3d5d26c203bd7d4c9a1797836b74b1860cc2189b
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / spirv_assembly / vktSpvAsmInstructionTests.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
22  *//*--------------------------------------------------------------------*/
23
24 #include "vktSpvAsmInstructionTests.hpp"
25
26 #include "tcuCommandLine.hpp"
27 #include "tcuFormatUtil.hpp"
28 #include "tcuRGBA.hpp"
29 #include "tcuStringTemplate.hpp"
30 #include "tcuTestLog.hpp"
31 #include "tcuVectorUtil.hpp"
32
33 #include "vkDefs.hpp"
34 #include "vkDeviceUtil.hpp"
35 #include "vkMemUtil.hpp"
36 #include "vkPlatform.hpp"
37 #include "vkPrograms.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkRef.hpp"
40 #include "vkRefUtil.hpp"
41 #include "vkStrUtil.hpp"
42 #include "vkTypeUtil.hpp"
43
44 #include "deRandom.hpp"
45 #include "deStringUtil.hpp"
46 #include "deUniquePtr.hpp"
47 #include "tcuStringTemplate.hpp"
48
49 #include <cmath>
50 #include "vktSpvAsmComputeShaderCase.hpp"
51 #include "vktSpvAsmComputeShaderTestUtil.hpp"
52 #include "vktTestCaseUtil.hpp"
53
54 #include <cmath>
55 #include <limits>
56 #include <map>
57 #include <string>
58 #include <sstream>
59
60 namespace vkt
61 {
62 namespace SpirVAssembly
63 {
64
65 namespace
66 {
67
68 using namespace vk;
69 using std::map;
70 using std::string;
71 using std::vector;
72 using tcu::IVec3;
73 using tcu::IVec4;
74 using tcu::RGBA;
75 using tcu::TestLog;
76 using tcu::TestStatus;
77 using tcu::Vec4;
78 using de::UniquePtr;
79 using tcu::StringTemplate;
80 using tcu::Vec4;
81
82 typedef Unique<VkShaderModule>                  ModuleHandleUp;
83 typedef de::SharedPtr<ModuleHandleUp>   ModuleHandleSp;
84
85 template<typename T>    T                       randomScalar    (de::Random& rnd, T minValue, T maxValue);
86 template<> inline               float           randomScalar    (de::Random& rnd, float minValue, float maxValue)               { return rnd.getFloat(minValue, maxValue);      }
87 template<> inline               deInt32         randomScalar    (de::Random& rnd, deInt32 minValue, deInt32 maxValue)   { return rnd.getInt(minValue, maxValue);        }
88
89 template<typename T>
90 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
91 {
92         T* const typedPtr = (T*)dst;
93         for (int ndx = 0; ndx < numValues; ndx++)
94                 typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
95 }
96
97 static void floorAll (vector<float>& values)
98 {
99         for (size_t i = 0; i < values.size(); i++)
100                 values[i] = deFloatFloor(values[i]);
101 }
102
103 static void floorAll (vector<Vec4>& values)
104 {
105         for (size_t i = 0; i < values.size(); i++)
106                 values[i] = floor(values[i]);
107 }
108
109 struct CaseParameter
110 {
111         const char*             name;
112         string                  param;
113
114         CaseParameter   (const char* case_, const string& param_) : name(case_), param(param_) {}
115 };
116
117 // Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
118 //
119 // #version 430
120 //
121 // layout(std140, set = 0, binding = 0) readonly buffer Input {
122 //   float elements[];
123 // } input_data;
124 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
125 //   float elements[];
126 // } output_data;
127 //
128 // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
129 //
130 // void main() {
131 //   uint x = gl_GlobalInvocationID.x;
132 //   output_data.elements[x] = -input_data.elements[x];
133 // }
134
135 static const char* const s_ShaderPreamble =
136         "OpCapability Shader\n"
137         "OpMemoryModel Logical GLSL450\n"
138         "OpEntryPoint GLCompute %main \"main\" %id\n"
139         "OpExecutionMode %main LocalSize 1 1 1\n";
140
141 static const char* const s_CommonTypes =
142         "%bool      = OpTypeBool\n"
143         "%void      = OpTypeVoid\n"
144         "%voidf     = OpTypeFunction %void\n"
145         "%u32       = OpTypeInt 32 0\n"
146         "%i32       = OpTypeInt 32 1\n"
147         "%f32       = OpTypeFloat 32\n"
148         "%uvec3     = OpTypeVector %u32 3\n"
149         "%fvec3     = OpTypeVector %f32 3\n"
150         "%uvec3ptr  = OpTypePointer Input %uvec3\n"
151         "%f32ptr    = OpTypePointer Uniform %f32\n"
152         "%f32arr    = OpTypeRuntimeArray %f32\n";
153
154 // Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
155 static const char* const s_InputOutputBuffer =
156         "%buf     = OpTypeStruct %f32arr\n"
157         "%bufptr  = OpTypePointer Uniform %buf\n"
158         "%indata    = OpVariable %bufptr Uniform\n"
159         "%outdata   = OpVariable %bufptr Uniform\n";
160
161 // Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
162 // indata is at binding point 0, while outdata is at 1.
163 static const char* const s_InputOutputBufferTraits =
164         "OpDecorate %buf BufferBlock\n"
165         "OpDecorate %indata DescriptorSet 0\n"
166         "OpDecorate %indata Binding 0\n"
167         "OpDecorate %outdata DescriptorSet 0\n"
168         "OpDecorate %outdata Binding 1\n"
169         "OpDecorate %f32arr ArrayStride 4\n"
170         "OpMemberDecorate %buf 0 Offset 0\n";
171
172 tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
173 {
174         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
175         ComputeShaderSpec                               spec;
176         de::Random                                              rnd                             (deStringHash(group->getName()));
177         const int                                               numElements             = 100;
178         vector<float>                                   positiveFloats  (numElements, 0);
179         vector<float>                                   negativeFloats  (numElements, 0);
180
181         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
182
183         for (size_t ndx = 0; ndx < numElements; ++ndx)
184                 negativeFloats[ndx] = -positiveFloats[ndx];
185
186         spec.assembly =
187                 string(s_ShaderPreamble) +
188
189                 "OpSource GLSL 430\n"
190                 "OpName %main           \"main\"\n"
191                 "OpName %id             \"gl_GlobalInvocationID\"\n"
192
193                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
194
195                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes)
196
197                 + string(s_InputOutputBuffer) +
198
199                 "%id        = OpVariable %uvec3ptr Input\n"
200                 "%zero      = OpConstant %i32 0\n"
201
202                 "%main      = OpFunction %void None %voidf\n"
203                 "%label     = OpLabel\n"
204                 "%idval     = OpLoad %uvec3 %id\n"
205                 "%x         = OpCompositeExtract %u32 %idval 0\n"
206
207                 "             OpNop\n" // Inside a function body
208
209                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
210                 "%inval     = OpLoad %f32 %inloc\n"
211                 "%neg       = OpFNegate %f32 %inval\n"
212                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
213                 "             OpStore %outloc %neg\n"
214                 "             OpReturn\n"
215                 "             OpFunctionEnd\n";
216         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
217         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
218         spec.numWorkGroups = IVec3(numElements, 1, 1);
219
220         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
221
222         return group.release();
223 }
224
225 tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
226 {
227         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
228         ComputeShaderSpec                               spec;
229         de::Random                                              rnd                             (deStringHash(group->getName()));
230         const int                                               numElements             = 100;
231         vector<float>                                   positiveFloats  (numElements, 0);
232         vector<float>                                   negativeFloats  (numElements, 0);
233
234         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
235
236         for (size_t ndx = 0; ndx < numElements; ++ndx)
237                 negativeFloats[ndx] = -positiveFloats[ndx];
238
239         spec.assembly =
240                 string(s_ShaderPreamble) +
241
242                 "%fname1 = OpString \"negateInputs.comp\"\n"
243                 "%fname2 = OpString \"negateInputs\"\n"
244
245                 "OpSource GLSL 430\n"
246                 "OpName %main           \"main\"\n"
247                 "OpName %id             \"gl_GlobalInvocationID\"\n"
248
249                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
250
251                 + string(s_InputOutputBufferTraits) +
252
253                 "OpLine %fname1 0 0\n" // At the earliest possible position
254
255                 + string(s_CommonTypes) + string(s_InputOutputBuffer) +
256
257                 "OpLine %fname1 0 1\n" // Multiple OpLines in sequence
258                 "OpLine %fname2 1 0\n" // Different filenames
259                 "OpLine %fname1 1000 100000\n"
260
261                 "%id        = OpVariable %uvec3ptr Input\n"
262                 "%zero      = OpConstant %i32 0\n"
263
264                 "OpLine %fname1 1 1\n" // Before a function
265
266                 "%main      = OpFunction %void None %voidf\n"
267                 "%label     = OpLabel\n"
268
269                 "OpLine %fname1 1 1\n" // In a function
270
271                 "%idval     = OpLoad %uvec3 %id\n"
272                 "%x         = OpCompositeExtract %u32 %idval 0\n"
273                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
274                 "%inval     = OpLoad %f32 %inloc\n"
275                 "%neg       = OpFNegate %f32 %inval\n"
276                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
277                 "             OpStore %outloc %neg\n"
278                 "             OpReturn\n"
279                 "             OpFunctionEnd\n";
280         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
281         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
282         spec.numWorkGroups = IVec3(numElements, 1, 1);
283
284         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
285
286         return group.release();
287 }
288
289 tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
290 {
291         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
292         ComputeShaderSpec                               spec;
293         de::Random                                              rnd                             (deStringHash(group->getName()));
294         const int                                               numElements             = 100;
295         vector<float>                                   positiveFloats  (numElements, 0);
296         vector<float>                                   negativeFloats  (numElements, 0);
297
298         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
299
300         for (size_t ndx = 0; ndx < numElements; ++ndx)
301                 negativeFloats[ndx] = -positiveFloats[ndx];
302
303         spec.assembly =
304                 string(s_ShaderPreamble) +
305
306                 "%fname = OpString \"negateInputs.comp\"\n"
307
308                 "OpSource GLSL 430\n"
309                 "OpName %main           \"main\"\n"
310                 "OpName %id             \"gl_GlobalInvocationID\"\n"
311
312                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
313
314                 + string(s_InputOutputBufferTraits) +
315
316                 "OpNoLine\n" // At the earliest possible position, without preceding OpLine
317
318                 + string(s_CommonTypes) + string(s_InputOutputBuffer) +
319
320                 "OpLine %fname 0 1\n"
321                 "OpNoLine\n" // Immediately following a preceding OpLine
322
323                 "OpLine %fname 1000 1\n"
324
325                 "%id        = OpVariable %uvec3ptr Input\n"
326                 "%zero      = OpConstant %i32 0\n"
327
328                 "OpNoLine\n" // Contents after the previous OpLine
329
330                 "%main      = OpFunction %void None %voidf\n"
331                 "%label     = OpLabel\n"
332                 "%idval     = OpLoad %uvec3 %id\n"
333                 "%x         = OpCompositeExtract %u32 %idval 0\n"
334
335                 "OpNoLine\n" // Multiple OpNoLine
336                 "OpNoLine\n"
337                 "OpNoLine\n"
338
339                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
340                 "%inval     = OpLoad %f32 %inloc\n"
341                 "%neg       = OpFNegate %f32 %inval\n"
342                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
343                 "             OpStore %outloc %neg\n"
344                 "             OpReturn\n"
345                 "             OpFunctionEnd\n";
346         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
347         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
348         spec.numWorkGroups = IVec3(numElements, 1, 1);
349
350         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
351
352         return group.release();
353 }
354
355 // Compare instruction for the contraction compute case.
356 // Returns true if the output is what is expected from the test case.
357 bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
358 {
359         if (outputAllocs.size() != 1)
360                 return false;
361
362         // We really just need this for size because we are not comparing the exact values.
363         const BufferSp& expectedOutput  = expectedOutputs[0];
364         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
365
366         for(size_t i = 0; i < expectedOutput->getNumBytes() / sizeof(float); ++i) {
367                 if (outputAsFloat[i] != 0.f &&
368                         outputAsFloat[i] != -ldexp(1, -24)) {
369                         return false;
370                 }
371         }
372
373         return true;
374 }
375
376 tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
377 {
378         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
379         vector<CaseParameter>                   cases;
380         const int                                               numElements             = 100;
381         vector<float>                                   inputFloats1    (numElements, 0);
382         vector<float>                                   inputFloats2    (numElements, 0);
383         vector<float>                                   outputFloats    (numElements, 0);
384         const StringTemplate                    shaderTemplate  (
385                 string(s_ShaderPreamble) +
386
387                 "OpName %main           \"main\"\n"
388                 "OpName %id             \"gl_GlobalInvocationID\"\n"
389
390                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
391
392                 "${DECORATION}\n"
393
394                 "OpDecorate %buf BufferBlock\n"
395                 "OpDecorate %indata1 DescriptorSet 0\n"
396                 "OpDecorate %indata1 Binding 0\n"
397                 "OpDecorate %indata2 DescriptorSet 0\n"
398                 "OpDecorate %indata2 Binding 1\n"
399                 "OpDecorate %outdata DescriptorSet 0\n"
400                 "OpDecorate %outdata Binding 2\n"
401                 "OpDecorate %f32arr ArrayStride 4\n"
402                 "OpMemberDecorate %buf 0 Offset 0\n"
403
404                 + string(s_CommonTypes) +
405
406                 "%buf        = OpTypeStruct %f32arr\n"
407                 "%bufptr     = OpTypePointer Uniform %buf\n"
408                 "%indata1    = OpVariable %bufptr Uniform\n"
409                 "%indata2    = OpVariable %bufptr Uniform\n"
410                 "%outdata    = OpVariable %bufptr Uniform\n"
411
412                 "%id         = OpVariable %uvec3ptr Input\n"
413                 "%zero       = OpConstant %i32 0\n"
414                 "%c_f_m1     = OpConstant %f32 -1.\n"
415
416                 "%main       = OpFunction %void None %voidf\n"
417                 "%label      = OpLabel\n"
418                 "%idval      = OpLoad %uvec3 %id\n"
419                 "%x          = OpCompositeExtract %u32 %idval 0\n"
420                 "%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
421                 "%inval1     = OpLoad %f32 %inloc1\n"
422                 "%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
423                 "%inval2     = OpLoad %f32 %inloc2\n"
424                 "%mul        = OpFMul %f32 %inval1 %inval2\n"
425                 "%add        = OpFAdd %f32 %mul %c_f_m1\n"
426                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
427                 "              OpStore %outloc %add\n"
428                 "              OpReturn\n"
429                 "              OpFunctionEnd\n");
430
431         cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
432         cases.push_back(CaseParameter("addition",               "OpDecorate %add NoContraction"));
433         cases.push_back(CaseParameter("both",                   "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
434
435         for (size_t ndx = 0; ndx < numElements; ++ndx)
436         {
437                 inputFloats1[ndx]       = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
438                 inputFloats2[ndx]       = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
439                 // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
440                 // conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
441                 // So the final result will be 0.f or 0x1p-24.
442                 // If the operation is combined into a precise fused multiply-add, then the result would be
443                 // 2^-46 (0xa8800000).
444                 outputFloats[ndx]       = 0.f;
445         }
446
447         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
448         {
449                 map<string, string>             specializations;
450                 ComputeShaderSpec               spec;
451
452                 specializations["DECORATION"] = cases[caseNdx].param;
453                 spec.assembly = shaderTemplate.specialize(specializations);
454                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
455                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
456                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
457                 spec.numWorkGroups = IVec3(numElements, 1, 1);
458                 // Check against the two possible answers based on rounding mode.
459                 spec.verifyIO = &compareNoContractCase;
460
461                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
462         }
463         return group.release();
464 }
465
466 bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
467 {
468         if (outputAllocs.size() != 1)
469                 return false;
470
471         const BufferSp& expectedOutput = expectedOutputs[0];
472         const float *expectedOutputAsFloat = static_cast<const float*>(expectedOutput->data());
473         const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
474
475         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
476         {
477                 const float f0 = expectedOutputAsFloat[idx];
478                 const float f1 = outputAsFloat[idx];
479                 // \todo relative error needs to be fairly high because FRem may be implemented as
480                 // (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
481                 if (deFloatAbs((f1 - f0) / f0) > 0.02)
482                         return false;
483         }
484
485         return true;
486 }
487
488 tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
489 {
490         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
491         ComputeShaderSpec                               spec;
492         de::Random                                              rnd                             (deStringHash(group->getName()));
493         const int                                               numElements             = 200;
494         vector<float>                                   inputFloats1    (numElements, 0);
495         vector<float>                                   inputFloats2    (numElements, 0);
496         vector<float>                                   outputFloats    (numElements, 0);
497
498         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
499         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
500
501         for (size_t ndx = 0; ndx < numElements; ++ndx)
502         {
503                 // Guard against divisors near zero.
504                 if (std::fabs(inputFloats2[ndx]) < 1e-3)
505                         inputFloats2[ndx] = 8.f;
506
507                 // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
508                 outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
509         }
510
511         spec.assembly =
512                 string(s_ShaderPreamble) +
513
514                 "OpName %main           \"main\"\n"
515                 "OpName %id             \"gl_GlobalInvocationID\"\n"
516
517                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
518
519                 "OpDecorate %buf BufferBlock\n"
520                 "OpDecorate %indata1 DescriptorSet 0\n"
521                 "OpDecorate %indata1 Binding 0\n"
522                 "OpDecorate %indata2 DescriptorSet 0\n"
523                 "OpDecorate %indata2 Binding 1\n"
524                 "OpDecorate %outdata DescriptorSet 0\n"
525                 "OpDecorate %outdata Binding 2\n"
526                 "OpDecorate %f32arr ArrayStride 4\n"
527                 "OpMemberDecorate %buf 0 Offset 0\n"
528
529                 + string(s_CommonTypes) +
530
531                 "%buf        = OpTypeStruct %f32arr\n"
532                 "%bufptr     = OpTypePointer Uniform %buf\n"
533                 "%indata1    = OpVariable %bufptr Uniform\n"
534                 "%indata2    = OpVariable %bufptr Uniform\n"
535                 "%outdata    = OpVariable %bufptr Uniform\n"
536
537                 "%id        = OpVariable %uvec3ptr Input\n"
538                 "%zero      = OpConstant %i32 0\n"
539
540                 "%main      = OpFunction %void None %voidf\n"
541                 "%label     = OpLabel\n"
542                 "%idval     = OpLoad %uvec3 %id\n"
543                 "%x         = OpCompositeExtract %u32 %idval 0\n"
544                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
545                 "%inval1    = OpLoad %f32 %inloc1\n"
546                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
547                 "%inval2    = OpLoad %f32 %inloc2\n"
548                 "%rem       = OpFRem %f32 %inval1 %inval2\n"
549                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
550                 "             OpStore %outloc %rem\n"
551                 "             OpReturn\n"
552                 "             OpFunctionEnd\n";
553
554         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
555         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
556         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
557         spec.numWorkGroups = IVec3(numElements, 1, 1);
558         spec.verifyIO = &compareFRem;
559
560         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
561
562         return group.release();
563 }
564
565 // Copy contents in the input buffer to the output buffer.
566 tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
567 {
568         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
569         de::Random                                              rnd                             (deStringHash(group->getName()));
570         const int                                               numElements             = 100;
571
572         // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
573         ComputeShaderSpec                               spec1;
574         vector<Vec4>                                    inputFloats1    (numElements);
575         vector<Vec4>                                    outputFloats1   (numElements);
576
577         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
578
579         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
580         floorAll(inputFloats1);
581
582         for (size_t ndx = 0; ndx < numElements; ++ndx)
583                 outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
584
585         spec1.assembly =
586                 string(s_ShaderPreamble) +
587
588                 "OpName %main           \"main\"\n"
589                 "OpName %id             \"gl_GlobalInvocationID\"\n"
590
591                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
592                 "OpDecorate %vec4arr ArrayStride 16\n"
593
594                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
595
596                 "%vec4       = OpTypeVector %f32 4\n"
597                 "%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
598                 "%vec4ptr_f  = OpTypePointer Function %vec4\n"
599                 "%vec4arr    = OpTypeRuntimeArray %vec4\n"
600                 "%buf        = OpTypeStruct %vec4arr\n"
601                 "%bufptr     = OpTypePointer Uniform %buf\n"
602                 "%indata     = OpVariable %bufptr Uniform\n"
603                 "%outdata    = OpVariable %bufptr Uniform\n"
604
605                 "%id         = OpVariable %uvec3ptr Input\n"
606                 "%zero       = OpConstant %i32 0\n"
607                 "%c_f_0      = OpConstant %f32 0.\n"
608                 "%c_f_0_5    = OpConstant %f32 0.5\n"
609                 "%c_f_1_5    = OpConstant %f32 1.5\n"
610                 "%c_f_2_5    = OpConstant %f32 2.5\n"
611                 "%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
612
613                 "%main       = OpFunction %void None %voidf\n"
614                 "%label      = OpLabel\n"
615                 "%v_vec4     = OpVariable %vec4ptr_f Function\n"
616                 "%idval      = OpLoad %uvec3 %id\n"
617                 "%x          = OpCompositeExtract %u32 %idval 0\n"
618                 "%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
619                 "%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
620                 "              OpCopyMemory %v_vec4 %inloc\n"
621                 "%v_vec4_val = OpLoad %vec4 %v_vec4\n"
622                 "%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
623                 "              OpStore %outloc %add\n"
624                 "              OpReturn\n"
625                 "              OpFunctionEnd\n";
626
627         spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
628         spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
629         spec1.numWorkGroups = IVec3(numElements, 1, 1);
630
631         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
632
633         // The following case copies a float[100] variable from the input buffer to the output buffer.
634         ComputeShaderSpec                               spec2;
635         vector<float>                                   inputFloats2    (numElements);
636         vector<float>                                   outputFloats2   (numElements);
637
638         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
639
640         for (size_t ndx = 0; ndx < numElements; ++ndx)
641                 outputFloats2[ndx] = inputFloats2[ndx];
642
643         spec2.assembly =
644                 string(s_ShaderPreamble) +
645
646                 "OpName %main           \"main\"\n"
647                 "OpName %id             \"gl_GlobalInvocationID\"\n"
648
649                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
650                 "OpDecorate %f32arr100 ArrayStride 4\n"
651
652                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
653
654                 "%hundred        = OpConstant %u32 100\n"
655                 "%f32arr100      = OpTypeArray %f32 %hundred\n"
656                 "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
657                 "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
658                 "%buf            = OpTypeStruct %f32arr100\n"
659                 "%bufptr         = OpTypePointer Uniform %buf\n"
660                 "%indata         = OpVariable %bufptr Uniform\n"
661                 "%outdata        = OpVariable %bufptr Uniform\n"
662
663                 "%id             = OpVariable %uvec3ptr Input\n"
664                 "%zero           = OpConstant %i32 0\n"
665
666                 "%main           = OpFunction %void None %voidf\n"
667                 "%label          = OpLabel\n"
668                 "%var            = OpVariable %f32arr100ptr_f Function\n"
669                 "%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
670                 "%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
671                 "                  OpCopyMemory %var %inarr\n"
672                 "                  OpCopyMemory %outarr %var\n"
673                 "                  OpReturn\n"
674                 "                  OpFunctionEnd\n";
675
676         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
677         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
678         spec2.numWorkGroups = IVec3(1, 1, 1);
679
680         group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
681
682         // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
683         ComputeShaderSpec                               spec3;
684         vector<float>                                   inputFloats3    (16);
685         vector<float>                                   outputFloats3   (16);
686
687         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
688
689         for (size_t ndx = 0; ndx < 16; ++ndx)
690                 outputFloats3[ndx] = inputFloats3[ndx];
691
692         spec3.assembly =
693                 string(s_ShaderPreamble) +
694
695                 "OpName %main           \"main\"\n"
696                 "OpName %id             \"gl_GlobalInvocationID\"\n"
697
698                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
699                 "OpMemberDecorate %buf 0 Offset 0\n"
700                 "OpMemberDecorate %buf 1 Offset 16\n"
701                 "OpMemberDecorate %buf 2 Offset 32\n"
702                 "OpMemberDecorate %buf 3 Offset 48\n"
703
704                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
705
706                 "%vec4      = OpTypeVector %f32 4\n"
707                 "%buf       = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
708                 "%bufptr    = OpTypePointer Uniform %buf\n"
709                 "%indata    = OpVariable %bufptr Uniform\n"
710                 "%outdata   = OpVariable %bufptr Uniform\n"
711                 "%vec4stptr = OpTypePointer Function %buf\n"
712
713                 "%id        = OpVariable %uvec3ptr Input\n"
714                 "%zero      = OpConstant %i32 0\n"
715
716                 "%main      = OpFunction %void None %voidf\n"
717                 "%label     = OpLabel\n"
718                 "%var       = OpVariable %vec4stptr Function\n"
719                 "             OpCopyMemory %var %indata\n"
720                 "             OpCopyMemory %outdata %var\n"
721                 "             OpReturn\n"
722                 "             OpFunctionEnd\n";
723
724         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
725         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
726         spec3.numWorkGroups = IVec3(1, 1, 1);
727
728         group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
729
730         // The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
731         ComputeShaderSpec                               spec4;
732         vector<float>                                   inputFloats4    (numElements);
733         vector<float>                                   outputFloats4   (numElements);
734
735         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
736
737         for (size_t ndx = 0; ndx < numElements; ++ndx)
738                 outputFloats4[ndx] = -inputFloats4[ndx];
739
740         spec4.assembly =
741                 string(s_ShaderPreamble) +
742
743                 "OpName %main           \"main\"\n"
744                 "OpName %id             \"gl_GlobalInvocationID\"\n"
745
746                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
747
748                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
749
750                 "%f32ptr_f  = OpTypePointer Function %f32\n"
751                 "%id        = OpVariable %uvec3ptr Input\n"
752                 "%zero      = OpConstant %i32 0\n"
753
754                 "%main      = OpFunction %void None %voidf\n"
755                 "%label     = OpLabel\n"
756                 "%var       = OpVariable %f32ptr_f Function\n"
757                 "%idval     = OpLoad %uvec3 %id\n"
758                 "%x         = OpCompositeExtract %u32 %idval 0\n"
759                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
760                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
761                 "             OpCopyMemory %var %inloc\n"
762                 "%val       = OpLoad %f32 %var\n"
763                 "%neg       = OpFNegate %f32 %val\n"
764                 "             OpStore %outloc %neg\n"
765                 "             OpReturn\n"
766                 "             OpFunctionEnd\n";
767
768         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
769         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
770         spec4.numWorkGroups = IVec3(numElements, 1, 1);
771
772         group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
773
774         return group.release();
775 }
776
777 tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
778 {
779         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
780         ComputeShaderSpec                               spec;
781         de::Random                                              rnd                             (deStringHash(group->getName()));
782         const int                                               numElements             = 100;
783         vector<float>                                   inputFloats             (numElements, 0);
784         vector<float>                                   outputFloats    (numElements, 0);
785
786         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
787
788         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
789         floorAll(inputFloats);
790
791         for (size_t ndx = 0; ndx < numElements; ++ndx)
792                 outputFloats[ndx] = inputFloats[ndx] + 7.5f;
793
794         spec.assembly =
795                 string(s_ShaderPreamble) +
796
797                 "OpName %main           \"main\"\n"
798                 "OpName %id             \"gl_GlobalInvocationID\"\n"
799
800                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
801
802                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
803
804                 "%fmat     = OpTypeMatrix %fvec3 3\n"
805                 "%three    = OpConstant %u32 3\n"
806                 "%farr     = OpTypeArray %f32 %three\n"
807                 "%fst      = OpTypeStruct %f32 %f32\n"
808
809                 + string(s_InputOutputBuffer) +
810
811                 "%id            = OpVariable %uvec3ptr Input\n"
812                 "%zero          = OpConstant %i32 0\n"
813                 "%c_f           = OpConstant %f32 1.5\n"
814                 "%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
815                 "%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
816                 "%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
817                 "%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
818
819                 "%main          = OpFunction %void None %voidf\n"
820                 "%label         = OpLabel\n"
821                 "%c_f_copy      = OpCopyObject %f32   %c_f\n"
822                 "%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
823                 "%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
824                 "%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
825                 "%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
826                 "%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
827                 "%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
828                 "%farr_elem     = OpCompositeExtract %f32 %c_farr_copy 2\n"
829                 "%fst_elem      = OpCompositeExtract %f32 %c_fst_copy 1\n"
830                 // Add up. 1.5 * 5 = 7.5.
831                 "%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
832                 "%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
833                 "%add3          = OpFAdd %f32 %add2     %farr_elem\n"
834                 "%add4          = OpFAdd %f32 %add3     %fst_elem\n"
835
836                 "%idval         = OpLoad %uvec3 %id\n"
837                 "%x             = OpCompositeExtract %u32 %idval 0\n"
838                 "%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
839                 "%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
840                 "%inval         = OpLoad %f32 %inloc\n"
841                 "%add           = OpFAdd %f32 %add4 %inval\n"
842                 "                 OpStore %outloc %add\n"
843                 "                 OpReturn\n"
844                 "                 OpFunctionEnd\n";
845         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
846         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
847         spec.numWorkGroups = IVec3(numElements, 1, 1);
848
849         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
850
851         return group.release();
852 }
853 // Assembly code used for testing OpUnreachable is based on GLSL source code:
854 //
855 // #version 430
856 //
857 // layout(std140, set = 0, binding = 0) readonly buffer Input {
858 //   float elements[];
859 // } input_data;
860 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
861 //   float elements[];
862 // } output_data;
863 //
864 // void not_called_func() {
865 //   // place OpUnreachable here
866 // }
867 //
868 // uint modulo4(uint val) {
869 //   switch (val % uint(4)) {
870 //     case 0:  return 3;
871 //     case 1:  return 2;
872 //     case 2:  return 1;
873 //     case 3:  return 0;
874 //     default: return 100; // place OpUnreachable here
875 //   }
876 // }
877 //
878 // uint const5() {
879 //   return 5;
880 //   // place OpUnreachable here
881 // }
882 //
883 // void main() {
884 //   uint x = gl_GlobalInvocationID.x;
885 //   if (const5() > modulo4(1000)) {
886 //     output_data.elements[x] = -input_data.elements[x];
887 //   } else {
888 //     // place OpUnreachable here
889 //     output_data.elements[x] = input_data.elements[x];
890 //   }
891 // }
892
893 tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
894 {
895         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
896         ComputeShaderSpec                               spec;
897         de::Random                                              rnd                             (deStringHash(group->getName()));
898         const int                                               numElements             = 100;
899         vector<float>                                   positiveFloats  (numElements, 0);
900         vector<float>                                   negativeFloats  (numElements, 0);
901
902         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
903
904         for (size_t ndx = 0; ndx < numElements; ++ndx)
905                 negativeFloats[ndx] = -positiveFloats[ndx];
906
907         spec.assembly =
908                 string(s_ShaderPreamble) +
909
910                 "OpSource GLSL 430\n"
911                 "OpName %main            \"main\"\n"
912                 "OpName %func_not_called_func \"not_called_func(\"\n"
913                 "OpName %func_modulo4         \"modulo4(u1;\"\n"
914                 "OpName %func_const5          \"const5(\"\n"
915                 "OpName %id                   \"gl_GlobalInvocationID\"\n"
916
917                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
918
919                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
920
921                 "%u32ptr    = OpTypePointer Function %u32\n"
922                 "%uintfuint = OpTypeFunction %u32 %u32ptr\n"
923                 "%unitf     = OpTypeFunction %u32\n"
924
925                 "%id        = OpVariable %uvec3ptr Input\n"
926                 "%zero      = OpConstant %u32 0\n"
927                 "%one       = OpConstant %u32 1\n"
928                 "%two       = OpConstant %u32 2\n"
929                 "%three     = OpConstant %u32 3\n"
930                 "%four      = OpConstant %u32 4\n"
931                 "%five      = OpConstant %u32 5\n"
932                 "%hundred   = OpConstant %u32 100\n"
933                 "%thousand  = OpConstant %u32 1000\n"
934
935                 + string(s_InputOutputBuffer) +
936
937                 // Main()
938                 "%main   = OpFunction %void None %voidf\n"
939                 "%main_entry  = OpLabel\n"
940                 "%v_thousand  = OpVariable %u32ptr Function %thousand\n"
941                 "%idval       = OpLoad %uvec3 %id\n"
942                 "%x           = OpCompositeExtract %u32 %idval 0\n"
943                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
944                 "%inval       = OpLoad %f32 %inloc\n"
945                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
946                 "%ret_const5  = OpFunctionCall %u32 %func_const5\n"
947                 "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
948                 "%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
949                 "               OpSelectionMerge %if_end None\n"
950                 "               OpBranchConditional %cmp_gt %if_true %if_false\n"
951                 "%if_true     = OpLabel\n"
952                 "%negate      = OpFNegate %f32 %inval\n"
953                 "               OpStore %outloc %negate\n"
954                 "               OpBranch %if_end\n"
955                 "%if_false    = OpLabel\n"
956                 "               OpUnreachable\n" // Unreachable else branch for if statement
957                 "%if_end      = OpLabel\n"
958                 "               OpReturn\n"
959                 "               OpFunctionEnd\n"
960
961                 // not_called_function()
962                 "%func_not_called_func  = OpFunction %void None %voidf\n"
963                 "%not_called_func_entry = OpLabel\n"
964                 "                         OpUnreachable\n" // Unreachable entry block in not called static function
965                 "                         OpFunctionEnd\n"
966
967                 // modulo4()
968                 "%func_modulo4  = OpFunction %u32 None %uintfuint\n"
969                 "%valptr        = OpFunctionParameter %u32ptr\n"
970                 "%modulo4_entry = OpLabel\n"
971                 "%val           = OpLoad %u32 %valptr\n"
972                 "%modulo        = OpUMod %u32 %val %four\n"
973                 "                 OpSelectionMerge %switch_merge None\n"
974                 "                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
975                 "%case0         = OpLabel\n"
976                 "                 OpReturnValue %three\n"
977                 "%case1         = OpLabel\n"
978                 "                 OpReturnValue %two\n"
979                 "%case2         = OpLabel\n"
980                 "                 OpReturnValue %one\n"
981                 "%case3         = OpLabel\n"
982                 "                 OpReturnValue %zero\n"
983                 "%default       = OpLabel\n"
984                 "                 OpUnreachable\n" // Unreachable default case for switch statement
985                 "%switch_merge  = OpLabel\n"
986                 "                 OpUnreachable\n" // Unreachable merge block for switch statement
987                 "                 OpFunctionEnd\n"
988
989                 // const5()
990                 "%func_const5  = OpFunction %u32 None %unitf\n"
991                 "%const5_entry = OpLabel\n"
992                 "                OpReturnValue %five\n"
993                 "%unreachable  = OpLabel\n"
994                 "                OpUnreachable\n" // Unreachable block in function
995                 "                OpFunctionEnd\n";
996         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
997         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
998         spec.numWorkGroups = IVec3(numElements, 1, 1);
999
1000         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
1001
1002         return group.release();
1003 }
1004
1005 // Assembly code used for testing decoration group is based on GLSL source code:
1006 //
1007 // #version 430
1008 //
1009 // layout(std140, set = 0, binding = 0) readonly buffer Input0 {
1010 //   float elements[];
1011 // } input_data0;
1012 // layout(std140, set = 0, binding = 1) readonly buffer Input1 {
1013 //   float elements[];
1014 // } input_data1;
1015 // layout(std140, set = 0, binding = 2) readonly buffer Input2 {
1016 //   float elements[];
1017 // } input_data2;
1018 // layout(std140, set = 0, binding = 3) readonly buffer Input3 {
1019 //   float elements[];
1020 // } input_data3;
1021 // layout(std140, set = 0, binding = 4) readonly buffer Input4 {
1022 //   float elements[];
1023 // } input_data4;
1024 // layout(std140, set = 0, binding = 5) writeonly buffer Output {
1025 //   float elements[];
1026 // } output_data;
1027 //
1028 // void main() {
1029 //   uint x = gl_GlobalInvocationID.x;
1030 //   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1031 // }
1032 tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1033 {
1034         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1035         ComputeShaderSpec                               spec;
1036         de::Random                                              rnd                             (deStringHash(group->getName()));
1037         const int                                               numElements             = 100;
1038         vector<float>                                   inputFloats0    (numElements, 0);
1039         vector<float>                                   inputFloats1    (numElements, 0);
1040         vector<float>                                   inputFloats2    (numElements, 0);
1041         vector<float>                                   inputFloats3    (numElements, 0);
1042         vector<float>                                   inputFloats4    (numElements, 0);
1043         vector<float>                                   outputFloats    (numElements, 0);
1044
1045         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1046         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1047         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1048         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1049         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1050
1051         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1052         floorAll(inputFloats0);
1053         floorAll(inputFloats1);
1054         floorAll(inputFloats2);
1055         floorAll(inputFloats3);
1056         floorAll(inputFloats4);
1057
1058         for (size_t ndx = 0; ndx < numElements; ++ndx)
1059                 outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1060
1061         spec.assembly =
1062                 string(s_ShaderPreamble) +
1063
1064                 "OpSource GLSL 430\n"
1065                 "OpName %main \"main\"\n"
1066                 "OpName %id \"gl_GlobalInvocationID\"\n"
1067
1068                 // Not using group decoration on variable.
1069                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1070                 // Not using group decoration on type.
1071                 "OpDecorate %f32arr ArrayStride 4\n"
1072
1073                 "OpDecorate %groups BufferBlock\n"
1074                 "OpDecorate %groupm Offset 0\n"
1075                 "%groups = OpDecorationGroup\n"
1076                 "%groupm = OpDecorationGroup\n"
1077
1078                 // Group decoration on multiple structs.
1079                 "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1080                 // Group decoration on multiple struct members.
1081                 "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1082
1083                 "OpDecorate %group1 DescriptorSet 0\n"
1084                 "OpDecorate %group3 DescriptorSet 0\n"
1085                 "OpDecorate %group3 NonWritable\n"
1086                 "OpDecorate %group3 Restrict\n"
1087                 "%group0 = OpDecorationGroup\n"
1088                 "%group1 = OpDecorationGroup\n"
1089                 "%group3 = OpDecorationGroup\n"
1090
1091                 // Applying the same decoration group multiple times.
1092                 "OpGroupDecorate %group1 %outdata\n"
1093                 "OpGroupDecorate %group1 %outdata\n"
1094                 "OpGroupDecorate %group1 %outdata\n"
1095                 "OpDecorate %outdata DescriptorSet 0\n"
1096                 "OpDecorate %outdata Binding 5\n"
1097                 // Applying decoration group containing nothing.
1098                 "OpGroupDecorate %group0 %indata0\n"
1099                 "OpDecorate %indata0 DescriptorSet 0\n"
1100                 "OpDecorate %indata0 Binding 0\n"
1101                 // Applying decoration group containing one decoration.
1102                 "OpGroupDecorate %group1 %indata1\n"
1103                 "OpDecorate %indata1 Binding 1\n"
1104                 // Applying decoration group containing multiple decorations.
1105                 "OpGroupDecorate %group3 %indata2 %indata3\n"
1106                 "OpDecorate %indata2 Binding 2\n"
1107                 "OpDecorate %indata3 Binding 3\n"
1108                 // Applying multiple decoration groups (with overlapping).
1109                 "OpGroupDecorate %group0 %indata4\n"
1110                 "OpGroupDecorate %group1 %indata4\n"
1111                 "OpGroupDecorate %group3 %indata4\n"
1112                 "OpDecorate %indata4 Binding 4\n"
1113
1114                 + string(s_CommonTypes) +
1115
1116                 "%id   = OpVariable %uvec3ptr Input\n"
1117                 "%zero = OpConstant %i32 0\n"
1118
1119                 "%outbuf    = OpTypeStruct %f32arr\n"
1120                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1121                 "%outdata   = OpVariable %outbufptr Uniform\n"
1122                 "%inbuf0    = OpTypeStruct %f32arr\n"
1123                 "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1124                 "%indata0   = OpVariable %inbuf0ptr Uniform\n"
1125                 "%inbuf1    = OpTypeStruct %f32arr\n"
1126                 "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1127                 "%indata1   = OpVariable %inbuf1ptr Uniform\n"
1128                 "%inbuf2    = OpTypeStruct %f32arr\n"
1129                 "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1130                 "%indata2   = OpVariable %inbuf2ptr Uniform\n"
1131                 "%inbuf3    = OpTypeStruct %f32arr\n"
1132                 "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1133                 "%indata3   = OpVariable %inbuf3ptr Uniform\n"
1134                 "%inbuf4    = OpTypeStruct %f32arr\n"
1135                 "%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1136                 "%indata4   = OpVariable %inbufptr Uniform\n"
1137
1138                 "%main   = OpFunction %void None %voidf\n"
1139                 "%label  = OpLabel\n"
1140                 "%idval  = OpLoad %uvec3 %id\n"
1141                 "%x      = OpCompositeExtract %u32 %idval 0\n"
1142                 "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1143                 "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1144                 "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1145                 "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1146                 "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1147                 "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1148                 "%inval0 = OpLoad %f32 %inloc0\n"
1149                 "%inval1 = OpLoad %f32 %inloc1\n"
1150                 "%inval2 = OpLoad %f32 %inloc2\n"
1151                 "%inval3 = OpLoad %f32 %inloc3\n"
1152                 "%inval4 = OpLoad %f32 %inloc4\n"
1153                 "%add0   = OpFAdd %f32 %inval0 %inval1\n"
1154                 "%add1   = OpFAdd %f32 %add0 %inval2\n"
1155                 "%add2   = OpFAdd %f32 %add1 %inval3\n"
1156                 "%add    = OpFAdd %f32 %add2 %inval4\n"
1157                 "          OpStore %outloc %add\n"
1158                 "          OpReturn\n"
1159                 "          OpFunctionEnd\n";
1160         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1161         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1162         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1163         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1164         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1165         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1166         spec.numWorkGroups = IVec3(numElements, 1, 1);
1167
1168         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1169
1170         return group.release();
1171 }
1172
1173 struct SpecConstantTwoIntCase
1174 {
1175         const char*             caseName;
1176         const char*             scDefinition0;
1177         const char*             scDefinition1;
1178         const char*             scResultType;
1179         const char*             scOperation;
1180         deInt32                 scActualValue0;
1181         deInt32                 scActualValue1;
1182         const char*             resultOperation;
1183         vector<deInt32> expectedOutput;
1184
1185                                         SpecConstantTwoIntCase (const char* name,
1186                                                                                         const char* definition0,
1187                                                                                         const char* definition1,
1188                                                                                         const char* resultType,
1189                                                                                         const char* operation,
1190                                                                                         deInt32 value0,
1191                                                                                         deInt32 value1,
1192                                                                                         const char* resultOp,
1193                                                                                         const vector<deInt32>& output)
1194                                                 : caseName                      (name)
1195                                                 , scDefinition0         (definition0)
1196                                                 , scDefinition1         (definition1)
1197                                                 , scResultType          (resultType)
1198                                                 , scOperation           (operation)
1199                                                 , scActualValue0        (value0)
1200                                                 , scActualValue1        (value1)
1201                                                 , resultOperation       (resultOp)
1202                                                 , expectedOutput        (output) {}
1203 };
1204
1205 tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1206 {
1207         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1208         vector<SpecConstantTwoIntCase>  cases;
1209         de::Random                                              rnd                             (deStringHash(group->getName()));
1210         const int                                               numElements             = 100;
1211         vector<deInt32>                                 inputInts               (numElements, 0);
1212         vector<deInt32>                                 outputInts1             (numElements, 0);
1213         vector<deInt32>                                 outputInts2             (numElements, 0);
1214         vector<deInt32>                                 outputInts3             (numElements, 0);
1215         vector<deInt32>                                 outputInts4             (numElements, 0);
1216         const StringTemplate                    shaderTemplate  (
1217                 string(s_ShaderPreamble) +
1218
1219                 "OpName %main           \"main\"\n"
1220                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1221
1222                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1223                 "OpDecorate %sc_0  SpecId 0\n"
1224                 "OpDecorate %sc_1  SpecId 1\n"
1225                 "OpDecorate %i32arr ArrayStride 4\n"
1226
1227                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1228
1229                 "%i32ptr    = OpTypePointer Uniform %i32\n"
1230                 "%i32arr    = OpTypeRuntimeArray %i32\n"
1231                 "%boolptr   = OpTypePointer Uniform %bool\n"
1232                 "%boolarr   = OpTypeRuntimeArray %bool\n"
1233                 "%buf     = OpTypeStruct %i32arr\n"
1234                 "%bufptr  = OpTypePointer Uniform %buf\n"
1235                 "%indata    = OpVariable %bufptr Uniform\n"
1236                 "%outdata   = OpVariable %bufptr Uniform\n"
1237
1238                 "%id        = OpVariable %uvec3ptr Input\n"
1239                 "%zero      = OpConstant %i32 0\n"
1240
1241                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
1242                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
1243                 "%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1244
1245                 "%main      = OpFunction %void None %voidf\n"
1246                 "%label     = OpLabel\n"
1247                 "%idval     = OpLoad %uvec3 %id\n"
1248                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1249                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1250                 "%inval     = OpLoad %i32 %inloc\n"
1251                 "%final     = ${GEN_RESULT}\n"
1252                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1253                 "             OpStore %outloc %final\n"
1254                 "             OpReturn\n"
1255                 "             OpFunctionEnd\n");
1256
1257         fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1258
1259         for (size_t ndx = 0; ndx < numElements; ++ndx)
1260         {
1261                 outputInts1[ndx] = inputInts[ndx] + 42;
1262                 outputInts2[ndx] = inputInts[ndx];
1263                 outputInts3[ndx] = inputInts[ndx] - 11200;
1264                 outputInts4[ndx] = inputInts[ndx] + 1;
1265         }
1266
1267         const char addScToInput[]               = "OpIAdd %i32 %inval %sc_final";
1268         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_final %inval %zero";
1269         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
1270
1271         cases.push_back(SpecConstantTwoIntCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                     62,             -20,    addScToInput,           outputInts1));
1272         cases.push_back(SpecConstantTwoIntCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                     100,    58,             addScToInput,           outputInts1));
1273         cases.push_back(SpecConstantTwoIntCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                     -2,             -21,    addScToInput,           outputInts1));
1274         cases.push_back(SpecConstantTwoIntCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                     -126,   -3,             addScToInput,           outputInts1));
1275         cases.push_back(SpecConstantTwoIntCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                     126,    3,              addScToInput,           outputInts1));
1276         cases.push_back(SpecConstantTwoIntCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1277         cases.push_back(SpecConstantTwoIntCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1278         cases.push_back(SpecConstantTwoIntCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                     342,    50,             addScToInput,           outputInts1));
1279         cases.push_back(SpecConstantTwoIntCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                     42,             63,             addScToInput,           outputInts1));
1280         cases.push_back(SpecConstantTwoIntCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                     34,             8,              addScToInput,           outputInts1));
1281         cases.push_back(SpecConstantTwoIntCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                     18,             56,             addScToInput,           outputInts1));
1282         cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1283         cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1284         cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                     21,             1,              addScToInput,           outputInts1));
1285         cases.push_back(SpecConstantTwoIntCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                     -20,    -10,    selectTrueUsingSc,      outputInts2));
1286         cases.push_back(SpecConstantTwoIntCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                     10,             20,             selectTrueUsingSc,      outputInts2));
1287         cases.push_back(SpecConstantTwoIntCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1288         cases.push_back(SpecConstantTwoIntCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                     10,             5,              selectTrueUsingSc,      outputInts2));
1289         cases.push_back(SpecConstantTwoIntCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                     -10,    -10,    selectTrueUsingSc,      outputInts2));
1290         cases.push_back(SpecConstantTwoIntCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                     50,             100,    selectTrueUsingSc,      outputInts2));
1291         cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1292         cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                     10,             10,             selectTrueUsingSc,      outputInts2));
1293         cases.push_back(SpecConstantTwoIntCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                     42,             24,             selectFalseUsingSc,     outputInts2));
1294         cases.push_back(SpecConstantTwoIntCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1295         cases.push_back(SpecConstantTwoIntCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1296         cases.push_back(SpecConstantTwoIntCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1297         cases.push_back(SpecConstantTwoIntCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1298         cases.push_back(SpecConstantTwoIntCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                           -42,    0,              addScToInput,           outputInts1));
1299         cases.push_back(SpecConstantTwoIntCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                           -43,    0,              addScToInput,           outputInts1));
1300         cases.push_back(SpecConstantTwoIntCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                           1,              0,              selectFalseUsingSc,     outputInts2));
1301         cases.push_back(SpecConstantTwoIntCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %zero",       1,              42,             addScToInput,           outputInts1));
1302         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1303
1304         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1305         {
1306                 map<string, string>             specializations;
1307                 ComputeShaderSpec               spec;
1308
1309                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
1310                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
1311                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
1312                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
1313                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
1314
1315                 spec.assembly = shaderTemplate.specialize(specializations);
1316                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1317                 spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1318                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1319                 spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1320                 spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1321
1322                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1323         }
1324
1325         ComputeShaderSpec                               spec;
1326
1327         spec.assembly =
1328                 string(s_ShaderPreamble) +
1329
1330                 "OpName %main           \"main\"\n"
1331                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1332
1333                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1334                 "OpDecorate %sc_0  SpecId 0\n"
1335                 "OpDecorate %sc_1  SpecId 1\n"
1336                 "OpDecorate %sc_2  SpecId 2\n"
1337                 "OpDecorate %i32arr ArrayStride 4\n"
1338
1339                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1340
1341                 "%ivec3     = OpTypeVector %i32 3\n"
1342                 "%i32ptr    = OpTypePointer Uniform %i32\n"
1343                 "%i32arr    = OpTypeRuntimeArray %i32\n"
1344                 "%boolptr   = OpTypePointer Uniform %bool\n"
1345                 "%boolarr   = OpTypeRuntimeArray %bool\n"
1346                 "%buf     = OpTypeStruct %i32arr\n"
1347                 "%bufptr  = OpTypePointer Uniform %buf\n"
1348                 "%indata    = OpVariable %bufptr Uniform\n"
1349                 "%outdata   = OpVariable %bufptr Uniform\n"
1350
1351                 "%id        = OpVariable %uvec3ptr Input\n"
1352                 "%zero      = OpConstant %i32 0\n"
1353                 "%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1354
1355                 "%sc_0        = OpSpecConstant %i32 0\n"
1356                 "%sc_1        = OpSpecConstant %i32 0\n"
1357                 "%sc_2        = OpSpecConstant %i32 0\n"
1358                 "%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1359                 "%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1360                 "%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1361                 "%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1362                 "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1363                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1364                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1365                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1366                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1367                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1368
1369                 "%main      = OpFunction %void None %voidf\n"
1370                 "%label     = OpLabel\n"
1371                 "%idval     = OpLoad %uvec3 %id\n"
1372                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1373                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1374                 "%inval     = OpLoad %i32 %inloc\n"
1375                 "%final     = OpIAdd %i32 %inval %sc_final\n"
1376                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1377                 "             OpStore %outloc %final\n"
1378                 "             OpReturn\n"
1379                 "             OpFunctionEnd\n";
1380         spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1381         spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1382         spec.numWorkGroups = IVec3(numElements, 1, 1);
1383         spec.specConstants.push_back(123);
1384         spec.specConstants.push_back(56);
1385         spec.specConstants.push_back(-77);
1386
1387         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1388
1389         return group.release();
1390 }
1391
1392 tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1393 {
1394         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1395         ComputeShaderSpec                               spec1;
1396         ComputeShaderSpec                               spec2;
1397         ComputeShaderSpec                               spec3;
1398         de::Random                                              rnd                             (deStringHash(group->getName()));
1399         const int                                               numElements             = 100;
1400         vector<float>                                   inputFloats             (numElements, 0);
1401         vector<float>                                   outputFloats1   (numElements, 0);
1402         vector<float>                                   outputFloats2   (numElements, 0);
1403         vector<float>                                   outputFloats3   (numElements, 0);
1404
1405         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1406
1407         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1408         floorAll(inputFloats);
1409
1410         for (size_t ndx = 0; ndx < numElements; ++ndx)
1411         {
1412                 switch (ndx % 3)
1413                 {
1414                         case 0:         outputFloats1[ndx] = inputFloats[ndx] + 5.5f;   break;
1415                         case 1:         outputFloats1[ndx] = inputFloats[ndx] + 20.5f;  break;
1416                         case 2:         outputFloats1[ndx] = inputFloats[ndx] + 1.75f;  break;
1417                         default:        break;
1418                 }
1419                 outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1420                 outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1421         }
1422
1423         spec1.assembly =
1424                 string(s_ShaderPreamble) +
1425
1426                 "OpSource GLSL 430\n"
1427                 "OpName %main \"main\"\n"
1428                 "OpName %id \"gl_GlobalInvocationID\"\n"
1429
1430                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1431
1432                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1433
1434                 "%id = OpVariable %uvec3ptr Input\n"
1435                 "%zero       = OpConstant %i32 0\n"
1436                 "%three      = OpConstant %u32 3\n"
1437                 "%constf5p5  = OpConstant %f32 5.5\n"
1438                 "%constf20p5 = OpConstant %f32 20.5\n"
1439                 "%constf1p75 = OpConstant %f32 1.75\n"
1440                 "%constf8p5  = OpConstant %f32 8.5\n"
1441                 "%constf6p5  = OpConstant %f32 6.5\n"
1442
1443                 "%main     = OpFunction %void None %voidf\n"
1444                 "%entry    = OpLabel\n"
1445                 "%idval    = OpLoad %uvec3 %id\n"
1446                 "%x        = OpCompositeExtract %u32 %idval 0\n"
1447                 "%selector = OpUMod %u32 %x %three\n"
1448                 "            OpSelectionMerge %phi None\n"
1449                 "            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1450
1451                 // Case 1 before OpPhi.
1452                 "%case1    = OpLabel\n"
1453                 "            OpBranch %phi\n"
1454
1455                 "%default  = OpLabel\n"
1456                 "            OpUnreachable\n"
1457
1458                 "%phi      = OpLabel\n"
1459                 "%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1460                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1461                 "%inval    = OpLoad %f32 %inloc\n"
1462                 "%add      = OpFAdd %f32 %inval %operand\n"
1463                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1464                 "            OpStore %outloc %add\n"
1465                 "            OpReturn\n"
1466
1467                 // Case 0 after OpPhi.
1468                 "%case0    = OpLabel\n"
1469                 "            OpBranch %phi\n"
1470
1471
1472                 // Case 2 after OpPhi.
1473                 "%case2    = OpLabel\n"
1474                 "            OpBranch %phi\n"
1475
1476                 "            OpFunctionEnd\n";
1477         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1478         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1479         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1480
1481         group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1482
1483         spec2.assembly =
1484                 string(s_ShaderPreamble) +
1485
1486                 "OpName %main \"main\"\n"
1487                 "OpName %id \"gl_GlobalInvocationID\"\n"
1488
1489                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1490
1491                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1492
1493                 "%id         = OpVariable %uvec3ptr Input\n"
1494                 "%zero       = OpConstant %i32 0\n"
1495                 "%one        = OpConstant %i32 1\n"
1496                 "%three      = OpConstant %i32 3\n"
1497                 "%constf6p5  = OpConstant %f32 6.5\n"
1498
1499                 "%main       = OpFunction %void None %voidf\n"
1500                 "%entry      = OpLabel\n"
1501                 "%idval      = OpLoad %uvec3 %id\n"
1502                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1503                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1504                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1505                 "%inval      = OpLoad %f32 %inloc\n"
1506                 "              OpBranch %phi\n"
1507
1508                 "%phi        = OpLabel\n"
1509                 "%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1510                 "%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1511                 "%step_next  = OpIAdd %i32 %step %one\n"
1512                 "%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1513                 "%still_loop = OpSLessThan %bool %step %three\n"
1514                 "              OpLoopMerge %exit %phi None\n"
1515                 "              OpBranchConditional %still_loop %phi %exit\n"
1516
1517                 "%exit       = OpLabel\n"
1518                 "              OpStore %outloc %accum\n"
1519                 "              OpReturn\n"
1520                 "              OpFunctionEnd\n";
1521         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1522         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1523         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1524
1525         group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1526
1527         spec3.assembly =
1528                 string(s_ShaderPreamble) +
1529
1530                 "OpName %main \"main\"\n"
1531                 "OpName %id \"gl_GlobalInvocationID\"\n"
1532
1533                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1534
1535                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1536
1537                 "%f32ptr_f   = OpTypePointer Function %f32\n"
1538                 "%id         = OpVariable %uvec3ptr Input\n"
1539                 "%true       = OpConstantTrue %bool\n"
1540                 "%false      = OpConstantFalse %bool\n"
1541                 "%zero       = OpConstant %i32 0\n"
1542                 "%constf8p5  = OpConstant %f32 8.5\n"
1543
1544                 "%main       = OpFunction %void None %voidf\n"
1545                 "%entry      = OpLabel\n"
1546                 "%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1547                 "%idval      = OpLoad %uvec3 %id\n"
1548                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1549                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1550                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1551                 "%a_init     = OpLoad %f32 %inloc\n"
1552                 "%b_init     = OpLoad %f32 %b\n"
1553                 "              OpBranch %phi\n"
1554
1555                 "%phi        = OpLabel\n"
1556                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1557                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1558                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1559                 "              OpLoopMerge %exit %phi None\n"
1560                 "              OpBranchConditional %still_loop %phi %exit\n"
1561
1562                 "%exit       = OpLabel\n"
1563                 "%sub        = OpFSub %f32 %a_next %b_next\n"
1564                 "              OpStore %outloc %sub\n"
1565                 "              OpReturn\n"
1566                 "              OpFunctionEnd\n";
1567         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1568         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1569         spec3.numWorkGroups = IVec3(numElements, 1, 1);
1570
1571         group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1572
1573         return group.release();
1574 }
1575
1576 // Assembly code used for testing block order is based on GLSL source code:
1577 //
1578 // #version 430
1579 //
1580 // layout(std140, set = 0, binding = 0) readonly buffer Input {
1581 //   float elements[];
1582 // } input_data;
1583 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
1584 //   float elements[];
1585 // } output_data;
1586 //
1587 // void main() {
1588 //   uint x = gl_GlobalInvocationID.x;
1589 //   output_data.elements[x] = input_data.elements[x];
1590 //   if (x > uint(50)) {
1591 //     switch (x % uint(3)) {
1592 //       case 0: output_data.elements[x] += 1.5f; break;
1593 //       case 1: output_data.elements[x] += 42.f; break;
1594 //       case 2: output_data.elements[x] -= 27.f; break;
1595 //       default: break;
1596 //     }
1597 //   } else {
1598 //     output_data.elements[x] = -input_data.elements[x];
1599 //   }
1600 // }
1601 tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1602 {
1603         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1604         ComputeShaderSpec                               spec;
1605         de::Random                                              rnd                             (deStringHash(group->getName()));
1606         const int                                               numElements             = 100;
1607         vector<float>                                   inputFloats             (numElements, 0);
1608         vector<float>                                   outputFloats    (numElements, 0);
1609
1610         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1611
1612         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1613         floorAll(inputFloats);
1614
1615         for (size_t ndx = 0; ndx <= 50; ++ndx)
1616                 outputFloats[ndx] = -inputFloats[ndx];
1617
1618         for (size_t ndx = 51; ndx < numElements; ++ndx)
1619         {
1620                 switch (ndx % 3)
1621                 {
1622                         case 0:         outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1623                         case 1:         outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1624                         case 2:         outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1625                         default:        break;
1626                 }
1627         }
1628
1629         spec.assembly =
1630                 string(s_ShaderPreamble) +
1631
1632                 "OpSource GLSL 430\n"
1633                 "OpName %main \"main\"\n"
1634                 "OpName %id \"gl_GlobalInvocationID\"\n"
1635
1636                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1637
1638                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1639
1640                 "%u32ptr       = OpTypePointer Function %u32\n"
1641                 "%u32ptr_input = OpTypePointer Input %u32\n"
1642
1643                 + string(s_InputOutputBuffer) +
1644
1645                 "%id        = OpVariable %uvec3ptr Input\n"
1646                 "%zero      = OpConstant %i32 0\n"
1647                 "%const3    = OpConstant %u32 3\n"
1648                 "%const50   = OpConstant %u32 50\n"
1649                 "%constf1p5 = OpConstant %f32 1.5\n"
1650                 "%constf27  = OpConstant %f32 27.0\n"
1651                 "%constf42  = OpConstant %f32 42.0\n"
1652
1653                 "%main = OpFunction %void None %voidf\n"
1654
1655                 // entry block.
1656                 "%entry    = OpLabel\n"
1657
1658                 // Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1659                 "%xvar     = OpVariable %u32ptr Function\n"
1660                 "%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1661                 "%x        = OpLoad %u32 %xptr\n"
1662                 "            OpStore %xvar %x\n"
1663
1664                 "%cmp      = OpUGreaterThan %bool %x %const50\n"
1665                 "            OpSelectionMerge %if_merge None\n"
1666                 "            OpBranchConditional %cmp %if_true %if_false\n"
1667
1668                 // Merge block for switch-statement: placed at the beginning.
1669                 "%switch_merge = OpLabel\n"
1670                 "                OpBranch %if_merge\n"
1671
1672                 // Case 1 for switch-statement.
1673                 "%case1    = OpLabel\n"
1674                 "%x_1      = OpLoad %u32 %xvar\n"
1675                 "%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1676                 "%inval_1  = OpLoad %f32 %inloc_1\n"
1677                 "%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1678                 "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1679                 "            OpStore %outloc_1 %addf42\n"
1680                 "            OpBranch %switch_merge\n"
1681
1682                 // False branch for if-statement: placed in the middle of switch cases and before true branch.
1683                 "%if_false = OpLabel\n"
1684                 "%x_f      = OpLoad %u32 %xvar\n"
1685                 "%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1686                 "%inval_f  = OpLoad %f32 %inloc_f\n"
1687                 "%negate   = OpFNegate %f32 %inval_f\n"
1688                 "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1689                 "            OpStore %outloc_f %negate\n"
1690                 "            OpBranch %if_merge\n"
1691
1692                 // Merge block for if-statement: placed in the middle of true and false branch.
1693                 "%if_merge = OpLabel\n"
1694                 "            OpReturn\n"
1695
1696                 // True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1697                 "%if_true  = OpLabel\n"
1698                 "%xval_t   = OpLoad %u32 %xvar\n"
1699                 "%mod      = OpUMod %u32 %xval_t %const3\n"
1700                 "            OpSelectionMerge %switch_merge None\n"
1701                 "            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1702
1703                 // Case 2 for switch-statement.
1704                 "%case2    = OpLabel\n"
1705                 "%x_2      = OpLoad %u32 %xvar\n"
1706                 "%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1707                 "%inval_2  = OpLoad %f32 %inloc_2\n"
1708                 "%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1709                 "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1710                 "            OpStore %outloc_2 %subf27\n"
1711                 "            OpBranch %switch_merge\n"
1712
1713                 // Default case for switch-statement: placed in the middle of normal cases.
1714                 "%default = OpLabel\n"
1715                 "           OpBranch %switch_merge\n"
1716
1717                 // Case 0 for switch-statement: out of order.
1718                 "%case0    = OpLabel\n"
1719                 "%x_0      = OpLoad %u32 %xvar\n"
1720                 "%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1721                 "%inval_0  = OpLoad %f32 %inloc_0\n"
1722                 "%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1723                 "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1724                 "            OpStore %outloc_0 %addf1p5\n"
1725                 "            OpBranch %switch_merge\n"
1726
1727                 "            OpFunctionEnd\n";
1728         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1729         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1730         spec.numWorkGroups = IVec3(numElements, 1, 1);
1731
1732         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1733
1734         return group.release();
1735 }
1736
1737 tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1738 {
1739         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1740         ComputeShaderSpec                               spec1;
1741         ComputeShaderSpec                               spec2;
1742         de::Random                                              rnd                             (deStringHash(group->getName()));
1743         const int                                               numElements             = 100;
1744         vector<float>                                   inputFloats             (numElements, 0);
1745         vector<float>                                   outputFloats1   (numElements, 0);
1746         vector<float>                                   outputFloats2   (numElements, 0);
1747         fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1748
1749         for (size_t ndx = 0; ndx < numElements; ++ndx)
1750         {
1751                 outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1752                 outputFloats2[ndx] = -inputFloats[ndx];
1753         }
1754
1755         const string assembly(
1756                 "OpCapability Shader\n"
1757                 "OpCapability ClipDistance\n"
1758                 "OpMemoryModel Logical GLSL450\n"
1759                 "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1760                 "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1761                 // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1762                 "OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
1763                 "OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
1764                 "OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
1765
1766                 "OpName %comp_main1              \"entrypoint1\"\n"
1767                 "OpName %comp_main2              \"entrypoint2\"\n"
1768                 "OpName %vert_main               \"entrypoint2\"\n"
1769                 "OpName %id                      \"gl_GlobalInvocationID\"\n"
1770                 "OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1771                 "OpName %vertexIndex             \"gl_VertexIndex\"\n"
1772                 "OpName %instanceIndex           \"gl_InstanceIndex\"\n"
1773                 "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1774                 "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1775                 "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1776
1777                 "OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1778                 "OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
1779                 "OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
1780                 "OpDecorate %vert_builtin_st         Block\n"
1781                 "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1782                 "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1783                 "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1784
1785                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1786
1787                 "%zero       = OpConstant %i32 0\n"
1788                 "%one        = OpConstant %u32 1\n"
1789                 "%c_f32_1    = OpConstant %f32 1\n"
1790
1791                 "%i32ptr              = OpTypePointer Input %i32\n"
1792                 "%vec4                = OpTypeVector %f32 4\n"
1793                 "%vec4ptr             = OpTypePointer Output %vec4\n"
1794                 "%f32arr1             = OpTypeArray %f32 %one\n"
1795                 "%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1796                 "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1797                 "%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1798
1799                 "%id         = OpVariable %uvec3ptr Input\n"
1800                 "%vertexIndex = OpVariable %i32ptr Input\n"
1801                 "%instanceIndex = OpVariable %i32ptr Input\n"
1802                 "%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1803
1804                 // gl_Position = vec4(1.);
1805                 "%vert_main  = OpFunction %void None %voidf\n"
1806                 "%vert_entry = OpLabel\n"
1807                 "%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1808                 "              OpStore %position %c_vec4_1\n"
1809                 "              OpReturn\n"
1810                 "              OpFunctionEnd\n"
1811
1812                 // Double inputs.
1813                 "%comp_main1  = OpFunction %void None %voidf\n"
1814                 "%comp1_entry = OpLabel\n"
1815                 "%idval1      = OpLoad %uvec3 %id\n"
1816                 "%x1          = OpCompositeExtract %u32 %idval1 0\n"
1817                 "%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1818                 "%inval1      = OpLoad %f32 %inloc1\n"
1819                 "%add         = OpFAdd %f32 %inval1 %inval1\n"
1820                 "%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1821                 "               OpStore %outloc1 %add\n"
1822                 "               OpReturn\n"
1823                 "               OpFunctionEnd\n"
1824
1825                 // Negate inputs.
1826                 "%comp_main2  = OpFunction %void None %voidf\n"
1827                 "%comp2_entry = OpLabel\n"
1828                 "%idval2      = OpLoad %uvec3 %id\n"
1829                 "%x2          = OpCompositeExtract %u32 %idval2 0\n"
1830                 "%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1831                 "%inval2      = OpLoad %f32 %inloc2\n"
1832                 "%neg         = OpFNegate %f32 %inval2\n"
1833                 "%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1834                 "               OpStore %outloc2 %neg\n"
1835                 "               OpReturn\n"
1836                 "               OpFunctionEnd\n");
1837
1838         spec1.assembly = assembly;
1839         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1840         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1841         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1842         spec1.entryPoint = "entrypoint1";
1843
1844         spec2.assembly = assembly;
1845         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1846         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1847         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1848         spec2.entryPoint = "entrypoint2";
1849
1850         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1851         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1852
1853         return group.release();
1854 }
1855
1856 inline std::string makeLongUTF8String (size_t num4ByteChars)
1857 {
1858         // An example of a longest valid UTF-8 character.  Be explicit about the
1859         // character type because Microsoft compilers can otherwise interpret the
1860         // character string as being over wide (16-bit) characters. Ideally, we
1861         // would just use a C++11 UTF-8 string literal, but we want to support older
1862         // Microsoft compilers.
1863         const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1864         std::string longString;
1865         longString.reserve(num4ByteChars * 4);
1866         for (size_t count = 0; count < num4ByteChars; count++)
1867         {
1868                 longString += earthAfrica;
1869         }
1870         return longString;
1871 }
1872
1873 tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1874 {
1875         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1876         vector<CaseParameter>                   cases;
1877         de::Random                                              rnd                             (deStringHash(group->getName()));
1878         const int                                               numElements             = 100;
1879         vector<float>                                   positiveFloats  (numElements, 0);
1880         vector<float>                                   negativeFloats  (numElements, 0);
1881         const StringTemplate                    shaderTemplate  (
1882                 "OpCapability Shader\n"
1883                 "OpMemoryModel Logical GLSL450\n"
1884
1885                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1886                 "OpExecutionMode %main LocalSize 1 1 1\n"
1887
1888                 "${SOURCE}\n"
1889
1890                 "OpName %main           \"main\"\n"
1891                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1892
1893                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1894
1895                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1896
1897                 "%id        = OpVariable %uvec3ptr Input\n"
1898                 "%zero      = OpConstant %i32 0\n"
1899
1900                 "%main      = OpFunction %void None %voidf\n"
1901                 "%label     = OpLabel\n"
1902                 "%idval     = OpLoad %uvec3 %id\n"
1903                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1904                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1905                 "%inval     = OpLoad %f32 %inloc\n"
1906                 "%neg       = OpFNegate %f32 %inval\n"
1907                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1908                 "             OpStore %outloc %neg\n"
1909                 "             OpReturn\n"
1910                 "             OpFunctionEnd\n");
1911
1912         cases.push_back(CaseParameter("unknown_source",                                                 "OpSource Unknown 0"));
1913         cases.push_back(CaseParameter("wrong_source",                                                   "OpSource OpenCL_C 210"));
1914         cases.push_back(CaseParameter("normal_filename",                                                "%fname = OpString \"filename\"\n"
1915                                                                                                                                                         "OpSource GLSL 430 %fname"));
1916         cases.push_back(CaseParameter("empty_filename",                                                 "%fname = OpString \"\"\n"
1917                                                                                                                                                         "OpSource GLSL 430 %fname"));
1918         cases.push_back(CaseParameter("normal_source_code",                                             "%fname = OpString \"filename\"\n"
1919                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1920         cases.push_back(CaseParameter("empty_source_code",                                              "%fname = OpString \"filename\"\n"
1921                                                                                                                                                         "OpSource GLSL 430 %fname \"\""));
1922         cases.push_back(CaseParameter("long_source_code",                                               "%fname = OpString \"filename\"\n"
1923                                                                                                                                                         "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1924         cases.push_back(CaseParameter("utf8_source_code",                                               "%fname = OpString \"filename\"\n"
1925                                                                                                                                                         "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1926         cases.push_back(CaseParameter("normal_sourcecontinued",                                 "%fname = OpString \"filename\"\n"
1927                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1928                                                                                                                                                         "OpSourceContinued \"id main() {}\""));
1929         cases.push_back(CaseParameter("empty_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
1930                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1931                                                                                                                                                         "OpSourceContinued \"\""));
1932         cases.push_back(CaseParameter("long_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
1933                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1934                                                                                                                                                         "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1935         cases.push_back(CaseParameter("utf8_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
1936                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1937                                                                                                                                                         "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1938         cases.push_back(CaseParameter("multi_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
1939                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\n\"\n"
1940                                                                                                                                                         "OpSourceContinued \"void\"\n"
1941                                                                                                                                                         "OpSourceContinued \"main()\"\n"
1942                                                                                                                                                         "OpSourceContinued \"{}\""));
1943         cases.push_back(CaseParameter("empty_source_before_sourcecontinued",    "%fname = OpString \"filename\"\n"
1944                                                                                                                                                         "OpSource GLSL 430 %fname \"\"\n"
1945                                                                                                                                                         "OpSourceContinued \"#version 430\nvoid main() {}\""));
1946
1947         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1948
1949         for (size_t ndx = 0; ndx < numElements; ++ndx)
1950                 negativeFloats[ndx] = -positiveFloats[ndx];
1951
1952         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1953         {
1954                 map<string, string>             specializations;
1955                 ComputeShaderSpec               spec;
1956
1957                 specializations["SOURCE"] = cases[caseNdx].param;
1958                 spec.assembly = shaderTemplate.specialize(specializations);
1959                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1960                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1961                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1962
1963                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1964         }
1965
1966         return group.release();
1967 }
1968
1969 tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1970 {
1971         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1972         vector<CaseParameter>                   cases;
1973         de::Random                                              rnd                             (deStringHash(group->getName()));
1974         const int                                               numElements             = 100;
1975         vector<float>                                   inputFloats             (numElements, 0);
1976         vector<float>                                   outputFloats    (numElements, 0);
1977         const StringTemplate                    shaderTemplate  (
1978                 string(s_ShaderPreamble) +
1979
1980                 "OpSourceExtension \"${EXTENSION}\"\n"
1981
1982                 "OpName %main           \"main\"\n"
1983                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1984
1985                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1986
1987                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1988
1989                 "%id        = OpVariable %uvec3ptr Input\n"
1990                 "%zero      = OpConstant %i32 0\n"
1991
1992                 "%main      = OpFunction %void None %voidf\n"
1993                 "%label     = OpLabel\n"
1994                 "%idval     = OpLoad %uvec3 %id\n"
1995                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1996                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1997                 "%inval     = OpLoad %f32 %inloc\n"
1998                 "%neg       = OpFNegate %f32 %inval\n"
1999                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2000                 "             OpStore %outloc %neg\n"
2001                 "             OpReturn\n"
2002                 "             OpFunctionEnd\n");
2003
2004         cases.push_back(CaseParameter("empty_extension",        ""));
2005         cases.push_back(CaseParameter("real_extension",         "GL_ARB_texture_rectangle"));
2006         cases.push_back(CaseParameter("fake_extension",         "GL_ARB_im_the_ultimate_extension"));
2007         cases.push_back(CaseParameter("utf8_extension",         "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
2008         cases.push_back(CaseParameter("long_extension",         makeLongUTF8String(65533) + "ccc")); // word count: 65535
2009
2010         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
2011
2012         for (size_t ndx = 0; ndx < numElements; ++ndx)
2013                 outputFloats[ndx] = -inputFloats[ndx];
2014
2015         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2016         {
2017                 map<string, string>             specializations;
2018                 ComputeShaderSpec               spec;
2019
2020                 specializations["EXTENSION"] = cases[caseNdx].param;
2021                 spec.assembly = shaderTemplate.specialize(specializations);
2022                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2023                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2024                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2025
2026                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2027         }
2028
2029         return group.release();
2030 }
2031
2032 // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
2033 tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
2034 {
2035         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
2036         vector<CaseParameter>                   cases;
2037         de::Random                                              rnd                             (deStringHash(group->getName()));
2038         const int                                               numElements             = 100;
2039         vector<float>                                   positiveFloats  (numElements, 0);
2040         vector<float>                                   negativeFloats  (numElements, 0);
2041         const StringTemplate                    shaderTemplate  (
2042                 string(s_ShaderPreamble) +
2043
2044                 "OpSource GLSL 430\n"
2045                 "OpName %main           \"main\"\n"
2046                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2047
2048                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2049
2050                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2051
2052                 "${TYPE}\n"
2053                 "%null      = OpConstantNull %type\n"
2054
2055                 "%id        = OpVariable %uvec3ptr Input\n"
2056                 "%zero      = OpConstant %i32 0\n"
2057
2058                 "%main      = OpFunction %void None %voidf\n"
2059                 "%label     = OpLabel\n"
2060                 "%idval     = OpLoad %uvec3 %id\n"
2061                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2062                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2063                 "%inval     = OpLoad %f32 %inloc\n"
2064                 "%neg       = OpFNegate %f32 %inval\n"
2065                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2066                 "             OpStore %outloc %neg\n"
2067                 "             OpReturn\n"
2068                 "             OpFunctionEnd\n");
2069
2070         cases.push_back(CaseParameter("bool",                   "%type = OpTypeBool"));
2071         cases.push_back(CaseParameter("sint32",                 "%type = OpTypeInt 32 1"));
2072         cases.push_back(CaseParameter("uint32",                 "%type = OpTypeInt 32 0"));
2073         cases.push_back(CaseParameter("float32",                "%type = OpTypeFloat 32"));
2074         cases.push_back(CaseParameter("vec4float32",    "%type = OpTypeVector %f32 4"));
2075         cases.push_back(CaseParameter("vec3bool",               "%type = OpTypeVector %bool 3"));
2076         cases.push_back(CaseParameter("vec2uint32",             "%type = OpTypeVector %u32 2"));
2077         cases.push_back(CaseParameter("matrix",                 "%type = OpTypeMatrix %fvec3 3"));
2078         cases.push_back(CaseParameter("array",                  "%100 = OpConstant %u32 100\n"
2079                                                                                                         "%type = OpTypeArray %i32 %100"));
2080         cases.push_back(CaseParameter("struct",                 "%type = OpTypeStruct %f32 %i32 %u32"));
2081         cases.push_back(CaseParameter("pointer",                "%type = OpTypePointer Function %i32"));
2082
2083         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2084
2085         for (size_t ndx = 0; ndx < numElements; ++ndx)
2086                 negativeFloats[ndx] = -positiveFloats[ndx];
2087
2088         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2089         {
2090                 map<string, string>             specializations;
2091                 ComputeShaderSpec               spec;
2092
2093                 specializations["TYPE"] = cases[caseNdx].param;
2094                 spec.assembly = shaderTemplate.specialize(specializations);
2095                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2096                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2097                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2098
2099                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2100         }
2101
2102         return group.release();
2103 }
2104
2105 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2106 tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2107 {
2108         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2109         vector<CaseParameter>                   cases;
2110         de::Random                                              rnd                             (deStringHash(group->getName()));
2111         const int                                               numElements             = 100;
2112         vector<float>                                   positiveFloats  (numElements, 0);
2113         vector<float>                                   negativeFloats  (numElements, 0);
2114         const StringTemplate                    shaderTemplate  (
2115                 string(s_ShaderPreamble) +
2116
2117                 "OpSource GLSL 430\n"
2118                 "OpName %main           \"main\"\n"
2119                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2120
2121                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2122
2123                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2124
2125                 "%id        = OpVariable %uvec3ptr Input\n"
2126                 "%zero      = OpConstant %i32 0\n"
2127
2128                 "${CONSTANT}\n"
2129
2130                 "%main      = OpFunction %void None %voidf\n"
2131                 "%label     = OpLabel\n"
2132                 "%idval     = OpLoad %uvec3 %id\n"
2133                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2134                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2135                 "%inval     = OpLoad %f32 %inloc\n"
2136                 "%neg       = OpFNegate %f32 %inval\n"
2137                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2138                 "             OpStore %outloc %neg\n"
2139                 "             OpReturn\n"
2140                 "             OpFunctionEnd\n");
2141
2142         cases.push_back(CaseParameter("vector",                 "%five = OpConstant %u32 5\n"
2143                                                                                                         "%const = OpConstantComposite %uvec3 %five %zero %five"));
2144         cases.push_back(CaseParameter("matrix",                 "%m3fvec3 = OpTypeMatrix %fvec3 3\n"
2145                                                                                                         "%ten = OpConstant %f32 10.\n"
2146                                                                                                         "%fzero = OpConstant %f32 0.\n"
2147                                                                                                         "%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
2148                                                                                                         "%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
2149         cases.push_back(CaseParameter("struct",                 "%m2vec3 = OpTypeMatrix %fvec3 2\n"
2150                                                                                                         "%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
2151                                                                                                         "%fzero = OpConstant %f32 0.\n"
2152                                                                                                         "%one = OpConstant %f32 1.\n"
2153                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2154                                                                                                         "%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
2155                                                                                                         "%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2156                                                                                                         "%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
2157         cases.push_back(CaseParameter("nested_struct",  "%st1 = OpTypeStruct %u32 %f32\n"
2158                                                                                                         "%st2 = OpTypeStruct %i32 %i32\n"
2159                                                                                                         "%struct = OpTypeStruct %st1 %st2\n"
2160                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2161                                                                                                         "%one = OpConstant %u32 1\n"
2162                                                                                                         "%ten = OpConstant %i32 10\n"
2163                                                                                                         "%st1val = OpConstantComposite %st1 %one %point5\n"
2164                                                                                                         "%st2val = OpConstantComposite %st2 %ten %ten\n"
2165                                                                                                         "%const = OpConstantComposite %struct %st1val %st2val"));
2166
2167         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2168
2169         for (size_t ndx = 0; ndx < numElements; ++ndx)
2170                 negativeFloats[ndx] = -positiveFloats[ndx];
2171
2172         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2173         {
2174                 map<string, string>             specializations;
2175                 ComputeShaderSpec               spec;
2176
2177                 specializations["CONSTANT"] = cases[caseNdx].param;
2178                 spec.assembly = shaderTemplate.specialize(specializations);
2179                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2180                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2181                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2182
2183                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2184         }
2185
2186         return group.release();
2187 }
2188
2189 // Creates a floating point number with the given exponent, and significand
2190 // bits set. It can only create normalized numbers. Only the least significant
2191 // 24 bits of the significand will be examined. The final bit of the
2192 // significand will also be ignored. This allows alignment to be written
2193 // similarly to C99 hex-floats.
2194 // For example if you wanted to write 0x1.7f34p-12 you would call
2195 // constructNormalizedFloat(-12, 0x7f3400)
2196 float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2197 {
2198         float f = 1.0f;
2199
2200         for (deInt32 idx = 0; idx < 23; ++idx)
2201         {
2202                 f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
2203                 significand <<= 1;
2204         }
2205
2206         return std::ldexp(f, exponent);
2207 }
2208
2209 // Compare instruction for the OpQuantizeF16 compute exact case.
2210 // Returns true if the output is what is expected from the test case.
2211 bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2212 {
2213         if (outputAllocs.size() != 1)
2214                 return false;
2215
2216         // We really just need this for size because we cannot compare Nans.
2217         const BufferSp& expectedOutput  = expectedOutputs[0];
2218         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2219
2220         if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2221                 return false;
2222         }
2223
2224         if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2225                 *outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2226                 return false;
2227         }
2228         outputAsFloat++;
2229
2230         if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2231                 *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2232                 return false;
2233         }
2234         outputAsFloat++;
2235
2236         if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2237                 *outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2238                 return false;
2239         }
2240         outputAsFloat++;
2241
2242         if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2243                 *outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2244                 return false;
2245         }
2246
2247         return true;
2248 }
2249
2250 // Checks that every output from a test-case is a float NaN.
2251 bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2252 {
2253         if (outputAllocs.size() != 1)
2254                 return false;
2255
2256         // We really just need this for size because we cannot compare Nans.
2257         const BufferSp& expectedOutput          = expectedOutputs[0];
2258         const float* output_as_float            = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2259
2260         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2261         {
2262                 if (!isnan(output_as_float[idx]))
2263                 {
2264                         return false;
2265                 }
2266         }
2267
2268         return true;
2269 }
2270
2271 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2272 tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2273 {
2274         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2275
2276         const std::string shader (
2277                 string(s_ShaderPreamble) +
2278
2279                 "OpSource GLSL 430\n"
2280                 "OpName %main           \"main\"\n"
2281                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2282
2283                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2284
2285                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2286
2287                 "%id        = OpVariable %uvec3ptr Input\n"
2288                 "%zero      = OpConstant %i32 0\n"
2289
2290                 "%main      = OpFunction %void None %voidf\n"
2291                 "%label     = OpLabel\n"
2292                 "%idval     = OpLoad %uvec3 %id\n"
2293                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2294                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2295                 "%inval     = OpLoad %f32 %inloc\n"
2296                 "%quant     = OpQuantizeToF16 %f32 %inval\n"
2297                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2298                 "             OpStore %outloc %quant\n"
2299                 "             OpReturn\n"
2300                 "             OpFunctionEnd\n");
2301
2302         {
2303                 ComputeShaderSpec       spec;
2304                 const deUint32          numElements             = 100;
2305                 vector<float>           infinities;
2306                 vector<float>           results;
2307
2308                 infinities.reserve(numElements);
2309                 results.reserve(numElements);
2310
2311                 for (size_t idx = 0; idx < numElements; ++idx)
2312                 {
2313                         switch(idx % 4)
2314                         {
2315                                 case 0:
2316                                         infinities.push_back(std::numeric_limits<float>::infinity());
2317                                         results.push_back(std::numeric_limits<float>::infinity());
2318                                         break;
2319                                 case 1:
2320                                         infinities.push_back(-std::numeric_limits<float>::infinity());
2321                                         results.push_back(-std::numeric_limits<float>::infinity());
2322                                         break;
2323                                 case 2:
2324                                         infinities.push_back(std::ldexp(1.0f, 16));
2325                                         results.push_back(std::numeric_limits<float>::infinity());
2326                                         break;
2327                                 case 3:
2328                                         infinities.push_back(std::ldexp(-1.0f, 32));
2329                                         results.push_back(-std::numeric_limits<float>::infinity());
2330                                         break;
2331                         }
2332                 }
2333
2334                 spec.assembly = shader;
2335                 spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2336                 spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2337                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2338
2339                 group->addChild(new SpvAsmComputeShaderCase(
2340                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2341         }
2342
2343         {
2344                 ComputeShaderSpec       spec;
2345                 vector<float>           nans;
2346                 const deUint32          numElements             = 100;
2347
2348                 nans.reserve(numElements);
2349
2350                 for (size_t idx = 0; idx < numElements; ++idx)
2351                 {
2352                         if (idx % 2 == 0)
2353                         {
2354                                 nans.push_back(std::numeric_limits<float>::quiet_NaN());
2355                         }
2356                         else
2357                         {
2358                                 nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2359                         }
2360                 }
2361
2362                 spec.assembly = shader;
2363                 spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2364                 spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2365                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2366                 spec.verifyIO = &compareNan;
2367
2368                 group->addChild(new SpvAsmComputeShaderCase(
2369                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2370         }
2371
2372         {
2373                 ComputeShaderSpec       spec;
2374                 vector<float>           small;
2375                 vector<float>           zeros;
2376                 const deUint32          numElements             = 100;
2377
2378                 small.reserve(numElements);
2379                 zeros.reserve(numElements);
2380
2381                 for (size_t idx = 0; idx < numElements; ++idx)
2382                 {
2383                         switch(idx % 6)
2384                         {
2385                                 case 0:
2386                                         small.push_back(0.f);
2387                                         zeros.push_back(0.f);
2388                                         break;
2389                                 case 1:
2390                                         small.push_back(-0.f);
2391                                         zeros.push_back(-0.f);
2392                                         break;
2393                                 case 2:
2394                                         small.push_back(std::ldexp(1.0f, -16));
2395                                         zeros.push_back(0.f);
2396                                         break;
2397                                 case 3:
2398                                         small.push_back(std::ldexp(-1.0f, -32));
2399                                         zeros.push_back(-0.f);
2400                                         break;
2401                                 case 4:
2402                                         small.push_back(std::ldexp(1.0f, -127));
2403                                         zeros.push_back(0.f);
2404                                         break;
2405                                 case 5:
2406                                         small.push_back(-std::ldexp(1.0f, -128));
2407                                         zeros.push_back(-0.f);
2408                                         break;
2409                         }
2410                 }
2411
2412                 spec.assembly = shader;
2413                 spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2414                 spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2415                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2416
2417                 group->addChild(new SpvAsmComputeShaderCase(
2418                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2419         }
2420
2421         {
2422                 ComputeShaderSpec       spec;
2423                 vector<float>           exact;
2424                 const deUint32          numElements             = 200;
2425
2426                 exact.reserve(numElements);
2427
2428                 for (size_t idx = 0; idx < numElements; ++idx)
2429                         exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
2430
2431                 spec.assembly = shader;
2432                 spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2433                 spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2434                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2435
2436                 group->addChild(new SpvAsmComputeShaderCase(
2437                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2438         }
2439
2440         {
2441                 ComputeShaderSpec       spec;
2442                 vector<float>           inputs;
2443                 const deUint32          numElements             = 4;
2444
2445                 inputs.push_back(constructNormalizedFloat(8,    0x300300));
2446                 inputs.push_back(-constructNormalizedFloat(-7,  0x600800));
2447                 inputs.push_back(constructNormalizedFloat(2,    0x01E000));
2448                 inputs.push_back(constructNormalizedFloat(1,    0xFFE000));
2449
2450                 spec.assembly = shader;
2451                 spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2452                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2453                 spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2454                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2455
2456                 group->addChild(new SpvAsmComputeShaderCase(
2457                         testCtx, "rounded", "Check that are rounded when needed", spec));
2458         }
2459
2460         return group.release();
2461 }
2462
2463 // Performs a bitwise copy of source to the destination type Dest.
2464 template <typename Dest, typename Src>
2465 Dest bitwiseCast(Src source)
2466 {
2467   Dest dest;
2468   DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2469   deMemcpy(&dest, &source, sizeof(dest));
2470   return dest;
2471 }
2472
2473 tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2474 {
2475         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2476
2477         const std::string shader (
2478                 string(s_ShaderPreamble) +
2479
2480                 "OpName %main           \"main\"\n"
2481                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2482
2483                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2484
2485                 "OpDecorate %sc_0  SpecId 0\n"
2486                 "OpDecorate %sc_1  SpecId 1\n"
2487                 "OpDecorate %sc_2  SpecId 2\n"
2488                 "OpDecorate %sc_3  SpecId 3\n"
2489                 "OpDecorate %sc_4  SpecId 4\n"
2490                 "OpDecorate %sc_5  SpecId 5\n"
2491
2492                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2493
2494                 "%id        = OpVariable %uvec3ptr Input\n"
2495                 "%zero      = OpConstant %i32 0\n"
2496                 "%c_u32_6   = OpConstant %u32 6\n"
2497
2498                 "%sc_0      = OpSpecConstant %f32 0.\n"
2499                 "%sc_1      = OpSpecConstant %f32 0.\n"
2500                 "%sc_2      = OpSpecConstant %f32 0.\n"
2501                 "%sc_3      = OpSpecConstant %f32 0.\n"
2502                 "%sc_4      = OpSpecConstant %f32 0.\n"
2503                 "%sc_5      = OpSpecConstant %f32 0.\n"
2504
2505                 "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2506                 "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2507                 "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2508                 "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2509                 "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2510                 "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2511
2512                 "%main      = OpFunction %void None %voidf\n"
2513                 "%label     = OpLabel\n"
2514                 "%idval     = OpLoad %uvec3 %id\n"
2515                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2516                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2517                 "%selector  = OpUMod %u32 %x %c_u32_6\n"
2518                 "            OpSelectionMerge %exit None\n"
2519                 "            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2520
2521                 "%case0     = OpLabel\n"
2522                 "             OpStore %outloc %sc_0_quant\n"
2523                 "             OpBranch %exit\n"
2524
2525                 "%case1     = OpLabel\n"
2526                 "             OpStore %outloc %sc_1_quant\n"
2527                 "             OpBranch %exit\n"
2528
2529                 "%case2     = OpLabel\n"
2530                 "             OpStore %outloc %sc_2_quant\n"
2531                 "             OpBranch %exit\n"
2532
2533                 "%case3     = OpLabel\n"
2534                 "             OpStore %outloc %sc_3_quant\n"
2535                 "             OpBranch %exit\n"
2536
2537                 "%case4     = OpLabel\n"
2538                 "             OpStore %outloc %sc_4_quant\n"
2539                 "             OpBranch %exit\n"
2540
2541                 "%case5     = OpLabel\n"
2542                 "             OpStore %outloc %sc_5_quant\n"
2543                 "             OpBranch %exit\n"
2544
2545                 "%exit      = OpLabel\n"
2546                 "             OpReturn\n"
2547
2548                 "             OpFunctionEnd\n");
2549
2550         {
2551                 ComputeShaderSpec       spec;
2552                 const deUint8           numCases        = 4;
2553                 vector<float>           inputs          (numCases, 0.f);
2554                 vector<float>           outputs;
2555
2556                 spec.assembly           = shader;
2557                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2558
2559                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2560                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2561                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2562                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2563
2564                 outputs.push_back(std::numeric_limits<float>::infinity());
2565                 outputs.push_back(-std::numeric_limits<float>::infinity());
2566                 outputs.push_back(std::numeric_limits<float>::infinity());
2567                 outputs.push_back(-std::numeric_limits<float>::infinity());
2568
2569                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2570                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2571
2572                 group->addChild(new SpvAsmComputeShaderCase(
2573                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2574         }
2575
2576         {
2577                 ComputeShaderSpec       spec;
2578                 const deUint8           numCases        = 2;
2579                 vector<float>           inputs          (numCases, 0.f);
2580                 vector<float>           outputs;
2581
2582                 spec.assembly           = shader;
2583                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2584                 spec.verifyIO           = &compareNan;
2585
2586                 outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2587                 outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2588
2589                 for (deUint8 idx = 0; idx < numCases; ++idx)
2590                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2591
2592                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2593                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2594
2595                 group->addChild(new SpvAsmComputeShaderCase(
2596                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2597         }
2598
2599         {
2600                 ComputeShaderSpec       spec;
2601                 const deUint8           numCases        = 6;
2602                 vector<float>           inputs          (numCases, 0.f);
2603                 vector<float>           outputs;
2604
2605                 spec.assembly           = shader;
2606                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2607
2608                 spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2609                 spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2610                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2611                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2612                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2613                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2614
2615                 outputs.push_back(0.f);
2616                 outputs.push_back(-0.f);
2617                 outputs.push_back(0.f);
2618                 outputs.push_back(-0.f);
2619                 outputs.push_back(0.f);
2620                 outputs.push_back(-0.f);
2621
2622                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2623                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2624
2625                 group->addChild(new SpvAsmComputeShaderCase(
2626                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2627         }
2628
2629         {
2630                 ComputeShaderSpec       spec;
2631                 const deUint8           numCases        = 6;
2632                 vector<float>           inputs          (numCases, 0.f);
2633                 vector<float>           outputs;
2634
2635                 spec.assembly           = shader;
2636                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2637
2638                 for (deUint8 idx = 0; idx < 6; ++idx)
2639                 {
2640                         const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2641                         spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2642                         outputs.push_back(f);
2643                 }
2644
2645                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2646                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2647
2648                 group->addChild(new SpvAsmComputeShaderCase(
2649                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2650         }
2651
2652         {
2653                 ComputeShaderSpec       spec;
2654                 const deUint8           numCases        = 4;
2655                 vector<float>           inputs          (numCases, 0.f);
2656                 vector<float>           outputs;
2657
2658                 spec.assembly           = shader;
2659                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2660                 spec.verifyIO           = &compareOpQuantizeF16ComputeExactCase;
2661
2662                 outputs.push_back(constructNormalizedFloat(8, 0x300300));
2663                 outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2664                 outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2665                 outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2666
2667                 for (deUint8 idx = 0; idx < numCases; ++idx)
2668                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2669
2670                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2671                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2672
2673                 group->addChild(new SpvAsmComputeShaderCase(
2674                         testCtx, "rounded", "Check that are rounded when needed", spec));
2675         }
2676
2677         return group.release();
2678 }
2679
2680 // Checks that constant null/composite values can be used in computation.
2681 tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2682 {
2683         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2684         ComputeShaderSpec                               spec;
2685         de::Random                                              rnd                             (deStringHash(group->getName()));
2686         const int                                               numElements             = 100;
2687         vector<float>                                   positiveFloats  (numElements, 0);
2688         vector<float>                                   negativeFloats  (numElements, 0);
2689
2690         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2691
2692         for (size_t ndx = 0; ndx < numElements; ++ndx)
2693                 negativeFloats[ndx] = -positiveFloats[ndx];
2694
2695         spec.assembly =
2696                 "OpCapability Shader\n"
2697                 "%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2698                 "OpMemoryModel Logical GLSL450\n"
2699                 "OpEntryPoint GLCompute %main \"main\" %id\n"
2700                 "OpExecutionMode %main LocalSize 1 1 1\n"
2701
2702                 "OpSource GLSL 430\n"
2703                 "OpName %main           \"main\"\n"
2704                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2705
2706                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2707
2708                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2709
2710                 "%fmat      = OpTypeMatrix %fvec3 3\n"
2711                 "%ten       = OpConstant %u32 10\n"
2712                 "%f32arr10  = OpTypeArray %f32 %ten\n"
2713                 "%fst       = OpTypeStruct %f32 %f32\n"
2714
2715                 + string(s_InputOutputBuffer) +
2716
2717                 "%id        = OpVariable %uvec3ptr Input\n"
2718                 "%zero      = OpConstant %i32 0\n"
2719
2720                 // Create a bunch of null values
2721                 "%unull     = OpConstantNull %u32\n"
2722                 "%fnull     = OpConstantNull %f32\n"
2723                 "%vnull     = OpConstantNull %fvec3\n"
2724                 "%mnull     = OpConstantNull %fmat\n"
2725                 "%anull     = OpConstantNull %f32arr10\n"
2726                 "%snull     = OpConstantComposite %fst %fnull %fnull\n"
2727
2728                 "%main      = OpFunction %void None %voidf\n"
2729                 "%label     = OpLabel\n"
2730                 "%idval     = OpLoad %uvec3 %id\n"
2731                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2732                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2733                 "%inval     = OpLoad %f32 %inloc\n"
2734                 "%neg       = OpFNegate %f32 %inval\n"
2735
2736                 // Get the abs() of (a certain element of) those null values
2737                 "%unull_cov = OpConvertUToF %f32 %unull\n"
2738                 "%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2739                 "%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2740                 "%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2741                 "%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2742                 "%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2743                 "%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2744                 "%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2745                 "%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2746                 "%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2747                 "%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2748
2749                 // Add them all
2750                 "%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2751                 "%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2752                 "%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2753                 "%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2754                 "%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2755                 "%final     = OpFAdd %f32 %add5 %snull_abs\n"
2756
2757                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2758                 "             OpStore %outloc %final\n" // write to output
2759                 "             OpReturn\n"
2760                 "             OpFunctionEnd\n";
2761         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2762         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2763         spec.numWorkGroups = IVec3(numElements, 1, 1);
2764
2765         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2766
2767         return group.release();
2768 }
2769
2770 // Assembly code used for testing loop control is based on GLSL source code:
2771 // #version 430
2772 //
2773 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2774 //   float elements[];
2775 // } input_data;
2776 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2777 //   float elements[];
2778 // } output_data;
2779 //
2780 // void main() {
2781 //   uint x = gl_GlobalInvocationID.x;
2782 //   output_data.elements[x] = input_data.elements[x];
2783 //   for (uint i = 0; i < 4; ++i)
2784 //     output_data.elements[x] += 1.f;
2785 // }
2786 tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2787 {
2788         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2789         vector<CaseParameter>                   cases;
2790         de::Random                                              rnd                             (deStringHash(group->getName()));
2791         const int                                               numElements             = 100;
2792         vector<float>                                   inputFloats             (numElements, 0);
2793         vector<float>                                   outputFloats    (numElements, 0);
2794         const StringTemplate                    shaderTemplate  (
2795                 string(s_ShaderPreamble) +
2796
2797                 "OpSource GLSL 430\n"
2798                 "OpName %main \"main\"\n"
2799                 "OpName %id \"gl_GlobalInvocationID\"\n"
2800
2801                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2802
2803                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2804
2805                 "%u32ptr      = OpTypePointer Function %u32\n"
2806
2807                 "%id          = OpVariable %uvec3ptr Input\n"
2808                 "%zero        = OpConstant %i32 0\n"
2809                 "%uzero       = OpConstant %u32 0\n"
2810                 "%one         = OpConstant %i32 1\n"
2811                 "%constf1     = OpConstant %f32 1.0\n"
2812                 "%four        = OpConstant %u32 4\n"
2813
2814                 "%main        = OpFunction %void None %voidf\n"
2815                 "%entry       = OpLabel\n"
2816                 "%i           = OpVariable %u32ptr Function\n"
2817                 "               OpStore %i %uzero\n"
2818
2819                 "%idval       = OpLoad %uvec3 %id\n"
2820                 "%x           = OpCompositeExtract %u32 %idval 0\n"
2821                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2822                 "%inval       = OpLoad %f32 %inloc\n"
2823                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2824                 "               OpStore %outloc %inval\n"
2825                 "               OpBranch %loop_entry\n"
2826
2827                 "%loop_entry  = OpLabel\n"
2828                 "%i_val       = OpLoad %u32 %i\n"
2829                 "%cmp_lt      = OpULessThan %bool %i_val %four\n"
2830                 "               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2831                 "               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2832                 "%loop_body   = OpLabel\n"
2833                 "%outval      = OpLoad %f32 %outloc\n"
2834                 "%addf1       = OpFAdd %f32 %outval %constf1\n"
2835                 "               OpStore %outloc %addf1\n"
2836                 "%new_i       = OpIAdd %u32 %i_val %one\n"
2837                 "               OpStore %i %new_i\n"
2838                 "               OpBranch %loop_entry\n"
2839                 "%loop_merge  = OpLabel\n"
2840                 "               OpReturn\n"
2841                 "               OpFunctionEnd\n");
2842
2843         cases.push_back(CaseParameter("none",                           "None"));
2844         cases.push_back(CaseParameter("unroll",                         "Unroll"));
2845         cases.push_back(CaseParameter("dont_unroll",            "DontUnroll"));
2846         cases.push_back(CaseParameter("unroll_dont_unroll",     "Unroll|DontUnroll"));
2847
2848         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2849
2850         for (size_t ndx = 0; ndx < numElements; ++ndx)
2851                 outputFloats[ndx] = inputFloats[ndx] + 4.f;
2852
2853         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2854         {
2855                 map<string, string>             specializations;
2856                 ComputeShaderSpec               spec;
2857
2858                 specializations["CONTROL"] = cases[caseNdx].param;
2859                 spec.assembly = shaderTemplate.specialize(specializations);
2860                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2861                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2862                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2863
2864                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2865         }
2866
2867         return group.release();
2868 }
2869
2870 // Assembly code used for testing selection control is based on GLSL source code:
2871 // #version 430
2872 //
2873 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2874 //   float elements[];
2875 // } input_data;
2876 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2877 //   float elements[];
2878 // } output_data;
2879 //
2880 // void main() {
2881 //   uint x = gl_GlobalInvocationID.x;
2882 //   float val = input_data.elements[x];
2883 //   if (val > 10.f)
2884 //     output_data.elements[x] = val + 1.f;
2885 //   else
2886 //     output_data.elements[x] = val - 1.f;
2887 // }
2888 tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2889 {
2890         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2891         vector<CaseParameter>                   cases;
2892         de::Random                                              rnd                             (deStringHash(group->getName()));
2893         const int                                               numElements             = 100;
2894         vector<float>                                   inputFloats             (numElements, 0);
2895         vector<float>                                   outputFloats    (numElements, 0);
2896         const StringTemplate                    shaderTemplate  (
2897                 string(s_ShaderPreamble) +
2898
2899                 "OpSource GLSL 430\n"
2900                 "OpName %main \"main\"\n"
2901                 "OpName %id \"gl_GlobalInvocationID\"\n"
2902
2903                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2904
2905                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2906
2907                 "%id       = OpVariable %uvec3ptr Input\n"
2908                 "%zero     = OpConstant %i32 0\n"
2909                 "%constf1  = OpConstant %f32 1.0\n"
2910                 "%constf10 = OpConstant %f32 10.0\n"
2911
2912                 "%main     = OpFunction %void None %voidf\n"
2913                 "%entry    = OpLabel\n"
2914                 "%idval    = OpLoad %uvec3 %id\n"
2915                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2916                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2917                 "%inval    = OpLoad %f32 %inloc\n"
2918                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2919                 "%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2920
2921                 "            OpSelectionMerge %if_end ${CONTROL}\n"
2922                 "            OpBranchConditional %cmp_gt %if_true %if_false\n"
2923                 "%if_true  = OpLabel\n"
2924                 "%addf1    = OpFAdd %f32 %inval %constf1\n"
2925                 "            OpStore %outloc %addf1\n"
2926                 "            OpBranch %if_end\n"
2927                 "%if_false = OpLabel\n"
2928                 "%subf1    = OpFSub %f32 %inval %constf1\n"
2929                 "            OpStore %outloc %subf1\n"
2930                 "            OpBranch %if_end\n"
2931                 "%if_end   = OpLabel\n"
2932                 "            OpReturn\n"
2933                 "            OpFunctionEnd\n");
2934
2935         cases.push_back(CaseParameter("none",                                   "None"));
2936         cases.push_back(CaseParameter("flatten",                                "Flatten"));
2937         cases.push_back(CaseParameter("dont_flatten",                   "DontFlatten"));
2938         cases.push_back(CaseParameter("flatten_dont_flatten",   "DontFlatten|Flatten"));
2939
2940         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2941
2942         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2943         floorAll(inputFloats);
2944
2945         for (size_t ndx = 0; ndx < numElements; ++ndx)
2946                 outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2947
2948         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2949         {
2950                 map<string, string>             specializations;
2951                 ComputeShaderSpec               spec;
2952
2953                 specializations["CONTROL"] = cases[caseNdx].param;
2954                 spec.assembly = shaderTemplate.specialize(specializations);
2955                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2956                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2957                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2958
2959                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2960         }
2961
2962         return group.release();
2963 }
2964
2965 // Assembly code used for testing function control is based on GLSL source code:
2966 //
2967 // #version 430
2968 //
2969 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2970 //   float elements[];
2971 // } input_data;
2972 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2973 //   float elements[];
2974 // } output_data;
2975 //
2976 // float const10() { return 10.f; }
2977 //
2978 // void main() {
2979 //   uint x = gl_GlobalInvocationID.x;
2980 //   output_data.elements[x] = input_data.elements[x] + const10();
2981 // }
2982 tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2983 {
2984         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2985         vector<CaseParameter>                   cases;
2986         de::Random                                              rnd                             (deStringHash(group->getName()));
2987         const int                                               numElements             = 100;
2988         vector<float>                                   inputFloats             (numElements, 0);
2989         vector<float>                                   outputFloats    (numElements, 0);
2990         const StringTemplate                    shaderTemplate  (
2991                 string(s_ShaderPreamble) +
2992
2993                 "OpSource GLSL 430\n"
2994                 "OpName %main \"main\"\n"
2995                 "OpName %func_const10 \"const10(\"\n"
2996                 "OpName %id \"gl_GlobalInvocationID\"\n"
2997
2998                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2999
3000                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3001
3002                 "%f32f = OpTypeFunction %f32\n"
3003                 "%id = OpVariable %uvec3ptr Input\n"
3004                 "%zero = OpConstant %i32 0\n"
3005                 "%constf10 = OpConstant %f32 10.0\n"
3006
3007                 "%main         = OpFunction %void None %voidf\n"
3008                 "%entry        = OpLabel\n"
3009                 "%idval        = OpLoad %uvec3 %id\n"
3010                 "%x            = OpCompositeExtract %u32 %idval 0\n"
3011                 "%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
3012                 "%inval        = OpLoad %f32 %inloc\n"
3013                 "%ret_10       = OpFunctionCall %f32 %func_const10\n"
3014                 "%fadd         = OpFAdd %f32 %inval %ret_10\n"
3015                 "%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
3016                 "                OpStore %outloc %fadd\n"
3017                 "                OpReturn\n"
3018                 "                OpFunctionEnd\n"
3019
3020                 "%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
3021                 "%label        = OpLabel\n"
3022                 "                OpReturnValue %constf10\n"
3023                 "                OpFunctionEnd\n");
3024
3025         cases.push_back(CaseParameter("none",                                           "None"));
3026         cases.push_back(CaseParameter("inline",                                         "Inline"));
3027         cases.push_back(CaseParameter("dont_inline",                            "DontInline"));
3028         cases.push_back(CaseParameter("pure",                                           "Pure"));
3029         cases.push_back(CaseParameter("const",                                          "Const"));
3030         cases.push_back(CaseParameter("inline_pure",                            "Inline|Pure"));
3031         cases.push_back(CaseParameter("const_dont_inline",                      "Const|DontInline"));
3032         cases.push_back(CaseParameter("inline_dont_inline",                     "Inline|DontInline"));
3033         cases.push_back(CaseParameter("pure_inline_dont_inline",        "Pure|Inline|DontInline"));
3034
3035         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3036
3037         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3038         floorAll(inputFloats);
3039
3040         for (size_t ndx = 0; ndx < numElements; ++ndx)
3041                 outputFloats[ndx] = inputFloats[ndx] + 10.f;
3042
3043         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3044         {
3045                 map<string, string>             specializations;
3046                 ComputeShaderSpec               spec;
3047
3048                 specializations["CONTROL"] = cases[caseNdx].param;
3049                 spec.assembly = shaderTemplate.specialize(specializations);
3050                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3051                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3052                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3053
3054                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3055         }
3056
3057         return group.release();
3058 }
3059
3060 tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3061 {
3062         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3063         vector<CaseParameter>                   cases;
3064         de::Random                                              rnd                             (deStringHash(group->getName()));
3065         const int                                               numElements             = 100;
3066         vector<float>                                   inputFloats             (numElements, 0);
3067         vector<float>                                   outputFloats    (numElements, 0);
3068         const StringTemplate                    shaderTemplate  (
3069                 string(s_ShaderPreamble) +
3070
3071                 "OpSource GLSL 430\n"
3072                 "OpName %main           \"main\"\n"
3073                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3074
3075                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3076
3077                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3078
3079                 "%f32ptr_f  = OpTypePointer Function %f32\n"
3080
3081                 "%id        = OpVariable %uvec3ptr Input\n"
3082                 "%zero      = OpConstant %i32 0\n"
3083                 "%four      = OpConstant %i32 4\n"
3084
3085                 "%main      = OpFunction %void None %voidf\n"
3086                 "%label     = OpLabel\n"
3087                 "%copy      = OpVariable %f32ptr_f Function\n"
3088                 "%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3089                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3090                 "%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3091                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3092                 "             OpCopyMemory %copy %inloc ${ACCESS}\n"
3093                 "%val1      = OpLoad %f32 %copy\n"
3094                 "%val2      = OpLoad %f32 %inloc\n"
3095                 "%add       = OpFAdd %f32 %val1 %val2\n"
3096                 "             OpStore %outloc %add ${ACCESS}\n"
3097                 "             OpReturn\n"
3098                 "             OpFunctionEnd\n");
3099
3100         cases.push_back(CaseParameter("null",                                   ""));
3101         cases.push_back(CaseParameter("none",                                   "None"));
3102         cases.push_back(CaseParameter("volatile",                               "Volatile"));
3103         cases.push_back(CaseParameter("aligned",                                "Aligned 4"));
3104         cases.push_back(CaseParameter("nontemporal",                    "Nontemporal"));
3105         cases.push_back(CaseParameter("aligned_nontemporal",    "Aligned|Nontemporal 4"));
3106         cases.push_back(CaseParameter("aligned_volatile",               "Volatile|Aligned 4"));
3107
3108         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3109
3110         for (size_t ndx = 0; ndx < numElements; ++ndx)
3111                 outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3112
3113         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3114         {
3115                 map<string, string>             specializations;
3116                 ComputeShaderSpec               spec;
3117
3118                 specializations["ACCESS"] = cases[caseNdx].param;
3119                 spec.assembly = shaderTemplate.specialize(specializations);
3120                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3121                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3122                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3123
3124                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3125         }
3126
3127         return group.release();
3128 }
3129
3130 // Checks that we can get undefined values for various types, without exercising a computation with it.
3131 tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3132 {
3133         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3134         vector<CaseParameter>                   cases;
3135         de::Random                                              rnd                             (deStringHash(group->getName()));
3136         const int                                               numElements             = 100;
3137         vector<float>                                   positiveFloats  (numElements, 0);
3138         vector<float>                                   negativeFloats  (numElements, 0);
3139         const StringTemplate                    shaderTemplate  (
3140                 string(s_ShaderPreamble) +
3141
3142                 "OpSource GLSL 430\n"
3143                 "OpName %main           \"main\"\n"
3144                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3145
3146                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3147
3148                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3149
3150                 "${TYPE}\n"
3151
3152                 "%id        = OpVariable %uvec3ptr Input\n"
3153                 "%zero      = OpConstant %i32 0\n"
3154
3155                 "%main      = OpFunction %void None %voidf\n"
3156                 "%label     = OpLabel\n"
3157
3158                 "%undef     = OpUndef %type\n"
3159
3160                 "%idval     = OpLoad %uvec3 %id\n"
3161                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3162
3163                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3164                 "%inval     = OpLoad %f32 %inloc\n"
3165                 "%neg       = OpFNegate %f32 %inval\n"
3166                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3167                 "             OpStore %outloc %neg\n"
3168                 "             OpReturn\n"
3169                 "             OpFunctionEnd\n");
3170
3171         cases.push_back(CaseParameter("bool",                   "%type = OpTypeBool"));
3172         cases.push_back(CaseParameter("sint32",                 "%type = OpTypeInt 32 1"));
3173         cases.push_back(CaseParameter("uint32",                 "%type = OpTypeInt 32 0"));
3174         cases.push_back(CaseParameter("float32",                "%type = OpTypeFloat 32"));
3175         cases.push_back(CaseParameter("vec4float32",    "%type = OpTypeVector %f32 4"));
3176         cases.push_back(CaseParameter("vec2uint32",             "%type = OpTypeVector %u32 2"));
3177         cases.push_back(CaseParameter("matrix",                 "%type = OpTypeMatrix %fvec3 3"));
3178         cases.push_back(CaseParameter("image",                  "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown"));
3179         cases.push_back(CaseParameter("sampler",                "%type = OpTypeSampler"));
3180         cases.push_back(CaseParameter("sampledimage",   "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
3181                                                                                                         "%type = OpTypeSampledImage %img"));
3182         cases.push_back(CaseParameter("array",                  "%100 = OpConstant %u32 100\n"
3183                                                                                                         "%type = OpTypeArray %i32 %100"));
3184         cases.push_back(CaseParameter("runtimearray",   "%type = OpTypeRuntimeArray %f32"));
3185         cases.push_back(CaseParameter("struct",                 "%type = OpTypeStruct %f32 %i32 %u32"));
3186         cases.push_back(CaseParameter("pointer",                "%type = OpTypePointer Function %i32"));
3187
3188         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3189
3190         for (size_t ndx = 0; ndx < numElements; ++ndx)
3191                 negativeFloats[ndx] = -positiveFloats[ndx];
3192
3193         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3194         {
3195                 map<string, string>             specializations;
3196                 ComputeShaderSpec               spec;
3197
3198                 specializations["TYPE"] = cases[caseNdx].param;
3199                 spec.assembly = shaderTemplate.specialize(specializations);
3200                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3201                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3202                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3203
3204                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3205         }
3206
3207                 return group.release();
3208 }
3209 typedef std::pair<std::string, VkShaderStageFlagBits>   EntryToStage;
3210 typedef map<string, vector<EntryToStage> >                              ModuleMap;
3211 typedef map<VkShaderStageFlagBits, vector<deInt32> >    StageToSpecConstantMap;
3212
3213 // Context for a specific test instantiation. For example, an instantiation
3214 // may test colors yellow/magenta/cyan/mauve in a tesselation shader
3215 // with an entry point named 'main_to_the_main'
3216 struct InstanceContext
3217 {
3218         // Map of modules to what entry_points we care to use from those modules.
3219         ModuleMap                               moduleMap;
3220         RGBA                                    inputColors[4];
3221         RGBA                                    outputColors[4];
3222         // Concrete SPIR-V code to test via boilerplate specialization.
3223         map<string, string>             testCodeFragments;
3224         StageToSpecConstantMap  specConstants;
3225         bool                                    hasTessellation;
3226         VkShaderStageFlagBits   requiredStages;
3227
3228         InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3229                 : testCodeFragments             (testCodeFragments_)
3230                 , specConstants                 (specConstants_)
3231                 , hasTessellation               (false)
3232                 , requiredStages                (static_cast<VkShaderStageFlagBits>(0))
3233         {
3234                 inputColors[0]          = inputs[0];
3235                 inputColors[1]          = inputs[1];
3236                 inputColors[2]          = inputs[2];
3237                 inputColors[3]          = inputs[3];
3238
3239                 outputColors[0]         = outputs[0];
3240                 outputColors[1]         = outputs[1];
3241                 outputColors[2]         = outputs[2];
3242                 outputColors[3]         = outputs[3];
3243         }
3244
3245         InstanceContext (const InstanceContext& other)
3246                 : moduleMap                     (other.moduleMap)
3247                 , testCodeFragments     (other.testCodeFragments)
3248                 , specConstants         (other.specConstants)
3249                 , hasTessellation       (other.hasTessellation)
3250                 , requiredStages    (other.requiredStages)
3251         {
3252                 inputColors[0]          = other.inputColors[0];
3253                 inputColors[1]          = other.inputColors[1];
3254                 inputColors[2]          = other.inputColors[2];
3255                 inputColors[3]          = other.inputColors[3];
3256
3257                 outputColors[0]         = other.outputColors[0];
3258                 outputColors[1]         = other.outputColors[1];
3259                 outputColors[2]         = other.outputColors[2];
3260                 outputColors[3]         = other.outputColors[3];
3261         }
3262 };
3263
3264 // A description of a shader to be used for a single stage of the graphics pipeline.
3265 struct ShaderElement
3266 {
3267         // The module that contains this shader entrypoint.
3268         string                                  moduleName;
3269
3270         // The name of the entrypoint.
3271         string                                  entryName;
3272
3273         // Which shader stage this entry point represents.
3274         VkShaderStageFlagBits   stage;
3275
3276         ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3277                 : moduleName(moduleName_)
3278                 , entryName(entryPoint_)
3279                 , stage(shaderStage_)
3280         {
3281         }
3282 };
3283
3284 void getDefaultColors (RGBA (&colors)[4])
3285 {
3286         colors[0] = RGBA::white();
3287         colors[1] = RGBA::red();
3288         colors[2] = RGBA::green();
3289         colors[3] = RGBA::blue();
3290 }
3291
3292 void getHalfColorsFullAlpha (RGBA (&colors)[4])
3293 {
3294         colors[0] = RGBA(127, 127, 127, 255);
3295         colors[1] = RGBA(127, 0,   0,   255);
3296         colors[2] = RGBA(0,       127, 0,       255);
3297         colors[3] = RGBA(0,       0,   127, 255);
3298 }
3299
3300 void getInvertedDefaultColors (RGBA (&colors)[4])
3301 {
3302         colors[0] = RGBA(0,             0,              0,              255);
3303         colors[1] = RGBA(0,             255,    255,    255);
3304         colors[2] = RGBA(255,   0,              255,    255);
3305         colors[3] = RGBA(255,   255,    0,              255);
3306 }
3307
3308 // Turns a statically sized array of ShaderElements into an instance-context
3309 // by setting up the mapping of modules to their contained shaders and stages.
3310 // The inputs and expected outputs are given by inputColors and outputColors
3311 template<size_t N>
3312 InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3313 {
3314         InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3315         for (size_t i = 0; i < N; ++i)
3316         {
3317                 ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3318                 ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3319         }
3320         return ctx;
3321 }
3322
3323 template<size_t N>
3324 inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3325 {
3326         return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3327 }
3328
3329 // The same as createInstanceContext above, but with default colors.
3330 template<size_t N>
3331 InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3332 {
3333         RGBA defaultColors[4];
3334         getDefaultColors(defaultColors);
3335         return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3336 }
3337
3338 // For the current InstanceContext, constructs the required modules and shader stage create infos.
3339 void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3340 {
3341         for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3342         {
3343                 const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3344                 modules.push_back(ModuleHandleSp(mod));
3345                 for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3346                 {
3347                         const EntryToStage&                                             stage                   = *shaderNdx;
3348                         const VkPipelineShaderStageCreateInfo   shaderParam             =
3349                         {
3350                                 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,    //      VkStructureType                 sType;
3351                                 DE_NULL,                                                                                                //      const void*                             pNext;
3352                                 (VkPipelineShaderStageCreateFlags)0,
3353                                 stage.second,                                                                                   //      VkShaderStageFlagBits   stage;
3354                                 **modules.back(),                                                                               //      VkShaderModule                  module;
3355                                 stage.first.c_str(),                                                                    //      const char*                             pName;
3356                                 (const VkSpecializationInfo*)DE_NULL,
3357                         };
3358                         createInfos.push_back(shaderParam);
3359                 }
3360         }
3361 }
3362
3363 #define SPIRV_ASSEMBLY_TYPES                                                                                                                                    \
3364         "%void = OpTypeVoid\n"                                                                                                                                          \
3365         "%bool = OpTypeBool\n"                                                                                                                                          \
3366                                                                                                                                                                                                 \
3367         "%i32 = OpTypeInt 32 1\n"                                                                                                                                       \
3368         "%u32 = OpTypeInt 32 0\n"                                                                                                                                       \
3369                                                                                                                                                                                                 \
3370         "%f32 = OpTypeFloat 32\n"                                                                                                                                       \
3371         "%v3f32 = OpTypeVector %f32 3\n"                                                                                                                        \
3372         "%v4f32 = OpTypeVector %f32 4\n"                                                                                                                        \
3373         "%v4bool = OpTypeVector %bool 4\n"                                                                                                                      \
3374                                                                                                                                                                                                 \
3375         "%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"                                                                                      \
3376         "%fun = OpTypeFunction %void\n"                                                                                                                         \
3377                                                                                                                                                                                                 \
3378         "%ip_f32 = OpTypePointer Input %f32\n"                                                                                                          \
3379         "%ip_i32 = OpTypePointer Input %i32\n"                                                                                                          \
3380         "%ip_v3f32 = OpTypePointer Input %v3f32\n"                                                                                                      \
3381         "%ip_v4f32 = OpTypePointer Input %v4f32\n"                                                                                                      \
3382                                                                                                                                                                                                 \
3383         "%op_f32 = OpTypePointer Output %f32\n"                                                                                                         \
3384         "%op_v4f32 = OpTypePointer Output %v4f32\n"                                                                                                     \
3385                                                                                                                                                                                                 \
3386         "%fp_f32   = OpTypePointer Function %f32\n"                                                                                                     \
3387         "%fp_i32   = OpTypePointer Function %i32\n"                                                                                                     \
3388         "%fp_v4f32 = OpTypePointer Function %v4f32\n"
3389
3390 #define SPIRV_ASSEMBLY_CONSTANTS                                                                                                                                \
3391         "%c_f32_1 = OpConstant %f32 1.0\n"                                                                                                                      \
3392         "%c_f32_0 = OpConstant %f32 0.0\n"                                                                                                                      \
3393         "%c_f32_0_5 = OpConstant %f32 0.5\n"                                                                                                            \
3394         "%c_f32_n1  = OpConstant %f32 -1.\n"                                                                                                            \
3395         "%c_f32_7 = OpConstant %f32 7.0\n"                                                                                                                      \
3396         "%c_f32_8 = OpConstant %f32 8.0\n"                                                                                                                      \
3397         "%c_i32_0 = OpConstant %i32 0\n"                                                                                                                        \
3398         "%c_i32_1 = OpConstant %i32 1\n"                                                                                                                        \
3399         "%c_i32_2 = OpConstant %i32 2\n"                                                                                                                        \
3400         "%c_i32_3 = OpConstant %i32 3\n"                                                                                                                        \
3401         "%c_i32_4 = OpConstant %i32 4\n"                                                                                                                        \
3402         "%c_u32_0 = OpConstant %u32 0\n"                                                                                                                        \
3403         "%c_u32_1 = OpConstant %u32 1\n"                                                                                                                        \
3404         "%c_u32_2 = OpConstant %u32 2\n"                                                                                                                        \
3405         "%c_u32_3 = OpConstant %u32 3\n"                                                                                                                        \
3406         "%c_u32_32 = OpConstant %u32 32\n"                                                                                                                      \
3407         "%c_u32_4 = OpConstant %u32 4\n"                                                                                                                        \
3408         "%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"                                                                                         \
3409         "%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"           \
3410         "%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"           \
3411         "%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3412
3413 #define SPIRV_ASSEMBLY_ARRAYS                                                                                                                                   \
3414         "%a1f32 = OpTypeArray %f32 %c_u32_1\n"                                                                                                          \
3415         "%a2f32 = OpTypeArray %f32 %c_u32_2\n"                                                                                                          \
3416         "%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"                                                                                                      \
3417         "%a4f32 = OpTypeArray %f32 %c_u32_4\n"                                                                                                          \
3418         "%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"                                                                                            \
3419         "%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"                                                                                          \
3420         "%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"                                                                                        \
3421         "%op_a2f32 = OpTypePointer Output %a2f32\n"                                                                                                     \
3422         "%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"                                                                                         \
3423         "%op_a4f32 = OpTypePointer Output %a4f32\n"
3424
3425 // Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3426 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3427 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3428 // with "BP_" to avoid collisions with fragments.
3429 //
3430 // It corresponds roughly to this GLSL:
3431 //;
3432 // layout(location = 0) in vec4 position;
3433 // layout(location = 1) in vec4 color;
3434 // layout(location = 1) out highp vec4 vtxColor;
3435 // void main (void) { gl_Position = position; vtxColor = test_func(color); }
3436 string makeVertexShaderAssembly(const map<string, string>& fragments)
3437 {
3438 // \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3439         static const char vertexShaderBoilerplate[] =
3440                 "OpCapability Shader\n"
3441                 "OpCapability ClipDistance\n"
3442                 "OpCapability CullDistance\n"
3443                 "OpMemoryModel Logical GLSL450\n"
3444                 "OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex\n"
3445                 "${debug:opt}\n"
3446                 "OpName %main \"main\"\n"
3447                 "OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3448                 "OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3449                 "OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3450                 "OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3451                 "OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3452                 "OpName %test_code \"testfun(vf4;\"\n"
3453                 "OpName %BP_stream \"\"\n"
3454                 "OpName %BP_position \"position\"\n"
3455                 "OpName %BP_vtx_color \"vtxColor\"\n"
3456                 "OpName %BP_color \"color\"\n"
3457                 "OpName %BP_gl_VertexIndex \"gl_VertexIndex\"\n"
3458                 "OpName %BP_gl_InstanceIndex \"gl_InstanceIndex\"\n"
3459                 "OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3460                 "OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3461                 "OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3462                 "OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3463                 "OpDecorate %BP_gl_PerVertex Block\n"
3464                 "OpDecorate %BP_position Location 0\n"
3465                 "OpDecorate %BP_vtx_color Location 1\n"
3466                 "OpDecorate %BP_color Location 1\n"
3467                 "OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
3468                 "OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
3469                 "${decoration:opt}\n"
3470                 SPIRV_ASSEMBLY_TYPES
3471                 SPIRV_ASSEMBLY_CONSTANTS
3472                 SPIRV_ASSEMBLY_ARRAYS
3473                 "%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3474                 "%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3475                 "%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3476                 "%BP_position = OpVariable %ip_v4f32 Input\n"
3477                 "%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3478                 "%BP_color = OpVariable %ip_v4f32 Input\n"
3479                 "%BP_gl_VertexIndex = OpVariable %ip_i32 Input\n"
3480                 "%BP_gl_InstanceIndex = OpVariable %ip_i32 Input\n"
3481                 "${pre_main:opt}\n"
3482                 "%main = OpFunction %void None %fun\n"
3483                 "%BP_label = OpLabel\n"
3484                 "%BP_pos = OpLoad %v4f32 %BP_position\n"
3485                 "%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3486                 "OpStore %BP_gl_pos %BP_pos\n"
3487                 "%BP_col = OpLoad %v4f32 %BP_color\n"
3488                 "%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3489                 "OpStore %BP_vtx_color %BP_col_transformed\n"
3490                 "OpReturn\n"
3491                 "OpFunctionEnd\n"
3492                 "${testfun}\n";
3493         return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3494 }
3495
3496 // Creates tess-control-shader assembly by specializing a boilerplate
3497 // StringTemplate on fragments, which must (at least) map "testfun" to an
3498 // OpFunction definition for %test_code that takes and returns a %v4f32.
3499 // Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3500 //
3501 // It roughly corresponds to the following GLSL.
3502 //
3503 // #version 450
3504 // layout(vertices = 3) out;
3505 // layout(location = 1) in vec4 in_color[];
3506 // layout(location = 1) out vec4 out_color[];
3507 //
3508 // void main() {
3509 //   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3510 //   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3511 //   if (gl_InvocationID == 0) {
3512 //     gl_TessLevelOuter[0] = 1.0;
3513 //     gl_TessLevelOuter[1] = 1.0;
3514 //     gl_TessLevelOuter[2] = 1.0;
3515 //     gl_TessLevelInner[0] = 1.0;
3516 //   }
3517 // }
3518 string makeTessControlShaderAssembly (const map<string, string>& fragments)
3519 {
3520         static const char tessControlShaderBoilerplate[] =
3521                 "OpCapability Tessellation\n"
3522                 "OpCapability ClipDistance\n"
3523                 "OpCapability CullDistance\n"
3524                 "OpMemoryModel Logical GLSL450\n"
3525                 "OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3526                 "OpExecutionMode %BP_main OutputVertices 3\n"
3527                 "${debug:opt}\n"
3528                 "OpName %BP_main \"main\"\n"
3529                 "OpName %test_code \"testfun(vf4;\"\n"
3530                 "OpName %BP_out_color \"out_color\"\n"
3531                 "OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3532                 "OpName %BP_in_color \"in_color\"\n"
3533                 "OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3534                 "OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3535                 "OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3536                 "OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3537                 "OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3538                 "OpName %BP_gl_out \"gl_out\"\n"
3539                 "OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3540                 "OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3541                 "OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3542                 "OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3543                 "OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3544                 "OpName %BP_gl_in \"gl_in\"\n"
3545                 "OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3546                 "OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3547                 "OpDecorate %BP_out_color Location 1\n"
3548                 "OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3549                 "OpDecorate %BP_in_color Location 1\n"
3550                 "OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3551                 "OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3552                 "OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3553                 "OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3554                 "OpDecorate %BP_gl_PerVertex Block\n"
3555                 "OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3556                 "OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3557                 "OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3558                 "OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3559                 "OpDecorate %BP_gl_PVOut Block\n"
3560                 "OpDecorate %BP_gl_TessLevelOuter Patch\n"
3561                 "OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3562                 "OpDecorate %BP_gl_TessLevelInner Patch\n"
3563                 "OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3564                 "${decoration:opt}\n"
3565                 SPIRV_ASSEMBLY_TYPES
3566                 SPIRV_ASSEMBLY_CONSTANTS
3567                 SPIRV_ASSEMBLY_ARRAYS
3568                 "%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3569                 "%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3570                 "%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3571                 "%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3572                 "%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3573                 "%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3574                 "%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3575                 "%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3576                 "%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3577                 "%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3578                 "%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3579                 "%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3580                 "%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3581                 "${pre_main:opt}\n"
3582
3583                 "%BP_main = OpFunction %void None %fun\n"
3584                 "%BP_label = OpLabel\n"
3585
3586                 "%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3587
3588                 "%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3589                 "%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3590                 "%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3591                 "%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3592                 "OpStore %BP_out_col_loc %BP_clr_transformed\n"
3593
3594                 "%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3595                 "%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3596                 "%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3597                 "OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3598
3599                 "%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3600                 "OpSelectionMerge %BP_merge_label None\n"
3601                 "OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3602                 "%BP_if_label = OpLabel\n"
3603                 "%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3604                 "%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3605                 "%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3606                 "%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3607                 "OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3608                 "OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3609                 "OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3610                 "OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3611                 "OpBranch %BP_merge_label\n"
3612                 "%BP_merge_label = OpLabel\n"
3613                 "OpReturn\n"
3614                 "OpFunctionEnd\n"
3615                 "${testfun}\n";
3616         return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3617 }
3618
3619 // Creates tess-evaluation-shader assembly by specializing a boilerplate
3620 // StringTemplate on fragments, which must (at least) map "testfun" to an
3621 // OpFunction definition for %test_code that takes and returns a %v4f32.
3622 // Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3623 //
3624 // It roughly corresponds to the following glsl.
3625 //
3626 // #version 450
3627 //
3628 // layout(triangles, equal_spacing, ccw) in;
3629 // layout(location = 1) in vec4 in_color[];
3630 // layout(location = 1) out vec4 out_color;
3631 //
3632 // #define interpolate(val)
3633 //   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3634 //          vec4(gl_TessCoord.z) * val[2]
3635 //
3636 // void main() {
3637 //   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3638 //                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3639 //                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3640 //   out_color = testfun(interpolate(in_color));
3641 // }
3642 string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3643 {
3644         static const char tessEvalBoilerplate[] =
3645                 "OpCapability Tessellation\n"
3646                 "OpCapability ClipDistance\n"
3647                 "OpCapability CullDistance\n"
3648                 "OpMemoryModel Logical GLSL450\n"
3649                 "OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3650                 "OpExecutionMode %BP_main Triangles\n"
3651                 "OpExecutionMode %BP_main SpacingEqual\n"
3652                 "OpExecutionMode %BP_main VertexOrderCcw\n"
3653                 "${debug:opt}\n"
3654                 "OpName %BP_main \"main\"\n"
3655                 "OpName %test_code \"testfun(vf4;\"\n"
3656                 "OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3657                 "OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3658                 "OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3659                 "OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3660                 "OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3661                 "OpName %BP_stream \"\"\n"
3662                 "OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3663                 "OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3664                 "OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3665                 "OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3666                 "OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3667                 "OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3668                 "OpName %BP_gl_in \"gl_in\"\n"
3669                 "OpName %BP_out_color \"out_color\"\n"
3670                 "OpName %BP_in_color \"in_color\"\n"
3671                 "OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3672                 "OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3673                 "OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3674                 "OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3675                 "OpDecorate %BP_gl_PerVertexOut Block\n"
3676                 "OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3677                 "OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3678                 "OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3679                 "OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3680                 "OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3681                 "OpDecorate %BP_gl_PerVertexIn Block\n"
3682                 "OpDecorate %BP_out_color Location 1\n"
3683                 "OpDecorate %BP_in_color Location 1\n"
3684                 "${decoration:opt}\n"
3685                 SPIRV_ASSEMBLY_TYPES
3686                 SPIRV_ASSEMBLY_CONSTANTS
3687                 SPIRV_ASSEMBLY_ARRAYS
3688                 "%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3689                 "%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3690                 "%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3691                 "%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3692                 "%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3693                 "%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3694                 "%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3695                 "%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3696                 "%BP_out_color = OpVariable %op_v4f32 Output\n"
3697                 "%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3698                 "${pre_main:opt}\n"
3699                 "%BP_main = OpFunction %void None %fun\n"
3700                 "%BP_label = OpLabel\n"
3701                 "%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3702                 "%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3703                 "%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3704                 "%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3705                 "%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3706                 "%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3707
3708                 "%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3709                 "%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3710                 "%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3711                 "%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3712
3713                 "%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3714                 "%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3715                 "%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3716                 "%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3717                 "%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3718                 "%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3719
3720                 "%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3721                 "%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3722                 "%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3723
3724                 "%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3725                 "%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3726                 "%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3727
3728                 "%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3729                 "%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3730
3731                 "OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3732
3733                 "%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3734                 "%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3735                 "%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3736
3737                 "%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3738                 "%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3739                 "%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3740
3741                 "%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3742                 "%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3743
3744                 "%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3745
3746                 "OpStore %BP_out_color %BP_clr_transformed\n"
3747                 "OpReturn\n"
3748                 "OpFunctionEnd\n"
3749                 "${testfun}\n";
3750         return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3751 }
3752
3753 // Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3754 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3755 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3756 // with "BP_" to avoid collisions with fragments.
3757 //
3758 // Derived from this GLSL:
3759 //
3760 // #version 450
3761 // layout(triangles) in;
3762 // layout(triangle_strip, max_vertices = 3) out;
3763 //
3764 // layout(location = 1) in vec4 in_color[];
3765 // layout(location = 1) out vec4 out_color;
3766 //
3767 // void main() {
3768 //   gl_Position = gl_in[0].gl_Position;
3769 //   out_color = test_fun(in_color[0]);
3770 //   EmitVertex();
3771 //   gl_Position = gl_in[1].gl_Position;
3772 //   out_color = test_fun(in_color[1]);
3773 //   EmitVertex();
3774 //   gl_Position = gl_in[2].gl_Position;
3775 //   out_color = test_fun(in_color[2]);
3776 //   EmitVertex();
3777 //   EndPrimitive();
3778 // }
3779 string makeGeometryShaderAssembly(const map<string, string>& fragments)
3780 {
3781         static const char geometryShaderBoilerplate[] =
3782                 "OpCapability Geometry\n"
3783                 "OpCapability ClipDistance\n"
3784                 "OpCapability CullDistance\n"
3785                 "OpMemoryModel Logical GLSL450\n"
3786                 "OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3787                 "OpExecutionMode %BP_main Triangles\n"
3788                 "OpExecutionMode %BP_main OutputTriangleStrip\n"
3789                 "OpExecutionMode %BP_main OutputVertices 3\n"
3790                 "${debug:opt}\n"
3791                 "OpName %BP_main \"main\"\n"
3792                 "OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3793                 "OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3794                 "OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3795                 "OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3796                 "OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3797                 "OpName %BP_gl_in \"gl_in\"\n"
3798                 "OpName %BP_out_color \"out_color\"\n"
3799                 "OpName %BP_in_color \"in_color\"\n"
3800                 "OpName %test_code \"testfun(vf4;\"\n"
3801                 "OpDecorate %BP_out_gl_position BuiltIn Position\n"
3802                 "OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3803                 "OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3804                 "OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3805                 "OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3806                 "OpDecorate %BP_per_vertex_in Block\n"
3807                 "OpDecorate %BP_out_color Location 1\n"
3808                 "OpDecorate %BP_in_color Location 1\n"
3809                 "${decoration:opt}\n"
3810                 SPIRV_ASSEMBLY_TYPES
3811                 SPIRV_ASSEMBLY_CONSTANTS
3812                 SPIRV_ASSEMBLY_ARRAYS
3813                 "%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3814                 "%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3815                 "%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3816
3817                 "%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3818                 "%BP_out_color = OpVariable %op_v4f32 Output\n"
3819                 "%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3820                 "%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3821                 "${pre_main:opt}\n"
3822
3823                 "%BP_main = OpFunction %void None %fun\n"
3824                 "%BP_label = OpLabel\n"
3825                 "%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3826                 "%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3827                 "%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3828
3829                 "%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3830                 "%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3831                 "%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3832
3833                 "%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3834                 "%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3835                 "%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3836
3837                 "%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3838                 "%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3839                 "%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3840
3841                 "%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3842                 "%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3843                 "%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3844
3845
3846                 "OpStore %BP_out_gl_position %BP_in_position_0\n"
3847                 "OpStore %BP_out_color %BP_transformed_in_color_0\n"
3848                 "OpEmitVertex\n"
3849
3850                 "OpStore %BP_out_gl_position %BP_in_position_1\n"
3851                 "OpStore %BP_out_color %BP_transformed_in_color_1\n"
3852                 "OpEmitVertex\n"
3853
3854                 "OpStore %BP_out_gl_position %BP_in_position_2\n"
3855                 "OpStore %BP_out_color %BP_transformed_in_color_2\n"
3856                 "OpEmitVertex\n"
3857
3858                 "OpEndPrimitive\n"
3859                 "OpReturn\n"
3860                 "OpFunctionEnd\n"
3861                 "${testfun}\n";
3862         return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3863 }
3864
3865 // Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3866 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3867 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3868 // with "BP_" to avoid collisions with fragments.
3869 //
3870 // Derived from this GLSL:
3871 //
3872 // layout(location = 1) in highp vec4 vtxColor;
3873 // layout(location = 0) out highp vec4 fragColor;
3874 // highp vec4 testfun(highp vec4 x) { return x; }
3875 // void main(void) { fragColor = testfun(vtxColor); }
3876 //
3877 // with modifications including passing vtxColor by value and ripping out
3878 // testfun() definition.
3879 string makeFragmentShaderAssembly(const map<string, string>& fragments)
3880 {
3881         static const char fragmentShaderBoilerplate[] =
3882                 "OpCapability Shader\n"
3883                 "OpMemoryModel Logical GLSL450\n"
3884                 "OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3885                 "OpExecutionMode %BP_main OriginUpperLeft\n"
3886                 "${debug:opt}\n"
3887                 "OpName %BP_main \"main\"\n"
3888                 "OpName %BP_fragColor \"fragColor\"\n"
3889                 "OpName %BP_vtxColor \"vtxColor\"\n"
3890                 "OpName %test_code \"testfun(vf4;\"\n"
3891                 "OpDecorate %BP_fragColor Location 0\n"
3892                 "OpDecorate %BP_vtxColor Location 1\n"
3893                 "${decoration:opt}\n"
3894                 SPIRV_ASSEMBLY_TYPES
3895                 SPIRV_ASSEMBLY_CONSTANTS
3896                 SPIRV_ASSEMBLY_ARRAYS
3897                 "%BP_fragColor = OpVariable %op_v4f32 Output\n"
3898                 "%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3899                 "${pre_main:opt}\n"
3900                 "%BP_main = OpFunction %void None %fun\n"
3901                 "%BP_label_main = OpLabel\n"
3902                 "%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3903                 "%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3904                 "OpStore %BP_fragColor %BP_tmp2\n"
3905                 "OpReturn\n"
3906                 "OpFunctionEnd\n"
3907                 "${testfun}\n";
3908         return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3909 }
3910
3911 // Creates fragments that specialize into a simple pass-through shader (of any kind).
3912 map<string, string> passthruFragments(void)
3913 {
3914         map<string, string> fragments;
3915         fragments["testfun"] =
3916                 // A %test_code function that returns its argument unchanged.
3917                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3918                 "%param1 = OpFunctionParameter %v4f32\n"
3919                 "%label_testfun = OpLabel\n"
3920                 "OpReturnValue %param1\n"
3921                 "OpFunctionEnd\n";
3922         return fragments;
3923 }
3924
3925 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3926 // Vertex shader gets custom code from context, the rest are pass-through.
3927 void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3928 {
3929         map<string, string> passthru = passthruFragments();
3930         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3931         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3932 }
3933
3934 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3935 // Tessellation control shader gets custom code from context, the rest are
3936 // pass-through.
3937 void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3938 {
3939         map<string, string> passthru = passthruFragments();
3940         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3941         dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3942         dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3943         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3944 }
3945
3946 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3947 // Tessellation evaluation shader gets custom code from context, the rest are
3948 // pass-through.
3949 void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3950 {
3951         map<string, string> passthru = passthruFragments();
3952         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3953         dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3954         dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3955         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3956 }
3957
3958 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3959 // Geometry shader gets custom code from context, the rest are pass-through.
3960 void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3961 {
3962         map<string, string> passthru = passthruFragments();
3963         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3964         dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3965         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3966 }
3967
3968 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3969 // Fragment shader gets custom code from context, the rest are pass-through.
3970 void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3971 {
3972         map<string, string> passthru = passthruFragments();
3973         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3974         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3975 }
3976
3977 void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3978 {
3979         // \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3980         // \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3981         dst.spirvAsmSources.add("module") <<
3982                 "OpCapability Shader\n"
3983                 "OpCapability ClipDistance\n"
3984                 "OpCapability CullDistance\n"
3985                 "OpCapability Geometry\n"
3986                 "OpCapability Tessellation\n"
3987                 "OpMemoryModel Logical GLSL450\n"
3988
3989                 "OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3990                 "OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3991                 "OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3992                 "OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3993                 "OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3994
3995                 "OpExecutionMode %geom_main Triangles\n"
3996                 "OpExecutionMode %geom_main OutputTriangleStrip\n"
3997                 "OpExecutionMode %geom_main OutputVertices 3\n"
3998
3999                 "OpExecutionMode %tessc_main OutputVertices 3\n"
4000
4001                 "OpExecutionMode %tesse_main Triangles\n"
4002                 "OpExecutionMode %tesse_main SpacingEqual\n"
4003                 "OpExecutionMode %tesse_main VertexOrderCcw\n"
4004
4005                 "OpExecutionMode %frag_main OriginUpperLeft\n"
4006
4007                 "OpName %vert_main \"main\"\n"
4008                 "OpName %vert_vtxPosition \"vtxPosition\"\n"
4009                 "OpName %vert_Position \"position\"\n"
4010                 "OpName %vert_vtxColor \"vtxColor\"\n"
4011                 "OpName %vert_color \"color\"\n"
4012                 "OpName %vert_vertex_id \"gl_VertexIndex\"\n"
4013                 "OpName %vert_instance_id \"gl_InstanceIndex\"\n"
4014                 "OpName %geom_main \"main\"\n"
4015                 "OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
4016                 "OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
4017                 "OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
4018                 "OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
4019                 "OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
4020                 "OpName %geom_gl_in \"gl_in\"\n"
4021                 "OpName %geom_out_color \"out_color\"\n"
4022                 "OpName %geom_in_color \"in_color\"\n"
4023                 "OpName %tessc_main \"main\"\n"
4024                 "OpName %tessc_out_color \"out_color\"\n"
4025                 "OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
4026                 "OpName %tessc_in_color \"in_color\"\n"
4027                 "OpName %tessc_out_position \"out_position\"\n"
4028                 "OpName %tessc_in_position \"in_position\"\n"
4029                 "OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4030                 "OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
4031                 "OpName %tesse_main \"main\"\n"
4032                 "OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
4033                 "OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
4034                 "OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
4035                 "OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
4036                 "OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
4037                 "OpName %tesse_stream \"\"\n"
4038                 "OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
4039                 "OpName %tesse_in_position \"in_position\"\n"
4040                 "OpName %tesse_out_color \"out_color\"\n"
4041                 "OpName %tesse_in_color \"in_color\"\n"
4042                 "OpName %frag_main \"main\"\n"
4043                 "OpName %frag_fragColor \"fragColor\"\n"
4044                 "OpName %frag_vtxColor \"vtxColor\"\n"
4045
4046                 "; Vertex decorations\n"
4047                 "OpDecorate %vert_vtxPosition Location 2\n"
4048                 "OpDecorate %vert_Position Location 0\n"
4049                 "OpDecorate %vert_vtxColor Location 1\n"
4050                 "OpDecorate %vert_color Location 1\n"
4051                 "OpDecorate %vert_vertex_id BuiltIn VertexIndex\n"
4052                 "OpDecorate %vert_instance_id BuiltIn InstanceIndex\n"
4053
4054                 "; Geometry decorations\n"
4055                 "OpDecorate %geom_out_gl_position BuiltIn Position\n"
4056                 "OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
4057                 "OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
4058                 "OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
4059                 "OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
4060                 "OpDecorate %geom_per_vertex_in Block\n"
4061                 "OpDecorate %geom_out_color Location 1\n"
4062                 "OpDecorate %geom_in_color Location 1\n"
4063
4064                 "; Tessellation Control decorations\n"
4065                 "OpDecorate %tessc_out_color Location 1\n"
4066                 "OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
4067                 "OpDecorate %tessc_in_color Location 1\n"
4068                 "OpDecorate %tessc_out_position Location 2\n"
4069                 "OpDecorate %tessc_in_position Location 2\n"
4070                 "OpDecorate %tessc_gl_TessLevelOuter Patch\n"
4071                 "OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4072                 "OpDecorate %tessc_gl_TessLevelInner Patch\n"
4073                 "OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
4074
4075                 "; Tessellation Evaluation decorations\n"
4076                 "OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4077                 "OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4078                 "OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4079                 "OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4080                 "OpDecorate %tesse_per_vertex_out Block\n"
4081                 "OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4082                 "OpDecorate %tesse_in_position Location 2\n"
4083                 "OpDecorate %tesse_out_color Location 1\n"
4084                 "OpDecorate %tesse_in_color Location 1\n"
4085
4086                 "; Fragment decorations\n"
4087                 "OpDecorate %frag_fragColor Location 0\n"
4088                 "OpDecorate %frag_vtxColor Location 1\n"
4089
4090                 SPIRV_ASSEMBLY_TYPES
4091                 SPIRV_ASSEMBLY_CONSTANTS
4092                 SPIRV_ASSEMBLY_ARRAYS
4093
4094                 "; Vertex Variables\n"
4095                 "%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4096                 "%vert_Position = OpVariable %ip_v4f32 Input\n"
4097                 "%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4098                 "%vert_color = OpVariable %ip_v4f32 Input\n"
4099                 "%vert_vertex_id = OpVariable %ip_i32 Input\n"
4100                 "%vert_instance_id = OpVariable %ip_i32 Input\n"
4101
4102                 "; Geometry Variables\n"
4103                 "%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4104                 "%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4105                 "%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4106                 "%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4107                 "%geom_out_color = OpVariable %op_v4f32 Output\n"
4108                 "%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4109                 "%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4110
4111                 "; Tessellation Control Variables\n"
4112                 "%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4113                 "%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4114                 "%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4115                 "%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4116                 "%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4117                 "%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4118                 "%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4119
4120                 "; Tessellation Evaluation Decorations\n"
4121                 "%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4122                 "%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4123                 "%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4124                 "%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4125                 "%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4126                 "%tesse_out_color = OpVariable %op_v4f32 Output\n"
4127                 "%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4128
4129                 "; Fragment Variables\n"
4130                 "%frag_fragColor = OpVariable %op_v4f32 Output\n"
4131                 "%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4132
4133                 "; Vertex Entry\n"
4134                 "%vert_main = OpFunction %void None %fun\n"
4135                 "%vert_label = OpLabel\n"
4136                 "%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4137                 "OpStore %vert_vtxPosition %vert_tmp_position\n"
4138                 "%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4139                 "OpStore %vert_vtxColor %vert_tmp_color\n"
4140                 "OpReturn\n"
4141                 "OpFunctionEnd\n"
4142
4143                 "; Geometry Entry\n"
4144                 "%geom_main = OpFunction %void None %fun\n"
4145                 "%geom_label = OpLabel\n"
4146                 "%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4147                 "%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4148                 "%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4149                 "%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4150                 "%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4151                 "%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4152                 "%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4153                 "%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4154                 "%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4155                 "%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4156                 "%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4157                 "%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4158                 "OpStore %geom_out_gl_position %geom_in_position_0\n"
4159                 "OpStore %geom_out_color %geom_in_color_0\n"
4160                 "OpEmitVertex\n"
4161                 "OpStore %geom_out_gl_position %geom_in_position_1\n"
4162                 "OpStore %geom_out_color %geom_in_color_1\n"
4163                 "OpEmitVertex\n"
4164                 "OpStore %geom_out_gl_position %geom_in_position_2\n"
4165                 "OpStore %geom_out_color %geom_in_color_2\n"
4166                 "OpEmitVertex\n"
4167                 "OpEndPrimitive\n"
4168                 "OpReturn\n"
4169                 "OpFunctionEnd\n"
4170
4171                 "; Tessellation Control Entry\n"
4172                 "%tessc_main = OpFunction %void None %fun\n"
4173                 "%tessc_label = OpLabel\n"
4174                 "%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4175                 "%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4176                 "%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4177                 "%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4178                 "%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4179                 "%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4180                 "%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4181                 "OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4182                 "OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4183                 "%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4184                 "OpSelectionMerge %tessc_merge_label None\n"
4185                 "OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4186                 "%tessc_first_invocation = OpLabel\n"
4187                 "%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4188                 "%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4189                 "%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4190                 "%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4191                 "OpStore %tessc_tess_outer_0 %c_f32_1\n"
4192                 "OpStore %tessc_tess_outer_1 %c_f32_1\n"
4193                 "OpStore %tessc_tess_outer_2 %c_f32_1\n"
4194                 "OpStore %tessc_tess_inner %c_f32_1\n"
4195                 "OpBranch %tessc_merge_label\n"
4196                 "%tessc_merge_label = OpLabel\n"
4197                 "OpReturn\n"
4198                 "OpFunctionEnd\n"
4199
4200                 "; Tessellation Evaluation Entry\n"
4201                 "%tesse_main = OpFunction %void None %fun\n"
4202                 "%tesse_label = OpLabel\n"
4203                 "%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4204                 "%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4205                 "%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4206                 "%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4207                 "%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4208                 "%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4209                 "%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4210                 "%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4211                 "%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4212                 "%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4213                 "%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4214                 "%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4215                 "%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4216                 "%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4217                 "%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4218                 "%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4219                 "%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4220                 "%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4221                 "OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4222                 "%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4223                 "%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4224                 "%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4225                 "%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4226                 "%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4227                 "%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4228                 "%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4229                 "%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4230                 "%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4231                 "%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4232                 "%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4233                 "OpStore %tesse_out_color %tesse_computed_clr\n"
4234                 "OpReturn\n"
4235                 "OpFunctionEnd\n"
4236
4237                 "; Fragment Entry\n"
4238                 "%frag_main = OpFunction %void None %fun\n"
4239                 "%frag_label_main = OpLabel\n"
4240                 "%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4241                 "OpStore %frag_fragColor %frag_tmp1\n"
4242                 "OpReturn\n"
4243                 "OpFunctionEnd\n";
4244 }
4245
4246 // This has two shaders of each stage. The first
4247 // is a passthrough, the second inverts the color.
4248 void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4249 {
4250         dst.spirvAsmSources.add("vert") <<
4251         // This module contains 2 vertex shaders. One that is a passthrough
4252         // and a second that inverts the color of the output (1.0 - color).
4253                 "OpCapability Shader\n"
4254                 "OpMemoryModel Logical GLSL450\n"
4255                 "OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4256                 "OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4257
4258                 "OpName %main \"vert1\"\n"
4259                 "OpName %main2 \"vert2\"\n"
4260                 "OpName %vtxPosition \"vtxPosition\"\n"
4261                 "OpName %Position \"position\"\n"
4262                 "OpName %vtxColor \"vtxColor\"\n"
4263                 "OpName %color \"color\"\n"
4264                 "OpName %vertex_id \"gl_VertexIndex\"\n"
4265                 "OpName %instance_id \"gl_InstanceIndex\"\n"
4266
4267                 "OpDecorate %vtxPosition Location 2\n"
4268                 "OpDecorate %Position Location 0\n"
4269                 "OpDecorate %vtxColor Location 1\n"
4270                 "OpDecorate %color Location 1\n"
4271                 "OpDecorate %vertex_id BuiltIn VertexIndex\n"
4272                 "OpDecorate %instance_id BuiltIn InstanceIndex\n"
4273                 SPIRV_ASSEMBLY_TYPES
4274                 SPIRV_ASSEMBLY_CONSTANTS
4275                 SPIRV_ASSEMBLY_ARRAYS
4276                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4277                 "%vtxPosition = OpVariable %op_v4f32 Output\n"
4278                 "%Position = OpVariable %ip_v4f32 Input\n"
4279                 "%vtxColor = OpVariable %op_v4f32 Output\n"
4280                 "%color = OpVariable %ip_v4f32 Input\n"
4281                 "%vertex_id = OpVariable %ip_i32 Input\n"
4282                 "%instance_id = OpVariable %ip_i32 Input\n"
4283
4284                 "%main = OpFunction %void None %fun\n"
4285                 "%label = OpLabel\n"
4286                 "%tmp_position = OpLoad %v4f32 %Position\n"
4287                 "OpStore %vtxPosition %tmp_position\n"
4288                 "%tmp_color = OpLoad %v4f32 %color\n"
4289                 "OpStore %vtxColor %tmp_color\n"
4290                 "OpReturn\n"
4291                 "OpFunctionEnd\n"
4292
4293                 "%main2 = OpFunction %void None %fun\n"
4294                 "%label2 = OpLabel\n"
4295                 "%tmp_position2 = OpLoad %v4f32 %Position\n"
4296                 "OpStore %vtxPosition %tmp_position2\n"
4297                 "%tmp_color2 = OpLoad %v4f32 %color\n"
4298                 "%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4299                 "%tmp_color4 = OpVectorInsertDynamic %v4f32 %tmp_color3 %c_f32_1 %c_i32_3\n"
4300                 "OpStore %vtxColor %tmp_color4\n"
4301                 "OpReturn\n"
4302                 "OpFunctionEnd\n";
4303
4304         dst.spirvAsmSources.add("frag") <<
4305                 // This is a single module that contains 2 fragment shaders.
4306                 // One that passes color through and the other that inverts the output
4307                 // color (1.0 - color).
4308                 "OpCapability Shader\n"
4309                 "OpMemoryModel Logical GLSL450\n"
4310                 "OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4311                 "OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4312                 "OpExecutionMode %main OriginUpperLeft\n"
4313                 "OpExecutionMode %main2 OriginUpperLeft\n"
4314
4315                 "OpName %main \"frag1\"\n"
4316                 "OpName %main2 \"frag2\"\n"
4317                 "OpName %fragColor \"fragColor\"\n"
4318                 "OpName %vtxColor \"vtxColor\"\n"
4319                 "OpDecorate %fragColor Location 0\n"
4320                 "OpDecorate %vtxColor Location 1\n"
4321                 SPIRV_ASSEMBLY_TYPES
4322                 SPIRV_ASSEMBLY_CONSTANTS
4323                 SPIRV_ASSEMBLY_ARRAYS
4324                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4325                 "%fragColor = OpVariable %op_v4f32 Output\n"
4326                 "%vtxColor = OpVariable %ip_v4f32 Input\n"
4327
4328                 "%main = OpFunction %void None %fun\n"
4329                 "%label_main = OpLabel\n"
4330                 "%tmp1 = OpLoad %v4f32 %vtxColor\n"
4331                 "OpStore %fragColor %tmp1\n"
4332                 "OpReturn\n"
4333                 "OpFunctionEnd\n"
4334
4335                 "%main2 = OpFunction %void None %fun\n"
4336                 "%label_main2 = OpLabel\n"
4337                 "%tmp2 = OpLoad %v4f32 %vtxColor\n"
4338                 "%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4339                 "%tmp4 = OpVectorInsertDynamic %v4f32 %tmp3 %c_f32_1 %c_i32_3\n"
4340                 "OpStore %fragColor %tmp4\n"
4341                 "OpReturn\n"
4342                 "OpFunctionEnd\n";
4343
4344         dst.spirvAsmSources.add("geom") <<
4345                 "OpCapability Geometry\n"
4346                 "OpCapability ClipDistance\n"
4347                 "OpCapability CullDistance\n"
4348                 "OpMemoryModel Logical GLSL450\n"
4349                 "OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4350                 "OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4351                 "OpExecutionMode %geom1_main Triangles\n"
4352                 "OpExecutionMode %geom2_main Triangles\n"
4353                 "OpExecutionMode %geom1_main OutputTriangleStrip\n"
4354                 "OpExecutionMode %geom2_main OutputTriangleStrip\n"
4355                 "OpExecutionMode %geom1_main OutputVertices 3\n"
4356                 "OpExecutionMode %geom2_main OutputVertices 3\n"
4357                 "OpName %geom1_main \"geom1\"\n"
4358                 "OpName %geom2_main \"geom2\"\n"
4359                 "OpName %per_vertex_in \"gl_PerVertex\"\n"
4360                 "OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4361                 "OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4362                 "OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4363                 "OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4364                 "OpName %gl_in \"gl_in\"\n"
4365                 "OpName %out_color \"out_color\"\n"
4366                 "OpName %in_color \"in_color\"\n"
4367                 "OpDecorate %out_gl_position BuiltIn Position\n"
4368                 "OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4369                 "OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4370                 "OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4371                 "OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4372                 "OpDecorate %per_vertex_in Block\n"
4373                 "OpDecorate %out_color Location 1\n"
4374                 "OpDecorate %in_color Location 1\n"
4375                 SPIRV_ASSEMBLY_TYPES
4376                 SPIRV_ASSEMBLY_CONSTANTS
4377                 SPIRV_ASSEMBLY_ARRAYS
4378                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4379                 "%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4380                 "%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4381                 "%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4382                 "%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4383                 "%out_color = OpVariable %op_v4f32 Output\n"
4384                 "%in_color = OpVariable %ip_a3v4f32 Input\n"
4385                 "%out_gl_position = OpVariable %op_v4f32 Output\n"
4386
4387                 "%geom1_main = OpFunction %void None %fun\n"
4388                 "%geom1_label = OpLabel\n"
4389                 "%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4390                 "%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4391                 "%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4392                 "%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4393                 "%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4394                 "%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4395                 "%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4396                 "%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4397                 "%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4398                 "%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4399                 "%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4400                 "%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4401                 "OpStore %out_gl_position %geom1_in_position_0\n"
4402                 "OpStore %out_color %geom1_in_color_0\n"
4403                 "OpEmitVertex\n"
4404                 "OpStore %out_gl_position %geom1_in_position_1\n"
4405                 "OpStore %out_color %geom1_in_color_1\n"
4406                 "OpEmitVertex\n"
4407                 "OpStore %out_gl_position %geom1_in_position_2\n"
4408                 "OpStore %out_color %geom1_in_color_2\n"
4409                 "OpEmitVertex\n"
4410                 "OpEndPrimitive\n"
4411                 "OpReturn\n"
4412                 "OpFunctionEnd\n"
4413
4414                 "%geom2_main = OpFunction %void None %fun\n"
4415                 "%geom2_label = OpLabel\n"
4416                 "%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4417                 "%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4418                 "%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4419                 "%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4420                 "%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4421                 "%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4422                 "%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4423                 "%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4424                 "%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4425                 "%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4426                 "%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4427                 "%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4428                 "%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4429                 "%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4430                 "%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4431                 "%geom2_transformed_in_color_0_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_0 %c_f32_1 %c_i32_3\n"
4432                 "%geom2_transformed_in_color_1_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_1 %c_f32_1 %c_i32_3\n"
4433                 "%geom2_transformed_in_color_2_a = OpVectorInsertDynamic %v4f32 %geom2_transformed_in_color_2 %c_f32_1 %c_i32_3\n"
4434                 "OpStore %out_gl_position %geom2_in_position_0\n"
4435                 "OpStore %out_color %geom2_transformed_in_color_0_a\n"
4436                 "OpEmitVertex\n"
4437                 "OpStore %out_gl_position %geom2_in_position_1\n"
4438                 "OpStore %out_color %geom2_transformed_in_color_1_a\n"
4439                 "OpEmitVertex\n"
4440                 "OpStore %out_gl_position %geom2_in_position_2\n"
4441                 "OpStore %out_color %geom2_transformed_in_color_2_a\n"
4442                 "OpEmitVertex\n"
4443                 "OpEndPrimitive\n"
4444                 "OpReturn\n"
4445                 "OpFunctionEnd\n";
4446
4447         dst.spirvAsmSources.add("tessc") <<
4448                 "OpCapability Tessellation\n"
4449                 "OpMemoryModel Logical GLSL450\n"
4450                 "OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4451                 "OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4452                 "OpExecutionMode %tessc1_main OutputVertices 3\n"
4453                 "OpExecutionMode %tessc2_main OutputVertices 3\n"
4454                 "OpName %tessc1_main \"tessc1\"\n"
4455                 "OpName %tessc2_main \"tessc2\"\n"
4456                 "OpName %out_color \"out_color\"\n"
4457                 "OpName %gl_InvocationID \"gl_InvocationID\"\n"
4458                 "OpName %in_color \"in_color\"\n"
4459                 "OpName %out_position \"out_position\"\n"
4460                 "OpName %in_position \"in_position\"\n"
4461                 "OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4462                 "OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4463                 "OpDecorate %out_color Location 1\n"
4464                 "OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4465                 "OpDecorate %in_color Location 1\n"
4466                 "OpDecorate %out_position Location 2\n"
4467                 "OpDecorate %in_position Location 2\n"
4468                 "OpDecorate %gl_TessLevelOuter Patch\n"
4469                 "OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4470                 "OpDecorate %gl_TessLevelInner Patch\n"
4471                 "OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4472                 SPIRV_ASSEMBLY_TYPES
4473                 SPIRV_ASSEMBLY_CONSTANTS
4474                 SPIRV_ASSEMBLY_ARRAYS
4475                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4476                 "%out_color = OpVariable %op_a3v4f32 Output\n"
4477                 "%gl_InvocationID = OpVariable %ip_i32 Input\n"
4478                 "%in_color = OpVariable %ip_a32v4f32 Input\n"
4479                 "%out_position = OpVariable %op_a3v4f32 Output\n"
4480                 "%in_position = OpVariable %ip_a32v4f32 Input\n"
4481                 "%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4482                 "%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4483
4484                 "%tessc1_main = OpFunction %void None %fun\n"
4485                 "%tessc1_label = OpLabel\n"
4486                 "%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4487                 "%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4488                 "%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4489                 "%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4490                 "%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4491                 "%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4492                 "%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4493                 "OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4494                 "OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4495                 "%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4496                 "OpSelectionMerge %tessc1_merge_label None\n"
4497                 "OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4498                 "%tessc1_first_invocation = OpLabel\n"
4499                 "%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4500                 "%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4501                 "%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4502                 "%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4503                 "OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4504                 "OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4505                 "OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4506                 "OpStore %tessc1_tess_inner %c_f32_1\n"
4507                 "OpBranch %tessc1_merge_label\n"
4508                 "%tessc1_merge_label = OpLabel\n"
4509                 "OpReturn\n"
4510                 "OpFunctionEnd\n"
4511
4512                 "%tessc2_main = OpFunction %void None %fun\n"
4513                 "%tessc2_label = OpLabel\n"
4514                 "%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4515                 "%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4516                 "%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4517                 "%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4518                 "%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4519                 "%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4520                 "%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4521                 "%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4522                 "%tessc2_transformed_color_a = OpVectorInsertDynamic %v4f32 %tessc2_transformed_color %c_f32_1 %c_i32_3\n"
4523                 "OpStore %tessc2_out_color_ptr %tessc2_transformed_color_a\n"
4524                 "OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4525                 "%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4526                 "OpSelectionMerge %tessc2_merge_label None\n"
4527                 "OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4528                 "%tessc2_first_invocation = OpLabel\n"
4529                 "%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4530                 "%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4531                 "%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4532                 "%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4533                 "OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4534                 "OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4535                 "OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4536                 "OpStore %tessc2_tess_inner %c_f32_1\n"
4537                 "OpBranch %tessc2_merge_label\n"
4538                 "%tessc2_merge_label = OpLabel\n"
4539                 "OpReturn\n"
4540                 "OpFunctionEnd\n";
4541
4542         dst.spirvAsmSources.add("tesse") <<
4543                 "OpCapability Tessellation\n"
4544                 "OpCapability ClipDistance\n"
4545                 "OpCapability CullDistance\n"
4546                 "OpMemoryModel Logical GLSL450\n"
4547                 "OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4548                 "OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4549                 "OpExecutionMode %tesse1_main Triangles\n"
4550                 "OpExecutionMode %tesse1_main SpacingEqual\n"
4551                 "OpExecutionMode %tesse1_main VertexOrderCcw\n"
4552                 "OpExecutionMode %tesse2_main Triangles\n"
4553                 "OpExecutionMode %tesse2_main SpacingEqual\n"
4554                 "OpExecutionMode %tesse2_main VertexOrderCcw\n"
4555                 "OpName %tesse1_main \"tesse1\"\n"
4556                 "OpName %tesse2_main \"tesse2\"\n"
4557                 "OpName %per_vertex_out \"gl_PerVertex\"\n"
4558                 "OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4559                 "OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4560                 "OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4561                 "OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4562                 "OpName %stream \"\"\n"
4563                 "OpName %gl_tessCoord \"gl_TessCoord\"\n"
4564                 "OpName %in_position \"in_position\"\n"
4565                 "OpName %out_color \"out_color\"\n"
4566                 "OpName %in_color \"in_color\"\n"
4567                 "OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4568                 "OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4569                 "OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4570                 "OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4571                 "OpDecorate %per_vertex_out Block\n"
4572                 "OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4573                 "OpDecorate %in_position Location 2\n"
4574                 "OpDecorate %out_color Location 1\n"
4575                 "OpDecorate %in_color Location 1\n"
4576                 SPIRV_ASSEMBLY_TYPES
4577                 SPIRV_ASSEMBLY_CONSTANTS
4578                 SPIRV_ASSEMBLY_ARRAYS
4579                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4580                 "%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4581                 "%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4582                 "%stream = OpVariable %op_per_vertex_out Output\n"
4583                 "%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4584                 "%in_position = OpVariable %ip_a32v4f32 Input\n"
4585                 "%out_color = OpVariable %op_v4f32 Output\n"
4586                 "%in_color = OpVariable %ip_a32v4f32 Input\n"
4587
4588                 "%tesse1_main = OpFunction %void None %fun\n"
4589                 "%tesse1_label = OpLabel\n"
4590                 "%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4591                 "%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4592                 "%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4593                 "%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4594                 "%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4595                 "%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4596                 "%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4597                 "%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4598                 "%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4599                 "%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4600                 "%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4601                 "%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4602                 "%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4603                 "%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4604                 "%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4605                 "%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4606                 "%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4607                 "%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4608                 "OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4609                 "%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4610                 "%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4611                 "%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4612                 "%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4613                 "%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4614                 "%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4615                 "%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4616                 "%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4617                 "%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4618                 "%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4619                 "%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4620                 "OpStore %out_color %tesse1_computed_clr\n"
4621                 "OpReturn\n"
4622                 "OpFunctionEnd\n"
4623
4624                 "%tesse2_main = OpFunction %void None %fun\n"
4625                 "%tesse2_label = OpLabel\n"
4626                 "%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4627                 "%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4628                 "%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4629                 "%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4630                 "%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4631                 "%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4632                 "%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4633                 "%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4634                 "%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4635                 "%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4636                 "%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4637                 "%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4638                 "%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4639                 "%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4640                 "%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4641                 "%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4642                 "%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4643                 "%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4644                 "OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4645                 "%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4646                 "%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4647                 "%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4648                 "%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4649                 "%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4650                 "%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4651                 "%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4652                 "%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4653                 "%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4654                 "%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4655                 "%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4656                 "%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4657                 "%tesse2_clr_transformed_a = OpVectorInsertDynamic %v4f32 %tesse2_clr_transformed %c_f32_1 %c_i32_3\n"
4658                 "OpStore %out_color %tesse2_clr_transformed_a\n"
4659                 "OpReturn\n"
4660                 "OpFunctionEnd\n";
4661 }
4662
4663 // Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4664 // Feeds the pipeline a set of colored triangles, which then must occur in the
4665 // rendered image.  The surface is cleared before executing the pipeline, so
4666 // whatever the shaders draw can be directly spot-checked.
4667 TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4668 {
4669         const VkDevice                                                          vkDevice                                = context.getDevice();
4670         const DeviceInterface&                                          vk                                              = context.getDeviceInterface();
4671         const VkQueue                                                           queue                                   = context.getUniversalQueue();
4672         const deUint32                                                          queueFamilyIndex                = context.getUniversalQueueFamilyIndex();
4673         const tcu::UVec2                                                        renderSize                              (256, 256);
4674         vector<ModuleHandleSp>                                          modules;
4675         map<VkShaderStageFlagBits, VkShaderModule>      moduleByStage;
4676         const int                                                                       testSpecificSeed                = 31354125;
4677         const int                                                                       seed                                    = context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4678         bool                                                                            supportsGeometry                = false;
4679         bool                                                                            supportsTessellation    = false;
4680         bool                                                                            hasTessellation         = false;
4681
4682         const VkPhysicalDeviceFeatures&                         features                                = context.getDeviceFeatures();
4683         supportsGeometry                = features.geometryShader == VK_TRUE;
4684         supportsTessellation    = features.tessellationShader == VK_TRUE;
4685         hasTessellation                 = (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4686                                                                 (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4687
4688         if (hasTessellation && !supportsTessellation)
4689         {
4690                 throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4691         }
4692
4693         if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4694                 !supportsGeometry)
4695         {
4696                 throw tcu::NotSupportedError(std::string("Geometry not supported"));
4697         }
4698
4699         de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4700         de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4701         const Vec4                                                              vertexData[]                    =
4702         {
4703                 // Upper left corner:
4704                 Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4705                 Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4706                 Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4707
4708                 // Upper right corner:
4709                 Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4710                 Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4711                 Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4712
4713                 // Lower left corner:
4714                 Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4715                 Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4716                 Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4717
4718                 // Lower right corner:
4719                 Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4720                 Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4721                 Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4722         };
4723         const size_t                                                    singleVertexDataSize    = 2 * sizeof(Vec4);
4724         const size_t                                                    vertexCount                             = sizeof(vertexData) / singleVertexDataSize;
4725
4726         const VkBufferCreateInfo                                vertexBufferParams              =
4727         {
4728                 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,   //      VkStructureType         sType;
4729                 DE_NULL,                                                                //      const void*                     pNext;
4730                 0u,                                                                             //      VkBufferCreateFlags     flags;
4731                 (VkDeviceSize)sizeof(vertexData),               //      VkDeviceSize            size;
4732                 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,              //      VkBufferUsageFlags      usage;
4733                 VK_SHARING_MODE_EXCLUSIVE,                              //      VkSharingMode           sharingMode;
4734                 1u,                                                                             //      deUint32                        queueFamilyCount;
4735                 &queueFamilyIndex,                                              //      const deUint32*         pQueueFamilyIndices;
4736         };
4737         const Unique<VkBuffer>                                  vertexBuffer                    (createBuffer(vk, vkDevice, &vertexBufferParams));
4738         const UniquePtr<Allocation>                             vertexBufferMemory              (context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4739
4740         VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4741
4742         const VkDeviceSize                                              imageSizeBytes                  = (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4743         const VkBufferCreateInfo                                readImageBufferParams   =
4744         {
4745                 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,           //      VkStructureType         sType;
4746                 DE_NULL,                                                                        //      const void*                     pNext;
4747                 0u,                                                                                     //      VkBufferCreateFlags     flags;
4748                 imageSizeBytes,                                                         //      VkDeviceSize            size;
4749                 VK_BUFFER_USAGE_TRANSFER_DST_BIT,                       //      VkBufferUsageFlags      usage;
4750                 VK_SHARING_MODE_EXCLUSIVE,                                      //      VkSharingMode           sharingMode;
4751                 1u,                                                                                     //      deUint32                        queueFamilyCount;
4752                 &queueFamilyIndex,                                                      //      const deUint32*         pQueueFamilyIndices;
4753         };
4754         const Unique<VkBuffer>                                  readImageBuffer                 (createBuffer(vk, vkDevice, &readImageBufferParams));
4755         const UniquePtr<Allocation>                             readImageBufferMemory   (context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4756
4757         VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4758
4759         const VkImageCreateInfo                                 imageParams                             =
4760         {
4761                 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,                                                                    //      VkStructureType         sType;
4762                 DE_NULL,                                                                                                                                //      const void*                     pNext;
4763                 0u,                                                                                                                                             //      VkImageCreateFlags      flags;
4764                 VK_IMAGE_TYPE_2D,                                                                                                               //      VkImageType                     imageType;
4765                 VK_FORMAT_R8G8B8A8_UNORM,                                                                                               //      VkFormat                        format;
4766                 { renderSize.x(), renderSize.y(), 1 },                                                                  //      VkExtent3D                      extent;
4767                 1u,                                                                                                                                             //      deUint32                        mipLevels;
4768                 1u,                                                                                                                                             //      deUint32                        arraySize;
4769                 VK_SAMPLE_COUNT_1_BIT,                                                                                                  //      deUint32                        samples;
4770                 VK_IMAGE_TILING_OPTIMAL,                                                                                                //      VkImageTiling           tiling;
4771                 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,    //      VkImageUsageFlags       usage;
4772                 VK_SHARING_MODE_EXCLUSIVE,                                                                                              //      VkSharingMode           sharingMode;
4773                 1u,                                                                                                                                             //      deUint32                        queueFamilyCount;
4774                 &queueFamilyIndex,                                                                                                              //      const deUint32*         pQueueFamilyIndices;
4775                 VK_IMAGE_LAYOUT_UNDEFINED,                                                                                              //      VkImageLayout           initialLayout;
4776         };
4777
4778         const Unique<VkImage>                                   image                                   (createImage(vk, vkDevice, &imageParams));
4779         const UniquePtr<Allocation>                             imageMemory                             (context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4780
4781         VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4782
4783         const VkAttachmentDescription                   colorAttDesc                    =
4784         {
4785                 0u,                                                                                             //      VkAttachmentDescriptionFlags    flags;
4786                 VK_FORMAT_R8G8B8A8_UNORM,                                               //      VkFormat                                                format;
4787                 VK_SAMPLE_COUNT_1_BIT,                                                  //      deUint32                                                samples;
4788                 VK_ATTACHMENT_LOAD_OP_CLEAR,                                    //      VkAttachmentLoadOp                              loadOp;
4789                 VK_ATTACHMENT_STORE_OP_STORE,                                   //      VkAttachmentStoreOp                             storeOp;
4790                 VK_ATTACHMENT_LOAD_OP_DONT_CARE,                                //      VkAttachmentLoadOp                              stencilLoadOp;
4791                 VK_ATTACHMENT_STORE_OP_DONT_CARE,                               //      VkAttachmentStoreOp                             stencilStoreOp;
4792                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout                                   initialLayout;
4793                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout                                   finalLayout;
4794         };
4795         const VkAttachmentReference                             colorAttRef                             =
4796         {
4797                 0u,                                                                                             //      deUint32                attachment;
4798                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout   layout;
4799         };
4800         const VkSubpassDescription                              subpassDesc                             =
4801         {
4802                 0u,                                                                                             //      VkSubpassDescriptionFlags               flags;
4803                 VK_PIPELINE_BIND_POINT_GRAPHICS,                                //      VkPipelineBindPoint                             pipelineBindPoint;
4804                 0u,                                                                                             //      deUint32                                                inputCount;
4805                 DE_NULL,                                                                                //      const VkAttachmentReference*    pInputAttachments;
4806                 1u,                                                                                             //      deUint32                                                colorCount;
4807                 &colorAttRef,                                                                   //      const VkAttachmentReference*    pColorAttachments;
4808                 DE_NULL,                                                                                //      const VkAttachmentReference*    pResolveAttachments;
4809                 DE_NULL,                                                                                //      const VkAttachmentReference*    pDepthStencilAttachment;
4810                 0u,                                                                                             //      deUint32                                                preserveCount;
4811                 DE_NULL,                                                                                //      const VkAttachmentReference*    pPreserveAttachments;
4812
4813         };
4814         const VkRenderPassCreateInfo                    renderPassParams                =
4815         {
4816                 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,              //      VkStructureType                                 sType;
4817                 DE_NULL,                                                                                //      const void*                                             pNext;
4818                 (VkRenderPassCreateFlags)0,
4819                 1u,                                                                                             //      deUint32                                                attachmentCount;
4820                 &colorAttDesc,                                                                  //      const VkAttachmentDescription*  pAttachments;
4821                 1u,                                                                                             //      deUint32                                                subpassCount;
4822                 &subpassDesc,                                                                   //      const VkSubpassDescription*             pSubpasses;
4823                 0u,                                                                                             //      deUint32                                                dependencyCount;
4824                 DE_NULL,                                                                                //      const VkSubpassDependency*              pDependencies;
4825         };
4826         const Unique<VkRenderPass>                              renderPass                              (createRenderPass(vk, vkDevice, &renderPassParams));
4827
4828         const VkImageViewCreateInfo                             colorAttViewParams              =
4829         {
4830                 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,               //      VkStructureType                         sType;
4831                 DE_NULL,                                                                                //      const void*                                     pNext;
4832                 0u,                                                                                             //      VkImageViewCreateFlags          flags;
4833                 *image,                                                                                 //      VkImage                                         image;
4834                 VK_IMAGE_VIEW_TYPE_2D,                                                  //      VkImageViewType                         viewType;
4835                 VK_FORMAT_R8G8B8A8_UNORM,                                               //      VkFormat                                        format;
4836                 {
4837                         VK_COMPONENT_SWIZZLE_R,
4838                         VK_COMPONENT_SWIZZLE_G,
4839                         VK_COMPONENT_SWIZZLE_B,
4840                         VK_COMPONENT_SWIZZLE_A
4841                 },                                                                                              //      VkChannelMapping                        channels;
4842                 {
4843                         VK_IMAGE_ASPECT_COLOR_BIT,                                              //      VkImageAspectFlags      aspectMask;
4844                         0u,                                                                                             //      deUint32                        baseMipLevel;
4845                         1u,                                                                                             //      deUint32                        mipLevels;
4846                         0u,                                                                                             //      deUint32                        baseArrayLayer;
4847                         1u,                                                                                             //      deUint32                        arraySize;
4848                 },                                                                                              //      VkImageSubresourceRange         subresourceRange;
4849         };
4850         const Unique<VkImageView>                               colorAttView                    (createImageView(vk, vkDevice, &colorAttViewParams));
4851
4852
4853         // Pipeline layout
4854         const VkPipelineLayoutCreateInfo                pipelineLayoutParams    =
4855         {
4856                 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,                  //      VkStructureType                                 sType;
4857                 DE_NULL,                                                                                                //      const void*                                             pNext;
4858                 (VkPipelineLayoutCreateFlags)0,
4859                 0u,                                                                                                             //      deUint32                                                descriptorSetCount;
4860                 DE_NULL,                                                                                                //      const VkDescriptorSetLayout*    pSetLayouts;
4861                 0u,                                                                                                             //      deUint32                                                pushConstantRangeCount;
4862                 DE_NULL,                                                                                                //      const VkPushConstantRange*              pPushConstantRanges;
4863         };
4864         const Unique<VkPipelineLayout>                  pipelineLayout                  (createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4865
4866         // Pipeline
4867         vector<VkPipelineShaderStageCreateInfo>         shaderStageParams;
4868         // We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4869         vector<vector<VkSpecializationMapEntry> >       specConstantEntries;
4870         vector<VkSpecializationInfo>                            specializationInfos;
4871         createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4872
4873         // And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4874         specConstantEntries.reserve(shaderStageParams.size());
4875         specializationInfos.reserve(shaderStageParams.size());
4876
4877         // Patch the specialization info field in PipelineShaderStageCreateInfos.
4878         for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4879         {
4880                 const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4881
4882                 if (stageIt != instance.specConstants.end())
4883                 {
4884                         const size_t                                            numSpecConstants        = stageIt->second.size();
4885                         vector<VkSpecializationMapEntry>        entries;
4886                         VkSpecializationInfo                            specInfo;
4887
4888                         entries.resize(numSpecConstants);
4889
4890                         // Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4891                         for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4892                         {
4893                                 entries[ndx].constantID = (deUint32)ndx;
4894                                 entries[ndx].offset             = deUint32(ndx * sizeof(deInt32));
4895                                 entries[ndx].size               = sizeof(deInt32);
4896                         }
4897
4898                         specConstantEntries.push_back(entries);
4899
4900                         specInfo.mapEntryCount  = (deUint32)numSpecConstants;
4901                         specInfo.pMapEntries    = specConstantEntries.back().data();
4902                         specInfo.dataSize               = numSpecConstants * sizeof(deInt32);
4903                         specInfo.pData                  = stageIt->second.data();
4904                         specializationInfos.push_back(specInfo);
4905
4906                         stageInfo->pSpecializationInfo = &specializationInfos.back();
4907                 }
4908         }
4909         const VkPipelineDepthStencilStateCreateInfo     depthStencilParams              =
4910         {
4911                 VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,     //      VkStructureType         sType;
4912                 DE_NULL,                                                                                                        //      const void*                     pNext;
4913                 (VkPipelineDepthStencilStateCreateFlags)0,
4914                 DE_FALSE,                                                                                                       //      deUint32                        depthTestEnable;
4915                 DE_FALSE,                                                                                                       //      deUint32                        depthWriteEnable;
4916                 VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp                     depthCompareOp;
4917                 DE_FALSE,                                                                                                       //      deUint32                        depthBoundsTestEnable;
4918                 DE_FALSE,                                                                                                       //      deUint32                        stencilTestEnable;
4919                 {
4920                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilFailOp;
4921                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilPassOp;
4922                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilDepthFailOp;
4923                         VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp     stencilCompareOp;
4924                         0u,                                                                                                                     //      deUint32        stencilCompareMask;
4925                         0u,                                                                                                                     //      deUint32        stencilWriteMask;
4926                         0u,                                                                                                                     //      deUint32        stencilReference;
4927                 },                                                                                                                      //      VkStencilOpState        front;
4928                 {
4929                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilFailOp;
4930                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilPassOp;
4931                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilDepthFailOp;
4932                         VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp     stencilCompareOp;
4933                         0u,                                                                                                                     //      deUint32        stencilCompareMask;
4934                         0u,                                                                                                                     //      deUint32        stencilWriteMask;
4935                         0u,                                                                                                                     //      deUint32        stencilReference;
4936                 },                                                                                                                      //      VkStencilOpState        back;
4937                 -1.0f,                                                                                                          //      float                           minDepthBounds;
4938                 +1.0f,                                                                                                          //      float                           maxDepthBounds;
4939         };
4940         const VkViewport                                                viewport0                               =
4941         {
4942                 0.0f,                                                                                                           //      float   originX;
4943                 0.0f,                                                                                                           //      float   originY;
4944                 (float)renderSize.x(),                                                                          //      float   width;
4945                 (float)renderSize.y(),                                                                          //      float   height;
4946                 0.0f,                                                                                                           //      float   minDepth;
4947                 1.0f,                                                                                                           //      float   maxDepth;
4948         };
4949         const VkRect2D                                                  scissor0                                =
4950         {
4951                 {
4952                         0u,                                                                                                                     //      deInt32 x;
4953                         0u,                                                                                                                     //      deInt32 y;
4954                 },                                                                                                                      //      VkOffset2D      offset;
4955                 {
4956                         renderSize.x(),                                                                                         //      deInt32 width;
4957                         renderSize.y(),                                                                                         //      deInt32 height;
4958                 },                                                                                                                      //      VkExtent2D      extent;
4959         };
4960         const VkPipelineViewportStateCreateInfo         viewportParams                  =
4961         {
4962                 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,          //      VkStructureType         sType;
4963                 DE_NULL,                                                                                                        //      const void*                     pNext;
4964                 (VkPipelineViewportStateCreateFlags)0,
4965                 1u,                                                                                                                     //      deUint32                        viewportCount;
4966                 &viewport0,
4967                 1u,
4968                 &scissor0
4969         };
4970         const VkSampleMask                                                      sampleMask                              = ~0u;
4971         const VkPipelineMultisampleStateCreateInfo      multisampleParams               =
4972         {
4973                 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,       //      VkStructureType                 sType;
4974                 DE_NULL,                                                                                                        //      const void*                             pNext;
4975                 (VkPipelineMultisampleStateCreateFlags)0,
4976                 VK_SAMPLE_COUNT_1_BIT,                                                                          //      VkSampleCountFlagBits   rasterSamples;
4977                 DE_FALSE,                                                                                                       //      deUint32                                sampleShadingEnable;
4978                 0.0f,                                                                                                           //      float                                   minSampleShading;
4979                 &sampleMask,                                                                                            //      const VkSampleMask*             pSampleMask;
4980                 DE_FALSE,                                                                                                       //      VkBool32                                alphaToCoverageEnable;
4981                 DE_FALSE,                                                                                                       //      VkBool32                                alphaToOneEnable;
4982         };
4983         const VkPipelineRasterizationStateCreateInfo    rasterParams            =
4984         {
4985                 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,     //      VkStructureType sType;
4986                 DE_NULL,                                                                                                        //      const void*             pNext;
4987                 (VkPipelineRasterizationStateCreateFlags)0,
4988                 DE_TRUE,                                                                                                        //      deUint32                depthClipEnable;
4989                 DE_FALSE,                                                                                                       //      deUint32                rasterizerDiscardEnable;
4990                 VK_POLYGON_MODE_FILL,                                                                           //      VkFillMode              fillMode;
4991                 VK_CULL_MODE_NONE,                                                                                      //      VkCullMode              cullMode;
4992                 VK_FRONT_FACE_COUNTER_CLOCKWISE,                                                        //      VkFrontFace             frontFace;
4993                 VK_FALSE,                                                                                                       //      VkBool32                depthBiasEnable;
4994                 0.0f,                                                                                                           //      float                   depthBias;
4995                 0.0f,                                                                                                           //      float                   depthBiasClamp;
4996                 0.0f,                                                                                                           //      float                   slopeScaledDepthBias;
4997                 1.0f,                                                                                                           //      float                   lineWidth;
4998         };
4999         const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
5000         const VkPipelineInputAssemblyStateCreateInfo    inputAssemblyParams     =
5001         {
5002                 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,    //      VkStructureType         sType;
5003                 DE_NULL,                                                                                                                //      const void*                     pNext;
5004                 (VkPipelineInputAssemblyStateCreateFlags)0,
5005                 topology,                                                                                                               //      VkPrimitiveTopology     topology;
5006                 DE_FALSE,                                                                                                               //      deUint32                        primitiveRestartEnable;
5007         };
5008         const VkVertexInputBindingDescription           vertexBinding0 =
5009         {
5010                 0u,                                                                     // deUint32                                     binding;
5011                 deUint32(singleVertexDataSize),         // deUint32                                     strideInBytes;
5012                 VK_VERTEX_INPUT_RATE_VERTEX                     // VkVertexInputStepRate        stepRate;
5013         };
5014         const VkVertexInputAttributeDescription         vertexAttrib0[2] =
5015         {
5016                 {
5017                         0u,                                                                     // deUint32     location;
5018                         0u,                                                                     // deUint32     binding;
5019                         VK_FORMAT_R32G32B32A32_SFLOAT,          // VkFormat     format;
5020                         0u                                                                      // deUint32     offsetInBytes;
5021                 },
5022                 {
5023                         1u,                                                                     // deUint32     location;
5024                         0u,                                                                     // deUint32     binding;
5025                         VK_FORMAT_R32G32B32A32_SFLOAT,          // VkFormat     format;
5026                         sizeof(Vec4),                                           // deUint32     offsetInBytes;
5027                 }
5028         };
5029
5030         const VkPipelineVertexInputStateCreateInfo      vertexInputStateParams  =
5031         {
5032                 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,      //      VkStructureType                                                         sType;
5033                 DE_NULL,                                                                                                        //      const void*                                                                     pNext;
5034                 (VkPipelineVertexInputStateCreateFlags)0,
5035                 1u,                                                                                                                     //      deUint32                                                                        bindingCount;
5036                 &vertexBinding0,                                                                                        //      const VkVertexInputBindingDescription*          pVertexBindingDescriptions;
5037                 2u,                                                                                                                     //      deUint32                                                                        attributeCount;
5038                 vertexAttrib0,                                                                                          //      const VkVertexInputAttributeDescription*        pVertexAttributeDescriptions;
5039         };
5040         const VkPipelineColorBlendAttachmentState       attBlendParams                  =
5041         {
5042                 DE_FALSE,                                                                                                       //      deUint32                blendEnable;
5043                 VK_BLEND_FACTOR_ONE,                                                                            //      VkBlend                 srcBlendColor;
5044                 VK_BLEND_FACTOR_ZERO,                                                                           //      VkBlend                 destBlendColor;
5045                 VK_BLEND_OP_ADD,                                                                                        //      VkBlendOp               blendOpColor;
5046                 VK_BLEND_FACTOR_ONE,                                                                            //      VkBlend                 srcBlendAlpha;
5047                 VK_BLEND_FACTOR_ZERO,                                                                           //      VkBlend                 destBlendAlpha;
5048                 VK_BLEND_OP_ADD,                                                                                        //      VkBlendOp               blendOpAlpha;
5049                 (VK_COLOR_COMPONENT_R_BIT|
5050                  VK_COLOR_COMPONENT_G_BIT|
5051                  VK_COLOR_COMPONENT_B_BIT|
5052                  VK_COLOR_COMPONENT_A_BIT),                                                                     //      VkChannelFlags  channelWriteMask;
5053         };
5054         const VkPipelineColorBlendStateCreateInfo       blendParams                             =
5055         {
5056                 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,       //      VkStructureType                                                         sType;
5057                 DE_NULL,                                                                                                        //      const void*                                                                     pNext;
5058                 (VkPipelineColorBlendStateCreateFlags)0,
5059                 DE_FALSE,                                                                                                       //      VkBool32                                                                        logicOpEnable;
5060                 VK_LOGIC_OP_COPY,                                                                                       //      VkLogicOp                                                                       logicOp;
5061                 1u,                                                                                                                     //      deUint32                                                                        attachmentCount;
5062                 &attBlendParams,                                                                                        //      const VkPipelineColorBlendAttachmentState*      pAttachments;
5063                 { 0.0f, 0.0f, 0.0f, 0.0f },                                                                     //      float                                                                           blendConst[4];
5064         };
5065         const VkPipelineTessellationStateCreateInfo     tessellationState       =
5066         {
5067                 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
5068                 DE_NULL,
5069                 (VkPipelineTessellationStateCreateFlags)0,
5070                 3u
5071         };
5072
5073         const VkPipelineTessellationStateCreateInfo* tessellationInfo   =       hasTessellation ? &tessellationState: DE_NULL;
5074         const VkGraphicsPipelineCreateInfo              pipelineParams                  =
5075         {
5076                 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,                //      VkStructureType                                                                 sType;
5077                 DE_NULL,                                                                                                //      const void*                                                                             pNext;
5078                 0u,                                                                                                             //      VkPipelineCreateFlags                                                   flags;
5079                 (deUint32)shaderStageParams.size(),                                             //      deUint32                                                                                stageCount;
5080                 &shaderStageParams[0],                                                                  //      const VkPipelineShaderStageCreateInfo*                  pStages;
5081                 &vertexInputStateParams,                                                                //      const VkPipelineVertexInputStateCreateInfo*             pVertexInputState;
5082                 &inputAssemblyParams,                                                                   //      const VkPipelineInputAssemblyStateCreateInfo*   pInputAssemblyState;
5083                 tessellationInfo,                                                                               //      const VkPipelineTessellationStateCreateInfo*    pTessellationState;
5084                 &viewportParams,                                                                                //      const VkPipelineViewportStateCreateInfo*                pViewportState;
5085                 &rasterParams,                                                                                  //      const VkPipelineRasterStateCreateInfo*                  pRasterState;
5086                 &multisampleParams,                                                                             //      const VkPipelineMultisampleStateCreateInfo*             pMultisampleState;
5087                 &depthStencilParams,                                                                    //      const VkPipelineDepthStencilStateCreateInfo*    pDepthStencilState;
5088                 &blendParams,                                                                                   //      const VkPipelineColorBlendStateCreateInfo*              pColorBlendState;
5089                 (const VkPipelineDynamicStateCreateInfo*)DE_NULL,               //      const VkPipelineDynamicStateCreateInfo*                 pDynamicState;
5090                 *pipelineLayout,                                                                                //      VkPipelineLayout                                                                layout;
5091                 *renderPass,                                                                                    //      VkRenderPass                                                                    renderPass;
5092                 0u,                                                                                                             //      deUint32                                                                                subpass;
5093                 DE_NULL,                                                                                                //      VkPipeline                                                                              basePipelineHandle;
5094                 0u,                                                                                                             //      deInt32                                                                                 basePipelineIndex;
5095         };
5096
5097         const Unique<VkPipeline>                                pipeline                                (createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5098
5099         // Framebuffer
5100         const VkFramebufferCreateInfo                   framebufferParams               =
5101         {
5102                 VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,                              //      VkStructureType         sType;
5103                 DE_NULL,                                                                                                //      const void*                     pNext;
5104                 (VkFramebufferCreateFlags)0,
5105                 *renderPass,                                                                                    //      VkRenderPass            renderPass;
5106                 1u,                                                                                                             //      deUint32                        attachmentCount;
5107                 &*colorAttView,                                                                                 //      const VkImageView*      pAttachments;
5108                 (deUint32)renderSize.x(),                                                               //      deUint32                        width;
5109                 (deUint32)renderSize.y(),                                                               //      deUint32                        height;
5110                 1u,                                                                                                             //      deUint32                        layers;
5111         };
5112         const Unique<VkFramebuffer>                             framebuffer                             (createFramebuffer(vk, vkDevice, &framebufferParams));
5113
5114         const VkCommandPoolCreateInfo                   cmdPoolParams                   =
5115         {
5116                 VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,                                     //      VkStructureType                 sType;
5117                 DE_NULL,                                                                                                        //      const void*                             pNext;
5118                 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,                                //      VkCmdPoolCreateFlags    flags;
5119                 queueFamilyIndex,                                                                                       //      deUint32                                queueFamilyIndex;
5120         };
5121         const Unique<VkCommandPool>                             cmdPool                                 (createCommandPool(vk, vkDevice, &cmdPoolParams));
5122
5123         // Command buffer
5124         const VkCommandBufferAllocateInfo               cmdBufParams                    =
5125         {
5126                 VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,                 //      VkStructureType                 sType;
5127                 DE_NULL,                                                                                                //      const void*                             pNext;
5128                 *cmdPool,                                                                                               //      VkCmdPool                               pool;
5129                 VK_COMMAND_BUFFER_LEVEL_PRIMARY,                                                //      VkCmdBufferLevel                level;
5130                 1u,                                                                                                             //      deUint32                                count;
5131         };
5132         const Unique<VkCommandBuffer>                   cmdBuf                                  (allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5133
5134         const VkCommandBufferBeginInfo                  cmdBufBeginParams               =
5135         {
5136                 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,                    //      VkStructureType                         sType;
5137                 DE_NULL,                                                                                                //      const void*                                     pNext;
5138                 (VkCommandBufferUsageFlags)0,
5139                 (const VkCommandBufferInheritanceInfo*)DE_NULL,
5140         };
5141
5142         // Record commands
5143         VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5144
5145         {
5146                 const VkMemoryBarrier           vertFlushBarrier        =
5147                 {
5148                         VK_STRUCTURE_TYPE_MEMORY_BARRIER,                       //      VkStructureType         sType;
5149                         DE_NULL,                                                                        //      const void*                     pNext;
5150                         VK_ACCESS_HOST_WRITE_BIT,                                       //      VkMemoryOutputFlags     outputMask;
5151                         VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,            //      VkMemoryInputFlags      inputMask;
5152                 };
5153                 const VkImageMemoryBarrier      colorAttBarrier         =
5154                 {
5155                         VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,         //      VkStructureType                 sType;
5156                         DE_NULL,                                                                        //      const void*                             pNext;
5157                         0u,                                                                                     //      VkMemoryOutputFlags             outputMask;
5158                         VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,           //      VkMemoryInputFlags              inputMask;
5159                         VK_IMAGE_LAYOUT_UNDEFINED,                                      //      VkImageLayout                   oldLayout;
5160                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,       //      VkImageLayout                   newLayout;
5161                         queueFamilyIndex,                                                       //      deUint32                                srcQueueFamilyIndex;
5162                         queueFamilyIndex,                                                       //      deUint32                                destQueueFamilyIndex;
5163                         *image,                                                                         //      VkImage                                 image;
5164                         {
5165                                 VK_IMAGE_ASPECT_COLOR_BIT,                                      //      VkImageAspect   aspect;
5166                                 0u,                                                                                     //      deUint32                baseMipLevel;
5167                                 1u,                                                                                     //      deUint32                mipLevels;
5168                                 0u,                                                                                     //      deUint32                baseArraySlice;
5169                                 1u,                                                                                     //      deUint32                arraySize;
5170                         }                                                                                       //      VkImageSubresourceRange subresourceRange;
5171                 };
5172                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 1, &vertFlushBarrier, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &colorAttBarrier);
5173         }
5174
5175         {
5176                 const VkClearValue                      clearValue              = makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5177                 const VkRenderPassBeginInfo     passBeginParams =
5178                 {
5179                         VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,                       //      VkStructureType         sType;
5180                         DE_NULL,                                                                                        //      const void*                     pNext;
5181                         *renderPass,                                                                            //      VkRenderPass            renderPass;
5182                         *framebuffer,                                                                           //      VkFramebuffer           framebuffer;
5183                         { { 0, 0 }, { renderSize.x(), renderSize.y() } },       //      VkRect2D                        renderArea;
5184                         1u,                                                                                                     //      deUint32                        clearValueCount;
5185                         &clearValue,                                                                            //      const VkClearValue*     pClearValues;
5186                 };
5187                 vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5188         }
5189
5190         vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5191         {
5192                 const VkDeviceSize bindingOffset = 0;
5193                 vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5194         }
5195         vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5196         vk.cmdEndRenderPass(*cmdBuf);
5197
5198         {
5199                 const VkImageMemoryBarrier      renderFinishBarrier     =
5200                 {
5201                         VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,         //      VkStructureType                 sType;
5202                         DE_NULL,                                                                        //      const void*                             pNext;
5203                         VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,           //      VkMemoryOutputFlags             outputMask;
5204                         VK_ACCESS_TRANSFER_READ_BIT,                            //      VkMemoryInputFlags              inputMask;
5205                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,       //      VkImageLayout                   oldLayout;
5206                         VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,           //      VkImageLayout                   newLayout;
5207                         queueFamilyIndex,                                                       //      deUint32                                srcQueueFamilyIndex;
5208                         queueFamilyIndex,                                                       //      deUint32                                destQueueFamilyIndex;
5209                         *image,                                                                         //      VkImage                                 image;
5210                         {
5211                                 VK_IMAGE_ASPECT_COLOR_BIT,                                      //      VkImageAspectFlags      aspectMask;
5212                                 0u,                                                                                     //      deUint32                        baseMipLevel;
5213                                 1u,                                                                                     //      deUint32                        mipLevels;
5214                                 0u,                                                                                     //      deUint32                        baseArraySlice;
5215                                 1u,                                                                                     //      deUint32                        arraySize;
5216                         }                                                                                       //      VkImageSubresourceRange subresourceRange;
5217                 };
5218                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &renderFinishBarrier);
5219         }
5220
5221         {
5222                 const VkBufferImageCopy copyParams      =
5223                 {
5224                         (VkDeviceSize)0u,                                               //      VkDeviceSize                    bufferOffset;
5225                         (deUint32)renderSize.x(),                               //      deUint32                                bufferRowLength;
5226                         (deUint32)renderSize.y(),                               //      deUint32                                bufferImageHeight;
5227                         {
5228                                 VK_IMAGE_ASPECT_COLOR_BIT,                              //      VkImageAspect           aspect;
5229                                 0u,                                                                             //      deUint32                        mipLevel;
5230                                 0u,                                                                             //      deUint32                        arrayLayer;
5231                                 1u,                                                                             //      deUint32                        arraySize;
5232                         },                                                                              //      VkImageSubresourceCopy  imageSubresource;
5233                         { 0u, 0u, 0u },                                                 //      VkOffset3D                              imageOffset;
5234                         { renderSize.x(), renderSize.y(), 1u }  //      VkExtent3D                              imageExtent;
5235                 };
5236                 vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5237         }
5238
5239         {
5240                 const VkBufferMemoryBarrier     copyFinishBarrier       =
5241                 {
5242                         VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,        //      VkStructureType         sType;
5243                         DE_NULL,                                                                        //      const void*                     pNext;
5244                         VK_ACCESS_TRANSFER_WRITE_BIT,                           //      VkMemoryOutputFlags     outputMask;
5245                         VK_ACCESS_HOST_READ_BIT,                                        //      VkMemoryInputFlags      inputMask;
5246                         queueFamilyIndex,                                                       //      deUint32                        srcQueueFamilyIndex;
5247                         queueFamilyIndex,                                                       //      deUint32                        destQueueFamilyIndex;
5248                         *readImageBuffer,                                                       //      VkBuffer                        buffer;
5249                         0u,                                                                                     //      VkDeviceSize            offset;
5250                         imageSizeBytes                                                          //      VkDeviceSize            size;
5251                 };
5252                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyFinishBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
5253         }
5254
5255         VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5256
5257         // Upload vertex data
5258         {
5259                 const VkMappedMemoryRange       range                   =
5260                 {
5261                         VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  //      VkStructureType sType;
5262                         DE_NULL,                                                                //      const void*             pNext;
5263                         vertexBufferMemory->getMemory(),                //      VkDeviceMemory  mem;
5264                         0,                                                                              //      VkDeviceSize    offset;
5265                         (VkDeviceSize)sizeof(vertexData),               //      VkDeviceSize    size;
5266                 };
5267                 void*                                           vertexBufPtr    = vertexBufferMemory->getHostPtr();
5268
5269                 deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5270                 VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5271         }
5272
5273         // Submit & wait for completion
5274         {
5275                 const VkFenceCreateInfo fenceParams     =
5276                 {
5277                         VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,    //      VkStructureType         sType;
5278                         DE_NULL,                                                                //      const void*                     pNext;
5279                         0u,                                                                             //      VkFenceCreateFlags      flags;
5280                 };
5281                 const Unique<VkFence>   fence           (createFence(vk, vkDevice, &fenceParams));
5282                 const VkSubmitInfo              submitInfo      =
5283                 {
5284                         VK_STRUCTURE_TYPE_SUBMIT_INFO,
5285                         DE_NULL,
5286                         0u,
5287                         (const VkSemaphore*)DE_NULL,
5288                         (const VkPipelineStageFlags*)DE_NULL,
5289                         1u,
5290                         &cmdBuf.get(),
5291                         0u,
5292                         (const VkSemaphore*)DE_NULL,
5293                 };
5294
5295                 VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5296                 VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5297         }
5298
5299         const void* imagePtr    = readImageBufferMemory->getHostPtr();
5300         const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5301                                                                                                   renderSize.x(), renderSize.y(), 1, imagePtr);
5302         // Log image
5303         {
5304                 const VkMappedMemoryRange       range           =
5305                 {
5306                         VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  //      VkStructureType sType;
5307                         DE_NULL,                                                                //      const void*             pNext;
5308                         readImageBufferMemory->getMemory(),             //      VkDeviceMemory  mem;
5309                         0,                                                                              //      VkDeviceSize    offset;
5310                         imageSizeBytes,                                                 //      VkDeviceSize    size;
5311                 };
5312
5313                 VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5314                 context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5315         }
5316
5317         const RGBA threshold(1, 1, 1, 1);
5318         const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5319         if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5320                 return TestStatus::fail("Upper left corner mismatch");
5321
5322         const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5323         if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5324                 return TestStatus::fail("Upper right corner mismatch");
5325
5326         const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5327         if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5328                 return TestStatus::fail("Lower left corner mismatch");
5329
5330         const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5331         if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5332                 return TestStatus::fail("Lower right corner mismatch");
5333
5334         return TestStatus::pass("Rendered output matches input");
5335 }
5336
5337 void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5338 {
5339         const ShaderElement             vertFragPipelineStages[]                =
5340         {
5341                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5342                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5343         };
5344
5345         const ShaderElement             tessPipelineStages[]                    =
5346         {
5347                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5348                 ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5349                 ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5350                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5351         };
5352
5353         const ShaderElement             geomPipelineStages[]                            =
5354         {
5355                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5356                 ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5357                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5358         };
5359
5360         StageToSpecConstantMap  specConstantMap;
5361
5362         specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5363         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5364                                                                                                  createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5365
5366         specConstantMap.clear();
5367         specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5368         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5369                                                                                                  createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5370
5371         specConstantMap.clear();
5372         specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5373         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5374                                                                                                  createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5375
5376         specConstantMap.clear();
5377         specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5378         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5379                                                                                                  createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5380
5381         specConstantMap.clear();
5382         specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5383         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5384                                                                                                  createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5385 }
5386
5387 inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5388 {
5389         vector<deInt32> noSpecConstants;
5390         createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5391 }
5392
5393 } // anonymous
5394
5395 tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5396 {
5397         struct NameCodePair { string name, code; };
5398         RGBA                                                    defaultColors[4];
5399         de::MovePtr<tcu::TestCaseGroup> opSourceTests                   (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5400         const std::string                               opsourceGLSLWithFile    = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5401         map<string, string>                             fragments                               = passthruFragments();
5402         const NameCodePair                              tests[]                                 =
5403         {
5404                 {"unknown", "OpSource Unknown 321"},
5405                 {"essl", "OpSource ESSL 310"},
5406                 {"glsl", "OpSource GLSL 450"},
5407                 {"opencl_cpp", "OpSource OpenCL_CPP 120"},
5408                 {"opencl_c", "OpSource OpenCL_C 120"},
5409                 {"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5410                 {"file", opsourceGLSLWithFile},
5411                 {"source", opsourceGLSLWithFile + "\"void main(){}\""},
5412                 // Longest possible source string: SPIR-V limits instructions to 65535
5413                 // words, of which the first 4 are opsourceGLSLWithFile; the rest will
5414                 // contain 65530 UTF8 characters (one word each) plus one last word
5415                 // containing 3 ASCII characters and \0.
5416                 {"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5417         };
5418
5419         getDefaultColors(defaultColors);
5420         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5421         {
5422                 fragments["debug"] = tests[testNdx].code;
5423                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5424         }
5425
5426         return opSourceTests.release();
5427 }
5428
5429 tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5430 {
5431         struct NameCodePair { string name, code; };
5432         RGBA                                                            defaultColors[4];
5433         de::MovePtr<tcu::TestCaseGroup>         opSourceTests           (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5434         map<string, string>                                     fragments                       = passthruFragments();
5435         const std::string                                       opsource                        = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5436         const NameCodePair                                      tests[]                         =
5437         {
5438                 {"empty", opsource + "OpSourceContinued \"\""},
5439                 {"short", opsource + "OpSourceContinued \"abcde\""},
5440                 {"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5441                 // Longest possible source string: SPIR-V limits instructions to 65535
5442                 // words, of which the first one is OpSourceContinued/length; the rest
5443                 // will contain 65533 UTF8 characters (one word each) plus one last word
5444                 // containing 3 ASCII characters and \0.
5445                 {"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5446         };
5447
5448         getDefaultColors(defaultColors);
5449         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5450         {
5451                 fragments["debug"] = tests[testNdx].code;
5452                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5453         }
5454
5455         return opSourceTests.release();
5456 }
5457
5458 tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5459 {
5460         RGBA                                                             defaultColors[4];
5461         de::MovePtr<tcu::TestCaseGroup>          opLineTests             (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5462         map<string, string>                                      fragments;
5463         getDefaultColors(defaultColors);
5464         fragments["debug"]                      =
5465                 "%name = OpString \"name\"\n";
5466
5467         fragments["pre_main"]   =
5468                 "OpNoLine\n"
5469                 "OpNoLine\n"
5470                 "OpLine %name 1 1\n"
5471                 "OpNoLine\n"
5472                 "OpLine %name 1 1\n"
5473                 "OpLine %name 1 1\n"
5474                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5475                 "OpNoLine\n"
5476                 "OpLine %name 1 1\n"
5477                 "OpNoLine\n"
5478                 "OpLine %name 1 1\n"
5479                 "OpLine %name 1 1\n"
5480                 "%second_param1 = OpFunctionParameter %v4f32\n"
5481                 "OpNoLine\n"
5482                 "OpNoLine\n"
5483                 "%label_secondfunction = OpLabel\n"
5484                 "OpNoLine\n"
5485                 "OpReturnValue %second_param1\n"
5486                 "OpFunctionEnd\n"
5487                 "OpNoLine\n"
5488                 "OpNoLine\n";
5489
5490         fragments["testfun"]            =
5491                 // A %test_code function that returns its argument unchanged.
5492                 "OpNoLine\n"
5493                 "OpNoLine\n"
5494                 "OpLine %name 1 1\n"
5495                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5496                 "OpNoLine\n"
5497                 "%param1 = OpFunctionParameter %v4f32\n"
5498                 "OpNoLine\n"
5499                 "OpNoLine\n"
5500                 "%label_testfun = OpLabel\n"
5501                 "OpNoLine\n"
5502                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5503                 "OpReturnValue %val1\n"
5504                 "OpFunctionEnd\n"
5505                 "OpLine %name 1 1\n"
5506                 "OpNoLine\n";
5507
5508         createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5509
5510         return opLineTests.release();
5511 }
5512
5513
5514 tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5515 {
5516         RGBA                                                                                                    defaultColors[4];
5517         de::MovePtr<tcu::TestCaseGroup>                                                 opLineTests                     (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5518         map<string, string>                                                                             fragments;
5519         std::vector<std::pair<std::string, std::string> >               problemStrings;
5520
5521         problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5522         problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5523         problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5524         getDefaultColors(defaultColors);
5525
5526         fragments["debug"]                      =
5527                 "%other_name = OpString \"other_name\"\n";
5528
5529         fragments["pre_main"]   =
5530                 "OpLine %file_name 32 0\n"
5531                 "OpLine %file_name 32 32\n"
5532                 "OpLine %file_name 32 40\n"
5533                 "OpLine %other_name 32 40\n"
5534                 "OpLine %other_name 0 100\n"
5535                 "OpLine %other_name 0 4294967295\n"
5536                 "OpLine %other_name 4294967295 0\n"
5537                 "OpLine %other_name 32 40\n"
5538                 "OpLine %file_name 0 0\n"
5539                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5540                 "OpLine %file_name 1 0\n"
5541                 "%second_param1 = OpFunctionParameter %v4f32\n"
5542                 "OpLine %file_name 1 3\n"
5543                 "OpLine %file_name 1 2\n"
5544                 "%label_secondfunction = OpLabel\n"
5545                 "OpLine %file_name 0 2\n"
5546                 "OpReturnValue %second_param1\n"
5547                 "OpFunctionEnd\n"
5548                 "OpLine %file_name 0 2\n"
5549                 "OpLine %file_name 0 2\n";
5550
5551         fragments["testfun"]            =
5552                 // A %test_code function that returns its argument unchanged.
5553                 "OpLine %file_name 1 0\n"
5554                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5555                 "OpLine %file_name 16 330\n"
5556                 "%param1 = OpFunctionParameter %v4f32\n"
5557                 "OpLine %file_name 14 442\n"
5558                 "%label_testfun = OpLabel\n"
5559                 "OpLine %file_name 11 1024\n"
5560                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5561                 "OpLine %file_name 2 97\n"
5562                 "OpReturnValue %val1\n"
5563                 "OpFunctionEnd\n"
5564                 "OpLine %file_name 5 32\n";
5565
5566         for (size_t i = 0; i < problemStrings.size(); ++i)
5567         {
5568                 map<string, string> testFragments = fragments;
5569                 testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5570                 createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5571         }
5572
5573         return opLineTests.release();
5574 }
5575
5576 tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5577 {
5578         de::MovePtr<tcu::TestCaseGroup> opConstantNullTests             (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5579         RGBA                                                    colors[4];
5580
5581
5582         const char                                              functionStart[] =
5583                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5584                 "%param1 = OpFunctionParameter %v4f32\n"
5585                 "%lbl    = OpLabel\n";
5586
5587         const char                                              functionEnd[]   =
5588                 "OpReturnValue %transformed_param\n"
5589                 "OpFunctionEnd\n";
5590
5591         struct NameConstantsCode
5592         {
5593                 string name;
5594                 string constants;
5595                 string code;
5596         };
5597
5598         NameConstantsCode tests[] =
5599         {
5600                 {
5601                         "vec4",
5602                         "%cnull = OpConstantNull %v4f32\n",
5603                         "%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5604                 },
5605                 {
5606                         "float",
5607                         "%cnull = OpConstantNull %f32\n",
5608                         "%vp = OpVariable %fp_v4f32 Function\n"
5609                         "%v  = OpLoad %v4f32 %vp\n"
5610                         "%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5611                         "%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5612                         "%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5613                         "%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5614                         "%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5615                 },
5616                 {
5617                         "bool",
5618                         "%cnull             = OpConstantNull %bool\n",
5619                         "%v                 = OpVariable %fp_v4f32 Function\n"
5620                         "                     OpStore %v %param1\n"
5621                         "                     OpSelectionMerge %false_label None\n"
5622                         "                     OpBranchConditional %cnull %true_label %false_label\n"
5623                         "%true_label        = OpLabel\n"
5624                         "                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5625                         "                     OpBranch %false_label\n"
5626                         "%false_label       = OpLabel\n"
5627                         "%transformed_param = OpLoad %v4f32 %v\n"
5628                 },
5629                 {
5630                         "i32",
5631                         "%cnull             = OpConstantNull %i32\n",
5632                         "%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5633                         "%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5634                         "                     OpSelectionMerge %false_label None\n"
5635                         "                     OpBranchConditional %b %true_label %false_label\n"
5636                         "%true_label        = OpLabel\n"
5637                         "                     OpStore %v %param1\n"
5638                         "                     OpBranch %false_label\n"
5639                         "%false_label       = OpLabel\n"
5640                         "%transformed_param = OpLoad %v4f32 %v\n"
5641                 },
5642                 {
5643                         "struct",
5644                         "%stype             = OpTypeStruct %f32 %v4f32\n"
5645                         "%fp_stype          = OpTypePointer Function %stype\n"
5646                         "%cnull             = OpConstantNull %stype\n",
5647                         "%v                 = OpVariable %fp_stype Function %cnull\n"
5648                         "%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5649                         "%f_val             = OpLoad %v4f32 %f\n"
5650                         "%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5651                 },
5652                 {
5653                         "array",
5654                         "%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5655                         "%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5656                         "%cnull             = OpConstantNull %a4_v4f32\n",
5657                         "%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5658                         "%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5659                         "%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5660                         "%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5661                         "%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5662                         "%f_val             = OpLoad %v4f32 %f\n"
5663                         "%f1_val            = OpLoad %v4f32 %f1\n"
5664                         "%f2_val            = OpLoad %v4f32 %f2\n"
5665                         "%f3_val            = OpLoad %v4f32 %f3\n"
5666                         "%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5667                         "%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5668                         "%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5669                         "%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5670                 },
5671                 {
5672                         "matrix",
5673                         "%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5674                         "%cnull             = OpConstantNull %mat4x4_f32\n",
5675                         // Our null matrix * any vector should result in a zero vector.
5676                         "%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5677                         "%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5678                 }
5679         };
5680
5681         getHalfColorsFullAlpha(colors);
5682
5683         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5684         {
5685                 map<string, string> fragments;
5686                 fragments["pre_main"] = tests[testNdx].constants;
5687                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5688                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5689         }
5690         return opConstantNullTests.release();
5691 }
5692 tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5693 {
5694         de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests                (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5695         RGBA                                                    inputColors[4];
5696         RGBA                                                    outputColors[4];
5697
5698
5699         const char                                              functionStart[]  =
5700                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5701                 "%param1 = OpFunctionParameter %v4f32\n"
5702                 "%lbl    = OpLabel\n";
5703
5704         const char                                              functionEnd[]           =
5705                 "OpReturnValue %transformed_param\n"
5706                 "OpFunctionEnd\n";
5707
5708         struct NameConstantsCode
5709         {
5710                 string name;
5711                 string constants;
5712                 string code;
5713         };
5714
5715         NameConstantsCode tests[] =
5716         {
5717                 {
5718                         "vec4",
5719
5720                         "%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5721                         "%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5722                 },
5723                 {
5724                         "struct",
5725
5726                         "%stype             = OpTypeStruct %v4f32 %f32\n"
5727                         "%fp_stype          = OpTypePointer Function %stype\n"
5728                         "%f32_n_1           = OpConstant %f32 -1.0\n"
5729                         "%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5730                         "%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5731                         "%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5732
5733                         "%v                 = OpVariable %fp_stype Function %cval\n"
5734                         "%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5735                         "%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5736                         "%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5737                         "%f32_val           = OpLoad %f32 %f32_ptr\n"
5738                         "%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5739                         "%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5740                         "%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5741                 },
5742                 {
5743                         // [1|0|0|0.5] [x] = x + 0.5
5744                         // [0|1|0|0.5] [y] = y + 0.5
5745                         // [0|0|1|0.5] [z] = z + 0.5
5746                         // [0|0|0|1  ] [1] = 1
5747                         "matrix",
5748
5749                         "%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5750                     "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5751                     "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5752                     "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5753                     "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5754                         "%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5755
5756                         "%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5757                 },
5758                 {
5759                         "array",
5760
5761                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5762                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5763                         "%f32_n_1             = OpConstant %f32 -1.0\n"
5764                         "%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5765                         "%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5766
5767                         "%v                   = OpVariable %fp_a4f32 Function %carr\n"
5768                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5769                         "%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5770                         "%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5771                         "%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5772                         "%f_val               = OpLoad %f32 %f\n"
5773                         "%f1_val              = OpLoad %f32 %f1\n"
5774                         "%f2_val              = OpLoad %f32 %f2\n"
5775                         "%f3_val              = OpLoad %f32 %f3\n"
5776                         "%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5777                         "%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5778                         "%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5779                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5780                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5781                 },
5782                 {
5783                         //
5784                         // [
5785                         //   {
5786                         //      0.0,
5787                         //      [ 1.0, 1.0, 1.0, 1.0]
5788                         //   },
5789                         //   {
5790                         //      1.0,
5791                         //      [ 0.0, 0.5, 0.0, 0.0]
5792                         //   }, //     ^^^
5793                         //   {
5794                         //      0.0,
5795                         //      [ 1.0, 1.0, 1.0, 1.0]
5796                         //   }
5797                         // ]
5798                         "array_of_struct_of_array",
5799
5800                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5801                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5802                         "%stype               = OpTypeStruct %f32 %a4f32\n"
5803                         "%a3stype             = OpTypeArray %stype %c_u32_3\n"
5804                         "%fp_a3stype          = OpTypePointer Function %a3stype\n"
5805                         "%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5806                         "%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5807                         "%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5808                         "%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5809                         "%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5810
5811                         "%v                   = OpVariable %fp_a3stype Function %carr\n"
5812                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5813                         "%f_l                 = OpLoad %f32 %f\n"
5814                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
5815                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5816                 }
5817         };
5818
5819         getHalfColorsFullAlpha(inputColors);
5820         outputColors[0] = RGBA(255, 255, 255, 255);
5821         outputColors[1] = RGBA(255, 127, 127, 255);
5822         outputColors[2] = RGBA(127, 255, 127, 255);
5823         outputColors[3] = RGBA(127, 127, 255, 255);
5824
5825         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5826         {
5827                 map<string, string> fragments;
5828                 fragments["pre_main"] = tests[testNdx].constants;
5829                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5830                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5831         }
5832         return opConstantCompositeTests.release();
5833 }
5834
5835 tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5836 {
5837         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5838         RGBA                                                    inputColors[4];
5839         RGBA                                                    outputColors[4];
5840         map<string, string>                             fragments;
5841
5842         // vec4 test_code(vec4 param) {
5843         //   vec4 result = param;
5844         //   for (int i = 0; i < 4; ++i) {
5845         //     if (i == 0) result[i] = 0.;
5846         //     else        result[i] = 1. - result[i];
5847         //   }
5848         //   return result;
5849         // }
5850         const char                                              function[]                      =
5851                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5852                 "%param1    = OpFunctionParameter %v4f32\n"
5853                 "%lbl       = OpLabel\n"
5854                 "%iptr      = OpVariable %fp_i32 Function\n"
5855                 "%result    = OpVariable %fp_v4f32 Function\n"
5856                 "             OpStore %iptr %c_i32_0\n"
5857                 "             OpStore %result %param1\n"
5858                 "             OpBranch %loop\n"
5859
5860                 // Loop entry block.
5861                 "%loop      = OpLabel\n"
5862                 "%ival      = OpLoad %i32 %iptr\n"
5863                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5864                 "             OpLoopMerge %exit %loop None\n"
5865                 "             OpBranchConditional %lt_4 %if_entry %exit\n"
5866
5867                 // Merge block for loop.
5868                 "%exit      = OpLabel\n"
5869                 "%ret       = OpLoad %v4f32 %result\n"
5870                 "             OpReturnValue %ret\n"
5871
5872                 // If-statement entry block.
5873                 "%if_entry  = OpLabel\n"
5874                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
5875                 "%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5876                 "             OpSelectionMerge %if_exit None\n"
5877                 "             OpBranchConditional %eq_0 %if_true %if_false\n"
5878
5879                 // False branch for if-statement.
5880                 "%if_false  = OpLabel\n"
5881                 "%val       = OpLoad %f32 %loc\n"
5882                 "%sub       = OpFSub %f32 %c_f32_1 %val\n"
5883                 "             OpStore %loc %sub\n"
5884                 "             OpBranch %if_exit\n"
5885
5886                 // Merge block for if-statement.
5887                 "%if_exit   = OpLabel\n"
5888                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5889                 "             OpStore %iptr %ival_next\n"
5890                 "             OpBranch %loop\n"
5891
5892                 // True branch for if-statement.
5893                 "%if_true   = OpLabel\n"
5894                 "             OpStore %loc %c_f32_0\n"
5895                 "             OpBranch %if_exit\n"
5896
5897                 "             OpFunctionEnd\n";
5898
5899         fragments["testfun"]    = function;
5900
5901         inputColors[0]                  = RGBA(127, 127, 127, 0);
5902         inputColors[1]                  = RGBA(127, 0,   0,   0);
5903         inputColors[2]                  = RGBA(0,   127, 0,   0);
5904         inputColors[3]                  = RGBA(0,   0,   127, 0);
5905
5906         outputColors[0]                 = RGBA(0, 128, 128, 255);
5907         outputColors[1]                 = RGBA(0, 255, 255, 255);
5908         outputColors[2]                 = RGBA(0, 128, 255, 255);
5909         outputColors[3]                 = RGBA(0, 255, 128, 255);
5910
5911         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5912
5913         return group.release();
5914 }
5915
5916 tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5917 {
5918         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5919         RGBA                                                    inputColors[4];
5920         RGBA                                                    outputColors[4];
5921         map<string, string>                             fragments;
5922
5923         const char                                              typesAndConstants[]     =
5924                 "%c_f32_p2  = OpConstant %f32 0.2\n"
5925                 "%c_f32_p4  = OpConstant %f32 0.4\n"
5926                 "%c_f32_p6  = OpConstant %f32 0.6\n"
5927                 "%c_f32_p8  = OpConstant %f32 0.8\n";
5928
5929         // vec4 test_code(vec4 param) {
5930         //   vec4 result = param;
5931         //   for (int i = 0; i < 4; ++i) {
5932         //     switch (i) {
5933         //       case 0: result[i] += .2; break;
5934         //       case 1: result[i] += .6; break;
5935         //       case 2: result[i] += .4; break;
5936         //       case 3: result[i] += .8; break;
5937         //       default: break; // unreachable
5938         //     }
5939         //   }
5940         //   return result;
5941         // }
5942         const char                                              function[]                      =
5943                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5944                 "%param1    = OpFunctionParameter %v4f32\n"
5945                 "%lbl       = OpLabel\n"
5946                 "%iptr      = OpVariable %fp_i32 Function\n"
5947                 "%result    = OpVariable %fp_v4f32 Function\n"
5948                 "             OpStore %iptr %c_i32_0\n"
5949                 "             OpStore %result %param1\n"
5950                 "             OpBranch %loop\n"
5951
5952                 // Loop entry block.
5953                 "%loop      = OpLabel\n"
5954                 "%ival      = OpLoad %i32 %iptr\n"
5955                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5956                 "             OpLoopMerge %exit %loop None\n"
5957                 "             OpBranchConditional %lt_4 %switch_entry %exit\n"
5958
5959                 // Merge block for loop.
5960                 "%exit      = OpLabel\n"
5961                 "%ret       = OpLoad %v4f32 %result\n"
5962                 "             OpReturnValue %ret\n"
5963
5964                 // Switch-statement entry block.
5965                 "%switch_entry   = OpLabel\n"
5966                 "%loc            = OpAccessChain %fp_f32 %result %ival\n"
5967                 "%val            = OpLoad %f32 %loc\n"
5968                 "                  OpSelectionMerge %switch_exit None\n"
5969                 "                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5970
5971                 "%case2          = OpLabel\n"
5972                 "%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5973                 "                  OpStore %loc %addp4\n"
5974                 "                  OpBranch %switch_exit\n"
5975
5976                 "%switch_default = OpLabel\n"
5977                 "                  OpUnreachable\n"
5978
5979                 "%case3          = OpLabel\n"
5980                 "%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5981                 "                  OpStore %loc %addp8\n"
5982                 "                  OpBranch %switch_exit\n"
5983
5984                 "%case0          = OpLabel\n"
5985                 "%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5986                 "                  OpStore %loc %addp2\n"
5987                 "                  OpBranch %switch_exit\n"
5988
5989                 // Merge block for switch-statement.
5990                 "%switch_exit    = OpLabel\n"
5991                 "%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5992                 "                  OpStore %iptr %ival_next\n"
5993                 "                  OpBranch %loop\n"
5994
5995                 "%case1          = OpLabel\n"
5996                 "%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5997                 "                  OpStore %loc %addp6\n"
5998                 "                  OpBranch %switch_exit\n"
5999
6000                 "                  OpFunctionEnd\n";
6001
6002         fragments["pre_main"]   = typesAndConstants;
6003         fragments["testfun"]    = function;
6004
6005         inputColors[0]                  = RGBA(127, 27,  127, 51);
6006         inputColors[1]                  = RGBA(127, 0,   0,   51);
6007         inputColors[2]                  = RGBA(0,   27,  0,   51);
6008         inputColors[3]                  = RGBA(0,   0,   127, 51);
6009
6010         outputColors[0]                 = RGBA(178, 180, 229, 255);
6011         outputColors[1]                 = RGBA(178, 153, 102, 255);
6012         outputColors[2]                 = RGBA(51,  180, 102, 255);
6013         outputColors[3]                 = RGBA(51,  153, 229, 255);
6014
6015         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
6016
6017         return group.release();
6018 }
6019
6020 tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
6021 {
6022         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
6023         RGBA                                                    inputColors[4];
6024         RGBA                                                    outputColors[4];
6025         map<string, string>                             fragments;
6026
6027         const char                                              decorations[]           =
6028                 "OpDecorate %array_group         ArrayStride 4\n"
6029                 "OpDecorate %struct_member_group Offset 0\n"
6030                 "%array_group         = OpDecorationGroup\n"
6031                 "%struct_member_group = OpDecorationGroup\n"
6032
6033                 "OpDecorate %group1 RelaxedPrecision\n"
6034                 "OpDecorate %group3 RelaxedPrecision\n"
6035                 "OpDecorate %group3 Invariant\n"
6036                 "OpDecorate %group3 Restrict\n"
6037                 "%group0 = OpDecorationGroup\n"
6038                 "%group1 = OpDecorationGroup\n"
6039                 "%group3 = OpDecorationGroup\n";
6040
6041         const char                                              typesAndConstants[]     =
6042                 "%a3f32     = OpTypeArray %f32 %c_u32_3\n"
6043                 "%struct1   = OpTypeStruct %a3f32\n"
6044                 "%struct2   = OpTypeStruct %a3f32\n"
6045                 "%fp_struct1 = OpTypePointer Function %struct1\n"
6046                 "%fp_struct2 = OpTypePointer Function %struct2\n"
6047                 "%c_f32_2    = OpConstant %f32 2.\n"
6048                 "%c_f32_n2   = OpConstant %f32 -2.\n"
6049
6050                 "%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
6051                 "%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
6052                 "%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
6053                 "%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
6054
6055         const char                                              function[]                      =
6056                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6057                 "%param     = OpFunctionParameter %v4f32\n"
6058                 "%entry     = OpLabel\n"
6059                 "%result    = OpVariable %fp_v4f32 Function\n"
6060                 "%v_struct1 = OpVariable %fp_struct1 Function\n"
6061                 "%v_struct2 = OpVariable %fp_struct2 Function\n"
6062                 "             OpStore %result %param\n"
6063                 "             OpStore %v_struct1 %c_struct1\n"
6064                 "             OpStore %v_struct2 %c_struct2\n"
6065                 "%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
6066                 "%val1      = OpLoad %f32 %ptr1\n"
6067                 "%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
6068                 "%val2      = OpLoad %f32 %ptr2\n"
6069                 "%addvalues = OpFAdd %f32 %val1 %val2\n"
6070                 "%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6071                 "%val       = OpLoad %f32 %ptr\n"
6072                 "%addresult = OpFAdd %f32 %addvalues %val\n"
6073                 "             OpStore %ptr %addresult\n"
6074                 "%ret       = OpLoad %v4f32 %result\n"
6075                 "             OpReturnValue %ret\n"
6076                 "             OpFunctionEnd\n";
6077
6078         struct CaseNameDecoration
6079         {
6080                 string name;
6081                 string decoration;
6082         };
6083
6084         CaseNameDecoration tests[] =
6085         {
6086                 {
6087                         "same_decoration_group_on_multiple_types",
6088                         "OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6089                 },
6090                 {
6091                         "empty_decoration_group",
6092                         "OpGroupDecorate %group0      %a3f32\n"
6093                         "OpGroupDecorate %group0      %result\n"
6094                 },
6095                 {
6096                         "one_element_decoration_group",
6097                         "OpGroupDecorate %array_group %a3f32\n"
6098                 },
6099                 {
6100                         "multiple_elements_decoration_group",
6101                         "OpGroupDecorate %group3      %v_struct1\n"
6102                 },
6103                 {
6104                         "multiple_decoration_groups_on_same_variable",
6105                         "OpGroupDecorate %group0      %v_struct2\n"
6106                         "OpGroupDecorate %group1      %v_struct2\n"
6107                         "OpGroupDecorate %group3      %v_struct2\n"
6108                 },
6109                 {
6110                         "same_decoration_group_multiple_times",
6111                         "OpGroupDecorate %group1      %addvalues\n"
6112                         "OpGroupDecorate %group1      %addvalues\n"
6113                         "OpGroupDecorate %group1      %addvalues\n"
6114                 },
6115
6116         };
6117
6118         getHalfColorsFullAlpha(inputColors);
6119         getHalfColorsFullAlpha(outputColors);
6120
6121         for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6122         {
6123                 fragments["decoration"] = decorations + tests[idx].decoration;
6124                 fragments["pre_main"]   = typesAndConstants;
6125                 fragments["testfun"]    = function;
6126
6127                 createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6128         }
6129
6130         return group.release();
6131 }
6132
6133 struct SpecConstantTwoIntGraphicsCase
6134 {
6135         const char*             caseName;
6136         const char*             scDefinition0;
6137         const char*             scDefinition1;
6138         const char*             scResultType;
6139         const char*             scOperation;
6140         deInt32                 scActualValue0;
6141         deInt32                 scActualValue1;
6142         const char*             resultOperation;
6143         RGBA                    expectedColors[4];
6144
6145                                         SpecConstantTwoIntGraphicsCase (const char* name,
6146                                                                                         const char* definition0,
6147                                                                                         const char* definition1,
6148                                                                                         const char* resultType,
6149                                                                                         const char* operation,
6150                                                                                         deInt32         value0,
6151                                                                                         deInt32         value1,
6152                                                                                         const char* resultOp,
6153                                                                                         const RGBA      (&output)[4])
6154                                                 : caseName                      (name)
6155                                                 , scDefinition0         (definition0)
6156                                                 , scDefinition1         (definition1)
6157                                                 , scResultType          (resultType)
6158                                                 , scOperation           (operation)
6159                                                 , scActualValue0        (value0)
6160                                                 , scActualValue1        (value1)
6161                                                 , resultOperation       (resultOp)
6162         {
6163                 expectedColors[0] = output[0];
6164                 expectedColors[1] = output[1];
6165                 expectedColors[2] = output[2];
6166                 expectedColors[3] = output[3];
6167         }
6168 };
6169
6170 tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6171 {
6172         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6173         vector<SpecConstantTwoIntGraphicsCase>  cases;
6174         RGBA                                                    inputColors[4];
6175         RGBA                                                    outputColors0[4];
6176         RGBA                                                    outputColors1[4];
6177         RGBA                                                    outputColors2[4];
6178
6179         const char      decorations1[]                  =
6180                 "OpDecorate %sc_0  SpecId 0\n"
6181                 "OpDecorate %sc_1  SpecId 1\n";
6182
6183         const char      typesAndConstants1[]    =
6184                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
6185                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
6186                 "%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6187
6188         const char      function1[]                             =
6189                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6190                 "%param     = OpFunctionParameter %v4f32\n"
6191                 "%label     = OpLabel\n"
6192                 "%result    = OpVariable %fp_v4f32 Function\n"
6193                 "             OpStore %result %param\n"
6194                 "%gen       = ${GEN_RESULT}\n"
6195                 "%index     = OpIAdd %i32 %gen %c_i32_1\n"
6196                 "%loc       = OpAccessChain %fp_f32 %result %index\n"
6197                 "%val       = OpLoad %f32 %loc\n"
6198                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6199                 "             OpStore %loc %add\n"
6200                 "%ret       = OpLoad %v4f32 %result\n"
6201                 "             OpReturnValue %ret\n"
6202                 "             OpFunctionEnd\n";
6203
6204         inputColors[0] = RGBA(127, 127, 127, 255);
6205         inputColors[1] = RGBA(127, 0,   0,   255);
6206         inputColors[2] = RGBA(0,   127, 0,   255);
6207         inputColors[3] = RGBA(0,   0,   127, 255);
6208
6209         // Derived from inputColors[x] by adding 128 to inputColors[x][0].
6210         outputColors0[0] = RGBA(255, 127, 127, 255);
6211         outputColors0[1] = RGBA(255, 0,   0,   255);
6212         outputColors0[2] = RGBA(128, 127, 0,   255);
6213         outputColors0[3] = RGBA(128, 0,   127, 255);
6214
6215         // Derived from inputColors[x] by adding 128 to inputColors[x][1].
6216         outputColors1[0] = RGBA(127, 255, 127, 255);
6217         outputColors1[1] = RGBA(127, 128, 0,   255);
6218         outputColors1[2] = RGBA(0,   255, 0,   255);
6219         outputColors1[3] = RGBA(0,   128, 127, 255);
6220
6221         // Derived from inputColors[x] by adding 128 to inputColors[x][2].
6222         outputColors2[0] = RGBA(127, 127, 255, 255);
6223         outputColors2[1] = RGBA(127, 0,   128, 255);
6224         outputColors2[2] = RGBA(0,   127, 128, 255);
6225         outputColors2[3] = RGBA(0,   0,   255, 255);
6226
6227         const char addZeroToSc[]                = "OpIAdd %i32 %c_i32_0 %sc_op";
6228         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6229         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6230
6231         cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                             19,             -20,    addZeroToSc,            outputColors0));
6232         cases.push_back(SpecConstantTwoIntGraphicsCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                             19,             20,             addZeroToSc,            outputColors0));
6233         cases.push_back(SpecConstantTwoIntGraphicsCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                             -1,             -1,             addZeroToSc,            outputColors2));
6234         cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                             -126,   126,    addZeroToSc,            outputColors0));
6235         cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                             126,    126,    addZeroToSc,            outputColors2));
6236         cases.push_back(SpecConstantTwoIntGraphicsCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6237         cases.push_back(SpecConstantTwoIntGraphicsCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6238         cases.push_back(SpecConstantTwoIntGraphicsCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                             1001,   500,    addZeroToSc,            outputColors2));
6239         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                             0x33,   0x0d,   addZeroToSc,            outputColors2));
6240         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                             0,              1,              addZeroToSc,            outputColors2));
6241         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                             0x2e,   0x2f,   addZeroToSc,            outputColors2));
6242         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                             2,              1,              addZeroToSc,            outputColors2));
6243         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                             -4,             2,              addZeroToSc,            outputColors0));
6244         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                             1,              0,              addZeroToSc,            outputColors2));
6245         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                             -20,    -10,    selectTrueUsingSc,      outputColors2));
6246         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                             10,             20,             selectTrueUsingSc,      outputColors2));
6247         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6248         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                             10,             5,              selectTrueUsingSc,      outputColors2));
6249         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                             -10,    -10,    selectTrueUsingSc,      outputColors2));
6250         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                             50,             100,    selectTrueUsingSc,      outputColors2));
6251         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6252         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                             10,             10,             selectTrueUsingSc,      outputColors2));
6253         cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                             42,             24,             selectFalseUsingSc,     outputColors2));
6254         cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6255         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6256         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6257         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6258         cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                                   -1,             0,              addZeroToSc,            outputColors2));
6259         cases.push_back(SpecConstantTwoIntGraphicsCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                                   -2,             0,              addZeroToSc,            outputColors2));
6260         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                                   1,              0,              selectFalseUsingSc,     outputColors2));
6261         cases.push_back(SpecConstantTwoIntGraphicsCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %c_i32_0",    1,              1,              addZeroToSc,            outputColors2));
6262         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6263         // \todo[2015-12-1 antiagainst] OpQuantizeToF16
6264
6265         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6266         {
6267                 map<string, string>     specializations;
6268                 map<string, string>     fragments;
6269                 vector<deInt32>         specConstants;
6270
6271                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
6272                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
6273                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
6274                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
6275                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
6276
6277                 fragments["decoration"]                         = tcu::StringTemplate(decorations1).specialize(specializations);
6278                 fragments["pre_main"]                           = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6279                 fragments["testfun"]                            = tcu::StringTemplate(function1).specialize(specializations);
6280
6281                 specConstants.push_back(cases[caseNdx].scActualValue0);
6282                 specConstants.push_back(cases[caseNdx].scActualValue1);
6283
6284                 createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6285         }
6286
6287         const char      decorations2[]                  =
6288                 "OpDecorate %sc_0  SpecId 0\n"
6289                 "OpDecorate %sc_1  SpecId 1\n"
6290                 "OpDecorate %sc_2  SpecId 2\n";
6291
6292         const char      typesAndConstants2[]    =
6293                 "%v3i32     = OpTypeVector %i32 3\n"
6294
6295                 "%sc_0      = OpSpecConstant %i32 0\n"
6296                 "%sc_1      = OpSpecConstant %i32 0\n"
6297                 "%sc_2      = OpSpecConstant %i32 0\n"
6298
6299                 "%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6300                 "%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6301                 "%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6302                 "%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6303                 "%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6304                 "%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6305                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6306                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6307                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6308                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6309                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6310
6311         const char      function2[]                             =
6312                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6313                 "%param     = OpFunctionParameter %v4f32\n"
6314                 "%label     = OpLabel\n"
6315                 "%result    = OpVariable %fp_v4f32 Function\n"
6316                 "             OpStore %result %param\n"
6317                 "%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6318                 "%val       = OpLoad %f32 %loc\n"
6319                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6320                 "             OpStore %loc %add\n"
6321                 "%ret       = OpLoad %v4f32 %result\n"
6322                 "             OpReturnValue %ret\n"
6323                 "             OpFunctionEnd\n";
6324
6325         map<string, string>     fragments;
6326         vector<deInt32>         specConstants;
6327
6328         fragments["decoration"] = decorations2;
6329         fragments["pre_main"]   = typesAndConstants2;
6330         fragments["testfun"]    = function2;
6331
6332         specConstants.push_back(56789);
6333         specConstants.push_back(-2);
6334         specConstants.push_back(56788);
6335
6336         createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6337
6338         return group.release();
6339 }
6340
6341 tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6342 {
6343         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6344         RGBA                                                    inputColors[4];
6345         RGBA                                                    outputColors1[4];
6346         RGBA                                                    outputColors2[4];
6347         RGBA                                                    outputColors3[4];
6348         map<string, string>                             fragments1;
6349         map<string, string>                             fragments2;
6350         map<string, string>                             fragments3;
6351
6352         const char      typesAndConstants1[]    =
6353                 "%c_f32_p2  = OpConstant %f32 0.2\n"
6354                 "%c_f32_p4  = OpConstant %f32 0.4\n"
6355                 "%c_f32_p5  = OpConstant %f32 0.5\n"
6356                 "%c_f32_p8  = OpConstant %f32 0.8\n";
6357
6358         // vec4 test_code(vec4 param) {
6359         //   vec4 result = param;
6360         //   for (int i = 0; i < 4; ++i) {
6361         //     float operand;
6362         //     switch (i) {
6363         //       case 0: operand = .2; break;
6364         //       case 1: operand = .5; break;
6365         //       case 2: operand = .4; break;
6366         //       case 3: operand = .0; break;
6367         //       default: break; // unreachable
6368         //     }
6369         //     result[i] += operand;
6370         //   }
6371         //   return result;
6372         // }
6373         const char      function1[]                             =
6374                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6375                 "%param1    = OpFunctionParameter %v4f32\n"
6376                 "%lbl       = OpLabel\n"
6377                 "%iptr      = OpVariable %fp_i32 Function\n"
6378                 "%result    = OpVariable %fp_v4f32 Function\n"
6379                 "             OpStore %iptr %c_i32_0\n"
6380                 "             OpStore %result %param1\n"
6381                 "             OpBranch %loop\n"
6382
6383                 "%loop      = OpLabel\n"
6384                 "%ival      = OpLoad %i32 %iptr\n"
6385                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6386                 "             OpLoopMerge %exit %loop None\n"
6387                 "             OpBranchConditional %lt_4 %entry %exit\n"
6388
6389                 "%entry     = OpLabel\n"
6390                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
6391                 "%val       = OpLoad %f32 %loc\n"
6392                 "             OpSelectionMerge %phi None\n"
6393                 "             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6394
6395                 "%case0     = OpLabel\n"
6396                 "             OpBranch %phi\n"
6397                 "%case1     = OpLabel\n"
6398                 "             OpBranch %phi\n"
6399                 "%case2     = OpLabel\n"
6400                 "             OpBranch %phi\n"
6401                 "%case3     = OpLabel\n"
6402                 "             OpBranch %phi\n"
6403
6404                 "%default   = OpLabel\n"
6405                 "             OpUnreachable\n"
6406
6407                 "%phi       = OpLabel\n"
6408                 "%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6409                 "%add       = OpFAdd %f32 %val %operand\n"
6410                 "             OpStore %loc %add\n"
6411                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6412                 "             OpStore %iptr %ival_next\n"
6413                 "             OpBranch %loop\n"
6414
6415                 "%exit      = OpLabel\n"
6416                 "%ret       = OpLoad %v4f32 %result\n"
6417                 "             OpReturnValue %ret\n"
6418
6419                 "             OpFunctionEnd\n";
6420
6421         fragments1["pre_main"]  = typesAndConstants1;
6422         fragments1["testfun"]   = function1;
6423
6424         getHalfColorsFullAlpha(inputColors);
6425
6426         outputColors1[0]                = RGBA(178, 255, 229, 255);
6427         outputColors1[1]                = RGBA(178, 127, 102, 255);
6428         outputColors1[2]                = RGBA(51,  255, 102, 255);
6429         outputColors1[3]                = RGBA(51,  127, 229, 255);
6430
6431         createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6432
6433         const char      typesAndConstants2[]    =
6434                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6435
6436         // Add .4 to the second element of the given parameter.
6437         const char      function2[]                             =
6438                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6439                 "%param     = OpFunctionParameter %v4f32\n"
6440                 "%entry     = OpLabel\n"
6441                 "%result    = OpVariable %fp_v4f32 Function\n"
6442                 "             OpStore %result %param\n"
6443                 "%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6444                 "%val       = OpLoad %f32 %loc\n"
6445                 "             OpBranch %phi\n"
6446
6447                 "%phi        = OpLabel\n"
6448                 "%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6449                 "%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6450                 "%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6451                 "%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6452                 "%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6453                 "              OpLoopMerge %exit %phi None\n"
6454                 "              OpBranchConditional %still_loop %phi %exit\n"
6455
6456                 "%exit       = OpLabel\n"
6457                 "              OpStore %loc %accum\n"
6458                 "%ret        = OpLoad %v4f32 %result\n"
6459                 "              OpReturnValue %ret\n"
6460
6461                 "              OpFunctionEnd\n";
6462
6463         fragments2["pre_main"]  = typesAndConstants2;
6464         fragments2["testfun"]   = function2;
6465
6466         outputColors2[0]                        = RGBA(127, 229, 127, 255);
6467         outputColors2[1]                        = RGBA(127, 102, 0,   255);
6468         outputColors2[2]                        = RGBA(0,   229, 0,   255);
6469         outputColors2[3]                        = RGBA(0,   102, 127, 255);
6470
6471         createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6472
6473         const char      typesAndConstants3[]    =
6474                 "%true      = OpConstantTrue %bool\n"
6475                 "%false     = OpConstantFalse %bool\n"
6476                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6477
6478         // Swap the second and the third element of the given parameter.
6479         const char      function3[]                             =
6480                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6481                 "%param     = OpFunctionParameter %v4f32\n"
6482                 "%entry     = OpLabel\n"
6483                 "%result    = OpVariable %fp_v4f32 Function\n"
6484                 "             OpStore %result %param\n"
6485                 "%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6486                 "%a_init    = OpLoad %f32 %a_loc\n"
6487                 "%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6488                 "%b_init    = OpLoad %f32 %b_loc\n"
6489                 "             OpBranch %phi\n"
6490
6491                 "%phi        = OpLabel\n"
6492                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6493                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6494                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6495                 "              OpLoopMerge %exit %phi None\n"
6496                 "              OpBranchConditional %still_loop %phi %exit\n"
6497
6498                 "%exit       = OpLabel\n"
6499                 "              OpStore %a_loc %a_next\n"
6500                 "              OpStore %b_loc %b_next\n"
6501                 "%ret        = OpLoad %v4f32 %result\n"
6502                 "              OpReturnValue %ret\n"
6503
6504                 "              OpFunctionEnd\n";
6505
6506         fragments3["pre_main"]  = typesAndConstants3;
6507         fragments3["testfun"]   = function3;
6508
6509         outputColors3[0]                        = RGBA(127, 127, 127, 255);
6510         outputColors3[1]                        = RGBA(127, 0,   0,   255);
6511         outputColors3[2]                        = RGBA(0,   0,   127, 255);
6512         outputColors3[3]                        = RGBA(0,   127, 0,   255);
6513
6514         createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6515
6516         return group.release();
6517 }
6518
6519 tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6520 {
6521         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6522         RGBA                                                    inputColors[4];
6523         RGBA                                                    outputColors[4];
6524
6525         // With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6526         // For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6527         // only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
6528         // On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6529         const char                                              constantsAndTypes[]      =
6530                 "%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6531                 "%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6532                 "%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6533                 "%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6534                 "%c_f32_n1pn24   = OpConstant %f32 -0x1p-24\n"
6535                 ;
6536
6537         const char                                              function[]       =
6538                 "%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6539                 "%param          = OpFunctionParameter %v4f32\n"
6540                 "%label          = OpLabel\n"
6541                 "%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6542                 "%var2           = OpVariable %fp_f32 Function\n"
6543                 "%red            = OpCompositeExtract %f32 %param 0\n"
6544                 "%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6545                 "                  OpStore %var2 %plus_red\n"
6546                 "%val1           = OpLoad %f32 %var1\n"
6547                 "%val2           = OpLoad %f32 %var2\n"
6548                 "%mul            = OpFMul %f32 %val1 %val2\n"
6549                 "%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6550                 "%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6551                 "%isn1n24         = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
6552                 "%success        = OpLogicalOr %bool %is0 %isn1n24\n"
6553                 "%v4success      = OpCompositeConstruct %v4bool %success %success %success %success\n"
6554                 "%ret            = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
6555                 "                  OpReturnValue %ret\n"
6556                 "                  OpFunctionEnd\n";
6557
6558         struct CaseNameDecoration
6559         {
6560                 string name;
6561                 string decoration;
6562         };
6563
6564
6565         CaseNameDecoration tests[] = {
6566                 {"multiplication",      "OpDecorate %mul NoContraction"},
6567                 {"addition",            "OpDecorate %add NoContraction"},
6568                 {"both",                        "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6569         };
6570
6571         getHalfColorsFullAlpha(inputColors);
6572
6573         for (deUint8 idx = 0; idx < 4; ++idx)
6574         {
6575                 inputColors[idx].setRed(0);
6576                 outputColors[idx] = RGBA(0, 0, 0, 255);
6577         }
6578
6579         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6580         {
6581                 map<string, string> fragments;
6582
6583                 fragments["decoration"] = tests[testNdx].decoration;
6584                 fragments["pre_main"] = constantsAndTypes;
6585                 fragments["testfun"] = function;
6586
6587                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6588         }
6589
6590         return group.release();
6591 }
6592
6593 tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6594 {
6595         de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6596         RGBA                                                    colors[4];
6597
6598         const char                                              constantsAndTypes[]      =
6599                 "%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6600                 "%fp_a2f32          = OpTypePointer Function %a2f32\n"
6601                 "%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6602                 "%fp_stype          = OpTypePointer Function %stype\n";
6603
6604         const char                                              function[]       =
6605                 "%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6606                 "%param1            = OpFunctionParameter %v4f32\n"
6607                 "%lbl               = OpLabel\n"
6608                 "%v1                = OpVariable %fp_v4f32 Function\n"
6609                 "%v2                = OpVariable %fp_a2f32 Function\n"
6610                 "%v3                = OpVariable %fp_f32 Function\n"
6611                 "%v                 = OpVariable %fp_stype Function\n"
6612                 "%vv                = OpVariable %fp_stype Function\n"
6613                 "%vvv               = OpVariable %fp_f32 Function\n"
6614
6615                 "                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6616                 "                     OpStore %v2 %c_a2f32_1\n"
6617                 "                     OpStore %v3 %c_f32_1\n"
6618
6619                 "%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6620                 "%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6621                 "%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6622                 "%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6623                 "%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6624                 "%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6625
6626                 "                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6627                 "                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6628                 "                    OpStore %p_f32 %v3_v ${access_type}\n"
6629
6630                 "                    OpCopyMemory %vv %v ${access_type}\n"
6631                 "                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6632
6633                 "%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6634                 "%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6635                 "%v_f32_3          = OpLoad %f32 %vvv\n"
6636
6637                 "%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6638                 "%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6639                 "                    OpReturnValue %ret2\n"
6640                 "                    OpFunctionEnd\n";
6641
6642         struct NameMemoryAccess
6643         {
6644                 string name;
6645                 string accessType;
6646         };
6647
6648
6649         NameMemoryAccess tests[] =
6650         {
6651                 { "none", "" },
6652                 { "volatile", "Volatile" },
6653                 { "aligned",  "Aligned 1" },
6654                 { "volatile_aligned",  "Volatile|Aligned 1" },
6655                 { "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6656                 { "volatile_nontemporal",  "Volatile|Nontemporal" },
6657                 { "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6658         };
6659
6660         getHalfColorsFullAlpha(colors);
6661
6662         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6663         {
6664                 map<string, string> fragments;
6665                 map<string, string> memoryAccess;
6666                 memoryAccess["access_type"] = tests[testNdx].accessType;
6667
6668                 fragments["pre_main"] = constantsAndTypes;
6669                 fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6670                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6671         }
6672         return memoryAccessTests.release();
6673 }
6674 tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6675 {
6676         de::MovePtr<tcu::TestCaseGroup>         opUndefTests             (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6677         RGBA                                                            defaultColors[4];
6678         map<string, string>                                     fragments;
6679         getDefaultColors(defaultColors);
6680
6681         // First, simple cases that don't do anything with the OpUndef result.
6682         fragments["testfun"] =
6683                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6684                 "%param1 = OpFunctionParameter %v4f32\n"
6685                 "%label_testfun = OpLabel\n"
6686                 "%undef = OpUndef %type\n"
6687                 "OpReturnValue %param1\n"
6688                 "OpFunctionEnd\n"
6689                 ;
6690         struct NameCodePair { string name, code; };
6691         const NameCodePair tests[] =
6692         {
6693                 {"bool", "%type = OpTypeBool"},
6694                 {"vec2uint32", "%type = OpTypeVector %u32 2"},
6695                 {"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown"},
6696                 {"sampler", "%type = OpTypeSampler"},
6697                 {"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img"},
6698                 {"pointer", "%type = OpTypePointer Function %i32"},
6699                 {"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6700                 {"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6701                 {"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6702         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6703         {
6704                 fragments["pre_main"] = tests[testNdx].code;
6705                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6706         }
6707         fragments.clear();
6708
6709         fragments["testfun"] =
6710                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6711                 "%param1 = OpFunctionParameter %v4f32\n"
6712                 "%label_testfun = OpLabel\n"
6713                 "%undef = OpUndef %f32\n"
6714                 "%zero = OpFMul %f32 %undef %c_f32_0\n"
6715                 "%is_nan = OpIsNan %bool %zero\n" //OpUndef may result in NaN which may turn %zero into Nan.
6716                 "%actually_zero = OpSelect %f32 %is_nan %c_f32_0 %zero\n"
6717                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6718                 "%b = OpFAdd %f32 %a %actually_zero\n"
6719                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6720                 "OpReturnValue %ret\n"
6721                 "OpFunctionEnd\n"
6722                 ;
6723         createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6724
6725         fragments["testfun"] =
6726                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6727                 "%param1 = OpFunctionParameter %v4f32\n"
6728                 "%label_testfun = OpLabel\n"
6729                 "%undef = OpUndef %i32\n"
6730                 "%zero = OpIMul %i32 %undef %c_i32_0\n"
6731                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6732                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6733                 "OpReturnValue %ret\n"
6734                 "OpFunctionEnd\n"
6735                 ;
6736         createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6737
6738         fragments["testfun"] =
6739                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6740                 "%param1 = OpFunctionParameter %v4f32\n"
6741                 "%label_testfun = OpLabel\n"
6742                 "%undef = OpUndef %u32\n"
6743                 "%zero = OpIMul %u32 %undef %c_i32_0\n"
6744                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6745                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6746                 "OpReturnValue %ret\n"
6747                 "OpFunctionEnd\n"
6748                 ;
6749         createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6750
6751         fragments["testfun"] =
6752                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6753                 "%param1 = OpFunctionParameter %v4f32\n"
6754                 "%label_testfun = OpLabel\n"
6755                 "%undef = OpUndef %v4f32\n"
6756                 "%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6757                 "%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6758                 "%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6759                 "%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6760                 "%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6761                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
6762                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
6763                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
6764                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
6765                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6766                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6767                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6768                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6769                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6770                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6771                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6772                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6773                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6774                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6775                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6776                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6777                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6778                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6779                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6780                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6781                 "OpReturnValue %ret\n"
6782                 "OpFunctionEnd\n"
6783                 ;
6784         createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6785
6786         fragments["pre_main"] =
6787                 "%v2f32 = OpTypeVector %f32 2\n"
6788                 "%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6789         fragments["testfun"] =
6790                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6791                 "%param1 = OpFunctionParameter %v4f32\n"
6792                 "%label_testfun = OpLabel\n"
6793                 "%undef = OpUndef %m2x2f32\n"
6794                 "%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6795                 "%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6796                 "%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6797                 "%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6798                 "%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6799                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
6800                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
6801                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
6802                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
6803                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6804                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6805                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6806                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6807                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6808                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6809                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6810                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6811                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6812                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6813                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6814                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6815                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6816                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6817                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6818                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6819                 "OpReturnValue %ret\n"
6820                 "OpFunctionEnd\n"
6821                 ;
6822         createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6823
6824         return opUndefTests.release();
6825 }
6826
6827 void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6828 {
6829         const RGBA              inputColors[4]          =
6830         {
6831                 RGBA(0,         0,              0,              255),
6832                 RGBA(0,         0,              255,    255),
6833                 RGBA(0,         255,    0,              255),
6834                 RGBA(0,         255,    255,    255)
6835         };
6836
6837         const RGBA              expectedColors[4]       =
6838         {
6839                 RGBA(255,        0,              0,              255),
6840                 RGBA(255,        0,              0,              255),
6841                 RGBA(255,        0,              0,              255),
6842                 RGBA(255,        0,              0,              255)
6843         };
6844
6845         const struct SingleFP16Possibility
6846         {
6847                 const char* name;
6848                 const char* constant;  // Value to assign to %test_constant.
6849                 float           valueAsFloat;
6850                 const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6851         }                               tests[]                         =
6852         {
6853                 {
6854                         "negative",
6855                         "-0x1.3p1\n",
6856                         -constructNormalizedFloat(1, 0x300000),
6857                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6858                 }, // -19
6859                 {
6860                         "positive",
6861                         "0x1.0p7\n",
6862                         constructNormalizedFloat(7, 0x000000),
6863                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6864                 },  // +128
6865                 // SPIR-V requires that OpQuantizeToF16 flushes
6866                 // any numbers that would end up denormalized in F16 to zero.
6867                 {
6868                         "denorm",
6869                         "0x0.0006p-126\n",
6870                         std::ldexp(1.5f, -140),
6871                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6872                 },  // denorm
6873                 {
6874                         "negative_denorm",
6875                         "-0x0.0006p-126\n",
6876                         -std::ldexp(1.5f, -140),
6877                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6878                 }, // -denorm
6879                 {
6880                         "too_small",
6881                         "0x1.0p-16\n",
6882                         std::ldexp(1.0f, -16),
6883                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6884                 },     // too small positive
6885                 {
6886                         "negative_too_small",
6887                         "-0x1.0p-32\n",
6888                         -std::ldexp(1.0f, -32),
6889                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6890                 },      // too small negative
6891                 {
6892                         "negative_inf",
6893                         "-0x1.0p128\n",
6894                         -std::ldexp(1.0f, 128),
6895
6896                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6897                         "%inf = OpIsInf %bool %c\n"
6898                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6899                 },     // -inf to -inf
6900                 {
6901                         "inf",
6902                         "0x1.0p128\n",
6903                         std::ldexp(1.0f, 128),
6904
6905                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6906                         "%inf = OpIsInf %bool %c\n"
6907                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6908                 },     // +inf to +inf
6909                 {
6910                         "round_to_negative_inf",
6911                         "-0x1.0p32\n",
6912                         -std::ldexp(1.0f, 32),
6913
6914                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6915                         "%inf = OpIsInf %bool %c\n"
6916                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6917                 },     // round to -inf
6918                 {
6919                         "round_to_inf",
6920                         "0x1.0p16\n",
6921                         std::ldexp(1.0f, 16),
6922
6923                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6924                         "%inf = OpIsInf %bool %c\n"
6925                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6926                 },     // round to +inf
6927                 {
6928                         "nan",
6929                         "0x1.1p128\n",
6930                         std::numeric_limits<float>::quiet_NaN(),
6931
6932                         // Test for any NaN value, as NaNs are not preserved
6933                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6934                         "%cond = OpIsNan %bool %direct_quant\n"
6935                 }, // nan
6936                 {
6937                         "negative_nan",
6938                         "-0x1.0001p128\n",
6939                         std::numeric_limits<float>::quiet_NaN(),
6940
6941                         // Test for any NaN value, as NaNs are not preserved
6942                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6943                         "%cond = OpIsNan %bool %direct_quant\n"
6944                 } // -nan
6945         };
6946         const char*             constants                       =
6947                 "%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6948
6949         StringTemplate  function                        (
6950                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6951                 "%param1        = OpFunctionParameter %v4f32\n"
6952                 "%label_testfun = OpLabel\n"
6953                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6954                 "%b             = OpFAdd %f32 %test_constant %a\n"
6955                 "%c             = OpQuantizeToF16 %f32 %b\n"
6956                 "${condition}\n"
6957                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6958                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
6959                 "                 OpReturnValue %retval\n"
6960                 "OpFunctionEnd\n"
6961         );
6962
6963         const char*             specDecorations         = "OpDecorate %test_constant SpecId 0\n";
6964         const char*             specConstants           =
6965                         "%test_constant = OpSpecConstant %f32 0.\n"
6966                         "%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6967
6968         StringTemplate  specConstantFunction(
6969                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6970                 "%param1        = OpFunctionParameter %v4f32\n"
6971                 "%label_testfun = OpLabel\n"
6972                 "${condition}\n"
6973                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6974                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
6975                 "                 OpReturnValue %retval\n"
6976                 "OpFunctionEnd\n"
6977         );
6978
6979         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6980         {
6981                 map<string, string>                                                             codeSpecialization;
6982                 map<string, string>                                                             fragments;
6983                 codeSpecialization["condition"]                                 = tests[idx].condition;
6984                 fragments["testfun"]                                                    = function.specialize(codeSpecialization);
6985                 fragments["pre_main"]                                                   = string(constants) + tests[idx].constant + "\n";
6986                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6987         }
6988
6989         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6990         {
6991                 map<string, string>                                                             codeSpecialization;
6992                 map<string, string>                                                             fragments;
6993                 vector<deInt32>                                                                 passConstants;
6994                 deInt32                                                                                 specConstant;
6995
6996                 codeSpecialization["condition"]                                 = tests[idx].condition;
6997                 fragments["testfun"]                                                    = specConstantFunction.specialize(codeSpecialization);
6998                 fragments["decoration"]                                                 = specDecorations;
6999                 fragments["pre_main"]                                                   = specConstants;
7000
7001                 memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
7002                 passConstants.push_back(specConstant);
7003
7004                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7005         }
7006 }
7007
7008 void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
7009 {
7010         RGBA inputColors[4] =  {
7011                 RGBA(0,         0,              0,              255),
7012                 RGBA(0,         0,              255,    255),
7013                 RGBA(0,         255,    0,              255),
7014                 RGBA(0,         255,    255,    255)
7015         };
7016
7017         RGBA expectedColors[4] =
7018         {
7019                 RGBA(255,        0,              0,              255),
7020                 RGBA(255,        0,              0,              255),
7021                 RGBA(255,        0,              0,              255),
7022                 RGBA(255,        0,              0,              255)
7023         };
7024
7025         struct DualFP16Possibility
7026         {
7027                 const char* name;
7028                 const char* input;
7029                 float           inputAsFloat;
7030                 const char* possibleOutput1;
7031                 const char* possibleOutput2;
7032         } tests[] = {
7033                 {
7034                         "positive_round_up_or_round_down",
7035                         "0x1.3003p8",
7036                         constructNormalizedFloat(8, 0x300300),
7037                         "0x1.304p8",
7038                         "0x1.3p8"
7039                 },
7040                 {
7041                         "negative_round_up_or_round_down",
7042                         "-0x1.6008p-7",
7043                         -constructNormalizedFloat(-7, 0x600800),
7044                         "-0x1.6p-7",
7045                         "-0x1.604p-7"
7046                 },
7047                 {
7048                         "carry_bit",
7049                         "0x1.01ep2",
7050                         constructNormalizedFloat(2, 0x01e000),
7051                         "0x1.01cp2",
7052                         "0x1.02p2"
7053                 },
7054                 {
7055                         "carry_to_exponent",
7056                         "0x1.ffep1",
7057                         constructNormalizedFloat(1, 0xffe000),
7058                         "0x1.ffcp1",
7059                         "0x1.0p2"
7060                 },
7061         };
7062         StringTemplate constants (
7063                 "%input_const = OpConstant %f32 ${input}\n"
7064                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
7065                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
7066                 );
7067
7068         StringTemplate specConstants (
7069                 "%input_const = OpSpecConstant %f32 0.\n"
7070                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
7071                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
7072         );
7073
7074         const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
7075
7076         const char* function  =
7077                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
7078                 "%param1        = OpFunctionParameter %v4f32\n"
7079                 "%label_testfun = OpLabel\n"
7080                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7081                 // For the purposes of this test we assume that 0.f will always get
7082                 // faithfully passed through the pipeline stages.
7083                 "%b             = OpFAdd %f32 %input_const %a\n"
7084                 "%c             = OpQuantizeToF16 %f32 %b\n"
7085                 "%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
7086                 "%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
7087                 "%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
7088                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
7089                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
7090                 "                 OpReturnValue %retval\n"
7091                 "OpFunctionEnd\n";
7092
7093         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7094                 map<string, string>                                                                     fragments;
7095                 map<string, string>                                                                     constantSpecialization;
7096
7097                 constantSpecialization["input"]                                         = tests[idx].input;
7098                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7099                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7100                 fragments["testfun"]                                                            = function;
7101                 fragments["pre_main"]                                                           = constants.specialize(constantSpecialization);
7102                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7103         }
7104
7105         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7106                 map<string, string>                                                                     fragments;
7107                 map<string, string>                                                                     constantSpecialization;
7108                 vector<deInt32>                                                                         passConstants;
7109                 deInt32                                                                                         specConstant;
7110
7111                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7112                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7113                 fragments["testfun"]                                                            = function;
7114                 fragments["decoration"]                                                         = specDecorations;
7115                 fragments["pre_main"]                                                           = specConstants.specialize(constantSpecialization);
7116
7117                 memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7118                 passConstants.push_back(specConstant);
7119
7120                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7121         }
7122 }
7123
7124 tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7125 {
7126         de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7127         createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7128         createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7129         return opQuantizeTests.release();
7130 }
7131
7132 struct ShaderPermutation
7133 {
7134         deUint8 vertexPermutation;
7135         deUint8 geometryPermutation;
7136         deUint8 tesscPermutation;
7137         deUint8 tessePermutation;
7138         deUint8 fragmentPermutation;
7139 };
7140
7141 ShaderPermutation getShaderPermutation(deUint8 inputValue)
7142 {
7143         ShaderPermutation       permutation =
7144         {
7145                 static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7146                 static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7147                 static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7148                 static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7149                 static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7150         };
7151         return permutation;
7152 }
7153
7154 tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7155 {
7156         RGBA                                                            defaultColors[4];
7157         RGBA                                                            invertedColors[4];
7158         de::MovePtr<tcu::TestCaseGroup>         moduleTests                     (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7159
7160         const ShaderElement                                     combinedPipeline[]      =
7161         {
7162                 ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7163                 ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7164                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7165                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7166                 ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7167         };
7168
7169         getDefaultColors(defaultColors);
7170         getInvertedDefaultColors(invertedColors);
7171         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7172
7173         const char* numbers[] =
7174         {
7175                 "1", "2"
7176         };
7177
7178         for (deInt8 idx = 0; idx < 32; ++idx)
7179         {
7180                 ShaderPermutation                       permutation             = getShaderPermutation(idx);
7181                 string                                          name                    = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7182                 const ShaderElement                     pipeline[]              =
7183                 {
7184                         ShaderElement("vert",   string("vert") +        numbers[permutation.vertexPermutation],         VK_SHADER_STAGE_VERTEX_BIT),
7185                         ShaderElement("geom",   string("geom") +        numbers[permutation.geometryPermutation],       VK_SHADER_STAGE_GEOMETRY_BIT),
7186                         ShaderElement("tessc",  string("tessc") +       numbers[permutation.tesscPermutation],          VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7187                         ShaderElement("tesse",  string("tesse") +       numbers[permutation.tessePermutation],          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7188                         ShaderElement("frag",   string("frag") +        numbers[permutation.fragmentPermutation],       VK_SHADER_STAGE_FRAGMENT_BIT)
7189                 };
7190
7191                 // If there are an even number of swaps, then it should be no-op.
7192                 // If there are an odd number, the color should be flipped.
7193                 if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7194                 {
7195                         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7196                 }
7197                 else
7198                 {
7199                         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7200                 }
7201         }
7202         return moduleTests.release();
7203 }
7204
7205 tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7206 {
7207         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7208         RGBA defaultColors[4];
7209         getDefaultColors(defaultColors);
7210         map<string, string> fragments;
7211         fragments["pre_main"] =
7212                 "%c_f32_5 = OpConstant %f32 5.\n";
7213
7214         // A loop with a single block. The Continue Target is the loop block
7215         // itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7216         // -- the "continue construct" forms the entire loop.
7217         fragments["testfun"] =
7218                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7219                 "%param1 = OpFunctionParameter %v4f32\n"
7220
7221                 "%entry = OpLabel\n"
7222                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7223                 "OpBranch %loop\n"
7224
7225                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7226                 "%loop = OpLabel\n"
7227                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7228                 "%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7229                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7230                 "%val = OpFAdd %f32 %val1 %delta\n"
7231                 "%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7232                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7233                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7234                 "OpLoopMerge %exit %loop None\n"
7235                 "OpBranchConditional %again %loop %exit\n"
7236
7237                 "%exit = OpLabel\n"
7238                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7239                 "OpReturnValue %result\n"
7240
7241                 "OpFunctionEnd\n"
7242                 ;
7243         createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7244
7245         // Body comprised of multiple basic blocks.
7246         const StringTemplate multiBlock(
7247                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7248                 "%param1 = OpFunctionParameter %v4f32\n"
7249
7250                 "%entry = OpLabel\n"
7251                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7252                 "OpBranch %loop\n"
7253
7254                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7255                 "%loop = OpLabel\n"
7256                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7257                 "%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7258                 "%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7259                 // There are several possibilities for the Continue Target below.  Each
7260                 // will be specialized into a separate test case.
7261                 "OpLoopMerge %exit ${continue_target} None\n"
7262                 "OpBranch %if\n"
7263
7264                 "%if = OpLabel\n"
7265                 ";delta_next = (delta > 0) ? -1 : 1;\n"
7266                 "%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7267                 "OpSelectionMerge %gather DontFlatten\n"
7268                 "OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7269
7270                 "%odd = OpLabel\n"
7271                 "OpBranch %gather\n"
7272
7273                 "%even = OpLabel\n"
7274                 "OpBranch %gather\n"
7275
7276                 "%gather = OpLabel\n"
7277                 "%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7278                 "%val = OpFAdd %f32 %val1 %delta\n"
7279                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7280                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7281                 "OpBranchConditional %again %loop %exit\n"
7282
7283                 "%exit = OpLabel\n"
7284                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7285                 "OpReturnValue %result\n"
7286
7287                 "OpFunctionEnd\n");
7288
7289         map<string, string> continue_target;
7290
7291         // The Continue Target is the loop block itself.
7292         continue_target["continue_target"] = "%loop";
7293         fragments["testfun"] = multiBlock.specialize(continue_target);
7294         createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7295
7296         // The Continue Target is at the end of the loop.
7297         continue_target["continue_target"] = "%gather";
7298         fragments["testfun"] = multiBlock.specialize(continue_target);
7299         createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7300
7301         // A loop with continue statement.
7302         fragments["testfun"] =
7303                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7304                 "%param1 = OpFunctionParameter %v4f32\n"
7305
7306                 "%entry = OpLabel\n"
7307                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7308                 "OpBranch %loop\n"
7309
7310                 ";adds 4, 3, and 1 to %val0 (skips 2)\n"
7311                 "%loop = OpLabel\n"
7312                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7313                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7314                 "OpLoopMerge %exit %continue None\n"
7315                 "OpBranch %if\n"
7316
7317                 "%if = OpLabel\n"
7318                 ";skip if %count==2\n"
7319                 "%eq2 = OpIEqual %bool %count %c_i32_2\n"
7320                 "OpSelectionMerge %continue DontFlatten\n"
7321                 "OpBranchConditional %eq2 %continue %body\n"
7322
7323                 "%body = OpLabel\n"
7324                 "%fcount = OpConvertSToF %f32 %count\n"
7325                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7326                 "OpBranch %continue\n"
7327
7328                 "%continue = OpLabel\n"
7329                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7330                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7331                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7332                 "OpBranchConditional %again %loop %exit\n"
7333
7334                 "%exit = OpLabel\n"
7335                 "%same = OpFSub %f32 %val %c_f32_8\n"
7336                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7337                 "OpReturnValue %result\n"
7338                 "OpFunctionEnd\n";
7339         createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7340
7341         // A loop with break.
7342         fragments["testfun"] =
7343                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7344                 "%param1 = OpFunctionParameter %v4f32\n"
7345
7346                 "%entry = OpLabel\n"
7347                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7348                 "%dot = OpDot %f32 %param1 %param1\n"
7349                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7350                 "%zero = OpConvertFToU %u32 %div\n"
7351                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7352                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7353                 "OpBranch %loop\n"
7354
7355                 ";adds 4 and 3 to %val0 (exits early)\n"
7356                 "%loop = OpLabel\n"
7357                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7358                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7359                 "OpLoopMerge %exit %continue None\n"
7360                 "OpBranch %if\n"
7361
7362                 "%if = OpLabel\n"
7363                 ";end loop if %count==%two\n"
7364                 "%above2 = OpSGreaterThan %bool %count %two\n"
7365                 "OpSelectionMerge %continue DontFlatten\n"
7366                 "OpBranchConditional %above2 %body %exit\n"
7367
7368                 "%body = OpLabel\n"
7369                 "%fcount = OpConvertSToF %f32 %count\n"
7370                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7371                 "OpBranch %continue\n"
7372
7373                 "%continue = OpLabel\n"
7374                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7375                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7376                 "OpBranchConditional %again %loop %exit\n"
7377
7378                 "%exit = OpLabel\n"
7379                 "%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
7380                 "%same = OpFSub %f32 %val_post %c_f32_7\n"
7381                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7382                 "OpReturnValue %result\n"
7383                 "OpFunctionEnd\n";
7384         createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7385
7386         // A loop with return.
7387         fragments["testfun"] =
7388                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7389                 "%param1 = OpFunctionParameter %v4f32\n"
7390
7391                 "%entry = OpLabel\n"
7392                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7393                 "%dot = OpDot %f32 %param1 %param1\n"
7394                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7395                 "%zero = OpConvertFToU %u32 %div\n"
7396                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7397                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7398                 "OpBranch %loop\n"
7399
7400                 ";returns early without modifying %param1\n"
7401                 "%loop = OpLabel\n"
7402                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7403                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7404                 "OpLoopMerge %exit %continue None\n"
7405                 "OpBranch %if\n"
7406
7407                 "%if = OpLabel\n"
7408                 ";return if %count==%two\n"
7409                 "%above2 = OpSGreaterThan %bool %count %two\n"
7410                 "OpSelectionMerge %continue DontFlatten\n"
7411                 "OpBranchConditional %above2 %body %early_exit\n"
7412
7413                 "%early_exit = OpLabel\n"
7414                 "OpReturnValue %param1\n"
7415
7416                 "%body = OpLabel\n"
7417                 "%fcount = OpConvertSToF %f32 %count\n"
7418                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7419                 "OpBranch %continue\n"
7420
7421                 "%continue = OpLabel\n"
7422                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7423                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7424                 "OpBranchConditional %again %loop %exit\n"
7425
7426                 "%exit = OpLabel\n"
7427                 ";should never get here, so return an incorrect result\n"
7428                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
7429                 "OpReturnValue %result\n"
7430                 "OpFunctionEnd\n";
7431         createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7432
7433         return testGroup.release();
7434 }
7435
7436 // Adds a new test to group using custom fragments for the tessellation-control
7437 // stage and passthrough fragments for all other stages.  Uses default colors
7438 // for input and expected output.
7439 void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7440 {
7441         RGBA defaultColors[4];
7442         getDefaultColors(defaultColors);
7443         const ShaderElement pipelineStages[] =
7444         {
7445                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7446                 ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7447                 ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7448                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7449         };
7450
7451         addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7452                                                                                                  runAndVerifyDefaultPipeline, createInstanceContext(
7453                                                                                                          pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7454 }
7455
7456 // A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7457 tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7458 {
7459         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7460         map<string, string> fragments;
7461
7462         // A barrier inside a function body.
7463         fragments["pre_main"] =
7464                 "%Workgroup = OpConstant %i32 2\n"
7465                 "%SequentiallyConsistent = OpConstant %i32 0x10\n";
7466         fragments["testfun"] =
7467                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7468                 "%param1 = OpFunctionParameter %v4f32\n"
7469                 "%label_testfun = OpLabel\n"
7470                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7471                 "OpReturnValue %param1\n"
7472                 "OpFunctionEnd\n";
7473         addTessCtrlTest(testGroup.get(), "in_function", fragments);
7474
7475         // Common setup code for the following tests.
7476         fragments["pre_main"] =
7477                 "%Workgroup = OpConstant %i32 2\n"
7478                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7479                 "%c_f32_5 = OpConstant %f32 5.\n";
7480         const string setupPercentZero =  // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7481                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7482                 "%param1 = OpFunctionParameter %v4f32\n"
7483                 "%entry = OpLabel\n"
7484                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7485                 "%dot = OpDot %f32 %param1 %param1\n"
7486                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7487                 "%zero = OpConvertFToU %u32 %div\n";
7488
7489         // Barriers inside OpSwitch branches.
7490         fragments["testfun"] =
7491                 setupPercentZero +
7492                 "OpSelectionMerge %switch_exit None\n"
7493                 "OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7494
7495                 "%case1 = OpLabel\n"
7496                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7497                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7498                 "%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7499                 "OpBranch %switch_exit\n"
7500
7501                 "%switch_default = OpLabel\n"
7502                 "%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7503                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7504                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7505                 "OpBranch %switch_exit\n"
7506
7507                 "%case0 = OpLabel\n"
7508                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7509                 "OpBranch %switch_exit\n"
7510
7511                 "%switch_exit = OpLabel\n"
7512                 "%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7513                 "OpReturnValue %ret\n"
7514                 "OpFunctionEnd\n";
7515         addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7516
7517         // Barriers inside if-then-else.
7518         fragments["testfun"] =
7519                 setupPercentZero +
7520                 "%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7521                 "OpSelectionMerge %exit DontFlatten\n"
7522                 "OpBranchConditional %eq0 %then %else\n"
7523
7524                 "%else = OpLabel\n"
7525                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7526                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7527                 "%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7528                 "OpBranch %exit\n"
7529
7530                 "%then = OpLabel\n"
7531                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7532                 "OpBranch %exit\n"
7533
7534                 "%exit = OpLabel\n"
7535                 "%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7536                 "OpReturnValue %ret\n"
7537                 "OpFunctionEnd\n";
7538         addTessCtrlTest(testGroup.get(), "in_if", fragments);
7539
7540         // A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7541         // http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7542         fragments["testfun"] =
7543                 setupPercentZero +
7544                 "%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7545                 "%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7546                 "OpSelectionMerge %exit DontFlatten\n"
7547                 "OpBranchConditional %thread0 %then %else\n"
7548
7549                 "%else = OpLabel\n"
7550                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7551                 "OpBranch %exit\n"
7552
7553                 "%then = OpLabel\n"
7554                 "%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7555                 "OpBranch %exit\n"
7556
7557                 "%exit = OpLabel\n"
7558                 "%val = OpPhi %f32 %val0 %else %val1 %then\n"
7559                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7560                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7561                 "OpReturnValue %ret\n"
7562                 "OpFunctionEnd\n";
7563         addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7564
7565         // A barrier inside a loop.
7566         fragments["pre_main"] =
7567                 "%Workgroup = OpConstant %i32 2\n"
7568                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7569                 "%c_f32_10 = OpConstant %f32 10.\n";
7570         fragments["testfun"] =
7571                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7572                 "%param1 = OpFunctionParameter %v4f32\n"
7573                 "%entry = OpLabel\n"
7574                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7575                 "OpBranch %loop\n"
7576
7577                 ";adds 4, 3, 2, and 1 to %val0\n"
7578                 "%loop = OpLabel\n"
7579                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7580                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7581                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7582                 "%fcount = OpConvertSToF %f32 %count\n"
7583                 "%val = OpFAdd %f32 %val1 %fcount\n"
7584                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7585                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7586                 "OpLoopMerge %exit %loop None\n"
7587                 "OpBranchConditional %again %loop %exit\n"
7588
7589                 "%exit = OpLabel\n"
7590                 "%same = OpFSub %f32 %val %c_f32_10\n"
7591                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7592                 "OpReturnValue %ret\n"
7593                 "OpFunctionEnd\n";
7594         addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7595
7596         return testGroup.release();
7597 }
7598
7599 // Test for the OpFRem instruction.
7600 tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7601 {
7602         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7603         map<string, string>                                     fragments;
7604         RGBA                                                            inputColors[4];
7605         RGBA                                                            outputColors[4];
7606
7607         fragments["pre_main"]                            =
7608                 "%c_f32_3 = OpConstant %f32 3.0\n"
7609                 "%c_f32_n3 = OpConstant %f32 -3.0\n"
7610                 "%c_f32_4 = OpConstant %f32 4.0\n"
7611                 "%c_f32_p75 = OpConstant %f32 0.75\n"
7612                 "%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7613                 "%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7614                 "%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7615
7616         // The test does the following.
7617         // vec4 result = (param1 * 8.0) - 4.0;
7618         // return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7619         fragments["testfun"]                             =
7620                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7621                 "%param1 = OpFunctionParameter %v4f32\n"
7622                 "%label_testfun = OpLabel\n"
7623                 "%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7624                 "%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7625                 "%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7626                 "%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7627                 "%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7628                 "%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7629                 "OpReturnValue %xy_0_1\n"
7630                 "OpFunctionEnd\n";
7631
7632
7633         inputColors[0]          = RGBA(16,      16,             0, 255);
7634         inputColors[1]          = RGBA(232, 232,        0, 255);
7635         inputColors[2]          = RGBA(232, 16,         0, 255);
7636         inputColors[3]          = RGBA(16,      232,    0, 255);
7637
7638         outputColors[0]         = RGBA(64,      64,             0, 255);
7639         outputColors[1]         = RGBA(255, 255,        0, 255);
7640         outputColors[2]         = RGBA(255, 64,         0, 255);
7641         outputColors[3]         = RGBA(64,      255,    0, 255);
7642
7643         createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7644         return testGroup.release();
7645 }
7646
7647 tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7648 {
7649         de::MovePtr<tcu::TestCaseGroup> instructionTests        (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7650         de::MovePtr<tcu::TestCaseGroup> computeTests            (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7651         de::MovePtr<tcu::TestCaseGroup> graphicsTests           (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7652
7653         computeTests->addChild(createOpNopGroup(testCtx));
7654         computeTests->addChild(createOpLineGroup(testCtx));
7655         computeTests->addChild(createOpNoLineGroup(testCtx));
7656         computeTests->addChild(createOpConstantNullGroup(testCtx));
7657         computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7658         computeTests->addChild(createOpConstantUsageGroup(testCtx));
7659         computeTests->addChild(createSpecConstantGroup(testCtx));
7660         computeTests->addChild(createOpSourceGroup(testCtx));
7661         computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7662         computeTests->addChild(createDecorationGroupGroup(testCtx));
7663         computeTests->addChild(createOpPhiGroup(testCtx));
7664         computeTests->addChild(createLoopControlGroup(testCtx));
7665         computeTests->addChild(createFunctionControlGroup(testCtx));
7666         computeTests->addChild(createSelectionControlGroup(testCtx));
7667         computeTests->addChild(createBlockOrderGroup(testCtx));
7668         computeTests->addChild(createMultipleShaderGroup(testCtx));
7669         computeTests->addChild(createMemoryAccessGroup(testCtx));
7670         computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7671         computeTests->addChild(createOpCopyObjectGroup(testCtx));
7672         computeTests->addChild(createNoContractionGroup(testCtx));
7673         computeTests->addChild(createOpUndefGroup(testCtx));
7674         computeTests->addChild(createOpUnreachableGroup(testCtx));
7675         computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7676         computeTests ->addChild(createOpFRemGroup(testCtx));
7677
7678         RGBA defaultColors[4];
7679         getDefaultColors(defaultColors);
7680
7681         de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7682         map<string, string> opNopFragments;
7683         opNopFragments["testfun"] =
7684                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7685                 "%param1 = OpFunctionParameter %v4f32\n"
7686                 "%label_testfun = OpLabel\n"
7687                 "OpNop\n"
7688                 "OpNop\n"
7689                 "OpNop\n"
7690                 "OpNop\n"
7691                 "OpNop\n"
7692                 "OpNop\n"
7693                 "OpNop\n"
7694                 "OpNop\n"
7695                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7696                 "%b = OpFAdd %f32 %a %a\n"
7697                 "OpNop\n"
7698                 "%c = OpFSub %f32 %b %a\n"
7699                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7700                 "OpNop\n"
7701                 "OpNop\n"
7702                 "OpReturnValue %ret\n"
7703                 "OpFunctionEnd\n"
7704                 ;
7705         createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7706
7707
7708         graphicsTests->addChild(opnopTests.release());
7709         graphicsTests->addChild(createOpSourceTests(testCtx));
7710         graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7711         graphicsTests->addChild(createOpLineTests(testCtx));
7712         graphicsTests->addChild(createOpNoLineTests(testCtx));
7713         graphicsTests->addChild(createOpConstantNullTests(testCtx));
7714         graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7715         graphicsTests->addChild(createMemoryAccessTests(testCtx));
7716         graphicsTests->addChild(createOpUndefTests(testCtx));
7717         graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7718         graphicsTests->addChild(createModuleTests(testCtx));
7719         graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7720         graphicsTests->addChild(createOpPhiTests(testCtx));
7721         graphicsTests->addChild(createNoContractionTests(testCtx));
7722         graphicsTests->addChild(createOpQuantizeTests(testCtx));
7723         graphicsTests->addChild(createLoopTests(testCtx));
7724         graphicsTests->addChild(createSpecConstantTests(testCtx));
7725         graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7726         graphicsTests->addChild(createBarrierTests(testCtx));
7727         graphicsTests->addChild(createDecorationGroupTests(testCtx));
7728         graphicsTests->addChild(createFRemTests(testCtx));
7729
7730         instructionTests->addChild(computeTests.release());
7731         instructionTests->addChild(graphicsTests.release());
7732
7733         return instructionTests.release();
7734 }
7735
7736 } // SpirVAssembly
7737 } // vkt