpReturn\n"
5295                 "                OpFunctionEnd\n"
5296
5297                 "%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
5298                 "%label        = OpLabel\n"
5299                 "                OpReturnValue %constf10\n"
5300                 "                OpFunctionEnd\n");
5301
5302         cases.push_back(CaseParameter("none",                                           "None"));
5303         cases.push_back(CaseParameter("inline",                                         "Inline"));
5304         cases.push_back(CaseParameter("dont_inline",                            "DontInline"));
5305         cases.push_back(CaseParameter("pure",                                           "Pure"));
5306         cases.push_back(CaseParameter("const",                                          "Const"));
5307         cases.push_back(CaseParameter("inline_pure",                            "Inline|Pure"));
5308         cases.push_back(CaseParameter("const_dont_inline",                      "Const|DontInline"));
5309         cases.push_back(CaseParameter("inline_dont_inline",                     "Inline|DontInline"));
5310         cases.push_back(CaseParameter("pure_inline_dont_inline",        "Pure|Inline|DontInline"));
5311
5312         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
5313
5314         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
5315         floorAll(inputFloats);
5316
5317         for (size_t ndx = 0; ndx < numElements; ++ndx)
5318                 outputFloats[ndx] = inputFloats[ndx] + 10.f;
5319
5320         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5321         {
5322                 map<string, string>             specializations;
5323                 ComputeShaderSpec               spec;
5324
5325                 specializations["CONTROL"] = cases[caseNdx].param;
5326                 spec.assembly = shaderTemplate.specialize(specializations);
5327                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
5328                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
5329                 spec.numWorkGroups = IVec3(numElements, 1, 1);
5330
5331                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5332         }
5333
5334         return group.release();
5335 }
5336
5337 tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
5338 {
5339         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
5340         vector<CaseParameter>                   cases;
5341         de::Random                                              rnd                             (deStringHash(group->getName()));
5342         const int                                               numElements             = 100;
5343         vector<float>                                   inputFloats             (numElements, 0);
5344         vector<float>                                   outputFloats    (numElements, 0);
5345         const StringTemplate                    shaderTemplate  (
5346                 string(getComputeAsmShaderPreamble()) +
5347
5348                 "OpSource GLSL 430\n"
5349                 "OpName %main           \"main\"\n"
5350                 "OpName %id             \"gl_GlobalInvocationID\"\n"
5351
5352                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5353
5354                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
5355
5356                 "%f32ptr_f  = OpTypePointer Function %f32\n"
5357
5358                 "%id        = OpVariable %uvec3ptr Input\n"
5359                 "%zero      = OpConstant %i32 0\n"
5360                 "%four      = OpConstant %i32 4\n"
5361
5362                 "%main      = OpFunction %void None %voidf\n"
5363                 "%label     = OpLabel\n"
5364                 "%copy      = OpVariable %f32ptr_f Function\n"
5365                 "%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
5366                 "%x         = OpCompositeExtract %u32 %idval 0\n"
5367                 "%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
5368                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
5369                 "             OpCopyMemory %copy %inloc ${ACCESS}\n"
5370                 "%val1      = OpLoad %f32 %copy\n"
5371                 "%val2      = OpLoad %f32 %inloc\n"
5372                 "%add       = OpFAdd %f32 %val1 %val2\n"
5373                 "             OpStore %outloc %add ${ACCESS}\n"
5374                 "             OpReturn\n"
5375                 "             OpFunctionEnd\n");
5376
5377         cases.push_back(CaseParameter("null",                                   ""));
5378         cases.push_back(CaseParameter("none",                                   "None"));
5379         cases.push_back(CaseParameter("volatile",                               "Volatile"));
5380         cases.push_back(CaseParameter("aligned",                                "Aligned 4"));
5381         cases.push_back(CaseParameter("nontemporal",                    "Nontemporal"));
5382         cases.push_back(CaseParameter("aligned_nontemporal",    "Aligned|Nontemporal 4"));
5383         cases.push_back(CaseParameter("aligned_volatile",               "Volatile|Aligned 4"));
5384
5385         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
5386
5387         for (size_t ndx = 0; ndx < numElements; ++ndx)
5388                 outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
5389
5390         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5391         {
5392                 map<string, string>             specializations;
5393                 ComputeShaderSpec               spec;
5394
5395                 specializations["ACCESS"] = cases[caseNdx].param;
5396                 spec.assembly = shaderTemplate.specialize(specializations);
5397                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
5398                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
5399                 spec.numWorkGroups = IVec3(numElements, 1, 1);
5400
5401                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5402         }
5403
5404         return group.release();
5405 }
5406
5407 // Checks that we can get undefined values for various types, without exercising a computation with it.
5408 tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
5409 {
5410         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
5411         vector<CaseParameter>                   cases;
5412         de::Random                                              rnd                             (deStringHash(group->getName()));
5413         const int                                               numElements             = 100;
5414         vector<float>                                   positiveFloats  (numElements, 0);
5415         vector<float>                                   negativeFloats  (numElements, 0);
5416         const StringTemplate                    shaderTemplate  (
5417                 string(getComputeAsmShaderPreamble()) +
5418
5419                 "OpSource GLSL 430\n"
5420                 "OpName %main           \"main\"\n"
5421                 "OpName %id             \"gl_GlobalInvocationID\"\n"
5422
5423                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5424
5425                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
5426                 "%uvec2     = OpTypeVector %u32 2\n"
5427                 "%fvec4     = OpTypeVector %f32 4\n"
5428                 "%fmat33    = OpTypeMatrix %fvec3 3\n"
5429                 "%image     = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
5430                 "%sampler   = OpTypeSampler\n"
5431                 "%simage    = OpTypeSampledImage %image\n"
5432                 "%const100  = OpConstant %u32 100\n"
5433                 "%uarr100   = OpTypeArray %i32 %const100\n"
5434                 "%struct    = OpTypeStruct %f32 %i32 %u32\n"
5435                 "%pointer   = OpTypePointer Function %i32\n"
5436                 + string(getComputeAsmInputOutputBuffer()) +
5437
5438                 "%id        = OpVariable %uvec3ptr Input\n"
5439                 "%zero      = OpConstant %i32 0\n"
5440
5441                 "%main      = OpFunction %void None %voidf\n"
5442                 "%label     = OpLabel\n"
5443
5444                 "%undef     = OpUndef ${TYPE}\n"
5445
5446                 "%idval     = OpLoad %uvec3 %id\n"
5447                 "%x         = OpCompositeExtract %u32 %idval 0\n"
5448
5449                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
5450                 "%inval     = OpLoad %f32 %inloc\n"
5451                 "%neg       = OpFNegate %f32 %inval\n"
5452                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
5453                 "             OpStore %outloc %neg\n"
5454                 "             OpReturn\n"
5455                 "             OpFunctionEnd\n");
5456
5457         cases.push_back(CaseParameter("bool",                   "%bool"));
5458         cases.push_back(CaseParameter("sint32",                 "%i32"));
5459         cases.push_back(CaseParameter("uint32",                 "%u32"));
5460         cases.push_back(CaseParameter("float32",                "%f32"));
5461         cases.push_back(CaseParameter("vec4float32",    "%fvec4"));
5462         cases.push_back(CaseParameter("vec2uint32",             "%uvec2"));
5463         cases.push_back(CaseParameter("matrix",                 "%fmat33"));
5464         cases.push_back(CaseParameter("image",                  "%image"));
5465         cases.push_back(CaseParameter("sampler",                "%sampler"));
5466         cases.push_back(CaseParameter("sampledimage",   "%simage"));
5467         cases.push_back(CaseParameter("array",                  "%uarr100"));
5468         cases.push_back(CaseParameter("runtimearray",   "%f32arr"));
5469         cases.push_back(CaseParameter("struct",                 "%struct"));
5470         cases.push_back(CaseParameter("pointer",                "%pointer"));
5471
5472         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
5473
5474         for (size_t ndx = 0; ndx < numElements; ++ndx)
5475                 negativeFloats[ndx] = -positiveFloats[ndx];
5476
5477         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5478         {
5479                 map<string, string>             specializations;
5480                 ComputeShaderSpec               spec;
5481
5482                 specializations["TYPE"] = cases[caseNdx].param;
5483                 spec.assembly = shaderTemplate.specialize(specializations);
5484                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
5485                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
5486                 spec.numWorkGroups = IVec3(numElements, 1, 1);
5487
5488                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5489         }
5490
5491                 return group.release();
5492 }
5493 } // anonymous
5494
5495 tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5496 {
5497         struct NameCodePair { string name, code; };
5498         RGBA                                                    defaultColors[4];
5499         de::MovePtr<tcu::TestCaseGroup> opSourceTests                   (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5500         const std::string                               opsourceGLSLWithFile    = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5501         map<string, string>                             fragments                               = passthruFragments();
5502         const NameCodePair                              tests[]                                 =
5503         {
5504                 {"unknown", "OpSource Unknown 321"},
5505                 {"essl", "OpSource ESSL 310"},
5506                 {"glsl", "OpSource GLSL 450"},
5507                 {"opencl_cpp", "OpSource OpenCL_CPP 120"},
5508                 {"opencl_c", "OpSource OpenCL_C 120"},
5509                 {"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5510                 {"file", opsourceGLSLWithFile},
5511                 {"source", opsourceGLSLWithFile + "\"void main(){}\""},
5512                 // Longest possible source string: SPIR-V limits instructions to 65535
5513                 // words, of which the first 4 are opsourceGLSLWithFile; the rest will
5514                 // contain 65530 UTF8 characters (one word each) plus one last word
5515                 // containing 3 ASCII characters and \0.
5516                 {"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5517         };
5518
5519         getDefaultColors(defaultColors);
5520         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5521         {
5522                 fragments["debug"] = tests[testNdx].code;
5523                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5524         }
5525
5526         return opSourceTests.release();
5527 }
5528
5529 tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5530 {
5531         struct NameCodePair { string name, code; };
5532         RGBA                                                            defaultColors[4];
5533         de::MovePtr<tcu::TestCaseGroup>         opSourceTests           (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5534         map<string, string>                                     fragments                       = passthruFragments();
5535         const std::string                                       opsource                        = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5536         const NameCodePair                                      tests[]                         =
5537         {
5538                 {"empty", opsource + "OpSourceContinued \"\""},
5539                 {"short", opsource + "OpSourceContinued \"abcde\""},
5540                 {"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5541                 // Longest possible source string: SPIR-V limits instructions to 65535
5542                 // words, of which the first one is OpSourceContinued/length; the rest
5543                 // will contain 65533 UTF8 characters (one word each) plus one last word
5544                 // containing 3 ASCII characters and \0.
5545                 {"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5546         };
5547
5548         getDefaultColors(defaultColors);
5549         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5550         {
5551                 fragments["debug"] = tests[testNdx].code;
5552                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5553         }
5554
5555         return opSourceTests.release();
5556 }
5557 tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5558 {
5559         RGBA                                                             defaultColors[4];
5560         de::MovePtr<tcu::TestCaseGroup>          opLineTests             (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5561         map<string, string>                                      fragments;
5562         getDefaultColors(defaultColors);
5563         fragments["debug"]                      =
5564                 "%name = OpString \"name\"\n";
5565
5566         fragments["pre_main"]   =
5567                 "OpNoLine\n"
5568                 "OpNoLine\n"
5569                 "OpLine %name 1 1\n"
5570                 "OpNoLine\n"
5571                 "OpLine %name 1 1\n"
5572                 "OpLine %name 1 1\n"
5573                 "%second_function = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5574                 "OpNoLine\n"
5575                 "OpLine %name 1 1\n"
5576                 "OpNoLine\n"
5577                 "OpLine %name 1 1\n"
5578                 "OpLine %name 1 1\n"
5579                 "%second_param1 = OpFunctionParameter %v4f32\n"
5580                 "OpNoLine\n"
5581                 "OpNoLine\n"
5582                 "%label_secondfunction = OpLabel\n"
5583                 "OpNoLine\n"
5584                 "OpReturnValue %second_param1\n"
5585                 "OpFunctionEnd\n"
5586                 "OpNoLine\n"
5587                 "OpNoLine\n";
5588
5589         fragments["testfun"]            =
5590                 // A %test_code function that returns its argument unchanged.
5591                 "OpNoLine\n"
5592                 "OpNoLine\n"
5593                 "OpLine %name 1 1\n"
5594                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5595                 "OpNoLine\n"
5596                 "%param1 = OpFunctionParameter %v4f32\n"
5597                 "OpNoLine\n"
5598                 "OpNoLine\n"
5599                 "%label_testfun = OpLabel\n"
5600                 "OpNoLine\n"
5601                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5602                 "OpReturnValue %val1\n"
5603                 "OpFunctionEnd\n"
5604                 "OpLine %name 1 1\n"
5605                 "OpNoLine\n";
5606
5607         createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5608
5609         return opLineTests.release();
5610 }
5611
5612 tcu::TestCaseGroup* createOpModuleProcessedTests(tcu::TestContext& testCtx)
5613 {
5614         RGBA                                                            defaultColors[4];
5615         de::MovePtr<tcu::TestCaseGroup>         opModuleProcessedTests                  (new tcu::TestCaseGroup(testCtx, "opmoduleprocessed", "OpModuleProcessed instruction"));
5616         map<string, string>                                     fragments;
5617         std::vector<std::string>                        noExtensions;
5618         GraphicsResources                                       resources;
5619
5620         getDefaultColors(defaultColors);
5621         resources.verifyBinary = veryfiBinaryShader;
5622         resources.spirvVersion = SPIRV_VERSION_1_3;
5623
5624         fragments["moduleprocessed"]                                                    =
5625                 "OpModuleProcessed \"VULKAN CTS\"\n"
5626                 "OpModuleProcessed \"Negative values\"\n"
5627                 "OpModuleProcessed \"Date: 2017/09/21\"\n";
5628
5629         fragments["pre_main"]   =
5630                 "%second_function = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5631                 "%second_param1 = OpFunctionParameter %v4f32\n"
5632                 "%label_secondfunction = OpLabel\n"
5633                 "OpReturnValue %second_param1\n"
5634                 "OpFunctionEnd\n";
5635
5636         fragments["testfun"]            =
5637                 // A %test_code function that returns its argument unchanged.
5638                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5639                 "%param1 = OpFunctionParameter %v4f32\n"
5640                 "%label_testfun = OpLabel\n"
5641                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5642                 "OpReturnValue %val1\n"
5643                 "OpFunctionEnd\n";
5644
5645         createTestsForAllStages ("opmoduleprocessed", defaultColors, defaultColors, fragments, resources, noExtensions, opModuleProcessedTests.get());
5646
5647         return opModuleProcessedTests.release();
5648 }
5649
5650
5651 tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5652 {
5653         RGBA                                                                                                    defaultColors[4];
5654         de::MovePtr<tcu::TestCaseGroup>                                                 opLineTests                     (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5655         map<string, string>                                                                             fragments;
5656         std::vector<std::pair<std::string, std::string> >               problemStrings;
5657
5658         problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5659         problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5660         problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5661         getDefaultColors(defaultColors);
5662
5663         fragments["debug"]                      =
5664                 "%other_name = OpString \"other_name\"\n";
5665
5666         fragments["pre_main"]   =
5667                 "OpLine %file_name 32 0\n"
5668                 "OpLine %file_name 32 32\n"
5669                 "OpLine %file_name 32 40\n"
5670                 "OpLine %other_name 32 40\n"
5671                 "OpLine %other_name 0 100\n"
5672                 "OpLine %other_name 0 4294967295\n"
5673                 "OpLine %other_name 4294967295 0\n"
5674                 "OpLine %other_name 32 40\n"
5675                 "OpLine %file_name 0 0\n"
5676                 "%second_function = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5677                 "OpLine %file_name 1 0\n"
5678                 "%second_param1 = OpFunctionParameter %v4f32\n"
5679                 "OpLine %file_name 1 3\n"
5680                 "OpLine %file_name 1 2\n"
5681                 "%label_secondfunction = OpLabel\n"
5682                 "OpLine %file_name 0 2\n"
5683                 "OpReturnValue %second_param1\n"
5684                 "OpFunctionEnd\n"
5685                 "OpLine %file_name 0 2\n"
5686                 "OpLine %file_name 0 2\n";
5687
5688         fragments["testfun"]            =
5689                 // A %test_code function that returns its argument unchanged.
5690                 "OpLine %file_name 1 0\n"
5691                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5692                 "OpLine %file_name 16 330\n"
5693                 "%param1 = OpFunctionParameter %v4f32\n"
5694                 "OpLine %file_name 14 442\n"
5695                 "%label_testfun = OpLabel\n"
5696                 "OpLine %file_name 11 1024\n"
5697                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5698                 "OpLine %file_name 2 97\n"
5699                 "OpReturnValue %val1\n"
5700                 "OpFunctionEnd\n"
5701                 "OpLine %file_name 5 32\n";
5702
5703         for (size_t i = 0; i < problemStrings.size(); ++i)
5704         {
5705                 map<string, string> testFragments = fragments;
5706                 testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5707                 createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5708         }
5709
5710         return opLineTests.release();
5711 }
5712
5713 tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5714 {
5715         de::MovePtr<tcu::TestCaseGroup> opConstantNullTests             (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5716         RGBA                                                    colors[4];
5717
5718
5719         const char                                              functionStart[] =
5720                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5721                 "%param1 = OpFunctionParameter %v4f32\n"
5722                 "%lbl    = OpLabel\n";
5723
5724         const char                                              functionEnd[]   =
5725                 "OpReturnValue %transformed_param\n"
5726                 "OpFunctionEnd\n";
5727
5728         struct NameConstantsCode
5729         {
5730                 string name;
5731                 string constants;
5732                 string code;
5733         };
5734
5735         NameConstantsCode tests[] =
5736         {
5737                 {
5738                         "vec4",
5739                         "%cnull = OpConstantNull %v4f32\n",
5740                         "%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5741                 },
5742                 {
5743                         "float",
5744                         "%cnull = OpConstantNull %f32\n",
5745                         "%vp = OpVariable %fp_v4f32 Function\n"
5746                         "%v  = OpLoad %v4f32 %vp\n"
5747                         "%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5748                         "%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5749                         "%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5750                         "%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5751                         "%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5752                 },
5753                 {
5754                         "bool",
5755                         "%cnull             = OpConstantNull %bool\n",
5756                         "%v                 = OpVariable %fp_v4f32 Function\n"
5757                         "                     OpStore %v %param1\n"
5758                         "                     OpSelectionMerge %false_label None\n"
5759                         "                     OpBranchConditional %cnull %true_label %false_label\n"
5760                         "%true_label        = OpLabel\n"
5761                         "                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5762                         "                     OpBranch %false_label\n"
5763                         "%false_label       = OpLabel\n"
5764                         "%transformed_param = OpLoad %v4f32 %v\n"
5765                 },
5766                 {
5767                         "i32",
5768                         "%cnull             = OpConstantNull %i32\n",
5769                         "%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5770                         "%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5771                         "                     OpSelectionMerge %false_label None\n"
5772                         "                     OpBranchConditional %b %true_label %false_label\n"
5773                         "%true_label        = OpLabel\n"
5774                         "                     OpStore %v %param1\n"
5775                         "                     OpBranch %false_label\n"
5776                         "%false_label       = OpLabel\n"
5777                         "%transformed_param = OpLoad %v4f32 %v\n"
5778                 },
5779                 {
5780                         "struct",
5781                         "%stype             = OpTypeStruct %f32 %v4f32\n"
5782                         "%fp_stype          = OpTypePointer Function %stype\n"
5783                         "%cnull             = OpConstantNull %stype\n",
5784                         "%v                 = OpVariable %fp_stype Function %cnull\n"
5785                         "%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5786                         "%f_val             = OpLoad %v4f32 %f\n"
5787                         "%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5788                 },
5789                 {
5790                         "array",
5791                         "%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5792                         "%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5793                         "%cnull             = OpConstantNull %a4_v4f32\n",
5794                         "%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5795                         "%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5796                         "%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5797                         "%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5798                         "%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5799                         "%f_val             = OpLoad %v4f32 %f\n"
5800                         "%f1_val            = OpLoad %v4f32 %f1\n"
5801                         "%f2_val            = OpLoad %v4f32 %f2\n"
5802                         "%f3_val            = OpLoad %v4f32 %f3\n"
5803                         "%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5804                         "%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5805                         "%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5806                         "%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5807                 },
5808                 {
5809                         "matrix",
5810                         "%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5811                         "%cnull             = OpConstantNull %mat4x4_f32\n",
5812                         // Our null matrix * any vector should result in a zero vector.
5813                         "%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5814                         "%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5815                 }
5816         };
5817
5818         getHalfColorsFullAlpha(colors);
5819
5820         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5821         {
5822                 map<string, string> fragments;
5823                 fragments["pre_main"] = tests[testNdx].constants;
5824                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5825                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5826         }
5827         return opConstantNullTests.release();
5828 }
5829 tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5830 {
5831         de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests                (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5832         RGBA                                                    inputColors[4];
5833         RGBA                                                    outputColors[4];
5834
5835
5836         const char                                              functionStart[]  =
5837                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5838                 "%param1 = OpFunctionParameter %v4f32\n"
5839                 "%lbl    = OpLabel\n";
5840
5841         const char                                              functionEnd[]           =
5842                 "OpReturnValue %transformed_param\n"
5843                 "OpFunctionEnd\n";
5844
5845         struct NameConstantsCode
5846         {
5847                 string name;
5848                 string constants;
5849                 string code;
5850         };
5851
5852         NameConstantsCode tests[] =
5853         {
5854                 {
5855                         "vec4",
5856
5857                         "%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5858                         "%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5859                 },
5860                 {
5861                         "struct",
5862
5863                         "%stype             = OpTypeStruct %v4f32 %f32\n"
5864                         "%fp_stype          = OpTypePointer Function %stype\n"
5865                         "%f32_n_1           = OpConstant %f32 -1.0\n"
5866                         "%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5867                         "%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5868                         "%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5869
5870                         "%v                 = OpVariable %fp_stype Function %cval\n"
5871                         "%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5872                         "%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5873                         "%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5874                         "%f32_val           = OpLoad %f32 %f32_ptr\n"
5875                         "%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5876                         "%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5877                         "%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5878                 },
5879                 {
5880                         // [1|0|0|0.5] [x] = x + 0.5
5881                         // [0|1|0|0.5] [y] = y + 0.5
5882                         // [0|0|1|0.5] [z] = z + 0.5
5883                         // [0|0|0|1  ] [1] = 1
5884                         "matrix",
5885
5886                         "%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5887                         "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5888                         "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5889                         "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5890                         "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5891                         "%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5892
5893                         "%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5894                 },
5895                 {
5896                         "array",
5897
5898                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5899                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5900                         "%f32_n_1             = OpConstant %f32 -1.0\n"
5901                         "%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5902                         "%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5903
5904                         "%v                   = OpVariable %fp_a4f32 Function %carr\n"
5905                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5906                         "%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5907                         "%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5908                         "%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5909                         "%f_val               = OpLoad %f32 %f\n"
5910                         "%f1_val              = OpLoad %f32 %f1\n"
5911                         "%f2_val              = OpLoad %f32 %f2\n"
5912                         "%f3_val              = OpLoad %f32 %f3\n"
5913                         "%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5914                         "%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5915                         "%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5916                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5917                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5918                 },
5919                 {
5920                         //
5921                         // [
5922                         //   {
5923                         //      0.0,
5924                         //      [ 1.0, 1.0, 1.0, 1.0]
5925                         //   },
5926                         //   {
5927                         //      1.0,
5928                         //      [ 0.0, 0.5, 0.0, 0.0]
5929                         //   }, //     ^^^
5930                         //   {
5931                         //      0.0,
5932                         //      [ 1.0, 1.0, 1.0, 1.0]
5933                         //   }
5934                         // ]
5935                         "array_of_struct_of_array",
5936
5937                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5938                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5939                         "%stype               = OpTypeStruct %f32 %a4f32\n"
5940                         "%a3stype             = OpTypeArray %stype %c_u32_3\n"
5941                         "%fp_a3stype          = OpTypePointer Function %a3stype\n"
5942                         "%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5943                         "%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5944                         "%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5945                         "%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5946                         "%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5947
5948                         "%v                   = OpVariable %fp_a3stype Function %carr\n"
5949                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5950                         "%f_l                 = OpLoad %f32 %f\n"
5951                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
5952                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5953                 }
5954         };
5955
5956         getHalfColorsFullAlpha(inputColors);
5957         outputColors[0] = RGBA(255, 255, 255, 255);
5958         outputColors[1] = RGBA(255, 127, 127, 255);
5959         outputColors[2] = RGBA(127, 255, 127, 255);
5960         outputColors[3] = RGBA(127, 127, 255, 255);
5961
5962         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5963         {
5964                 map<string, string> fragments;
5965                 fragments["pre_main"] = tests[testNdx].constants;
5966                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5967                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5968         }
5969         return opConstantCompositeTests.release();
5970 }
5971
5972 tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5973 {
5974         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5975         RGBA                                                    inputColors[4];
5976         RGBA                                                    outputColors[4];
5977         map<string, string>                             fragments;
5978
5979         // vec4 test_code(vec4 param) {
5980         //   vec4 result = param;
5981         //   for (int i = 0; i < 4; ++i) {
5982         //     if (i == 0) result[i] = 0.;
5983         //     else        result[i] = 1. - result[i];
5984         //   }
5985         //   return result;
5986         // }
5987         const char                                              function[]                      =
5988                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
5989                 "%param1    = OpFunctionParameter %v4f32\n"
5990                 "%lbl       = OpLabel\n"
5991                 "%iptr      = OpVariable %fp_i32 Function\n"
5992                 "%result    = OpVariable %fp_v4f32 Function\n"
5993                 "             OpStore %iptr %c_i32_0\n"
5994                 "             OpStore %result %param1\n"
5995                 "             OpBranch %loop\n"
5996
5997                 // Loop entry block.
5998                 "%loop      = OpLabel\n"
5999                 "%ival      = OpLoad %i32 %iptr\n"
6000                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6001                 "             OpLoopMerge %exit %if_entry None\n"
6002                 "             OpBranchConditional %lt_4 %if_entry %exit\n"
6003
6004                 // Merge block for loop.
6005                 "%exit      = OpLabel\n"
6006                 "%ret       = OpLoad %v4f32 %result\n"
6007                 "             OpReturnValue %ret\n"
6008
6009                 // If-statement entry block.
6010                 "%if_entry  = OpLabel\n"
6011                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
6012                 "%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
6013                 "             OpSelectionMerge %if_exit None\n"
6014                 "             OpBranchConditional %eq_0 %if_true %if_false\n"
6015
6016                 // False branch for if-statement.
6017                 "%if_false  = OpLabel\n"
6018                 "%val       = OpLoad %f32 %loc\n"
6019                 "%sub       = OpFSub %f32 %c_f32_1 %val\n"
6020                 "             OpStore %loc %sub\n"
6021                 "             OpBranch %if_exit\n"
6022
6023                 // Merge block for if-statement.
6024                 "%if_exit   = OpLabel\n"
6025                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6026                 "             OpStore %iptr %ival_next\n"
6027                 "             OpBranch %loop\n"
6028
6029                 // True branch for if-statement.
6030                 "%if_true   = OpLabel\n"
6031                 "             OpStore %loc %c_f32_0\n"
6032                 "             OpBranch %if_exit\n"
6033
6034                 "             OpFunctionEnd\n";
6035
6036         fragments["testfun"]    = function;
6037
6038         inputColors[0]                  = RGBA(127, 127, 127, 0);
6039         inputColors[1]                  = RGBA(127, 0,   0,   0);
6040         inputColors[2]                  = RGBA(0,   127, 0,   0);
6041         inputColors[3]                  = RGBA(0,   0,   127, 0);
6042
6043         outputColors[0]                 = RGBA(0, 128, 128, 255);
6044         outputColors[1]                 = RGBA(0, 255, 255, 255);
6045         outputColors[2]                 = RGBA(0, 128, 255, 255);
6046         outputColors[3]                 = RGBA(0, 255, 128, 255);
6047
6048         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
6049
6050         return group.release();
6051 }
6052
6053 tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
6054 {
6055         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
6056         RGBA                                                    inputColors[4];
6057         RGBA                                                    outputColors[4];
6058         map<string, string>                             fragments;
6059
6060         const char                                              typesAndConstants[]     =
6061                 "%c_f32_p2  = OpConstant %f32 0.2\n"
6062                 "%c_f32_p4  = OpConstant %f32 0.4\n"
6063                 "%c_f32_p6  = OpConstant %f32 0.6\n"
6064                 "%c_f32_p8  = OpConstant %f32 0.8\n";
6065
6066         // vec4 test_code(vec4 param) {
6067         //   vec4 result = param;
6068         //   for (int i = 0; i < 4; ++i) {
6069         //     switch (i) {
6070         //       case 0: result[i] += .2; break;
6071         //       case 1: result[i] += .6; break;
6072         //       case 2: result[i] += .4; break;
6073         //       case 3: result[i] += .8; break;
6074         //       default: break; // unreachable
6075         //     }
6076         //   }
6077         //   return result;
6078         // }
6079         const char                                              function[]                      =
6080                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6081                 "%param1    = OpFunctionParameter %v4f32\n"
6082                 "%lbl       = OpLabel\n"
6083                 "%iptr      = OpVariable %fp_i32 Function\n"
6084                 "%result    = OpVariable %fp_v4f32 Function\n"
6085                 "             OpStore %iptr %c_i32_0\n"
6086                 "             OpStore %result %param1\n"
6087                 "             OpBranch %loop\n"
6088
6089                 // Loop entry block.
6090                 "%loop      = OpLabel\n"
6091                 "%ival      = OpLoad %i32 %iptr\n"
6092                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6093                 "             OpLoopMerge %exit %switch_exit None\n"
6094                 "             OpBranchConditional %lt_4 %switch_entry %exit\n"
6095
6096                 // Merge block for loop.
6097                 "%exit      = OpLabel\n"
6098                 "%ret       = OpLoad %v4f32 %result\n"
6099                 "             OpReturnValue %ret\n"
6100
6101                 // Switch-statement entry block.
6102                 "%switch_entry   = OpLabel\n"
6103                 "%loc            = OpAccessChain %fp_f32 %result %ival\n"
6104                 "%val            = OpLoad %f32 %loc\n"
6105                 "                  OpSelectionMerge %switch_exit None\n"
6106                 "                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6107
6108                 "%case2          = OpLabel\n"
6109                 "%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
6110                 "                  OpStore %loc %addp4\n"
6111                 "                  OpBranch %switch_exit\n"
6112
6113                 "%switch_default = OpLabel\n"
6114                 "                  OpUnreachable\n"
6115
6116                 "%case3          = OpLabel\n"
6117                 "%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
6118                 "                  OpStore %loc %addp8\n"
6119                 "                  OpBranch %switch_exit\n"
6120
6121                 "%case0          = OpLabel\n"
6122                 "%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
6123                 "                  OpStore %loc %addp2\n"
6124                 "                  OpBranch %switch_exit\n"
6125
6126                 // Merge block for switch-statement.
6127                 "%switch_exit    = OpLabel\n"
6128                 "%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
6129                 "                  OpStore %iptr %ival_next\n"
6130                 "                  OpBranch %loop\n"
6131
6132                 "%case1          = OpLabel\n"
6133                 "%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
6134                 "                  OpStore %loc %addp6\n"
6135                 "                  OpBranch %switch_exit\n"
6136
6137                 "                  OpFunctionEnd\n";
6138
6139         fragments["pre_main"]   = typesAndConstants;
6140         fragments["testfun"]    = function;
6141
6142         inputColors[0]                  = RGBA(127, 27,  127, 51);
6143         inputColors[1]                  = RGBA(127, 0,   0,   51);
6144         inputColors[2]                  = RGBA(0,   27,  0,   51);
6145         inputColors[3]                  = RGBA(0,   0,   127, 51);
6146
6147         outputColors[0]                 = RGBA(178, 180, 229, 255);
6148         outputColors[1]                 = RGBA(178, 153, 102, 255);
6149         outputColors[2]                 = RGBA(51,  180, 102, 255);
6150         outputColors[3]                 = RGBA(51,  153, 229, 255);
6151
6152         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
6153
6154         return group.release();
6155 }
6156
6157 tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
6158 {
6159         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
6160         RGBA                                                    inputColors[4];
6161         RGBA                                                    outputColors[4];
6162         map<string, string>                             fragments;
6163
6164         const char                                              decorations[]           =
6165                 "OpDecorate %array_group         ArrayStride 4\n"
6166                 "OpDecorate %struct_member_group Offset 0\n"
6167                 "%array_group         = OpDecorationGroup\n"
6168                 "%struct_member_group = OpDecorationGroup\n"
6169
6170                 "OpDecorate %group1 RelaxedPrecision\n"
6171                 "OpDecorate %group3 RelaxedPrecision\n"
6172                 "OpDecorate %group3 Invariant\n"
6173                 "OpDecorate %group3 Restrict\n"
6174                 "%group0 = OpDecorationGroup\n"
6175                 "%group1 = OpDecorationGroup\n"
6176                 "%group3 = OpDecorationGroup\n";
6177
6178         const char                                              typesAndConstants[]     =
6179                 "%a3f32     = OpTypeArray %f32 %c_u32_3\n"
6180                 "%struct1   = OpTypeStruct %a3f32\n"
6181                 "%struct2   = OpTypeStruct %a3f32\n"
6182                 "%fp_struct1 = OpTypePointer Function %struct1\n"
6183                 "%fp_struct2 = OpTypePointer Function %struct2\n"
6184                 "%c_f32_2    = OpConstant %f32 2.\n"
6185                 "%c_f32_n2   = OpConstant %f32 -2.\n"
6186
6187                 "%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
6188                 "%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
6189                 "%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
6190                 "%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
6191
6192         const char                                              function[]                      =
6193                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6194                 "%param     = OpFunctionParameter %v4f32\n"
6195                 "%entry     = OpLabel\n"
6196                 "%result    = OpVariable %fp_v4f32 Function\n"
6197                 "%v_struct1 = OpVariable %fp_struct1 Function\n"
6198                 "%v_struct2 = OpVariable %fp_struct2 Function\n"
6199                 "             OpStore %result %param\n"
6200                 "             OpStore %v_struct1 %c_struct1\n"
6201                 "             OpStore %v_struct2 %c_struct2\n"
6202                 "%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
6203                 "%val1      = OpLoad %f32 %ptr1\n"
6204                 "%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6205                 "%val2      = OpLoad %f32 %ptr2\n"
6206                 "%addvalues = OpFAdd %f32 %val1 %val2\n"
6207                 "%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6208                 "%val       = OpLoad %f32 %ptr\n"
6209                 "%addresult = OpFAdd %f32 %addvalues %val\n"
6210                 "             OpStore %ptr %addresult\n"
6211                 "%ret       = OpLoad %v4f32 %result\n"
6212                 "             OpReturnValue %ret\n"
6213                 "             OpFunctionEnd\n";
6214
6215         struct CaseNameDecoration
6216         {
6217                 string name;
6218                 string decoration;
6219         };
6220
6221         CaseNameDecoration tests[] =
6222         {
6223                 {
6224                         "same_decoration_group_on_multiple_types",
6225                         "OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6226                 },
6227                 {
6228                         "empty_decoration_group",
6229                         "OpGroupDecorate %group0      %a3f32\n"
6230                         "OpGroupDecorate %group0      %result\n"
6231                 },
6232                 {
6233                         "one_element_decoration_group",
6234                         "OpGroupDecorate %array_group %a3f32\n"
6235                 },
6236                 {
6237                         "multiple_elements_decoration_group",
6238                         "OpGroupDecorate %group3      %v_struct1\n"
6239                 },
6240                 {
6241                         "multiple_decoration_groups_on_same_variable",
6242                         "OpGroupDecorate %group0      %v_struct2\n"
6243                         "OpGroupDecorate %group1      %v_struct2\n"
6244                         "OpGroupDecorate %group3      %v_struct2\n"
6245                 },
6246                 {
6247                         "same_decoration_group_multiple_times",
6248                         "OpGroupDecorate %group1      %addvalues\n"
6249                         "OpGroupDecorate %group1      %addvalues\n"
6250                         "OpGroupDecorate %group1      %addvalues\n"
6251                 },
6252
6253         };
6254
6255         getHalfColorsFullAlpha(inputColors);
6256         getHalfColorsFullAlpha(outputColors);
6257
6258         for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6259         {
6260                 fragments["decoration"] = decorations + tests[idx].decoration;
6261                 fragments["pre_main"]   = typesAndConstants;
6262                 fragments["testfun"]    = function;
6263
6264                 createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6265         }
6266
6267         return group.release();
6268 }
6269
6270 struct SpecConstantTwoIntGraphicsCase
6271 {
6272         const char*             caseName;
6273         const char*             scDefinition0;
6274         const char*             scDefinition1;
6275         const char*             scResultType;
6276         const char*             scOperation;
6277         deInt32                 scActualValue0;
6278         deInt32                 scActualValue1;
6279         const char*             resultOperation;
6280         RGBA                    expectedColors[4];
6281
6282                                         SpecConstantTwoIntGraphicsCase (const char* name,
6283                                                                                         const char* definition0,
6284                                                                                         const char* definition1,
6285                                                                                         const char* resultType,
6286                                                                                         const char* operation,
6287                                                                                         deInt32         value0,
6288                                                                                         deInt32         value1,
6289                                                                                         const char* resultOp,
6290                                                                                         const RGBA      (&output)[4])
6291                                                 : caseName                      (name)
6292                                                 , scDefinition0         (definition0)
6293                                                 , scDefinition1         (definition1)
6294                                                 , scResultType          (resultType)
6295                                                 , scOperation           (operation)
6296                                                 , scActualValue0        (value0)
6297                                                 , scActualValue1        (value1)
6298                                                 , resultOperation       (resultOp)
6299         {
6300                 expectedColors[0] = output[0];
6301                 expectedColors[1] = output[1];
6302                 expectedColors[2] = output[2];
6303                 expectedColors[3] = output[3];
6304         }
6305 };
6306
6307 tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6308 {
6309         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6310         vector<SpecConstantTwoIntGraphicsCase>  cases;
6311         RGBA                                                    inputColors[4];
6312         RGBA                                                    outputColors0[4];
6313         RGBA                                                    outputColors1[4];
6314         RGBA                                                    outputColors2[4];
6315
6316         const char      decorations1[]                  =
6317                 "OpDecorate %sc_0  SpecId 0\n"
6318                 "OpDecorate %sc_1  SpecId 1\n";
6319
6320         const char      typesAndConstants1[]    =
6321                 "${OPTYPE_DEFINITIONS:opt}"
6322                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
6323                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
6324                 "%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6325
6326         const char      function1[]                             =
6327                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6328                 "%param     = OpFunctionParameter %v4f32\n"
6329                 "%label     = OpLabel\n"
6330                 "${TYPE_CONVERT:opt}"
6331                 "%result    = OpVariable %fp_v4f32 Function\n"
6332                 "             OpStore %result %param\n"
6333                 "%gen       = ${GEN_RESULT}\n"
6334                 "%index     = OpIAdd %i32 %gen %c_i32_1\n"
6335                 "%loc       = OpAccessChain %fp_f32 %result %index\n"
6336                 "%val       = OpLoad %f32 %loc\n"
6337                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6338                 "             OpStore %loc %add\n"
6339                 "%ret       = OpLoad %v4f32 %result\n"
6340                 "             OpReturnValue %ret\n"
6341                 "             OpFunctionEnd\n";
6342
6343         inputColors[0] = RGBA(127, 127, 127, 255);
6344         inputColors[1] = RGBA(127, 0,   0,   255);
6345         inputColors[2] = RGBA(0,   127, 0,   255);
6346         inputColors[3] = RGBA(0,   0,   127, 255);
6347
6348         // Derived from inputColors[x] by adding 128 to inputColors[x][0].
6349         outputColors0[0] = RGBA(255, 127, 127, 255);
6350         outputColors0[1] = RGBA(255, 0,   0,   255);
6351         outputColors0[2] = RGBA(128, 127, 0,   255);
6352         outputColors0[3] = RGBA(128, 0,   127, 255);
6353
6354         // Derived from inputColors[x] by adding 128 to inputColors[x][1].
6355         outputColors1[0] = RGBA(127, 255, 127, 255);
6356         outputColors1[1] = RGBA(127, 128, 0,   255);
6357         outputColors1[2] = RGBA(0,   255, 0,   255);
6358         outputColors1[3] = RGBA(0,   128, 127, 255);
6359
6360         // Derived from inputColors[x] by adding 128 to inputColors[x][2].
6361         outputColors2[0] = RGBA(127, 127, 255, 255);
6362         outputColors2[1] = RGBA(127, 0,   128, 255);
6363         outputColors2[2] = RGBA(0,   127, 128, 255);
6364         outputColors2[3] = RGBA(0,   0,   255, 255);
6365
6366         const char addZeroToSc[]                = "OpIAdd %i32 %c_i32_0 %sc_op";
6367         const char addZeroToSc32[]              = "OpIAdd %i32 %c_i32_0 %sc_op32";
6368         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6369         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6370
6371         cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                             19,             -20,    addZeroToSc,            outputColors0));
6372         cases.push_back(SpecConstantTwoIntGraphicsCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                             19,             20,             addZeroToSc,            outputColors0));
6373         cases.push_back(SpecConstantTwoIntGraphicsCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                             -1,             -1,             addZeroToSc,            outputColors2));
6374         cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                             -126,   126,    addZeroToSc,            outputColors0));
6375         cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                             126,    126,    addZeroToSc,            outputColors2));
6376         cases.push_back(SpecConstantTwoIntGraphicsCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6377         cases.push_back(SpecConstantTwoIntGraphicsCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6378         cases.push_back(SpecConstantTwoIntGraphicsCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                             1001,   500,    addZeroToSc,            outputColors2));
6379         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                             0x33,   0x0d,   addZeroToSc,            outputColors2));
6380         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                             0,              1,              addZeroToSc,            outputColors2));
6381         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                             0x2e,   0x2f,   addZeroToSc,            outputColors2));
6382         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                             2,              1,              addZeroToSc,            outputColors2));
6383         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                             -4,             2,              addZeroToSc,            outputColors0));
6384         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                             1,              0,              addZeroToSc,            outputColors2));
6385         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                             -20,    -10,    selectTrueUsingSc,      outputColors2));
6386         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                             10,             20,             selectTrueUsingSc,      outputColors2));
6387         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6388         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                             10,             5,              selectTrueUsingSc,      outputColors2));
6389         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                             -10,    -10,    selectTrueUsingSc,      outputColors2));
6390         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                             50,             100,    selectTrueUsingSc,      outputColors2));
6391         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6392         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                             10,             10,             selectTrueUsingSc,      outputColors2));
6393         cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                             42,             24,             selectFalseUsingSc,     outputColors2));
6394         cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6395         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6396         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6397         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6398         cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                                   -1,             0,              addZeroToSc,            outputColors2));
6399         cases.push_back(SpecConstantTwoIntGraphicsCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                                   -2,             0,              addZeroToSc,            outputColors2));
6400         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                                   1,              0,              selectFalseUsingSc,     outputColors2));
6401         cases.push_back(SpecConstantTwoIntGraphicsCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %c_i32_0",    1,              1,              addZeroToSc,            outputColors2));
6402         cases.push_back(SpecConstantTwoIntGraphicsCase("sconvert",                              " %i32 0",              " %i32 0",              "%i16",         "SConvert             %sc_0",                                   -1,             0,              addZeroToSc32,          outputColors0));
6403         // -1082130432 stored as 32-bit two's complement is the binary representation of -1 as IEEE-754 Float
6404         cases.push_back(SpecConstantTwoIntGraphicsCase("fconvert",                              " %f32 0",              " %f32 0",              "%f64",         "FConvert             %sc_0",                                   -1082130432, 0, addZeroToSc32,          outputColors0));
6405         // \todo[2015-12-1 antiagainst] OpQuantizeToF16
6406
6407         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6408         {
6409                 map<string, string>                     specializations;
6410                 map<string, string>                     fragments;
6411                 vector<deInt32>                         specConstants;
6412                 vector<string>                          features;
6413                 PushConstants                           noPushConstants;
6414                 GraphicsResources                       noResources;
6415                 GraphicsInterfaces                      noInterfaces;
6416                 std::vector<std::string>        noExtensions;
6417
6418                 // Special SPIR-V code for SConvert-case
6419                 if (strcmp(cases[caseNdx].caseName, "sconvert") == 0)
6420                 {
6421                         features.push_back("shaderInt16");
6422                         fragments["capability"]                                 = "OpCapability Int16\n";                                       // Adds 16-bit integer capability
6423                         specializations["OPTYPE_DEFINITIONS"]   = "%i16 = OpTypeInt 16 1\n";                            // Adds 16-bit integer type
6424                         specializations["TYPE_CONVERT"]                 = "%sc_op32 = OpSConvert %i32 %sc_op\n";        // Converts 16-bit integer to 32-bit integer
6425                 }
6426
6427                 // Special SPIR-V code for FConvert-case
6428                 if (strcmp(cases[caseNdx].caseName, "fconvert") == 0)
6429                 {
6430                         features.push_back("shaderFloat64");
6431                         fragments["capability"]                                 = "OpCapability Float64\n";                                     // Adds 64-bit float capability
6432                         specializations["OPTYPE_DEFINITIONS"]   = "%f64 = OpTypeFloat 64\n";                            // Adds 64-bit float type
6433                         specializations["TYPE_CONVERT"]                 = "%sc_op32 = OpConvertFToS %i32 %sc_op\n";     // Converts 64-bit float to 32-bit integer
6434                 }
6435
6436                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
6437                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
6438                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
6439                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
6440                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
6441
6442                 fragments["decoration"]                         = tcu::StringTemplate(decorations1).specialize(specializations);
6443                 fragments["pre_main"]                           = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6444                 fragments["testfun"]                            = tcu::StringTemplate(function1).specialize(specializations);
6445
6446                 specConstants.push_back(cases[caseNdx].scActualValue0);
6447                 specConstants.push_back(cases[caseNdx].scActualValue1);
6448
6449                 createTestsForAllStages(
6450                         cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants,
6451                         noPushConstants, noResources, noInterfaces, noExtensions, features, VulkanFeatures(), group.get());
6452         }
6453
6454         const char      decorations2[]                  =
6455                 "OpDecorate %sc_0  SpecId 0\n"
6456                 "OpDecorate %sc_1  SpecId 1\n"
6457                 "OpDecorate %sc_2  SpecId 2\n";
6458
6459         const char      typesAndConstants2[]    =
6460                 "%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6461                 "%vec3_undef  = OpUndef %v3i32\n"
6462
6463                 "%sc_0        = OpSpecConstant %i32 0\n"
6464                 "%sc_1        = OpSpecConstant %i32 0\n"
6465                 "%sc_2        = OpSpecConstant %i32 0\n"
6466                 "%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0      0\n"                                                 // (sc_0, 0,    0)
6467                 "%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0      1\n"                                                 // (0,    sc_1, 0)
6468                 "%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0      2\n"                                                 // (0,    0,    sc_2)
6469                 "%sc_vec3_0_s = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %vec3_undef  0          0xFFFFFFFF 2\n"   // (sc_0, ???,  0)
6470                 "%sc_vec3_1_s = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_1   %vec3_undef  0xFFFFFFFF 1          0\n"   // (???,  sc_1, 0)
6471                 "%sc_vec3_2_s = OpSpecConstantOp %v3i32 VectorShuffle    %vec3_undef  %sc_vec3_2   5          0xFFFFFFFF 5\n"   // (sc_2, ???,  sc_2)
6472                 "%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0_s %sc_vec3_1_s 1 0 4\n"                                             // (0,    sc_0, sc_1)
6473                 "%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2_s 5 1 2\n"                                             // (sc_2, sc_0, sc_1)
6474                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              0\n"                                                 // sc_2
6475                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              1\n"                                                 // sc_0
6476                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              2\n"                                                 // sc_1
6477                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"                                                              // (sc_2 - sc_0)
6478                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";                                                             // (sc_2 - sc_0) * sc_1
6479
6480         const char      function2[]                             =
6481                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6482                 "%param     = OpFunctionParameter %v4f32\n"
6483                 "%label     = OpLabel\n"
6484                 "%result    = OpVariable %fp_v4f32 Function\n"
6485                 "             OpStore %result %param\n"
6486                 "%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6487                 "%val       = OpLoad %f32 %loc\n"
6488                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6489                 "             OpStore %loc %add\n"
6490                 "%ret       = OpLoad %v4f32 %result\n"
6491                 "             OpReturnValue %ret\n"
6492                 "             OpFunctionEnd\n";
6493
6494         map<string, string>     fragments;
6495         vector<deInt32>         specConstants;
6496
6497         fragments["decoration"] = decorations2;
6498         fragments["pre_main"]   = typesAndConstants2;
6499         fragments["testfun"]    = function2;
6500
6501         specConstants.push_back(56789);
6502         specConstants.push_back(-2);
6503         specConstants.push_back(56788);
6504
6505         createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6506
6507         return group.release();
6508 }
6509
6510 tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6511 {
6512         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6513         RGBA                                                    inputColors[4];
6514         RGBA                                                    outputColors1[4];
6515         RGBA                                                    outputColors2[4];
6516         RGBA                                                    outputColors3[4];
6517         map<string, string>                             fragments1;
6518         map<string, string>                             fragments2;
6519         map<string, string>                             fragments3;
6520
6521         const char      typesAndConstants1[]    =
6522                 "%c_f32_p2  = OpConstant %f32 0.2\n"
6523                 "%c_f32_p4  = OpConstant %f32 0.4\n"
6524                 "%c_f32_p5  = OpConstant %f32 0.5\n"
6525                 "%c_f32_p8  = OpConstant %f32 0.8\n";
6526
6527         // vec4 test_code(vec4 param) {
6528         //   vec4 result = param;
6529         //   for (int i = 0; i < 4; ++i) {
6530         //     float operand;
6531         //     switch (i) {
6532         //       case 0: operand = .2; break;
6533         //       case 1: operand = .5; break;
6534         //       case 2: operand = .4; break;
6535         //       case 3: operand = .0; break;
6536         //       default: break; // unreachable
6537         //     }
6538         //     result[i] += operand;
6539         //   }
6540         //   return result;
6541         // }
6542         const char      function1[]                             =
6543                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6544                 "%param1    = OpFunctionParameter %v4f32\n"
6545                 "%lbl       = OpLabel\n"
6546                 "%iptr      = OpVariable %fp_i32 Function\n"
6547                 "%result    = OpVariable %fp_v4f32 Function\n"
6548                 "             OpStore %iptr %c_i32_0\n"
6549                 "             OpStore %result %param1\n"
6550                 "             OpBranch %loop\n"
6551
6552                 "%loop      = OpLabel\n"
6553                 "%ival      = OpLoad %i32 %iptr\n"
6554                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6555                 "             OpLoopMerge %exit %phi None\n"
6556                 "             OpBranchConditional %lt_4 %entry %exit\n"
6557
6558                 "%entry     = OpLabel\n"
6559                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
6560                 "%val       = OpLoad %f32 %loc\n"
6561                 "             OpSelectionMerge %phi None\n"
6562                 "             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6563
6564                 "%case0     = OpLabel\n"
6565                 "             OpBranch %phi\n"
6566                 "%case1     = OpLabel\n"
6567                 "             OpBranch %phi\n"
6568                 "%case2     = OpLabel\n"
6569                 "             OpBranch %phi\n"
6570                 "%case3     = OpLabel\n"
6571                 "             OpBranch %phi\n"
6572
6573                 "%default   = OpLabel\n"
6574                 "             OpUnreachable\n"
6575
6576                 "%phi       = OpLabel\n"
6577                 "%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6578                 "%add       = OpFAdd %f32 %val %operand\n"
6579                 "             OpStore %loc %add\n"
6580                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6581                 "             OpStore %iptr %ival_next\n"
6582                 "             OpBranch %loop\n"
6583
6584                 "%exit      = OpLabel\n"
6585                 "%ret       = OpLoad %v4f32 %result\n"
6586                 "             OpReturnValue %ret\n"
6587
6588                 "             OpFunctionEnd\n";
6589
6590         fragments1["pre_main"]  = typesAndConstants1;
6591         fragments1["testfun"]   = function1;
6592
6593         getHalfColorsFullAlpha(inputColors);
6594
6595         outputColors1[0]                = RGBA(178, 255, 229, 255);
6596         outputColors1[1]                = RGBA(178, 127, 102, 255);
6597         outputColors1[2]                = RGBA(51,  255, 102, 255);
6598         outputColors1[3]                = RGBA(51,  127, 229, 255);
6599
6600         createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6601
6602         const char      typesAndConstants2[]    =
6603                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6604
6605         // Add .4 to the second element of the given parameter.
6606         const char      function2[]                             =
6607                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6608                 "%param     = OpFunctionParameter %v4f32\n"
6609                 "%entry     = OpLabel\n"
6610                 "%result    = OpVariable %fp_v4f32 Function\n"
6611                 "             OpStore %result %param\n"
6612                 "%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6613                 "%val       = OpLoad %f32 %loc\n"
6614                 "             OpBranch %phi\n"
6615
6616                 "%phi        = OpLabel\n"
6617                 "%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6618                 "%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6619                 "%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6620                 "%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6621                 "%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6622                 "              OpLoopMerge %exit %phi None\n"
6623                 "              OpBranchConditional %still_loop %phi %exit\n"
6624
6625                 "%exit       = OpLabel\n"
6626                 "              OpStore %loc %accum\n"
6627                 "%ret        = OpLoad %v4f32 %result\n"
6628                 "              OpReturnValue %ret\n"
6629
6630                 "              OpFunctionEnd\n";
6631
6632         fragments2["pre_main"]  = typesAndConstants2;
6633         fragments2["testfun"]   = function2;
6634
6635         outputColors2[0]                        = RGBA(127, 229, 127, 255);
6636         outputColors2[1]                        = RGBA(127, 102, 0,   255);
6637         outputColors2[2]                        = RGBA(0,   229, 0,   255);
6638         outputColors2[3]                        = RGBA(0,   102, 127, 255);
6639
6640         createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6641
6642         const char      typesAndConstants3[]    =
6643                 "%true      = OpConstantTrue %bool\n"
6644                 "%false     = OpConstantFalse %bool\n"
6645                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6646
6647         // Swap the second and the third element of the given parameter.
6648         const char      function3[]                             =
6649                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6650                 "%param     = OpFunctionParameter %v4f32\n"
6651                 "%entry     = OpLabel\n"
6652                 "%result    = OpVariable %fp_v4f32 Function\n"
6653                 "             OpStore %result %param\n"
6654                 "%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6655                 "%a_init    = OpLoad %f32 %a_loc\n"
6656                 "%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6657                 "%b_init    = OpLoad %f32 %b_loc\n"
6658                 "             OpBranch %phi\n"
6659
6660                 "%phi        = OpLabel\n"
6661                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6662                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6663                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6664                 "              OpLoopMerge %exit %phi None\n"
6665                 "              OpBranchConditional %still_loop %phi %exit\n"
6666
6667                 "%exit       = OpLabel\n"
6668                 "              OpStore %a_loc %a_next\n"
6669                 "              OpStore %b_loc %b_next\n"
6670                 "%ret        = OpLoad %v4f32 %result\n"
6671                 "              OpReturnValue %ret\n"
6672
6673                 "              OpFunctionEnd\n";
6674
6675         fragments3["pre_main"]  = typesAndConstants3;
6676         fragments3["testfun"]   = function3;
6677
6678         outputColors3[0]                        = RGBA(127, 127, 127, 255);
6679         outputColors3[1]                        = RGBA(127, 0,   0,   255);
6680         outputColors3[2]                        = RGBA(0,   0,   127, 255);
6681         outputColors3[3]                        = RGBA(0,   127, 0,   255);
6682
6683         createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6684
6685         return group.release();
6686 }
6687
6688 tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6689 {
6690         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6691         RGBA                                                    inputColors[4];
6692         RGBA                                                    outputColors[4];
6693
6694         // With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6695         // For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6696         // only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
6697         // On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6698         const char                                              constantsAndTypes[]      =
6699                 "%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6700                 "%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6701                 "%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6702                 "%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6703                 "%c_f32_n1pn24   = OpConstant %f32 -0x1p-24\n";
6704
6705         const char                                              function[]       =
6706                 "%test_code      = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6707                 "%param          = OpFunctionParameter %v4f32\n"
6708                 "%label          = OpLabel\n"
6709                 "%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6710                 "%var2           = OpVariable %fp_f32 Function\n"
6711                 "%red            = OpCompositeExtract %f32 %param 0\n"
6712                 "%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6713                 "                  OpStore %var2 %plus_red\n"
6714                 "%val1           = OpLoad %f32 %var1\n"
6715                 "%val2           = OpLoad %f32 %var2\n"
6716                 "%mul            = OpFMul %f32 %val1 %val2\n"
6717                 "%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6718                 "%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6719                 "%isn1n24         = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
6720                 "%success        = OpLogicalOr %bool %is0 %isn1n24\n"
6721                 "%v4success      = OpCompositeConstruct %v4bool %success %success %success %success\n"
6722                 "%ret            = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
6723                 "                  OpReturnValue %ret\n"
6724                 "                  OpFunctionEnd\n";
6725
6726         struct CaseNameDecoration
6727         {
6728                 string name;
6729                 string decoration;
6730         };
6731
6732
6733         CaseNameDecoration tests[] = {
6734                 {"multiplication",      "OpDecorate %mul NoContraction"},
6735                 {"addition",            "OpDecorate %add NoContraction"},
6736                 {"both",                        "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6737         };
6738
6739         getHalfColorsFullAlpha(inputColors);
6740
6741         for (deUint8 idx = 0; idx < 4; ++idx)
6742         {
6743                 inputColors[idx].setRed(0);
6744                 outputColors[idx] = RGBA(0, 0, 0, 255);
6745         }
6746
6747         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6748         {
6749                 map<string, string> fragments;
6750
6751                 fragments["decoration"] = tests[testNdx].decoration;
6752                 fragments["pre_main"] = constantsAndTypes;
6753                 fragments["testfun"] = function;
6754
6755                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6756         }
6757
6758         return group.release();
6759 }
6760
6761 tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6762 {
6763         de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6764         RGBA                                                    colors[4];
6765
6766         const char                                              constantsAndTypes[]      =
6767                 "%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6768                 "%fp_a2f32          = OpTypePointer Function %a2f32\n"
6769                 "%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6770                 "%fp_stype          = OpTypePointer Function %stype\n";
6771
6772         const char                                              function[]       =
6773                 "%test_code         = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6774                 "%param1            = OpFunctionParameter %v4f32\n"
6775                 "%lbl               = OpLabel\n"
6776                 "%v1                = OpVariable %fp_v4f32 Function\n"
6777                 "%v2                = OpVariable %fp_a2f32 Function\n"
6778                 "%v3                = OpVariable %fp_f32 Function\n"
6779                 "%v                 = OpVariable %fp_stype Function\n"
6780                 "%vv                = OpVariable %fp_stype Function\n"
6781                 "%vvv               = OpVariable %fp_f32 Function\n"
6782
6783                 "                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6784                 "                     OpStore %v2 %c_a2f32_1\n"
6785                 "                     OpStore %v3 %c_f32_1\n"
6786
6787                 "%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6788                 "%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6789                 "%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6790                 "%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6791                 "%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6792                 "%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6793
6794                 "                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6795                 "                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6796                 "                    OpStore %p_f32 %v3_v ${access_type}\n"
6797
6798                 "                    OpCopyMemory %vv %v ${access_type}\n"
6799                 "                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6800
6801                 "%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6802                 "%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6803                 "%v_f32_3          = OpLoad %f32 %vvv\n"
6804
6805                 "%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6806                 "%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6807                 "                    OpReturnValue %ret2\n"
6808                 "                    OpFunctionEnd\n";
6809
6810         struct NameMemoryAccess
6811         {
6812                 string name;
6813                 string accessType;
6814         };
6815
6816
6817         NameMemoryAccess tests[] =
6818         {
6819                 { "none", "" },
6820                 { "volatile", "Volatile" },
6821                 { "aligned",  "Aligned 1" },
6822                 { "volatile_aligned",  "Volatile|Aligned 1" },
6823                 { "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6824                 { "volatile_nontemporal",  "Volatile|Nontemporal" },
6825                 { "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6826         };
6827
6828         getHalfColorsFullAlpha(colors);
6829
6830         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6831         {
6832                 map<string, string> fragments;
6833                 map<string, string> memoryAccess;
6834                 memoryAccess["access_type"] = tests[testNdx].accessType;
6835
6836                 fragments["pre_main"] = constantsAndTypes;
6837                 fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6838                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6839         }
6840         return memoryAccessTests.release();
6841 }
6842 tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6843 {
6844         de::MovePtr<tcu::TestCaseGroup>         opUndefTests             (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6845         RGBA                                                            defaultColors[4];
6846         map<string, string>                                     fragments;
6847         getDefaultColors(defaultColors);
6848
6849         // First, simple cases that don't do anything with the OpUndef result.
6850         struct NameCodePair { string name, decl, type; };
6851         const NameCodePair tests[] =
6852         {
6853                 {"bool", "", "%bool"},
6854                 {"vec2uint32", "", "%v2u32"},
6855                 {"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown", "%type"},
6856                 {"sampler", "%type = OpTypeSampler", "%type"},
6857                 {"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img", "%type"},
6858                 {"pointer", "", "%fp_i32"},
6859                 {"runtimearray", "%type = OpTypeRuntimeArray %f32", "%type"},
6860                 {"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100", "%type"},
6861                 {"struct", "%type = OpTypeStruct %f32 %i32 %u32", "%type"}};
6862         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6863         {
6864                 fragments["undef_type"] = tests[testNdx].type;
6865                 fragments["testfun"] = StringTemplate(
6866                         "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6867                         "%param1 = OpFunctionParameter %v4f32\n"
6868                         "%label_testfun = OpLabel\n"
6869                         "%undef = OpUndef ${undef_type}\n"
6870                         "OpReturnValue %param1\n"
6871                         "OpFunctionEnd\n").specialize(fragments);
6872                 fragments["pre_main"] = tests[testNdx].decl;
6873                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6874         }
6875         fragments.clear();
6876
6877         fragments["testfun"] =
6878                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6879                 "%param1 = OpFunctionParameter %v4f32\n"
6880                 "%label_testfun = OpLabel\n"
6881                 "%undef = OpUndef %f32\n"
6882                 "%zero = OpFMul %f32 %undef %c_f32_0\n"
6883                 "%is_nan = OpIsNan %bool %zero\n" //OpUndef may result in NaN which may turn %zero into Nan.
6884                 "%actually_zero = OpSelect %f32 %is_nan %c_f32_0 %zero\n"
6885                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6886                 "%b = OpFAdd %f32 %a %actually_zero\n"
6887                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6888                 "OpReturnValue %ret\n"
6889                 "OpFunctionEnd\n";
6890
6891         createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6892
6893         fragments["testfun"] =
6894                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6895                 "%param1 = OpFunctionParameter %v4f32\n"
6896                 "%label_testfun = OpLabel\n"
6897                 "%undef = OpUndef %i32\n"
6898                 "%zero = OpIMul %i32 %undef %c_i32_0\n"
6899                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6900                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6901                 "OpReturnValue %ret\n"
6902                 "OpFunctionEnd\n";
6903
6904         createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6905
6906         fragments["testfun"] =
6907                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6908                 "%param1 = OpFunctionParameter %v4f32\n"
6909                 "%label_testfun = OpLabel\n"
6910                 "%undef = OpUndef %u32\n"
6911                 "%zero = OpIMul %u32 %undef %c_i32_0\n"
6912                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6913                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6914                 "OpReturnValue %ret\n"
6915                 "OpFunctionEnd\n";
6916
6917         createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6918
6919         fragments["testfun"] =
6920                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6921                 "%param1 = OpFunctionParameter %v4f32\n"
6922                 "%label_testfun = OpLabel\n"
6923                 "%undef = OpUndef %v4f32\n"
6924                 "%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6925                 "%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6926                 "%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6927                 "%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6928                 "%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6929                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
6930                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
6931                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
6932                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
6933                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6934                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6935                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6936                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6937                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6938                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6939                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6940                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6941                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6942                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6943                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6944                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6945                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6946                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6947                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6948                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6949                 "OpReturnValue %ret\n"
6950                 "OpFunctionEnd\n";
6951
6952         createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6953
6954         fragments["pre_main"] =
6955                 "%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6956         fragments["testfun"] =
6957                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
6958                 "%param1 = OpFunctionParameter %v4f32\n"
6959                 "%label_testfun = OpLabel\n"
6960                 "%undef = OpUndef %m2x2f32\n"
6961                 "%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6962                 "%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6963                 "%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6964                 "%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6965                 "%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6966                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
6967                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
6968                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
6969                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
6970                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6971                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6972                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6973                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6974                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6975                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6976                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6977                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6978                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6979                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6980                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6981                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6982                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6983                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6984                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6985                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6986                 "OpReturnValue %ret\n"
6987                 "OpFunctionEnd\n";
6988
6989         createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6990
6991         return opUndefTests.release();
6992 }
6993
6994 void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6995 {
6996         const RGBA              inputColors[4]          =
6997         {
6998                 RGBA(0,         0,              0,              255),
6999                 RGBA(0,         0,              255,    255),
7000                 RGBA(0,         255,    0,              255),
7001                 RGBA(0,         255,    255,    255)
7002         };
7003
7004         const RGBA              expectedColors[4]       =
7005         {
7006                 RGBA(255,        0,              0,              255),
7007                 RGBA(255,        0,              0,              255),
7008                 RGBA(255,        0,              0,              255),
7009                 RGBA(255,        0,              0,              255)
7010         };
7011
7012         const struct SingleFP16Possibility
7013         {
7014                 const char* name;
7015                 const char* constant;  // Value to assign to %test_constant.
7016                 float           valueAsFloat;
7017                 const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
7018         }                               tests[]                         =
7019         {
7020                 {
7021                         "negative",
7022                         "-0x1.3p1\n",
7023                         -constructNormalizedFloat(1, 0x300000),
7024                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
7025                 }, // -19
7026                 {
7027                         "positive",
7028                         "0x1.0p7\n",
7029                         constructNormalizedFloat(7, 0x000000),
7030                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
7031                 },  // +128
7032                 // SPIR-V requires that OpQuantizeToF16 flushes
7033                 // any numbers that would end up denormalized in F16 to zero.
7034                 {
7035                         "denorm",
7036                         "0x0.0006p-126\n",
7037                         std::ldexp(1.5f, -140),
7038                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7039                 },  // denorm
7040                 {
7041                         "negative_denorm",
7042                         "-0x0.0006p-126\n",
7043                         -std::ldexp(1.5f, -140),
7044                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7045                 }, // -denorm
7046                 {
7047                         "too_small",
7048                         "0x1.0p-16\n",
7049                         std::ldexp(1.0f, -16),
7050                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7051                 },     // too small positive
7052                 {
7053                         "negative_too_small",
7054                         "-0x1.0p-32\n",
7055                         -std::ldexp(1.0f, -32),
7056                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
7057                 },      // too small negative
7058                 {
7059                         "negative_inf",
7060                         "-0x1.0p128\n",
7061                         -std::ldexp(1.0f, 128),
7062
7063                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
7064                         "%inf = OpIsInf %bool %c\n"
7065                         "%cond = OpLogicalAnd %bool %gz %inf\n"
7066                 },     // -inf to -inf
7067                 {
7068                         "inf",
7069                         "0x1.0p128\n",
7070                         std::ldexp(1.0f, 128),
7071
7072                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
7073                         "%inf = OpIsInf %bool %c\n"
7074                         "%cond = OpLogicalAnd %bool %gz %inf\n"
7075                 },     // +inf to +inf
7076                 {
7077                         "round_to_negative_inf",
7078                         "-0x1.0p32\n",
7079                         -std::ldexp(1.0f, 32),
7080
7081                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
7082                         "%inf = OpIsInf %bool %c\n"
7083                         "%cond = OpLogicalAnd %bool %gz %inf\n"
7084                 },     // round to -inf
7085                 {
7086                         "round_to_inf",
7087                         "0x1.0p16\n",
7088                         std::ldexp(1.0f, 16),
7089
7090                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
7091                         "%inf = OpIsInf %bool %c\n"
7092                         "%cond = OpLogicalAnd %bool %gz %inf\n"
7093                 },     // round to +inf
7094                 {
7095                         "nan",
7096                         "0x1.1p128\n",
7097                         std::numeric_limits<float>::quiet_NaN(),
7098
7099                         // Test for any NaN value, as NaNs are not preserved
7100                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
7101                         "%cond = OpIsNan %bool %direct_quant\n"
7102                 }, // nan
7103                 {
7104                         "negative_nan",
7105                         "-0x1.0001p128\n",
7106                         std::numeric_limits<float>::quiet_NaN(),
7107
7108                         // Test for any NaN value, as NaNs are not preserved
7109                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
7110                         "%cond = OpIsNan %bool %direct_quant\n"
7111                 } // -nan
7112         };
7113         const char*             constants                       =
7114                 "%test_constant = OpConstant %f32 ";  // The value will be test.constant.
7115
7116         StringTemplate  function                        (
7117                 "%test_code     = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7118                 "%param1        = OpFunctionParameter %v4f32\n"
7119                 "%label_testfun = OpLabel\n"
7120                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7121                 "%b             = OpFAdd %f32 %test_constant %a\n"
7122                 "%c             = OpQuantizeToF16 %f32 %b\n"
7123                 "${condition}\n"
7124                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7125                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
7126                 "                 OpReturnValue %retval\n"
7127                 "OpFunctionEnd\n"
7128         );
7129
7130         const char*             specDecorations         = "OpDecorate %test_constant SpecId 0\n";
7131         const char*             specConstants           =
7132                         "%test_constant = OpSpecConstant %f32 0.\n"
7133                         "%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
7134
7135         StringTemplate  specConstantFunction(
7136                 "%test_code     = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7137                 "%param1        = OpFunctionParameter %v4f32\n"
7138                 "%label_testfun = OpLabel\n"
7139                 "${condition}\n"
7140                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7141                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
7142                 "                 OpReturnValue %retval\n"
7143                 "OpFunctionEnd\n"
7144         );
7145
7146         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
7147         {
7148                 map<string, string>                                                             codeSpecialization;
7149                 map<string, string>                                                             fragments;
7150                 codeSpecialization["condition"]                                 = tests[idx].condition;
7151                 fragments["testfun"]                                                    = function.specialize(codeSpecialization);
7152                 fragments["pre_main"]                                                   = string(constants) + tests[idx].constant + "\n";
7153                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7154         }
7155
7156         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
7157         {
7158                 map<string, string>                                                             codeSpecialization;
7159                 map<string, string>                                                             fragments;
7160                 vector<deInt32>                                                                 passConstants;
7161                 deInt32                                                                                 specConstant;
7162
7163                 codeSpecialization["condition"]                                 = tests[idx].condition;
7164                 fragments["testfun"]                                                    = specConstantFunction.specialize(codeSpecialization);
7165                 fragments["decoration"]                                                 = specDecorations;
7166                 fragments["pre_main"]                                                   = specConstants;
7167
7168                 memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
7169                 passConstants.push_back(specConstant);
7170
7171                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7172         }
7173 }
7174
7175 void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
7176 {
7177         RGBA inputColors[4] =  {
7178                 RGBA(0,         0,              0,              255),
7179                 RGBA(0,         0,              255,    255),
7180                 RGBA(0,         255,    0,              255),
7181                 RGBA(0,         255,    255,    255)
7182         };
7183
7184         RGBA expectedColors[4] =
7185         {
7186                 RGBA(255,        0,              0,              255),
7187                 RGBA(255,        0,              0,              255),
7188                 RGBA(255,        0,              0,              255),
7189                 RGBA(255,        0,              0,              255)
7190         };
7191
7192         struct DualFP16Possibility
7193         {
7194                 const char* name;
7195                 const char* input;
7196                 float           inputAsFloat;
7197                 const char* possibleOutput1;
7198                 const char* possibleOutput2;
7199         } tests[] = {
7200                 {
7201                         "positive_round_up_or_round_down",
7202                         "0x1.3003p8",
7203                         constructNormalizedFloat(8, 0x300300),
7204                         "0x1.304p8",
7205                         "0x1.3p8"
7206                 },
7207                 {
7208                         "negative_round_up_or_round_down",
7209                         "-0x1.6008p-7",
7210                         -constructNormalizedFloat(-7, 0x600800),
7211                         "-0x1.6p-7",
7212                         "-0x1.604p-7"
7213                 },
7214                 {
7215                         "carry_bit",
7216                         "0x1.01ep2",
7217                         constructNormalizedFloat(2, 0x01e000),
7218                         "0x1.01cp2",
7219                         "0x1.02p2"
7220                 },
7221                 {
7222                         "carry_to_exponent",
7223                         "0x1.ffep1",
7224                         constructNormalizedFloat(1, 0xffe000),
7225                         "0x1.ffcp1",
7226                         "0x1.0p2"
7227                 },
7228         };
7229         StringTemplate constants (
7230                 "%input_const = OpConstant %f32 ${input}\n"
7231                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
7232                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
7233                 );
7234
7235         StringTemplate specConstants (
7236                 "%input_const = OpSpecConstant %f32 0.\n"
7237                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
7238                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
7239         );
7240
7241         const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
7242
7243         const char* function  =
7244                 "%test_code     = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7245                 "%param1        = OpFunctionParameter %v4f32\n"
7246                 "%label_testfun = OpLabel\n"
7247                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7248                 // For the purposes of this test we assume that 0.f will always get
7249                 // faithfully passed through the pipeline stages.
7250                 "%b             = OpFAdd %f32 %input_const %a\n"
7251                 "%c             = OpQuantizeToF16 %f32 %b\n"
7252                 "%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7253                 "%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7254                 "%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7255                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7256                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
7257                 "                 OpReturnValue %retval\n"
7258                 "OpFunctionEnd\n";
7259
7260         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7261                 map<string, string>                                                                     fragments;
7262                 map<string, string>                                                                     constantSpecialization;
7263
7264                 constantSpecialization["input"]                                         = tests[idx].input;
7265                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7266                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7267                 fragments["testfun"]                                                            = function;
7268                 fragments["pre_main"]                                                           = constants.specialize(constantSpecialization);
7269                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7270         }
7271
7272         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7273                 map<string, string>                                                                     fragments;
7274                 map<string, string>                                                                     constantSpecialization;
7275                 vector<deInt32>                                                                         passConstants;
7276                 deInt32                                                                                         specConstant;
7277
7278                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7279                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7280                 fragments["testfun"]                                                            = function;
7281                 fragments["decoration"]                                                         = specDecorations;
7282                 fragments["pre_main"]                                                           = specConstants.specialize(constantSpecialization);
7283
7284                 memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7285                 passConstants.push_back(specConstant);
7286
7287                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7288         }
7289 }
7290
7291 tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7292 {
7293         de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7294         createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7295         createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7296         return opQuantizeTests.release();
7297 }
7298
7299 struct ShaderPermutation
7300 {
7301         deUint8 vertexPermutation;
7302         deUint8 geometryPermutation;
7303         deUint8 tesscPermutation;
7304         deUint8 tessePermutation;
7305         deUint8 fragmentPermutation;
7306 };
7307
7308 ShaderPermutation getShaderPermutation(deUint8 inputValue)
7309 {
7310         ShaderPermutation       permutation =
7311         {
7312                 static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7313                 static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7314                 static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7315                 static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7316                 static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7317         };
7318         return permutation;
7319 }
7320
7321 tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7322 {
7323         RGBA                                                            defaultColors[4];
7324         RGBA                                                            invertedColors[4];
7325         de::MovePtr<tcu::TestCaseGroup>         moduleTests                     (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7326
7327         const ShaderElement                                     combinedPipeline[]      =
7328         {
7329                 ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7330                 ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7331                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7332                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7333                 ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7334         };
7335
7336         getDefaultColors(defaultColors);
7337         getInvertedDefaultColors(invertedColors);
7338         addFunctionCaseWithPrograms<InstanceContext>(
7339                         moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline,
7340                         createInstanceContext(combinedPipeline, map<string, string>()));
7341
7342         const char* numbers[] =
7343         {
7344                 "1", "2"
7345         };
7346
7347         for (deInt8 idx = 0; idx < 32; ++idx)
7348         {
7349                 ShaderPermutation                       permutation             = getShaderPermutation(idx);
7350                 string                                          name                    = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7351                 const ShaderElement                     pipeline[]              =
7352                 {
7353                         ShaderElement("vert",   string("vert") +        numbers[permutation.vertexPermutation],         VK_SHADER_STAGE_VERTEX_BIT),
7354                         ShaderElement("geom",   string("geom") +        numbers[permutation.geometryPermutation],       VK_SHADER_STAGE_GEOMETRY_BIT),
7355                         ShaderElement("tessc",  string("tessc") +       numbers[permutation.tesscPermutation],          VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7356                         ShaderElement("tesse",  string("tesse") +       numbers[permutation.tessePermutation],          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7357                         ShaderElement("frag",   string("frag") +        numbers[permutation.fragmentPermutation],       VK_SHADER_STAGE_FRAGMENT_BIT)
7358                 };
7359
7360                 // If there are an even number of swaps, then it should be no-op.
7361                 // If there are an odd number, the color should be flipped.
7362                 if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7363                 {
7364                         addFunctionCaseWithPrograms<InstanceContext>(
7365                                         moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
7366                                         createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7367                 }
7368                 else
7369                 {
7370                         addFunctionCaseWithPrograms<InstanceContext>(
7371                                         moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
7372                                         createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7373                 }
7374         }
7375         return moduleTests.release();
7376 }
7377
7378 tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7379 {
7380         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7381         RGBA defaultColors[4];
7382         getDefaultColors(defaultColors);
7383         map<string, string> fragments;
7384         fragments["pre_main"] =
7385                 "%c_f32_5 = OpConstant %f32 5.\n";
7386
7387         // A loop with a single block. The Continue Target is the loop block
7388         // itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7389         // -- the "continue construct" forms the entire loop.
7390         fragments["testfun"] =
7391                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7392                 "%param1 = OpFunctionParameter %v4f32\n"
7393
7394                 "%entry = OpLabel\n"
7395                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7396                 "OpBranch %loop\n"
7397
7398                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7399                 "%loop = OpLabel\n"
7400                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7401                 "%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7402                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7403                 "%val = OpFAdd %f32 %val1 %delta\n"
7404                 "%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7405                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7406                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7407                 "OpLoopMerge %exit %loop None\n"
7408                 "OpBranchConditional %again %loop %exit\n"
7409
7410                 "%exit = OpLabel\n"
7411                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7412                 "OpReturnValue %result\n"
7413
7414                 "OpFunctionEnd\n";
7415
7416         createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7417
7418         // Body comprised of multiple basic blocks.
7419         const StringTemplate multiBlock(
7420                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7421                 "%param1 = OpFunctionParameter %v4f32\n"
7422
7423                 "%entry = OpLabel\n"
7424                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7425                 "OpBranch %loop\n"
7426
7427                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7428                 "%loop = OpLabel\n"
7429                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7430                 "%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7431                 "%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7432                 // There are several possibilities for the Continue Target below.  Each
7433                 // will be specialized into a separate test case.
7434                 "OpLoopMerge %exit ${continue_target} None\n"
7435                 "OpBranch %if\n"
7436
7437                 "%if = OpLabel\n"
7438                 ";delta_next = (delta > 0) ? -1 : 1;\n"
7439                 "%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7440                 "OpSelectionMerge %gather DontFlatten\n"
7441                 "OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7442
7443                 "%odd = OpLabel\n"
7444                 "OpBranch %gather\n"
7445
7446                 "%even = OpLabel\n"
7447                 "OpBranch %gather\n"
7448
7449                 "%gather = OpLabel\n"
7450                 "%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7451                 "%val = OpFAdd %f32 %val1 %delta\n"
7452                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7453                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7454                 "OpBranchConditional %again %loop %exit\n"
7455
7456                 "%exit = OpLabel\n"
7457                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7458                 "OpReturnValue %result\n"
7459
7460                 "OpFunctionEnd\n");
7461
7462         map<string, string> continue_target;
7463
7464         // The Continue Target is the loop block itself.
7465         continue_target["continue_target"] = "%loop";
7466         fragments["testfun"] = multiBlock.specialize(continue_target);
7467         createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7468
7469         // The Continue Target is at the end of the loop.
7470         continue_target["continue_target"] = "%gather";
7471         fragments["testfun"] = multiBlock.specialize(continue_target);
7472         createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7473
7474         // A loop with continue statement.
7475         fragments["testfun"] =
7476                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7477                 "%param1 = OpFunctionParameter %v4f32\n"
7478
7479                 "%entry = OpLabel\n"
7480                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7481                 "OpBranch %loop\n"
7482
7483                 ";adds 4, 3, and 1 to %val0 (skips 2)\n"
7484                 "%loop = OpLabel\n"
7485                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7486                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7487                 "OpLoopMerge %exit %continue None\n"
7488                 "OpBranch %if\n"
7489
7490                 "%if = OpLabel\n"
7491                 ";skip if %count==2\n"
7492                 "%eq2 = OpIEqual %bool %count %c_i32_2\n"
7493                 "OpSelectionMerge %continue DontFlatten\n"
7494                 "OpBranchConditional %eq2 %continue %body\n"
7495
7496                 "%body = OpLabel\n"
7497                 "%fcount = OpConvertSToF %f32 %count\n"
7498                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7499                 "OpBranch %continue\n"
7500
7501                 "%continue = OpLabel\n"
7502                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7503                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7504                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7505                 "OpBranchConditional %again %loop %exit\n"
7506
7507                 "%exit = OpLabel\n"
7508                 "%same = OpFSub %f32 %val %c_f32_8\n"
7509                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7510                 "OpReturnValue %result\n"
7511                 "OpFunctionEnd\n";
7512         createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7513
7514         // A loop with break.
7515         fragments["testfun"] =
7516                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7517                 "%param1 = OpFunctionParameter %v4f32\n"
7518
7519                 "%entry = OpLabel\n"
7520                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7521                 "%dot = OpDot %f32 %param1 %param1\n"
7522                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7523                 "%zero = OpConvertFToU %u32 %div\n"
7524                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7525                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7526                 "OpBranch %loop\n"
7527
7528                 ";adds 4 and 3 to %val0 (exits early)\n"
7529                 "%loop = OpLabel\n"
7530                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7531                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7532                 "OpLoopMerge %exit %continue None\n"
7533                 "OpBranch %if\n"
7534
7535                 "%if = OpLabel\n"
7536                 ";end loop if %count==%two\n"
7537                 "%above2 = OpSGreaterThan %bool %count %two\n"
7538                 "OpSelectionMerge %continue DontFlatten\n"
7539                 "OpBranchConditional %above2 %body %exit\n"
7540
7541                 "%body = OpLabel\n"
7542                 "%fcount = OpConvertSToF %f32 %count\n"
7543                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7544                 "OpBranch %continue\n"
7545
7546                 "%continue = OpLabel\n"
7547                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7548                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7549                 "OpBranchConditional %again %loop %exit\n"
7550
7551                 "%exit = OpLabel\n"
7552                 "%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
7553                 "%same = OpFSub %f32 %val_post %c_f32_7\n"
7554                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7555                 "OpReturnValue %result\n"
7556                 "OpFunctionEnd\n";
7557         createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7558
7559         // A loop with return.
7560         fragments["testfun"] =
7561                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7562                 "%param1 = OpFunctionParameter %v4f32\n"
7563
7564                 "%entry = OpLabel\n"
7565                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7566                 "%dot = OpDot %f32 %param1 %param1\n"
7567                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7568                 "%zero = OpConvertFToU %u32 %div\n"
7569                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7570                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7571                 "OpBranch %loop\n"
7572
7573                 ";returns early without modifying %param1\n"
7574                 "%loop = OpLabel\n"
7575                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7576                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7577                 "OpLoopMerge %exit %continue None\n"
7578                 "OpBranch %if\n"
7579
7580                 "%if = OpLabel\n"
7581                 ";return if %count==%two\n"
7582                 "%above2 = OpSGreaterThan %bool %count %two\n"
7583                 "OpSelectionMerge %continue DontFlatten\n"
7584                 "OpBranchConditional %above2 %body %early_exit\n"
7585
7586                 "%early_exit = OpLabel\n"
7587                 "OpReturnValue %param1\n"
7588
7589                 "%body = OpLabel\n"
7590                 "%fcount = OpConvertSToF %f32 %count\n"
7591                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7592                 "OpBranch %continue\n"
7593
7594                 "%continue = OpLabel\n"
7595                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7596                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7597                 "OpBranchConditional %again %loop %exit\n"
7598
7599                 "%exit = OpLabel\n"
7600                 ";should never get here, so return an incorrect result\n"
7601                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
7602                 "OpReturnValue %result\n"
7603                 "OpFunctionEnd\n";
7604         createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7605
7606         // Continue inside a switch block to break to enclosing loop's merge block.
7607         // Matches roughly the following GLSL code:
7608         // for (; keep_going; keep_going = false)
7609         // {
7610         //     switch (int(param1.x))
7611         //     {
7612         //         case 0: continue;
7613         //         case 1: continue;
7614         //         default: continue;
7615         //     }
7616         //     dead code: modify return value to invalid result.
7617         // }
7618         fragments["pre_main"] =
7619                 "%fp_bool = OpTypePointer Function %bool\n"
7620                 "%true = OpConstantTrue %bool\n"
7621                 "%false = OpConstantFalse %bool\n";
7622
7623         fragments["testfun"] =
7624                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7625                 "%param1 = OpFunctionParameter %v4f32\n"
7626
7627                 "%entry = OpLabel\n"
7628                 "%keep_going = OpVariable %fp_bool Function\n"
7629                 "%val_ptr = OpVariable %fp_f32 Function\n"
7630                 "%param1_x = OpCompositeExtract %f32 %param1 0\n"
7631                 "OpStore %keep_going %true\n"
7632                 "OpBranch %forloop_begin\n"
7633
7634                 "%forloop_begin = OpLabel\n"
7635                 "OpLoopMerge %forloop_merge %forloop_continue None\n"
7636                 "OpBranch %forloop\n"
7637
7638                 "%forloop = OpLabel\n"
7639                 "%for_condition = OpLoad %bool %keep_going\n"
7640                 "OpBranchConditional %for_condition %forloop_body %forloop_merge\n"
7641
7642                 "%forloop_body = OpLabel\n"
7643                 "OpStore %val_ptr %param1_x\n"
7644                 "%param1_x_int = OpConvertFToS %i32 %param1_x\n"
7645
7646                 "OpSelectionMerge %switch_merge None\n"
7647                 "OpSwitch %param1_x_int %default 0 %case_0 1 %case_1\n"
7648                 "%case_0 = OpLabel\n"
7649                 "OpBranch %forloop_continue\n"
7650                 "%case_1 = OpLabel\n"
7651                 "OpBranch %forloop_continue\n"
7652                 "%default = OpLabel\n"
7653                 "OpBranch %forloop_continue\n"
7654                 "%switch_merge = OpLabel\n"
7655                 ";should never get here, so change the return value to invalid result\n"
7656                 "OpStore %val_ptr %c_f32_1\n"
7657                 "OpBranch %forloop_continue\n"
7658
7659                 "%forloop_continue = OpLabel\n"
7660                 "OpStore %keep_going %false\n"
7661                 "OpBranch %forloop_begin\n"
7662                 "%forloop_merge = OpLabel\n"
7663
7664                 "%val = OpLoad %f32 %val_ptr\n"
7665                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7666                 "OpReturnValue %result\n"
7667                 "OpFunctionEnd\n";
7668         createTestsForAllStages("switch_continue", defaultColors, defaultColors, fragments, testGroup.get());
7669
7670         return testGroup.release();
7671 }
7672
7673 // A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7674 tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7675 {
7676         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7677         map<string, string> fragments;
7678
7679         // A barrier inside a function body.
7680         fragments["pre_main"] =
7681                 "%Workgroup = OpConstant %i32 2\n"
7682                 "%WorkgroupAcquireRelease = OpConstant %i32 0x108\n";
7683         fragments["testfun"] =
7684                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7685                 "%param1 = OpFunctionParameter %v4f32\n"
7686                 "%label_testfun = OpLabel\n"
7687                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7688                 "OpReturnValue %param1\n"
7689                 "OpFunctionEnd\n";
7690         addTessCtrlTest(testGroup.get(), "in_function", fragments);
7691
7692         // Common setup code for the following tests.
7693         fragments["pre_main"] =
7694                 "%Workgroup = OpConstant %i32 2\n"
7695                 "%WorkgroupAcquireRelease = OpConstant %i32 0x108\n"
7696                 "%c_f32_5 = OpConstant %f32 5.\n";
7697         const string setupPercentZero =  // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7698                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7699                 "%param1 = OpFunctionParameter %v4f32\n"
7700                 "%entry = OpLabel\n"
7701                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7702                 "%dot = OpDot %f32 %param1 %param1\n"
7703                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7704                 "%zero = OpConvertFToU %u32 %div\n";
7705
7706         // Barriers inside OpSwitch branches.
7707         fragments["testfun"] =
7708                 setupPercentZero +
7709                 "OpSelectionMerge %switch_exit None\n"
7710                 "OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7711
7712                 "%case1 = OpLabel\n"
7713                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7714                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7715                 "%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7716                 "OpBranch %switch_exit\n"
7717
7718                 "%switch_default = OpLabel\n"
7719                 "%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7720                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7721                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7722                 "OpBranch %switch_exit\n"
7723
7724                 "%case0 = OpLabel\n"
7725                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7726                 "OpBranch %switch_exit\n"
7727
7728                 "%switch_exit = OpLabel\n"
7729                 "%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7730                 "OpReturnValue %ret\n"
7731                 "OpFunctionEnd\n";
7732         addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7733
7734         // Barriers inside if-then-else.
7735         fragments["testfun"] =
7736                 setupPercentZero +
7737                 "%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7738                 "OpSelectionMerge %exit DontFlatten\n"
7739                 "OpBranchConditional %eq0 %then %else\n"
7740
7741                 "%else = OpLabel\n"
7742                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7743                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7744                 "%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7745                 "OpBranch %exit\n"
7746
7747                 "%then = OpLabel\n"
7748                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7749                 "OpBranch %exit\n"
7750
7751                 "%exit = OpLabel\n"
7752                 "%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7753                 "OpReturnValue %ret\n"
7754                 "OpFunctionEnd\n";
7755         addTessCtrlTest(testGroup.get(), "in_if", fragments);
7756
7757         // A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7758         // http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7759         fragments["testfun"] =
7760                 setupPercentZero +
7761                 "%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7762                 "%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7763                 "OpSelectionMerge %exit DontFlatten\n"
7764                 "OpBranchConditional %thread0 %then %else\n"
7765
7766                 "%else = OpLabel\n"
7767                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7768                 "OpBranch %exit\n"
7769
7770                 "%then = OpLabel\n"
7771                 "%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7772                 "OpBranch %exit\n"
7773
7774                 "%exit = OpLabel\n"
7775                 "%val = OpPhi %f32 %val0 %else %val1 %then\n"
7776                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7777                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7778                 "OpReturnValue %ret\n"
7779                 "OpFunctionEnd\n";
7780         addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7781
7782         // A barrier inside a loop.
7783         fragments["pre_main"] =
7784                 "%Workgroup = OpConstant %i32 2\n"
7785                 "%WorkgroupAcquireRelease = OpConstant %i32 0x108\n"
7786                 "%c_f32_10 = OpConstant %f32 10.\n";
7787         fragments["testfun"] =
7788                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7789                 "%param1 = OpFunctionParameter %v4f32\n"
7790                 "%entry = OpLabel\n"
7791                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7792                 "OpBranch %loop\n"
7793
7794                 ";adds 4, 3, 2, and 1 to %val0\n"
7795                 "%loop = OpLabel\n"
7796                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7797                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7798                 "OpControlBarrier %Workgroup %Workgroup %WorkgroupAcquireRelease\n"
7799                 "%fcount = OpConvertSToF %f32 %count\n"
7800                 "%val = OpFAdd %f32 %val1 %fcount\n"
7801                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7802                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7803                 "OpLoopMerge %exit %loop None\n"
7804                 "OpBranchConditional %again %loop %exit\n"
7805
7806                 "%exit = OpLabel\n"
7807                 "%same = OpFSub %f32 %val %c_f32_10\n"
7808                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7809                 "OpReturnValue %ret\n"
7810                 "OpFunctionEnd\n";
7811         addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7812
7813         return testGroup.release();
7814 }
7815
7816 // Test for the OpFRem instruction.
7817 tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7818 {
7819         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7820         map<string, string>                                     fragments;
7821         RGBA                                                            inputColors[4];
7822         RGBA                                                            outputColors[4];
7823
7824         fragments["pre_main"]                            =
7825                 "%c_f32_3 = OpConstant %f32 3.0\n"
7826                 "%c_f32_n3 = OpConstant %f32 -3.0\n"
7827                 "%c_f32_4 = OpConstant %f32 4.0\n"
7828                 "%c_f32_p75 = OpConstant %f32 0.75\n"
7829                 "%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7830                 "%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7831                 "%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7832
7833         // The test does the following.
7834         // vec4 result = (param1 * 8.0) - 4.0;
7835         // return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7836         fragments["testfun"]                             =
7837                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7838                 "%param1 = OpFunctionParameter %v4f32\n"
7839                 "%label_testfun = OpLabel\n"
7840                 "%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7841                 "%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7842                 "%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7843                 "%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7844                 "%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7845                 "%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7846                 "OpReturnValue %xy_0_1\n"
7847                 "OpFunctionEnd\n";
7848
7849
7850         inputColors[0]          = RGBA(16,      16,             0, 255);
7851         inputColors[1]          = RGBA(232, 232,        0, 255);
7852         inputColors[2]          = RGBA(232, 16,         0, 255);
7853         inputColors[3]          = RGBA(16,      232,    0, 255);
7854
7855         outputColors[0]         = RGBA(64,      64,             0, 255);
7856         outputColors[1]         = RGBA(255, 255,        0, 255);
7857         outputColors[2]         = RGBA(255, 64,         0, 255);
7858         outputColors[3]         = RGBA(64,      255,    0, 255);
7859
7860         createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7861         return testGroup.release();
7862 }
7863
7864 // Test for the OpSRem instruction.
7865 tcu::TestCaseGroup* createOpSRemGraphicsTests(tcu::TestContext& testCtx, qpTestResult negFailResult)
7866 {
7867         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "srem", "OpSRem"));
7868         map<string, string>                                     fragments;
7869
7870         fragments["pre_main"]                            =
7871                 "%c_f32_255 = OpConstant %f32 255.0\n"
7872                 "%c_i32_128 = OpConstant %i32 128\n"
7873                 "%c_i32_255 = OpConstant %i32 255\n"
7874                 "%c_v4f32_255 = OpConstantComposite %v4f32 %c_f32_255 %c_f32_255 %c_f32_255 %c_f32_255 \n"
7875                 "%c_v4f32_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 \n"
7876                 "%c_v4i32_128 = OpConstantComposite %v4i32 %c_i32_128 %c_i32_128 %c_i32_128 %c_i32_128 \n";
7877
7878         // The test does the following.
7879         // ivec4 ints = int(param1 * 255.0 + 0.5) - 128;
7880         // ivec4 result = ivec4(srem(ints.x, ints.y), srem(ints.y, ints.z), srem(ints.z, ints.x), 255);
7881         // return float(result + 128) / 255.0;
7882         fragments["testfun"]                             =
7883                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7884                 "%param1 = OpFunctionParameter %v4f32\n"
7885                 "%label_testfun = OpLabel\n"
7886                 "%div255 = OpFMul %v4f32 %param1 %c_v4f32_255\n"
7887                 "%add0_5 = OpFAdd %v4f32 %div255 %c_v4f32_0_5\n"
7888                 "%uints_in = OpConvertFToS %v4i32 %add0_5\n"
7889                 "%ints_in = OpISub %v4i32 %uints_in %c_v4i32_128\n"
7890                 "%x_in = OpCompositeExtract %i32 %ints_in 0\n"
7891                 "%y_in = OpCompositeExtract %i32 %ints_in 1\n"
7892                 "%z_in = OpCompositeExtract %i32 %ints_in 2\n"
7893                 "%x_out = OpSRem %i32 %x_in %y_in\n"
7894                 "%y_out = OpSRem %i32 %y_in %z_in\n"
7895                 "%z_out = OpSRem %i32 %z_in %x_in\n"
7896                 "%ints_out = OpCompositeConstruct %v4i32 %x_out %y_out %z_out %c_i32_255\n"
7897                 "%ints_offset = OpIAdd %v4i32 %ints_out %c_v4i32_128\n"
7898                 "%f_ints_offset = OpConvertSToF %v4f32 %ints_offset\n"
7899                 "%float_out = OpFDiv %v4f32 %f_ints_offset %c_v4f32_255\n"
7900                 "OpReturnValue %float_out\n"
7901                 "OpFunctionEnd\n";
7902
7903         const struct CaseParams
7904         {
7905                 const char*             name;
7906                 const char*             failMessageTemplate;    // customized status message
7907                 qpTestResult    failResult;                             // override status on failure
7908                 int                             operands[4][3];                 // four (x, y, z) vectors of operands
7909                 int                             results[4][3];                  // four (x, y, z) vectors of results
7910         } cases[] =
7911         {
7912                 {
7913                         "positive",
7914                         "${reason}",
7915                         QP_TEST_RESULT_FAIL,
7916                         { { 5, 12, 17 }, { 5, 5, 7 }, { 75, 8, 81 }, { 25, 60, 100 } },                 // operands
7917                         { { 5, 12,  2 }, { 0, 5, 2 }, {  3, 8,  6 }, { 25, 60,   0 } },                 // results
7918                 },
7919                 {
7920                         "all",
7921                         "Inconsistent results, but within specification: ${reason}",
7922                         negFailResult,                                                                                                                  // negative operands, not required by the spec
7923                         { { 5, 12, -17 }, { -5, -5, 7 }, { 75, 8, -81 }, { 25, -60, 100 } },    // operands
7924                         { { 5, 12,  -2 }, {  0, -5, 2 }, {  3, 8,  -6 }, { 25, -60,   0 } },    // results
7925                 },
7926         };
7927         // If either operand is negative the result is undefined. Some implementations may still return correct values.
7928
7929         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
7930         {
7931                 const CaseParams&       params                  = cases[caseNdx];
7932                 RGBA                            inputColors[4];
7933                 RGBA                            outputColors[4];
7934
7935                 for (int i = 0; i < 4; ++i)
7936                 {
7937                         inputColors [i] = RGBA(params.operands[i][0] + 128, params.operands[i][1] + 128, params.operands[i][2] + 128, 255);
7938                         outputColors[i] = RGBA(params.results [i][0] + 128, params.results [i][1] + 128, params.results [i][2] + 128, 255);
7939                 }
7940
7941                 createTestsForAllStages(params.name, inputColors, outputColors, fragments, testGroup.get(), params.failResult, params.failMessageTemplate);
7942         }
7943
7944         return testGroup.release();
7945 }
7946
7947 // Test for the OpSMod instruction.
7948 tcu::TestCaseGroup* createOpSModGraphicsTests(tcu::TestContext& testCtx, qpTestResult negFailResult)
7949 {
7950         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "smod", "OpSMod"));
7951         map<string, string>                                     fragments;
7952
7953         fragments["pre_main"]                            =
7954                 "%c_f32_255 = OpConstant %f32 255.0\n"
7955                 "%c_i32_128 = OpConstant %i32 128\n"
7956                 "%c_i32_255 = OpConstant %i32 255\n"
7957                 "%c_v4f32_255 = OpConstantComposite %v4f32 %c_f32_255 %c_f32_255 %c_f32_255 %c_f32_255 \n"
7958                 "%c_v4f32_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 \n"
7959                 "%c_v4i32_128 = OpConstantComposite %v4i32 %c_i32_128 %c_i32_128 %c_i32_128 %c_i32_128 \n";
7960
7961         // The test does the following.
7962         // ivec4 ints = int(param1 * 255.0 + 0.5) - 128;
7963         // ivec4 result = ivec4(smod(ints.x, ints.y), smod(ints.y, ints.z), smod(ints.z, ints.x), 255);
7964         // return float(result + 128) / 255.0;
7965         fragments["testfun"]                             =
7966                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
7967                 "%param1 = OpFunctionParameter %v4f32\n"
7968                 "%label_testfun = OpLabel\n"
7969                 "%div255 = OpFMul %v4f32 %param1 %c_v4f32_255\n"
7970                 "%add0_5 = OpFAdd %v4f32 %div255 %c_v4f32_0_5\n"
7971                 "%uints_in = OpConvertFToS %v4i32 %add0_5\n"
7972                 "%ints_in = OpISub %v4i32 %uints_in %c_v4i32_128\n"
7973                 "%x_in = OpCompositeExtract %i32 %ints_in 0\n"
7974                 "%y_in = OpCompositeExtract %i32 %ints_in 1\n"
7975                 "%z_in = OpCompositeExtract %i32 %ints_in 2\n"
7976                 "%x_out = OpSMod %i32 %x_in %y_in\n"
7977                 "%y_out = OpSMod %i32 %y_in %z_in\n"
7978                 "%z_out = OpSMod %i32 %z_in %x_in\n"
7979                 "%ints_out = OpCompositeConstruct %v4i32 %x_out %y_out %z_out %c_i32_255\n"
7980                 "%ints_offset = OpIAdd %v4i32 %ints_out %c_v4i32_128\n"
7981                 "%f_ints_offset = OpConvertSToF %v4f32 %ints_offset\n"
7982                 "%float_out = OpFDiv %v4f32 %f_ints_offset %c_v4f32_255\n"
7983                 "OpReturnValue %float_out\n"
7984                 "OpFunctionEnd\n";
7985
7986         const struct CaseParams
7987         {
7988                 const char*             name;
7989                 const char*             failMessageTemplate;    // customized status message
7990                 qpTestResult    failResult;                             // override status on failure
7991                 int                             operands[4][3];                 // four (x, y, z) vectors of operands
7992                 int                             results[4][3];                  // four (x, y, z) vectors of results
7993         } cases[] =
7994         {
7995                 {
7996                         "positive",
7997                         "${reason}",
7998                         QP_TEST_RESULT_FAIL,
7999                         { { 5, 12, 17 }, { 5, 5, 7 }, { 75, 8, 81 }, { 25, 60, 100 } },                         // operands
8000                         { { 5, 12,  2 }, { 0, 5, 2 }, {  3, 8,  6 }, { 25, 60,   0 } },                         // results
8001                 },
8002                 {
8003                         "all",
8004                         "Inconsistent results, but within specification: ${reason}",
8005                         negFailResult,                                                                                                                          // negative operands, not required by the spec
8006                         { { 5, 12, -17 }, { -5, -5,  7 }, { 75,   8, -81 }, {  25, -60, 100 } },        // operands
8007                         { { 5, -5,   3 }, {  0,  2, -3 }, {  3, -73,  69 }, { -35,  40,   0 } },        // results
8008                 },
8009         };
8010         // If either operand is negative the result is undefined. Some implementations may still return correct values.
8011
8012         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
8013         {
8014                 const CaseParams&       params                  = cases[caseNdx];
8015                 RGBA                            inputColors[4];
8016                 RGBA                            outputColors[4];
8017
8018                 for (int i = 0; i < 4; ++i)
8019                 {
8020                         inputColors [i] = RGBA(params.operands[i][0] + 128, params.operands[i][1] + 128, params.operands[i][2] + 128, 255);
8021                         outputColors[i] = RGBA(params.results [i][0] + 128, params.results [i][1] + 128, params.results [i][2] + 128, 255);
8022                 }
8023
8024                 createTestsForAllStages(params.name, inputColors, outputColors, fragments, testGroup.get(), params.failResult, params.failMessageTemplate);
8025         }
8026         return testGroup.release();
8027 }
8028
8029 enum ConversionDataType
8030 {
8031         DATA_TYPE_SIGNED_16,
8032         DATA_TYPE_SIGNED_32,
8033         DATA_TYPE_SIGNED_64,
8034         DATA_TYPE_UNSIGNED_16,
8035         DATA_TYPE_UNSIGNED_32,
8036         DATA_TYPE_UNSIGNED_64,
8037         DATA_TYPE_FLOAT_32,
8038         DATA_TYPE_FLOAT_64,
8039         DATA_TYPE_VEC2_SIGNED_16,
8040         DATA_TYPE_VEC2_SIGNED_32
8041 };
8042
8043 const string getBitWidthStr (ConversionDataType type)
8044 {
8045         switch (type)
8046         {
8047                 case DATA_TYPE_SIGNED_16:
8048                 case DATA_TYPE_UNSIGNED_16:
8049                         return "16";
8050
8051                 case DATA_TYPE_SIGNED_32:
8052                 case DATA_TYPE_UNSIGNED_32:
8053                 case DATA_TYPE_FLOAT_32:
8054                 case DATA_TYPE_VEC2_SIGNED_16:
8055                         return "32";
8056
8057                 case DATA_TYPE_SIGNED_64:
8058                 case DATA_TYPE_UNSIGNED_64:
8059                 case DATA_TYPE_FLOAT_64:
8060                 case DATA_TYPE_VEC2_SIGNED_32:
8061                         return "64";
8062
8063                 default:
8064                         DE_ASSERT(false);
8065         }
8066         return "";
8067 }
8068
8069 const string getByteWidthStr (ConversionDataType type)
8070 {
8071         switch (type)
8072         {
8073                 case DATA_TYPE_SIGNED_16:
8074                 case DATA_TYPE_UNSIGNED_16:
8075                         return "2";
8076
8077                 case DATA_TYPE_SIGNED_32:
8078                 case DATA_TYPE_UNSIGNED_32:
8079                 case DATA_TYPE_FLOAT_32:
8080                 case DATA_TYPE_VEC2_SIGNED_16:
8081                         return "4";
8082
8083                 case DATA_TYPE_SIGNED_64:
8084                 case DATA_TYPE_UNSIGNED_64:
8085                 case DATA_TYPE_FLOAT_64:
8086                 case DATA_TYPE_VEC2_SIGNED_32:
8087                         return "8";
8088
8089                 default:
8090                         DE_ASSERT(false);
8091         }
8092         return "";
8093 }
8094
8095 bool isSigned (ConversionDataType type)
8096 {
8097         switch (type)
8098         {
8099                 case DATA_TYPE_SIGNED_16:
8100                 case DATA_TYPE_SIGNED_32:
8101                 case DATA_TYPE_SIGNED_64:
8102                 case DATA_TYPE_FLOAT_32:
8103                 case DATA_TYPE_FLOAT_64:
8104                 case DATA_TYPE_VEC2_SIGNED_16:
8105                 case DATA_TYPE_VEC2_SIGNED_32:
8106                         return true;
8107
8108                 case DATA_TYPE_UNSIGNED_16:
8109                 case DATA_TYPE_UNSIGNED_32:
8110                 case DATA_TYPE_UNSIGNED_64:
8111                         return false;
8112
8113                 default:
8114                         DE_ASSERT(false);
8115         }
8116         return false;
8117 }
8118
8119 bool isInt (ConversionDataType type)
8120 {
8121         switch (type)
8122         {
8123                 case DATA_TYPE_SIGNED_16:
8124                 case DATA_TYPE_SIGNED_32:
8125                 case DATA_TYPE_SIGNED_64:
8126                 case DATA_TYPE_UNSIGNED_16:
8127                 case DATA_TYPE_UNSIGNED_32:
8128                 case DATA_TYPE_UNSIGNED_64:
8129                         return true;
8130
8131                 case DATA_TYPE_FLOAT_32:
8132                 case DATA_TYPE_FLOAT_64:
8133                 case DATA_TYPE_VEC2_SIGNED_16:
8134                 case DATA_TYPE_VEC2_SIGNED_32:
8135                         return false;
8136
8137                 default:
8138                         DE_ASSERT(false);
8139         }
8140         return false;
8141 }
8142
8143 bool isFloat (ConversionDataType type)
8144 {
8145         switch (type)
8146         {
8147                 case DATA_TYPE_SIGNED_16:
8148                 case DATA_TYPE_SIGNED_32:
8149                 case DATA_TYPE_SIGNED_64:
8150                 case DATA_TYPE_UNSIGNED_16:
8151                 case DATA_TYPE_UNSIGNED_32:
8152                 case DATA_TYPE_UNSIGNED_64:
8153                 case DATA_TYPE_VEC2_SIGNED_16:
8154                 case DATA_TYPE_VEC2_SIGNED_32:
8155                         return false;
8156
8157                 case DATA_TYPE_FLOAT_32:
8158                 case DATA_TYPE_FLOAT_64:
8159                         return true;
8160
8161                 default:
8162                         DE_ASSERT(false);
8163         }
8164         return false;
8165 }
8166
8167 const string getTypeName (ConversionDataType type)
8168 {
8169         string prefix = isSigned(type) ? "" : "u";
8170
8171         if              (isInt(type))                                           return prefix + "int"   + getBitWidthStr(type);
8172         else if (isFloat(type))                                         return prefix + "float" + getBitWidthStr(type);
8173         else if (type == DATA_TYPE_VEC2_SIGNED_16)      return "i16vec2";
8174         else if (type == DATA_TYPE_VEC2_SIGNED_32)      return "i32vec2";
8175         else                                                                            DE_ASSERT(false);
8176
8177         return "";
8178 }
8179
8180 const string getTestName (ConversionDataType from, ConversionDataType to)
8181 {
8182         return getTypeName(from) + "_to_" + getTypeName(to);
8183 }
8184
8185 const string getAsmTypeName (ConversionDataType type)
8186 {
8187         string prefix;
8188
8189         if              (isInt(type))                                           prefix = isSigned(type) ? "i" : "u";
8190         else if (isFloat(type))                                         prefix = "f";
8191         else if (type == DATA_TYPE_VEC2_SIGNED_16)      return "i16vec2";
8192         else if (type == DATA_TYPE_VEC2_SIGNED_32)      return "v2i32";
8193         else                                                                            DE_ASSERT(false);
8194
8195         return prefix + getBitWidthStr(type);
8196 }
8197
8198 template<typename T>
8199 BufferSp getSpecializedBuffer (deInt64 number)
8200 {
8201         return BufferSp(new Buffer<T>(vector<T>(1, (T)number)));
8202 }
8203
8204 BufferSp getBuffer (ConversionDataType type, deInt64 number)
8205 {
8206         switch (type)
8207         {
8208                 case DATA_TYPE_SIGNED_16:               return getSpecializedBuffer<deInt16>(number);
8209                 case DATA_TYPE_SIGNED_32:               return getSpecializedBuffer<deInt32>(number);
8210                 case DATA_TYPE_SIGNED_64:               return getSpecializedBuffer<deInt64>(number);
8211                 case DATA_TYPE_UNSIGNED_16:             return getSpecializedBuffer<deUint16>(number);
8212                 case DATA_TYPE_UNSIGNED_32:             return getSpecializedBuffer<deUint32>(number);
8213                 case DATA_TYPE_UNSIGNED_64:             return getSpecializedBuffer<deUint64>(number);
8214                 case DATA_TYPE_FLOAT_32:                return getSpecializedBuffer<deUint32>(number);
8215                 case DATA_TYPE_FLOAT_64:                return getSpecializedBuffer<deUint64>(number);
8216                 case DATA_TYPE_VEC2_SIGNED_16:  return getSpecializedBuffer<deUint32>(number);
8217                 case DATA_TYPE_VEC2_SIGNED_32:  return getSpecializedBuffer<deUint64>(number);
8218
8219                 default:                                                DE_ASSERT(false);
8220                                                                                 return BufferSp(new Buffer<deInt32>(vector<deInt32>(1, 0)));
8221         }
8222 }
8223
8224 bool usesInt16 (ConversionDataType from, ConversionDataType to)
8225 {
8226         return (from == DATA_TYPE_SIGNED_16 || from == DATA_TYPE_UNSIGNED_16
8227                         || to == DATA_TYPE_SIGNED_16 || to == DATA_TYPE_UNSIGNED_16
8228                         || from == DATA_TYPE_VEC2_SIGNED_16 || to == DATA_TYPE_VEC2_SIGNED_16);
8229 }
8230
8231 bool usesInt32 (ConversionDataType from, ConversionDataType to)
8232 {
8233         return (from == DATA_TYPE_SIGNED_32 || from == DATA_TYPE_UNSIGNED_32
8234                 || to == DATA_TYPE_SIGNED_32 || to == DATA_TYPE_UNSIGNED_32
8235                 || from == DATA_TYPE_VEC2_SIGNED_32 || to == DATA_TYPE_VEC2_SIGNED_32);
8236 }
8237
8238 bool usesInt64 (ConversionDataType from, ConversionDataType to)
8239 {
8240         return (from == DATA_TYPE_SIGNED_64 || from == DATA_TYPE_UNSIGNED_64
8241                         || to == DATA_TYPE_SIGNED_64 || to == DATA_TYPE_UNSIGNED_64);
8242 }
8243
8244 bool usesFloat64 (ConversionDataType from, ConversionDataType to)
8245 {
8246         return (from == DATA_TYPE_FLOAT_64 || to == DATA_TYPE_FLOAT_64);
8247 }
8248
8249
8250 ComputeTestFeatures getConversionUsedFeatures (ConversionDataType from, ConversionDataType to)
8251 {
8252         if (usesInt16(from, to) && usesInt64(from, to))                 return COMPUTE_TEST_USES_INT16_INT64;
8253         else if (usesInt16(from, to) && usesInt32(from, to))    return COMPUTE_TEST_USES_NONE;
8254         else if (usesInt16(from, to))                                                   return COMPUTE_TEST_USES_INT16;                 // This is not set for int16<-->int32 only conversions
8255         else if (usesInt64(from, to))                                                   return COMPUTE_TEST_USES_INT64;
8256         else if (usesFloat64(from, to))                                                 return COMPUTE_TEST_USES_FLOAT64;
8257         else                                                                                                    return COMPUTE_TEST_USES_NONE;
8258 }
8259
8260 vector<string> getFeatureStringVector (ComputeTestFeatures computeTestFeatures)
8261 {
8262         vector<string> features;
8263         if (computeTestFeatures == COMPUTE_TEST_USES_INT16_INT64)
8264         {
8265                 features.push_back("shaderInt16");
8266                 features.push_back("shaderInt64");
8267         }
8268         else if (computeTestFeatures == COMPUTE_TEST_USES_INT16)                features.push_back("shaderInt16");
8269         else if (computeTestFeatures == COMPUTE_TEST_USES_INT64)                features.push_back("shaderInt64");
8270         else if (computeTestFeatures == COMPUTE_TEST_USES_FLOAT64)              features.push_back("shaderFloat64");
8271         else if (computeTestFeatures == COMPUTE_TEST_USES_NONE)                 {}
8272         else                                                                                                                    DE_ASSERT(false);
8273
8274         return features;
8275 }
8276
8277 struct ConvertCase
8278 {
8279         ConvertCase (ConversionDataType from, ConversionDataType to, deInt64 number, bool separateOutput = false, deInt64 outputNumber = 0)
8280         : m_fromType            (from)
8281         , m_toType                      (to)
8282         , m_features            (getConversionUsedFeatures(from, to))
8283         , m_name                        (getTestName(from, to))
8284         , m_inputBuffer         (getBuffer(from, number))
8285         {
8286                 m_asmTypes["inputType"]         = getAsmTypeName(from);
8287                 m_asmTypes["outputType"]        = getAsmTypeName(to);
8288
8289                 if (separateOutput)
8290                         m_outputBuffer = getBuffer(to, outputNumber);
8291                 else
8292                         m_outputBuffer = getBuffer(to, number);
8293
8294                 if (m_features == COMPUTE_TEST_USES_INT16)
8295                 {
8296                         m_asmTypes["datatype_capabilities"]       =             "OpCapability Int16\n"
8297                                                                                                                 "OpCapability StorageUniformBufferBlock16\n"
8298                                                                                                                 "OpCapability StorageUniform16\n";
8299                         m_asmTypes["datatype_additional_decl"] =        "%i16        = OpTypeInt 16 1\n"
8300                                                                                                                 "%u16        = OpTypeInt 16 0\n"
8301                                                                                                                 "%i16vec2    = OpTypeVector %i16 2\n";
8302                         m_asmTypes["datatype_extensions"]         =             "OpExtension \"SPV_KHR_16bit_storage\"\n";
8303                 }
8304                 else if (m_features == COMPUTE_TEST_USES_INT64)
8305                 {
8306                         m_asmTypes["datatype_capabilities"]       =             "OpCapability Int64\n";
8307                         m_asmTypes["datatype_additional_decl"] =        "%i64        = OpTypeInt 64 1\n"
8308                                                                                                                 "%u64        = OpTypeInt 64 0\n";
8309                         m_asmTypes["datatype_extensions"]         =             "";
8310                 }
8311                 else if (m_features == COMPUTE_TEST_USES_INT16_INT64)
8312                 {
8313                         m_asmTypes["datatype_capabilities"]       =             "OpCapability Int16\n"
8314                                                                                                                 "OpCapability StorageUniformBufferBlock16\n"
8315                                                                                                                 "OpCapability StorageUniform16\n"
8316                                                                                                                 "OpCapability Int64\n";
8317                         m_asmTypes["datatype_additional_decl"] =        "%i16        = OpTypeInt 16 1\n"
8318                                                                                                                 "%u16        = OpTypeInt 16 0\n"
8319                                                                                                                 "%i64        = OpTypeInt 64 1\n"
8320                                                                                                                 "%u64        = OpTypeInt 64 0\n";
8321                         m_asmTypes["datatype_extensions"]         =             "OpExtension \"SPV_KHR_16bit_storage\"\n";
8322                 }
8323                 else if (m_features == COMPUTE_TEST_USES_FLOAT64)
8324                 {
8325                         m_asmTypes["datatype_capabilities"]             =       "OpCapability Float64\n";
8326                         m_asmTypes["datatype_additional_decl"]  =       "%f64        = OpTypeFloat 64\n";
8327                 }
8328                 else if (usesInt16(from, to) && usesInt32(from, to))
8329                 {
8330                         m_asmTypes["datatype_capabilities"]       =             "OpCapability StorageUniformBufferBlock16\n"
8331                                                                                                                 "OpCapability StorageUniform16\n";
8332                         m_asmTypes["datatype_additional_decl"] =        "%i16        = OpTypeInt 16 1\n"
8333                                                                                                                 "%u16        = OpTypeInt 16 0\n"
8334                                                                                                                 "%i16vec2    = OpTypeVector %i16 2\n";
8335                         m_asmTypes["datatype_extensions"]         =             "OpExtension \"SPV_KHR_16bit_storage\"\n";
8336                 }
8337                 else
8338                 {
8339                         DE_ASSERT(false);
8340                 }
8341         }
8342
8343         ConversionDataType              m_fromType;
8344         ConversionDataType              m_toType;
8345         ComputeTestFeatures             m_features;
8346         string                                  m_name;
8347         map<string, string>             m_asmTypes;
8348         BufferSp                                m_inputBuffer;
8349         BufferSp                                m_outputBuffer;
8350 };
8351
8352 const string getConvertCaseShaderStr (const string& instruction, const ConvertCase& convertCase)
8353 {
8354         map<string, string> params = convertCase.m_asmTypes;
8355
8356         params["instruction"]   = instruction;
8357         params["inDecorator"]   = getByteWidthStr(convertCase.m_fromType);
8358         params["outDecorator"]  = getByteWidthStr(convertCase.m_toType);
8359
8360         const StringTemplate shader (
8361                 "OpCapability Shader\n"
8362                 "${datatype_capabilities}"
8363                 "${datatype_extensions:opt}"
8364                 "OpMemoryModel Logical GLSL450\n"
8365                 "OpEntryPoint GLCompute %main \"main\"\n"
8366                 "OpExecutionMode %main LocalSize 1 1 1\n"
8367                 "OpSource GLSL 430\n"
8368                 "OpName %main           \"main\"\n"
8369                 // Decorators
8370                 "OpDecorate %indata DescriptorSet 0\n"
8371                 "OpDecorate %indata Binding 0\n"
8372                 "OpDecorate %outdata DescriptorSet 0\n"
8373                 "OpDecorate %outdata Binding 1\n"
8374                 "OpDecorate %in_buf BufferBlock\n"
8375                 "OpDecorate %out_buf BufferBlock\n"
8376                 "OpMemberDecorate %in_buf 0 Offset 0\n"
8377                 "OpMemberDecorate %out_buf 0 Offset 0\n"
8378                 // Base types
8379                 "%void       = OpTypeVoid\n"
8380                 "%voidf      = OpTypeFunction %void\n"
8381                 "%u32        = OpTypeInt 32 0\n"
8382                 "%i32        = OpTypeInt 32 1\n"
8383                 "%f32        = OpTypeFloat 32\n"
8384                 "%v2i32      = OpTypeVector %i32 2\n"
8385                 "${datatype_additional_decl}"
8386                 "%uvec3      = OpTypeVector %u32 3\n"
8387                 // Derived types
8388                 "%in_ptr     = OpTypePointer Uniform %${inputType}\n"
8389                 "%out_ptr    = OpTypePointer Uniform %${outputType}\n"
8390                 "%in_buf     = OpTypeStruct %${inputType}\n"
8391                 "%out_buf    = OpTypeStruct %${outputType}\n"
8392                 "%in_bufptr  = OpTypePointer Uniform %in_buf\n"
8393                 "%out_bufptr = OpTypePointer Uniform %out_buf\n"
8394                 "%indata     = OpVariable %in_bufptr Uniform\n"
8395                 "%outdata    = OpVariable %out_bufptr Uniform\n"
8396                 // Constants
8397                 "%zero       = OpConstant %i32 0\n"
8398                 // Main function
8399                 "%main       = OpFunction %void None %voidf\n"
8400                 "%label      = OpLabel\n"
8401                 "%inloc      = OpAccessChain %in_ptr %indata %zero\n"
8402                 "%outloc     = OpAccessChain %out_ptr %outdata %zero\n"
8403                 "%inval      = OpLoad %${inputType} %inloc\n"
8404                 "%conv       = ${instruction} %${outputType} %inval\n"
8405                 "              OpStore %outloc %conv\n"
8406                 "              OpReturn\n"
8407                 "              OpFunctionEnd\n"
8408         );
8409
8410         return shader.specialize(params);
8411 }
8412
8413 void createConvertCases (vector<ConvertCase>& testCases, const string& instruction)
8414 {
8415         if (instruction == "OpUConvert")
8416         {
8417                 // Convert unsigned int to unsigned int
8418                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_16,          DATA_TYPE_UNSIGNED_32,          60653));
8419                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_16,          DATA_TYPE_UNSIGNED_64,          17991));
8420                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_32,          DATA_TYPE_UNSIGNED_64,          904256275));
8421                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_32,          DATA_TYPE_UNSIGNED_16,          6275));
8422                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_64,          DATA_TYPE_UNSIGNED_32,          701256243));
8423                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_64,          DATA_TYPE_UNSIGNED_16,          4741));
8424         }
8425         else if (instruction == "OpSConvert")
8426         {
8427                 // Sign extension int->int
8428                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_16,            DATA_TYPE_SIGNED_32,            14669));
8429                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_16,            DATA_TYPE_SIGNED_64,            -3341));
8430                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_32,            DATA_TYPE_SIGNED_64,            973610259));
8431
8432                 // Truncate for int->int
8433                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_32,            DATA_TYPE_SIGNED_16,            12382));
8434                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_64,            DATA_TYPE_SIGNED_32,            -972812359));
8435                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_64,            DATA_TYPE_SIGNED_16,            -1067742499291926803ll,                         true,   -4371));
8436
8437                 // Sign extension for int->uint
8438                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_16,            DATA_TYPE_UNSIGNED_32,          14669));
8439                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_16,            DATA_TYPE_UNSIGNED_64,          -3341,                                                          true,   18446744073709548275ull));
8440                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_32,            DATA_TYPE_UNSIGNED_64,          973610259));
8441
8442                 // Truncate for int->uint
8443                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_32,            DATA_TYPE_UNSIGNED_16,          12382));
8444                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_64,            DATA_TYPE_UNSIGNED_32,          -972812359,                                                     true,   3322154937u));
8445                 testCases.push_back(ConvertCase(DATA_TYPE_SIGNED_64,            DATA_TYPE_UNSIGNED_16,          -1067742499291926803ll,                         true,   61165));
8446
8447                 // Sign extension for uint->int
8448                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_16,          DATA_TYPE_SIGNED_32,            14669));
8449                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_16,          DATA_TYPE_SIGNED_64,            62195,                                                          true,   -3341));
8450                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_32,          DATA_TYPE_SIGNED_64,            973610259));
8451
8452                 // Truncate for uint->int
8453                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_32,          DATA_TYPE_SIGNED_16,            12382));
8454                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_64,          DATA_TYPE_SIGNED_32,            18446744072736739257ull,                        true,   -972812359));
8455                 testCases.push_back(ConvertCase(DATA_TYPE_UNSIGNED_64,          DATA_TYPE_SIGNED_16,            17379001574417624813ull,                        true,   -4371));
8456
8457                 // Convert i16vec2 to i32vec2 and vice versa
8458                 // Unsigned values are used here to represent negative signed values and to allow defined shifting behaviour.
8459                 // The actual signed value -32123 is used here as uint16 value 33413 and uint32 value 4294935173
8460                 testCases.push_back(ConvertCase(DATA_TYPE_VEC2_SIGNED_16,       DATA_TYPE_VEC2_SIGNED_32,       (33413u << 16)                  | 27593,        true,   (4294935173ull << 32)   | 27593));
8461                 testCases.push_back(ConvertCase(DATA_TYPE_VEC2_SIGNED_32,       DATA_TYPE_VEC2_SIGNED_16,       (4294935173ull << 32)   | 27593,        true,   (33413u << 16)                  | 27593));
8462         }
8463         else if (instruction == "OpFConvert")
8464         {
8465                 // All hexadecimal values below represent 1024.0 as 32/64-bit IEEE 754 float
8466                 testCases.push_back(ConvertCase(DATA_TYPE_FLOAT_32,                     DATA_TYPE_FLOAT_64,                     0x449a4000,                                                     true,   0x4093480000000000));
8467                 testCases.push_back(ConvertCase(DATA_TYPE_FLOAT_64,                     DATA_TYPE_FLOAT_32,                     0x4093480000000000,                                     true,   0x449a4000));
8468         }
8469         else
8470                 DE_FATAL("Unknown instruction");
8471 }
8472
8473 const map<string, string> getConvertCaseFragments (string instruction, const ConvertCase& convertCase)
8474 {
8475         map<string, string> params = convertCase.m_asmTypes;
8476         map<string, string> fragments;
8477
8478         params["instruction"] = instruction;
8479         params["inDecorator"] = getByteWidthStr(convertCase.m_fromType);
8480
8481         const StringTemplate decoration (
8482                 "      OpDecorate %SSBOi DescriptorSet 0\n"
8483                 "      OpDecorate %SSBOo DescriptorSet 0\n"
8484                 "      OpDecorate %SSBOi Binding 0\n"
8485                 "      OpDecorate %SSBOo Binding 1\n"
8486                 "      OpDecorate %s_SSBOi Block\n"
8487                 "      OpDecorate %s_SSBOo Block\n"
8488                 "OpMemberDecorate %s_SSBOi 0 Offset 0\n"
8489                 "OpMemberDecorate %s_SSBOo 0 Offset 0\n");
8490
8491         const StringTemplate pre_main (
8492                 "${datatype_additional_decl:opt}"
8493                 "    %ptr_in = OpTypePointer StorageBuffer %${inputType}\n"
8494                 "   %ptr_out = OpTypePointer StorageBuffer %${outputType}\n"
8495                 "   %s_SSBOi = OpTypeStruct %${inputType}\n"
8496                 "   %s_SSBOo = OpTypeStruct %${outputType}\n"
8497                 " %ptr_SSBOi = OpTypePointer StorageBuffer %s_SSBOi\n"
8498                 " %ptr_SSBOo = OpTypePointer StorageBuffer %s_SSBOo\n"
8499                 "     %SSBOi = OpVariable %ptr_SSBOi StorageBuffer\n"
8500                 "     %SSBOo = OpVariable %ptr_SSBOo StorageBuffer\n");
8501
8502         const StringTemplate testfun (
8503                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
8504                 "%param     = OpFunctionParameter %v4f32\n"
8505                 "%label     = OpLabel\n"
8506                 "%iLoc      = OpAccessChain %ptr_in %SSBOi %c_u32_0\n"
8507                 "%oLoc      = OpAccessChain %ptr_out %SSBOo %c_u32_0\n"
8508                 "%valIn     = OpLoad %${inputType} %iLoc\n"
8509                 "%valOut    = ${instruction} %${outputType} %valIn\n"
8510                 "             OpStore %oLoc %valOut\n"
8511                 "             OpReturnValue %param\n"
8512                 "             OpFunctionEnd\n");
8513
8514         params["datatype_extensions"] =
8515                 params["datatype_extensions"] +
8516                 "OpExtension \"SPV_KHR_storage_buffer_storage_class\"\n";
8517
8518         fragments["capability"] = params["datatype_capabilities"];
8519         fragments["extension"]  = params["datatype_extensions"];
8520         fragments["decoration"] = decoration.specialize(params);
8521         fragments["pre_main"]   = pre_main.specialize(params);
8522         fragments["testfun"]    = testfun.specialize(params);
8523
8524         return fragments;
8525 }
8526
8527 // Test for OpSConvert, OpUConvert and OpFConvert in compute shaders
8528 tcu::TestCaseGroup* createConvertComputeTests (tcu::TestContext& testCtx, const string& instruction, const string& name)
8529 {
8530         de::MovePtr<tcu::TestCaseGroup>         group(new tcu::TestCaseGroup(testCtx, name.c_str(), instruction.c_str()));
8531         vector<ConvertCase>                                     testCases;
8532         createConvertCases(testCases, instruction);
8533
8534         for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8535         {
8536                 ComputeShaderSpec spec;
8537                 spec.assembly                   = getConvertCaseShaderStr(instruction, *test);
8538                 spec.numWorkGroups              = IVec3(1, 1, 1);
8539                 spec.inputs.push_back   (test->m_inputBuffer);
8540                 spec.outputs.push_back  (test->m_outputBuffer);
8541
8542                 if (test->m_features == COMPUTE_TEST_USES_INT16 || test->m_features == COMPUTE_TEST_USES_INT16_INT64 || usesInt16(test->m_fromType, test->m_toType)) {
8543                         spec.extensions.push_back("VK_KHR_16bit_storage");
8544                         spec.requestedVulkanFeatures.ext16BitStorage = EXT16BITSTORAGEFEATURES_UNIFORM_BUFFER_BLOCK;
8545                 }
8546
8547                 group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "", spec, test->m_features));
8548         }
8549         return group.release();
8550 }
8551
8552 // Test for OpSConvert, OpUConvert and OpFConvert in graphics shaders
8553 tcu::TestCaseGroup* createConvertGraphicsTests (tcu::TestContext& testCtx, const string& instruction, const string& name)
8554 {
8555         de::MovePtr<tcu::TestCaseGroup>         group(new tcu::TestCaseGroup(testCtx, name.c_str(), instruction.c_str()));
8556         vector<ConvertCase>                                     testCases;
8557         createConvertCases(testCases, instruction);
8558
8559         for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8560         {
8561                 map<string, string>     fragments               = getConvertCaseFragments(instruction, *test);
8562                 vector<string>          features                = getFeatureStringVector(test->m_features);
8563                 GraphicsResources       resources;
8564                 vector<string>          extensions;
8565                 vector<deInt32>         noSpecConstants;
8566                 PushConstants           noPushConstants;
8567                 VulkanFeatures          vulkanFeatures;
8568                 GraphicsInterfaces      noInterfaces;
8569                 tcu::RGBA                       defaultColors[4];
8570
8571                 getDefaultColors                        (defaultColors);
8572                 resources.inputs.push_back      (std::make_pair(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, test->m_inputBuffer));
8573                 resources.outputs.push_back     (std::make_pair(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, test->m_outputBuffer));
8574                 extensions.push_back            ("VK_KHR_storage_buffer_storage_class");
8575
8576                 if (test->m_features == COMPUTE_TEST_USES_INT16 || test->m_features == COMPUTE_TEST_USES_INT16_INT64 || usesInt16(test->m_fromType, test->m_toType))
8577                 {
8578                         extensions.push_back("VK_KHR_16bit_storage");
8579                         vulkanFeatures.ext16BitStorage = EXT16BITSTORAGEFEATURES_UNIFORM_BUFFER_BLOCK;
8580                 }
8581
8582                 createTestsForAllStages(
8583                         test->m_name, defaultColors, defaultColors, fragments, noSpecConstants,
8584                         noPushConstants, resources, noInterfaces, extensions, features, vulkanFeatures, group.get());
8585         }
8586         return group.release();
8587 }
8588
8589 const string getNumberTypeName (const NumberType type)
8590 {
8591         if (type == NUMBERTYPE_INT32)
8592         {
8593                 return "int";
8594         }
8595         else if (type == NUMBERTYPE_UINT32)
8596         {
8597                 return "uint";
8598         }
8599         else if (type == NUMBERTYPE_FLOAT32)
8600         {
8601                 return "float";
8602         }
8603         else
8604         {
8605                 DE_ASSERT(false);
8606                 return "";
8607         }
8608 }
8609
8610 deInt32 getInt(de::Random& rnd)
8611 {
8612         return rnd.getInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::max());
8613 }
8614
8615 const string repeatString (const string& str, int times)
8616 {
8617         string filler;
8618         for (int i = 0; i < times; ++i)
8619         {
8620                 filler += str;
8621         }
8622         return filler;
8623 }
8624
8625 const string getRandomConstantString (const NumberType type, de::Random& rnd)
8626 {
8627         if (type == NUMBERTYPE_INT32)
8628         {
8629                 return numberToString<deInt32>(getInt(rnd));
8630         }
8631         else if (type == NUMBERTYPE_UINT32)
8632         {
8633                 return numberToString<deUint32>(rnd.getUint32());
8634         }
8635         else if (type == NUMBERTYPE_FLOAT32)
8636         {
8637                 return numberToString<float>(rnd.getFloat());
8638         }
8639         else
8640         {
8641                 DE_ASSERT(false);
8642                 return "";
8643         }
8644 }
8645
8646 void createVectorCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8647 {
8648         map<string, string> params;
8649
8650         // Vec2 to Vec4
8651         for (int width = 2; width <= 4; ++width)
8652         {
8653                 const string randomConst = numberToString(getInt(rnd));
8654                 const string widthStr = numberToString(width);
8655                 const string composite_type = "${customType}vec" + widthStr;
8656                 const int index = rnd.getInt(0, width-1);
8657
8658                 params["type"]                  = "vec";
8659                 params["name"]                  = params["type"] + "_" + widthStr;
8660                 params["compositeDecl"]         = composite_type + " = OpTypeVector ${customType} " + widthStr +"\n";
8661                 params["compositeType"]         = composite_type;
8662                 params["filler"]                = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
8663                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct " + composite_type + repeatString(" %filler", width) + "\n";
8664                 params["indexes"]               = numberToString(index);
8665                 testCases.push_back(params);
8666         }
8667 }
8668
8669 void createArrayCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8670 {
8671         const int limit = 10;
8672         map<string, string> params;
8673
8674         for (int width = 2; width <= limit; ++width)
8675         {
8676                 string randomConst = numberToString(getInt(rnd));
8677                 string widthStr = numberToString(width);
8678                 int index = rnd.getInt(0, width-1);
8679
8680                 params["type"]                  = "array";
8681                 params["name"]                  = params["type"] + "_" + widthStr;
8682                 params["compositeDecl"]         = string("%arraywidth = OpConstant %u32 " + widthStr + "\n")
8683                                                                                         +        "%composite = OpTypeArray ${customType} %arraywidth\n";
8684                 params["compositeType"]         = "%composite";
8685                 params["filler"]                = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
8686                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
8687                 params["indexes"]               = numberToString(index);
8688                 testCases.push_back(params);
8689         }
8690 }
8691
8692 void createStructCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8693 {
8694         const int limit = 10;
8695         map<string, string> params;
8696
8697         for (int width = 2; width <= limit; ++width)
8698         {
8699                 string randomConst = numberToString(getInt(rnd));
8700                 int index = rnd.getInt(0, width-1);
8701
8702                 params["type"]                  = "struct";
8703                 params["name"]                  = params["type"] + "_" + numberToString(width);
8704                 params["compositeDecl"]         = "%composite = OpTypeStruct" + repeatString(" ${customType}", width) + "\n";
8705                 params["compositeType"]         = "%composite";
8706                 params["filler"]                = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
8707                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
8708                 params["indexes"]               = numberToString(index);
8709                 testCases.push_back(params);
8710         }
8711 }
8712
8713 void createMatrixCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8714 {
8715         map<string, string> params;
8716
8717         // Vec2 to Vec4
8718         for (int width = 2; width <= 4; ++width)
8719         {
8720                 string widthStr = numberToString(width);
8721
8722                 for (int column = 2 ; column <= 4; ++column)
8723                 {
8724                         int index_0 = rnd.getInt(0, column-1);
8725                         int index_1 = rnd.getInt(0, width-1);
8726                         string columnStr = numberToString(column);
8727
8728                         params["type"]          = "matrix";
8729                         params["name"]          = params["type"] + "_" + widthStr + "x" + columnStr;
8730                         params["compositeDecl"] = string("%vectype   = OpTypeVector ${customType} " + widthStr + "\n")
8731                                                                                                 +        "%composite = OpTypeMatrix %vectype " + columnStr + "\n";
8732                         params["compositeType"] = "%composite";
8733
8734                         params["filler"]        = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n"
8735                                                                                                 +        "%fillerVec = OpConstantComposite %vectype" + repeatString(" %filler", width) + "\n";
8736
8737                         params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %fillerVec", column) + "\n";
8738                         params["indexes"]       = numberToString(index_0) + " " + numberToString(index_1);
8739                         testCases.push_back(params);
8740                 }
8741         }
8742 }
8743
8744 void createCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
8745 {
8746         createVectorCompositeCases(testCases, rnd, type);
8747         createArrayCompositeCases(testCases, rnd, type);
8748         createStructCompositeCases(testCases, rnd, type);
8749         // Matrix only supports float types
8750         if (type == NUMBERTYPE_FLOAT32)
8751         {
8752                 createMatrixCompositeCases(testCases, rnd, type);
8753         }
8754 }
8755
8756 const string getAssemblyTypeDeclaration (const NumberType type)
8757 {
8758         switch (type)
8759         {
8760                 case NUMBERTYPE_INT32:          return "OpTypeInt 32 1";
8761                 case NUMBERTYPE_UINT32:         return "OpTypeInt 32 0";
8762                 case NUMBERTYPE_FLOAT32:        return "OpTypeFloat 32";
8763                 default:                        DE_ASSERT(false); return "";
8764         }
8765 }
8766
8767 const string getAssemblyTypeName (const NumberType type)
8768 {
8769         switch (type)
8770         {
8771                 case NUMBERTYPE_INT32:          return "%i32";
8772                 case NUMBERTYPE_UINT32:         return "%u32";
8773                 case NUMBERTYPE_FLOAT32:        return "%f32";
8774                 default:                        DE_ASSERT(false); return "";
8775         }
8776 }
8777
8778 const string specializeCompositeInsertShaderTemplate (const NumberType type, const map<string, string>& params)
8779 {
8780         map<string, string>     parameters(params);
8781
8782         const string customType = getAssemblyTypeName(type);
8783         map<string, string> substCustomType;
8784         substCustomType["customType"] = customType;
8785         parameters["compositeDecl"] = StringTemplate(parameters.at("compositeDecl")).specialize(substCustomType);
8786         parameters["compositeType"] = StringTemplate(parameters.at("compositeType")).specialize(substCustomType);
8787         parameters["compositeConstruct"] = StringTemplate(parameters.at("compositeConstruct")).specialize(substCustomType);
8788         parameters["filler"] = StringTemplate(parameters.at("filler")).specialize(substCustomType);
8789         parameters["customType"] = customType;
8790         parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
8791
8792         if (parameters.at("compositeType") != "%u32vec3")
8793         {
8794                 parameters["u32vec3Decl"] = "%u32vec3   = OpTypeVector %u32 3\n";
8795         }
8796
8797         return StringTemplate(
8798                 "OpCapability Shader\n"
8799                 "OpCapability Matrix\n"
8800                 "OpMemoryModel Logical GLSL450\n"
8801                 "OpEntryPoint GLCompute %main \"main\" %id\n"
8802                 "OpExecutionMode %main LocalSize 1 1 1\n"
8803
8804                 "OpSource GLSL 430\n"
8805                 "OpName %main           \"main\"\n"
8806                 "OpName %id             \"gl_GlobalInvocationID\"\n"
8807
8808                 // Decorators
8809                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
8810                 "OpDecorate %buf BufferBlock\n"
8811                 "OpDecorate %indata DescriptorSet 0\n"
8812                 "OpDecorate %indata Binding 0\n"
8813                 "OpDecorate %outdata DescriptorSet 0\n"
8814                 "OpDecorate %outdata Binding 1\n"
8815                 "OpDecorate %customarr ArrayStride 4\n"
8816                 "${compositeDecorator}"
8817                 "OpMemberDecorate %buf 0 Offset 0\n"
8818
8819                 // General types
8820                 "%void      = OpTypeVoid\n"
8821                 "%voidf     = OpTypeFunction %void\n"
8822                 "%u32       = OpTypeInt 32 0\n"
8823                 "%i32       = OpTypeInt 32 1\n"
8824                 "%f32       = OpTypeFloat 32\n"
8825
8826                 // Composite declaration
8827                 "${compositeDecl}"
8828
8829                 // Constants
8830                 "${filler}"
8831
8832                 "${u32vec3Decl:opt}"
8833                 "%uvec3ptr  = OpTypePointer Input %u32vec3\n"
8834
8835                 // Inherited from custom
8836                 "%customptr = OpTypePointer Uniform ${customType}\n"
8837                 "%customarr = OpTypeRuntimeArray ${customType}\n"
8838                 "%buf       = OpTypeStruct %customarr\n"
8839                 "%bufptr    = OpTypePointer Uniform %buf\n"
8840
8841                 "%indata    = OpVariable %bufptr Uniform\n"
8842                 "%outdata   = OpVariable %bufptr Uniform\n"
8843
8844                 "%id        = OpVariable %uvec3ptr Input\n"
8845                 "%zero      = OpConstant %i32 0\n"
8846
8847                 "%main      = OpFunction %void None %voidf\n"
8848                 "%label     = OpLabel\n"
8849                 "%idval     = OpLoad %u32vec3 %id\n"
8850                 "%x         = OpCompositeExtract %u32 %idval 0\n"
8851
8852                 "%inloc     = OpAccessChain %customptr %indata %zero %x\n"
8853                 "%outloc    = OpAccessChain %customptr %outdata %zero %x\n"
8854                 // Read the input value
8855                 "%inval     = OpLoad ${customType} %inloc\n"
8856                 // Create the composite and fill it
8857                 "${compositeConstruct}"
8858                 // Insert the input value to a place
8859                 "%instance2 = OpCompositeInsert ${compositeType} %inval %instance ${indexes}\n"
8860                 // Read back the value from the position
8861                 "%out_val   = OpCompositeExtract ${customType} %instance2 ${indexes}\n"
8862                 // Store it in the output position
8863                 "             OpStore %outloc %out_val\n"
8864                 "             OpReturn\n"
8865                 "             OpFunctionEnd\n"
8866         ).specialize(parameters);
8867 }
8868
8869 template<typename T>
8870 BufferSp createCompositeBuffer(T number)
8871 {
8872         return BufferSp(new Buffer<T>(vector<T>(1, number)));
8873 }
8874
8875 tcu::TestCaseGroup* createOpCompositeInsertGroup (tcu::TestContext& testCtx)
8876 {
8877         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "opcompositeinsert", "Test the OpCompositeInsert instruction"));
8878         de::Random                                              rnd             (deStringHash(group->getName()));
8879
8880         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
8881         {
8882                 NumberType                                              numberType              = NumberType(type);
8883                 const string                                    typeName                = getNumberTypeName(numberType);
8884                 const string                                    description             = "Test the OpCompositeInsert instruction with " + typeName + "s";
8885                 de::MovePtr<tcu::TestCaseGroup> subGroup                (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
8886                 vector<map<string, string> >    testCases;
8887
8888                 createCompositeCases(testCases, rnd, numberType);
8889
8890                 for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8891                 {
8892                         ComputeShaderSpec       spec;
8893
8894                         spec.assembly = specializeCompositeInsertShaderTemplate(numberType, *test);
8895
8896                         switch (numberType)
8897                         {
8898                                 case NUMBERTYPE_INT32:
8899                                 {
8900                                         deInt32 number = getInt(rnd);
8901                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
8902                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
8903                                         break;
8904                                 }
8905                                 case NUMBERTYPE_UINT32:
8906                                 {
8907                                         deUint32 number = rnd.getUint32();
8908                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
8909                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
8910                                         break;
8911                                 }
8912                                 case NUMBERTYPE_FLOAT32:
8913                                 {
8914                                         float number = rnd.getFloat();
8915                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
8916                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
8917                                         break;
8918                                 }
8919                                 default:
8920                                         DE_ASSERT(false);
8921                         }
8922
8923                         spec.numWorkGroups = IVec3(1, 1, 1);
8924                         subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpCompositeInsert test", spec));
8925                 }
8926                 group->addChild(subGroup.release());
8927         }
8928         return group.release();
8929 }
8930
8931 struct AssemblyStructInfo
8932 {
8933         AssemblyStructInfo (const deUint32 comp, const deUint32 idx)
8934         : components    (comp)
8935         , index                 (idx)
8936         {}
8937
8938         deUint32 components;
8939         deUint32 index;
8940 };
8941
8942 const string specializeInBoundsShaderTemplate (const NumberType type, const AssemblyStructInfo& structInfo, const map<string, string>& params)
8943 {
8944         // Create the full index string
8945         string                          fullIndex       = numberToString(structInfo.index) + " " + params.at("indexes");
8946         // Convert it to list of indexes
8947         vector<string>          indexes         = de::splitString(fullIndex, ' ');
8948
8949         map<string, string>     parameters      (params);
8950         parameters["structType"]        = repeatString(" ${compositeType}", structInfo.components);
8951         parameters["structConstruct"]   = repeatString(" %instance", structInfo.components);
8952         parameters["insertIndexes"]     = fullIndex;
8953
8954         // In matrix cases the last two index is the CompositeExtract indexes
8955         const deUint32 extractIndexes = (parameters["type"] == "matrix") ? 2 : 1;
8956
8957         // Construct the extractIndex
8958         for (vector<string>::const_iterator index = indexes.end() - extractIndexes; index != indexes.end(); ++index)
8959         {
8960                 parameters["extractIndexes"] += " " + *index;
8961         }
8962
8963         // Remove the last 1 or 2 element depends on matrix case or not
8964         indexes.erase(indexes.end() - extractIndexes, indexes.end());
8965
8966         deUint32 id = 0;
8967         // Generate AccessChain index expressions (except for the last one, because we use ptr to the composite)
8968         for (vector<string>::const_iterator index = indexes.begin(); index != indexes.end(); ++index)
8969         {
8970                 string indexId = "%index_" + numberToString(id++);
8971                 parameters["accessChainConstDeclaration"] += indexId + "   = OpConstant %u32 " + *index + "\n";
8972                 parameters["accessChainIndexes"] += " " + indexId;
8973         }
8974
8975         parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
8976
8977         const string customType = getAssemblyTypeName(type);
8978         map<string, string> substCustomType;
8979         substCustomType["customType"] = customType;
8980         parameters["compositeDecl"] = StringTemplate(parameters.at("compositeDecl")).specialize(substCustomType);
8981         parameters["compositeType"] = StringTemplate(parameters.at("compositeType")).specialize(substCustomType);
8982         parameters["compositeConstruct"] = StringTemplate(parameters.at("compositeConstruct")).specialize(substCustomType);
8983         parameters["filler"] = StringTemplate(parameters.at("filler")).specialize(substCustomType);
8984         parameters["customType"] = customType;
8985
8986         const string compositeType = parameters.at("compositeType");
8987         map<string, string> substCompositeType;
8988         substCompositeType["compositeType"] = compositeType;
8989         parameters["structType"] = StringTemplate(parameters.at("structType")).specialize(substCompositeType);
8990         if (compositeType != "%u32vec3")
8991         {
8992                 parameters["u32vec3Decl"] = "%u32vec3   = OpTypeVector %u32 3\n";
8993         }
8994
8995         return StringTemplate(
8996                 "OpCapability Shader\n"
8997                 "OpCapability Matrix\n"
8998                 "OpMemoryModel Logical GLSL450\n"
8999                 "OpEntryPoint GLCompute %main \"main\" %id\n"
9000                 "OpExecutionMode %main LocalSize 1 1 1\n"
9001
9002                 "OpSource GLSL 430\n"
9003                 "OpName %main           \"main\"\n"
9004                 "OpName %id             \"gl_GlobalInvocationID\"\n"
9005                 // Decorators
9006                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
9007                 "OpDecorate %buf BufferBlock\n"
9008                 "OpDecorate %indata DescriptorSet 0\n"
9009                 "OpDecorate %indata Binding 0\n"
9010                 "OpDecorate %outdata DescriptorSet 0\n"
9011                 "OpDecorate %outdata Binding 1\n"
9012                 "OpDecorate %customarr ArrayStride 4\n"
9013                 "${compositeDecorator}"
9014                 "OpMemberDecorate %buf 0 Offset 0\n"
9015                 // General types
9016                 "%void      = OpTypeVoid\n"
9017                 "%voidf     = OpTypeFunction %void\n"
9018                 "%i32       = OpTypeInt 32 1\n"
9019                 "%u32       = OpTypeInt 32 0\n"
9020                 "%f32       = OpTypeFloat 32\n"
9021                 // Custom types
9022                 "${compositeDecl}"
9023                 // %u32vec3 if not already declared in ${compositeDecl}
9024                 "${u32vec3Decl:opt}"
9025                 "%uvec3ptr  = OpTypePointer Input %u32vec3\n"
9026                 // Inherited from composite
9027                 "%composite_p = OpTypePointer Function ${compositeType}\n"
9028                 "%struct_t  = OpTypeStruct${structType}\n"
9029                 "%struct_p  = OpTypePointer Function %struct_t\n"
9030                 // Constants
9031                 "${filler}"
9032                 "${accessChainConstDeclaration}"
9033                 // Inherited from custom
9034                 "%customptr = OpTypePointer Uniform ${customType}\n"
9035                 "%customarr = OpTypeRuntimeArray ${customType}\n"
9036                 "%buf       = OpTypeStruct %customarr\n"
9037                 "%bufptr    = OpTypePointer Uniform %buf\n"
9038                 "%indata    = OpVariable %bufptr Uniform\n"
9039                 "%outdata   = OpVariable %bufptr Uniform\n"
9040
9041                 "%id        = OpVariable %uvec3ptr Input\n"
9042                 "%zero      = OpConstant %u32 0\n"
9043                 "%main      = OpFunction %void None %voidf\n"
9044                 "%label     = OpLabel\n"
9045                 "%struct_v  = OpVariable %struct_p Function\n"
9046                 "%idval     = OpLoad %u32vec3 %id\n"
9047                 "%x         = OpCompositeExtract %u32 %idval 0\n"
9048                 // Create the input/output type
9049                 "%inloc     = OpInBoundsAccessChain %customptr %indata %zero %x\n"
9050                 "%outloc    = OpInBoundsAccessChain %customptr %outdata %zero %x\n"
9051                 // Read the input value
9052                 "%inval     = OpLoad ${customType} %inloc\n"
9053                 // Create the composite and fill it
9054                 "${compositeConstruct}"
9055                 // Create the struct and fill it with the composite
9056                 "%struct    = OpCompositeConstruct %struct_t${structConstruct}\n"
9057                 // Insert the value
9058                 "%comp_obj  = OpCompositeInsert %struct_t %inval %struct ${insertIndexes}\n"
9059                 // Store the object
9060                 "             OpStore %struct_v %comp_obj\n"
9061                 // Get deepest possible composite pointer
9062                 "%inner_ptr = OpInBoundsAccessChain %composite_p %struct_v${accessChainIndexes}\n"
9063                 "%read_obj  = OpLoad ${compositeType} %inner_ptr\n"
9064                 // Read back the stored value
9065                 "%read_val  = OpCompositeExtract ${customType} %read_obj${extractIndexes}\n"
9066                 "             OpStore %outloc %read_val\n"
9067                 "             OpReturn\n"
9068                 "             OpFunctionEnd\n"
9069         ).specialize(parameters);
9070 }
9071
9072 tcu::TestCaseGroup* createOpInBoundsAccessChainGroup (tcu::TestContext& testCtx)
9073 {
9074         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opinboundsaccesschain", "Test the OpInBoundsAccessChain instruction"));
9075         de::Random                                              rnd                             (deStringHash(group->getName()));
9076
9077         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
9078         {
9079                 NumberType                                              numberType      = NumberType(type);
9080                 const string                                    typeName        = getNumberTypeName(numberType);
9081                 const string                                    description     = "Test the OpInBoundsAccessChain instruction with " + typeName + "s";
9082                 de::MovePtr<tcu::TestCaseGroup> subGroup        (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
9083
9084                 vector<map<string, string> >    testCases;
9085                 createCompositeCases(testCases, rnd, numberType);
9086
9087                 for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
9088                 {
9089                         ComputeShaderSpec       spec;
9090
9091                         // Number of components inside of a struct
9092                         deUint32 structComponents = rnd.getInt(2, 8);
9093                         // Component index value
9094                         deUint32 structIndex = rnd.getInt(0, structComponents - 1);
9095                         AssemblyStructInfo structInfo(structComponents, structIndex);
9096
9097                         spec.assembly = specializeInBoundsShaderTemplate(numberType, structInfo, *test);
9098
9099                         switch (numberType)
9100                         {
9101                                 case NUMBERTYPE_INT32:
9102                                 {
9103                                         deInt32 number = getInt(rnd);
9104                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
9105                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
9106                                         break;
9107                                 }
9108                                 case NUMBERTYPE_UINT32:
9109                                 {
9110                                         deUint32 number = rnd.getUint32();
9111                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
9112                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
9113                                         break;
9114                                 }
9115                                 case NUMBERTYPE_FLOAT32:
9116                                 {
9117                                         float number = rnd.getFloat();
9118                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
9119                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
9120                                         break;
9121                                 }
9122                                 default:
9123                                         DE_ASSERT(false);
9124                         }
9125                         spec.numWorkGroups = IVec3(1, 1, 1);
9126                         subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpInBoundsAccessChain test", spec));
9127                 }
9128                 group->addChild(subGroup.release());
9129         }
9130         return group.release();
9131 }
9132
9133 // If the params missing, uninitialized case
9134 const string specializeDefaultOutputShaderTemplate (const NumberType type, const map<string, string>& params = map<string, string>())
9135 {
9136         map<string, string> parameters(params);
9137
9138         parameters["customType"]        = getAssemblyTypeName(type);
9139
9140         // Declare the const value, and use it in the initializer
9141         if (params.find("constValue") != params.end())
9142         {
9143                 parameters["variableInitializer"]       = " %const";
9144         }
9145         // Uninitialized case
9146         else
9147         {
9148                 parameters["commentDecl"]       = ";";
9149         }
9150
9151         return StringTemplate(
9152                 "OpCapability Shader\n"
9153                 "OpMemoryModel Logical GLSL450\n"
9154                 "OpEntryPoint GLCompute %main \"main\" %id\n"
9155                 "OpExecutionMode %main LocalSize 1 1 1\n"
9156                 "OpSource GLSL 430\n"
9157                 "OpName %main           \"main\"\n"
9158                 "OpName %id             \"gl_GlobalInvocationID\"\n"
9159                 // Decorators
9160                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
9161                 "OpDecorate %indata DescriptorSet 0\n"
9162                 "OpDecorate %indata Binding 0\n"
9163                 "OpDecorate %outdata DescriptorSet 0\n"
9164                 "OpDecorate %outdata Binding 1\n"
9165                 "OpDecorate %in_arr ArrayStride 4\n"
9166                 "OpDecorate %in_buf BufferBlock\n"
9167                 "OpMemberDecorate %in_buf 0 Offset 0\n"
9168                 // Base types
9169                 "%void       = OpTypeVoid\n"
9170                 "%voidf      = OpTypeFunction %void\n"
9171                 "%u32        = OpTypeInt 32 0\n"
9172                 "%i32        = OpTypeInt 32 1\n"
9173                 "%f32        = OpTypeFloat 32\n"
9174                 "%uvec3      = OpTypeVector %u32 3\n"
9175                 "%uvec3ptr   = OpTypePointer Input %uvec3\n"
9176                 "${commentDecl:opt}%const      = OpConstant ${customType} ${constValue:opt}\n"
9177                 // Derived types
9178                 "%in_ptr     = OpTypePointer Uniform ${customType}\n"
9179                 "%in_arr     = OpTypeRuntimeArray ${customType}\n"
9180                 "%in_buf     = OpTypeStruct %in_arr\n"
9181                 "%in_bufptr  = OpTypePointer Uniform %in_buf\n"
9182                 "%indata     = OpVariable %in_bufptr Uniform\n"
9183                 "%outdata    = OpVariable %in_bufptr Uniform\n"
9184                 "%id         = OpVariable %uvec3ptr Input\n"
9185                 "%var_ptr    = OpTypePointer Function ${customType}\n"
9186                 // Constants
9187                 "%zero       = OpConstant %i32 0\n"
9188                 // Main function
9189                 "%main       = OpFunction %void None %voidf\n"
9190                 "%label      = OpLabel\n"
9191                 "%out_var    = OpVariable %var_ptr Function${variableInitializer:opt}\n"
9192                 "%idval      = OpLoad %uvec3 %id\n"
9193                 "%x          = OpCompositeExtract %u32 %idval 0\n"
9194                 "%inloc      = OpAccessChain %in_ptr %indata %zero %x\n"
9195                 "%outloc     = OpAccessChain %in_ptr %outdata %zero %x\n"
9196
9197                 "%outval     = OpLoad ${customType} %out_var\n"
9198                 "              OpStore %outloc %outval\n"
9199                 "              OpReturn\n"
9200                 "              OpFunctionEnd\n"
9201         ).specialize(parameters);
9202 }
9203
9204 bool compareFloats (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
9205 {
9206         DE_ASSERT(outputAllocs.size() != 0);
9207         DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
9208
9209         // Use custom epsilon because of the float->string conversion
9210         const float     epsilon = 0.00001f;
9211
9212         for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
9213         {
9214                 vector<deUint8> expectedBytes;
9215                 float                   expected;
9216                 float                   actual;
9217
9218                 expectedOutputs[outputNdx]->getBytes(expectedBytes);
9219                 memcpy(&expected, &expectedBytes.front(), expectedBytes.size());
9220                 memcpy(&actual, outputAllocs[outputNdx]->getHostPtr(), expectedBytes.size());
9221
9222                 // Test with epsilon
9223                 if (fabs(expected - actual) > epsilon)
9224                 {
9225                         log << TestLog::Message << "Error: The actual and expected values not matching."
9226                                 << " Expected: " << expected << " Actual: " << actual << " Epsilon: " << epsilon << TestLog::EndMessage;
9227                         return false;
9228                 }
9229         }
9230         return true;
9231 }
9232
9233 // Checks if the driver crash with uninitialized cases
9234 bool passthruVerify (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
9235 {
9236         DE_ASSERT(outputAllocs.size() != 0);
9237         DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
9238
9239         // Copy and discard the result.
9240         for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
9241         {
9242                 vector<deUint8> expectedBytes;
9243                 expectedOutputs[outputNdx]->getBytes(expectedBytes);
9244
9245                 const size_t    width                   = expectedBytes.size();
9246                 vector<char>    data                    (width);
9247
9248                 memcpy(&data[0], outputAllocs[outputNdx]->getHostPtr(), width);
9249         }
9250         return true;
9251 }
9252
9253 tcu::TestCaseGroup* createShaderDefaultOutputGroup (tcu::TestContext& testCtx)
9254 {
9255         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "shader_default_output", "Test shader default output."));
9256         de::Random                                              rnd             (deStringHash(group->getName()));
9257
9258         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
9259         {
9260                 NumberType                                              numberType      = NumberType(type);
9261                 const string                                    typeName        = getNumberTypeName(numberType);
9262                 const string                                    description     = "Test the OpVariable initializer with " + typeName + ".";
9263                 de::MovePtr<tcu::TestCaseGroup> subGroup        (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
9264
9265                 // 2 similar subcases (initialized and uninitialized)
9266                 for (int subCase = 0; subCase < 2; ++subCase)
9267                 {
9268                         ComputeShaderSpec spec;
9269                         spec.numWorkGroups = IVec3(1, 1, 1);
9270
9271                         map<string, string>                             params;
9272
9273                         switch (numberType)
9274                         {
9275                                 case NUMBERTYPE_INT32:
9276                                 {
9277                                         deInt32 number = getInt(rnd);
9278                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
9279                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
9280                                         params["constValue"] = numberToString(number);
9281                                         break;
9282                                 }
9283                                 case NUMBERTYPE_UINT32:
9284                                 {
9285                                         deUint32 number = rnd.getUint32();
9286                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
9287                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
9288                                         params["constValue"] = numberToString(number);
9289                                         break;
9290                                 }
9291                                 case NUMBERTYPE_FLOAT32:
9292                                 {
9293                                         float number = rnd.getFloat();
9294                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
9295                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
9296                                         spec.verifyIO = &compareFloats;
9297                                         params["constValue"] = numberToString(number);
9298                                         break;
9299                                 }
9300                                 default:
9301                                         DE_ASSERT(false);
9302                         }
9303
9304                         // Initialized subcase
9305                         if (!subCase)
9306                         {
9307                                 spec.assembly = specializeDefaultOutputShaderTemplate(numberType, params);
9308                                 subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "initialized", "OpVariable initializer tests.", spec));
9309                         }
9310                         // Uninitialized subcase
9311                         else
9312                         {
9313                                 spec.assembly = specializeDefaultOutputShaderTemplate(numberType);
9314                                 spec.verifyIO = &passthruVerify;
9315                                 subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "uninitialized", "OpVariable initializer tests.", spec));
9316                         }
9317                 }
9318                 group->addChild(subGroup.release());
9319         }
9320         return group.release();
9321 }
9322
9323 tcu::TestCaseGroup* createOpNopTests (tcu::TestContext& testCtx)
9324 {
9325         de::MovePtr<tcu::TestCaseGroup> testGroup (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
9326         RGBA                                                    defaultColors[4];
9327         map<string, string>                             opNopFragments;
9328
9329         getDefaultColors(defaultColors);
9330
9331         opNopFragments["testfun"]               =
9332                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
9333                 "%param1 = OpFunctionParameter %v4f32\n"
9334                 "%label_testfun = OpLabel\n"
9335                 "OpNop\n"
9336                 "OpNop\n"
9337                 "OpNop\n"
9338                 "OpNop\n"
9339                 "OpNop\n"
9340                 "OpNop\n"
9341                 "OpNop\n"
9342                 "OpNop\n"
9343                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
9344                 "%b = OpFAdd %f32 %a %a\n"
9345                 "OpNop\n"
9346                 "%c = OpFSub %f32 %b %a\n"
9347                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
9348                 "OpNop\n"
9349                 "OpNop\n"
9350                 "OpReturnValue %ret\n"
9351                 "OpFunctionEnd\n";
9352
9353         createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, testGroup.get());
9354
9355         return testGroup.release();
9356 }
9357
9358 tcu::TestCaseGroup* createOpNameTests (tcu::TestContext& testCtx)
9359 {
9360         de::MovePtr<tcu::TestCaseGroup> testGroup (new tcu::TestCaseGroup(testCtx, "opname","Test OpName"));
9361         RGBA                                                    defaultColors[4];
9362         map<string, string>                             opNameFragments;
9363
9364         getDefaultColors(defaultColors);
9365
9366         opNameFragments["debug"]                =
9367                 "OpName %BP_main \"not_main\"";
9368
9369         opNameFragments["testfun"]              =
9370                 "%test_code = OpFunction %v4f32 None %v4f32_v4f32_function\n"
9371                 "%param1 = OpFunctionParameter %v4f32\n"
9372                 "%label_func = OpLabel\n"
9373                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
9374                 "%b = OpFAdd %f32 %a %a\n"
9375                 "%c = OpFSub %f32 %b %a\n"
9376                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
9377                 "OpReturnValue %ret\n"
9378                 "OpFunctionEnd\n";
9379
9380         createTestsForAllStages("opname", defaultColors, defaultColors, opNameFragments, testGroup.get());
9381
9382         return testGroup.release();
9383 }
9384
9385 tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
9386 {
9387         const bool testComputePipeline = true;
9388
9389         de::MovePtr<tcu::TestCaseGroup> instructionTests        (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
9390         de::MovePtr<tcu::TestCaseGroup> computeTests            (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
9391         de::MovePtr<tcu::TestCaseGroup> graphicsTests           (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
9392
9393         computeTests->addChild(createSpivVersionCheckTests(testCtx, testComputePipeline));
9394         computeTests->addChild(createLocalSizeGroup(testCtx));
9395         computeTests->addChild(createOpNopGroup(testCtx));
9396         computeTests->addChild(createOpFUnordGroup(testCtx));
9397         computeTests->addChild(createOpAtomicGroup(testCtx, false));
9398         computeTests->addChild(createOpAtomicGroup(testCtx, true));                                     // Using new StorageBuffer decoration
9399         computeTests->addChild(createOpAtomicGroup(testCtx, false, 1024, true));        // Return value validation
9400         computeTests->addChild(createOpLineGroup(testCtx));
9401         computeTests->addChild(createOpModuleProcessedGroup(testCtx));
9402         computeTests->addChild(createOpNoLineGroup(testCtx));
9403         computeTests->addChild(createOpConstantNullGroup(testCtx));
9404         computeTests->addChild(createOpConstantCompositeGroup(testCtx));
9405         computeTests->addChild(createOpConstantUsageGroup(testCtx));
9406         computeTests->addChild(createSpecConstantGroup(testCtx));
9407         computeTests->addChild(createOpSourceGroup(testCtx));
9408         computeTests->addChild(createOpSourceExtensionGroup(testCtx));
9409         computeTests->addChild(createDecorationGroupGroup(testCtx));
9410         computeTests->addChild(createOpPhiGroup(testCtx));
9411         computeTests->addChild(createLoopControlGroup(testCtx));
9412         computeTests->addChild(createFunctionControlGroup(testCtx));
9413         computeTests->addChild(createSelectionControlGroup(testCtx));
9414         computeTests->addChild(createBlockOrderGroup(testCtx));
9415         computeTests->addChild(createMultipleShaderGroup(testCtx));
9416         computeTests->addChild(createMemoryAccessGroup(testCtx));
9417         computeTests->addChild(createOpCopyMemoryGroup(testCtx));
9418         computeTests->addChild(createOpCopyObjectGroup(testCtx));
9419         computeTests->addChild(createNoContractionGroup(testCtx));
9420         computeTests->addChild(createOpUndefGroup(testCtx));
9421         computeTests->addChild(createOpUnreachableGroup(testCtx));
9422         computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
9423         computeTests ->addChild(createOpFRemGroup(testCtx));
9424         computeTests->addChild(createOpSRemComputeGroup(testCtx, QP_TEST_RESULT_PASS));
9425         computeTests->addChild(createOpSRemComputeGroup64(testCtx, QP_TEST_RESULT_PASS));
9426         computeTests->addChild(createOpSModComputeGroup(testCtx, QP_TEST_RESULT_PASS));
9427         computeTests->addChild(createOpSModComputeGroup64(testCtx, QP_TEST_RESULT_PASS));
9428         computeTests->addChild(createConvertComputeTests(testCtx, "OpSConvert", "sconvert"));
9429         computeTests->addChild(createConvertComputeTests(testCtx, "OpUConvert", "uconvert"));
9430         computeTests->addChild(createConvertComputeTests(testCtx, "OpFConvert", "fconvert"));
9431         computeTests->addChild(createOpCompositeInsertGroup(testCtx));
9432         computeTests->addChild(createOpInBoundsAccessChainGroup(testCtx));
9433         computeTests->addChild(createShaderDefaultOutputGroup(testCtx));
9434         computeTests->addChild(createOpNMinGroup(testCtx));
9435         computeTests->addChild(createOpNMaxGroup(testCtx));
9436         computeTests->addChild(createOpNClampGroup(testCtx));
9437         {
9438                 de::MovePtr<tcu::TestCaseGroup> computeAndroidTests     (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
9439
9440                 computeAndroidTests->addChild(createOpSRemComputeGroup(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
9441                 computeAndroidTests->addChild(createOpSModComputeGroup(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
9442
9443                 computeTests->addChild(computeAndroidTests.release());
9444         }
9445
9446         computeTests->addChild(create8BitStorageComputeGroup(testCtx));
9447         computeTests->addChild(create16BitStorageComputeGroup(testCtx));
9448         computeTests->addChild(createUboMatrixPaddingComputeGroup(testCtx));
9449         computeTests->addChild(createVariableInitComputeGroup(testCtx));
9450         computeTests->addChild(createConditionalBranchComputeGroup(testCtx));
9451         computeTests->addChild(createIndexingComputeGroup(testCtx));
9452         computeTests->addChild(createVariablePointersComputeGroup(testCtx));
9453         computeTests->addChild(createImageSamplerComputeGroup(testCtx));
9454         computeTests->addChild(createOpNameGroup(testCtx));
9455         graphicsTests->addChild(createCrossStageInterfaceTests(testCtx));
9456         graphicsTests->addChild(createSpivVersionCheckTests(testCtx, !testComputePipeline));
9457         graphicsTests->addChild(createOpNopTests(testCtx));
9458         graphicsTests->addChild(createOpSourceTests(testCtx));
9459         graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
9460         graphicsTests->addChild(createOpModuleProcessedTests(testCtx));
9461         graphicsTests->addChild(createOpLineTests(testCtx));
9462         graphicsTests->addChild(createOpNoLineTests(testCtx));
9463         graphicsTests->addChild(createOpConstantNullTests(testCtx));
9464         graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
9465         graphicsTests->addChild(createMemoryAccessTests(testCtx));
9466         graphicsTests->addChild(createOpUndefTests(testCtx));
9467         graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
9468         graphicsTests->addChild(createModuleTests(testCtx));
9469         graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
9470         graphicsTests->addChild(createOpPhiTests(testCtx));
9471         graphicsTests->addChild(createNoContractionTests(testCtx));
9472         graphicsTests->addChild(createOpQuantizeTests(testCtx));
9473         graphicsTests->addChild(createLoopTests(testCtx));
9474         graphicsTests->addChild(createSpecConstantTests(testCtx));
9475         graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
9476         graphicsTests->addChild(createBarrierTests(testCtx));
9477         graphicsTests->addChild(createDecorationGroupTests(testCtx));
9478         graphicsTests->addChild(createFRemTests(testCtx));
9479         graphicsTests->addChild(createOpSRemGraphicsTests(testCtx, QP_TEST_RESULT_PASS));
9480         graphicsTests->addChild(createOpSModGraphicsTests(testCtx, QP_TEST_RESULT_PASS));
9481
9482         {
9483                 de::MovePtr<tcu::TestCaseGroup> graphicsAndroidTests    (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
9484
9485                 graphicsAndroidTests->addChild(createOpSRemGraphicsTests(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
9486                 graphicsAndroidTests->addChild(createOpSModGraphicsTests(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
9487
9488                 graphicsTests->addChild(graphicsAndroidTests.release());
9489         }
9490         graphicsTests->addChild(createOpNameTests(testCtx));
9491
9492         graphicsTests->addChild(create8BitStorageGraphicsGroup(testCtx));
9493         graphicsTests->addChild(create16BitStorageGraphicsGroup(testCtx));
9494         graphicsTests->addChild(createUboMatrixPaddingGraphicsGroup(testCtx));
9495         graphicsTests->addChild(createVariableInitGraphicsGroup(testCtx));
9496         graphicsTests->addChild(createConditionalBranchGraphicsGroup(testCtx));
9497         graphicsTests->addChild(createIndexingGraphicsGroup(testCtx));
9498         graphicsTests->addChild(createVariablePointersGraphicsGroup(testCtx));
9499         graphicsTests->addChild(createImageSamplerGraphicsGroup(testCtx));
9500         graphicsTests->addChild(createConvertGraphicsTests(testCtx, "OpSConvert", "sconvert"));
9501         graphicsTests->addChild(createConvertGraphicsTests(testCtx, "OpUConvert", "uconvert"));
9502         graphicsTests->addChild(createConvertGraphicsTests(testCtx, "OpFConvert", "fconvert"));
9503
9504         instructionTests->addChild(computeTests.release());
9505         instructionTests->addChild(graphicsTests.release());
9506
9507         return instructionTests.release();
9508 }
9509
9510 } // SpirVAssembly
9511 } // vkt