Merge branch 'jekstrand_renderpass_transfer_bit_fix' into 'master'
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / spirv_assembly / vktSpvAsmInstructionTests.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and/or associated documentation files (the
9  * "Materials"), to deal in the Materials without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sublicense, and/or sell copies of the Materials, and to
12  * permit persons to whom the Materials are furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice(s) and this permission notice shall be
16  * included in all copies or substantial portions of the Materials.
17  *
18  * The Materials are Confidential Information as defined by the
19  * Khronos Membership Agreement until designated non-confidential by
20  * Khronos, at which point this condition clause shall be removed.
21  *
22  * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25  * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26  * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28  * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29  *
30  *//*!
31  * \file
32  * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33  *//*--------------------------------------------------------------------*/
34
35 #include "vktSpvAsmInstructionTests.hpp"
36
37 #include "tcuCommandLine.hpp"
38 #include "tcuFormatUtil.hpp"
39 #include "tcuRGBA.hpp"
40 #include "tcuStringTemplate.hpp"
41 #include "tcuTestLog.hpp"
42 #include "tcuVectorUtil.hpp"
43
44 #include "vkDefs.hpp"
45 #include "vkDeviceUtil.hpp"
46 #include "vkMemUtil.hpp"
47 #include "vkPlatform.hpp"
48 #include "vkPrograms.hpp"
49 #include "vkQueryUtil.hpp"
50 #include "vkRef.hpp"
51 #include "vkRefUtil.hpp"
52 #include "vkStrUtil.hpp"
53 #include "vkTypeUtil.hpp"
54
55 #include "deRandom.hpp"
56 #include "deStringUtil.hpp"
57 #include "deUniquePtr.hpp"
58 #include "tcuStringTemplate.hpp"
59
60 #include <cmath>
61 #include "vktSpvAsmComputeShaderCase.hpp"
62 #include "vktSpvAsmComputeShaderTestUtil.hpp"
63 #include "vktTestCaseUtil.hpp"
64
65 #include <cmath>
66 #include <limits>
67 #include <map>
68 #include <string>
69 #include <sstream>
70
71 namespace vkt
72 {
73 namespace SpirVAssembly
74 {
75
76 namespace
77 {
78
79 using namespace vk;
80 using std::map;
81 using std::string;
82 using std::vector;
83 using tcu::IVec3;
84 using tcu::IVec4;
85 using tcu::RGBA;
86 using tcu::TestLog;
87 using tcu::TestStatus;
88 using tcu::Vec4;
89 using de::UniquePtr;
90 using tcu::StringTemplate;
91 using tcu::Vec4;
92
93 typedef Unique<VkShaderModule>                  ModuleHandleUp;
94 typedef de::SharedPtr<ModuleHandleUp>   ModuleHandleSp;
95
96 template<typename T>    T                       randomScalar    (de::Random& rnd, T minValue, T maxValue);
97 template<> inline               float           randomScalar    (de::Random& rnd, float minValue, float maxValue)               { return rnd.getFloat(minValue, maxValue);      }
98 template<> inline               deInt32         randomScalar    (de::Random& rnd, deInt32 minValue, deInt32 maxValue)   { return rnd.getInt(minValue, maxValue);        }
99
100 template<typename T>
101 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102 {
103         T* const typedPtr = (T*)dst;
104         for (int ndx = 0; ndx < numValues; ndx++)
105                 typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106 }
107
108 struct CaseParameter
109 {
110         const char*             name;
111         string                  param;
112
113         CaseParameter   (const char* case_, const string& param_) : name(case_), param(param_) {}
114 };
115
116 // Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117 //
118 // #version 430
119 //
120 // layout(std140, set = 0, binding = 0) readonly buffer Input {
121 //   float elements[];
122 // } input_data;
123 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
124 //   float elements[];
125 // } output_data;
126 //
127 // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128 //
129 // void main() {
130 //   uint x = gl_GlobalInvocationID.x;
131 //   output_data.elements[x] = -input_data.elements[x];
132 // }
133
134 static const char* const s_ShaderPreamble =
135         "OpCapability Shader\n"
136         "OpMemoryModel Logical GLSL450\n"
137         "OpEntryPoint GLCompute %main \"main\" %id\n"
138         "OpExecutionMode %main LocalSize 1 1 1\n";
139
140 static const char* const s_CommonTypes =
141         "%bool      = OpTypeBool\n"
142         "%void      = OpTypeVoid\n"
143         "%voidf     = OpTypeFunction %void\n"
144         "%u32       = OpTypeInt 32 0\n"
145         "%i32       = OpTypeInt 32 1\n"
146         "%f32       = OpTypeFloat 32\n"
147         "%uvec3     = OpTypeVector %u32 3\n"
148         "%fvec3     = OpTypeVector %f32 3\n"
149         "%uvec3ptr  = OpTypePointer Input %uvec3\n"
150         "%f32ptr    = OpTypePointer Uniform %f32\n"
151         "%f32arr    = OpTypeRuntimeArray %f32\n";
152
153 // Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
154 static const char* const s_InputOutputBuffer =
155         "%inbuf     = OpTypeStruct %f32arr\n"
156         "%inbufptr  = OpTypePointer Uniform %inbuf\n"
157         "%indata    = OpVariable %inbufptr Uniform\n"
158         "%outbuf    = OpTypeStruct %f32arr\n"
159         "%outbufptr = OpTypePointer Uniform %outbuf\n"
160         "%outdata   = OpVariable %outbufptr Uniform\n";
161
162 // Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
163 // indata is at binding point 0, while outdata is at 1.
164 static const char* const s_InputOutputBufferTraits =
165         "OpDecorate %inbuf BufferBlock\n"
166         "OpDecorate %indata DescriptorSet 0\n"
167         "OpDecorate %indata Binding 0\n"
168         "OpDecorate %outbuf BufferBlock\n"
169         "OpDecorate %outdata DescriptorSet 0\n"
170         "OpDecorate %outdata Binding 1\n"
171         "OpDecorate %f32arr ArrayStride 4\n"
172         "OpMemberDecorate %inbuf 0 Offset 0\n"
173         "OpMemberDecorate %outbuf 0 Offset 0\n";
174
175 tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
176 {
177         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
178         ComputeShaderSpec                               spec;
179         de::Random                                              rnd                             (deStringHash(group->getName()));
180         const int                                               numElements             = 100;
181         vector<float>                                   positiveFloats  (numElements, 0);
182         vector<float>                                   negativeFloats  (numElements, 0);
183
184         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
185
186         for (size_t ndx = 0; ndx < numElements; ++ndx)
187                 negativeFloats[ndx] = -positiveFloats[ndx];
188
189         spec.assembly =
190                 string(s_ShaderPreamble) +
191
192                 "OpSource GLSL 430\n"
193                 "OpName %main           \"main\"\n"
194                 "OpName %id             \"gl_GlobalInvocationID\"\n"
195
196                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
197
198                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes)
199
200                 + string(s_InputOutputBuffer) +
201
202                 "%id        = OpVariable %uvec3ptr Input\n"
203                 "%zero      = OpConstant %i32 0\n"
204
205                 "%main      = OpFunction %void None %voidf\n"
206                 "%label     = OpLabel\n"
207                 "%idval     = OpLoad %uvec3 %id\n"
208                 "%x         = OpCompositeExtract %u32 %idval 0\n"
209
210                 "             OpNop\n" // Inside a function body
211
212                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
213                 "%inval     = OpLoad %f32 %inloc\n"
214                 "%neg       = OpFNegate %f32 %inval\n"
215                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
216                 "             OpStore %outloc %neg\n"
217                 "             OpReturn\n"
218                 "             OpFunctionEnd\n";
219         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
220         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
221         spec.numWorkGroups = IVec3(numElements, 1, 1);
222
223         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
224
225         return group.release();
226 }
227
228 tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
229 {
230         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
231         ComputeShaderSpec                               spec;
232         de::Random                                              rnd                             (deStringHash(group->getName()));
233         const int                                               numElements             = 100;
234         vector<float>                                   positiveFloats  (numElements, 0);
235         vector<float>                                   negativeFloats  (numElements, 0);
236
237         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
238
239         for (size_t ndx = 0; ndx < numElements; ++ndx)
240                 negativeFloats[ndx] = -positiveFloats[ndx];
241
242         spec.assembly =
243                 string(s_ShaderPreamble) +
244
245                 "%fname1 = OpString \"negateInputs.comp\"\n"
246                 "%fname2 = OpString \"negateInputs\"\n"
247
248                 "OpSource GLSL 430\n"
249                 "OpName %main           \"main\"\n"
250                 "OpName %id             \"gl_GlobalInvocationID\"\n"
251
252                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
253
254                 + string(s_InputOutputBufferTraits) +
255
256                 "OpLine %fname1 0 0\n" // At the earliest possible position
257
258                 + string(s_CommonTypes) + string(s_InputOutputBuffer) +
259
260                 "OpLine %fname1 0 1\n" // Multiple OpLines in sequence
261                 "OpLine %fname2 1 0\n" // Different filenames
262                 "OpLine %fname1 1000 100000\n"
263
264                 "%id        = OpVariable %uvec3ptr Input\n"
265                 "%zero      = OpConstant %i32 0\n"
266
267                 "OpLine %fname1 1 1\n" // Before a function
268
269                 "%main      = OpFunction %void None %voidf\n"
270                 "%label     = OpLabel\n"
271
272                 "OpLine %fname1 1 1\n" // In a function
273
274                 "%idval     = OpLoad %uvec3 %id\n"
275                 "%x         = OpCompositeExtract %u32 %idval 0\n"
276                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
277                 "%inval     = OpLoad %f32 %inloc\n"
278                 "%neg       = OpFNegate %f32 %inval\n"
279                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
280                 "             OpStore %outloc %neg\n"
281                 "             OpReturn\n"
282                 "             OpFunctionEnd\n";
283         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
284         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
285         spec.numWorkGroups = IVec3(numElements, 1, 1);
286
287         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
288
289         return group.release();
290 }
291
292 tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
293 {
294         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
295         ComputeShaderSpec                               spec;
296         de::Random                                              rnd                             (deStringHash(group->getName()));
297         const int                                               numElements             = 100;
298         vector<float>                                   positiveFloats  (numElements, 0);
299         vector<float>                                   negativeFloats  (numElements, 0);
300
301         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
302
303         for (size_t ndx = 0; ndx < numElements; ++ndx)
304                 negativeFloats[ndx] = -positiveFloats[ndx];
305
306         spec.assembly =
307                 string(s_ShaderPreamble) +
308
309                 "%fname = OpString \"negateInputs.comp\"\n"
310
311                 "OpSource GLSL 430\n"
312                 "OpName %main           \"main\"\n"
313                 "OpName %id             \"gl_GlobalInvocationID\"\n"
314
315                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
316
317                 + string(s_InputOutputBufferTraits) +
318
319                 "OpNoLine\n" // At the earliest possible position, without preceding OpLine
320
321                 + string(s_CommonTypes) + string(s_InputOutputBuffer) +
322
323                 "OpLine %fname 0 1\n"
324                 "OpNoLine\n" // Immediately following a preceding OpLine
325
326                 "OpLine %fname 1000 1\n"
327
328                 "%id        = OpVariable %uvec3ptr Input\n"
329                 "%zero      = OpConstant %i32 0\n"
330
331                 "OpNoLine\n" // Contents after the previous OpLine
332
333                 "%main      = OpFunction %void None %voidf\n"
334                 "%label     = OpLabel\n"
335                 "%idval     = OpLoad %uvec3 %id\n"
336                 "%x         = OpCompositeExtract %u32 %idval 0\n"
337
338                 "OpNoLine\n" // Multiple OpNoLine
339                 "OpNoLine\n"
340                 "OpNoLine\n"
341
342                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
343                 "%inval     = OpLoad %f32 %inloc\n"
344                 "%neg       = OpFNegate %f32 %inval\n"
345                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
346                 "             OpStore %outloc %neg\n"
347                 "             OpReturn\n"
348                 "             OpFunctionEnd\n";
349         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
350         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
351         spec.numWorkGroups = IVec3(numElements, 1, 1);
352
353         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
354
355         return group.release();
356 }
357
358 tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
359 {
360         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
361         vector<CaseParameter>                   cases;
362         const int                                               numElements             = 100;
363         vector<float>                                   inputFloats1    (numElements, 0);
364         vector<float>                                   inputFloats2    (numElements, 0);
365         vector<float>                                   outputFloats    (numElements, 0);
366         const StringTemplate                    shaderTemplate  (
367                 string(s_ShaderPreamble) +
368
369                 "OpName %main           \"main\"\n"
370                 "OpName %id             \"gl_GlobalInvocationID\"\n"
371
372                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
373
374                 "${DECORATION}\n"
375
376                 "OpDecorate %inbuf1 BufferBlock\n"
377                 "OpDecorate %indata1 DescriptorSet 0\n"
378                 "OpDecorate %indata1 Binding 0\n"
379                 "OpDecorate %inbuf2 BufferBlock\n"
380                 "OpDecorate %indata2 DescriptorSet 0\n"
381                 "OpDecorate %indata2 Binding 1\n"
382                 "OpDecorate %outbuf BufferBlock\n"
383                 "OpDecorate %outdata DescriptorSet 0\n"
384                 "OpDecorate %outdata Binding 2\n"
385                 "OpDecorate %f32arr ArrayStride 4\n"
386                 "OpMemberDecorate %inbuf1 0 Offset 0\n"
387                 "OpMemberDecorate %inbuf2 0 Offset 0\n"
388                 "OpMemberDecorate %outbuf 0 Offset 0\n"
389
390                 + string(s_CommonTypes) +
391
392                 "%inbuf1     = OpTypeStruct %f32arr\n"
393                 "%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
394                 "%indata1    = OpVariable %inbufptr1 Uniform\n"
395                 "%inbuf2     = OpTypeStruct %f32arr\n"
396                 "%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
397                 "%indata2    = OpVariable %inbufptr2 Uniform\n"
398                 "%outbuf     = OpTypeStruct %f32arr\n"
399                 "%outbufptr  = OpTypePointer Uniform %outbuf\n"
400                 "%outdata    = OpVariable %outbufptr Uniform\n"
401
402                 "%id         = OpVariable %uvec3ptr Input\n"
403                 "%zero       = OpConstant %i32 0\n"
404                 "%c_f_m1     = OpConstant %f32 -1.\n"
405
406                 "%main       = OpFunction %void None %voidf\n"
407                 "%label      = OpLabel\n"
408                 "%idval      = OpLoad %uvec3 %id\n"
409                 "%x          = OpCompositeExtract %u32 %idval 0\n"
410                 "%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
411                 "%inval1     = OpLoad %f32 %inloc1\n"
412                 "%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
413                 "%inval2     = OpLoad %f32 %inloc2\n"
414                 "%mul        = OpFMul %f32 %inval1 %inval2\n"
415                 "%add        = OpFAdd %f32 %mul %c_f_m1\n"
416                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
417                 "              OpStore %outloc %add\n"
418                 "              OpReturn\n"
419                 "              OpFunctionEnd\n");
420
421         cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
422         cases.push_back(CaseParameter("addition",               "OpDecorate %add NoContraction"));
423         cases.push_back(CaseParameter("both",                   "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
424
425         for (size_t ndx = 0; ndx < numElements; ++ndx)
426         {
427                 inputFloats1[ndx]       = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
428                 inputFloats2[ndx]       = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
429                 // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
430                 // conducted separately and the result is rounded to 1. So the final result will be 0.f.
431                 // If the operation is combined into a precise fused multiply-add, then the result would be
432                 // 2^-46 (0xa8800000).
433                 outputFloats[ndx]       = 0.f;
434         }
435
436         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
437         {
438                 map<string, string>             specializations;
439                 ComputeShaderSpec               spec;
440
441                 specializations["DECORATION"] = cases[caseNdx].param;
442                 spec.assembly = shaderTemplate.specialize(specializations);
443                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
444                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
445                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
446                 spec.numWorkGroups = IVec3(numElements, 1, 1);
447
448                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
449         }
450         return group.release();
451 }
452
453 tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
454 {
455         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
456         ComputeShaderSpec                               spec;
457         de::Random                                              rnd                             (deStringHash(group->getName()));
458         const int                                               numElements             = 200;
459         vector<float>                                   inputFloats1    (numElements, 0);
460         vector<float>                                   inputFloats2    (numElements, 0);
461         vector<float>                                   outputFloats    (numElements, 0);
462
463         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
464         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
465
466         for (size_t ndx = 0; ndx < numElements; ++ndx)
467         {
468                 // Guard against divisors near zero.
469                 if (std::fabs(inputFloats2[ndx]) < 1e-3)
470                         inputFloats2[ndx] = 8.f;
471
472                 // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
473                 outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
474         }
475
476         spec.assembly =
477                 string(s_ShaderPreamble) +
478
479                 "OpName %main           \"main\"\n"
480                 "OpName %id             \"gl_GlobalInvocationID\"\n"
481
482                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
483
484                 "OpDecorate %inbuf1 BufferBlock\n"
485                 "OpDecorate %indata1 DescriptorSet 0\n"
486                 "OpDecorate %indata1 Binding 0\n"
487                 "OpDecorate %inbuf2 BufferBlock\n"
488                 "OpDecorate %indata2 DescriptorSet 0\n"
489                 "OpDecorate %indata2 Binding 1\n"
490                 "OpDecorate %outbuf BufferBlock\n"
491                 "OpDecorate %outdata DescriptorSet 0\n"
492                 "OpDecorate %outdata Binding 2\n"
493                 "OpDecorate %f32arr ArrayStride 4\n"
494                 "OpMemberDecorate %inbuf1 0 Offset 0\n"
495                 "OpMemberDecorate %inbuf2 0 Offset 0\n"
496                 "OpMemberDecorate %outbuf 0 Offset 0\n"
497
498                 + string(s_CommonTypes) +
499
500                 "%inbuf1     = OpTypeStruct %f32arr\n"
501                 "%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
502                 "%indata1    = OpVariable %inbufptr1 Uniform\n"
503                 "%inbuf2     = OpTypeStruct %f32arr\n"
504                 "%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
505                 "%indata2    = OpVariable %inbufptr2 Uniform\n"
506                 "%outbuf     = OpTypeStruct %f32arr\n"
507                 "%outbufptr  = OpTypePointer Uniform %outbuf\n"
508                 "%outdata    = OpVariable %outbufptr Uniform\n"
509
510                 "%id        = OpVariable %uvec3ptr Input\n"
511                 "%zero      = OpConstant %i32 0\n"
512
513                 "%main      = OpFunction %void None %voidf\n"
514                 "%label     = OpLabel\n"
515                 "%idval     = OpLoad %uvec3 %id\n"
516                 "%x         = OpCompositeExtract %u32 %idval 0\n"
517                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
518                 "%inval1    = OpLoad %f32 %inloc1\n"
519                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
520                 "%inval2    = OpLoad %f32 %inloc2\n"
521                 "%rem       = OpFRem %f32 %inval1 %inval2\n"
522                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
523                 "             OpStore %outloc %rem\n"
524                 "             OpReturn\n"
525                 "             OpFunctionEnd\n";
526
527         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
528         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
529         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
530         spec.numWorkGroups = IVec3(numElements, 1, 1);
531
532         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
533
534         return group.release();
535 }
536
537 // Copy contents in the input buffer to the output buffer.
538 tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
539 {
540         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
541         de::Random                                              rnd                             (deStringHash(group->getName()));
542         const int                                               numElements             = 100;
543
544         // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
545         ComputeShaderSpec                               spec1;
546         vector<Vec4>                                    inputFloats1    (numElements);
547         vector<Vec4>                                    outputFloats1   (numElements);
548
549         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
550
551         for (size_t ndx = 0; ndx < numElements; ++ndx)
552                 outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
553
554         spec1.assembly =
555                 string(s_ShaderPreamble) +
556
557                 "OpName %main           \"main\"\n"
558                 "OpName %id             \"gl_GlobalInvocationID\"\n"
559
560                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
561                 "OpDecorate %vec4arr ArrayStride 16\n"
562
563                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
564
565                 "%vec4       = OpTypeVector %f32 4\n"
566                 "%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
567                 "%vec4ptr_f  = OpTypePointer Function %vec4\n"
568                 "%vec4arr    = OpTypeRuntimeArray %vec4\n"
569                 "%inbuf      = OpTypeStruct %vec4arr\n"
570                 "%inbufptr   = OpTypePointer Uniform %inbuf\n"
571                 "%indata     = OpVariable %inbufptr Uniform\n"
572                 "%outbuf     = OpTypeStruct %vec4arr\n"
573                 "%outbufptr  = OpTypePointer Uniform %outbuf\n"
574                 "%outdata    = OpVariable %outbufptr Uniform\n"
575
576                 "%id         = OpVariable %uvec3ptr Input\n"
577                 "%zero       = OpConstant %i32 0\n"
578                 "%c_f_0      = OpConstant %f32 0.\n"
579                 "%c_f_0_5    = OpConstant %f32 0.5\n"
580                 "%c_f_1_5    = OpConstant %f32 1.5\n"
581                 "%c_f_2_5    = OpConstant %f32 2.5\n"
582                 "%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
583
584                 "%main       = OpFunction %void None %voidf\n"
585                 "%label      = OpLabel\n"
586                 "%v_vec4     = OpVariable %vec4ptr_f Function\n"
587                 "%idval      = OpLoad %uvec3 %id\n"
588                 "%x          = OpCompositeExtract %u32 %idval 0\n"
589                 "%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
590                 "%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
591                 "              OpCopyMemory %v_vec4 %inloc\n"
592                 "%v_vec4_val = OpLoad %vec4 %v_vec4\n"
593                 "%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
594                 "              OpStore %outloc %add\n"
595                 "              OpReturn\n"
596                 "              OpFunctionEnd\n";
597
598         spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
599         spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
600         spec1.numWorkGroups = IVec3(numElements, 1, 1);
601
602         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
603
604         // The following case copies a float[100] variable from the input buffer to the output buffer.
605         ComputeShaderSpec                               spec2;
606         vector<float>                                   inputFloats2    (numElements);
607         vector<float>                                   outputFloats2   (numElements);
608
609         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
610
611         for (size_t ndx = 0; ndx < numElements; ++ndx)
612                 outputFloats2[ndx] = inputFloats2[ndx];
613
614         spec2.assembly =
615                 string(s_ShaderPreamble) +
616
617                 "OpName %main           \"main\"\n"
618                 "OpName %id             \"gl_GlobalInvocationID\"\n"
619
620                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
621                 "OpDecorate %f32arr100 ArrayStride 4\n"
622
623                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
624
625                 "%hundred        = OpConstant %u32 100\n"
626                 "%f32arr100      = OpTypeArray %f32 %hundred\n"
627                 "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
628                 "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
629                 "%inbuf          = OpTypeStruct %f32arr100\n"
630                 "%inbufptr       = OpTypePointer Uniform %inbuf\n"
631                 "%indata         = OpVariable %inbufptr Uniform\n"
632                 "%outbuf         = OpTypeStruct %f32arr100\n"
633                 "%outbufptr      = OpTypePointer Uniform %outbuf\n"
634                 "%outdata        = OpVariable %outbufptr Uniform\n"
635
636                 "%id             = OpVariable %uvec3ptr Input\n"
637                 "%zero           = OpConstant %i32 0\n"
638
639                 "%main           = OpFunction %void None %voidf\n"
640                 "%label          = OpLabel\n"
641                 "%var            = OpVariable %f32arr100ptr_f Function\n"
642                 "%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
643                 "%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
644                 "                  OpCopyMemory %var %inarr\n"
645                 "                  OpCopyMemory %outarr %var\n"
646                 "                  OpReturn\n"
647                 "                  OpFunctionEnd\n";
648
649         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
650         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
651         spec2.numWorkGroups = IVec3(1, 1, 1);
652
653         group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
654
655         // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
656         ComputeShaderSpec                               spec3;
657         vector<float>                                   inputFloats3    (16);
658         vector<float>                                   outputFloats3   (16);
659
660         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
661
662         for (size_t ndx = 0; ndx < 16; ++ndx)
663                 outputFloats3[ndx] = inputFloats3[ndx];
664
665         spec3.assembly =
666                 string(s_ShaderPreamble) +
667
668                 "OpName %main           \"main\"\n"
669                 "OpName %id             \"gl_GlobalInvocationID\"\n"
670
671                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
672                 "OpMemberDecorate %inbuf 0 Offset 0\n"
673                 "OpMemberDecorate %inbuf 1 Offset 16\n"
674                 "OpMemberDecorate %inbuf 2 Offset 32\n"
675                 "OpMemberDecorate %inbuf 3 Offset 48\n"
676                 "OpMemberDecorate %outbuf 0 Offset 0\n"
677                 "OpMemberDecorate %outbuf 1 Offset 16\n"
678                 "OpMemberDecorate %outbuf 2 Offset 32\n"
679                 "OpMemberDecorate %outbuf 3 Offset 48\n"
680
681                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
682
683                 "%vec4      = OpTypeVector %f32 4\n"
684                 "%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
685                 "%inbufptr  = OpTypePointer Uniform %inbuf\n"
686                 "%indata    = OpVariable %inbufptr Uniform\n"
687                 "%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
688                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
689                 "%outdata   = OpVariable %outbufptr Uniform\n"
690                 "%vec4stptr = OpTypePointer Function %inbuf\n"
691
692                 "%id        = OpVariable %uvec3ptr Input\n"
693                 "%zero      = OpConstant %i32 0\n"
694
695                 "%main      = OpFunction %void None %voidf\n"
696                 "%label     = OpLabel\n"
697                 "%var       = OpVariable %vec4stptr Function\n"
698                 "             OpCopyMemory %var %indata\n"
699                 "             OpCopyMemory %outdata %var\n"
700                 "             OpReturn\n"
701                 "             OpFunctionEnd\n";
702
703         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
704         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
705         spec3.numWorkGroups = IVec3(1, 1, 1);
706
707         group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
708
709         // The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
710         ComputeShaderSpec                               spec4;
711         vector<float>                                   inputFloats4    (numElements);
712         vector<float>                                   outputFloats4   (numElements);
713
714         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
715
716         for (size_t ndx = 0; ndx < numElements; ++ndx)
717                 outputFloats4[ndx] = -inputFloats4[ndx];
718
719         spec4.assembly =
720                 string(s_ShaderPreamble) +
721
722                 "OpName %main           \"main\"\n"
723                 "OpName %id             \"gl_GlobalInvocationID\"\n"
724
725                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
726
727                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
728
729                 "%f32ptr_f  = OpTypePointer Function %f32\n"
730                 "%id        = OpVariable %uvec3ptr Input\n"
731                 "%zero      = OpConstant %i32 0\n"
732
733                 "%main      = OpFunction %void None %voidf\n"
734                 "%label     = OpLabel\n"
735                 "%var       = OpVariable %f32ptr_f Function\n"
736                 "%idval     = OpLoad %uvec3 %id\n"
737                 "%x         = OpCompositeExtract %u32 %idval 0\n"
738                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
739                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
740                 "             OpCopyMemory %var %inloc\n"
741                 "%val       = OpLoad %f32 %var\n"
742                 "%neg       = OpFNegate %f32 %val\n"
743                 "             OpStore %outloc %neg\n"
744                 "             OpReturn\n"
745                 "             OpFunctionEnd\n";
746
747         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
748         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
749         spec4.numWorkGroups = IVec3(numElements, 1, 1);
750
751         group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
752
753         return group.release();
754 }
755
756 tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
757 {
758         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
759         ComputeShaderSpec                               spec;
760         de::Random                                              rnd                             (deStringHash(group->getName()));
761         const int                                               numElements             = 100;
762         vector<float>                                   inputFloats             (numElements, 0);
763         vector<float>                                   outputFloats    (numElements, 0);
764
765         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
766
767         for (size_t ndx = 0; ndx < numElements; ++ndx)
768                 outputFloats[ndx] = inputFloats[ndx] + 7.5f;
769
770         spec.assembly =
771                 string(s_ShaderPreamble) +
772
773                 "OpName %main           \"main\"\n"
774                 "OpName %id             \"gl_GlobalInvocationID\"\n"
775
776                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
777
778                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
779
780                 "%fmat     = OpTypeMatrix %fvec3 3\n"
781                 "%three    = OpConstant %u32 3\n"
782                 "%farr     = OpTypeArray %f32 %three\n"
783                 "%fst      = OpTypeStruct %f32 %f32\n"
784
785                 + string(s_InputOutputBuffer) +
786
787                 "%id            = OpVariable %uvec3ptr Input\n"
788                 "%zero          = OpConstant %i32 0\n"
789                 "%c_f           = OpConstant %f32 1.5\n"
790                 "%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
791                 "%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
792                 "%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
793                 "%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
794
795                 "%main          = OpFunction %void None %voidf\n"
796                 "%label         = OpLabel\n"
797                 "%c_f_copy      = OpCopyObject %f32   %c_f\n"
798                 "%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
799                 "%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
800                 "%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
801                 "%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
802                 "%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
803                 "%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
804                 "%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
805                 "%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
806                 // Add up. 1.5 * 5 = 7.5.
807                 "%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
808                 "%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
809                 "%add3          = OpFAdd %f32 %add2     %farr_elem\n"
810                 "%add4          = OpFAdd %f32 %add3     %fst_elem\n"
811
812                 "%idval         = OpLoad %uvec3 %id\n"
813                 "%x             = OpCompositeExtract %u32 %idval 0\n"
814                 "%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
815                 "%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
816                 "%inval         = OpLoad %f32 %inloc\n"
817                 "%add           = OpFAdd %f32 %add4 %inval\n"
818                 "                 OpStore %outloc %add\n"
819                 "                 OpReturn\n"
820                 "                 OpFunctionEnd\n";
821         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
822         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
823         spec.numWorkGroups = IVec3(numElements, 1, 1);
824
825         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
826
827         return group.release();
828 }
829 // Assembly code used for testing OpUnreachable is based on GLSL source code:
830 //
831 // #version 430
832 //
833 // layout(std140, set = 0, binding = 0) readonly buffer Input {
834 //   float elements[];
835 // } input_data;
836 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
837 //   float elements[];
838 // } output_data;
839 //
840 // void not_called_func() {
841 //   // place OpUnreachable here
842 // }
843 //
844 // uint modulo4(uint val) {
845 //   switch (val % uint(4)) {
846 //     case 0:  return 3;
847 //     case 1:  return 2;
848 //     case 2:  return 1;
849 //     case 3:  return 0;
850 //     default: return 100; // place OpUnreachable here
851 //   }
852 // }
853 //
854 // uint const5() {
855 //   return 5;
856 //   // place OpUnreachable here
857 // }
858 //
859 // void main() {
860 //   uint x = gl_GlobalInvocationID.x;
861 //   if (const5() > modulo4(1000)) {
862 //     output_data.elements[x] = -input_data.elements[x];
863 //   } else {
864 //     // place OpUnreachable here
865 //     output_data.elements[x] = input_data.elements[x];
866 //   }
867 // }
868
869 tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
870 {
871         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
872         ComputeShaderSpec                               spec;
873         de::Random                                              rnd                             (deStringHash(group->getName()));
874         const int                                               numElements             = 100;
875         vector<float>                                   positiveFloats  (numElements, 0);
876         vector<float>                                   negativeFloats  (numElements, 0);
877
878         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
879
880         for (size_t ndx = 0; ndx < numElements; ++ndx)
881                 negativeFloats[ndx] = -positiveFloats[ndx];
882
883         spec.assembly =
884                 string(s_ShaderPreamble) +
885
886                 "OpSource GLSL 430\n"
887                 "OpName %main            \"main\"\n"
888                 "OpName %func_not_called_func \"not_called_func(\"\n"
889                 "OpName %func_modulo4         \"modulo4(u1;\"\n"
890                 "OpName %func_const5          \"const5(\"\n"
891                 "OpName %id                   \"gl_GlobalInvocationID\"\n"
892
893                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
894
895                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
896
897                 "%u32ptr    = OpTypePointer Function %u32\n"
898                 "%uintfuint = OpTypeFunction %u32 %u32ptr\n"
899                 "%unitf     = OpTypeFunction %u32\n"
900
901                 "%id        = OpVariable %uvec3ptr Input\n"
902                 "%zero      = OpConstant %u32 0\n"
903                 "%one       = OpConstant %u32 1\n"
904                 "%two       = OpConstant %u32 2\n"
905                 "%three     = OpConstant %u32 3\n"
906                 "%four      = OpConstant %u32 4\n"
907                 "%five      = OpConstant %u32 5\n"
908                 "%hundred   = OpConstant %u32 100\n"
909                 "%thousand  = OpConstant %u32 1000\n"
910
911                 + string(s_InputOutputBuffer) +
912
913                 // Main()
914                 "%main   = OpFunction %void None %voidf\n"
915                 "%main_entry  = OpLabel\n"
916                 "%idval       = OpLoad %uvec3 %id\n"
917                 "%x           = OpCompositeExtract %u32 %idval 0\n"
918                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
919                 "%inval       = OpLoad %f32 %inloc\n"
920                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
921                 "%ret_const5  = OpFunctionCall %u32 %func_const5\n"
922                 "%v_thousand  = OpVariable %u32ptr Function %thousand\n"
923                 "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
924                 "%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
925                 "               OpSelectionMerge %if_end None\n"
926                 "               OpBranchConditional %cmp_gt %if_true %if_false\n"
927                 "%if_true     = OpLabel\n"
928                 "%negate      = OpFNegate %f32 %inval\n"
929                 "               OpStore %outloc %negate\n"
930                 "               OpBranch %if_end\n"
931                 "%if_false    = OpLabel\n"
932                 "               OpUnreachable\n" // Unreachable else branch for if statement
933                 "%if_end      = OpLabel\n"
934                 "               OpReturn\n"
935                 "               OpFunctionEnd\n"
936
937                 // not_called_function()
938                 "%func_not_called_func  = OpFunction %void None %voidf\n"
939                 "%not_called_func_entry = OpLabel\n"
940                 "                         OpUnreachable\n" // Unreachable entry block in not called static function
941                 "                         OpFunctionEnd\n"
942
943                 // modulo4()
944                 "%func_modulo4  = OpFunction %u32 None %uintfuint\n"
945                 "%valptr        = OpFunctionParameter %u32ptr\n"
946                 "%modulo4_entry = OpLabel\n"
947                 "%val           = OpLoad %u32 %valptr\n"
948                 "%modulo        = OpUMod %u32 %val %four\n"
949                 "                 OpSelectionMerge %switch_merge None\n"
950                 "                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
951                 "%case0         = OpLabel\n"
952                 "                 OpReturnValue %three\n"
953                 "%case1         = OpLabel\n"
954                 "                 OpReturnValue %two\n"
955                 "%case2         = OpLabel\n"
956                 "                 OpReturnValue %one\n"
957                 "%case3         = OpLabel\n"
958                 "                 OpReturnValue %zero\n"
959                 "%default       = OpLabel\n"
960                 "                 OpUnreachable\n" // Unreachable default case for switch statement
961                 "%switch_merge  = OpLabel\n"
962                 "                 OpUnreachable\n" // Unreachable merge block for switch statement
963                 "                 OpFunctionEnd\n"
964
965                 // const5()
966                 "%func_const5  = OpFunction %u32 None %unitf\n"
967                 "%const5_entry = OpLabel\n"
968                 "                OpReturnValue %five\n"
969                 "%unreachable  = OpLabel\n"
970                 "                OpUnreachable\n" // Unreachable block in function
971                 "                OpFunctionEnd\n";
972         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
973         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
974         spec.numWorkGroups = IVec3(numElements, 1, 1);
975
976         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
977
978         return group.release();
979 }
980
981 // Assembly code used for testing decoration group is based on GLSL source code:
982 //
983 // #version 430
984 //
985 // layout(std140, set = 0, binding = 0) readonly buffer Input0 {
986 //   float elements[];
987 // } input_data0;
988 // layout(std140, set = 0, binding = 1) readonly buffer Input1 {
989 //   float elements[];
990 // } input_data1;
991 // layout(std140, set = 0, binding = 2) readonly buffer Input2 {
992 //   float elements[];
993 // } input_data2;
994 // layout(std140, set = 0, binding = 3) readonly buffer Input3 {
995 //   float elements[];
996 // } input_data3;
997 // layout(std140, set = 0, binding = 4) readonly buffer Input4 {
998 //   float elements[];
999 // } input_data4;
1000 // layout(std140, set = 0, binding = 5) writeonly buffer Output {
1001 //   float elements[];
1002 // } output_data;
1003 //
1004 // void main() {
1005 //   uint x = gl_GlobalInvocationID.x;
1006 //   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1007 // }
1008 tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1009 {
1010         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1011         ComputeShaderSpec                               spec;
1012         de::Random                                              rnd                             (deStringHash(group->getName()));
1013         const int                                               numElements             = 100;
1014         vector<float>                                   inputFloats0    (numElements, 0);
1015         vector<float>                                   inputFloats1    (numElements, 0);
1016         vector<float>                                   inputFloats2    (numElements, 0);
1017         vector<float>                                   inputFloats3    (numElements, 0);
1018         vector<float>                                   inputFloats4    (numElements, 0);
1019         vector<float>                                   outputFloats    (numElements, 0);
1020
1021         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1022         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1023         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1024         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1025         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1026
1027         for (size_t ndx = 0; ndx < numElements; ++ndx)
1028                 outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1029
1030         spec.assembly =
1031                 string(s_ShaderPreamble) +
1032
1033                 "OpSource GLSL 430\n"
1034                 "OpName %main \"main\"\n"
1035                 "OpName %id \"gl_GlobalInvocationID\"\n"
1036
1037                 // Not using group decoration on variable.
1038                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1039                 // Not using group decoration on type.
1040                 "OpDecorate %f32arr ArrayStride 4\n"
1041
1042                 "OpDecorate %groups BufferBlock\n"
1043                 "OpDecorate %groupm Offset 0\n"
1044                 "%groups = OpDecorationGroup\n"
1045                 "%groupm = OpDecorationGroup\n"
1046
1047                 // Group decoration on multiple structs.
1048                 "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1049                 // Group decoration on multiple struct members.
1050                 "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1051
1052                 "OpDecorate %group1 DescriptorSet 0\n"
1053                 "OpDecorate %group3 DescriptorSet 0\n"
1054                 "OpDecorate %group3 NonWritable\n"
1055                 "OpDecorate %group3 Restrict\n"
1056                 "%group0 = OpDecorationGroup\n"
1057                 "%group1 = OpDecorationGroup\n"
1058                 "%group3 = OpDecorationGroup\n"
1059
1060                 // Applying the same decoration group multiple times.
1061                 "OpGroupDecorate %group1 %outdata\n"
1062                 "OpGroupDecorate %group1 %outdata\n"
1063                 "OpGroupDecorate %group1 %outdata\n"
1064                 "OpDecorate %outdata DescriptorSet 0\n"
1065                 "OpDecorate %outdata Binding 5\n"
1066                 // Applying decoration group containing nothing.
1067                 "OpGroupDecorate %group0 %indata0\n"
1068                 "OpDecorate %indata0 DescriptorSet 0\n"
1069                 "OpDecorate %indata0 Binding 0\n"
1070                 // Applying decoration group containing one decoration.
1071                 "OpGroupDecorate %group1 %indata1\n"
1072                 "OpDecorate %indata1 Binding 1\n"
1073                 // Applying decoration group containing multiple decorations.
1074                 "OpGroupDecorate %group3 %indata2 %indata3\n"
1075                 "OpDecorate %indata2 Binding 2\n"
1076                 "OpDecorate %indata3 Binding 3\n"
1077                 // Applying multiple decoration groups (with overlapping).
1078                 "OpGroupDecorate %group0 %indata4\n"
1079                 "OpGroupDecorate %group1 %indata4\n"
1080                 "OpGroupDecorate %group3 %indata4\n"
1081                 "OpDecorate %indata4 Binding 4\n"
1082
1083                 + string(s_CommonTypes) +
1084
1085                 "%id   = OpVariable %uvec3ptr Input\n"
1086                 "%zero = OpConstant %i32 0\n"
1087
1088                 "%outbuf    = OpTypeStruct %f32arr\n"
1089                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1090                 "%outdata   = OpVariable %outbufptr Uniform\n"
1091                 "%inbuf0    = OpTypeStruct %f32arr\n"
1092                 "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1093                 "%indata0   = OpVariable %inbuf0ptr Uniform\n"
1094                 "%inbuf1    = OpTypeStruct %f32arr\n"
1095                 "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1096                 "%indata1   = OpVariable %inbuf1ptr Uniform\n"
1097                 "%inbuf2    = OpTypeStruct %f32arr\n"
1098                 "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1099                 "%indata2   = OpVariable %inbuf2ptr Uniform\n"
1100                 "%inbuf3    = OpTypeStruct %f32arr\n"
1101                 "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1102                 "%indata3   = OpVariable %inbuf3ptr Uniform\n"
1103                 "%inbuf4    = OpTypeStruct %f32arr\n"
1104                 "%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1105                 "%indata4   = OpVariable %inbufptr Uniform\n"
1106
1107                 "%main   = OpFunction %void None %voidf\n"
1108                 "%label  = OpLabel\n"
1109                 "%idval  = OpLoad %uvec3 %id\n"
1110                 "%x      = OpCompositeExtract %u32 %idval 0\n"
1111                 "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1112                 "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1113                 "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1114                 "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1115                 "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1116                 "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1117                 "%inval0 = OpLoad %f32 %inloc0\n"
1118                 "%inval1 = OpLoad %f32 %inloc1\n"
1119                 "%inval2 = OpLoad %f32 %inloc2\n"
1120                 "%inval3 = OpLoad %f32 %inloc3\n"
1121                 "%inval4 = OpLoad %f32 %inloc4\n"
1122                 "%add0   = OpFAdd %f32 %inval0 %inval1\n"
1123                 "%add1   = OpFAdd %f32 %add0 %inval2\n"
1124                 "%add2   = OpFAdd %f32 %add1 %inval3\n"
1125                 "%add    = OpFAdd %f32 %add2 %inval4\n"
1126                 "          OpStore %outloc %add\n"
1127                 "          OpReturn\n"
1128                 "          OpFunctionEnd\n";
1129         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1130         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1131         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1132         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1133         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1134         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1135         spec.numWorkGroups = IVec3(numElements, 1, 1);
1136
1137         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1138
1139         return group.release();
1140 }
1141
1142 struct SpecConstantTwoIntCase
1143 {
1144         const char*             caseName;
1145         const char*             scDefinition0;
1146         const char*             scDefinition1;
1147         const char*             scResultType;
1148         const char*             scOperation;
1149         deInt32                 scActualValue0;
1150         deInt32                 scActualValue1;
1151         const char*             resultOperation;
1152         vector<deInt32> expectedOutput;
1153
1154                                         SpecConstantTwoIntCase (const char* name,
1155                                                                                         const char* definition0,
1156                                                                                         const char* definition1,
1157                                                                                         const char* resultType,
1158                                                                                         const char* operation,
1159                                                                                         deInt32 value0,
1160                                                                                         deInt32 value1,
1161                                                                                         const char* resultOp,
1162                                                                                         const vector<deInt32>& output)
1163                                                 : caseName                      (name)
1164                                                 , scDefinition0         (definition0)
1165                                                 , scDefinition1         (definition1)
1166                                                 , scResultType          (resultType)
1167                                                 , scOperation           (operation)
1168                                                 , scActualValue0        (value0)
1169                                                 , scActualValue1        (value1)
1170                                                 , resultOperation       (resultOp)
1171                                                 , expectedOutput        (output) {}
1172 };
1173
1174 tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1175 {
1176         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1177         vector<SpecConstantTwoIntCase>  cases;
1178         de::Random                                              rnd                             (deStringHash(group->getName()));
1179         const int                                               numElements             = 100;
1180         vector<deInt32>                                 inputInts               (numElements, 0);
1181         vector<deInt32>                                 outputInts1             (numElements, 0);
1182         vector<deInt32>                                 outputInts2             (numElements, 0);
1183         vector<deInt32>                                 outputInts3             (numElements, 0);
1184         vector<deInt32>                                 outputInts4             (numElements, 0);
1185         const StringTemplate                    shaderTemplate  (
1186                 string(s_ShaderPreamble) +
1187
1188                 "OpName %main           \"main\"\n"
1189                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1190
1191                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1192                 "OpDecorate %sc_0  SpecId 0\n"
1193                 "OpDecorate %sc_1  SpecId 1\n"
1194                 "OpDecorate %i32arr ArrayStride 4\n"
1195
1196                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1197
1198                 "%i32ptr    = OpTypePointer Uniform %i32\n"
1199                 "%i32arr    = OpTypeRuntimeArray %i32\n"
1200                 "%boolptr   = OpTypePointer Uniform %bool\n"
1201                 "%boolarr   = OpTypeRuntimeArray %bool\n"
1202                 "%inbuf     = OpTypeStruct %i32arr\n"
1203                 "%inbufptr  = OpTypePointer Uniform %inbuf\n"
1204                 "%indata    = OpVariable %inbufptr Uniform\n"
1205                 "%outbuf    = OpTypeStruct %i32arr\n"
1206                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1207                 "%outdata   = OpVariable %outbufptr Uniform\n"
1208
1209                 "%id        = OpVariable %uvec3ptr Input\n"
1210                 "%zero      = OpConstant %i32 0\n"
1211
1212                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
1213                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
1214                 "%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1215
1216                 "%main      = OpFunction %void None %voidf\n"
1217                 "%label     = OpLabel\n"
1218                 "%idval     = OpLoad %uvec3 %id\n"
1219                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1220                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1221                 "%inval     = OpLoad %i32 %inloc\n"
1222                 "%final     = ${GEN_RESULT}\n"
1223                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1224                 "             OpStore %outloc %final\n"
1225                 "             OpReturn\n"
1226                 "             OpFunctionEnd\n");
1227
1228         fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1229
1230         for (size_t ndx = 0; ndx < numElements; ++ndx)
1231         {
1232                 outputInts1[ndx] = inputInts[ndx] + 42;
1233                 outputInts2[ndx] = inputInts[ndx];
1234                 outputInts3[ndx] = inputInts[ndx] - 11200;
1235                 outputInts4[ndx] = inputInts[ndx] + 1;
1236         }
1237
1238         const char addScToInput[]               = "OpIAdd %i32 %inval %sc_final";
1239         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_final %inval %zero";
1240         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
1241
1242         cases.push_back(SpecConstantTwoIntCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                     62,             -20,    addScToInput,           outputInts1));
1243         cases.push_back(SpecConstantTwoIntCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                     100,    58,             addScToInput,           outputInts1));
1244         cases.push_back(SpecConstantTwoIntCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                     -2,             -21,    addScToInput,           outputInts1));
1245         cases.push_back(SpecConstantTwoIntCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                     -126,   -3,             addScToInput,           outputInts1));
1246         cases.push_back(SpecConstantTwoIntCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                     126,    3,              addScToInput,           outputInts1));
1247         cases.push_back(SpecConstantTwoIntCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1248         cases.push_back(SpecConstantTwoIntCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1249         cases.push_back(SpecConstantTwoIntCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                     342,    50,             addScToInput,           outputInts1));
1250         cases.push_back(SpecConstantTwoIntCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                     42,             63,             addScToInput,           outputInts1));
1251         cases.push_back(SpecConstantTwoIntCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                     34,             8,              addScToInput,           outputInts1));
1252         cases.push_back(SpecConstantTwoIntCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                     18,             56,             addScToInput,           outputInts1));
1253         cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1254         cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1255         cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                     21,             1,              addScToInput,           outputInts1));
1256         cases.push_back(SpecConstantTwoIntCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                     -20,    -10,    selectTrueUsingSc,      outputInts2));
1257         cases.push_back(SpecConstantTwoIntCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                     10,             20,             selectTrueUsingSc,      outputInts2));
1258         cases.push_back(SpecConstantTwoIntCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1259         cases.push_back(SpecConstantTwoIntCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                     10,             5,              selectTrueUsingSc,      outputInts2));
1260         cases.push_back(SpecConstantTwoIntCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                     -10,    -10,    selectTrueUsingSc,      outputInts2));
1261         cases.push_back(SpecConstantTwoIntCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                     50,             100,    selectTrueUsingSc,      outputInts2));
1262         cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1263         cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                     10,             10,             selectTrueUsingSc,      outputInts2));
1264         cases.push_back(SpecConstantTwoIntCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                     42,             24,             selectFalseUsingSc,     outputInts2));
1265         cases.push_back(SpecConstantTwoIntCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1266         cases.push_back(SpecConstantTwoIntCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1267         cases.push_back(SpecConstantTwoIntCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1268         cases.push_back(SpecConstantTwoIntCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1269         cases.push_back(SpecConstantTwoIntCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                           -42,    0,              addScToInput,           outputInts1));
1270         cases.push_back(SpecConstantTwoIntCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                           -43,    0,              addScToInput,           outputInts1));
1271         cases.push_back(SpecConstantTwoIntCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                           1,              0,              selectFalseUsingSc,     outputInts2));
1272         cases.push_back(SpecConstantTwoIntCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %zero",       1,              42,             addScToInput,           outputInts1));
1273         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1274
1275         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1276         {
1277                 map<string, string>             specializations;
1278                 ComputeShaderSpec               spec;
1279
1280                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
1281                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
1282                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
1283                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
1284                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
1285
1286                 spec.assembly = shaderTemplate.specialize(specializations);
1287                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1288                 spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1289                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1290                 spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1291                 spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1292
1293                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1294         }
1295
1296         ComputeShaderSpec                               spec;
1297
1298         spec.assembly =
1299                 string(s_ShaderPreamble) +
1300
1301                 "OpName %main           \"main\"\n"
1302                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1303
1304                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1305                 "OpDecorate %sc_0  SpecId 0\n"
1306                 "OpDecorate %sc_1  SpecId 1\n"
1307                 "OpDecorate %sc_2  SpecId 2\n"
1308                 "OpDecorate %i32arr ArrayStride 4\n"
1309
1310                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1311
1312                 "%ivec3     = OpTypeVector %i32 3\n"
1313                 "%i32ptr    = OpTypePointer Uniform %i32\n"
1314                 "%i32arr    = OpTypeRuntimeArray %i32\n"
1315                 "%boolptr   = OpTypePointer Uniform %bool\n"
1316                 "%boolarr   = OpTypeRuntimeArray %bool\n"
1317                 "%inbuf     = OpTypeStruct %i32arr\n"
1318                 "%inbufptr  = OpTypePointer Uniform %inbuf\n"
1319                 "%indata    = OpVariable %inbufptr Uniform\n"
1320                 "%outbuf    = OpTypeStruct %i32arr\n"
1321                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1322                 "%outdata   = OpVariable %outbufptr Uniform\n"
1323
1324                 "%id        = OpVariable %uvec3ptr Input\n"
1325                 "%zero      = OpConstant %i32 0\n"
1326                 "%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1327
1328                 "%sc_0        = OpSpecConstant %i32 0\n"
1329                 "%sc_1        = OpSpecConstant %i32 0\n"
1330                 "%sc_2        = OpSpecConstant %i32 0\n"
1331                 "%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1332                 "%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1333                 "%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1334                 "%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1335                 "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1336                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1337                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1338                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1339                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1340                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1341
1342                 "%main      = OpFunction %void None %voidf\n"
1343                 "%label     = OpLabel\n"
1344                 "%idval     = OpLoad %uvec3 %id\n"
1345                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1346                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1347                 "%inval     = OpLoad %i32 %inloc\n"
1348                 "%final     = OpIAdd %i32 %inval %sc_final\n"
1349                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1350                 "             OpStore %outloc %final\n"
1351                 "             OpReturn\n"
1352                 "             OpFunctionEnd\n";
1353         spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1354         spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1355         spec.numWorkGroups = IVec3(numElements, 1, 1);
1356         spec.specConstants.push_back(123);
1357         spec.specConstants.push_back(56);
1358         spec.specConstants.push_back(-77);
1359
1360         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1361
1362         return group.release();
1363 }
1364
1365 tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1366 {
1367         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1368         ComputeShaderSpec                               spec1;
1369         ComputeShaderSpec                               spec2;
1370         ComputeShaderSpec                               spec3;
1371         de::Random                                              rnd                             (deStringHash(group->getName()));
1372         const int                                               numElements             = 100;
1373         vector<float>                                   inputFloats             (numElements, 0);
1374         vector<float>                                   outputFloats1   (numElements, 0);
1375         vector<float>                                   outputFloats2   (numElements, 0);
1376         vector<float>                                   outputFloats3   (numElements, 0);
1377
1378         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1379
1380         for (size_t ndx = 0; ndx < numElements; ++ndx)
1381         {
1382                 switch (ndx % 3)
1383                 {
1384                         case 0:         outputFloats1[ndx] = inputFloats[ndx] + 5.5f;   break;
1385                         case 1:         outputFloats1[ndx] = inputFloats[ndx] + 20.5f;  break;
1386                         case 2:         outputFloats1[ndx] = inputFloats[ndx] + 1.75f;  break;
1387                         default:        break;
1388                 }
1389                 outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1390                 outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1391         }
1392
1393         spec1.assembly =
1394                 string(s_ShaderPreamble) +
1395
1396                 "OpSource GLSL 430\n"
1397                 "OpName %main \"main\"\n"
1398                 "OpName %id \"gl_GlobalInvocationID\"\n"
1399
1400                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1401
1402                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1403
1404                 "%id = OpVariable %uvec3ptr Input\n"
1405                 "%zero       = OpConstant %i32 0\n"
1406                 "%three      = OpConstant %u32 3\n"
1407                 "%constf5p5  = OpConstant %f32 5.5\n"
1408                 "%constf20p5 = OpConstant %f32 20.5\n"
1409                 "%constf1p75 = OpConstant %f32 1.75\n"
1410                 "%constf8p5  = OpConstant %f32 8.5\n"
1411                 "%constf6p5  = OpConstant %f32 6.5\n"
1412
1413                 "%main     = OpFunction %void None %voidf\n"
1414                 "%entry    = OpLabel\n"
1415                 "%idval    = OpLoad %uvec3 %id\n"
1416                 "%x        = OpCompositeExtract %u32 %idval 0\n"
1417                 "%selector = OpUMod %u32 %x %three\n"
1418                 "            OpSelectionMerge %phi None\n"
1419                 "            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1420
1421                 // Case 1 before OpPhi.
1422                 "%case1    = OpLabel\n"
1423                 "            OpBranch %phi\n"
1424
1425                 "%default  = OpLabel\n"
1426                 "            OpUnreachable\n"
1427
1428                 "%phi      = OpLabel\n"
1429                 "%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1430                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1431                 "%inval    = OpLoad %f32 %inloc\n"
1432                 "%add      = OpFAdd %f32 %inval %operand\n"
1433                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1434                 "            OpStore %outloc %add\n"
1435                 "            OpReturn\n"
1436
1437                 // Case 0 after OpPhi.
1438                 "%case0    = OpLabel\n"
1439                 "            OpBranch %phi\n"
1440
1441
1442                 // Case 2 after OpPhi.
1443                 "%case2    = OpLabel\n"
1444                 "            OpBranch %phi\n"
1445
1446                 "            OpFunctionEnd\n";
1447         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1448         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1449         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1450
1451         group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1452
1453         spec2.assembly =
1454                 string(s_ShaderPreamble) +
1455
1456                 "OpName %main \"main\"\n"
1457                 "OpName %id \"gl_GlobalInvocationID\"\n"
1458
1459                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1460
1461                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1462
1463                 "%id         = OpVariable %uvec3ptr Input\n"
1464                 "%zero       = OpConstant %i32 0\n"
1465                 "%one        = OpConstant %i32 1\n"
1466                 "%three      = OpConstant %i32 3\n"
1467                 "%constf6p5  = OpConstant %f32 6.5\n"
1468
1469                 "%main       = OpFunction %void None %voidf\n"
1470                 "%entry      = OpLabel\n"
1471                 "%idval      = OpLoad %uvec3 %id\n"
1472                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1473                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1474                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1475                 "%inval      = OpLoad %f32 %inloc\n"
1476                 "              OpBranch %phi\n"
1477
1478                 "%phi        = OpLabel\n"
1479                 "%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1480                 "%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1481                 "%step_next  = OpIAdd %i32 %step %one\n"
1482                 "%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1483                 "%still_loop = OpSLessThan %bool %step %three\n"
1484                 "              OpLoopMerge %exit %phi None\n"
1485                 "              OpBranchConditional %still_loop %phi %exit\n"
1486
1487                 "%exit       = OpLabel\n"
1488                 "              OpStore %outloc %accum\n"
1489                 "              OpReturn\n"
1490                 "              OpFunctionEnd\n";
1491         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1492         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1493         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1494
1495         group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1496
1497         spec3.assembly =
1498                 string(s_ShaderPreamble) +
1499
1500                 "OpName %main \"main\"\n"
1501                 "OpName %id \"gl_GlobalInvocationID\"\n"
1502
1503                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1504
1505                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1506
1507                 "%f32ptr_f   = OpTypePointer Function %f32\n"
1508                 "%id         = OpVariable %uvec3ptr Input\n"
1509                 "%true       = OpConstantTrue %bool\n"
1510                 "%false      = OpConstantFalse %bool\n"
1511                 "%zero       = OpConstant %i32 0\n"
1512                 "%constf8p5  = OpConstant %f32 8.5\n"
1513
1514                 "%main       = OpFunction %void None %voidf\n"
1515                 "%entry      = OpLabel\n"
1516                 "%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1517                 "%idval      = OpLoad %uvec3 %id\n"
1518                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1519                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1520                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1521                 "%a_init     = OpLoad %f32 %inloc\n"
1522                 "%b_init     = OpLoad %f32 %b\n"
1523                 "              OpBranch %phi\n"
1524
1525                 "%phi        = OpLabel\n"
1526                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1527                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1528                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1529                 "              OpLoopMerge %exit %phi None\n"
1530                 "              OpBranchConditional %still_loop %phi %exit\n"
1531
1532                 "%exit       = OpLabel\n"
1533                 "%sub        = OpFSub %f32 %a_next %b_next\n"
1534                 "              OpStore %outloc %sub\n"
1535                 "              OpReturn\n"
1536                 "              OpFunctionEnd\n";
1537         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1538         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1539         spec3.numWorkGroups = IVec3(numElements, 1, 1);
1540
1541         group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1542
1543         return group.release();
1544 }
1545
1546 // Assembly code used for testing block order is based on GLSL source code:
1547 //
1548 // #version 430
1549 //
1550 // layout(std140, set = 0, binding = 0) readonly buffer Input {
1551 //   float elements[];
1552 // } input_data;
1553 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
1554 //   float elements[];
1555 // } output_data;
1556 //
1557 // void main() {
1558 //   uint x = gl_GlobalInvocationID.x;
1559 //   output_data.elements[x] = input_data.elements[x];
1560 //   if (x > uint(50)) {
1561 //     switch (x % uint(3)) {
1562 //       case 0: output_data.elements[x] += 1.5f; break;
1563 //       case 1: output_data.elements[x] += 42.f; break;
1564 //       case 2: output_data.elements[x] -= 27.f; break;
1565 //       default: break;
1566 //     }
1567 //   } else {
1568 //     output_data.elements[x] = -input_data.elements[x];
1569 //   }
1570 // }
1571 tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1572 {
1573         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1574         ComputeShaderSpec                               spec;
1575         de::Random                                              rnd                             (deStringHash(group->getName()));
1576         const int                                               numElements             = 100;
1577         vector<float>                                   inputFloats             (numElements, 0);
1578         vector<float>                                   outputFloats    (numElements, 0);
1579
1580         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1581
1582         for (size_t ndx = 0; ndx <= 50; ++ndx)
1583                 outputFloats[ndx] = -inputFloats[ndx];
1584
1585         for (size_t ndx = 51; ndx < numElements; ++ndx)
1586         {
1587                 switch (ndx % 3)
1588                 {
1589                         case 0:         outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1590                         case 1:         outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1591                         case 2:         outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1592                         default:        break;
1593                 }
1594         }
1595
1596         spec.assembly =
1597                 string(s_ShaderPreamble) +
1598
1599                 "OpSource GLSL 430\n"
1600                 "OpName %main \"main\"\n"
1601                 "OpName %id \"gl_GlobalInvocationID\"\n"
1602
1603                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1604
1605                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1606
1607                 "%u32ptr       = OpTypePointer Function %u32\n"
1608                 "%u32ptr_input = OpTypePointer Input %u32\n"
1609
1610                 + string(s_InputOutputBuffer) +
1611
1612                 "%id        = OpVariable %uvec3ptr Input\n"
1613                 "%zero      = OpConstant %i32 0\n"
1614                 "%const3    = OpConstant %u32 3\n"
1615                 "%const50   = OpConstant %u32 50\n"
1616                 "%constf1p5 = OpConstant %f32 1.5\n"
1617                 "%constf27  = OpConstant %f32 27.0\n"
1618                 "%constf42  = OpConstant %f32 42.0\n"
1619
1620                 "%main = OpFunction %void None %voidf\n"
1621
1622                 // entry block.
1623                 "%entry    = OpLabel\n"
1624
1625                 // Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1626                 "%xvar     = OpVariable %u32ptr Function\n"
1627                 "%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1628                 "%x        = OpLoad %u32 %xptr\n"
1629                 "            OpStore %xvar %x\n"
1630
1631                 "%cmp      = OpUGreaterThan %bool %x %const50\n"
1632                 "            OpSelectionMerge %if_merge None\n"
1633                 "            OpBranchConditional %cmp %if_true %if_false\n"
1634
1635                 // Merge block for switch-statement: placed at the beginning.
1636                 "%switch_merge = OpLabel\n"
1637                 "                OpBranch %if_merge\n"
1638
1639                 // Case 1 for switch-statement.
1640                 "%case1    = OpLabel\n"
1641                 "%x_1      = OpLoad %u32 %xvar\n"
1642                 "%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1643                 "%inval_1  = OpLoad %f32 %inloc_1\n"
1644                 "%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1645                 "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1646                 "            OpStore %outloc_1 %addf42\n"
1647                 "            OpBranch %switch_merge\n"
1648
1649                 // False branch for if-statement: placed in the middle of switch cases and before true branch.
1650                 "%if_false = OpLabel\n"
1651                 "%x_f      = OpLoad %u32 %xvar\n"
1652                 "%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1653                 "%inval_f  = OpLoad %f32 %inloc_f\n"
1654                 "%negate   = OpFNegate %f32 %inval_f\n"
1655                 "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1656                 "            OpStore %outloc_f %negate\n"
1657                 "            OpBranch %if_merge\n"
1658
1659                 // Merge block for if-statement: placed in the middle of true and false branch.
1660                 "%if_merge = OpLabel\n"
1661                 "            OpReturn\n"
1662
1663                 // True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1664                 "%if_true  = OpLabel\n"
1665                 "%xval_t   = OpLoad %u32 %xvar\n"
1666                 "%mod      = OpUMod %u32 %xval_t %const3\n"
1667                 "            OpSelectionMerge %switch_merge None\n"
1668                 "            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1669
1670                 // Case 2 for switch-statement.
1671                 "%case2    = OpLabel\n"
1672                 "%x_2      = OpLoad %u32 %xvar\n"
1673                 "%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1674                 "%inval_2  = OpLoad %f32 %inloc_2\n"
1675                 "%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1676                 "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1677                 "            OpStore %outloc_2 %subf27\n"
1678                 "            OpBranch %switch_merge\n"
1679
1680                 // Default case for switch-statement: placed in the middle of normal cases.
1681                 "%default = OpLabel\n"
1682                 "           OpBranch %switch_merge\n"
1683
1684                 // Case 0 for switch-statement: out of order.
1685                 "%case0    = OpLabel\n"
1686                 "%x_0      = OpLoad %u32 %xvar\n"
1687                 "%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1688                 "%inval_0  = OpLoad %f32 %inloc_0\n"
1689                 "%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1690                 "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1691                 "            OpStore %outloc_0 %addf1p5\n"
1692                 "            OpBranch %switch_merge\n"
1693
1694                 "            OpFunctionEnd\n";
1695         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1696         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1697         spec.numWorkGroups = IVec3(numElements, 1, 1);
1698
1699         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1700
1701         return group.release();
1702 }
1703
1704 tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1705 {
1706         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1707         ComputeShaderSpec                               spec1;
1708         ComputeShaderSpec                               spec2;
1709         de::Random                                              rnd                             (deStringHash(group->getName()));
1710         const int                                               numElements             = 100;
1711         vector<float>                                   inputFloats             (numElements, 0);
1712         vector<float>                                   outputFloats1   (numElements, 0);
1713         vector<float>                                   outputFloats2   (numElements, 0);
1714         fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1715
1716         for (size_t ndx = 0; ndx < numElements; ++ndx)
1717         {
1718                 outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1719                 outputFloats2[ndx] = -inputFloats[ndx];
1720         }
1721
1722         const string assembly(
1723                 "OpCapability Shader\n"
1724                 "OpMemoryModel Logical GLSL450\n"
1725                 "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1726                 "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1727                 // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1728                 "OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
1729                 "OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1730                 "OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1731
1732                 "OpName %comp_main1              \"entrypoint1\"\n"
1733                 "OpName %comp_main2              \"entrypoint2\"\n"
1734                 "OpName %vert_main               \"entrypoint2\"\n"
1735                 "OpName %id                      \"gl_GlobalInvocationID\"\n"
1736                 "OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1737                 "OpName %vertexIndex             \"gl_VertexIndex\"\n"
1738                 "OpName %instanceIndex           \"gl_InstanceIndex\"\n"
1739                 "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1740                 "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1741                 "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1742
1743                 "OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1744                 "OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
1745                 "OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
1746                 "OpDecorate %vert_builtin_st         Block\n"
1747                 "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1748                 "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1749                 "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1750
1751                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1752
1753                 "%zero       = OpConstant %i32 0\n"
1754                 "%one        = OpConstant %u32 1\n"
1755                 "%c_f32_1    = OpConstant %f32 1\n"
1756
1757                 "%i32ptr              = OpTypePointer Input %i32\n"
1758                 "%vec4                = OpTypeVector %f32 4\n"
1759                 "%vec4ptr             = OpTypePointer Output %vec4\n"
1760                 "%f32arr1             = OpTypeArray %f32 %one\n"
1761                 "%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1762                 "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1763                 "%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1764
1765                 "%id         = OpVariable %uvec3ptr Input\n"
1766                 "%vertexIndex = OpVariable %i32ptr Input\n"
1767                 "%instanceIndex = OpVariable %i32ptr Input\n"
1768                 "%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1769
1770                 // gl_Position = vec4(1.);
1771                 "%vert_main  = OpFunction %void None %voidf\n"
1772                 "%vert_entry = OpLabel\n"
1773                 "%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1774                 "              OpStore %position %c_vec4_1\n"
1775                 "              OpReturn\n"
1776                 "              OpFunctionEnd\n"
1777
1778                 // Double inputs.
1779                 "%comp_main1  = OpFunction %void None %voidf\n"
1780                 "%comp1_entry = OpLabel\n"
1781                 "%idval1      = OpLoad %uvec3 %id\n"
1782                 "%x1          = OpCompositeExtract %u32 %idval1 0\n"
1783                 "%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1784                 "%inval1      = OpLoad %f32 %inloc1\n"
1785                 "%add         = OpFAdd %f32 %inval1 %inval1\n"
1786                 "%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1787                 "               OpStore %outloc1 %add\n"
1788                 "               OpReturn\n"
1789                 "               OpFunctionEnd\n"
1790
1791                 // Negate inputs.
1792                 "%comp_main2  = OpFunction %void None %voidf\n"
1793                 "%comp2_entry = OpLabel\n"
1794                 "%idval2      = OpLoad %uvec3 %id\n"
1795                 "%x2          = OpCompositeExtract %u32 %idval2 0\n"
1796                 "%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1797                 "%inval2      = OpLoad %f32 %inloc2\n"
1798                 "%neg         = OpFNegate %f32 %inval2\n"
1799                 "%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1800                 "               OpStore %outloc2 %neg\n"
1801                 "               OpReturn\n"
1802                 "               OpFunctionEnd\n");
1803
1804         spec1.assembly = assembly;
1805         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1806         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1807         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1808         spec1.entryPoint = "entrypoint1";
1809
1810         spec2.assembly = assembly;
1811         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1812         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1813         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1814         spec2.entryPoint = "entrypoint2";
1815
1816         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1817         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1818
1819         return group.release();
1820 }
1821
1822 inline std::string makeLongUTF8String (size_t num4ByteChars)
1823 {
1824         // An example of a longest valid UTF-8 character.  Be explicit about the
1825         // character type because Microsoft compilers can otherwise interpret the
1826         // character string as being over wide (16-bit) characters. Ideally, we
1827         // would just use a C++11 UTF-8 string literal, but we want to support older
1828         // Microsoft compilers.
1829         const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1830         std::string longString;
1831         longString.reserve(num4ByteChars * 4);
1832         for (size_t count = 0; count < num4ByteChars; count++)
1833         {
1834                 longString += earthAfrica;
1835         }
1836         return longString;
1837 }
1838
1839 tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1840 {
1841         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1842         vector<CaseParameter>                   cases;
1843         de::Random                                              rnd                             (deStringHash(group->getName()));
1844         const int                                               numElements             = 100;
1845         vector<float>                                   positiveFloats  (numElements, 0);
1846         vector<float>                                   negativeFloats  (numElements, 0);
1847         const StringTemplate                    shaderTemplate  (
1848                 "OpCapability Shader\n"
1849                 "OpMemoryModel Logical GLSL450\n"
1850
1851                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1852                 "OpExecutionMode %main LocalSize 1 1 1\n"
1853
1854                 "${SOURCE}\n"
1855
1856                 "OpName %main           \"main\"\n"
1857                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1858
1859                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1860
1861                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1862
1863                 "%id        = OpVariable %uvec3ptr Input\n"
1864                 "%zero      = OpConstant %i32 0\n"
1865
1866                 "%main      = OpFunction %void None %voidf\n"
1867                 "%label     = OpLabel\n"
1868                 "%idval     = OpLoad %uvec3 %id\n"
1869                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1870                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1871                 "%inval     = OpLoad %f32 %inloc\n"
1872                 "%neg       = OpFNegate %f32 %inval\n"
1873                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1874                 "             OpStore %outloc %neg\n"
1875                 "             OpReturn\n"
1876                 "             OpFunctionEnd\n");
1877
1878         cases.push_back(CaseParameter("unknown_source",                                                 "OpSource Unknown 0"));
1879         cases.push_back(CaseParameter("wrong_source",                                                   "OpSource OpenCL_C 210"));
1880         cases.push_back(CaseParameter("normal_filename",                                                "%fname = OpString \"filename\"\n"
1881                                                                                                                                                         "OpSource GLSL 430 %fname"));
1882         cases.push_back(CaseParameter("empty_filename",                                                 "%fname = OpString \"\"\n"
1883                                                                                                                                                         "OpSource GLSL 430 %fname"));
1884         cases.push_back(CaseParameter("normal_source_code",                                             "%fname = OpString \"filename\"\n"
1885                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1886         cases.push_back(CaseParameter("empty_source_code",                                              "%fname = OpString \"filename\"\n"
1887                                                                                                                                                         "OpSource GLSL 430 %fname \"\""));
1888         cases.push_back(CaseParameter("long_source_code",                                               "%fname = OpString \"filename\"\n"
1889                                                                                                                                                         "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1890         cases.push_back(CaseParameter("utf8_source_code",                                               "%fname = OpString \"filename\"\n"
1891                                                                                                                                                         "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1892         cases.push_back(CaseParameter("normal_sourcecontinued",                                 "%fname = OpString \"filename\"\n"
1893                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1894                                                                                                                                                         "OpSourceContinued \"id main() {}\""));
1895         cases.push_back(CaseParameter("empty_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
1896                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1897                                                                                                                                                         "OpSourceContinued \"\""));
1898         cases.push_back(CaseParameter("long_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
1899                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1900                                                                                                                                                         "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1901         cases.push_back(CaseParameter("utf8_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
1902                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1903                                                                                                                                                         "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1904         cases.push_back(CaseParameter("multi_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
1905                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\n\"\n"
1906                                                                                                                                                         "OpSourceContinued \"void\"\n"
1907                                                                                                                                                         "OpSourceContinued \"main()\"\n"
1908                                                                                                                                                         "OpSourceContinued \"{}\""));
1909         cases.push_back(CaseParameter("empty_source_before_sourcecontinued",    "%fname = OpString \"filename\"\n"
1910                                                                                                                                                         "OpSource GLSL 430 %fname \"\"\n"
1911                                                                                                                                                         "OpSourceContinued \"#version 430\nvoid main() {}\""));
1912
1913         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1914
1915         for (size_t ndx = 0; ndx < numElements; ++ndx)
1916                 negativeFloats[ndx] = -positiveFloats[ndx];
1917
1918         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1919         {
1920                 map<string, string>             specializations;
1921                 ComputeShaderSpec               spec;
1922
1923                 specializations["SOURCE"] = cases[caseNdx].param;
1924                 spec.assembly = shaderTemplate.specialize(specializations);
1925                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1926                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1927                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1928
1929                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1930         }
1931
1932         return group.release();
1933 }
1934
1935 tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1936 {
1937         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1938         vector<CaseParameter>                   cases;
1939         de::Random                                              rnd                             (deStringHash(group->getName()));
1940         const int                                               numElements             = 100;
1941         vector<float>                                   inputFloats             (numElements, 0);
1942         vector<float>                                   outputFloats    (numElements, 0);
1943         const StringTemplate                    shaderTemplate  (
1944                 string(s_ShaderPreamble) +
1945
1946                 "OpSourceExtension \"${EXTENSION}\"\n"
1947
1948                 "OpName %main           \"main\"\n"
1949                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1950
1951                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1952
1953                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1954
1955                 "%id        = OpVariable %uvec3ptr Input\n"
1956                 "%zero      = OpConstant %i32 0\n"
1957
1958                 "%main      = OpFunction %void None %voidf\n"
1959                 "%label     = OpLabel\n"
1960                 "%idval     = OpLoad %uvec3 %id\n"
1961                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1962                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1963                 "%inval     = OpLoad %f32 %inloc\n"
1964                 "%neg       = OpFNegate %f32 %inval\n"
1965                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1966                 "             OpStore %outloc %neg\n"
1967                 "             OpReturn\n"
1968                 "             OpFunctionEnd\n");
1969
1970         cases.push_back(CaseParameter("empty_extension",        ""));
1971         cases.push_back(CaseParameter("real_extension",         "GL_ARB_texture_rectangle"));
1972         cases.push_back(CaseParameter("fake_extension",         "GL_ARB_im_the_ultimate_extension"));
1973         cases.push_back(CaseParameter("utf8_extension",         "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1974         cases.push_back(CaseParameter("long_extension",         makeLongUTF8String(65533) + "ccc")); // word count: 65535
1975
1976         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1977
1978         for (size_t ndx = 0; ndx < numElements; ++ndx)
1979                 outputFloats[ndx] = -inputFloats[ndx];
1980
1981         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1982         {
1983                 map<string, string>             specializations;
1984                 ComputeShaderSpec               spec;
1985
1986                 specializations["EXTENSION"] = cases[caseNdx].param;
1987                 spec.assembly = shaderTemplate.specialize(specializations);
1988                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1989                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1990                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1991
1992                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1993         }
1994
1995         return group.release();
1996 }
1997
1998 // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1999 tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
2000 {
2001         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
2002         vector<CaseParameter>                   cases;
2003         de::Random                                              rnd                             (deStringHash(group->getName()));
2004         const int                                               numElements             = 100;
2005         vector<float>                                   positiveFloats  (numElements, 0);
2006         vector<float>                                   negativeFloats  (numElements, 0);
2007         const StringTemplate                    shaderTemplate  (
2008                 string(s_ShaderPreamble) +
2009
2010                 "OpSource GLSL 430\n"
2011                 "OpName %main           \"main\"\n"
2012                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2013
2014                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2015
2016                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2017
2018                 "${TYPE}\n"
2019                 "%null      = OpConstantNull %type\n"
2020
2021                 "%id        = OpVariable %uvec3ptr Input\n"
2022                 "%zero      = OpConstant %i32 0\n"
2023
2024                 "%main      = OpFunction %void None %voidf\n"
2025                 "%label     = OpLabel\n"
2026                 "%idval     = OpLoad %uvec3 %id\n"
2027                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2028                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2029                 "%inval     = OpLoad %f32 %inloc\n"
2030                 "%neg       = OpFNegate %f32 %inval\n"
2031                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2032                 "             OpStore %outloc %neg\n"
2033                 "             OpReturn\n"
2034                 "             OpFunctionEnd\n");
2035
2036         cases.push_back(CaseParameter("bool",                   "%type = OpTypeBool"));
2037         cases.push_back(CaseParameter("sint32",                 "%type = OpTypeInt 32 1"));
2038         cases.push_back(CaseParameter("uint32",                 "%type = OpTypeInt 32 0"));
2039         cases.push_back(CaseParameter("float32",                "%type = OpTypeFloat 32"));
2040         cases.push_back(CaseParameter("vec4float32",    "%type = OpTypeVector %f32 4"));
2041         cases.push_back(CaseParameter("vec3bool",               "%type = OpTypeVector %bool 3"));
2042         cases.push_back(CaseParameter("vec2uint32",             "%type = OpTypeVector %u32 2"));
2043         cases.push_back(CaseParameter("matrix",                 "%type = OpTypeMatrix %fvec3 3"));
2044         cases.push_back(CaseParameter("array",                  "%100 = OpConstant %u32 100\n"
2045                                                                                                         "%type = OpTypeArray %i32 %100"));
2046         cases.push_back(CaseParameter("struct",                 "%type = OpTypeStruct %f32 %i32 %u32"));
2047         cases.push_back(CaseParameter("pointer",                "%type = OpTypePointer Function %i32"));
2048
2049         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2050
2051         for (size_t ndx = 0; ndx < numElements; ++ndx)
2052                 negativeFloats[ndx] = -positiveFloats[ndx];
2053
2054         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2055         {
2056                 map<string, string>             specializations;
2057                 ComputeShaderSpec               spec;
2058
2059                 specializations["TYPE"] = cases[caseNdx].param;
2060                 spec.assembly = shaderTemplate.specialize(specializations);
2061                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2062                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2063                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2064
2065                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2066         }
2067
2068         return group.release();
2069 }
2070
2071 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2072 tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2073 {
2074         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2075         vector<CaseParameter>                   cases;
2076         de::Random                                              rnd                             (deStringHash(group->getName()));
2077         const int                                               numElements             = 100;
2078         vector<float>                                   positiveFloats  (numElements, 0);
2079         vector<float>                                   negativeFloats  (numElements, 0);
2080         const StringTemplate                    shaderTemplate  (
2081                 string(s_ShaderPreamble) +
2082
2083                 "OpSource GLSL 430\n"
2084                 "OpName %main           \"main\"\n"
2085                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2086
2087                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2088
2089                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2090
2091                 "%id        = OpVariable %uvec3ptr Input\n"
2092                 "%zero      = OpConstant %i32 0\n"
2093
2094                 "${CONSTANT}\n"
2095
2096                 "%main      = OpFunction %void None %voidf\n"
2097                 "%label     = OpLabel\n"
2098                 "%idval     = OpLoad %uvec3 %id\n"
2099                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2100                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2101                 "%inval     = OpLoad %f32 %inloc\n"
2102                 "%neg       = OpFNegate %f32 %inval\n"
2103                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2104                 "             OpStore %outloc %neg\n"
2105                 "             OpReturn\n"
2106                 "             OpFunctionEnd\n");
2107
2108         cases.push_back(CaseParameter("vector",                 "%five = OpConstant %u32 5\n"
2109                                                                                                         "%const = OpConstantComposite %uvec3 %five %zero %five"));
2110         cases.push_back(CaseParameter("matrix",                 "%m3uvec3 = OpTypeMatrix %fvec3 3\n"
2111                                                                                                         "%ten = OpConstant %u32 10\n"
2112                                                                                                         "%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2113                                                                                                         "%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2114         cases.push_back(CaseParameter("struct",                 "%m2vec3 = OpTypeMatrix %fvec3 2\n"
2115                                                                                                         "%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2116                                                                                                         "%one = OpConstant %u32 1\n"
2117                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2118                                                                                                         "%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2119                                                                                                         "%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2120                                                                                                         "%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2121         cases.push_back(CaseParameter("nested_struct",  "%st1 = OpTypeStruct %u32 %f32\n"
2122                                                                                                         "%st2 = OpTypeStruct %i32 %i32\n"
2123                                                                                                         "%struct = OpTypeStruct %st1 %st2\n"
2124                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2125                                                                                                         "%one = OpConstant %u32 1\n"
2126                                                                                                         "%ten = OpConstant %i32 10\n"
2127                                                                                                         "%st1val = OpConstantComposite %st1 %one %point5\n"
2128                                                                                                         "%st2val = OpConstantComposite %st2 %ten %ten\n"
2129                                                                                                         "%const = OpConstantComposite %struct %st1val %st2val"));
2130
2131         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2132
2133         for (size_t ndx = 0; ndx < numElements; ++ndx)
2134                 negativeFloats[ndx] = -positiveFloats[ndx];
2135
2136         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2137         {
2138                 map<string, string>             specializations;
2139                 ComputeShaderSpec               spec;
2140
2141                 specializations["CONSTANT"] = cases[caseNdx].param;
2142                 spec.assembly = shaderTemplate.specialize(specializations);
2143                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2144                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2145                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2146
2147                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2148         }
2149
2150         return group.release();
2151 }
2152
2153 // Creates a floating point number with the given exponent, and significand
2154 // bits set. It can only create normalized numbers. Only the least significant
2155 // 24 bits of the significand will be examined. The final bit of the
2156 // significand will also be ignored. This allows alignment to be written
2157 // similarly to C99 hex-floats.
2158 // For example if you wanted to write 0x1.7f34p-12 you would call
2159 // constructNormalizedFloat(-12, 0x7f3400)
2160 float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2161 {
2162         float f = 1.0f;
2163
2164         for (deInt32 idx = 0; idx < 23; ++idx)
2165         {
2166                 f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
2167                 significand <<= 1;
2168         }
2169
2170         return std::ldexp(f, exponent);
2171 }
2172
2173 // Compare instruction for the OpQuantizeF16 compute exact case.
2174 // Returns true if the output is what is expected from the test case.
2175 bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2176 {
2177         if (outputAllocs.size() != 1)
2178                 return false;
2179
2180         // We really just need this for size because we cannot compare Nans.
2181         const BufferSp& expectedOutput  = expectedOutputs[0];
2182         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2183
2184         if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2185                 return false;
2186         }
2187
2188         if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2189                 *outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2190                 return false;
2191         }
2192
2193         if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2194                 *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2195                 return false;
2196         }
2197
2198         if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2199                 *outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2200                 return false;
2201         }
2202
2203         if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2204                 *outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2205                 return false;
2206         }
2207
2208         return true;
2209 }
2210
2211 // Checks that every output from a test-case is a float NaN.
2212 bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2213 {
2214         if (outputAllocs.size() != 1)
2215                 return false;
2216
2217         // We really just need this for size because we cannot compare Nans.
2218         const BufferSp& expectedOutput          = expectedOutputs[0];
2219         const float* output_as_float            = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2220
2221         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2222         {
2223                 if (!isnan(output_as_float[idx]))
2224                 {
2225                         return false;
2226                 }
2227         }
2228
2229         return true;
2230 }
2231
2232 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2233 tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2234 {
2235         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2236
2237         const std::string shader (
2238                 string(s_ShaderPreamble) +
2239
2240                 "OpSource GLSL 430\n"
2241                 "OpName %main           \"main\"\n"
2242                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2243
2244                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2245
2246                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2247
2248                 "%id        = OpVariable %uvec3ptr Input\n"
2249                 "%zero      = OpConstant %i32 0\n"
2250
2251                 "%main      = OpFunction %void None %voidf\n"
2252                 "%label     = OpLabel\n"
2253                 "%idval     = OpLoad %uvec3 %id\n"
2254                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2255                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2256                 "%inval     = OpLoad %f32 %inloc\n"
2257                 "%quant     = OpQuantizeToF16 %f32 %inval\n"
2258                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2259                 "             OpStore %outloc %quant\n"
2260                 "             OpReturn\n"
2261                 "             OpFunctionEnd\n");
2262
2263         {
2264                 ComputeShaderSpec       spec;
2265                 const deUint32          numElements             = 100;
2266                 vector<float>           infinities;
2267                 vector<float>           results;
2268
2269                 infinities.reserve(numElements);
2270                 results.reserve(numElements);
2271
2272                 for (size_t idx = 0; idx < numElements; ++idx)
2273                 {
2274                         switch(idx % 4)
2275                         {
2276                                 case 0:
2277                                         infinities.push_back(std::numeric_limits<float>::infinity());
2278                                         results.push_back(std::numeric_limits<float>::infinity());
2279                                         break;
2280                                 case 1:
2281                                         infinities.push_back(-std::numeric_limits<float>::infinity());
2282                                         results.push_back(-std::numeric_limits<float>::infinity());
2283                                         break;
2284                                 case 2:
2285                                         infinities.push_back(std::ldexp(1.0f, 16));
2286                                         results.push_back(std::numeric_limits<float>::infinity());
2287                                         break;
2288                                 case 3:
2289                                         infinities.push_back(std::ldexp(-1.0f, 32));
2290                                         results.push_back(-std::numeric_limits<float>::infinity());
2291                                         break;
2292                         }
2293                 }
2294
2295                 spec.assembly = shader;
2296                 spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2297                 spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2298                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2299
2300                 group->addChild(new SpvAsmComputeShaderCase(
2301                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2302         }
2303
2304         {
2305                 ComputeShaderSpec       spec;
2306                 vector<float>           nans;
2307                 const deUint32          numElements             = 100;
2308
2309                 nans.reserve(numElements);
2310
2311                 for (size_t idx = 0; idx < numElements; ++idx)
2312                 {
2313                         if (idx % 2 == 0)
2314                         {
2315                                 nans.push_back(std::numeric_limits<float>::quiet_NaN());
2316                         }
2317                         else
2318                         {
2319                                 nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2320                         }
2321                 }
2322
2323                 spec.assembly = shader;
2324                 spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2325                 spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2326                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2327                 spec.verifyIO = &compareNan;
2328
2329                 group->addChild(new SpvAsmComputeShaderCase(
2330                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2331         }
2332
2333         {
2334                 ComputeShaderSpec       spec;
2335                 vector<float>           small;
2336                 vector<float>           zeros;
2337                 const deUint32          numElements             = 100;
2338
2339                 small.reserve(numElements);
2340                 zeros.reserve(numElements);
2341
2342                 for (size_t idx = 0; idx < numElements; ++idx)
2343                 {
2344                         switch(idx % 6)
2345                         {
2346                                 case 0:
2347                                         small.push_back(0.f);
2348                                         zeros.push_back(0.f);
2349                                         break;
2350                                 case 1:
2351                                         small.push_back(-0.f);
2352                                         zeros.push_back(-0.f);
2353                                         break;
2354                                 case 2:
2355                                         small.push_back(std::ldexp(1.0f, -16));
2356                                         zeros.push_back(0.f);
2357                                         break;
2358                                 case 3:
2359                                         small.push_back(std::ldexp(-1.0f, -32));
2360                                         zeros.push_back(-0.f);
2361                                         break;
2362                                 case 4:
2363                                         small.push_back(std::ldexp(1.0f, -127));
2364                                         zeros.push_back(0.f);
2365                                         break;
2366                                 case 5:
2367                                         small.push_back(-std::ldexp(1.0f, -128));
2368                                         zeros.push_back(-0.f);
2369                                         break;
2370                         }
2371                 }
2372
2373                 spec.assembly = shader;
2374                 spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2375                 spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2376                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2377
2378                 group->addChild(new SpvAsmComputeShaderCase(
2379                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2380         }
2381
2382         {
2383                 ComputeShaderSpec       spec;
2384                 vector<float>           exact;
2385                 const deUint32          numElements             = 200;
2386
2387                 exact.reserve(numElements);
2388
2389                 for (size_t idx = 0; idx < numElements; ++idx)
2390                         exact.push_back(static_cast<float>(idx - 100));
2391
2392                 spec.assembly = shader;
2393                 spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2394                 spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2395                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2396
2397                 group->addChild(new SpvAsmComputeShaderCase(
2398                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2399         }
2400
2401         {
2402                 ComputeShaderSpec       spec;
2403                 vector<float>           inputs;
2404                 const deUint32          numElements             = 4;
2405
2406                 inputs.push_back(constructNormalizedFloat(8,    0x300300));
2407                 inputs.push_back(-constructNormalizedFloat(-7,  0x600800));
2408                 inputs.push_back(constructNormalizedFloat(2,    0x01E000));
2409                 inputs.push_back(constructNormalizedFloat(1,    0xFFE000));
2410
2411                 spec.assembly = shader;
2412                 spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2413                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2414                 spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2415                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2416
2417                 group->addChild(new SpvAsmComputeShaderCase(
2418                         testCtx, "rounded", "Check that are rounded when needed", spec));
2419         }
2420
2421         return group.release();
2422 }
2423
2424 // Performs a bitwise copy of source to the destination type Dest.
2425 template <typename Dest, typename Src>
2426 Dest bitwiseCast(Src source)
2427 {
2428   Dest dest;
2429   DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2430   deMemcpy(&dest, &source, sizeof(dest));
2431   return dest;
2432 }
2433
2434 tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2435 {
2436         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2437
2438         const std::string shader (
2439                 string(s_ShaderPreamble) +
2440
2441                 "OpName %main           \"main\"\n"
2442                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2443
2444                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2445
2446                 "OpDecorate %sc_0  SpecId 0\n"
2447                 "OpDecorate %sc_1  SpecId 1\n"
2448                 "OpDecorate %sc_2  SpecId 2\n"
2449                 "OpDecorate %sc_3  SpecId 3\n"
2450                 "OpDecorate %sc_4  SpecId 4\n"
2451                 "OpDecorate %sc_5  SpecId 5\n"
2452
2453                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2454
2455                 "%id        = OpVariable %uvec3ptr Input\n"
2456                 "%zero      = OpConstant %i32 0\n"
2457                 "%c_u32_6   = OpConstant %u32 6\n"
2458
2459                 "%sc_0      = OpSpecConstant %f32 0.\n"
2460                 "%sc_1      = OpSpecConstant %f32 0.\n"
2461                 "%sc_2      = OpSpecConstant %f32 0.\n"
2462                 "%sc_3      = OpSpecConstant %f32 0.\n"
2463                 "%sc_4      = OpSpecConstant %f32 0.\n"
2464                 "%sc_5      = OpSpecConstant %f32 0.\n"
2465
2466                 "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2467                 "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2468                 "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2469                 "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2470                 "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2471                 "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2472
2473                 "%main      = OpFunction %void None %voidf\n"
2474                 "%label     = OpLabel\n"
2475                 "%idval     = OpLoad %uvec3 %id\n"
2476                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2477                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2478                 "%selector  = OpUMod %u32 %x %c_u32_6\n"
2479                 "            OpSelectionMerge %exit None\n"
2480                 "            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2481
2482                 "%case0     = OpLabel\n"
2483                 "             OpStore %outloc %sc_0_quant\n"
2484                 "             OpBranch %exit\n"
2485
2486                 "%case1     = OpLabel\n"
2487                 "             OpStore %outloc %sc_1_quant\n"
2488                 "             OpBranch %exit\n"
2489
2490                 "%case2     = OpLabel\n"
2491                 "             OpStore %outloc %sc_2_quant\n"
2492                 "             OpBranch %exit\n"
2493
2494                 "%case3     = OpLabel\n"
2495                 "             OpStore %outloc %sc_3_quant\n"
2496                 "             OpBranch %exit\n"
2497
2498                 "%case4     = OpLabel\n"
2499                 "             OpStore %outloc %sc_4_quant\n"
2500                 "             OpBranch %exit\n"
2501
2502                 "%case5     = OpLabel\n"
2503                 "             OpStore %outloc %sc_5_quant\n"
2504                 "             OpBranch %exit\n"
2505
2506                 "%exit      = OpLabel\n"
2507                 "             OpReturn\n"
2508
2509                 "             OpFunctionEnd\n");
2510
2511         {
2512                 ComputeShaderSpec       spec;
2513                 const deUint8           numCases        = 4;
2514                 vector<float>           inputs          (numCases, 0.f);
2515                 vector<float>           outputs;
2516
2517                 spec.numWorkGroups = IVec3(numCases, 1, 1);
2518
2519                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2520                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2521                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2522                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2523
2524                 outputs.push_back(std::numeric_limits<float>::infinity());
2525                 outputs.push_back(-std::numeric_limits<float>::infinity());
2526                 outputs.push_back(std::numeric_limits<float>::infinity());
2527                 outputs.push_back(-std::numeric_limits<float>::infinity());
2528
2529                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2530                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2531
2532                 group->addChild(new SpvAsmComputeShaderCase(
2533                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2534         }
2535
2536         {
2537                 ComputeShaderSpec       spec;
2538                 const deUint8           numCases        = 2;
2539                 vector<float>           inputs          (numCases, 0.f);
2540                 vector<float>           outputs;
2541
2542                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2543                 spec.verifyIO           = &compareNan;
2544
2545                 outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2546                 outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2547
2548                 for (deUint8 idx = 0; idx < numCases; ++idx)
2549                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2550
2551                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2552                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2553
2554                 group->addChild(new SpvAsmComputeShaderCase(
2555                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2556         }
2557
2558         {
2559                 ComputeShaderSpec       spec;
2560                 const deUint8           numCases        = 6;
2561                 vector<float>           inputs          (numCases, 0.f);
2562                 vector<float>           outputs;
2563
2564                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2565
2566                 spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2567                 spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2568                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2569                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2570                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2571                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2572
2573                 outputs.push_back(0.f);
2574                 outputs.push_back(-0.f);
2575                 outputs.push_back(0.f);
2576                 outputs.push_back(-0.f);
2577                 outputs.push_back(0.f);
2578                 outputs.push_back(-0.f);
2579
2580                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2581                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2582
2583                 group->addChild(new SpvAsmComputeShaderCase(
2584                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2585         }
2586
2587         {
2588                 ComputeShaderSpec       spec;
2589                 const deUint8           numCases        = 6;
2590                 vector<float>           inputs          (numCases, 0.f);
2591                 vector<float>           outputs;
2592
2593                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2594
2595                 for (deUint8 idx = 0; idx < 6; ++idx)
2596                 {
2597                         const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2598                         spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2599                         outputs.push_back(f);
2600                 }
2601
2602                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2603                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2604
2605                 group->addChild(new SpvAsmComputeShaderCase(
2606                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2607         }
2608
2609         {
2610                 ComputeShaderSpec       spec;
2611                 const deUint8           numCases        = 4;
2612                 vector<float>           inputs          (numCases, 0.f);
2613                 vector<float>           outputs;
2614
2615                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2616                 spec.verifyIO           = &compareOpQuantizeF16ComputeExactCase;
2617
2618                 outputs.push_back(constructNormalizedFloat(8, 0x300300));
2619                 outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2620                 outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2621                 outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2622
2623                 for (deUint8 idx = 0; idx < numCases; ++idx)
2624                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2625
2626                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2627                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2628
2629                 group->addChild(new SpvAsmComputeShaderCase(
2630                         testCtx, "rounded", "Check that are rounded when needed", spec));
2631         }
2632
2633         return group.release();
2634 }
2635
2636 // Checks that constant null/composite values can be used in computation.
2637 tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2638 {
2639         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2640         ComputeShaderSpec                               spec;
2641         de::Random                                              rnd                             (deStringHash(group->getName()));
2642         const int                                               numElements             = 100;
2643         vector<float>                                   positiveFloats  (numElements, 0);
2644         vector<float>                                   negativeFloats  (numElements, 0);
2645
2646         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2647
2648         for (size_t ndx = 0; ndx < numElements; ++ndx)
2649                 negativeFloats[ndx] = -positiveFloats[ndx];
2650
2651         spec.assembly =
2652                 "OpCapability Shader\n"
2653                 "%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2654                 "OpMemoryModel Logical GLSL450\n"
2655                 "OpEntryPoint GLCompute %main \"main\" %id\n"
2656                 "OpExecutionMode %main LocalSize 1 1 1\n"
2657
2658                 "OpSource GLSL 430\n"
2659                 "OpName %main           \"main\"\n"
2660                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2661
2662                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2663
2664                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2665
2666                 "%fmat      = OpTypeMatrix %fvec3 3\n"
2667                 "%ten       = OpConstant %u32 10\n"
2668                 "%f32arr10  = OpTypeArray %f32 %ten\n"
2669                 "%fst       = OpTypeStruct %f32 %f32\n"
2670
2671                 + string(s_InputOutputBuffer) +
2672
2673                 "%id        = OpVariable %uvec3ptr Input\n"
2674                 "%zero      = OpConstant %i32 0\n"
2675
2676                 // Create a bunch of null values
2677                 "%unull     = OpConstantNull %u32\n"
2678                 "%fnull     = OpConstantNull %f32\n"
2679                 "%vnull     = OpConstantNull %fvec3\n"
2680                 "%mnull     = OpConstantNull %fmat\n"
2681                 "%anull     = OpConstantNull %f32arr10\n"
2682                 "%snull     = OpConstantComposite %fst %fnull %fnull\n"
2683
2684                 "%main      = OpFunction %void None %voidf\n"
2685                 "%label     = OpLabel\n"
2686                 "%idval     = OpLoad %uvec3 %id\n"
2687                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2688                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2689                 "%inval     = OpLoad %f32 %inloc\n"
2690                 "%neg       = OpFNegate %f32 %inval\n"
2691
2692                 // Get the abs() of (a certain element of) those null values
2693                 "%unull_cov = OpConvertUToF %f32 %unull\n"
2694                 "%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2695                 "%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2696                 "%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2697                 "%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2698                 "%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2699                 "%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2700                 "%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2701                 "%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2702                 "%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2703                 "%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2704
2705                 // Add them all
2706                 "%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2707                 "%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2708                 "%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2709                 "%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2710                 "%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2711                 "%final     = OpFAdd %f32 %add5 %snull_abs\n"
2712
2713                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2714                 "             OpStore %outloc %final\n" // write to output
2715                 "             OpReturn\n"
2716                 "             OpFunctionEnd\n";
2717         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2718         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2719         spec.numWorkGroups = IVec3(numElements, 1, 1);
2720
2721         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2722
2723         return group.release();
2724 }
2725
2726 // Assembly code used for testing loop control is based on GLSL source code:
2727 // #version 430
2728 //
2729 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2730 //   float elements[];
2731 // } input_data;
2732 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2733 //   float elements[];
2734 // } output_data;
2735 //
2736 // void main() {
2737 //   uint x = gl_GlobalInvocationID.x;
2738 //   output_data.elements[x] = input_data.elements[x];
2739 //   for (uint i = 0; i < 4; ++i)
2740 //     output_data.elements[x] += 1.f;
2741 // }
2742 tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2743 {
2744         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2745         vector<CaseParameter>                   cases;
2746         de::Random                                              rnd                             (deStringHash(group->getName()));
2747         const int                                               numElements             = 100;
2748         vector<float>                                   inputFloats             (numElements, 0);
2749         vector<float>                                   outputFloats    (numElements, 0);
2750         const StringTemplate                    shaderTemplate  (
2751                 string(s_ShaderPreamble) +
2752
2753                 "OpSource GLSL 430\n"
2754                 "OpName %main \"main\"\n"
2755                 "OpName %id \"gl_GlobalInvocationID\"\n"
2756
2757                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2758
2759                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2760
2761                 "%u32ptr      = OpTypePointer Function %u32\n"
2762
2763                 "%id          = OpVariable %uvec3ptr Input\n"
2764                 "%zero        = OpConstant %i32 0\n"
2765                 "%uzero       = OpConstant %u32 0\n"
2766                 "%one         = OpConstant %i32 1\n"
2767                 "%constf1     = OpConstant %f32 1.0\n"
2768                 "%four        = OpConstant %u32 4\n"
2769
2770                 "%main        = OpFunction %void None %voidf\n"
2771                 "%entry       = OpLabel\n"
2772                 "%i           = OpVariable %u32ptr Function\n"
2773                 "               OpStore %i %uzero\n"
2774
2775                 "%idval       = OpLoad %uvec3 %id\n"
2776                 "%x           = OpCompositeExtract %u32 %idval 0\n"
2777                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2778                 "%inval       = OpLoad %f32 %inloc\n"
2779                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2780                 "               OpStore %outloc %inval\n"
2781                 "               OpBranch %loop_entry\n"
2782
2783                 "%loop_entry  = OpLabel\n"
2784                 "%i_val       = OpLoad %u32 %i\n"
2785                 "%cmp_lt      = OpULessThan %bool %i_val %four\n"
2786                 "               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2787                 "               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2788                 "%loop_body   = OpLabel\n"
2789                 "%outval      = OpLoad %f32 %outloc\n"
2790                 "%addf1       = OpFAdd %f32 %outval %constf1\n"
2791                 "               OpStore %outloc %addf1\n"
2792                 "%new_i       = OpIAdd %u32 %i_val %one\n"
2793                 "               OpStore %i %new_i\n"
2794                 "               OpBranch %loop_entry\n"
2795                 "%loop_merge  = OpLabel\n"
2796                 "               OpReturn\n"
2797                 "               OpFunctionEnd\n");
2798
2799         cases.push_back(CaseParameter("none",                           "None"));
2800         cases.push_back(CaseParameter("unroll",                         "Unroll"));
2801         cases.push_back(CaseParameter("dont_unroll",            "DontUnroll"));
2802         cases.push_back(CaseParameter("unroll_dont_unroll",     "Unroll|DontUnroll"));
2803
2804         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2805
2806         for (size_t ndx = 0; ndx < numElements; ++ndx)
2807                 outputFloats[ndx] = inputFloats[ndx] + 4.f;
2808
2809         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2810         {
2811                 map<string, string>             specializations;
2812                 ComputeShaderSpec               spec;
2813
2814                 specializations["CONTROL"] = cases[caseNdx].param;
2815                 spec.assembly = shaderTemplate.specialize(specializations);
2816                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2817                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2818                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2819
2820                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2821         }
2822
2823         return group.release();
2824 }
2825
2826 // Assembly code used for testing selection control is based on GLSL source code:
2827 // #version 430
2828 //
2829 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2830 //   float elements[];
2831 // } input_data;
2832 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2833 //   float elements[];
2834 // } output_data;
2835 //
2836 // void main() {
2837 //   uint x = gl_GlobalInvocationID.x;
2838 //   float val = input_data.elements[x];
2839 //   if (val > 10.f)
2840 //     output_data.elements[x] = val + 1.f;
2841 //   else
2842 //     output_data.elements[x] = val - 1.f;
2843 // }
2844 tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2845 {
2846         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2847         vector<CaseParameter>                   cases;
2848         de::Random                                              rnd                             (deStringHash(group->getName()));
2849         const int                                               numElements             = 100;
2850         vector<float>                                   inputFloats             (numElements, 0);
2851         vector<float>                                   outputFloats    (numElements, 0);
2852         const StringTemplate                    shaderTemplate  (
2853                 string(s_ShaderPreamble) +
2854
2855                 "OpSource GLSL 430\n"
2856                 "OpName %main \"main\"\n"
2857                 "OpName %id \"gl_GlobalInvocationID\"\n"
2858
2859                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2860
2861                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2862
2863                 "%id       = OpVariable %uvec3ptr Input\n"
2864                 "%zero     = OpConstant %i32 0\n"
2865                 "%constf1  = OpConstant %f32 1.0\n"
2866                 "%constf10 = OpConstant %f32 10.0\n"
2867
2868                 "%main     = OpFunction %void None %voidf\n"
2869                 "%entry    = OpLabel\n"
2870                 "%idval    = OpLoad %uvec3 %id\n"
2871                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2872                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2873                 "%inval    = OpLoad %f32 %inloc\n"
2874                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2875                 "%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2876
2877                 "            OpSelectionMerge %if_end ${CONTROL}\n"
2878                 "            OpBranchConditional %cmp_gt %if_true %if_false\n"
2879                 "%if_true  = OpLabel\n"
2880                 "%addf1    = OpFAdd %f32 %inval %constf1\n"
2881                 "            OpStore %outloc %addf1\n"
2882                 "            OpBranch %if_end\n"
2883                 "%if_false = OpLabel\n"
2884                 "%subf1    = OpFSub %f32 %inval %constf1\n"
2885                 "            OpStore %outloc %subf1\n"
2886                 "            OpBranch %if_end\n"
2887                 "%if_end   = OpLabel\n"
2888                 "            OpReturn\n"
2889                 "            OpFunctionEnd\n");
2890
2891         cases.push_back(CaseParameter("none",                                   "None"));
2892         cases.push_back(CaseParameter("flatten",                                "Flatten"));
2893         cases.push_back(CaseParameter("dont_flatten",                   "DontFlatten"));
2894         cases.push_back(CaseParameter("flatten_dont_flatten",   "DontFlatten|Flatten"));
2895
2896         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2897
2898         for (size_t ndx = 0; ndx < numElements; ++ndx)
2899                 outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2900
2901         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2902         {
2903                 map<string, string>             specializations;
2904                 ComputeShaderSpec               spec;
2905
2906                 specializations["CONTROL"] = cases[caseNdx].param;
2907                 spec.assembly = shaderTemplate.specialize(specializations);
2908                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2909                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2910                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2911
2912                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2913         }
2914
2915         return group.release();
2916 }
2917
2918 // Assembly code used for testing function control is based on GLSL source code:
2919 //
2920 // #version 430
2921 //
2922 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2923 //   float elements[];
2924 // } input_data;
2925 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2926 //   float elements[];
2927 // } output_data;
2928 //
2929 // float const10() { return 10.f; }
2930 //
2931 // void main() {
2932 //   uint x = gl_GlobalInvocationID.x;
2933 //   output_data.elements[x] = input_data.elements[x] + const10();
2934 // }
2935 tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2936 {
2937         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2938         vector<CaseParameter>                   cases;
2939         de::Random                                              rnd                             (deStringHash(group->getName()));
2940         const int                                               numElements             = 100;
2941         vector<float>                                   inputFloats             (numElements, 0);
2942         vector<float>                                   outputFloats    (numElements, 0);
2943         const StringTemplate                    shaderTemplate  (
2944                 string(s_ShaderPreamble) +
2945
2946                 "OpSource GLSL 430\n"
2947                 "OpName %main \"main\"\n"
2948                 "OpName %func_const10 \"const10(\"\n"
2949                 "OpName %id \"gl_GlobalInvocationID\"\n"
2950
2951                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2952
2953                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2954
2955                 "%f32f = OpTypeFunction %f32\n"
2956                 "%id = OpVariable %uvec3ptr Input\n"
2957                 "%zero = OpConstant %i32 0\n"
2958                 "%constf10 = OpConstant %f32 10.0\n"
2959
2960                 "%main         = OpFunction %void None %voidf\n"
2961                 "%entry        = OpLabel\n"
2962                 "%idval        = OpLoad %uvec3 %id\n"
2963                 "%x            = OpCompositeExtract %u32 %idval 0\n"
2964                 "%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2965                 "%inval        = OpLoad %f32 %inloc\n"
2966                 "%ret_10       = OpFunctionCall %f32 %func_const10\n"
2967                 "%fadd         = OpFAdd %f32 %inval %ret_10\n"
2968                 "%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2969                 "                OpStore %outloc %fadd\n"
2970                 "                OpReturn\n"
2971                 "                OpFunctionEnd\n"
2972
2973                 "%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2974                 "%label        = OpLabel\n"
2975                 "                OpReturnValue %constf10\n"
2976                 "                OpFunctionEnd\n");
2977
2978         cases.push_back(CaseParameter("none",                                           "None"));
2979         cases.push_back(CaseParameter("inline",                                         "Inline"));
2980         cases.push_back(CaseParameter("dont_inline",                            "DontInline"));
2981         cases.push_back(CaseParameter("pure",                                           "Pure"));
2982         cases.push_back(CaseParameter("const",                                          "Const"));
2983         cases.push_back(CaseParameter("inline_pure",                            "Inline|Pure"));
2984         cases.push_back(CaseParameter("const_dont_inline",                      "Const|DontInline"));
2985         cases.push_back(CaseParameter("inline_dont_inline",                     "Inline|DontInline"));
2986         cases.push_back(CaseParameter("pure_inline_dont_inline",        "Pure|Inline|DontInline"));
2987
2988         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2989
2990         for (size_t ndx = 0; ndx < numElements; ++ndx)
2991                 outputFloats[ndx] = inputFloats[ndx] + 10.f;
2992
2993         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2994         {
2995                 map<string, string>             specializations;
2996                 ComputeShaderSpec               spec;
2997
2998                 specializations["CONTROL"] = cases[caseNdx].param;
2999                 spec.assembly = shaderTemplate.specialize(specializations);
3000                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3001                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3002                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3003
3004                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3005         }
3006
3007         return group.release();
3008 }
3009
3010 tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3011 {
3012         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3013         vector<CaseParameter>                   cases;
3014         de::Random                                              rnd                             (deStringHash(group->getName()));
3015         const int                                               numElements             = 100;
3016         vector<float>                                   inputFloats             (numElements, 0);
3017         vector<float>                                   outputFloats    (numElements, 0);
3018         const StringTemplate                    shaderTemplate  (
3019                 string(s_ShaderPreamble) +
3020
3021                 "OpSource GLSL 430\n"
3022                 "OpName %main           \"main\"\n"
3023                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3024
3025                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3026
3027                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3028
3029                 "%f32ptr_f  = OpTypePointer Function %f32\n"
3030
3031                 "%id        = OpVariable %uvec3ptr Input\n"
3032                 "%zero      = OpConstant %i32 0\n"
3033                 "%four      = OpConstant %i32 4\n"
3034
3035                 "%main      = OpFunction %void None %voidf\n"
3036                 "%label     = OpLabel\n"
3037                 "%copy      = OpVariable %f32ptr_f Function\n"
3038                 "%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3039                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3040                 "%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3041                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3042                 "             OpCopyMemory %copy %inloc ${ACCESS}\n"
3043                 "%val1      = OpLoad %f32 %copy\n"
3044                 "%val2      = OpLoad %f32 %inloc\n"
3045                 "%add       = OpFAdd %f32 %val1 %val2\n"
3046                 "             OpStore %outloc %add ${ACCESS}\n"
3047                 "             OpReturn\n"
3048                 "             OpFunctionEnd\n");
3049
3050         cases.push_back(CaseParameter("null",                                   ""));
3051         cases.push_back(CaseParameter("none",                                   "None"));
3052         cases.push_back(CaseParameter("volatile",                               "Volatile"));
3053         cases.push_back(CaseParameter("aligned",                                "Aligned 4"));
3054         cases.push_back(CaseParameter("nontemporal",                    "Nontemporal"));
3055         cases.push_back(CaseParameter("aligned_nontemporal",    "Aligned|Nontemporal 4"));
3056         cases.push_back(CaseParameter("aligned_volatile",               "Volatile|Aligned 4"));
3057
3058         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3059
3060         for (size_t ndx = 0; ndx < numElements; ++ndx)
3061                 outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3062
3063         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3064         {
3065                 map<string, string>             specializations;
3066                 ComputeShaderSpec               spec;
3067
3068                 specializations["ACCESS"] = cases[caseNdx].param;
3069                 spec.assembly = shaderTemplate.specialize(specializations);
3070                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3071                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3072                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3073
3074                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3075         }
3076
3077         return group.release();
3078 }
3079
3080 // Checks that we can get undefined values for various types, without exercising a computation with it.
3081 tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3082 {
3083         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3084         vector<CaseParameter>                   cases;
3085         de::Random                                              rnd                             (deStringHash(group->getName()));
3086         const int                                               numElements             = 100;
3087         vector<float>                                   positiveFloats  (numElements, 0);
3088         vector<float>                                   negativeFloats  (numElements, 0);
3089         const StringTemplate                    shaderTemplate  (
3090                 string(s_ShaderPreamble) +
3091
3092                 "OpSource GLSL 430\n"
3093                 "OpName %main           \"main\"\n"
3094                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3095
3096                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3097
3098                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3099
3100                 "${TYPE}\n"
3101
3102                 "%id        = OpVariable %uvec3ptr Input\n"
3103                 "%zero      = OpConstant %i32 0\n"
3104
3105                 "%main      = OpFunction %void None %voidf\n"
3106                 "%label     = OpLabel\n"
3107
3108                 "%undef     = OpUndef %type\n"
3109
3110                 "%idval     = OpLoad %uvec3 %id\n"
3111                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3112
3113                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3114                 "%inval     = OpLoad %f32 %inloc\n"
3115                 "%neg       = OpFNegate %f32 %inval\n"
3116                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3117                 "             OpStore %outloc %neg\n"
3118                 "             OpReturn\n"
3119                 "             OpFunctionEnd\n");
3120
3121         cases.push_back(CaseParameter("bool",                   "%type = OpTypeBool"));
3122         cases.push_back(CaseParameter("sint32",                 "%type = OpTypeInt 32 1"));
3123         cases.push_back(CaseParameter("uint32",                 "%type = OpTypeInt 32 0"));
3124         cases.push_back(CaseParameter("float32",                "%type = OpTypeFloat 32"));
3125         cases.push_back(CaseParameter("vec4float32",    "%type = OpTypeVector %f32 4"));
3126         cases.push_back(CaseParameter("vec2uint32",             "%type = OpTypeVector %u32 2"));
3127         cases.push_back(CaseParameter("matrix",                 "%type = OpTypeMatrix %fvec3 3"));
3128         cases.push_back(CaseParameter("image",                  "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3129         cases.push_back(CaseParameter("sampler",                "%type = OpTypeSampler"));
3130         cases.push_back(CaseParameter("sampledimage",   "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3131                                                                                                         "%type = OpTypeSampledImage %img"));
3132         cases.push_back(CaseParameter("array",                  "%100 = OpConstant %u32 100\n"
3133                                                                                                         "%type = OpTypeArray %i32 %100"));
3134         cases.push_back(CaseParameter("runtimearray",   "%type = OpTypeRuntimeArray %f32"));
3135         cases.push_back(CaseParameter("struct",                 "%type = OpTypeStruct %f32 %i32 %u32"));
3136         cases.push_back(CaseParameter("pointer",                "%type = OpTypePointer Function %i32"));
3137
3138         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3139
3140         for (size_t ndx = 0; ndx < numElements; ++ndx)
3141                 negativeFloats[ndx] = -positiveFloats[ndx];
3142
3143         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3144         {
3145                 map<string, string>             specializations;
3146                 ComputeShaderSpec               spec;
3147
3148                 specializations["TYPE"] = cases[caseNdx].param;
3149                 spec.assembly = shaderTemplate.specialize(specializations);
3150                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3151                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3152                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3153
3154                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3155         }
3156
3157                 return group.release();
3158 }
3159 typedef std::pair<std::string, VkShaderStageFlagBits>   EntryToStage;
3160 typedef map<string, vector<EntryToStage> >                              ModuleMap;
3161 typedef map<VkShaderStageFlagBits, vector<deInt32> >    StageToSpecConstantMap;
3162
3163 // Context for a specific test instantiation. For example, an instantiation
3164 // may test colors yellow/magenta/cyan/mauve in a tesselation shader
3165 // with an entry point named 'main_to_the_main'
3166 struct InstanceContext
3167 {
3168         // Map of modules to what entry_points we care to use from those modules.
3169         ModuleMap                               moduleMap;
3170         RGBA                                    inputColors[4];
3171         RGBA                                    outputColors[4];
3172         // Concrete SPIR-V code to test via boilerplate specialization.
3173         map<string, string>             testCodeFragments;
3174         StageToSpecConstantMap  specConstants;
3175         bool                                    hasTessellation;
3176         VkShaderStageFlagBits   requiredStages;
3177
3178         InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3179                 : testCodeFragments             (testCodeFragments_)
3180                 , specConstants                 (specConstants_)
3181                 , hasTessellation               (false)
3182                 , requiredStages                (static_cast<VkShaderStageFlagBits>(0))
3183         {
3184                 inputColors[0]          = inputs[0];
3185                 inputColors[1]          = inputs[1];
3186                 inputColors[2]          = inputs[2];
3187                 inputColors[3]          = inputs[3];
3188
3189                 outputColors[0]         = outputs[0];
3190                 outputColors[1]         = outputs[1];
3191                 outputColors[2]         = outputs[2];
3192                 outputColors[3]         = outputs[3];
3193         }
3194
3195         InstanceContext (const InstanceContext& other)
3196                 : moduleMap                     (other.moduleMap)
3197                 , testCodeFragments     (other.testCodeFragments)
3198                 , specConstants         (other.specConstants)
3199                 , hasTessellation       (other.hasTessellation)
3200                 , requiredStages    (other.requiredStages)
3201         {
3202                 inputColors[0]          = other.inputColors[0];
3203                 inputColors[1]          = other.inputColors[1];
3204                 inputColors[2]          = other.inputColors[2];
3205                 inputColors[3]          = other.inputColors[3];
3206
3207                 outputColors[0]         = other.outputColors[0];
3208                 outputColors[1]         = other.outputColors[1];
3209                 outputColors[2]         = other.outputColors[2];
3210                 outputColors[3]         = other.outputColors[3];
3211         }
3212 };
3213
3214 // A description of a shader to be used for a single stage of the graphics pipeline.
3215 struct ShaderElement
3216 {
3217         // The module that contains this shader entrypoint.
3218         string                                  moduleName;
3219
3220         // The name of the entrypoint.
3221         string                                  entryName;
3222
3223         // Which shader stage this entry point represents.
3224         VkShaderStageFlagBits   stage;
3225
3226         ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3227                 : moduleName(moduleName_)
3228                 , entryName(entryPoint_)
3229                 , stage(shaderStage_)
3230         {
3231         }
3232 };
3233
3234 void getDefaultColors (RGBA (&colors)[4])
3235 {
3236         colors[0] = RGBA::white();
3237         colors[1] = RGBA::red();
3238         colors[2] = RGBA::green();
3239         colors[3] = RGBA::blue();
3240 }
3241
3242 void getHalfColorsFullAlpha (RGBA (&colors)[4])
3243 {
3244         colors[0] = RGBA(127, 127, 127, 255);
3245         colors[1] = RGBA(127, 0,   0,   255);
3246         colors[2] = RGBA(0,       127, 0,       255);
3247         colors[3] = RGBA(0,       0,   127, 255);
3248 }
3249
3250 void getInvertedDefaultColors (RGBA (&colors)[4])
3251 {
3252         colors[0] = RGBA(0,             0,              0,              255);
3253         colors[1] = RGBA(0,             255,    255,    255);
3254         colors[2] = RGBA(255,   0,              255,    255);
3255         colors[3] = RGBA(255,   255,    0,              255);
3256 }
3257
3258 // Turns a statically sized array of ShaderElements into an instance-context
3259 // by setting up the mapping of modules to their contained shaders and stages.
3260 // The inputs and expected outputs are given by inputColors and outputColors
3261 template<size_t N>
3262 InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3263 {
3264         InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3265         for (size_t i = 0; i < N; ++i)
3266         {
3267                 ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3268                 ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3269         }
3270         return ctx;
3271 }
3272
3273 template<size_t N>
3274 inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3275 {
3276         return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3277 }
3278
3279 // The same as createInstanceContext above, but with default colors.
3280 template<size_t N>
3281 InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3282 {
3283         RGBA defaultColors[4];
3284         getDefaultColors(defaultColors);
3285         return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3286 }
3287
3288 // For the current InstanceContext, constructs the required modules and shader stage create infos.
3289 void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3290 {
3291         for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3292         {
3293                 const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3294                 modules.push_back(ModuleHandleSp(mod));
3295                 for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3296                 {
3297                         const EntryToStage&                                             stage                   = *shaderNdx;
3298                         const VkPipelineShaderStageCreateInfo   shaderParam             =
3299                         {
3300                                 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,    //      VkStructureType                 sType;
3301                                 DE_NULL,                                                                                                //      const void*                             pNext;
3302                                 (VkPipelineShaderStageCreateFlags)0,
3303                                 stage.second,                                                                                   //      VkShaderStageFlagBits   stage;
3304                                 **modules.back(),                                                                               //      VkShaderModule                  module;
3305                                 stage.first.c_str(),                                                                    //      const char*                             pName;
3306                                 (const VkSpecializationInfo*)DE_NULL,
3307                         };
3308                         createInfos.push_back(shaderParam);
3309                 }
3310         }
3311 }
3312
3313 #define SPIRV_ASSEMBLY_TYPES                                                                                                                                    \
3314         "%void = OpTypeVoid\n"                                                                                                                                          \
3315         "%bool = OpTypeBool\n"                                                                                                                                          \
3316                                                                                                                                                                                                 \
3317         "%i32 = OpTypeInt 32 1\n"                                                                                                                                       \
3318         "%u32 = OpTypeInt 32 0\n"                                                                                                                                       \
3319                                                                                                                                                                                                 \
3320         "%f32 = OpTypeFloat 32\n"                                                                                                                                       \
3321         "%v3f32 = OpTypeVector %f32 3\n"                                                                                                                        \
3322         "%v4f32 = OpTypeVector %f32 4\n"                                                                                                                        \
3323                                                                                                                                                                                                 \
3324         "%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"                                                                                      \
3325         "%fun = OpTypeFunction %void\n"                                                                                                                         \
3326                                                                                                                                                                                                 \
3327         "%ip_f32 = OpTypePointer Input %f32\n"                                                                                                          \
3328         "%ip_i32 = OpTypePointer Input %i32\n"                                                                                                          \
3329         "%ip_v3f32 = OpTypePointer Input %v3f32\n"                                                                                                      \
3330         "%ip_v4f32 = OpTypePointer Input %v4f32\n"                                                                                                      \
3331                                                                                                                                                                                                 \
3332         "%op_f32 = OpTypePointer Output %f32\n"                                                                                                         \
3333         "%op_v4f32 = OpTypePointer Output %v4f32\n"                                                                                                     \
3334                                                                                                                                                                                                 \
3335         "%fp_f32   = OpTypePointer Function %f32\n"                                                                                                     \
3336         "%fp_i32   = OpTypePointer Function %i32\n"                                                                                                     \
3337         "%fp_v4f32 = OpTypePointer Function %v4f32\n"
3338
3339 #define SPIRV_ASSEMBLY_CONSTANTS                                                                                                                                \
3340         "%c_f32_1 = OpConstant %f32 1.0\n"                                                                                                                      \
3341         "%c_f32_0 = OpConstant %f32 0.0\n"                                                                                                                      \
3342         "%c_f32_0_5 = OpConstant %f32 0.5\n"                                                                                                            \
3343         "%c_f32_n1  = OpConstant %f32 -1.\n"                                                                                                            \
3344         "%c_f32_7 = OpConstant %f32 7.0\n"                                                                                                                      \
3345         "%c_f32_8 = OpConstant %f32 8.0\n"                                                                                                                      \
3346         "%c_i32_0 = OpConstant %i32 0\n"                                                                                                                        \
3347         "%c_i32_1 = OpConstant %i32 1\n"                                                                                                                        \
3348         "%c_i32_2 = OpConstant %i32 2\n"                                                                                                                        \
3349         "%c_i32_3 = OpConstant %i32 3\n"                                                                                                                        \
3350         "%c_i32_4 = OpConstant %i32 4\n"                                                                                                                        \
3351         "%c_u32_0 = OpConstant %u32 0\n"                                                                                                                        \
3352         "%c_u32_1 = OpConstant %u32 1\n"                                                                                                                        \
3353         "%c_u32_2 = OpConstant %u32 2\n"                                                                                                                        \
3354         "%c_u32_3 = OpConstant %u32 3\n"                                                                                                                        \
3355         "%c_u32_32 = OpConstant %u32 32\n"                                                                                                                      \
3356         "%c_u32_4 = OpConstant %u32 4\n"                                                                                                                        \
3357         "%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"                                                                                         \
3358         "%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"           \
3359         "%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"           \
3360         "%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3361
3362 #define SPIRV_ASSEMBLY_ARRAYS                                                                                                                                   \
3363         "%a1f32 = OpTypeArray %f32 %c_u32_1\n"                                                                                                          \
3364         "%a2f32 = OpTypeArray %f32 %c_u32_2\n"                                                                                                          \
3365         "%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"                                                                                                      \
3366         "%a4f32 = OpTypeArray %f32 %c_u32_4\n"                                                                                                          \
3367         "%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"                                                                                            \
3368         "%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"                                                                                          \
3369         "%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"                                                                                        \
3370         "%op_a2f32 = OpTypePointer Output %a2f32\n"                                                                                                     \
3371         "%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"                                                                                         \
3372         "%op_a4f32 = OpTypePointer Output %a4f32\n"
3373
3374 // Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3375 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3376 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3377 // with "BP_" to avoid collisions with fragments.
3378 //
3379 // It corresponds roughly to this GLSL:
3380 //;
3381 // layout(location = 0) in vec4 position;
3382 // layout(location = 1) in vec4 color;
3383 // layout(location = 1) out highp vec4 vtxColor;
3384 // void main (void) { gl_Position = position; vtxColor = test_func(color); }
3385 string makeVertexShaderAssembly(const map<string, string>& fragments)
3386 {
3387 // \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3388         static const char vertexShaderBoilerplate[] =
3389                 "OpCapability Shader\n"
3390                 "OpMemoryModel Logical GLSL450\n"
3391                 "OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex\n"
3392                 "${debug:opt}\n"
3393                 "OpName %main \"main\"\n"
3394                 "OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3395                 "OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3396                 "OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3397                 "OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3398                 "OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3399                 "OpName %test_code \"testfun(vf4;\"\n"
3400                 "OpName %BP_stream \"\"\n"
3401                 "OpName %BP_position \"position\"\n"
3402                 "OpName %BP_vtx_color \"vtxColor\"\n"
3403                 "OpName %BP_color \"color\"\n"
3404                 "OpName %BP_gl_VertexIndex \"gl_VertexIndex\"\n"
3405                 "OpName %BP_gl_InstanceIndex \"gl_InstanceIndex\"\n"
3406                 "OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3407                 "OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3408                 "OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3409                 "OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3410                 "OpDecorate %BP_gl_PerVertex Block\n"
3411                 "OpDecorate %BP_position Location 0\n"
3412                 "OpDecorate %BP_vtx_color Location 1\n"
3413                 "OpDecorate %BP_color Location 1\n"
3414                 "OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
3415                 "OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
3416                 "${decoration:opt}\n"
3417                 SPIRV_ASSEMBLY_TYPES
3418                 SPIRV_ASSEMBLY_CONSTANTS
3419                 SPIRV_ASSEMBLY_ARRAYS
3420                 "%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3421                 "%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3422                 "%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3423                 "%BP_position = OpVariable %ip_v4f32 Input\n"
3424                 "%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3425                 "%BP_color = OpVariable %ip_v4f32 Input\n"
3426                 "%BP_gl_VertexIndex = OpVariable %ip_i32 Input\n"
3427                 "%BP_gl_InstanceIndex = OpVariable %ip_i32 Input\n"
3428                 "${pre_main:opt}\n"
3429                 "%main = OpFunction %void None %fun\n"
3430                 "%BP_label = OpLabel\n"
3431                 "%BP_pos = OpLoad %v4f32 %BP_position\n"
3432                 "%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3433                 "OpStore %BP_gl_pos %BP_pos\n"
3434                 "%BP_col = OpLoad %v4f32 %BP_color\n"
3435                 "%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3436                 "OpStore %BP_vtx_color %BP_col_transformed\n"
3437                 "OpReturn\n"
3438                 "OpFunctionEnd\n"
3439                 "${testfun}\n";
3440         return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3441 }
3442
3443 // Creates tess-control-shader assembly by specializing a boilerplate
3444 // StringTemplate on fragments, which must (at least) map "testfun" to an
3445 // OpFunction definition for %test_code that takes and returns a %v4f32.
3446 // Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3447 //
3448 // It roughly corresponds to the following GLSL.
3449 //
3450 // #version 450
3451 // layout(vertices = 3) out;
3452 // layout(location = 1) in vec4 in_color[];
3453 // layout(location = 1) out vec4 out_color[];
3454 //
3455 // void main() {
3456 //   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3457 //   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3458 //   if (gl_InvocationID == 0) {
3459 //     gl_TessLevelOuter[0] = 1.0;
3460 //     gl_TessLevelOuter[1] = 1.0;
3461 //     gl_TessLevelOuter[2] = 1.0;
3462 //     gl_TessLevelInner[0] = 1.0;
3463 //   }
3464 // }
3465 string makeTessControlShaderAssembly (const map<string, string>& fragments)
3466 {
3467         static const char tessControlShaderBoilerplate[] =
3468                 "OpCapability Tessellation\n"
3469                 "OpMemoryModel Logical GLSL450\n"
3470                 "OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3471                 "OpExecutionMode %BP_main OutputVertices 3\n"
3472                 "${debug:opt}\n"
3473                 "OpName %BP_main \"main\"\n"
3474                 "OpName %test_code \"testfun(vf4;\"\n"
3475                 "OpName %BP_out_color \"out_color\"\n"
3476                 "OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3477                 "OpName %BP_in_color \"in_color\"\n"
3478                 "OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3479                 "OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3480                 "OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3481                 "OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3482                 "OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3483                 "OpName %BP_gl_out \"gl_out\"\n"
3484                 "OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3485                 "OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3486                 "OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3487                 "OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3488                 "OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3489                 "OpName %BP_gl_in \"gl_in\"\n"
3490                 "OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3491                 "OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3492                 "OpDecorate %BP_out_color Location 1\n"
3493                 "OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3494                 "OpDecorate %BP_in_color Location 1\n"
3495                 "OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3496                 "OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3497                 "OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3498                 "OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3499                 "OpDecorate %BP_gl_PerVertex Block\n"
3500                 "OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3501                 "OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3502                 "OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3503                 "OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3504                 "OpDecorate %BP_gl_PVOut Block\n"
3505                 "OpDecorate %BP_gl_TessLevelOuter Patch\n"
3506                 "OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3507                 "OpDecorate %BP_gl_TessLevelInner Patch\n"
3508                 "OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3509                 "${decoration:opt}\n"
3510                 SPIRV_ASSEMBLY_TYPES
3511                 SPIRV_ASSEMBLY_CONSTANTS
3512                 SPIRV_ASSEMBLY_ARRAYS
3513                 "%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3514                 "%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3515                 "%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3516                 "%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3517                 "%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3518                 "%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3519                 "%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3520                 "%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3521                 "%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3522                 "%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3523                 "%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3524                 "%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3525                 "%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3526                 "${pre_main:opt}\n"
3527
3528                 "%BP_main = OpFunction %void None %fun\n"
3529                 "%BP_label = OpLabel\n"
3530
3531                 "%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3532
3533                 "%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3534                 "%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3535                 "%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3536                 "%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3537                 "OpStore %BP_out_col_loc %BP_clr_transformed\n"
3538
3539                 "%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3540                 "%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3541                 "%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3542                 "OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3543
3544                 "%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3545                 "OpSelectionMerge %BP_merge_label None\n"
3546                 "OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3547                 "%BP_if_label = OpLabel\n"
3548                 "%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3549                 "%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3550                 "%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3551                 "%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3552                 "OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3553                 "OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3554                 "OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3555                 "OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3556                 "OpBranch %BP_merge_label\n"
3557                 "%BP_merge_label = OpLabel\n"
3558                 "OpReturn\n"
3559                 "OpFunctionEnd\n"
3560                 "${testfun}\n";
3561         return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3562 }
3563
3564 // Creates tess-evaluation-shader assembly by specializing a boilerplate
3565 // StringTemplate on fragments, which must (at least) map "testfun" to an
3566 // OpFunction definition for %test_code that takes and returns a %v4f32.
3567 // Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3568 //
3569 // It roughly corresponds to the following glsl.
3570 //
3571 // #version 450
3572 //
3573 // layout(triangles, equal_spacing, ccw) in;
3574 // layout(location = 1) in vec4 in_color[];
3575 // layout(location = 1) out vec4 out_color;
3576 //
3577 // #define interpolate(val)
3578 //   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3579 //          vec4(gl_TessCoord.z) * val[2]
3580 //
3581 // void main() {
3582 //   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3583 //                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3584 //                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3585 //   out_color = testfun(interpolate(in_color));
3586 // }
3587 string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3588 {
3589         static const char tessEvalBoilerplate[] =
3590                 "OpCapability Tessellation\n"
3591                 "OpMemoryModel Logical GLSL450\n"
3592                 "OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3593                 "OpExecutionMode %BP_main Triangles\n"
3594                 "OpExecutionMode %BP_main SpacingEqual\n"
3595                 "OpExecutionMode %BP_main VertexOrderCcw\n"
3596                 "${debug:opt}\n"
3597                 "OpName %BP_main \"main\"\n"
3598                 "OpName %test_code \"testfun(vf4;\"\n"
3599                 "OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3600                 "OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3601                 "OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3602                 "OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3603                 "OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3604                 "OpName %BP_stream \"\"\n"
3605                 "OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3606                 "OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3607                 "OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3608                 "OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3609                 "OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3610                 "OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3611                 "OpName %BP_gl_in \"gl_in\"\n"
3612                 "OpName %BP_out_color \"out_color\"\n"
3613                 "OpName %BP_in_color \"in_color\"\n"
3614                 "OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3615                 "OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3616                 "OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3617                 "OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3618                 "OpDecorate %BP_gl_PerVertexOut Block\n"
3619                 "OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3620                 "OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3621                 "OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3622                 "OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3623                 "OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3624                 "OpDecorate %BP_gl_PerVertexIn Block\n"
3625                 "OpDecorate %BP_out_color Location 1\n"
3626                 "OpDecorate %BP_in_color Location 1\n"
3627                 "${decoration:opt}\n"
3628                 SPIRV_ASSEMBLY_TYPES
3629                 SPIRV_ASSEMBLY_CONSTANTS
3630                 SPIRV_ASSEMBLY_ARRAYS
3631                 "%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3632                 "%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3633                 "%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3634                 "%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3635                 "%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3636                 "%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3637                 "%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3638                 "%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3639                 "%BP_out_color = OpVariable %op_v4f32 Output\n"
3640                 "%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3641                 "${pre_main:opt}\n"
3642                 "%BP_main = OpFunction %void None %fun\n"
3643                 "%BP_label = OpLabel\n"
3644                 "%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3645                 "%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3646                 "%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3647                 "%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3648                 "%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3649                 "%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3650
3651                 "%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3652                 "%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3653                 "%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3654                 "%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3655
3656                 "%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3657                 "%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3658                 "%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3659                 "%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3660                 "%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3661                 "%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3662
3663                 "%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3664                 "%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3665                 "%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3666
3667                 "%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3668                 "%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3669                 "%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3670
3671                 "%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3672                 "%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3673
3674                 "OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3675
3676                 "%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3677                 "%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3678                 "%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3679
3680                 "%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3681                 "%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3682                 "%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3683
3684                 "%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3685                 "%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3686
3687                 "%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3688
3689                 "OpStore %BP_out_color %BP_clr_transformed\n"
3690                 "OpReturn\n"
3691                 "OpFunctionEnd\n"
3692                 "${testfun}\n";
3693         return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3694 }
3695
3696 // Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3697 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3698 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3699 // with "BP_" to avoid collisions with fragments.
3700 //
3701 // Derived from this GLSL:
3702 //
3703 // #version 450
3704 // layout(triangles) in;
3705 // layout(triangle_strip, max_vertices = 3) out;
3706 //
3707 // layout(location = 1) in vec4 in_color[];
3708 // layout(location = 1) out vec4 out_color;
3709 //
3710 // void main() {
3711 //   gl_Position = gl_in[0].gl_Position;
3712 //   out_color = test_fun(in_color[0]);
3713 //   EmitVertex();
3714 //   gl_Position = gl_in[1].gl_Position;
3715 //   out_color = test_fun(in_color[1]);
3716 //   EmitVertex();
3717 //   gl_Position = gl_in[2].gl_Position;
3718 //   out_color = test_fun(in_color[2]);
3719 //   EmitVertex();
3720 //   EndPrimitive();
3721 // }
3722 string makeGeometryShaderAssembly(const map<string, string>& fragments)
3723 {
3724         static const char geometryShaderBoilerplate[] =
3725                 "OpCapability Geometry\n"
3726                 "OpMemoryModel Logical GLSL450\n"
3727                 "OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3728                 "OpExecutionMode %BP_main Triangles\n"
3729                 "OpExecutionMode %BP_main Invocations 0\n"
3730                 "OpExecutionMode %BP_main OutputTriangleStrip\n"
3731                 "OpExecutionMode %BP_main OutputVertices 3\n"
3732                 "${debug:opt}\n"
3733                 "OpName %BP_main \"main\"\n"
3734                 "OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3735                 "OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3736                 "OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3737                 "OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3738                 "OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3739                 "OpName %BP_gl_in \"gl_in\"\n"
3740                 "OpName %BP_out_color \"out_color\"\n"
3741                 "OpName %BP_in_color \"in_color\"\n"
3742                 "OpName %test_code \"testfun(vf4;\"\n"
3743                 "OpDecorate %BP_out_gl_position BuiltIn Position\n"
3744                 "OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3745                 "OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3746                 "OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3747                 "OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3748                 "OpDecorate %BP_per_vertex_in Block\n"
3749                 "OpDecorate %BP_out_color Location 1\n"
3750                 "OpDecorate %BP_out_color Stream 0\n"
3751                 "OpDecorate %BP_in_color Location 1\n"
3752                 "${decoration:opt}\n"
3753                 SPIRV_ASSEMBLY_TYPES
3754                 SPIRV_ASSEMBLY_CONSTANTS
3755                 SPIRV_ASSEMBLY_ARRAYS
3756                 "%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3757                 "%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3758                 "%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3759
3760                 "%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3761                 "%BP_out_color = OpVariable %op_v4f32 Output\n"
3762                 "%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3763                 "%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3764                 "${pre_main:opt}\n"
3765
3766                 "%BP_main = OpFunction %void None %fun\n"
3767                 "%BP_label = OpLabel\n"
3768                 "%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3769                 "%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3770                 "%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3771
3772                 "%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3773                 "%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3774                 "%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3775
3776                 "%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3777                 "%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3778                 "%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3779
3780                 "%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3781                 "%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3782                 "%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3783
3784                 "%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3785                 "%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3786                 "%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3787
3788
3789                 "OpStore %BP_out_gl_position %BP_in_position_0\n"
3790                 "OpStore %BP_out_color %BP_transformed_in_color_0\n"
3791                 "OpEmitVertex\n"
3792
3793                 "OpStore %BP_out_gl_position %BP_in_position_1\n"
3794                 "OpStore %BP_out_color %BP_transformed_in_color_1\n"
3795                 "OpEmitVertex\n"
3796
3797                 "OpStore %BP_out_gl_position %BP_in_position_2\n"
3798                 "OpStore %BP_out_color %BP_transformed_in_color_2\n"
3799                 "OpEmitVertex\n"
3800
3801                 "OpEndPrimitive\n"
3802                 "OpReturn\n"
3803                 "OpFunctionEnd\n"
3804                 "${testfun}\n";
3805         return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3806 }
3807
3808 // Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3809 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3810 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3811 // with "BP_" to avoid collisions with fragments.
3812 //
3813 // Derived from this GLSL:
3814 //
3815 // layout(location = 1) in highp vec4 vtxColor;
3816 // layout(location = 0) out highp vec4 fragColor;
3817 // highp vec4 testfun(highp vec4 x) { return x; }
3818 // void main(void) { fragColor = testfun(vtxColor); }
3819 //
3820 // with modifications including passing vtxColor by value and ripping out
3821 // testfun() definition.
3822 string makeFragmentShaderAssembly(const map<string, string>& fragments)
3823 {
3824         static const char fragmentShaderBoilerplate[] =
3825                 "OpCapability Shader\n"
3826                 "OpMemoryModel Logical GLSL450\n"
3827                 "OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3828                 "OpExecutionMode %BP_main OriginUpperLeft\n"
3829                 "${debug:opt}\n"
3830                 "OpName %BP_main \"main\"\n"
3831                 "OpName %BP_fragColor \"fragColor\"\n"
3832                 "OpName %BP_vtxColor \"vtxColor\"\n"
3833                 "OpName %test_code \"testfun(vf4;\"\n"
3834                 "OpDecorate %BP_fragColor Location 0\n"
3835                 "OpDecorate %BP_vtxColor Location 1\n"
3836                 "${decoration:opt}\n"
3837                 SPIRV_ASSEMBLY_TYPES
3838                 SPIRV_ASSEMBLY_CONSTANTS
3839                 SPIRV_ASSEMBLY_ARRAYS
3840                 "%BP_fragColor = OpVariable %op_v4f32 Output\n"
3841                 "%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3842                 "${pre_main:opt}\n"
3843                 "%BP_main = OpFunction %void None %fun\n"
3844                 "%BP_label_main = OpLabel\n"
3845                 "%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3846                 "%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3847                 "OpStore %BP_fragColor %BP_tmp2\n"
3848                 "OpReturn\n"
3849                 "OpFunctionEnd\n"
3850                 "${testfun}\n";
3851         return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3852 }
3853
3854 // Creates fragments that specialize into a simple pass-through shader (of any kind).
3855 map<string, string> passthruFragments(void)
3856 {
3857         map<string, string> fragments;
3858         fragments["testfun"] =
3859                 // A %test_code function that returns its argument unchanged.
3860                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3861                 "%param1 = OpFunctionParameter %v4f32\n"
3862                 "%label_testfun = OpLabel\n"
3863                 "OpReturnValue %param1\n"
3864                 "OpFunctionEnd\n";
3865         return fragments;
3866 }
3867
3868 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3869 // Vertex shader gets custom code from context, the rest are pass-through.
3870 void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3871 {
3872         map<string, string> passthru = passthruFragments();
3873         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3874         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3875 }
3876
3877 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3878 // Tessellation control shader gets custom code from context, the rest are
3879 // pass-through.
3880 void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3881 {
3882         map<string, string> passthru = passthruFragments();
3883         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3884         dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3885         dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3886         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3887 }
3888
3889 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3890 // Tessellation evaluation shader gets custom code from context, the rest are
3891 // pass-through.
3892 void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3893 {
3894         map<string, string> passthru = passthruFragments();
3895         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3896         dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3897         dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3898         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3899 }
3900
3901 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3902 // Geometry shader gets custom code from context, the rest are pass-through.
3903 void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3904 {
3905         map<string, string> passthru = passthruFragments();
3906         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3907         dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3908         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3909 }
3910
3911 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3912 // Fragment shader gets custom code from context, the rest are pass-through.
3913 void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3914 {
3915         map<string, string> passthru = passthruFragments();
3916         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3917         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3918 }
3919
3920 void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3921 {
3922         // \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3923         // \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3924         dst.spirvAsmSources.add("module") <<
3925                 "OpCapability Shader\n"
3926                 "OpCapability Geometry\n"
3927                 "OpCapability Tessellation\n"
3928                 "OpMemoryModel Logical GLSL450\n"
3929
3930                 "OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3931                 "OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3932                 "OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3933                 "OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3934                 "OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3935
3936                 "OpExecutionMode %geom_main Triangles\n"
3937                 "OpExecutionMode %geom_main Invocations 0\n"
3938                 "OpExecutionMode %geom_main OutputTriangleStrip\n"
3939                 "OpExecutionMode %geom_main OutputVertices 3\n"
3940
3941                 "OpExecutionMode %tessc_main OutputVertices 3\n"
3942
3943                 "OpExecutionMode %tesse_main Triangles\n"
3944
3945                 "OpExecutionMode %frag_main OriginUpperLeft\n"
3946
3947                 "; Vertex decorations\n"
3948                 "OpName %vert_main \"main\"\n"
3949                 "OpName %vert_vtxPosition \"vtxPosition\"\n"
3950                 "OpName %vert_Position \"position\"\n"
3951                 "OpName %vert_vtxColor \"vtxColor\"\n"
3952                 "OpName %vert_color \"color\"\n"
3953                 "OpName %vert_vertex_id \"gl_VertexIndex\"\n"
3954                 "OpName %vert_instance_id \"gl_InstanceIndex\"\n"
3955                 "OpDecorate %vert_vtxPosition Location 2\n"
3956                 "OpDecorate %vert_Position Location 0\n"
3957                 "OpDecorate %vert_vtxColor Location 1\n"
3958                 "OpDecorate %vert_color Location 1\n"
3959                 "OpDecorate %vert_vertex_id BuiltIn VertexIndex\n"
3960                 "OpDecorate %vert_instance_id BuiltIn InstanceIndex\n"
3961
3962                 "; Geometry decorations\n"
3963                 "OpName %geom_main \"main\"\n"
3964                 "OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3965                 "OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3966                 "OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3967                 "OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3968                 "OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3969                 "OpName %geom_gl_in \"gl_in\"\n"
3970                 "OpName %geom_out_color \"out_color\"\n"
3971                 "OpName %geom_in_color \"in_color\"\n"
3972                 "OpDecorate %geom_out_gl_position BuiltIn Position\n"
3973                 "OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3974                 "OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3975                 "OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3976                 "OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3977                 "OpDecorate %geom_per_vertex_in Block\n"
3978                 "OpDecorate %geom_out_color Location 1\n"
3979                 "OpDecorate %geom_out_color Stream 0\n"
3980                 "OpDecorate %geom_in_color Location 1\n"
3981
3982                 "; Tessellation Control decorations\n"
3983                 "OpName %tessc_main \"main\"\n"
3984                 "OpName %tessc_out_color \"out_color\"\n"
3985                 "OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3986                 "OpName %tessc_in_color \"in_color\"\n"
3987                 "OpName %tessc_out_position \"out_position\"\n"
3988                 "OpName %tessc_in_position \"in_position\"\n"
3989                 "OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3990                 "OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3991                 "OpDecorate %tessc_out_color Location 1\n"
3992                 "OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3993                 "OpDecorate %tessc_in_color Location 1\n"
3994                 "OpDecorate %tessc_out_position Location 2\n"
3995                 "OpDecorate %tessc_in_position Location 2\n"
3996                 "OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3997                 "OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3998                 "OpDecorate %tessc_gl_TessLevelInner Patch\n"
3999                 "OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
4000
4001                 "; Tessellation Evaluation decorations\n"
4002                 "OpName %tesse_main \"main\"\n"
4003                 "OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
4004                 "OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
4005                 "OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
4006                 "OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
4007                 "OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
4008                 "OpName %tesse_stream \"\"\n"
4009                 "OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
4010                 "OpName %tesse_in_position \"in_position\"\n"
4011                 "OpName %tesse_out_color \"out_color\"\n"
4012                 "OpName %tesse_in_color \"in_color\"\n"
4013                 "OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4014                 "OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4015                 "OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4016                 "OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4017                 "OpDecorate %tesse_per_vertex_out Block\n"
4018                 "OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4019                 "OpDecorate %tesse_in_position Location 2\n"
4020                 "OpDecorate %tesse_out_color Location 1\n"
4021                 "OpDecorate %tesse_in_color Location 1\n"
4022
4023                 "; Fragment decorations\n"
4024                 "OpName %frag_main \"main\"\n"
4025                 "OpName %frag_fragColor \"fragColor\"\n"
4026                 "OpName %frag_vtxColor \"vtxColor\"\n"
4027                 "OpDecorate %frag_fragColor Location 0\n"
4028                 "OpDecorate %frag_vtxColor Location 1\n"
4029
4030                 SPIRV_ASSEMBLY_TYPES
4031                 SPIRV_ASSEMBLY_CONSTANTS
4032                 SPIRV_ASSEMBLY_ARRAYS
4033
4034                 "; Vertex Variables\n"
4035                 "%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4036                 "%vert_Position = OpVariable %ip_v4f32 Input\n"
4037                 "%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4038                 "%vert_color = OpVariable %ip_v4f32 Input\n"
4039                 "%vert_vertex_id = OpVariable %ip_i32 Input\n"
4040                 "%vert_instance_id = OpVariable %ip_i32 Input\n"
4041
4042                 "; Geometry Variables\n"
4043                 "%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4044                 "%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4045                 "%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4046                 "%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4047                 "%geom_out_color = OpVariable %op_v4f32 Output\n"
4048                 "%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4049                 "%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4050
4051                 "; Tessellation Control Variables\n"
4052                 "%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4053                 "%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4054                 "%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4055                 "%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4056                 "%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4057                 "%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4058                 "%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4059
4060                 "; Tessellation Evaluation Decorations\n"
4061                 "%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4062                 "%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4063                 "%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4064                 "%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4065                 "%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4066                 "%tesse_out_color = OpVariable %op_v4f32 Output\n"
4067                 "%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4068
4069                 "; Fragment Variables\n"
4070                 "%frag_fragColor = OpVariable %op_v4f32 Output\n"
4071                 "%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4072
4073                 "; Vertex Entry\n"
4074                 "%vert_main = OpFunction %void None %fun\n"
4075                 "%vert_label = OpLabel\n"
4076                 "%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4077                 "OpStore %vert_vtxPosition %vert_tmp_position\n"
4078                 "%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4079                 "OpStore %vert_vtxColor %vert_tmp_color\n"
4080                 "OpReturn\n"
4081                 "OpFunctionEnd\n"
4082
4083                 "; Geometry Entry\n"
4084                 "%geom_main = OpFunction %void None %fun\n"
4085                 "%geom_label = OpLabel\n"
4086                 "%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4087                 "%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4088                 "%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4089                 "%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4090                 "%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4091                 "%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4092                 "%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4093                 "%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4094                 "%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4095                 "%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4096                 "%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4097                 "%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4098                 "OpStore %geom_out_gl_position %geom_in_position_0\n"
4099                 "OpStore %geom_out_color %geom_in_color_0\n"
4100                 "OpEmitVertex\n"
4101                 "OpStore %geom_out_gl_position %geom_in_position_1\n"
4102                 "OpStore %geom_out_color %geom_in_color_1\n"
4103                 "OpEmitVertex\n"
4104                 "OpStore %geom_out_gl_position %geom_in_position_2\n"
4105                 "OpStore %geom_out_color %geom_in_color_2\n"
4106                 "OpEmitVertex\n"
4107                 "OpEndPrimitive\n"
4108                 "OpReturn\n"
4109                 "OpFunctionEnd\n"
4110
4111                 "; Tessellation Control Entry\n"
4112                 "%tessc_main = OpFunction %void None %fun\n"
4113                 "%tessc_label = OpLabel\n"
4114                 "%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4115                 "%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4116                 "%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4117                 "%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4118                 "%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4119                 "%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4120                 "%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4121                 "OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4122                 "OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4123                 "%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4124                 "OpSelectionMerge %tessc_merge_label None\n"
4125                 "OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4126                 "%tessc_first_invocation = OpLabel\n"
4127                 "%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4128                 "%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4129                 "%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4130                 "%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4131                 "OpStore %tessc_tess_outer_0 %c_f32_1\n"
4132                 "OpStore %tessc_tess_outer_1 %c_f32_1\n"
4133                 "OpStore %tessc_tess_outer_2 %c_f32_1\n"
4134                 "OpStore %tessc_tess_inner %c_f32_1\n"
4135                 "OpBranch %tessc_merge_label\n"
4136                 "%tessc_merge_label = OpLabel\n"
4137                 "OpReturn\n"
4138                 "OpFunctionEnd\n"
4139
4140                 "; Tessellation Evaluation Entry\n"
4141                 "%tesse_main = OpFunction %void None %fun\n"
4142                 "%tesse_label = OpLabel\n"
4143                 "%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4144                 "%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4145                 "%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4146                 "%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4147                 "%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4148                 "%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4149                 "%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4150                 "%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4151                 "%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4152                 "%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4153                 "%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4154                 "%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4155                 "%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4156                 "%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4157                 "%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4158                 "%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4159                 "%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4160                 "%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4161                 "OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4162                 "%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4163                 "%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4164                 "%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4165                 "%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4166                 "%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4167                 "%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4168                 "%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4169                 "%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4170                 "%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4171                 "%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4172                 "%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4173                 "OpStore %tesse_out_color %tesse_computed_clr\n"
4174                 "OpReturn\n"
4175                 "OpFunctionEnd\n"
4176
4177                 "; Fragment Entry\n"
4178                 "%frag_main = OpFunction %void None %fun\n"
4179                 "%frag_label_main = OpLabel\n"
4180                 "%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4181                 "OpStore %frag_fragColor %frag_tmp1\n"
4182                 "OpReturn\n"
4183                 "OpFunctionEnd\n";
4184 }
4185
4186 // This has two shaders of each stage. The first
4187 // is a passthrough, the second inverts the color.
4188 void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4189 {
4190         dst.spirvAsmSources.add("vert") <<
4191         // This module contains 2 vertex shaders. One that is a passthrough
4192         // and a second that inverts the color of the output (1.0 - color).
4193                 "OpCapability Shader\n"
4194                 "OpMemoryModel Logical GLSL450\n"
4195                 "OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4196                 "OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4197
4198                 "OpName %main \"vert1\"\n"
4199                 "OpName %main2 \"vert2\"\n"
4200                 "OpName %vtxPosition \"vtxPosition\"\n"
4201                 "OpName %Position \"position\"\n"
4202                 "OpName %vtxColor \"vtxColor\"\n"
4203                 "OpName %color \"color\"\n"
4204                 "OpName %vertex_id \"gl_VertexIndex\"\n"
4205                 "OpName %instance_id \"gl_InstanceIndex\"\n"
4206
4207                 "OpDecorate %vtxPosition Location 2\n"
4208                 "OpDecorate %Position Location 0\n"
4209                 "OpDecorate %vtxColor Location 1\n"
4210                 "OpDecorate %color Location 1\n"
4211                 "OpDecorate %vertex_id BuiltIn VertexIndex\n"
4212                 "OpDecorate %instance_id BuiltIn InstanceIndex\n"
4213                 SPIRV_ASSEMBLY_TYPES
4214                 SPIRV_ASSEMBLY_CONSTANTS
4215                 SPIRV_ASSEMBLY_ARRAYS
4216                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4217                 "%vtxPosition = OpVariable %op_v4f32 Output\n"
4218                 "%Position = OpVariable %ip_v4f32 Input\n"
4219                 "%vtxColor = OpVariable %op_v4f32 Output\n"
4220                 "%color = OpVariable %ip_v4f32 Input\n"
4221                 "%vertex_id = OpVariable %ip_i32 Input\n"
4222                 "%instance_id = OpVariable %ip_i32 Input\n"
4223
4224                 "%main = OpFunction %void None %fun\n"
4225                 "%label = OpLabel\n"
4226                 "%tmp_position = OpLoad %v4f32 %Position\n"
4227                 "OpStore %vtxPosition %tmp_position\n"
4228                 "%tmp_color = OpLoad %v4f32 %color\n"
4229                 "OpStore %vtxColor %tmp_color\n"
4230                 "OpReturn\n"
4231                 "OpFunctionEnd\n"
4232
4233                 "%main2 = OpFunction %void None %fun\n"
4234                 "%label2 = OpLabel\n"
4235                 "%tmp_position2 = OpLoad %v4f32 %Position\n"
4236                 "OpStore %vtxPosition %tmp_position2\n"
4237                 "%tmp_color2 = OpLoad %v4f32 %color\n"
4238                 "%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4239                 "OpStore %vtxColor %tmp_color3\n"
4240                 "OpReturn\n"
4241                 "OpFunctionEnd\n";
4242
4243         dst.spirvAsmSources.add("frag") <<
4244                 // This is a single module that contains 2 fragment shaders.
4245                 // One that passes color through and the other that inverts the output
4246                 // color (1.0 - color).
4247                 "OpCapability Shader\n"
4248                 "OpMemoryModel Logical GLSL450\n"
4249                 "OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4250                 "OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4251                 "OpExecutionMode %main OriginUpperLeft\n"
4252                 "OpExecutionMode %main2 OriginUpperLeft\n"
4253
4254                 "OpName %main \"frag1\"\n"
4255                 "OpName %main2 \"frag2\"\n"
4256                 "OpName %fragColor \"fragColor\"\n"
4257                 "OpName %vtxColor \"vtxColor\"\n"
4258                 "OpDecorate %fragColor Location 0\n"
4259                 "OpDecorate %vtxColor Location 1\n"
4260                 SPIRV_ASSEMBLY_TYPES
4261                 SPIRV_ASSEMBLY_CONSTANTS
4262                 SPIRV_ASSEMBLY_ARRAYS
4263                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4264                 "%fragColor = OpVariable %op_v4f32 Output\n"
4265                 "%vtxColor = OpVariable %ip_v4f32 Input\n"
4266
4267                 "%main = OpFunction %void None %fun\n"
4268                 "%label_main = OpLabel\n"
4269                 "%tmp1 = OpLoad %v4f32 %vtxColor\n"
4270                 "OpStore %fragColor %tmp1\n"
4271                 "OpReturn\n"
4272                 "OpFunctionEnd\n"
4273
4274                 "%main2 = OpFunction %void None %fun\n"
4275                 "%label_main2 = OpLabel\n"
4276                 "%tmp2 = OpLoad %v4f32 %vtxColor\n"
4277                 "%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4278                 "OpStore %fragColor %tmp3\n"
4279                 "OpReturn\n"
4280                 "OpFunctionEnd\n";
4281
4282         dst.spirvAsmSources.add("geom") <<
4283                 "OpCapability Geometry\n"
4284                 "OpMemoryModel Logical GLSL450\n"
4285                 "OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4286                 "OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4287                 "OpExecutionMode %geom1_main Triangles\n"
4288                 "OpExecutionMode %geom2_main Triangles\n"
4289                 "OpExecutionMode %geom1_main Invocations 0\n"
4290                 "OpExecutionMode %geom2_main Invocations 0\n"
4291                 "OpExecutionMode %geom1_main OutputTriangleStrip\n"
4292                 "OpExecutionMode %geom2_main OutputTriangleStrip\n"
4293                 "OpExecutionMode %geom1_main OutputVertices 3\n"
4294                 "OpExecutionMode %geom2_main OutputVertices 3\n"
4295                 "OpName %geom1_main \"geom1\"\n"
4296                 "OpName %geom2_main \"geom2\"\n"
4297                 "OpName %per_vertex_in \"gl_PerVertex\"\n"
4298                 "OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4299                 "OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4300                 "OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4301                 "OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4302                 "OpName %gl_in \"gl_in\"\n"
4303                 "OpName %out_color \"out_color\"\n"
4304                 "OpName %in_color \"in_color\"\n"
4305                 "OpDecorate %out_gl_position BuiltIn Position\n"
4306                 "OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4307                 "OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4308                 "OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4309                 "OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4310                 "OpDecorate %per_vertex_in Block\n"
4311                 "OpDecorate %out_color Location 1\n"
4312                 "OpDecorate %out_color Stream 0\n"
4313                 "OpDecorate %in_color Location 1\n"
4314                 SPIRV_ASSEMBLY_TYPES
4315                 SPIRV_ASSEMBLY_CONSTANTS
4316                 SPIRV_ASSEMBLY_ARRAYS
4317                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4318                 "%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4319                 "%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4320                 "%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4321                 "%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4322                 "%out_color = OpVariable %op_v4f32 Output\n"
4323                 "%in_color = OpVariable %ip_a3v4f32 Input\n"
4324                 "%out_gl_position = OpVariable %op_v4f32 Output\n"
4325
4326                 "%geom1_main = OpFunction %void None %fun\n"
4327                 "%geom1_label = OpLabel\n"
4328                 "%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4329                 "%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4330                 "%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4331                 "%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4332                 "%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4333                 "%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4334                 "%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4335                 "%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4336                 "%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4337                 "%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4338                 "%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4339                 "%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4340                 "OpStore %out_gl_position %geom1_in_position_0\n"
4341                 "OpStore %out_color %geom1_in_color_0\n"
4342                 "OpEmitVertex\n"
4343                 "OpStore %out_gl_position %geom1_in_position_1\n"
4344                 "OpStore %out_color %geom1_in_color_1\n"
4345                 "OpEmitVertex\n"
4346                 "OpStore %out_gl_position %geom1_in_position_2\n"
4347                 "OpStore %out_color %geom1_in_color_2\n"
4348                 "OpEmitVertex\n"
4349                 "OpEndPrimitive\n"
4350                 "OpReturn\n"
4351                 "OpFunctionEnd\n"
4352
4353                 "%geom2_main = OpFunction %void None %fun\n"
4354                 "%geom2_label = OpLabel\n"
4355                 "%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4356                 "%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4357                 "%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4358                 "%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4359                 "%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4360                 "%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4361                 "%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4362                 "%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4363                 "%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4364                 "%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4365                 "%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4366                 "%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4367                 "%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4368                 "%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4369                 "%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4370                 "OpStore %out_gl_position %geom2_in_position_0\n"
4371                 "OpStore %out_color %geom2_transformed_in_color_0\n"
4372                 "OpEmitVertex\n"
4373                 "OpStore %out_gl_position %geom2_in_position_1\n"
4374                 "OpStore %out_color %geom2_transformed_in_color_1\n"
4375                 "OpEmitVertex\n"
4376                 "OpStore %out_gl_position %geom2_in_position_2\n"
4377                 "OpStore %out_color %geom2_transformed_in_color_2\n"
4378                 "OpEmitVertex\n"
4379                 "OpEndPrimitive\n"
4380                 "OpReturn\n"
4381                 "OpFunctionEnd\n";
4382
4383         dst.spirvAsmSources.add("tessc") <<
4384                 "OpCapability Tessellation\n"
4385                 "OpMemoryModel Logical GLSL450\n"
4386                 "OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4387                 "OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4388                 "OpExecutionMode %tessc1_main OutputVertices 3\n"
4389                 "OpExecutionMode %tessc2_main OutputVertices 3\n"
4390                 "OpName %tessc1_main \"tessc1\"\n"
4391                 "OpName %tessc2_main \"tessc2\"\n"
4392                 "OpName %out_color \"out_color\"\n"
4393                 "OpName %gl_InvocationID \"gl_InvocationID\"\n"
4394                 "OpName %in_color \"in_color\"\n"
4395                 "OpName %out_position \"out_position\"\n"
4396                 "OpName %in_position \"in_position\"\n"
4397                 "OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4398                 "OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4399                 "OpDecorate %out_color Location 1\n"
4400                 "OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4401                 "OpDecorate %in_color Location 1\n"
4402                 "OpDecorate %out_position Location 2\n"
4403                 "OpDecorate %in_position Location 2\n"
4404                 "OpDecorate %gl_TessLevelOuter Patch\n"
4405                 "OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4406                 "OpDecorate %gl_TessLevelInner Patch\n"
4407                 "OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4408                 SPIRV_ASSEMBLY_TYPES
4409                 SPIRV_ASSEMBLY_CONSTANTS
4410                 SPIRV_ASSEMBLY_ARRAYS
4411                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4412                 "%out_color = OpVariable %op_a3v4f32 Output\n"
4413                 "%gl_InvocationID = OpVariable %ip_i32 Input\n"
4414                 "%in_color = OpVariable %ip_a32v4f32 Input\n"
4415                 "%out_position = OpVariable %op_a3v4f32 Output\n"
4416                 "%in_position = OpVariable %ip_a32v4f32 Input\n"
4417                 "%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4418                 "%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4419
4420                 "%tessc1_main = OpFunction %void None %fun\n"
4421                 "%tessc1_label = OpLabel\n"
4422                 "%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4423                 "%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4424                 "%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4425                 "%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4426                 "%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4427                 "%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4428                 "%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4429                 "OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4430                 "OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4431                 "%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4432                 "OpSelectionMerge %tessc1_merge_label None\n"
4433                 "OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4434                 "%tessc1_first_invocation = OpLabel\n"
4435                 "%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4436                 "%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4437                 "%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4438                 "%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4439                 "OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4440                 "OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4441                 "OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4442                 "OpStore %tessc1_tess_inner %c_f32_1\n"
4443                 "OpBranch %tessc1_merge_label\n"
4444                 "%tessc1_merge_label = OpLabel\n"
4445                 "OpReturn\n"
4446                 "OpFunctionEnd\n"
4447
4448                 "%tessc2_main = OpFunction %void None %fun\n"
4449                 "%tessc2_label = OpLabel\n"
4450                 "%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4451                 "%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4452                 "%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4453                 "%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4454                 "%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4455                 "%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4456                 "%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4457                 "%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4458                 "OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4459                 "OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4460                 "%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4461                 "OpSelectionMerge %tessc2_merge_label None\n"
4462                 "OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4463                 "%tessc2_first_invocation = OpLabel\n"
4464                 "%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4465                 "%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4466                 "%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4467                 "%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4468                 "OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4469                 "OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4470                 "OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4471                 "OpStore %tessc2_tess_inner %c_f32_1\n"
4472                 "OpBranch %tessc2_merge_label\n"
4473                 "%tessc2_merge_label = OpLabel\n"
4474                 "OpReturn\n"
4475                 "OpFunctionEnd\n";
4476
4477         dst.spirvAsmSources.add("tesse") <<
4478                 "OpCapability Tessellation\n"
4479                 "OpMemoryModel Logical GLSL450\n"
4480                 "OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4481                 "OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4482                 "OpExecutionMode %tesse1_main Triangles\n"
4483                 "OpExecutionMode %tesse2_main Triangles\n"
4484                 "OpName %tesse1_main \"tesse1\"\n"
4485                 "OpName %tesse2_main \"tesse2\"\n"
4486                 "OpName %per_vertex_out \"gl_PerVertex\"\n"
4487                 "OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4488                 "OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4489                 "OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4490                 "OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4491                 "OpName %stream \"\"\n"
4492                 "OpName %gl_tessCoord \"gl_TessCoord\"\n"
4493                 "OpName %in_position \"in_position\"\n"
4494                 "OpName %out_color \"out_color\"\n"
4495                 "OpName %in_color \"in_color\"\n"
4496                 "OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4497                 "OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4498                 "OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4499                 "OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4500                 "OpDecorate %per_vertex_out Block\n"
4501                 "OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4502                 "OpDecorate %in_position Location 2\n"
4503                 "OpDecorate %out_color Location 1\n"
4504                 "OpDecorate %in_color Location 1\n"
4505                 SPIRV_ASSEMBLY_TYPES
4506                 SPIRV_ASSEMBLY_CONSTANTS
4507                 SPIRV_ASSEMBLY_ARRAYS
4508                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4509                 "%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4510                 "%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4511                 "%stream = OpVariable %op_per_vertex_out Output\n"
4512                 "%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4513                 "%in_position = OpVariable %ip_a32v4f32 Input\n"
4514                 "%out_color = OpVariable %op_v4f32 Output\n"
4515                 "%in_color = OpVariable %ip_a32v4f32 Input\n"
4516
4517                 "%tesse1_main = OpFunction %void None %fun\n"
4518                 "%tesse1_label = OpLabel\n"
4519                 "%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4520                 "%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4521                 "%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4522                 "%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4523                 "%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4524                 "%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4525                 "%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4526                 "%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4527                 "%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4528                 "%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4529                 "%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4530                 "%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4531                 "%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4532                 "%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4533                 "%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4534                 "%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4535                 "%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4536                 "%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4537                 "OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4538                 "%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4539                 "%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4540                 "%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4541                 "%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4542                 "%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4543                 "%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4544                 "%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4545                 "%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4546                 "%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4547                 "%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4548                 "%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4549                 "OpStore %out_color %tesse1_computed_clr\n"
4550                 "OpReturn\n"
4551                 "OpFunctionEnd\n"
4552
4553                 "%tesse2_main = OpFunction %void None %fun\n"
4554                 "%tesse2_label = OpLabel\n"
4555                 "%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4556                 "%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4557                 "%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4558                 "%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4559                 "%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4560                 "%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4561                 "%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4562                 "%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4563                 "%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4564                 "%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4565                 "%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4566                 "%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4567                 "%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4568                 "%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4569                 "%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4570                 "%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4571                 "%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4572                 "%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4573                 "OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4574                 "%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4575                 "%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4576                 "%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4577                 "%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4578                 "%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4579                 "%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4580                 "%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4581                 "%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4582                 "%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4583                 "%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4584                 "%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4585                 "%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4586                 "OpStore %out_color %tesse2_clr_transformed\n"
4587                 "OpReturn\n"
4588                 "OpFunctionEnd\n";
4589 }
4590
4591 // Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4592 // Feeds the pipeline a set of colored triangles, which then must occur in the
4593 // rendered image.  The surface is cleared before executing the pipeline, so
4594 // whatever the shaders draw can be directly spot-checked.
4595 TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4596 {
4597         const VkDevice                                                          vkDevice                                = context.getDevice();
4598         const DeviceInterface&                                          vk                                              = context.getDeviceInterface();
4599         const VkQueue                                                           queue                                   = context.getUniversalQueue();
4600         const deUint32                                                          queueFamilyIndex                = context.getUniversalQueueFamilyIndex();
4601         const tcu::UVec2                                                        renderSize                              (256, 256);
4602         vector<ModuleHandleSp>                                          modules;
4603         map<VkShaderStageFlagBits, VkShaderModule>      moduleByStage;
4604         const int                                                                       testSpecificSeed                = 31354125;
4605         const int                                                                       seed                                    = context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4606         bool                                                                            supportsGeometry                = false;
4607         bool                                                                            supportsTessellation    = false;
4608         bool                                                                            hasTessellation         = false;
4609
4610         const VkPhysicalDeviceFeatures&                         features                                = context.getDeviceFeatures();
4611         supportsGeometry                = features.geometryShader == VK_TRUE;
4612         supportsTessellation    = features.tessellationShader == VK_TRUE;
4613         hasTessellation                 = (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4614                                                                 (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4615
4616         if (hasTessellation && !supportsTessellation)
4617         {
4618                 throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4619         }
4620
4621         if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4622                 !supportsGeometry)
4623         {
4624                 throw tcu::NotSupportedError(std::string("Geometry not supported"));
4625         }
4626
4627         de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4628         de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4629         const Vec4                                                              vertexData[]                    =
4630         {
4631                 // Upper left corner:
4632                 Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4633                 Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4634                 Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4635
4636                 // Upper right corner:
4637                 Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4638                 Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4639                 Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4640
4641                 // Lower left corner:
4642                 Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4643                 Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4644                 Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4645
4646                 // Lower right corner:
4647                 Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4648                 Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4649                 Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4650         };
4651         const size_t                                                    singleVertexDataSize    = 2 * sizeof(Vec4);
4652         const size_t                                                    vertexCount                             = sizeof(vertexData) / singleVertexDataSize;
4653
4654         const VkBufferCreateInfo                                vertexBufferParams              =
4655         {
4656                 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,   //      VkStructureType         sType;
4657                 DE_NULL,                                                                //      const void*                     pNext;
4658                 0u,                                                                             //      VkBufferCreateFlags     flags;
4659                 (VkDeviceSize)sizeof(vertexData),               //      VkDeviceSize            size;
4660                 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,              //      VkBufferUsageFlags      usage;
4661                 VK_SHARING_MODE_EXCLUSIVE,                              //      VkSharingMode           sharingMode;
4662                 1u,                                                                             //      deUint32                        queueFamilyCount;
4663                 &queueFamilyIndex,                                              //      const deUint32*         pQueueFamilyIndices;
4664         };
4665         const Unique<VkBuffer>                                  vertexBuffer                    (createBuffer(vk, vkDevice, &vertexBufferParams));
4666         const UniquePtr<Allocation>                             vertexBufferMemory              (context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4667
4668         VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4669
4670         const VkDeviceSize                                              imageSizeBytes                  = (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4671         const VkBufferCreateInfo                                readImageBufferParams   =
4672         {
4673                 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,           //      VkStructureType         sType;
4674                 DE_NULL,                                                                        //      const void*                     pNext;
4675                 0u,                                                                                     //      VkBufferCreateFlags     flags;
4676                 imageSizeBytes,                                                         //      VkDeviceSize            size;
4677                 VK_BUFFER_USAGE_TRANSFER_DST_BIT,                       //      VkBufferUsageFlags      usage;
4678                 VK_SHARING_MODE_EXCLUSIVE,                                      //      VkSharingMode           sharingMode;
4679                 1u,                                                                                     //      deUint32                        queueFamilyCount;
4680                 &queueFamilyIndex,                                                      //      const deUint32*         pQueueFamilyIndices;
4681         };
4682         const Unique<VkBuffer>                                  readImageBuffer                 (createBuffer(vk, vkDevice, &readImageBufferParams));
4683         const UniquePtr<Allocation>                             readImageBufferMemory   (context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4684
4685         VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4686
4687         const VkImageCreateInfo                                 imageParams                             =
4688         {
4689                 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,                                                                    //      VkStructureType         sType;
4690                 DE_NULL,                                                                                                                                //      const void*                     pNext;
4691                 0u,                                                                                                                                             //      VkImageCreateFlags      flags;
4692                 VK_IMAGE_TYPE_2D,                                                                                                               //      VkImageType                     imageType;
4693                 VK_FORMAT_R8G8B8A8_UNORM,                                                                                               //      VkFormat                        format;
4694                 { renderSize.x(), renderSize.y(), 1 },                                                                  //      VkExtent3D                      extent;
4695                 1u,                                                                                                                                             //      deUint32                        mipLevels;
4696                 1u,                                                                                                                                             //      deUint32                        arraySize;
4697                 VK_SAMPLE_COUNT_1_BIT,                                                                                                  //      deUint32                        samples;
4698                 VK_IMAGE_TILING_OPTIMAL,                                                                                                //      VkImageTiling           tiling;
4699                 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,    //      VkImageUsageFlags       usage;
4700                 VK_SHARING_MODE_EXCLUSIVE,                                                                                              //      VkSharingMode           sharingMode;
4701                 1u,                                                                                                                                             //      deUint32                        queueFamilyCount;
4702                 &queueFamilyIndex,                                                                                                              //      const deUint32*         pQueueFamilyIndices;
4703                 VK_IMAGE_LAYOUT_UNDEFINED,                                                                                              //      VkImageLayout           initialLayout;
4704         };
4705
4706         const Unique<VkImage>                                   image                                   (createImage(vk, vkDevice, &imageParams));
4707         const UniquePtr<Allocation>                             imageMemory                             (context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4708
4709         VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4710
4711         const VkAttachmentDescription                   colorAttDesc                    =
4712         {
4713                 0u,                                                                                             //      VkAttachmentDescriptionFlags    flags;
4714                 VK_FORMAT_R8G8B8A8_UNORM,                                               //      VkFormat                                                format;
4715                 VK_SAMPLE_COUNT_1_BIT,                                                  //      deUint32                                                samples;
4716                 VK_ATTACHMENT_LOAD_OP_CLEAR,                                    //      VkAttachmentLoadOp                              loadOp;
4717                 VK_ATTACHMENT_STORE_OP_STORE,                                   //      VkAttachmentStoreOp                             storeOp;
4718                 VK_ATTACHMENT_LOAD_OP_DONT_CARE,                                //      VkAttachmentLoadOp                              stencilLoadOp;
4719                 VK_ATTACHMENT_STORE_OP_DONT_CARE,                               //      VkAttachmentStoreOp                             stencilStoreOp;
4720                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout                                   initialLayout;
4721                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout                                   finalLayout;
4722         };
4723         const VkAttachmentReference                             colorAttRef                             =
4724         {
4725                 0u,                                                                                             //      deUint32                attachment;
4726                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout   layout;
4727         };
4728         const VkSubpassDescription                              subpassDesc                             =
4729         {
4730                 0u,                                                                                             //      VkSubpassDescriptionFlags               flags;
4731                 VK_PIPELINE_BIND_POINT_GRAPHICS,                                //      VkPipelineBindPoint                             pipelineBindPoint;
4732                 0u,                                                                                             //      deUint32                                                inputCount;
4733                 DE_NULL,                                                                                //      const VkAttachmentReference*    pInputAttachments;
4734                 1u,                                                                                             //      deUint32                                                colorCount;
4735                 &colorAttRef,                                                                   //      const VkAttachmentReference*    pColorAttachments;
4736                 DE_NULL,                                                                                //      const VkAttachmentReference*    pResolveAttachments;
4737                 DE_NULL,                                                                                //      const VkAttachmentReference*    pDepthStencilAttachment;
4738                 0u,                                                                                             //      deUint32                                                preserveCount;
4739                 DE_NULL,                                                                                //      const VkAttachmentReference*    pPreserveAttachments;
4740
4741         };
4742         const VkRenderPassCreateInfo                    renderPassParams                =
4743         {
4744                 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,              //      VkStructureType                                 sType;
4745                 DE_NULL,                                                                                //      const void*                                             pNext;
4746                 (VkRenderPassCreateFlags)0,
4747                 1u,                                                                                             //      deUint32                                                attachmentCount;
4748                 &colorAttDesc,                                                                  //      const VkAttachmentDescription*  pAttachments;
4749                 1u,                                                                                             //      deUint32                                                subpassCount;
4750                 &subpassDesc,                                                                   //      const VkSubpassDescription*             pSubpasses;
4751                 0u,                                                                                             //      deUint32                                                dependencyCount;
4752                 DE_NULL,                                                                                //      const VkSubpassDependency*              pDependencies;
4753         };
4754         const Unique<VkRenderPass>                              renderPass                              (createRenderPass(vk, vkDevice, &renderPassParams));
4755
4756         const VkImageViewCreateInfo                             colorAttViewParams              =
4757         {
4758                 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,               //      VkStructureType                         sType;
4759                 DE_NULL,                                                                                //      const void*                                     pNext;
4760                 0u,                                                                                             //      VkImageViewCreateFlags          flags;
4761                 *image,                                                                                 //      VkImage                                         image;
4762                 VK_IMAGE_VIEW_TYPE_2D,                                                  //      VkImageViewType                         viewType;
4763                 VK_FORMAT_R8G8B8A8_UNORM,                                               //      VkFormat                                        format;
4764                 {
4765                         VK_COMPONENT_SWIZZLE_R,
4766                         VK_COMPONENT_SWIZZLE_G,
4767                         VK_COMPONENT_SWIZZLE_B,
4768                         VK_COMPONENT_SWIZZLE_A
4769                 },                                                                                              //      VkChannelMapping                        channels;
4770                 {
4771                         VK_IMAGE_ASPECT_COLOR_BIT,                                              //      VkImageAspectFlags      aspectMask;
4772                         0u,                                                                                             //      deUint32                        baseMipLevel;
4773                         1u,                                                                                             //      deUint32                        mipLevels;
4774                         0u,                                                                                             //      deUint32                        baseArrayLayer;
4775                         1u,                                                                                             //      deUint32                        arraySize;
4776                 },                                                                                              //      VkImageSubresourceRange         subresourceRange;
4777         };
4778         const Unique<VkImageView>                               colorAttView                    (createImageView(vk, vkDevice, &colorAttViewParams));
4779
4780
4781         // Pipeline layout
4782         const VkPipelineLayoutCreateInfo                pipelineLayoutParams    =
4783         {
4784                 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,                  //      VkStructureType                                 sType;
4785                 DE_NULL,                                                                                                //      const void*                                             pNext;
4786                 (VkPipelineLayoutCreateFlags)0,
4787                 0u,                                                                                                             //      deUint32                                                descriptorSetCount;
4788                 DE_NULL,                                                                                                //      const VkDescriptorSetLayout*    pSetLayouts;
4789                 0u,                                                                                                             //      deUint32                                                pushConstantRangeCount;
4790                 DE_NULL,                                                                                                //      const VkPushConstantRange*              pPushConstantRanges;
4791         };
4792         const Unique<VkPipelineLayout>                  pipelineLayout                  (createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4793
4794         // Pipeline
4795         vector<VkPipelineShaderStageCreateInfo>         shaderStageParams;
4796         // We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4797         vector<vector<VkSpecializationMapEntry> >       specConstantEntries;
4798         vector<VkSpecializationInfo>                            specializationInfos;
4799         createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4800
4801         // And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4802         specConstantEntries.reserve(shaderStageParams.size());
4803         specializationInfos.reserve(shaderStageParams.size());
4804
4805         // Patch the specialization info field in PipelineShaderStageCreateInfos.
4806         for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4807         {
4808                 const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4809
4810                 if (stageIt != instance.specConstants.end())
4811                 {
4812                         const size_t                                            numSpecConstants        = stageIt->second.size();
4813                         vector<VkSpecializationMapEntry>        entries;
4814                         VkSpecializationInfo                            specInfo;
4815
4816                         entries.resize(numSpecConstants);
4817
4818                         // Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4819                         for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4820                         {
4821                                 entries[ndx].constantID = (deUint32)ndx;
4822                                 entries[ndx].offset             = deUint32(ndx * sizeof(deInt32));
4823                                 entries[ndx].size               = sizeof(deInt32);
4824                         }
4825
4826                         specConstantEntries.push_back(entries);
4827
4828                         specInfo.mapEntryCount  = (deUint32)numSpecConstants;
4829                         specInfo.pMapEntries    = specConstantEntries.back().data();
4830                         specInfo.dataSize               = numSpecConstants * sizeof(deInt32);
4831                         specInfo.pData                  = stageIt->second.data();
4832                         specializationInfos.push_back(specInfo);
4833
4834                         stageInfo->pSpecializationInfo = &specializationInfos.back();
4835                 }
4836         }
4837         const VkPipelineDepthStencilStateCreateInfo     depthStencilParams              =
4838         {
4839                 VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,     //      VkStructureType         sType;
4840                 DE_NULL,                                                                                                        //      const void*                     pNext;
4841                 (VkPipelineDepthStencilStateCreateFlags)0,
4842                 DE_FALSE,                                                                                                       //      deUint32                        depthTestEnable;
4843                 DE_FALSE,                                                                                                       //      deUint32                        depthWriteEnable;
4844                 VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp                     depthCompareOp;
4845                 DE_FALSE,                                                                                                       //      deUint32                        depthBoundsTestEnable;
4846                 DE_FALSE,                                                                                                       //      deUint32                        stencilTestEnable;
4847                 {
4848                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilFailOp;
4849                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilPassOp;
4850                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilDepthFailOp;
4851                         VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp     stencilCompareOp;
4852                         0u,                                                                                                                     //      deUint32        stencilCompareMask;
4853                         0u,                                                                                                                     //      deUint32        stencilWriteMask;
4854                         0u,                                                                                                                     //      deUint32        stencilReference;
4855                 },                                                                                                                      //      VkStencilOpState        front;
4856                 {
4857                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilFailOp;
4858                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilPassOp;
4859                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilDepthFailOp;
4860                         VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp     stencilCompareOp;
4861                         0u,                                                                                                                     //      deUint32        stencilCompareMask;
4862                         0u,                                                                                                                     //      deUint32        stencilWriteMask;
4863                         0u,                                                                                                                     //      deUint32        stencilReference;
4864                 },                                                                                                                      //      VkStencilOpState        back;
4865                 -1.0f,                                                                                                          //      float                           minDepthBounds;
4866                 +1.0f,                                                                                                          //      float                           maxDepthBounds;
4867         };
4868         const VkViewport                                                viewport0                               =
4869         {
4870                 0.0f,                                                                                                           //      float   originX;
4871                 0.0f,                                                                                                           //      float   originY;
4872                 (float)renderSize.x(),                                                                          //      float   width;
4873                 (float)renderSize.y(),                                                                          //      float   height;
4874                 0.0f,                                                                                                           //      float   minDepth;
4875                 1.0f,                                                                                                           //      float   maxDepth;
4876         };
4877         const VkRect2D                                                  scissor0                                =
4878         {
4879                 {
4880                         0u,                                                                                                                     //      deInt32 x;
4881                         0u,                                                                                                                     //      deInt32 y;
4882                 },                                                                                                                      //      VkOffset2D      offset;
4883                 {
4884                         renderSize.x(),                                                                                         //      deInt32 width;
4885                         renderSize.y(),                                                                                         //      deInt32 height;
4886                 },                                                                                                                      //      VkExtent2D      extent;
4887         };
4888         const VkPipelineViewportStateCreateInfo         viewportParams                  =
4889         {
4890                 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,          //      VkStructureType         sType;
4891                 DE_NULL,                                                                                                        //      const void*                     pNext;
4892                 (VkPipelineViewportStateCreateFlags)0,
4893                 1u,                                                                                                                     //      deUint32                        viewportCount;
4894                 &viewport0,
4895                 1u,
4896                 &scissor0
4897         };
4898         const VkSampleMask                                                      sampleMask                              = ~0u;
4899         const VkPipelineMultisampleStateCreateInfo      multisampleParams               =
4900         {
4901                 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,       //      VkStructureType                 sType;
4902                 DE_NULL,                                                                                                        //      const void*                             pNext;
4903                 (VkPipelineMultisampleStateCreateFlags)0,
4904                 VK_SAMPLE_COUNT_1_BIT,                                                                          //      VkSampleCountFlagBits   rasterSamples;
4905                 DE_FALSE,                                                                                                       //      deUint32                                sampleShadingEnable;
4906                 0.0f,                                                                                                           //      float                                   minSampleShading;
4907                 &sampleMask,                                                                                            //      const VkSampleMask*             pSampleMask;
4908                 DE_FALSE,                                                                                                       //      VkBool32                                alphaToCoverageEnable;
4909                 DE_FALSE,                                                                                                       //      VkBool32                                alphaToOneEnable;
4910         };
4911         const VkPipelineRasterizationStateCreateInfo    rasterParams            =
4912         {
4913                 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,     //      VkStructureType sType;
4914                 DE_NULL,                                                                                                        //      const void*             pNext;
4915                 (VkPipelineRasterizationStateCreateFlags)0,
4916                 DE_TRUE,                                                                                                        //      deUint32                depthClipEnable;
4917                 DE_FALSE,                                                                                                       //      deUint32                rasterizerDiscardEnable;
4918                 VK_POLYGON_MODE_FILL,                                                                           //      VkFillMode              fillMode;
4919                 VK_CULL_MODE_NONE,                                                                                      //      VkCullMode              cullMode;
4920                 VK_FRONT_FACE_COUNTER_CLOCKWISE,                                                        //      VkFrontFace             frontFace;
4921                 VK_FALSE,                                                                                                       //      VkBool32                depthBiasEnable;
4922                 0.0f,                                                                                                           //      float                   depthBias;
4923                 0.0f,                                                                                                           //      float                   depthBiasClamp;
4924                 0.0f,                                                                                                           //      float                   slopeScaledDepthBias;
4925                 1.0f,                                                                                                           //      float                   lineWidth;
4926         };
4927         const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4928         const VkPipelineInputAssemblyStateCreateInfo    inputAssemblyParams     =
4929         {
4930                 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,    //      VkStructureType         sType;
4931                 DE_NULL,                                                                                                                //      const void*                     pNext;
4932                 (VkPipelineInputAssemblyStateCreateFlags)0,
4933                 topology,                                                                                                               //      VkPrimitiveTopology     topology;
4934                 DE_FALSE,                                                                                                               //      deUint32                        primitiveRestartEnable;
4935         };
4936         const VkVertexInputBindingDescription           vertexBinding0 =
4937         {
4938                 0u,                                                                     // deUint32                                     binding;
4939                 deUint32(singleVertexDataSize),         // deUint32                                     strideInBytes;
4940                 VK_VERTEX_INPUT_RATE_VERTEX                     // VkVertexInputStepRate        stepRate;
4941         };
4942         const VkVertexInputAttributeDescription         vertexAttrib0[2] =
4943         {
4944                 {
4945                         0u,                                                                     // deUint32     location;
4946                         0u,                                                                     // deUint32     binding;
4947                         VK_FORMAT_R32G32B32A32_SFLOAT,          // VkFormat     format;
4948                         0u                                                                      // deUint32     offsetInBytes;
4949                 },
4950                 {
4951                         1u,                                                                     // deUint32     location;
4952                         0u,                                                                     // deUint32     binding;
4953                         VK_FORMAT_R32G32B32A32_SFLOAT,          // VkFormat     format;
4954                         sizeof(Vec4),                                           // deUint32     offsetInBytes;
4955                 }
4956         };
4957
4958         const VkPipelineVertexInputStateCreateInfo      vertexInputStateParams  =
4959         {
4960                 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,      //      VkStructureType                                                         sType;
4961                 DE_NULL,                                                                                                        //      const void*                                                                     pNext;
4962                 (VkPipelineVertexInputStateCreateFlags)0,
4963                 1u,                                                                                                                     //      deUint32                                                                        bindingCount;
4964                 &vertexBinding0,                                                                                        //      const VkVertexInputBindingDescription*          pVertexBindingDescriptions;
4965                 2u,                                                                                                                     //      deUint32                                                                        attributeCount;
4966                 vertexAttrib0,                                                                                          //      const VkVertexInputAttributeDescription*        pVertexAttributeDescriptions;
4967         };
4968         const VkPipelineColorBlendAttachmentState       attBlendParams                  =
4969         {
4970                 DE_FALSE,                                                                                                       //      deUint32                blendEnable;
4971                 VK_BLEND_FACTOR_ONE,                                                                            //      VkBlend                 srcBlendColor;
4972                 VK_BLEND_FACTOR_ZERO,                                                                           //      VkBlend                 destBlendColor;
4973                 VK_BLEND_OP_ADD,                                                                                        //      VkBlendOp               blendOpColor;
4974                 VK_BLEND_FACTOR_ONE,                                                                            //      VkBlend                 srcBlendAlpha;
4975                 VK_BLEND_FACTOR_ZERO,                                                                           //      VkBlend                 destBlendAlpha;
4976                 VK_BLEND_OP_ADD,                                                                                        //      VkBlendOp               blendOpAlpha;
4977                 (VK_COLOR_COMPONENT_R_BIT|
4978                  VK_COLOR_COMPONENT_G_BIT|
4979                  VK_COLOR_COMPONENT_B_BIT|
4980                  VK_COLOR_COMPONENT_A_BIT),                                                                     //      VkChannelFlags  channelWriteMask;
4981         };
4982         const VkPipelineColorBlendStateCreateInfo       blendParams                             =
4983         {
4984                 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,       //      VkStructureType                                                         sType;
4985                 DE_NULL,                                                                                                        //      const void*                                                                     pNext;
4986                 (VkPipelineColorBlendStateCreateFlags)0,
4987                 DE_FALSE,                                                                                                       //      VkBool32                                                                        logicOpEnable;
4988                 VK_LOGIC_OP_COPY,                                                                                       //      VkLogicOp                                                                       logicOp;
4989                 1u,                                                                                                                     //      deUint32                                                                        attachmentCount;
4990                 &attBlendParams,                                                                                        //      const VkPipelineColorBlendAttachmentState*      pAttachments;
4991                 { 0.0f, 0.0f, 0.0f, 0.0f },                                                                     //      float                                                                           blendConst[4];
4992         };
4993         const VkPipelineDynamicStateCreateInfo  dynamicStateInfo                =
4994         {
4995                 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,   //      VkStructureType                 sType;
4996                 DE_NULL,                                                                                                //      const void*                             pNext;
4997                 (VkPipelineDynamicStateCreateFlags)0,
4998                 0u,                                                                                                             //      deUint32                                dynamicStateCount;
4999                 DE_NULL                                                                                                 //      const VkDynamicState*   pDynamicStates;
5000         };
5001
5002         const VkPipelineTessellationStateCreateInfo     tessellationState       =
5003         {
5004                 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
5005                 DE_NULL,
5006                 (VkPipelineTessellationStateCreateFlags)0,
5007                 3u
5008         };
5009
5010         const VkPipelineTessellationStateCreateInfo* tessellationInfo   =       hasTessellation ? &tessellationState: DE_NULL;
5011         const VkGraphicsPipelineCreateInfo              pipelineParams                  =
5012         {
5013                 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,                //      VkStructureType                                                                 sType;
5014                 DE_NULL,                                                                                                //      const void*                                                                             pNext;
5015                 0u,                                                                                                             //      VkPipelineCreateFlags                                                   flags;
5016                 (deUint32)shaderStageParams.size(),                                             //      deUint32                                                                                stageCount;
5017                 &shaderStageParams[0],                                                                  //      const VkPipelineShaderStageCreateInfo*                  pStages;
5018                 &vertexInputStateParams,                                                                //      const VkPipelineVertexInputStateCreateInfo*             pVertexInputState;
5019                 &inputAssemblyParams,                                                                   //      const VkPipelineInputAssemblyStateCreateInfo*   pInputAssemblyState;
5020                 tessellationInfo,                                                                               //      const VkPipelineTessellationStateCreateInfo*    pTessellationState;
5021                 &viewportParams,                                                                                //      const VkPipelineViewportStateCreateInfo*                pViewportState;
5022                 &rasterParams,                                                                                  //      const VkPipelineRasterStateCreateInfo*                  pRasterState;
5023                 &multisampleParams,                                                                             //      const VkPipelineMultisampleStateCreateInfo*             pMultisampleState;
5024                 &depthStencilParams,                                                                    //      const VkPipelineDepthStencilStateCreateInfo*    pDepthStencilState;
5025                 &blendParams,                                                                                   //      const VkPipelineColorBlendStateCreateInfo*              pColorBlendState;
5026                 &dynamicStateInfo,                                                                              //      const VkPipelineDynamicStateCreateInfo*                 pDynamicState;
5027                 *pipelineLayout,                                                                                //      VkPipelineLayout                                                                layout;
5028                 *renderPass,                                                                                    //      VkRenderPass                                                                    renderPass;
5029                 0u,                                                                                                             //      deUint32                                                                                subpass;
5030                 DE_NULL,                                                                                                //      VkPipeline                                                                              basePipelineHandle;
5031                 0u,                                                                                                             //      deInt32                                                                                 basePipelineIndex;
5032         };
5033
5034         const Unique<VkPipeline>                                pipeline                                (createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5035
5036         // Framebuffer
5037         const VkFramebufferCreateInfo                   framebufferParams               =
5038         {
5039                 VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,                              //      VkStructureType         sType;
5040                 DE_NULL,                                                                                                //      const void*                     pNext;
5041                 (VkFramebufferCreateFlags)0,
5042                 *renderPass,                                                                                    //      VkRenderPass            renderPass;
5043                 1u,                                                                                                             //      deUint32                        attachmentCount;
5044                 &*colorAttView,                                                                                 //      const VkImageView*      pAttachments;
5045                 (deUint32)renderSize.x(),                                                               //      deUint32                        width;
5046                 (deUint32)renderSize.y(),                                                               //      deUint32                        height;
5047                 1u,                                                                                                             //      deUint32                        layers;
5048         };
5049         const Unique<VkFramebuffer>                             framebuffer                             (createFramebuffer(vk, vkDevice, &framebufferParams));
5050
5051         const VkCommandPoolCreateInfo                   cmdPoolParams                   =
5052         {
5053                 VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,                                     //      VkStructureType                 sType;
5054                 DE_NULL,                                                                                                        //      const void*                             pNext;
5055                 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,                                //      VkCmdPoolCreateFlags    flags;
5056                 queueFamilyIndex,                                                                                       //      deUint32                                queueFamilyIndex;
5057         };
5058         const Unique<VkCommandPool>                             cmdPool                                 (createCommandPool(vk, vkDevice, &cmdPoolParams));
5059
5060         // Command buffer
5061         const VkCommandBufferAllocateInfo               cmdBufParams                    =
5062         {
5063                 VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,                 //      VkStructureType                 sType;
5064                 DE_NULL,                                                                                                //      const void*                             pNext;
5065                 *cmdPool,                                                                                               //      VkCmdPool                               pool;
5066                 VK_COMMAND_BUFFER_LEVEL_PRIMARY,                                                //      VkCmdBufferLevel                level;
5067                 1u,                                                                                                             //      deUint32                                count;
5068         };
5069         const Unique<VkCommandBuffer>                   cmdBuf                                  (allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5070
5071         const VkCommandBufferBeginInfo                  cmdBufBeginParams               =
5072         {
5073                 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,                    //      VkStructureType                         sType;
5074                 DE_NULL,                                                                                                //      const void*                                     pNext;
5075                 (VkCommandBufferUsageFlags)0,
5076                 (const VkCommandBufferInheritanceInfo*)DE_NULL,
5077         };
5078
5079         // Record commands
5080         VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5081
5082         {
5083                 const VkMemoryBarrier           vertFlushBarrier        =
5084                 {
5085                         VK_STRUCTURE_TYPE_MEMORY_BARRIER,                       //      VkStructureType         sType;
5086                         DE_NULL,                                                                        //      const void*                     pNext;
5087                         VK_ACCESS_HOST_WRITE_BIT,                                       //      VkMemoryOutputFlags     outputMask;
5088                         VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,            //      VkMemoryInputFlags      inputMask;
5089                 };
5090                 const VkImageMemoryBarrier      colorAttBarrier         =
5091                 {
5092                         VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,         //      VkStructureType                 sType;
5093                         DE_NULL,                                                                        //      const void*                             pNext;
5094                         0u,                                                                                     //      VkMemoryOutputFlags             outputMask;
5095                         VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,           //      VkMemoryInputFlags              inputMask;
5096                         VK_IMAGE_LAYOUT_UNDEFINED,                                      //      VkImageLayout                   oldLayout;
5097                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,       //      VkImageLayout                   newLayout;
5098                         queueFamilyIndex,                                                       //      deUint32                                srcQueueFamilyIndex;
5099                         queueFamilyIndex,                                                       //      deUint32                                destQueueFamilyIndex;
5100                         *image,                                                                         //      VkImage                                 image;
5101                         {
5102                                 VK_IMAGE_ASPECT_COLOR_BIT,                                      //      VkImageAspect   aspect;
5103                                 0u,                                                                                     //      deUint32                baseMipLevel;
5104                                 1u,                                                                                     //      deUint32                mipLevels;
5105                                 0u,                                                                                     //      deUint32                baseArraySlice;
5106                                 1u,                                                                                     //      deUint32                arraySize;
5107                         }                                                                                       //      VkImageSubresourceRange subresourceRange;
5108                 };
5109                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 1, &vertFlushBarrier, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &colorAttBarrier);
5110         }
5111
5112         {
5113                 const VkClearValue                      clearValue              = makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5114                 const VkRenderPassBeginInfo     passBeginParams =
5115                 {
5116                         VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,                       //      VkStructureType         sType;
5117                         DE_NULL,                                                                                        //      const void*                     pNext;
5118                         *renderPass,                                                                            //      VkRenderPass            renderPass;
5119                         *framebuffer,                                                                           //      VkFramebuffer           framebuffer;
5120                         { { 0, 0 }, { renderSize.x(), renderSize.y() } },       //      VkRect2D                        renderArea;
5121                         1u,                                                                                                     //      deUint32                        clearValueCount;
5122                         &clearValue,                                                                            //      const VkClearValue*     pClearValues;
5123                 };
5124                 vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5125         }
5126
5127         vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5128         {
5129                 const VkDeviceSize bindingOffset = 0;
5130                 vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5131         }
5132         vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5133         vk.cmdEndRenderPass(*cmdBuf);
5134
5135         {
5136                 const VkImageMemoryBarrier      renderFinishBarrier     =
5137                 {
5138                         VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,         //      VkStructureType                 sType;
5139                         DE_NULL,                                                                        //      const void*                             pNext;
5140                         VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,           //      VkMemoryOutputFlags             outputMask;
5141                         VK_ACCESS_TRANSFER_READ_BIT,                            //      VkMemoryInputFlags              inputMask;
5142                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,       //      VkImageLayout                   oldLayout;
5143                         VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,           //      VkImageLayout                   newLayout;
5144                         queueFamilyIndex,                                                       //      deUint32                                srcQueueFamilyIndex;
5145                         queueFamilyIndex,                                                       //      deUint32                                destQueueFamilyIndex;
5146                         *image,                                                                         //      VkImage                                 image;
5147                         {
5148                                 VK_IMAGE_ASPECT_COLOR_BIT,                                      //      VkImageAspectFlags      aspectMask;
5149                                 0u,                                                                                     //      deUint32                        baseMipLevel;
5150                                 1u,                                                                                     //      deUint32                        mipLevels;
5151                                 0u,                                                                                     //      deUint32                        baseArraySlice;
5152                                 1u,                                                                                     //      deUint32                        arraySize;
5153                         }                                                                                       //      VkImageSubresourceRange subresourceRange;
5154                 };
5155                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &renderFinishBarrier);
5156         }
5157
5158         {
5159                 const VkBufferImageCopy copyParams      =
5160                 {
5161                         (VkDeviceSize)0u,                                               //      VkDeviceSize                    bufferOffset;
5162                         (deUint32)renderSize.x(),                               //      deUint32                                bufferRowLength;
5163                         (deUint32)renderSize.y(),                               //      deUint32                                bufferImageHeight;
5164                         {
5165                                 VK_IMAGE_ASPECT_COLOR_BIT,                              //      VkImageAspect           aspect;
5166                                 0u,                                                                             //      deUint32                        mipLevel;
5167                                 0u,                                                                             //      deUint32                        arrayLayer;
5168                                 1u,                                                                             //      deUint32                        arraySize;
5169                         },                                                                              //      VkImageSubresourceCopy  imageSubresource;
5170                         { 0u, 0u, 0u },                                                 //      VkOffset3D                              imageOffset;
5171                         { renderSize.x(), renderSize.y(), 1u }  //      VkExtent3D                              imageExtent;
5172                 };
5173                 vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5174         }
5175
5176         {
5177                 const VkBufferMemoryBarrier     copyFinishBarrier       =
5178                 {
5179                         VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,        //      VkStructureType         sType;
5180                         DE_NULL,                                                                        //      const void*                     pNext;
5181                         VK_ACCESS_TRANSFER_WRITE_BIT,                           //      VkMemoryOutputFlags     outputMask;
5182                         VK_ACCESS_HOST_READ_BIT,                                        //      VkMemoryInputFlags      inputMask;
5183                         queueFamilyIndex,                                                       //      deUint32                        srcQueueFamilyIndex;
5184                         queueFamilyIndex,                                                       //      deUint32                        destQueueFamilyIndex;
5185                         *readImageBuffer,                                                       //      VkBuffer                        buffer;
5186                         0u,                                                                                     //      VkDeviceSize            offset;
5187                         imageSizeBytes                                                          //      VkDeviceSize            size;
5188                 };
5189                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyFinishBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
5190         }
5191
5192         VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5193
5194         // Upload vertex data
5195         {
5196                 const VkMappedMemoryRange       range                   =
5197                 {
5198                         VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  //      VkStructureType sType;
5199                         DE_NULL,                                                                //      const void*             pNext;
5200                         vertexBufferMemory->getMemory(),                //      VkDeviceMemory  mem;
5201                         0,                                                                              //      VkDeviceSize    offset;
5202                         (VkDeviceSize)sizeof(vertexData),               //      VkDeviceSize    size;
5203                 };
5204                 void*                                           vertexBufPtr    = vertexBufferMemory->getHostPtr();
5205
5206                 deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5207                 VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5208         }
5209
5210         // Submit & wait for completion
5211         {
5212                 const VkFenceCreateInfo fenceParams     =
5213                 {
5214                         VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,    //      VkStructureType         sType;
5215                         DE_NULL,                                                                //      const void*                     pNext;
5216                         0u,                                                                             //      VkFenceCreateFlags      flags;
5217                 };
5218                 const Unique<VkFence>   fence           (createFence(vk, vkDevice, &fenceParams));
5219                 const VkSubmitInfo              submitInfo      =
5220                 {
5221                         VK_STRUCTURE_TYPE_SUBMIT_INFO,
5222                         DE_NULL,
5223                         0u,
5224                         (const VkSemaphore*)DE_NULL,
5225                         (const VkPipelineStageFlags*)DE_NULL,
5226                         1u,
5227                         &cmdBuf.get(),
5228                         0u,
5229                         (const VkSemaphore*)DE_NULL,
5230                 };
5231
5232                 VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5233                 VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5234         }
5235
5236         const void* imagePtr    = readImageBufferMemory->getHostPtr();
5237         const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5238                                                                                                   renderSize.x(), renderSize.y(), 1, imagePtr);
5239         // Log image
5240         {
5241                 const VkMappedMemoryRange       range           =
5242                 {
5243                         VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  //      VkStructureType sType;
5244                         DE_NULL,                                                                //      const void*             pNext;
5245                         readImageBufferMemory->getMemory(),             //      VkDeviceMemory  mem;
5246                         0,                                                                              //      VkDeviceSize    offset;
5247                         imageSizeBytes,                                                 //      VkDeviceSize    size;
5248                 };
5249
5250                 VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5251                 context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5252         }
5253
5254         const RGBA threshold(1, 1, 1, 1);
5255         const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5256         if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5257                 return TestStatus::fail("Upper left corner mismatch");
5258
5259         const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5260         if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5261                 return TestStatus::fail("Upper right corner mismatch");
5262
5263         const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5264         if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5265                 return TestStatus::fail("Lower left corner mismatch");
5266
5267         const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5268         if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5269                 return TestStatus::fail("Lower right corner mismatch");
5270
5271         return TestStatus::pass("Rendered output matches input");
5272 }
5273
5274 void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5275 {
5276         const ShaderElement             vertFragPipelineStages[]                =
5277         {
5278                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5279                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5280         };
5281
5282         const ShaderElement             tessPipelineStages[]                    =
5283         {
5284                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5285                 ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5286                 ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5287                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5288         };
5289
5290         const ShaderElement             geomPipelineStages[]                            =
5291         {
5292                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5293                 ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5294                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5295         };
5296
5297         StageToSpecConstantMap  specConstantMap;
5298
5299         specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5300         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5301                                                                                                  createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5302
5303         specConstantMap.clear();
5304         specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5305         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5306                                                                                                  createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5307
5308         specConstantMap.clear();
5309         specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5310         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5311                                                                                                  createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5312
5313         specConstantMap.clear();
5314         specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5315         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5316                                                                                                  createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5317
5318         specConstantMap.clear();
5319         specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5320         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5321                                                                                                  createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5322 }
5323
5324 inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5325 {
5326         vector<deInt32> noSpecConstants;
5327         createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5328 }
5329
5330 } // anonymous
5331
5332 tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5333 {
5334         struct NameCodePair { string name, code; };
5335         RGBA                                                    defaultColors[4];
5336         de::MovePtr<tcu::TestCaseGroup> opSourceTests                   (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5337         const std::string                               opsourceGLSLWithFile    = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5338         map<string, string>                             fragments                               = passthruFragments();
5339         const NameCodePair                              tests[]                                 =
5340         {
5341                 {"unknown", "OpSource Unknown 321"},
5342                 {"essl", "OpSource ESSL 310"},
5343                 {"glsl", "OpSource GLSL 450"},
5344                 {"opencl_cpp", "OpSource OpenCL_CPP 120"},
5345                 {"opencl_c", "OpSource OpenCL_C 120"},
5346                 {"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5347                 {"file", opsourceGLSLWithFile},
5348                 {"source", opsourceGLSLWithFile + "\"void main(){}\""},
5349                 // Longest possible source string: SPIR-V limits instructions to 65535
5350                 // words, of which the first 4 are opsourceGLSLWithFile; the rest will
5351                 // contain 65530 UTF8 characters (one word each) plus one last word
5352                 // containing 3 ASCII characters and \0.
5353                 {"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5354         };
5355
5356         getDefaultColors(defaultColors);
5357         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5358         {
5359                 fragments["debug"] = tests[testNdx].code;
5360                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5361         }
5362
5363         return opSourceTests.release();
5364 }
5365
5366 tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5367 {
5368         struct NameCodePair { string name, code; };
5369         RGBA                                                            defaultColors[4];
5370         de::MovePtr<tcu::TestCaseGroup>         opSourceTests           (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5371         map<string, string>                                     fragments                       = passthruFragments();
5372         const std::string                                       opsource                        = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5373         const NameCodePair                                      tests[]                         =
5374         {
5375                 {"empty", opsource + "OpSourceContinued \"\""},
5376                 {"short", opsource + "OpSourceContinued \"abcde\""},
5377                 {"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5378                 // Longest possible source string: SPIR-V limits instructions to 65535
5379                 // words, of which the first one is OpSourceContinued/length; the rest
5380                 // will contain 65533 UTF8 characters (one word each) plus one last word
5381                 // containing 3 ASCII characters and \0.
5382                 {"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5383         };
5384
5385         getDefaultColors(defaultColors);
5386         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5387         {
5388                 fragments["debug"] = tests[testNdx].code;
5389                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5390         }
5391
5392         return opSourceTests.release();
5393 }
5394
5395 tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5396 {
5397         RGBA                                                             defaultColors[4];
5398         de::MovePtr<tcu::TestCaseGroup>          opLineTests             (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5399         map<string, string>                                      fragments;
5400         getDefaultColors(defaultColors);
5401         fragments["debug"]                      =
5402                 "%name = OpString \"name\"\n";
5403
5404         fragments["pre_main"]   =
5405                 "OpNoLine\n"
5406                 "OpNoLine\n"
5407                 "OpLine %name 1 1\n"
5408                 "OpNoLine\n"
5409                 "OpLine %name 1 1\n"
5410                 "OpLine %name 1 1\n"
5411                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5412                 "OpNoLine\n"
5413                 "OpLine %name 1 1\n"
5414                 "OpNoLine\n"
5415                 "OpLine %name 1 1\n"
5416                 "OpLine %name 1 1\n"
5417                 "%second_param1 = OpFunctionParameter %v4f32\n"
5418                 "OpNoLine\n"
5419                 "OpNoLine\n"
5420                 "%label_secondfunction = OpLabel\n"
5421                 "OpNoLine\n"
5422                 "OpReturnValue %second_param1\n"
5423                 "OpFunctionEnd\n"
5424                 "OpNoLine\n"
5425                 "OpNoLine\n";
5426
5427         fragments["testfun"]            =
5428                 // A %test_code function that returns its argument unchanged.
5429                 "OpNoLine\n"
5430                 "OpNoLine\n"
5431                 "OpLine %name 1 1\n"
5432                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5433                 "OpNoLine\n"
5434                 "%param1 = OpFunctionParameter %v4f32\n"
5435                 "OpNoLine\n"
5436                 "OpNoLine\n"
5437                 "%label_testfun = OpLabel\n"
5438                 "OpNoLine\n"
5439                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5440                 "OpReturnValue %val1\n"
5441                 "OpFunctionEnd\n"
5442                 "OpLine %name 1 1\n"
5443                 "OpNoLine\n";
5444
5445         createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5446
5447         return opLineTests.release();
5448 }
5449
5450
5451 tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5452 {
5453         RGBA                                                                                                    defaultColors[4];
5454         de::MovePtr<tcu::TestCaseGroup>                                                 opLineTests                     (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5455         map<string, string>                                                                             fragments;
5456         std::vector<std::pair<std::string, std::string> >               problemStrings;
5457
5458         problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5459         problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5460         problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5461         getDefaultColors(defaultColors);
5462
5463         fragments["debug"]                      =
5464                 "%other_name = OpString \"other_name\"\n";
5465
5466         fragments["pre_main"]   =
5467                 "OpLine %file_name 32 0\n"
5468                 "OpLine %file_name 32 32\n"
5469                 "OpLine %file_name 32 40\n"
5470                 "OpLine %other_name 32 40\n"
5471                 "OpLine %other_name 0 100\n"
5472                 "OpLine %other_name 0 4294967295\n"
5473                 "OpLine %other_name 4294967295 0\n"
5474                 "OpLine %other_name 32 40\n"
5475                 "OpLine %file_name 0 0\n"
5476                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5477                 "OpLine %file_name 1 0\n"
5478                 "%second_param1 = OpFunctionParameter %v4f32\n"
5479                 "OpLine %file_name 1 3\n"
5480                 "OpLine %file_name 1 2\n"
5481                 "%label_secondfunction = OpLabel\n"
5482                 "OpLine %file_name 0 2\n"
5483                 "OpReturnValue %second_param1\n"
5484                 "OpFunctionEnd\n"
5485                 "OpLine %file_name 0 2\n"
5486                 "OpLine %file_name 0 2\n";
5487
5488         fragments["testfun"]            =
5489                 // A %test_code function that returns its argument unchanged.
5490                 "OpLine %file_name 1 0\n"
5491                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5492                 "OpLine %file_name 16 330\n"
5493                 "%param1 = OpFunctionParameter %v4f32\n"
5494                 "OpLine %file_name 14 442\n"
5495                 "%label_testfun = OpLabel\n"
5496                 "OpLine %file_name 11 1024\n"
5497                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5498                 "OpLine %file_name 2 97\n"
5499                 "OpReturnValue %val1\n"
5500                 "OpFunctionEnd\n"
5501                 "OpLine %file_name 5 32\n";
5502
5503         for (size_t i = 0; i < problemStrings.size(); ++i)
5504         {
5505                 map<string, string> testFragments = fragments;
5506                 testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5507                 createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5508         }
5509
5510         return opLineTests.release();
5511 }
5512
5513 tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5514 {
5515         de::MovePtr<tcu::TestCaseGroup> opConstantNullTests             (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5516         RGBA                                                    colors[4];
5517
5518
5519         const char                                              functionStart[] =
5520                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5521                 "%param1 = OpFunctionParameter %v4f32\n"
5522                 "%lbl    = OpLabel\n";
5523
5524         const char                                              functionEnd[]   =
5525                 "OpReturnValue %transformed_param\n"
5526                 "OpFunctionEnd\n";
5527
5528         struct NameConstantsCode
5529         {
5530                 string name;
5531                 string constants;
5532                 string code;
5533         };
5534
5535         NameConstantsCode tests[] =
5536         {
5537                 {
5538                         "vec4",
5539                         "%cnull = OpConstantNull %v4f32\n",
5540                         "%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5541                 },
5542                 {
5543                         "float",
5544                         "%cnull = OpConstantNull %f32\n",
5545                         "%vp = OpVariable %fp_v4f32 Function\n"
5546                         "%v  = OpLoad %v4f32 %vp\n"
5547                         "%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5548                         "%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5549                         "%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5550                         "%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5551                         "%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5552                 },
5553                 {
5554                         "bool",
5555                         "%cnull             = OpConstantNull %bool\n",
5556                         "%v                 = OpVariable %fp_v4f32 Function\n"
5557                         "                     OpStore %v %param1\n"
5558                         "                     OpSelectionMerge %false_label None\n"
5559                         "                     OpBranchConditional %cnull %true_label %false_label\n"
5560                         "%true_label        = OpLabel\n"
5561                         "                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5562                         "                     OpBranch %false_label\n"
5563                         "%false_label       = OpLabel\n"
5564                         "%transformed_param = OpLoad %v4f32 %v\n"
5565                 },
5566                 {
5567                         "i32",
5568                         "%cnull             = OpConstantNull %i32\n",
5569                         "%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5570                         "%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5571                         "                     OpSelectionMerge %false_label None\n"
5572                         "                     OpBranchConditional %b %true_label %false_label\n"
5573                         "%true_label        = OpLabel\n"
5574                         "                     OpStore %v %param1\n"
5575                         "                     OpBranch %false_label\n"
5576                         "%false_label       = OpLabel\n"
5577                         "%transformed_param = OpLoad %v4f32 %v\n"
5578                 },
5579                 {
5580                         "struct",
5581                         "%stype             = OpTypeStruct %f32 %v4f32\n"
5582                         "%fp_stype          = OpTypePointer Function %stype\n"
5583                         "%cnull             = OpConstantNull %stype\n",
5584                         "%v                 = OpVariable %fp_stype Function %cnull\n"
5585                         "%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5586                         "%f_val             = OpLoad %v4f32 %f\n"
5587                         "%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5588                 },
5589                 {
5590                         "array",
5591                         "%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5592                         "%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5593                         "%cnull             = OpConstantNull %a4_v4f32\n",
5594                         "%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5595                         "%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5596                         "%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5597                         "%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5598                         "%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5599                         "%f_val             = OpLoad %v4f32 %f\n"
5600                         "%f1_val            = OpLoad %v4f32 %f1\n"
5601                         "%f2_val            = OpLoad %v4f32 %f2\n"
5602                         "%f3_val            = OpLoad %v4f32 %f3\n"
5603                         "%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5604                         "%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5605                         "%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5606                         "%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5607                 },
5608                 {
5609                         "matrix",
5610                         "%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5611                         "%cnull             = OpConstantNull %mat4x4_f32\n",
5612                         // Our null matrix * any vector should result in a zero vector.
5613                         "%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5614                         "%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5615                 }
5616         };
5617
5618         getHalfColorsFullAlpha(colors);
5619
5620         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5621         {
5622                 map<string, string> fragments;
5623                 fragments["pre_main"] = tests[testNdx].constants;
5624                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5625                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5626         }
5627         return opConstantNullTests.release();
5628 }
5629 tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5630 {
5631         de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests                (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5632         RGBA                                                    inputColors[4];
5633         RGBA                                                    outputColors[4];
5634
5635
5636         const char                                              functionStart[]  =
5637                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5638                 "%param1 = OpFunctionParameter %v4f32\n"
5639                 "%lbl    = OpLabel\n";
5640
5641         const char                                              functionEnd[]           =
5642                 "OpReturnValue %transformed_param\n"
5643                 "OpFunctionEnd\n";
5644
5645         struct NameConstantsCode
5646         {
5647                 string name;
5648                 string constants;
5649                 string code;
5650         };
5651
5652         NameConstantsCode tests[] =
5653         {
5654                 {
5655                         "vec4",
5656
5657                         "%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5658                         "%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5659                 },
5660                 {
5661                         "struct",
5662
5663                         "%stype             = OpTypeStruct %v4f32 %f32\n"
5664                         "%fp_stype          = OpTypePointer Function %stype\n"
5665                         "%f32_n_1           = OpConstant %f32 -1.0\n"
5666                         "%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5667                         "%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5668                         "%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5669
5670                         "%v                 = OpVariable %fp_stype Function %cval\n"
5671                         "%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5672                         "%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5673                         "%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5674                         "%f32_val           = OpLoad %f32 %f32_ptr\n"
5675                         "%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5676                         "%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5677                         "%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5678                 },
5679                 {
5680                         // [1|0|0|0.5] [x] = x + 0.5
5681                         // [0|1|0|0.5] [y] = y + 0.5
5682                         // [0|0|1|0.5] [z] = z + 0.5
5683                         // [0|0|0|1  ] [1] = 1
5684                         "matrix",
5685
5686                         "%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5687                     "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5688                     "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5689                     "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5690                     "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5691                         "%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5692
5693                         "%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5694                 },
5695                 {
5696                         "array",
5697
5698                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5699                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5700                         "%f32_n_1             = OpConstant %f32 -1.0\n"
5701                         "%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5702                         "%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5703
5704                         "%v                   = OpVariable %fp_a4f32 Function %carr\n"
5705                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5706                         "%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5707                         "%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5708                         "%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5709                         "%f_val               = OpLoad %f32 %f\n"
5710                         "%f1_val              = OpLoad %f32 %f1\n"
5711                         "%f2_val              = OpLoad %f32 %f2\n"
5712                         "%f3_val              = OpLoad %f32 %f3\n"
5713                         "%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5714                         "%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5715                         "%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5716                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5717                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5718                 },
5719                 {
5720                         //
5721                         // [
5722                         //   {
5723                         //      0.0,
5724                         //      [ 1.0, 1.0, 1.0, 1.0]
5725                         //   },
5726                         //   {
5727                         //      1.0,
5728                         //      [ 0.0, 0.5, 0.0, 0.0]
5729                         //   }, //     ^^^
5730                         //   {
5731                         //      0.0,
5732                         //      [ 1.0, 1.0, 1.0, 1.0]
5733                         //   }
5734                         // ]
5735                         "array_of_struct_of_array",
5736
5737                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5738                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5739                         "%stype               = OpTypeStruct %f32 %a4f32\n"
5740                         "%a3stype             = OpTypeArray %stype %c_u32_3\n"
5741                         "%fp_a3stype          = OpTypePointer Function %a3stype\n"
5742                         "%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5743                         "%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5744                         "%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5745                         "%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5746                         "%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5747
5748                         "%v                   = OpVariable %fp_a3stype Function %carr\n"
5749                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5750                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5751                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5752                 }
5753         };
5754
5755         getHalfColorsFullAlpha(inputColors);
5756         outputColors[0] = RGBA(255, 255, 255, 255);
5757         outputColors[1] = RGBA(255, 127, 127, 255);
5758         outputColors[2] = RGBA(127, 255, 127, 255);
5759         outputColors[3] = RGBA(127, 127, 255, 255);
5760
5761         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5762         {
5763                 map<string, string> fragments;
5764                 fragments["pre_main"] = tests[testNdx].constants;
5765                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5766                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5767         }
5768         return opConstantCompositeTests.release();
5769 }
5770
5771 tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5772 {
5773         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5774         RGBA                                                    inputColors[4];
5775         RGBA                                                    outputColors[4];
5776         map<string, string>                             fragments;
5777
5778         // vec4 test_code(vec4 param) {
5779         //   vec4 result = param;
5780         //   for (int i = 0; i < 4; ++i) {
5781         //     if (i == 0) result[i] = 0.;
5782         //     else        result[i] = 1. - result[i];
5783         //   }
5784         //   return result;
5785         // }
5786         const char                                              function[]                      =
5787                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5788                 "%param1    = OpFunctionParameter %v4f32\n"
5789                 "%lbl       = OpLabel\n"
5790                 "%iptr      = OpVariable %fp_i32 Function\n"
5791                 "             OpStore %iptr %c_i32_0\n"
5792                 "%result    = OpVariable %fp_v4f32 Function\n"
5793                 "             OpStore %result %param1\n"
5794                 "             OpBranch %loop\n"
5795
5796                 // Loop entry block.
5797                 "%loop      = OpLabel\n"
5798                 "%ival      = OpLoad %i32 %iptr\n"
5799                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5800                 "             OpLoopMerge %exit %loop None\n"
5801                 "             OpBranchConditional %lt_4 %if_entry %exit\n"
5802
5803                 // Merge block for loop.
5804                 "%exit      = OpLabel\n"
5805                 "%ret       = OpLoad %v4f32 %result\n"
5806                 "             OpReturnValue %ret\n"
5807
5808                 // If-statement entry block.
5809                 "%if_entry  = OpLabel\n"
5810                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
5811                 "%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5812                 "             OpSelectionMerge %if_exit None\n"
5813                 "             OpBranchConditional %eq_0 %if_true %if_false\n"
5814
5815                 // False branch for if-statement.
5816                 "%if_false  = OpLabel\n"
5817                 "%val       = OpLoad %f32 %loc\n"
5818                 "%sub       = OpFSub %f32 %c_f32_1 %val\n"
5819                 "             OpStore %loc %sub\n"
5820                 "             OpBranch %if_exit\n"
5821
5822                 // Merge block for if-statement.
5823                 "%if_exit   = OpLabel\n"
5824                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5825                 "             OpStore %iptr %ival_next\n"
5826                 "             OpBranch %loop\n"
5827
5828                 // True branch for if-statement.
5829                 "%if_true   = OpLabel\n"
5830                 "             OpStore %loc %c_f32_0\n"
5831                 "             OpBranch %if_exit\n"
5832
5833                 "             OpFunctionEnd\n";
5834
5835         fragments["testfun"]    = function;
5836
5837         inputColors[0]                  = RGBA(127, 127, 127, 0);
5838         inputColors[1]                  = RGBA(127, 0,   0,   0);
5839         inputColors[2]                  = RGBA(0,   127, 0,   0);
5840         inputColors[3]                  = RGBA(0,   0,   127, 0);
5841
5842         outputColors[0]                 = RGBA(0, 128, 128, 255);
5843         outputColors[1]                 = RGBA(0, 255, 255, 255);
5844         outputColors[2]                 = RGBA(0, 128, 255, 255);
5845         outputColors[3]                 = RGBA(0, 255, 128, 255);
5846
5847         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5848
5849         return group.release();
5850 }
5851
5852 tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5853 {
5854         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5855         RGBA                                                    inputColors[4];
5856         RGBA                                                    outputColors[4];
5857         map<string, string>                             fragments;
5858
5859         const char                                              typesAndConstants[]     =
5860                 "%c_f32_p2  = OpConstant %f32 0.2\n"
5861                 "%c_f32_p4  = OpConstant %f32 0.4\n"
5862                 "%c_f32_p6  = OpConstant %f32 0.6\n"
5863                 "%c_f32_p8  = OpConstant %f32 0.8\n";
5864
5865         // vec4 test_code(vec4 param) {
5866         //   vec4 result = param;
5867         //   for (int i = 0; i < 4; ++i) {
5868         //     switch (i) {
5869         //       case 0: result[i] += .2; break;
5870         //       case 1: result[i] += .6; break;
5871         //       case 2: result[i] += .4; break;
5872         //       case 3: result[i] += .8; break;
5873         //       default: break; // unreachable
5874         //     }
5875         //   }
5876         //   return result;
5877         // }
5878         const char                                              function[]                      =
5879                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5880                 "%param1    = OpFunctionParameter %v4f32\n"
5881                 "%lbl       = OpLabel\n"
5882                 "%iptr      = OpVariable %fp_i32 Function\n"
5883                 "             OpStore %iptr %c_i32_0\n"
5884                 "%result    = OpVariable %fp_v4f32 Function\n"
5885                 "             OpStore %result %param1\n"
5886                 "             OpBranch %loop\n"
5887
5888                 // Loop entry block.
5889                 "%loop      = OpLabel\n"
5890                 "%ival      = OpLoad %i32 %iptr\n"
5891                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5892                 "             OpLoopMerge %exit %loop None\n"
5893                 "             OpBranchConditional %lt_4 %switch_entry %exit\n"
5894
5895                 // Merge block for loop.
5896                 "%exit      = OpLabel\n"
5897                 "%ret       = OpLoad %v4f32 %result\n"
5898                 "             OpReturnValue %ret\n"
5899
5900                 // Switch-statement entry block.
5901                 "%switch_entry   = OpLabel\n"
5902                 "%loc            = OpAccessChain %fp_f32 %result %ival\n"
5903                 "%val            = OpLoad %f32 %loc\n"
5904                 "                  OpSelectionMerge %switch_exit None\n"
5905                 "                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5906
5907                 "%case2          = OpLabel\n"
5908                 "%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5909                 "                  OpStore %loc %addp4\n"
5910                 "                  OpBranch %switch_exit\n"
5911
5912                 "%switch_default = OpLabel\n"
5913                 "                  OpUnreachable\n"
5914
5915                 "%case3          = OpLabel\n"
5916                 "%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5917                 "                  OpStore %loc %addp8\n"
5918                 "                  OpBranch %switch_exit\n"
5919
5920                 "%case0          = OpLabel\n"
5921                 "%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5922                 "                  OpStore %loc %addp2\n"
5923                 "                  OpBranch %switch_exit\n"
5924
5925                 // Merge block for switch-statement.
5926                 "%switch_exit    = OpLabel\n"
5927                 "%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5928                 "                  OpStore %iptr %ival_next\n"
5929                 "                  OpBranch %loop\n"
5930
5931                 "%case1          = OpLabel\n"
5932                 "%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5933                 "                  OpStore %loc %addp6\n"
5934                 "                  OpBranch %switch_exit\n"
5935
5936                 "                  OpFunctionEnd\n";
5937
5938         fragments["pre_main"]   = typesAndConstants;
5939         fragments["testfun"]    = function;
5940
5941         inputColors[0]                  = RGBA(127, 27,  127, 51);
5942         inputColors[1]                  = RGBA(127, 0,   0,   51);
5943         inputColors[2]                  = RGBA(0,   27,  0,   51);
5944         inputColors[3]                  = RGBA(0,   0,   127, 51);
5945
5946         outputColors[0]                 = RGBA(178, 180, 229, 255);
5947         outputColors[1]                 = RGBA(178, 153, 102, 255);
5948         outputColors[2]                 = RGBA(51,  180, 102, 255);
5949         outputColors[3]                 = RGBA(51,  153, 229, 255);
5950
5951         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5952
5953         return group.release();
5954 }
5955
5956 tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5957 {
5958         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5959         RGBA                                                    inputColors[4];
5960         RGBA                                                    outputColors[4];
5961         map<string, string>                             fragments;
5962
5963         const char                                              decorations[]           =
5964                 "OpDecorate %array_group         ArrayStride 4\n"
5965                 "OpDecorate %struct_member_group Offset 0\n"
5966                 "%array_group         = OpDecorationGroup\n"
5967                 "%struct_member_group = OpDecorationGroup\n"
5968
5969                 "OpDecorate %group1 RelaxedPrecision\n"
5970                 "OpDecorate %group3 RelaxedPrecision\n"
5971                 "OpDecorate %group3 Invariant\n"
5972                 "OpDecorate %group3 Restrict\n"
5973                 "%group0 = OpDecorationGroup\n"
5974                 "%group1 = OpDecorationGroup\n"
5975                 "%group3 = OpDecorationGroup\n";
5976
5977         const char                                              typesAndConstants[]     =
5978                 "%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5979                 "%struct1   = OpTypeStruct %a3f32\n"
5980                 "%struct2   = OpTypeStruct %a3f32\n"
5981                 "%fp_struct1 = OpTypePointer Function %struct1\n"
5982                 "%fp_struct2 = OpTypePointer Function %struct2\n"
5983                 "%c_f32_2    = OpConstant %f32 2.\n"
5984                 "%c_f32_n2   = OpConstant %f32 -2.\n"
5985
5986                 "%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5987                 "%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5988                 "%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5989                 "%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5990
5991         const char                                              function[]                      =
5992                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5993                 "%param     = OpFunctionParameter %v4f32\n"
5994                 "%entry     = OpLabel\n"
5995                 "%result    = OpVariable %fp_v4f32 Function\n"
5996                 "             OpStore %result %param\n"
5997                 "%v_struct1 = OpVariable %fp_struct1 Function\n"
5998                 "             OpStore %v_struct1 %c_struct1\n"
5999                 "%v_struct2 = OpVariable %fp_struct2 Function\n"
6000                 "             OpStore %v_struct2 %c_struct2\n"
6001                 "%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
6002                 "%val1      = OpLoad %f32 %ptr1\n"
6003                 "%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6004                 "%val2      = OpLoad %f32 %ptr2\n"
6005                 "%addvalues = OpFAdd %f32 %val1 %val2\n"
6006                 "%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6007                 "%val       = OpLoad %f32 %ptr\n"
6008                 "%addresult = OpFAdd %f32 %addvalues %val\n"
6009                 "             OpStore %ptr %addresult\n"
6010                 "%ret       = OpLoad %v4f32 %result\n"
6011                 "             OpReturnValue %ret\n"
6012                 "             OpFunctionEnd\n";
6013
6014         struct CaseNameDecoration
6015         {
6016                 string name;
6017                 string decoration;
6018         };
6019
6020         CaseNameDecoration tests[] =
6021         {
6022                 {
6023                         "same_decoration_group_on_multiple_types",
6024                         "OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6025                 },
6026                 {
6027                         "empty_decoration_group",
6028                         "OpGroupDecorate %group0      %a3f32\n"
6029                         "OpGroupDecorate %group0      %result\n"
6030                 },
6031                 {
6032                         "one_element_decoration_group",
6033                         "OpGroupDecorate %array_group %a3f32\n"
6034                 },
6035                 {
6036                         "multiple_elements_decoration_group",
6037                         "OpGroupDecorate %group3      %v_struct1\n"
6038                 },
6039                 {
6040                         "multiple_decoration_groups_on_same_variable",
6041                         "OpGroupDecorate %group0      %v_struct2\n"
6042                         "OpGroupDecorate %group1      %v_struct2\n"
6043                         "OpGroupDecorate %group3      %v_struct2\n"
6044                 },
6045                 {
6046                         "same_decoration_group_multiple_times",
6047                         "OpGroupDecorate %group1      %addvalues\n"
6048                         "OpGroupDecorate %group1      %addvalues\n"
6049                         "OpGroupDecorate %group1      %addvalues\n"
6050                 },
6051
6052         };
6053
6054         getHalfColorsFullAlpha(inputColors);
6055         getHalfColorsFullAlpha(outputColors);
6056
6057         for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6058         {
6059                 fragments["decoration"] = decorations + tests[idx].decoration;
6060                 fragments["pre_main"]   = typesAndConstants;
6061                 fragments["testfun"]    = function;
6062
6063                 createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6064         }
6065
6066         return group.release();
6067 }
6068
6069 struct SpecConstantTwoIntGraphicsCase
6070 {
6071         const char*             caseName;
6072         const char*             scDefinition0;
6073         const char*             scDefinition1;
6074         const char*             scResultType;
6075         const char*             scOperation;
6076         deInt32                 scActualValue0;
6077         deInt32                 scActualValue1;
6078         const char*             resultOperation;
6079         RGBA                    expectedColors[4];
6080
6081                                         SpecConstantTwoIntGraphicsCase (const char* name,
6082                                                                                         const char* definition0,
6083                                                                                         const char* definition1,
6084                                                                                         const char* resultType,
6085                                                                                         const char* operation,
6086                                                                                         deInt32         value0,
6087                                                                                         deInt32         value1,
6088                                                                                         const char* resultOp,
6089                                                                                         const RGBA      (&output)[4])
6090                                                 : caseName                      (name)
6091                                                 , scDefinition0         (definition0)
6092                                                 , scDefinition1         (definition1)
6093                                                 , scResultType          (resultType)
6094                                                 , scOperation           (operation)
6095                                                 , scActualValue0        (value0)
6096                                                 , scActualValue1        (value1)
6097                                                 , resultOperation       (resultOp)
6098         {
6099                 expectedColors[0] = output[0];
6100                 expectedColors[1] = output[1];
6101                 expectedColors[2] = output[2];
6102                 expectedColors[3] = output[3];
6103         }
6104 };
6105
6106 tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6107 {
6108         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6109         vector<SpecConstantTwoIntGraphicsCase>  cases;
6110         RGBA                                                    inputColors[4];
6111         RGBA                                                    outputColors0[4];
6112         RGBA                                                    outputColors1[4];
6113         RGBA                                                    outputColors2[4];
6114
6115         const char      decorations1[]                  =
6116                 "OpDecorate %sc_0  SpecId 0\n"
6117                 "OpDecorate %sc_1  SpecId 1\n";
6118
6119         const char      typesAndConstants1[]    =
6120                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
6121                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
6122                 "%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6123
6124         const char      function1[]                             =
6125                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6126                 "%param     = OpFunctionParameter %v4f32\n"
6127                 "%label     = OpLabel\n"
6128                 "%result    = OpVariable %fp_v4f32 Function\n"
6129                 "             OpStore %result %param\n"
6130                 "%gen       = ${GEN_RESULT}\n"
6131                 "%index     = OpIAdd %i32 %gen %c_i32_1\n"
6132                 "%loc       = OpAccessChain %fp_f32 %result %index\n"
6133                 "%val       = OpLoad %f32 %loc\n"
6134                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6135                 "             OpStore %loc %add\n"
6136                 "%ret       = OpLoad %v4f32 %result\n"
6137                 "             OpReturnValue %ret\n"
6138                 "             OpFunctionEnd\n";
6139
6140         inputColors[0] = RGBA(127, 127, 127, 255);
6141         inputColors[1] = RGBA(127, 0,   0,   255);
6142         inputColors[2] = RGBA(0,   127, 0,   255);
6143         inputColors[3] = RGBA(0,   0,   127, 255);
6144
6145         // Derived from inputColors[x] by adding 128 to inputColors[x][0].
6146         outputColors0[0] = RGBA(255, 127, 127, 255);
6147         outputColors0[1] = RGBA(255, 0,   0,   255);
6148         outputColors0[2] = RGBA(128, 127, 0,   255);
6149         outputColors0[3] = RGBA(128, 0,   127, 255);
6150
6151         // Derived from inputColors[x] by adding 128 to inputColors[x][1].
6152         outputColors1[0] = RGBA(127, 255, 127, 255);
6153         outputColors1[1] = RGBA(127, 128, 0,   255);
6154         outputColors1[2] = RGBA(0,   255, 0,   255);
6155         outputColors1[3] = RGBA(0,   128, 127, 255);
6156
6157         // Derived from inputColors[x] by adding 128 to inputColors[x][2].
6158         outputColors2[0] = RGBA(127, 127, 255, 255);
6159         outputColors2[1] = RGBA(127, 0,   128, 255);
6160         outputColors2[2] = RGBA(0,   127, 128, 255);
6161         outputColors2[3] = RGBA(0,   0,   255, 255);
6162
6163         const char addZeroToSc[]                = "OpIAdd %i32 %c_i32_0 %sc_op";
6164         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6165         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6166
6167         cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                             19,             -20,    addZeroToSc,            outputColors0));
6168         cases.push_back(SpecConstantTwoIntGraphicsCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                             19,             20,             addZeroToSc,            outputColors0));
6169         cases.push_back(SpecConstantTwoIntGraphicsCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                             -1,             -1,             addZeroToSc,            outputColors2));
6170         cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                             -126,   126,    addZeroToSc,            outputColors0));
6171         cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                             126,    126,    addZeroToSc,            outputColors2));
6172         cases.push_back(SpecConstantTwoIntGraphicsCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6173         cases.push_back(SpecConstantTwoIntGraphicsCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6174         cases.push_back(SpecConstantTwoIntGraphicsCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                             1001,   500,    addZeroToSc,            outputColors2));
6175         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                             0x33,   0x0d,   addZeroToSc,            outputColors2));
6176         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                             0,              1,              addZeroToSc,            outputColors2));
6177         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                             0x2e,   0x2f,   addZeroToSc,            outputColors2));
6178         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                             2,              1,              addZeroToSc,            outputColors2));
6179         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                             -4,             2,              addZeroToSc,            outputColors0));
6180         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                             1,              0,              addZeroToSc,            outputColors2));
6181         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                             -20,    -10,    selectTrueUsingSc,      outputColors2));
6182         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                             10,             20,             selectTrueUsingSc,      outputColors2));
6183         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6184         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                             10,             5,              selectTrueUsingSc,      outputColors2));
6185         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                             -10,    -10,    selectTrueUsingSc,      outputColors2));
6186         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                             50,             100,    selectTrueUsingSc,      outputColors2));
6187         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6188         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                             10,             10,             selectTrueUsingSc,      outputColors2));
6189         cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                             42,             24,             selectFalseUsingSc,     outputColors2));
6190         cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6191         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6192         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6193         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6194         cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                                   -1,             0,              addZeroToSc,            outputColors2));
6195         cases.push_back(SpecConstantTwoIntGraphicsCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                                   -2,             0,              addZeroToSc,            outputColors2));
6196         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                                   1,              0,              selectFalseUsingSc,     outputColors2));
6197         cases.push_back(SpecConstantTwoIntGraphicsCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %c_i32_0",    1,              1,              addZeroToSc,            outputColors2));
6198         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6199         // \todo[2015-12-1 antiagainst] OpQuantizeToF16
6200
6201         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6202         {
6203                 map<string, string>     specializations;
6204                 map<string, string>     fragments;
6205                 vector<deInt32>         specConstants;
6206
6207                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
6208                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
6209                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
6210                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
6211                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
6212
6213                 fragments["decoration"]                         = tcu::StringTemplate(decorations1).specialize(specializations);
6214                 fragments["pre_main"]                           = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6215                 fragments["testfun"]                            = tcu::StringTemplate(function1).specialize(specializations);
6216
6217                 specConstants.push_back(cases[caseNdx].scActualValue0);
6218                 specConstants.push_back(cases[caseNdx].scActualValue1);
6219
6220                 createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6221         }
6222
6223         const char      decorations2[]                  =
6224                 "OpDecorate %sc_0  SpecId 0\n"
6225                 "OpDecorate %sc_1  SpecId 1\n"
6226                 "OpDecorate %sc_2  SpecId 2\n";
6227
6228         const char      typesAndConstants2[]    =
6229                 "%v3i32     = OpTypeVector %i32 3\n"
6230
6231                 "%sc_0      = OpSpecConstant %i32 0\n"
6232                 "%sc_1      = OpSpecConstant %i32 0\n"
6233                 "%sc_2      = OpSpecConstant %i32 0\n"
6234
6235                 "%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6236                 "%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6237                 "%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6238                 "%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6239                 "%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6240                 "%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6241                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6242                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6243                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6244                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6245                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6246
6247         const char      function2[]                             =
6248                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6249                 "%param     = OpFunctionParameter %v4f32\n"
6250                 "%label     = OpLabel\n"
6251                 "%result    = OpVariable %fp_v4f32 Function\n"
6252                 "             OpStore %result %param\n"
6253                 "%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6254                 "%val       = OpLoad %f32 %loc\n"
6255                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6256                 "             OpStore %loc %add\n"
6257                 "%ret       = OpLoad %v4f32 %result\n"
6258                 "             OpReturnValue %ret\n"
6259                 "             OpFunctionEnd\n";
6260
6261         map<string, string>     fragments;
6262         vector<deInt32>         specConstants;
6263
6264         fragments["decoration"] = decorations2;
6265         fragments["pre_main"]   = typesAndConstants2;
6266         fragments["testfun"]    = function2;
6267
6268         specConstants.push_back(56789);
6269         specConstants.push_back(-2);
6270         specConstants.push_back(56788);
6271
6272         createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6273
6274         return group.release();
6275 }
6276
6277 tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6278 {
6279         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6280         RGBA                                                    inputColors[4];
6281         RGBA                                                    outputColors1[4];
6282         RGBA                                                    outputColors2[4];
6283         RGBA                                                    outputColors3[4];
6284         map<string, string>                             fragments1;
6285         map<string, string>                             fragments2;
6286         map<string, string>                             fragments3;
6287
6288         const char      typesAndConstants1[]    =
6289                 "%c_f32_p2  = OpConstant %f32 0.2\n"
6290                 "%c_f32_p4  = OpConstant %f32 0.4\n"
6291                 "%c_f32_p6  = OpConstant %f32 0.6\n"
6292                 "%c_f32_p8  = OpConstant %f32 0.8\n";
6293
6294         // vec4 test_code(vec4 param) {
6295         //   vec4 result = param;
6296         //   for (int i = 0; i < 4; ++i) {
6297         //     float operand;
6298         //     switch (i) {
6299         //       case 0: operand = .2; break;
6300         //       case 1: operand = .6; break;
6301         //       case 2: operand = .4; break;
6302         //       case 3: operand = .0; break;
6303         //       default: break; // unreachable
6304         //     }
6305         //     result[i] += operand;
6306         //   }
6307         //   return result;
6308         // }
6309         const char      function1[]                             =
6310                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6311                 "%param1    = OpFunctionParameter %v4f32\n"
6312                 "%lbl       = OpLabel\n"
6313                 "%iptr      = OpVariable %fp_i32 Function\n"
6314                 "             OpStore %iptr %c_i32_0\n"
6315                 "%result    = OpVariable %fp_v4f32 Function\n"
6316                 "             OpStore %result %param1\n"
6317                 "             OpBranch %loop\n"
6318
6319                 "%loop      = OpLabel\n"
6320                 "%ival      = OpLoad %i32 %iptr\n"
6321                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6322                 "             OpLoopMerge %exit %loop None\n"
6323                 "             OpBranchConditional %lt_4 %entry %exit\n"
6324
6325                 "%entry     = OpLabel\n"
6326                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
6327                 "%val       = OpLoad %f32 %loc\n"
6328                 "             OpSelectionMerge %phi None\n"
6329                 "             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6330
6331                 "%case0     = OpLabel\n"
6332                 "             OpBranch %phi\n"
6333                 "%case1     = OpLabel\n"
6334                 "             OpBranch %phi\n"
6335                 "%case2     = OpLabel\n"
6336                 "             OpBranch %phi\n"
6337                 "%case3     = OpLabel\n"
6338                 "             OpBranch %phi\n"
6339
6340                 "%default   = OpLabel\n"
6341                 "             OpUnreachable\n"
6342
6343                 "%phi       = OpLabel\n"
6344                 "%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6345                 "%add       = OpFAdd %f32 %val %operand\n"
6346                 "             OpStore %loc %add\n"
6347                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6348                 "             OpStore %iptr %ival_next\n"
6349                 "             OpBranch %loop\n"
6350
6351                 "%exit      = OpLabel\n"
6352                 "%ret       = OpLoad %v4f32 %result\n"
6353                 "             OpReturnValue %ret\n"
6354
6355                 "             OpFunctionEnd\n";
6356
6357         fragments1["pre_main"]  = typesAndConstants1;
6358         fragments1["testfun"]   = function1;
6359
6360         getHalfColorsFullAlpha(inputColors);
6361
6362         outputColors1[0]                = RGBA(178, 180, 229, 255);
6363         outputColors1[1]                = RGBA(178, 153, 102, 255);
6364         outputColors1[2]                = RGBA(51,  180, 102, 255);
6365         outputColors1[3]                = RGBA(51,  153, 229, 255);
6366
6367         createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6368
6369         const char      typesAndConstants2[]    =
6370                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6371
6372         // Add .4 to the second element of the given parameter.
6373         const char      function2[]                             =
6374                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6375                 "%param     = OpFunctionParameter %v4f32\n"
6376                 "%entry     = OpLabel\n"
6377                 "%result    = OpVariable %fp_v4f32 Function\n"
6378                 "             OpStore %result %param\n"
6379                 "%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6380                 "%val       = OpLoad %f32 %loc\n"
6381                 "             OpBranch %phi\n"
6382
6383                 "%phi        = OpLabel\n"
6384                 "%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6385                 "%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6386                 "%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6387                 "%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6388                 "%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6389                 "              OpLoopMerge %exit %phi None\n"
6390                 "              OpBranchConditional %still_loop %phi %exit\n"
6391
6392                 "%exit       = OpLabel\n"
6393                 "              OpStore %loc %accum\n"
6394                 "%ret        = OpLoad %v4f32 %result\n"
6395                 "              OpReturnValue %ret\n"
6396
6397                 "              OpFunctionEnd\n";
6398
6399         fragments2["pre_main"]  = typesAndConstants2;
6400         fragments2["testfun"]   = function2;
6401
6402         outputColors2[0]                        = RGBA(127, 229, 127, 255);
6403         outputColors2[1]                        = RGBA(127, 102, 0,   255);
6404         outputColors2[2]                        = RGBA(0,   229, 0,   255);
6405         outputColors2[3]                        = RGBA(0,   102, 127, 255);
6406
6407         createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6408
6409         const char      typesAndConstants3[]    =
6410                 "%true      = OpConstantTrue %bool\n"
6411                 "%false     = OpConstantFalse %bool\n"
6412                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6413
6414         // Swap the second and the third element of the given parameter.
6415         const char      function3[]                             =
6416                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6417                 "%param     = OpFunctionParameter %v4f32\n"
6418                 "%entry     = OpLabel\n"
6419                 "%result    = OpVariable %fp_v4f32 Function\n"
6420                 "             OpStore %result %param\n"
6421                 "%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6422                 "%a_init    = OpLoad %f32 %a_loc\n"
6423                 "%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6424                 "%b_init    = OpLoad %f32 %b_loc\n"
6425                 "             OpBranch %phi\n"
6426
6427                 "%phi        = OpLabel\n"
6428                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6429                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6430                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6431                 "              OpLoopMerge %exit %phi None\n"
6432                 "              OpBranchConditional %still_loop %phi %exit\n"
6433
6434                 "%exit       = OpLabel\n"
6435                 "              OpStore %a_loc %a_next\n"
6436                 "              OpStore %b_loc %b_next\n"
6437                 "%ret        = OpLoad %v4f32 %result\n"
6438                 "              OpReturnValue %ret\n"
6439
6440                 "              OpFunctionEnd\n";
6441
6442         fragments3["pre_main"]  = typesAndConstants3;
6443         fragments3["testfun"]   = function3;
6444
6445         outputColors3[0]                        = RGBA(127, 127, 127, 255);
6446         outputColors3[1]                        = RGBA(127, 0,   0,   255);
6447         outputColors3[2]                        = RGBA(0,   0,   127, 255);
6448         outputColors3[3]                        = RGBA(0,   127, 0,   255);
6449
6450         createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6451
6452         return group.release();
6453 }
6454
6455 tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6456 {
6457         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6458         RGBA                                                    inputColors[4];
6459         RGBA                                                    outputColors[4];
6460
6461         // With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6462         // For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6463         // only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6464         // be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6465         const char                                              constantsAndTypes[]      =
6466                 "%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6467                 "%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6468                 "%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6469                 "%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6470                 ;
6471
6472         const char                                              function[]       =
6473                 "%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6474                 "%param          = OpFunctionParameter %v4f32\n"
6475                 "%label          = OpLabel\n"
6476                 "%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6477                 "%var2           = OpVariable %fp_f32 Function\n"
6478                 "%red            = OpCompositeExtract %f32 %param 0\n"
6479                 "%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6480                 "                  OpStore %var2 %plus_red\n"
6481                 "%val1           = OpLoad %f32 %var1\n"
6482                 "%val2           = OpLoad %f32 %var2\n"
6483                 "%mul            = OpFMul %f32 %val1 %val2\n"
6484                 "%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6485                 "%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6486                 "%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6487                 "                  OpReturnValue %ret\n"
6488                 "                  OpFunctionEnd\n";
6489
6490         struct CaseNameDecoration
6491         {
6492                 string name;
6493                 string decoration;
6494         };
6495
6496
6497         CaseNameDecoration tests[] = {
6498                 {"multiplication",      "OpDecorate %mul NoContraction"},
6499                 {"addition",            "OpDecorate %add NoContraction"},
6500                 {"both",                        "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6501         };
6502
6503         getHalfColorsFullAlpha(inputColors);
6504
6505         for (deUint8 idx = 0; idx < 4; ++idx)
6506         {
6507                 inputColors[idx].setRed(0);
6508                 outputColors[idx] = RGBA(0, 0, 0, 255);
6509         }
6510
6511         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6512         {
6513                 map<string, string> fragments;
6514
6515                 fragments["decoration"] = tests[testNdx].decoration;
6516                 fragments["pre_main"] = constantsAndTypes;
6517                 fragments["testfun"] = function;
6518
6519                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6520         }
6521
6522         return group.release();
6523 }
6524
6525 tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6526 {
6527         de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6528         RGBA                                                    colors[4];
6529
6530         const char                                              constantsAndTypes[]      =
6531                 "%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6532                 "%fp_a2f32          = OpTypePointer Function %a2f32\n"
6533                 "%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6534                 "%fp_stype          = OpTypePointer Function %stype\n";
6535
6536         const char                                              function[]       =
6537                 "%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6538                 "%param1            = OpFunctionParameter %v4f32\n"
6539                 "%lbl               = OpLabel\n"
6540                 "%v1                = OpVariable %fp_v4f32 Function\n"
6541                 "                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6542                 "%v2                = OpVariable %fp_a2f32 Function\n"
6543                 "                     OpStore %v2 %c_a2f32_1\n"
6544                 "%v3                = OpVariable %fp_f32 Function\n"
6545                 "                     OpStore %v3 %c_f32_1\n"
6546
6547                 "%v                 = OpVariable %fp_stype Function\n"
6548                 "%vv                = OpVariable %fp_stype Function\n"
6549                 "%vvv               = OpVariable %fp_f32 Function\n"
6550
6551                 "%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6552                 "%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6553                 "%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6554                 "%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6555                 "%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6556                 "%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6557
6558                 "                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6559                 "                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6560                 "                    OpStore %p_f32 %v3_v ${access_type}\n"
6561
6562                 "                    OpCopyMemory %vv %v ${access_type}\n"
6563                 "                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6564
6565                 "%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6566                 "%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6567                 "%v_f32_3          = OpLoad %f32 %vvv\n"
6568
6569                 "%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6570                 "%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6571                 "                    OpReturnValue %ret2\n"
6572                 "                    OpFunctionEnd\n";
6573
6574         struct NameMemoryAccess
6575         {
6576                 string name;
6577                 string accessType;
6578         };
6579
6580
6581         NameMemoryAccess tests[] =
6582         {
6583                 { "none", "" },
6584                 { "volatile", "Volatile" },
6585                 { "aligned",  "Aligned 1" },
6586                 { "volatile_aligned",  "Volatile|Aligned 1" },
6587                 { "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6588                 { "volatile_nontemporal",  "Volatile|Nontemporal" },
6589                 { "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6590         };
6591
6592         getHalfColorsFullAlpha(colors);
6593
6594         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6595         {
6596                 map<string, string> fragments;
6597                 map<string, string> memoryAccess;
6598                 memoryAccess["access_type"] = tests[testNdx].accessType;
6599
6600                 fragments["pre_main"] = constantsAndTypes;
6601                 fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6602                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6603         }
6604         return memoryAccessTests.release();
6605 }
6606 tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6607 {
6608         de::MovePtr<tcu::TestCaseGroup>         opUndefTests             (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6609         RGBA                                                            defaultColors[4];
6610         map<string, string>                                     fragments;
6611         getDefaultColors(defaultColors);
6612
6613         // First, simple cases that don't do anything with the OpUndef result.
6614         fragments["testfun"] =
6615                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6616                 "%param1 = OpFunctionParameter %v4f32\n"
6617                 "%label_testfun = OpLabel\n"
6618                 "%undef = OpUndef %type\n"
6619                 "OpReturnValue %param1\n"
6620                 "OpFunctionEnd\n"
6621                 ;
6622         struct NameCodePair { string name, code; };
6623         const NameCodePair tests[] =
6624         {
6625                 {"bool", "%type = OpTypeBool"},
6626                 {"vec2uint32", "%type = OpTypeVector %u32 2"},
6627                 {"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6628                 {"sampler", "%type = OpTypeSampler"},
6629                 {"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6630                 {"pointer", "%type = OpTypePointer Function %i32"},
6631                 {"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6632                 {"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6633                 {"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6634         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6635         {
6636                 fragments["pre_main"] = tests[testNdx].code;
6637                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6638         }
6639         fragments.clear();
6640
6641         fragments["testfun"] =
6642                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6643                 "%param1 = OpFunctionParameter %v4f32\n"
6644                 "%label_testfun = OpLabel\n"
6645                 "%undef = OpUndef %f32\n"
6646                 "%zero = OpFMul %f32 %undef %c_f32_0\n"
6647                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6648                 "%b = OpFAdd %f32 %a %zero\n"
6649                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6650                 "OpReturnValue %ret\n"
6651                 "OpFunctionEnd\n"
6652                 ;
6653         createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6654
6655         fragments["testfun"] =
6656                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6657                 "%param1 = OpFunctionParameter %v4f32\n"
6658                 "%label_testfun = OpLabel\n"
6659                 "%undef = OpUndef %i32\n"
6660                 "%zero = OpIMul %i32 %undef %c_i32_0\n"
6661                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6662                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6663                 "OpReturnValue %ret\n"
6664                 "OpFunctionEnd\n"
6665                 ;
6666         createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6667
6668         fragments["testfun"] =
6669                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6670                 "%param1 = OpFunctionParameter %v4f32\n"
6671                 "%label_testfun = OpLabel\n"
6672                 "%undef = OpUndef %u32\n"
6673                 "%zero = OpIMul %u32 %undef %c_i32_0\n"
6674                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6675                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6676                 "OpReturnValue %ret\n"
6677                 "OpFunctionEnd\n"
6678                 ;
6679         createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6680
6681         fragments["testfun"] =
6682                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6683                 "%param1 = OpFunctionParameter %v4f32\n"
6684                 "%label_testfun = OpLabel\n"
6685                 "%undef = OpUndef %v4f32\n"
6686                 "%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6687                 "%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6688                 "%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6689                 "%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6690                 "%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6691                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6692                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6693                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6694                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6695                 "%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6696                 "%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6697                 "%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6698                 "%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6699                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6700                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6701                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6702                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6703                 "OpReturnValue %ret\n"
6704                 "OpFunctionEnd\n"
6705                 ;
6706         createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6707
6708         fragments["pre_main"] =
6709                 "%v2f32 = OpTypeVector %f32 2\n"
6710                 "%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6711         fragments["testfun"] =
6712                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6713                 "%param1 = OpFunctionParameter %v4f32\n"
6714                 "%label_testfun = OpLabel\n"
6715                 "%undef = OpUndef %m2x2f32\n"
6716                 "%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6717                 "%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6718                 "%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6719                 "%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6720                 "%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6721                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6722                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6723                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6724                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6725                 "%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6726                 "%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6727                 "%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6728                 "%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6729                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6730                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6731                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6732                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6733                 "OpReturnValue %ret\n"
6734                 "OpFunctionEnd\n"
6735                 ;
6736         createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6737
6738         return opUndefTests.release();
6739 }
6740
6741 void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6742 {
6743         const RGBA              inputColors[4]          =
6744         {
6745                 RGBA(0,         0,              0,              255),
6746                 RGBA(0,         0,              255,    255),
6747                 RGBA(0,         255,    0,              255),
6748                 RGBA(0,         255,    255,    255)
6749         };
6750
6751         const RGBA              expectedColors[4]       =
6752         {
6753                 RGBA(255,        0,              0,              255),
6754                 RGBA(255,        0,              0,              255),
6755                 RGBA(255,        0,              0,              255),
6756                 RGBA(255,        0,              0,              255)
6757         };
6758
6759         const struct SingleFP16Possibility
6760         {
6761                 const char* name;
6762                 const char* constant;  // Value to assign to %test_constant.
6763                 float           valueAsFloat;
6764                 const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6765         }                               tests[]                         =
6766         {
6767                 {
6768                         "negative",
6769                         "-0x1.3p1\n",
6770                         -constructNormalizedFloat(1, 0x300000),
6771                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6772                 }, // -19
6773                 {
6774                         "positive",
6775                         "0x1.0p7\n",
6776                         constructNormalizedFloat(7, 0x000000),
6777                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6778                 },  // +128
6779                 // SPIR-V requires that OpQuantizeToF16 flushes
6780                 // any numbers that would end up denormalized in F16 to zero.
6781                 {
6782                         "denorm",
6783                         "0x0.0006p-126\n",
6784                         std::ldexp(1.5f, -140),
6785                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6786                 },  // denorm
6787                 {
6788                         "negative_denorm",
6789                         "-0x0.0006p-126\n",
6790                         -std::ldexp(1.5f, -140),
6791                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6792                 }, // -denorm
6793                 {
6794                         "too_small",
6795                         "0x1.0p-16\n",
6796                         std::ldexp(1.0f, -16),
6797                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6798                 },     // too small positive
6799                 {
6800                         "negative_too_small",
6801                         "-0x1.0p-32\n",
6802                         -std::ldexp(1.0f, -32),
6803                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6804                 },      // too small negative
6805                 {
6806                         "negative_inf",
6807                         "-0x1.0p128\n",
6808                         -std::ldexp(1.0f, 128),
6809
6810                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6811                         "%inf = OpIsInf %bool %c\n"
6812                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6813                 },     // -inf to -inf
6814                 {
6815                         "inf",
6816                         "0x1.0p128\n",
6817                         std::ldexp(1.0f, 128),
6818
6819                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6820                         "%inf = OpIsInf %bool %c\n"
6821                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6822                 },     // +inf to +inf
6823                 {
6824                         "round_to_negative_inf",
6825                         "-0x1.0p32\n",
6826                         -std::ldexp(1.0f, 32),
6827
6828                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6829                         "%inf = OpIsInf %bool %c\n"
6830                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6831                 },     // round to -inf
6832                 {
6833                         "round_to_inf",
6834                         "0x1.0p16\n",
6835                         std::ldexp(1.0f, 16),
6836
6837                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6838                         "%inf = OpIsInf %bool %c\n"
6839                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6840                 },     // round to +inf
6841                 {
6842                         "nan",
6843                         "0x1.1p128\n",
6844                         std::numeric_limits<float>::quiet_NaN(),
6845
6846                         // Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6847                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6848                         "%nan = OpIsNan %bool %direct_quant\n"
6849                         "%as_int = OpBitcast %i32 %direct_quant\n"
6850                         "%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6851                         "%cond = OpLogicalAnd %bool %nan %positive\n"
6852                 }, // nan
6853                 {
6854                         "negative_nan",
6855                         "-0x1.0001p128\n",
6856                         std::numeric_limits<float>::quiet_NaN(),
6857
6858                         // Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6859                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6860                         "%nan = OpIsNan %bool %direct_quant\n"
6861                         "%as_int = OpBitcast %i32 %direct_quant\n"
6862                         "%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6863                         "%cond = OpLogicalAnd %bool %nan %negative\n"
6864                 } // -nan
6865         };
6866         const char*             constants                       =
6867                 "%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6868
6869         StringTemplate  function                        (
6870                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6871                 "%param1        = OpFunctionParameter %v4f32\n"
6872                 "%label_testfun = OpLabel\n"
6873                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6874                 "%b             = OpFAdd %f32 %test_constant %a\n"
6875                 "%c             = OpQuantizeToF16 %f32 %b\n"
6876                 "${condition}\n"
6877                 "%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6878                 "                 OpReturnValue %retval\n"
6879                 "OpFunctionEnd\n"
6880         );
6881
6882         const char*             specDecorations         = "OpDecorate %test_constant SpecId 0\n";
6883         const char*             specConstants           =
6884                         "%test_constant = OpSpecConstant %f32 0.\n"
6885                         "%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6886
6887         StringTemplate  specConstantFunction(
6888                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6889                 "%param1        = OpFunctionParameter %v4f32\n"
6890                 "%label_testfun = OpLabel\n"
6891                 "${condition}\n"
6892                 "%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6893                 "                 OpReturnValue %retval\n"
6894                 "OpFunctionEnd\n"
6895         );
6896
6897         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6898         {
6899                 map<string, string>                                                             codeSpecialization;
6900                 map<string, string>                                                             fragments;
6901                 codeSpecialization["condition"]                                 = tests[idx].condition;
6902                 fragments["testfun"]                                                    = function.specialize(codeSpecialization);
6903                 fragments["pre_main"]                                                   = string(constants) + tests[idx].constant + "\n";
6904                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6905         }
6906
6907         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6908         {
6909                 map<string, string>                                                             codeSpecialization;
6910                 map<string, string>                                                             fragments;
6911                 vector<deInt32>                                                                 passConstants;
6912                 deInt32                                                                                 specConstant;
6913
6914                 codeSpecialization["condition"]                                 = tests[idx].condition;
6915                 fragments["testfun"]                                                    = specConstantFunction.specialize(codeSpecialization);
6916                 fragments["decoration"]                                                 = specDecorations;
6917                 fragments["pre_main"]                                                   = specConstants;
6918
6919                 memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6920                 passConstants.push_back(specConstant);
6921
6922                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6923         }
6924 }
6925
6926 void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6927 {
6928         RGBA inputColors[4] =  {
6929                 RGBA(0,         0,              0,              255),
6930                 RGBA(0,         0,              255,    255),
6931                 RGBA(0,         255,    0,              255),
6932                 RGBA(0,         255,    255,    255)
6933         };
6934
6935         RGBA expectedColors[4] =
6936         {
6937                 RGBA(255,        0,              0,              255),
6938                 RGBA(255,        0,              0,              255),
6939                 RGBA(255,        0,              0,              255),
6940                 RGBA(255,        0,              0,              255)
6941         };
6942
6943         struct DualFP16Possibility
6944         {
6945                 const char* name;
6946                 const char* input;
6947                 float           inputAsFloat;
6948                 const char* possibleOutput1;
6949                 const char* possibleOutput2;
6950         } tests[] = {
6951                 {
6952                         "positive_round_up_or_round_down",
6953                         "0x1.3003p8",
6954                         constructNormalizedFloat(8, 0x300300),
6955                         "0x1.304p8",
6956                         "0x1.3p8"
6957                 },
6958                 {
6959                         "negative_round_up_or_round_down",
6960                         "-0x1.6008p-7",
6961                         -constructNormalizedFloat(-7, 0x600800),
6962                         "-0x1.6p-7",
6963                         "-0x1.604p-7"
6964                 },
6965                 {
6966                         "carry_bit",
6967                         "0x1.01ep2",
6968                         constructNormalizedFloat(2, 0x01e000),
6969                         "0x1.01cp2",
6970                         "0x1.02p2"
6971                 },
6972                 {
6973                         "carry_to_exponent",
6974                         "0x1.ffep1",
6975                         constructNormalizedFloat(1, 0xffe000),
6976                         "0x1.ffcp1",
6977                         "0x1.0p2"
6978                 },
6979         };
6980         StringTemplate constants (
6981                 "%input_const = OpConstant %f32 ${input}\n"
6982                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
6983                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
6984                 );
6985
6986         StringTemplate specConstants (
6987                 "%input_const = OpSpecConstant %f32 0.\n"
6988                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
6989                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
6990         );
6991
6992         const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6993
6994         const char* function  =
6995                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6996                 "%param1        = OpFunctionParameter %v4f32\n"
6997                 "%label_testfun = OpLabel\n"
6998                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6999                 // For the purposes of this test we assume that 0.f will always get
7000                 // faithfully passed through the pipeline stages.
7001                 "%b             = OpFAdd %f32 %input_const %a\n"
7002                 "%c             = OpQuantizeToF16 %f32 %b\n"
7003                 "%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7004                 "%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7005                 "%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7006                 "%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
7007                 "                 OpReturnValue %retval\n"
7008                 "OpFunctionEnd\n";
7009
7010         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7011                 map<string, string>                                                                     fragments;
7012                 map<string, string>                                                                     constantSpecialization;
7013
7014                 constantSpecialization["input"]                                         = tests[idx].input;
7015                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7016                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7017                 fragments["testfun"]                                                            = function;
7018                 fragments["pre_main"]                                                           = constants.specialize(constantSpecialization);
7019                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7020         }
7021
7022         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7023                 map<string, string>                                                                     fragments;
7024                 map<string, string>                                                                     constantSpecialization;
7025                 vector<deInt32>                                                                         passConstants;
7026                 deInt32                                                                                         specConstant;
7027
7028                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7029                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7030                 fragments["testfun"]                                                            = function;
7031                 fragments["decoration"]                                                         = specDecorations;
7032                 fragments["pre_main"]                                                           = specConstants.specialize(constantSpecialization);
7033
7034                 memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7035                 passConstants.push_back(specConstant);
7036
7037                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7038         }
7039 }
7040
7041 tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7042 {
7043         de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7044         createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7045         createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7046         return opQuantizeTests.release();
7047 }
7048
7049 struct ShaderPermutation
7050 {
7051         deUint8 vertexPermutation;
7052         deUint8 geometryPermutation;
7053         deUint8 tesscPermutation;
7054         deUint8 tessePermutation;
7055         deUint8 fragmentPermutation;
7056 };
7057
7058 ShaderPermutation getShaderPermutation(deUint8 inputValue)
7059 {
7060         ShaderPermutation       permutation =
7061         {
7062                 static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7063                 static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7064                 static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7065                 static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7066                 static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7067         };
7068         return permutation;
7069 }
7070
7071 tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7072 {
7073         RGBA                                                            defaultColors[4];
7074         RGBA                                                            invertedColors[4];
7075         de::MovePtr<tcu::TestCaseGroup>         moduleTests                     (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7076
7077         const ShaderElement                                     combinedPipeline[]      =
7078         {
7079                 ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7080                 ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7081                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7082                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7083                 ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7084         };
7085
7086         getDefaultColors(defaultColors);
7087         getInvertedDefaultColors(invertedColors);
7088         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7089
7090         const char* numbers[] =
7091         {
7092                 "1", "2"
7093         };
7094
7095         for (deInt8 idx = 0; idx < 32; ++idx)
7096         {
7097                 ShaderPermutation                       permutation             = getShaderPermutation(idx);
7098                 string                                          name                    = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7099                 const ShaderElement                     pipeline[]              =
7100                 {
7101                         ShaderElement("vert",   string("vert") +        numbers[permutation.vertexPermutation],         VK_SHADER_STAGE_VERTEX_BIT),
7102                         ShaderElement("geom",   string("geom") +        numbers[permutation.geometryPermutation],       VK_SHADER_STAGE_GEOMETRY_BIT),
7103                         ShaderElement("tessc",  string("tessc") +       numbers[permutation.tesscPermutation],          VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7104                         ShaderElement("tesse",  string("tesse") +       numbers[permutation.tessePermutation],          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7105                         ShaderElement("frag",   string("frag") +        numbers[permutation.fragmentPermutation],       VK_SHADER_STAGE_FRAGMENT_BIT)
7106                 };
7107
7108                 // If there are an even number of swaps, then it should be no-op.
7109                 // If there are an odd number, the color should be flipped.
7110                 if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7111                 {
7112                         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7113                 }
7114                 else
7115                 {
7116                         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7117                 }
7118         }
7119         return moduleTests.release();
7120 }
7121
7122 tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7123 {
7124         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7125         RGBA defaultColors[4];
7126         getDefaultColors(defaultColors);
7127         map<string, string> fragments;
7128         fragments["pre_main"] =
7129                 "%c_f32_5 = OpConstant %f32 5.\n";
7130
7131         // A loop with a single block. The Continue Target is the loop block
7132         // itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7133         // -- the "continue construct" forms the entire loop.
7134         fragments["testfun"] =
7135                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7136                 "%param1 = OpFunctionParameter %v4f32\n"
7137
7138                 "%entry = OpLabel\n"
7139                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7140                 "OpBranch %loop\n"
7141
7142                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7143                 "%loop = OpLabel\n"
7144                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7145                 "%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7146                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7147                 "%val = OpFAdd %f32 %val1 %delta\n"
7148                 "%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7149                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7150                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7151                 "OpLoopMerge %exit %loop None\n"
7152                 "OpBranchConditional %again %loop %exit\n"
7153
7154                 "%exit = OpLabel\n"
7155                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7156                 "OpReturnValue %result\n"
7157
7158                 "OpFunctionEnd\n"
7159                 ;
7160         createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7161
7162         // Body comprised of multiple basic blocks.
7163         const StringTemplate multiBlock(
7164                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7165                 "%param1 = OpFunctionParameter %v4f32\n"
7166
7167                 "%entry = OpLabel\n"
7168                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7169                 "OpBranch %loop\n"
7170
7171                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7172                 "%loop = OpLabel\n"
7173                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7174                 "%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7175                 "%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7176                 // There are several possibilities for the Continue Target below.  Each
7177                 // will be specialized into a separate test case.
7178                 "OpLoopMerge %exit ${continue_target} None\n"
7179                 "OpBranch %if\n"
7180
7181                 "%if = OpLabel\n"
7182                 ";delta_next = (delta > 0) ? -1 : 1;\n"
7183                 "%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7184                 "OpSelectionMerge %gather DontFlatten\n"
7185                 "OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7186
7187                 "%odd = OpLabel\n"
7188                 "OpBranch %gather\n"
7189
7190                 "%even = OpLabel\n"
7191                 "OpBranch %gather\n"
7192
7193                 "%gather = OpLabel\n"
7194                 "%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7195                 "%val = OpFAdd %f32 %val1 %delta\n"
7196                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7197                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7198                 "OpBranchConditional %again %loop %exit\n"
7199
7200                 "%exit = OpLabel\n"
7201                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7202                 "OpReturnValue %result\n"
7203
7204                 "OpFunctionEnd\n");
7205
7206         map<string, string> continue_target;
7207
7208         // The Continue Target is the loop block itself.
7209         continue_target["continue_target"] = "%loop";
7210         fragments["testfun"] = multiBlock.specialize(continue_target);
7211         createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7212
7213         // The Continue Target is at the end of the loop.
7214         continue_target["continue_target"] = "%gather";
7215         fragments["testfun"] = multiBlock.specialize(continue_target);
7216         createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7217
7218         // A loop with continue statement.
7219         fragments["testfun"] =
7220                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7221                 "%param1 = OpFunctionParameter %v4f32\n"
7222
7223                 "%entry = OpLabel\n"
7224                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7225                 "OpBranch %loop\n"
7226
7227                 ";adds 4, 3, and 1 to %val0 (skips 2)\n"
7228                 "%loop = OpLabel\n"
7229                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7230                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7231                 "OpLoopMerge %exit %continue None\n"
7232                 "OpBranch %if\n"
7233
7234                 "%if = OpLabel\n"
7235                 ";skip if %count==2\n"
7236                 "%eq2 = OpIEqual %bool %count %c_i32_2\n"
7237                 "OpSelectionMerge %continue DontFlatten\n"
7238                 "OpBranchConditional %eq2 %continue %body\n"
7239
7240                 "%body = OpLabel\n"
7241                 "%fcount = OpConvertSToF %f32 %count\n"
7242                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7243                 "OpBranch %continue\n"
7244
7245                 "%continue = OpLabel\n"
7246                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7247                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7248                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7249                 "OpBranchConditional %again %loop %exit\n"
7250
7251                 "%exit = OpLabel\n"
7252                 "%same = OpFSub %f32 %val %c_f32_8\n"
7253                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7254                 "OpReturnValue %result\n"
7255                 "OpFunctionEnd\n";
7256         createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7257
7258         // A loop with early exit.  May be specialized with either break or return.
7259         StringTemplate earlyExitLoop(
7260                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7261                 "%param1 = OpFunctionParameter %v4f32\n"
7262
7263                 "%entry = OpLabel\n"
7264                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7265                 "%dot = OpDot %f32 %param1 %param1\n"
7266                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7267                 "%zero = OpConvertFToU %u32 %div\n"
7268                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7269                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7270                 "OpBranch %loop\n"
7271
7272                 ";adds 4 and 3 to %val0 (exits early)\n"
7273                 "%loop = OpLabel\n"
7274                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7275                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7276                 "OpLoopMerge %exit %continue None\n"
7277                 "OpBranch %if\n"
7278
7279                 "%if = OpLabel\n"
7280                 ";end loop if %count==%two\n"
7281                 "%above2 = OpSGreaterThan %bool %count %two\n"
7282                 "OpSelectionMerge %continue DontFlatten\n"
7283                 // This can either branch to %exit or to another block with OpReturnValue %param1.
7284                 "OpBranchConditional %above2 %body ${branch_destination}\n"
7285
7286                 "%body = OpLabel\n"
7287                 "%fcount = OpConvertSToF %f32 %count\n"
7288                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7289                 "OpBranch %continue\n"
7290
7291                 "%continue = OpLabel\n"
7292                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7293                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7294                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7295                 "OpBranchConditional %again %loop %exit\n"
7296
7297                 "%exit = OpLabel\n"
7298                 "%same = OpFSub %f32 %val %c_f32_7\n"
7299                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7300                 "OpReturnValue %result\n"
7301                 "OpFunctionEnd\n");
7302
7303         map<string, string> branch_destination;
7304
7305         // A loop with break.
7306         branch_destination["branch_destination"] = "%exit";
7307         fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7308         createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7309
7310         // A loop with return.
7311         branch_destination["branch_destination"] = "%early_exit\n"
7312                 "%early_exit = OpLabel\n"
7313                 "OpReturnValue %param1\n";
7314         fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7315         createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7316
7317         return testGroup.release();
7318 }
7319
7320 // Adds a new test to group using custom fragments for the tessellation-control
7321 // stage and passthrough fragments for all other stages.  Uses default colors
7322 // for input and expected output.
7323 void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7324 {
7325         RGBA defaultColors[4];
7326         getDefaultColors(defaultColors);
7327         const ShaderElement pipelineStages[] =
7328         {
7329                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7330                 ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7331                 ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7332                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7333         };
7334
7335         addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7336                                                                                                  runAndVerifyDefaultPipeline, createInstanceContext(
7337                                                                                                          pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7338 }
7339
7340 // A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7341 tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7342 {
7343         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7344         map<string, string> fragments;
7345
7346         // A barrier inside a function body.
7347         fragments["pre_main"] =
7348                 "%Workgroup = OpConstant %i32 2\n"
7349                 "%SequentiallyConsistent = OpConstant %i32 0x10\n";
7350         fragments["testfun"] =
7351                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7352                 "%param1 = OpFunctionParameter %v4f32\n"
7353                 "%label_testfun = OpLabel\n"
7354                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7355                 "OpReturnValue %param1\n"
7356                 "OpFunctionEnd\n";
7357         addTessCtrlTest(testGroup.get(), "in_function", fragments);
7358
7359         // Common setup code for the following tests.
7360         fragments["pre_main"] =
7361                 "%Workgroup = OpConstant %i32 2\n"
7362                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7363                 "%c_f32_5 = OpConstant %f32 5.\n";
7364         const string setupPercentZero =  // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7365                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7366                 "%param1 = OpFunctionParameter %v4f32\n"
7367                 "%entry = OpLabel\n"
7368                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7369                 "%dot = OpDot %f32 %param1 %param1\n"
7370                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7371                 "%zero = OpConvertFToU %u32 %div\n";
7372
7373         // Barriers inside OpSwitch branches.
7374         fragments["testfun"] =
7375                 setupPercentZero +
7376                 "OpSelectionMerge %switch_exit None\n"
7377                 "OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7378
7379                 "%case1 = OpLabel\n"
7380                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7381                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7382                 "%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7383                 "OpBranch %switch_exit\n"
7384
7385                 "%switch_default = OpLabel\n"
7386                 "%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7387                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7388                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7389                 "OpBranch %switch_exit\n"
7390
7391                 "%case0 = OpLabel\n"
7392                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7393                 "OpBranch %switch_exit\n"
7394
7395                 "%switch_exit = OpLabel\n"
7396                 "%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7397                 "OpReturnValue %ret\n"
7398                 "OpFunctionEnd\n";
7399         addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7400
7401         // Barriers inside if-then-else.
7402         fragments["testfun"] =
7403                 setupPercentZero +
7404                 "%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7405                 "OpSelectionMerge %exit DontFlatten\n"
7406                 "OpBranchConditional %eq0 %then %else\n"
7407
7408                 "%else = OpLabel\n"
7409                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7410                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7411                 "%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7412                 "OpBranch %exit\n"
7413
7414                 "%then = OpLabel\n"
7415                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7416                 "OpBranch %exit\n"
7417
7418                 "%exit = OpLabel\n"
7419                 "%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7420                 "OpReturnValue %ret\n"
7421                 "OpFunctionEnd\n";
7422         addTessCtrlTest(testGroup.get(), "in_if", fragments);
7423
7424         // A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7425         // http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7426         fragments["testfun"] =
7427                 setupPercentZero +
7428                 "%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7429                 "%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7430                 "OpSelectionMerge %exit DontFlatten\n"
7431                 "OpBranchConditional %thread0 %then %else\n"
7432
7433                 "%else = OpLabel\n"
7434                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7435                 "OpBranch %exit\n"
7436
7437                 "%then = OpLabel\n"
7438                 "%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7439                 "OpBranch %exit\n"
7440
7441                 "%exit = OpLabel\n"
7442                 "%val = OpPhi %f32 %val0 %else %val1 %then\n"
7443                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7444                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7445                 "OpReturnValue %ret\n"
7446                 "OpFunctionEnd\n";
7447         addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7448
7449         // A barrier inside a loop.
7450         fragments["pre_main"] =
7451                 "%Workgroup = OpConstant %i32 2\n"
7452                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7453                 "%c_f32_10 = OpConstant %f32 10.\n";
7454         fragments["testfun"] =
7455                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7456                 "%param1 = OpFunctionParameter %v4f32\n"
7457                 "%entry = OpLabel\n"
7458                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7459                 "OpBranch %loop\n"
7460
7461                 ";adds 4, 3, 2, and 1 to %val0\n"
7462                 "%loop = OpLabel\n"
7463                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7464                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7465                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7466                 "%fcount = OpConvertSToF %f32 %count\n"
7467                 "%val = OpFAdd %f32 %val1 %fcount\n"
7468                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7469                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7470                 "OpLoopMerge %exit %loop None\n"
7471                 "OpBranchConditional %again %loop %exit\n"
7472
7473                 "%exit = OpLabel\n"
7474                 "%same = OpFSub %f32 %val %c_f32_10\n"
7475                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7476                 "OpReturnValue %ret\n"
7477                 "OpFunctionEnd\n";
7478         addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7479
7480         return testGroup.release();
7481 }
7482
7483 // Test for the OpFRem instruction.
7484 tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7485 {
7486         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7487         map<string, string>                                     fragments;
7488         RGBA                                                            inputColors[4];
7489         RGBA                                                            outputColors[4];
7490
7491         fragments["pre_main"]                            =
7492                 "%c_f32_3 = OpConstant %f32 3.0\n"
7493                 "%c_f32_n3 = OpConstant %f32 -3.0\n"
7494                 "%c_f32_4 = OpConstant %f32 4.0\n"
7495                 "%c_f32_p75 = OpConstant %f32 0.75\n"
7496                 "%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7497                 "%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7498                 "%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7499
7500         // The test does the following.
7501         // vec4 result = (param1 * 8.0) - 4.0;
7502         // return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7503         fragments["testfun"]                             =
7504                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7505                 "%param1 = OpFunctionParameter %v4f32\n"
7506                 "%label_testfun = OpLabel\n"
7507                 "%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7508                 "%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7509                 "%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7510                 "%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7511                 "%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7512                 "%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7513                 "OpReturnValue %xy_0_1\n"
7514                 "OpFunctionEnd\n";
7515
7516
7517         inputColors[0]          = RGBA(16,      16,             0, 255);
7518         inputColors[1]          = RGBA(232, 232,        0, 255);
7519         inputColors[2]          = RGBA(232, 16,         0, 255);
7520         inputColors[3]          = RGBA(16,      232,    0, 255);
7521
7522         outputColors[0]         = RGBA(64,      64,             0, 255);
7523         outputColors[1]         = RGBA(255, 255,        0, 255);
7524         outputColors[2]         = RGBA(255, 64,         0, 255);
7525         outputColors[3]         = RGBA(64,      255,    0, 255);
7526
7527         createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7528         return testGroup.release();
7529 }
7530
7531 tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7532 {
7533         de::MovePtr<tcu::TestCaseGroup> instructionTests        (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7534         de::MovePtr<tcu::TestCaseGroup> computeTests            (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7535         de::MovePtr<tcu::TestCaseGroup> graphicsTests           (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7536
7537         computeTests->addChild(createOpNopGroup(testCtx));
7538         computeTests->addChild(createOpLineGroup(testCtx));
7539         computeTests->addChild(createOpNoLineGroup(testCtx));
7540         computeTests->addChild(createOpConstantNullGroup(testCtx));
7541         computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7542         computeTests->addChild(createOpConstantUsageGroup(testCtx));
7543         computeTests->addChild(createSpecConstantGroup(testCtx));
7544         computeTests->addChild(createOpSourceGroup(testCtx));
7545         computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7546         computeTests->addChild(createDecorationGroupGroup(testCtx));
7547         computeTests->addChild(createOpPhiGroup(testCtx));
7548         computeTests->addChild(createLoopControlGroup(testCtx));
7549         computeTests->addChild(createFunctionControlGroup(testCtx));
7550         computeTests->addChild(createSelectionControlGroup(testCtx));
7551         computeTests->addChild(createBlockOrderGroup(testCtx));
7552         computeTests->addChild(createMultipleShaderGroup(testCtx));
7553         computeTests->addChild(createMemoryAccessGroup(testCtx));
7554         computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7555         computeTests->addChild(createOpCopyObjectGroup(testCtx));
7556         computeTests->addChild(createNoContractionGroup(testCtx));
7557         computeTests->addChild(createOpUndefGroup(testCtx));
7558         computeTests->addChild(createOpUnreachableGroup(testCtx));
7559         computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7560         computeTests ->addChild(createOpFRemGroup(testCtx));
7561
7562         RGBA defaultColors[4];
7563         getDefaultColors(defaultColors);
7564
7565         de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7566         map<string, string> opNopFragments;
7567         opNopFragments["testfun"] =
7568                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7569                 "%param1 = OpFunctionParameter %v4f32\n"
7570                 "%label_testfun = OpLabel\n"
7571                 "OpNop\n"
7572                 "OpNop\n"
7573                 "OpNop\n"
7574                 "OpNop\n"
7575                 "OpNop\n"
7576                 "OpNop\n"
7577                 "OpNop\n"
7578                 "OpNop\n"
7579                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7580                 "%b = OpFAdd %f32 %a %a\n"
7581                 "OpNop\n"
7582                 "%c = OpFSub %f32 %b %a\n"
7583                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7584                 "OpNop\n"
7585                 "OpNop\n"
7586                 "OpReturnValue %ret\n"
7587                 "OpFunctionEnd\n"
7588                 ;
7589         createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7590
7591
7592         graphicsTests->addChild(opnopTests.release());
7593         graphicsTests->addChild(createOpSourceTests(testCtx));
7594         graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7595         graphicsTests->addChild(createOpLineTests(testCtx));
7596         graphicsTests->addChild(createOpNoLineTests(testCtx));
7597         graphicsTests->addChild(createOpConstantNullTests(testCtx));
7598         graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7599         graphicsTests->addChild(createMemoryAccessTests(testCtx));
7600         graphicsTests->addChild(createOpUndefTests(testCtx));
7601         graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7602         graphicsTests->addChild(createModuleTests(testCtx));
7603         graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7604         graphicsTests->addChild(createOpPhiTests(testCtx));
7605         graphicsTests->addChild(createNoContractionTests(testCtx));
7606         graphicsTests->addChild(createOpQuantizeTests(testCtx));
7607         graphicsTests->addChild(createLoopTests(testCtx));
7608         graphicsTests->addChild(createSpecConstantTests(testCtx));
7609         graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7610         graphicsTests->addChild(createBarrierTests(testCtx));
7611         graphicsTests->addChild(createDecorationGroupTests(testCtx));
7612         graphicsTests->addChild(createFRemTests(testCtx));
7613
7614         instructionTests->addChild(computeTests.release());
7615         instructionTests->addChild(graphicsTests.release());
7616
7617         return instructionTests.release();
7618 }
7619
7620 } // SpirVAssembly
7621 } // vkt