Fix dEQP-VK.spirv_assembly.instruction.graphics.opconstantcomposite.struct* - wrong...
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / spirv_assembly / vktSpvAsmInstructionTests.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and/or associated documentation files (the
9  * "Materials"), to deal in the Materials without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sublicense, and/or sell copies of the Materials, and to
12  * permit persons to whom the Materials are furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice(s) and this permission notice shall be
16  * included in all copies or substantial portions of the Materials.
17  *
18  * The Materials are Confidential Information as defined by the
19  * Khronos Membership Agreement until designated non-confidential by
20  * Khronos, at which point this condition clause shall be removed.
21  *
22  * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
25  * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
26  * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28  * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
29  *
30  *//*!
31  * \file
32  * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
33  *//*--------------------------------------------------------------------*/
34
35 #include "vktSpvAsmInstructionTests.hpp"
36
37 #include "tcuCommandLine.hpp"
38 #include "tcuFormatUtil.hpp"
39 #include "tcuRGBA.hpp"
40 #include "tcuStringTemplate.hpp"
41 #include "tcuTestLog.hpp"
42 #include "tcuVectorUtil.hpp"
43
44 #include "vkDefs.hpp"
45 #include "vkDeviceUtil.hpp"
46 #include "vkMemUtil.hpp"
47 #include "vkPlatform.hpp"
48 #include "vkPrograms.hpp"
49 #include "vkQueryUtil.hpp"
50 #include "vkRef.hpp"
51 #include "vkRefUtil.hpp"
52 #include "vkStrUtil.hpp"
53 #include "vkTypeUtil.hpp"
54
55 #include "deRandom.hpp"
56 #include "deStringUtil.hpp"
57 #include "deUniquePtr.hpp"
58 #include "tcuStringTemplate.hpp"
59
60 #include <cmath>
61 #include "vktSpvAsmComputeShaderCase.hpp"
62 #include "vktSpvAsmComputeShaderTestUtil.hpp"
63 #include "vktTestCaseUtil.hpp"
64
65 #include <cmath>
66 #include <limits>
67 #include <map>
68 #include <string>
69 #include <sstream>
70
71 namespace vkt
72 {
73 namespace SpirVAssembly
74 {
75
76 namespace
77 {
78
79 using namespace vk;
80 using std::map;
81 using std::string;
82 using std::vector;
83 using tcu::IVec3;
84 using tcu::IVec4;
85 using tcu::RGBA;
86 using tcu::TestLog;
87 using tcu::TestStatus;
88 using tcu::Vec4;
89 using de::UniquePtr;
90 using tcu::StringTemplate;
91 using tcu::Vec4;
92
93 typedef Unique<VkShaderModule>                  ModuleHandleUp;
94 typedef de::SharedPtr<ModuleHandleUp>   ModuleHandleSp;
95
96 template<typename T>    T                       randomScalar    (de::Random& rnd, T minValue, T maxValue);
97 template<> inline               float           randomScalar    (de::Random& rnd, float minValue, float maxValue)               { return rnd.getFloat(minValue, maxValue);      }
98 template<> inline               deInt32         randomScalar    (de::Random& rnd, deInt32 minValue, deInt32 maxValue)   { return rnd.getInt(minValue, maxValue);        }
99
100 template<typename T>
101 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
102 {
103         T* const typedPtr = (T*)dst;
104         for (int ndx = 0; ndx < numValues; ndx++)
105                 typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
106 }
107
108 struct CaseParameter
109 {
110         const char*             name;
111         string                  param;
112
113         CaseParameter   (const char* case_, const string& param_) : name(case_), param(param_) {}
114 };
115
116 // Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
117 //
118 // #version 430
119 //
120 // layout(std140, set = 0, binding = 0) readonly buffer Input {
121 //   float elements[];
122 // } input_data;
123 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
124 //   float elements[];
125 // } output_data;
126 //
127 // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
128 //
129 // void main() {
130 //   uint x = gl_GlobalInvocationID.x;
131 //   output_data.elements[x] = -input_data.elements[x];
132 // }
133
134 static const char* const s_ShaderPreamble =
135         "OpCapability Shader\n"
136         "OpMemoryModel Logical GLSL450\n"
137         "OpEntryPoint GLCompute %main \"main\" %id\n"
138         "OpExecutionMode %main LocalSize 1 1 1\n";
139
140 static const char* const s_CommonTypes =
141         "%bool      = OpTypeBool\n"
142         "%void      = OpTypeVoid\n"
143         "%voidf     = OpTypeFunction %void\n"
144         "%u32       = OpTypeInt 32 0\n"
145         "%i32       = OpTypeInt 32 1\n"
146         "%f32       = OpTypeFloat 32\n"
147         "%uvec3     = OpTypeVector %u32 3\n"
148         "%uvec3ptr  = OpTypePointer Input %uvec3\n"
149         "%f32ptr    = OpTypePointer Uniform %f32\n"
150         "%f32arr    = OpTypeRuntimeArray %f32\n";
151
152 // Declares two uniform variables (indata, outdata) of type "struct { float[] }". Depends on type "f32arr" (for "float[]").
153 static const char* const s_InputOutputBuffer =
154         "%inbuf     = OpTypeStruct %f32arr\n"
155         "%inbufptr  = OpTypePointer Uniform %inbuf\n"
156         "%indata    = OpVariable %inbufptr Uniform\n"
157         "%outbuf    = OpTypeStruct %f32arr\n"
158         "%outbufptr = OpTypePointer Uniform %outbuf\n"
159         "%outdata   = OpVariable %outbufptr Uniform\n";
160
161 // Declares buffer type and layout for uniform variables indata and outdata. Both of them are SSBO bounded to descriptor set 0.
162 // indata is at binding point 0, while outdata is at 1.
163 static const char* const s_InputOutputBufferTraits =
164         "OpDecorate %inbuf BufferBlock\n"
165         "OpDecorate %indata DescriptorSet 0\n"
166         "OpDecorate %indata Binding 0\n"
167         "OpDecorate %outbuf BufferBlock\n"
168         "OpDecorate %outdata DescriptorSet 0\n"
169         "OpDecorate %outdata Binding 1\n"
170         "OpDecorate %f32arr ArrayStride 4\n"
171         "OpMemberDecorate %inbuf 0 Offset 0\n"
172         "OpMemberDecorate %outbuf 0 Offset 0\n";
173
174 tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
175 {
176         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
177         ComputeShaderSpec                               spec;
178         de::Random                                              rnd                             (deStringHash(group->getName()));
179         const int                                               numElements             = 100;
180         vector<float>                                   positiveFloats  (numElements, 0);
181         vector<float>                                   negativeFloats  (numElements, 0);
182
183         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
184
185         for (size_t ndx = 0; ndx < numElements; ++ndx)
186                 negativeFloats[ndx] = -positiveFloats[ndx];
187
188         spec.assembly =
189                 string(s_ShaderPreamble) +
190
191                 "OpSource GLSL 430\n"
192                 "OpName %main           \"main\"\n"
193                 "OpName %id             \"gl_GlobalInvocationID\"\n"
194
195                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
196
197                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes)
198
199                 + string(s_InputOutputBuffer) +
200
201                 "%id        = OpVariable %uvec3ptr Input\n"
202                 "%zero      = OpConstant %i32 0\n"
203
204                 "%main      = OpFunction %void None %voidf\n"
205                 "%label     = OpLabel\n"
206                 "%idval     = OpLoad %uvec3 %id\n"
207                 "%x         = OpCompositeExtract %u32 %idval 0\n"
208
209                 "             OpNop\n" // Inside a function body
210
211                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
212                 "%inval     = OpLoad %f32 %inloc\n"
213                 "%neg       = OpFNegate %f32 %inval\n"
214                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
215                 "             OpStore %outloc %neg\n"
216                 "             OpReturn\n"
217                 "             OpFunctionEnd\n";
218         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
219         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
220         spec.numWorkGroups = IVec3(numElements, 1, 1);
221
222         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
223
224         return group.release();
225 }
226
227 tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
228 {
229         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
230         ComputeShaderSpec                               spec;
231         de::Random                                              rnd                             (deStringHash(group->getName()));
232         const int                                               numElements             = 100;
233         vector<float>                                   positiveFloats  (numElements, 0);
234         vector<float>                                   negativeFloats  (numElements, 0);
235
236         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
237
238         for (size_t ndx = 0; ndx < numElements; ++ndx)
239                 negativeFloats[ndx] = -positiveFloats[ndx];
240
241         spec.assembly =
242                 string(s_ShaderPreamble) +
243
244                 "%fname1 = OpString \"negateInputs.comp\"\n"
245                 "%fname2 = OpString \"negateInputs\"\n"
246
247                 "OpSource GLSL 430\n"
248                 "OpName %main           \"main\"\n"
249                 "OpName %id             \"gl_GlobalInvocationID\"\n"
250
251                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
252
253                 + string(s_InputOutputBufferTraits) +
254
255                 "OpLine %fname1 0 0\n" // At the earliest possible position
256
257                 + string(s_CommonTypes) + string(s_InputOutputBuffer) +
258
259                 "OpLine %fname1 0 1\n" // Multiple OpLines in sequence
260                 "OpLine %fname2 1 0\n" // Different filenames
261                 "OpLine %fname1 1000 100000\n"
262
263                 "%id        = OpVariable %uvec3ptr Input\n"
264                 "%zero      = OpConstant %i32 0\n"
265
266                 "OpLine %fname1 1 1\n" // Before a function
267
268                 "%main      = OpFunction %void None %voidf\n"
269                 "%label     = OpLabel\n"
270
271                 "OpLine %fname1 1 1\n" // In a function
272
273                 "%idval     = OpLoad %uvec3 %id\n"
274                 "%x         = OpCompositeExtract %u32 %idval 0\n"
275                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
276                 "%inval     = OpLoad %f32 %inloc\n"
277                 "%neg       = OpFNegate %f32 %inval\n"
278                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
279                 "             OpStore %outloc %neg\n"
280                 "             OpReturn\n"
281                 "             OpFunctionEnd\n";
282         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
283         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
284         spec.numWorkGroups = IVec3(numElements, 1, 1);
285
286         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
287
288         return group.release();
289 }
290
291 tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
292 {
293         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
294         ComputeShaderSpec                               spec;
295         de::Random                                              rnd                             (deStringHash(group->getName()));
296         const int                                               numElements             = 100;
297         vector<float>                                   positiveFloats  (numElements, 0);
298         vector<float>                                   negativeFloats  (numElements, 0);
299
300         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
301
302         for (size_t ndx = 0; ndx < numElements; ++ndx)
303                 negativeFloats[ndx] = -positiveFloats[ndx];
304
305         spec.assembly =
306                 string(s_ShaderPreamble) +
307
308                 "%fname = OpString \"negateInputs.comp\"\n"
309
310                 "OpSource GLSL 430\n"
311                 "OpName %main           \"main\"\n"
312                 "OpName %id             \"gl_GlobalInvocationID\"\n"
313
314                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
315
316                 + string(s_InputOutputBufferTraits) +
317
318                 "OpNoLine\n" // At the earliest possible position, without preceding OpLine
319
320                 + string(s_CommonTypes) + string(s_InputOutputBuffer) +
321
322                 "OpLine %fname 0 1\n"
323                 "OpNoLine\n" // Immediately following a preceding OpLine
324
325                 "OpLine %fname 1000 1\n"
326
327                 "%id        = OpVariable %uvec3ptr Input\n"
328                 "%zero      = OpConstant %i32 0\n"
329
330                 "OpNoLine\n" // Contents after the previous OpLine
331
332                 "%main      = OpFunction %void None %voidf\n"
333                 "%label     = OpLabel\n"
334                 "%idval     = OpLoad %uvec3 %id\n"
335                 "%x         = OpCompositeExtract %u32 %idval 0\n"
336
337                 "OpNoLine\n" // Multiple OpNoLine
338                 "OpNoLine\n"
339                 "OpNoLine\n"
340
341                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
342                 "%inval     = OpLoad %f32 %inloc\n"
343                 "%neg       = OpFNegate %f32 %inval\n"
344                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
345                 "             OpStore %outloc %neg\n"
346                 "             OpReturn\n"
347                 "             OpFunctionEnd\n";
348         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
349         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
350         spec.numWorkGroups = IVec3(numElements, 1, 1);
351
352         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
353
354         return group.release();
355 }
356
357 tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
358 {
359         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
360         vector<CaseParameter>                   cases;
361         const int                                               numElements             = 100;
362         vector<float>                                   inputFloats1    (numElements, 0);
363         vector<float>                                   inputFloats2    (numElements, 0);
364         vector<float>                                   outputFloats    (numElements, 0);
365         const StringTemplate                    shaderTemplate  (
366                 string(s_ShaderPreamble) +
367
368                 "OpName %main           \"main\"\n"
369                 "OpName %id             \"gl_GlobalInvocationID\"\n"
370
371                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
372
373                 "${DECORATION}\n"
374
375                 "OpDecorate %inbuf1 BufferBlock\n"
376                 "OpDecorate %indata1 DescriptorSet 0\n"
377                 "OpDecorate %indata1 Binding 0\n"
378                 "OpDecorate %inbuf2 BufferBlock\n"
379                 "OpDecorate %indata2 DescriptorSet 0\n"
380                 "OpDecorate %indata2 Binding 1\n"
381                 "OpDecorate %outbuf BufferBlock\n"
382                 "OpDecorate %outdata DescriptorSet 0\n"
383                 "OpDecorate %outdata Binding 2\n"
384                 "OpDecorate %f32arr ArrayStride 4\n"
385                 "OpMemberDecorate %inbuf1 0 Offset 0\n"
386                 "OpMemberDecorate %inbuf2 0 Offset 0\n"
387                 "OpMemberDecorate %outbuf 0 Offset 0\n"
388
389                 + string(s_CommonTypes) +
390
391                 "%inbuf1     = OpTypeStruct %f32arr\n"
392                 "%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
393                 "%indata1    = OpVariable %inbufptr1 Uniform\n"
394                 "%inbuf2     = OpTypeStruct %f32arr\n"
395                 "%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
396                 "%indata2    = OpVariable %inbufptr2 Uniform\n"
397                 "%outbuf     = OpTypeStruct %f32arr\n"
398                 "%outbufptr  = OpTypePointer Uniform %outbuf\n"
399                 "%outdata    = OpVariable %outbufptr Uniform\n"
400
401                 "%id         = OpVariable %uvec3ptr Input\n"
402                 "%zero       = OpConstant %i32 0\n"
403                 "%c_f_m1     = OpConstant %f32 -1.\n"
404
405                 "%main       = OpFunction %void None %voidf\n"
406                 "%label      = OpLabel\n"
407                 "%idval      = OpLoad %uvec3 %id\n"
408                 "%x          = OpCompositeExtract %u32 %idval 0\n"
409                 "%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
410                 "%inval1     = OpLoad %f32 %inloc1\n"
411                 "%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
412                 "%inval2     = OpLoad %f32 %inloc2\n"
413                 "%mul        = OpFMul %f32 %inval1 %inval2\n"
414                 "%add        = OpFAdd %f32 %mul %c_f_m1\n"
415                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
416                 "              OpStore %outloc %add\n"
417                 "              OpReturn\n"
418                 "              OpFunctionEnd\n");
419
420         cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
421         cases.push_back(CaseParameter("addition",               "OpDecorate %add NoContraction"));
422         cases.push_back(CaseParameter("both",                   "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
423
424         for (size_t ndx = 0; ndx < numElements; ++ndx)
425         {
426                 inputFloats1[ndx]       = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
427                 inputFloats2[ndx]       = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
428                 // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
429                 // conducted separately and the result is rounded to 1. So the final result will be 0.f.
430                 // If the operation is combined into a precise fused multiply-add, then the result would be
431                 // 2^-46 (0xa8800000).
432                 outputFloats[ndx]       = 0.f;
433         }
434
435         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
436         {
437                 map<string, string>             specializations;
438                 ComputeShaderSpec               spec;
439
440                 specializations["DECORATION"] = cases[caseNdx].param;
441                 spec.assembly = shaderTemplate.specialize(specializations);
442                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
443                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
444                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
445                 spec.numWorkGroups = IVec3(numElements, 1, 1);
446
447                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
448         }
449         return group.release();
450 }
451
452 tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
453 {
454         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
455         ComputeShaderSpec                               spec;
456         de::Random                                              rnd                             (deStringHash(group->getName()));
457         const int                                               numElements             = 200;
458         vector<float>                                   inputFloats1    (numElements, 0);
459         vector<float>                                   inputFloats2    (numElements, 0);
460         vector<float>                                   outputFloats    (numElements, 0);
461
462         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
463         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
464
465         for (size_t ndx = 0; ndx < numElements; ++ndx)
466         {
467                 // Guard against divisors near zero.
468                 if (std::fabs(inputFloats2[ndx]) < 1e-3)
469                         inputFloats2[ndx] = 8.f;
470
471                 // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
472                 outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
473         }
474
475         spec.assembly =
476                 string(s_ShaderPreamble) +
477
478                 "OpName %main           \"main\"\n"
479                 "OpName %id             \"gl_GlobalInvocationID\"\n"
480
481                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
482
483                 "OpDecorate %inbuf1 BufferBlock\n"
484                 "OpDecorate %indata1 DescriptorSet 0\n"
485                 "OpDecorate %indata1 Binding 0\n"
486                 "OpDecorate %inbuf2 BufferBlock\n"
487                 "OpDecorate %indata2 DescriptorSet 0\n"
488                 "OpDecorate %indata2 Binding 1\n"
489                 "OpDecorate %outbuf BufferBlock\n"
490                 "OpDecorate %outdata DescriptorSet 0\n"
491                 "OpDecorate %outdata Binding 2\n"
492                 "OpDecorate %f32arr ArrayStride 4\n"
493                 "OpMemberDecorate %inbuf1 0 Offset 0\n"
494                 "OpMemberDecorate %inbuf2 0 Offset 0\n"
495                 "OpMemberDecorate %outbuf 0 Offset 0\n"
496
497                 + string(s_CommonTypes) +
498
499                 "%inbuf1     = OpTypeStruct %f32arr\n"
500                 "%inbufptr1  = OpTypePointer Uniform %inbuf1\n"
501                 "%indata1    = OpVariable %inbufptr1 Uniform\n"
502                 "%inbuf2     = OpTypeStruct %f32arr\n"
503                 "%inbufptr2  = OpTypePointer Uniform %inbuf2\n"
504                 "%indata2    = OpVariable %inbufptr2 Uniform\n"
505                 "%outbuf     = OpTypeStruct %f32arr\n"
506                 "%outbufptr  = OpTypePointer Uniform %outbuf\n"
507                 "%outdata    = OpVariable %outbufptr Uniform\n"
508
509                 "%id        = OpVariable %uvec3ptr Input\n"
510                 "%zero      = OpConstant %i32 0\n"
511
512                 "%main      = OpFunction %void None %voidf\n"
513                 "%label     = OpLabel\n"
514                 "%idval     = OpLoad %uvec3 %id\n"
515                 "%x         = OpCompositeExtract %u32 %idval 0\n"
516                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
517                 "%inval1    = OpLoad %f32 %inloc1\n"
518                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
519                 "%inval2    = OpLoad %f32 %inloc2\n"
520                 "%rem       = OpFRem %f32 %inval1 %inval2\n"
521                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
522                 "             OpStore %outloc %rem\n"
523                 "             OpReturn\n"
524                 "             OpFunctionEnd\n";
525
526         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
527         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
528         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
529         spec.numWorkGroups = IVec3(numElements, 1, 1);
530
531         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
532
533         return group.release();
534 }
535
536 // Copy contents in the input buffer to the output buffer.
537 tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
538 {
539         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
540         de::Random                                              rnd                             (deStringHash(group->getName()));
541         const int                                               numElements             = 100;
542
543         // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
544         ComputeShaderSpec                               spec1;
545         vector<Vec4>                                    inputFloats1    (numElements);
546         vector<Vec4>                                    outputFloats1   (numElements);
547
548         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
549
550         for (size_t ndx = 0; ndx < numElements; ++ndx)
551                 outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
552
553         spec1.assembly =
554                 string(s_ShaderPreamble) +
555
556                 "OpName %main           \"main\"\n"
557                 "OpName %id             \"gl_GlobalInvocationID\"\n"
558
559                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
560
561                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
562
563                 "%vec4       = OpTypeVector %f32 4\n"
564                 "%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
565                 "%vec4ptr_f  = OpTypePointer Function %vec4\n"
566                 "%vec4arr    = OpTypeRuntimeArray %vec4\n"
567                 "%inbuf      = OpTypeStruct %vec4arr\n"
568                 "%inbufptr   = OpTypePointer Uniform %inbuf\n"
569                 "%indata     = OpVariable %inbufptr Uniform\n"
570                 "%outbuf     = OpTypeStruct %vec4arr\n"
571                 "%outbufptr  = OpTypePointer Uniform %outbuf\n"
572                 "%outdata    = OpVariable %outbufptr Uniform\n"
573
574                 "%id         = OpVariable %uvec3ptr Input\n"
575                 "%zero       = OpConstant %i32 0\n"
576                 "%c_f_0      = OpConstant %f32 0.\n"
577                 "%c_f_0_5    = OpConstant %f32 0.5\n"
578                 "%c_f_1_5    = OpConstant %f32 1.5\n"
579                 "%c_f_2_5    = OpConstant %f32 2.5\n"
580                 "%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
581
582                 "%main       = OpFunction %void None %voidf\n"
583                 "%label      = OpLabel\n"
584                 "%v_vec4     = OpVariable %vec4ptr_f Function\n"
585                 "%idval      = OpLoad %uvec3 %id\n"
586                 "%x          = OpCompositeExtract %u32 %idval 0\n"
587                 "%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
588                 "%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
589                 "              OpCopyMemory %v_vec4 %inloc\n"
590                 "%v_vec4_val = OpLoad %vec4 %v_vec4\n"
591                 "%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
592                 "              OpStore %outloc %add\n"
593                 "              OpReturn\n"
594                 "              OpFunctionEnd\n";
595
596         spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
597         spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
598         spec1.numWorkGroups = IVec3(numElements, 1, 1);
599
600         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
601
602         // The following case copies a float[100] variable from the input buffer to the output buffer.
603         ComputeShaderSpec                               spec2;
604         vector<float>                                   inputFloats2    (numElements);
605         vector<float>                                   outputFloats2   (numElements);
606
607         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
608
609         for (size_t ndx = 0; ndx < numElements; ++ndx)
610                 outputFloats2[ndx] = inputFloats2[ndx];
611
612         spec2.assembly =
613                 string(s_ShaderPreamble) +
614
615                 "OpName %main           \"main\"\n"
616                 "OpName %id             \"gl_GlobalInvocationID\"\n"
617
618                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
619
620                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
621
622                 "%hundred        = OpConstant %u32 100\n"
623                 "%f32arr100      = OpTypeArray %f32 %hundred\n"
624                 "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
625                 "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
626                 "%inbuf          = OpTypeStruct %f32arr100\n"
627                 "%inbufptr       = OpTypePointer Uniform %inbuf\n"
628                 "%indata         = OpVariable %inbufptr Uniform\n"
629                 "%outbuf         = OpTypeStruct %f32arr100\n"
630                 "%outbufptr      = OpTypePointer Uniform %outbuf\n"
631                 "%outdata        = OpVariable %outbufptr Uniform\n"
632
633                 "%id             = OpVariable %uvec3ptr Input\n"
634                 "%zero           = OpConstant %i32 0\n"
635
636                 "%main           = OpFunction %void None %voidf\n"
637                 "%label          = OpLabel\n"
638                 "%var            = OpVariable %f32arr100ptr_f Function\n"
639                 "%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
640                 "%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
641                 "                  OpCopyMemory %var %inarr\n"
642                 "                  OpCopyMemory %outarr %var\n"
643                 "                  OpReturn\n"
644                 "                  OpFunctionEnd\n";
645
646         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
647         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
648         spec2.numWorkGroups = IVec3(1, 1, 1);
649
650         group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
651
652         // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
653         ComputeShaderSpec                               spec3;
654         vector<float>                                   inputFloats3    (16);
655         vector<float>                                   outputFloats3   (16);
656
657         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
658
659         for (size_t ndx = 0; ndx < 16; ++ndx)
660                 outputFloats3[ndx] = -inputFloats3[ndx];
661
662         spec3.assembly =
663                 string(s_ShaderPreamble) +
664
665                 "OpName %main           \"main\"\n"
666                 "OpName %id             \"gl_GlobalInvocationID\"\n"
667
668                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
669
670                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
671
672                 "%vec4      = OpTypeVector %f32 4\n"
673                 "%inbuf     = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
674                 "%inbufptr  = OpTypePointer Uniform %inbuf\n"
675                 "%indata    = OpVariable %inbufptr Uniform\n"
676                 "%outbuf    = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
677                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
678                 "%outdata   = OpVariable %outbufptr Uniform\n"
679                 "%vec4stptr = OpTypePointer Function %inbuf\n"
680
681                 "%id        = OpVariable %uvec3ptr Input\n"
682                 "%zero      = OpConstant %i32 0\n"
683
684                 "%main      = OpFunction %void None %voidf\n"
685                 "%label     = OpLabel\n"
686                 "%var       = OpVariable %vec4stptr Function\n"
687                 "             OpCopyMemory %var %indata\n"
688                 "             OpCopyMemory %outdata %var\n"
689                 "             OpReturn\n"
690                 "             OpFunctionEnd\n";
691
692         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
693         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
694         spec3.numWorkGroups = IVec3(1, 1, 1);
695
696         group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
697
698         // The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
699         ComputeShaderSpec                               spec4;
700         vector<float>                                   inputFloats4    (numElements);
701         vector<float>                                   outputFloats4   (numElements);
702
703         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
704
705         for (size_t ndx = 0; ndx < numElements; ++ndx)
706                 outputFloats4[ndx] = -inputFloats4[ndx];
707
708         spec4.assembly =
709                 string(s_ShaderPreamble) +
710
711                 "OpName %main           \"main\"\n"
712                 "OpName %id             \"gl_GlobalInvocationID\"\n"
713
714                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
715
716                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
717
718                 "%f32ptr_f  = OpTypePointer Function %f32\n"
719                 "%id        = OpVariable %uvec3ptr Input\n"
720                 "%zero      = OpConstant %i32 0\n"
721
722                 "%main      = OpFunction %void None %voidf\n"
723                 "%label     = OpLabel\n"
724                 "%var       = OpVariable %f32ptr_f Function\n"
725                 "%idval     = OpLoad %uvec3 %id\n"
726                 "%x         = OpCompositeExtract %u32 %idval 0\n"
727                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
728                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
729                 "             OpCopyMemory %var %inloc\n"
730                 "%val       = OpLoad %f32 %var\n"
731                 "%neg       = OpFNegate %f32 %val\n"
732                 "             OpStore %outloc %neg\n"
733                 "             OpReturn\n"
734                 "             OpFunctionEnd\n";
735
736         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
737         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
738         spec4.numWorkGroups = IVec3(numElements, 1, 1);
739
740         group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
741
742         return group.release();
743 }
744
745 tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
746 {
747         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
748         ComputeShaderSpec                               spec;
749         de::Random                                              rnd                             (deStringHash(group->getName()));
750         const int                                               numElements             = 100;
751         vector<float>                                   inputFloats             (numElements, 0);
752         vector<float>                                   outputFloats    (numElements, 0);
753
754         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
755
756         for (size_t ndx = 0; ndx < numElements; ++ndx)
757                 outputFloats[ndx] = inputFloats[ndx] + 7.5f;
758
759         spec.assembly =
760                 string(s_ShaderPreamble) +
761
762                 "OpName %main           \"main\"\n"
763                 "OpName %id             \"gl_GlobalInvocationID\"\n"
764
765                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
766
767                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
768
769                 "%fvec3    = OpTypeVector %f32 3\n"
770                 "%fmat     = OpTypeMatrix %fvec3 3\n"
771                 "%three    = OpConstant %u32 3\n"
772                 "%farr     = OpTypeArray %f32 %three\n"
773                 "%fst      = OpTypeStruct %f32 %f32\n"
774
775                 + string(s_InputOutputBuffer) +
776
777                 "%id            = OpVariable %uvec3ptr Input\n"
778                 "%zero          = OpConstant %i32 0\n"
779                 "%c_f           = OpConstant %f32 1.5\n"
780                 "%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
781                 "%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
782                 "%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
783                 "%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
784
785                 "%main          = OpFunction %void None %voidf\n"
786                 "%label         = OpLabel\n"
787                 "%c_f_copy      = OpCopyObject %f32   %c_f\n"
788                 "%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
789                 "%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
790                 "%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
791                 "%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
792                 "%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
793                 "%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
794                 "%farr_elem     = OpCompositeExtract %f32 %c_fmat_copy 2\n"
795                 "%fst_elem      = OpCompositeExtract %f32 %c_fmat_copy 1\n"
796                 // Add up. 1.5 * 5 = 7.5.
797                 "%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
798                 "%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
799                 "%add3          = OpFAdd %f32 %add2     %farr_elem\n"
800                 "%add4          = OpFAdd %f32 %add3     %fst_elem\n"
801
802                 "%idval         = OpLoad %uvec3 %id\n"
803                 "%x             = OpCompositeExtract %u32 %idval 0\n"
804                 "%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
805                 "%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
806                 "%inval         = OpLoad %f32 %inloc\n"
807                 "%add           = OpFAdd %f32 %add4 %inval\n"
808                 "                 OpStore %outloc %add\n"
809                 "                 OpReturn\n"
810                 "                 OpFunctionEnd\n";
811         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
812         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
813         spec.numWorkGroups = IVec3(numElements, 1, 1);
814
815         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
816
817         return group.release();
818 }
819 // Assembly code used for testing OpUnreachable is based on GLSL source code:
820 //
821 // #version 430
822 //
823 // layout(std140, set = 0, binding = 0) readonly buffer Input {
824 //   float elements[];
825 // } input_data;
826 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
827 //   float elements[];
828 // } output_data;
829 //
830 // void not_called_func() {
831 //   // place OpUnreachable here
832 // }
833 //
834 // uint modulo4(uint val) {
835 //   switch (val % uint(4)) {
836 //     case 0:  return 3;
837 //     case 1:  return 2;
838 //     case 2:  return 1;
839 //     case 3:  return 0;
840 //     default: return 100; // place OpUnreachable here
841 //   }
842 // }
843 //
844 // uint const5() {
845 //   return 5;
846 //   // place OpUnreachable here
847 // }
848 //
849 // void main() {
850 //   uint x = gl_GlobalInvocationID.x;
851 //   if (const5() > modulo4(1000)) {
852 //     output_data.elements[x] = -input_data.elements[x];
853 //   } else {
854 //     // place OpUnreachable here
855 //     output_data.elements[x] = input_data.elements[x];
856 //   }
857 // }
858
859 tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
860 {
861         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
862         ComputeShaderSpec                               spec;
863         de::Random                                              rnd                             (deStringHash(group->getName()));
864         const int                                               numElements             = 100;
865         vector<float>                                   positiveFloats  (numElements, 0);
866         vector<float>                                   negativeFloats  (numElements, 0);
867
868         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
869
870         for (size_t ndx = 0; ndx < numElements; ++ndx)
871                 negativeFloats[ndx] = -positiveFloats[ndx];
872
873         spec.assembly =
874                 string(s_ShaderPreamble) +
875
876                 "OpSource GLSL 430\n"
877                 "OpName %main            \"main\"\n"
878                 "OpName %func_not_called_func \"not_called_func(\"\n"
879                 "OpName %func_modulo4         \"modulo4(u1;\"\n"
880                 "OpName %func_const5          \"const5(\"\n"
881                 "OpName %id                   \"gl_GlobalInvocationID\"\n"
882
883                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
884
885                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
886
887                 "%u32ptr    = OpTypePointer Function %u32\n"
888                 "%uintfuint = OpTypeFunction %u32 %u32ptr\n"
889                 "%unitf     = OpTypeFunction %u32\n"
890
891                 "%id        = OpVariable %uvec3ptr Input\n"
892                 "%zero      = OpConstant %u32 0\n"
893                 "%one       = OpConstant %u32 1\n"
894                 "%two       = OpConstant %u32 2\n"
895                 "%three     = OpConstant %u32 3\n"
896                 "%four      = OpConstant %u32 4\n"
897                 "%five      = OpConstant %u32 5\n"
898                 "%hundred   = OpConstant %u32 100\n"
899                 "%thousand  = OpConstant %u32 1000\n"
900
901                 + string(s_InputOutputBuffer) +
902
903                 // Main()
904                 "%main   = OpFunction %void None %voidf\n"
905                 "%main_entry  = OpLabel\n"
906                 "%idval       = OpLoad %uvec3 %id\n"
907                 "%x           = OpCompositeExtract %u32 %idval 0\n"
908                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
909                 "%inval       = OpLoad %f32 %inloc\n"
910                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
911                 "%ret_const5  = OpFunctionCall %u32 %func_const5\n"
912                 "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %thousand\n"
913                 "%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
914                 "               OpSelectionMerge %if_end None\n"
915                 "               OpBranchConditional %cmp_gt %if_true %if_false\n"
916                 "%if_true     = OpLabel\n"
917                 "%negate      = OpFNegate %f32 %inval\n"
918                 "               OpStore %outloc %negate\n"
919                 "               OpBranch %if_end\n"
920                 "%if_false    = OpLabel\n"
921                 "               OpUnreachable\n" // Unreachable else branch for if statement
922                 "%if_end      = OpLabel\n"
923                 "               OpReturn\n"
924                 "               OpFunctionEnd\n"
925
926                 // not_called_function()
927                 "%func_not_called_func  = OpFunction %void None %voidf\n"
928                 "%not_called_func_entry = OpLabel\n"
929                 "                         OpUnreachable\n" // Unreachable entry block in not called static function
930                 "                         OpFunctionEnd\n"
931
932                 // modulo4()
933                 "%func_modulo4  = OpFunction %u32 None %uintfuint\n"
934                 "%valptr        = OpFunctionParameter %u32ptr\n"
935                 "%modulo4_entry = OpLabel\n"
936                 "%val           = OpLoad %u32 %valptr\n"
937                 "%modulo        = OpUMod %u32 %val %four\n"
938                 "                 OpSelectionMerge %switch_merge None\n"
939                 "                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
940                 "%case0         = OpLabel\n"
941                 "                 OpReturnValue %three\n"
942                 "%case1         = OpLabel\n"
943                 "                 OpReturnValue %two\n"
944                 "%case2         = OpLabel\n"
945                 "                 OpReturnValue %one\n"
946                 "%case3         = OpLabel\n"
947                 "                 OpReturnValue %zero\n"
948                 "%default       = OpLabel\n"
949                 "                 OpUnreachable\n" // Unreachable default case for switch statement
950                 "%switch_merge  = OpLabel\n"
951                 "                 OpUnreachable\n" // Unreachable merge block for switch statement
952                 "                 OpFunctionEnd\n"
953
954                 // const5()
955                 "%func_const5  = OpFunction %u32 None %unitf\n"
956                 "%const5_entry = OpLabel\n"
957                 "                OpReturnValue %five\n"
958                 "%unreachable  = OpLabel\n"
959                 "                OpUnreachable\n" // Unreachable block in function
960                 "                OpFunctionEnd\n";
961         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
962         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
963         spec.numWorkGroups = IVec3(numElements, 1, 1);
964
965         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
966
967         return group.release();
968 }
969
970 // Assembly code used for testing decoration group is based on GLSL source code:
971 //
972 // #version 430
973 //
974 // layout(std140, set = 0, binding = 0) readonly buffer Input0 {
975 //   float elements[];
976 // } input_data0;
977 // layout(std140, set = 0, binding = 1) readonly buffer Input1 {
978 //   float elements[];
979 // } input_data1;
980 // layout(std140, set = 0, binding = 2) readonly buffer Input2 {
981 //   float elements[];
982 // } input_data2;
983 // layout(std140, set = 0, binding = 3) readonly buffer Input3 {
984 //   float elements[];
985 // } input_data3;
986 // layout(std140, set = 0, binding = 4) readonly buffer Input4 {
987 //   float elements[];
988 // } input_data4;
989 // layout(std140, set = 0, binding = 5) writeonly buffer Output {
990 //   float elements[];
991 // } output_data;
992 //
993 // void main() {
994 //   uint x = gl_GlobalInvocationID.x;
995 //   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
996 // }
997 tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
998 {
999         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1000         ComputeShaderSpec                               spec;
1001         de::Random                                              rnd                             (deStringHash(group->getName()));
1002         const int                                               numElements             = 100;
1003         vector<float>                                   inputFloats0    (numElements, 0);
1004         vector<float>                                   inputFloats1    (numElements, 0);
1005         vector<float>                                   inputFloats2    (numElements, 0);
1006         vector<float>                                   inputFloats3    (numElements, 0);
1007         vector<float>                                   inputFloats4    (numElements, 0);
1008         vector<float>                                   outputFloats    (numElements, 0);
1009
1010         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1011         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1012         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1013         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1014         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1015
1016         for (size_t ndx = 0; ndx < numElements; ++ndx)
1017                 outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1018
1019         spec.assembly =
1020                 string(s_ShaderPreamble) +
1021
1022                 "OpSource GLSL 430\n"
1023                 "OpName %main \"main\"\n"
1024                 "OpName %id \"gl_GlobalInvocationID\"\n"
1025
1026                 // Not using group decoration on variable.
1027                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1028                 // Not using group decoration on type.
1029                 "OpDecorate %f32arr ArrayStride 4\n"
1030
1031                 "OpDecorate %groups BufferBlock\n"
1032                 "OpDecorate %groupm Offset 0\n"
1033                 "%groups = OpDecorationGroup\n"
1034                 "%groupm = OpDecorationGroup\n"
1035
1036                 // Group decoration on multiple structs.
1037                 "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1038                 // Group decoration on multiple struct members.
1039                 "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1040
1041                 "OpDecorate %group1 DescriptorSet 0\n"
1042                 "OpDecorate %group3 DescriptorSet 0\n"
1043                 "OpDecorate %group3 NonWritable\n"
1044                 "OpDecorate %group3 Restrict\n"
1045                 "%group0 = OpDecorationGroup\n"
1046                 "%group1 = OpDecorationGroup\n"
1047                 "%group3 = OpDecorationGroup\n"
1048
1049                 // Applying the same decoration group multiple times.
1050                 "OpGroupDecorate %group1 %outdata\n"
1051                 "OpGroupDecorate %group1 %outdata\n"
1052                 "OpGroupDecorate %group1 %outdata\n"
1053                 "OpDecorate %outdata DescriptorSet 0\n"
1054                 "OpDecorate %outdata Binding 5\n"
1055                 // Applying decoration group containing nothing.
1056                 "OpGroupDecorate %group0 %indata0\n"
1057                 "OpDecorate %indata0 DescriptorSet 0\n"
1058                 "OpDecorate %indata0 Binding 0\n"
1059                 // Applying decoration group containing one decoration.
1060                 "OpGroupDecorate %group1 %indata1\n"
1061                 "OpDecorate %indata1 Binding 1\n"
1062                 // Applying decoration group containing multiple decorations.
1063                 "OpGroupDecorate %group3 %indata2 %indata3\n"
1064                 "OpDecorate %indata2 Binding 2\n"
1065                 "OpDecorate %indata3 Binding 3\n"
1066                 // Applying multiple decoration groups (with overlapping).
1067                 "OpGroupDecorate %group0 %indata4\n"
1068                 "OpGroupDecorate %group1 %indata4\n"
1069                 "OpGroupDecorate %group3 %indata4\n"
1070                 "OpDecorate %indata4 Binding 4\n"
1071
1072                 + string(s_CommonTypes) +
1073
1074                 "%id   = OpVariable %uvec3ptr Input\n"
1075                 "%zero = OpConstant %i32 0\n"
1076
1077                 "%outbuf    = OpTypeStruct %f32arr\n"
1078                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1079                 "%outdata   = OpVariable %outbufptr Uniform\n"
1080                 "%inbuf0    = OpTypeStruct %f32arr\n"
1081                 "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1082                 "%indata0   = OpVariable %inbuf0ptr Uniform\n"
1083                 "%inbuf1    = OpTypeStruct %f32arr\n"
1084                 "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1085                 "%indata1   = OpVariable %inbuf1ptr Uniform\n"
1086                 "%inbuf2    = OpTypeStruct %f32arr\n"
1087                 "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1088                 "%indata2   = OpVariable %inbuf2ptr Uniform\n"
1089                 "%inbuf3    = OpTypeStruct %f32arr\n"
1090                 "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1091                 "%indata3   = OpVariable %inbuf3ptr Uniform\n"
1092                 "%inbuf4    = OpTypeStruct %f32arr\n"
1093                 "%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1094                 "%indata4   = OpVariable %inbufptr Uniform\n"
1095
1096                 "%main   = OpFunction %void None %voidf\n"
1097                 "%label  = OpLabel\n"
1098                 "%idval  = OpLoad %uvec3 %id\n"
1099                 "%x      = OpCompositeExtract %u32 %idval 0\n"
1100                 "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1101                 "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1102                 "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1103                 "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1104                 "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1105                 "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1106                 "%inval0 = OpLoad %f32 %inloc0\n"
1107                 "%inval1 = OpLoad %f32 %inloc1\n"
1108                 "%inval2 = OpLoad %f32 %inloc2\n"
1109                 "%inval3 = OpLoad %f32 %inloc3\n"
1110                 "%inval4 = OpLoad %f32 %inloc4\n"
1111                 "%add0   = OpFAdd %f32 %inval0 %inval1\n"
1112                 "%add1   = OpFAdd %f32 %add0 %inval2\n"
1113                 "%add2   = OpFAdd %f32 %add1 %inval3\n"
1114                 "%add    = OpFAdd %f32 %add2 %inval4\n"
1115                 "          OpStore %outloc %add\n"
1116                 "          OpReturn\n"
1117                 "          OpFunctionEnd\n";
1118         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1119         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1120         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1121         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1122         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1123         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1124         spec.numWorkGroups = IVec3(numElements, 1, 1);
1125
1126         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1127
1128         return group.release();
1129 }
1130
1131 struct SpecConstantTwoIntCase
1132 {
1133         const char*             caseName;
1134         const char*             scDefinition0;
1135         const char*             scDefinition1;
1136         const char*             scResultType;
1137         const char*             scOperation;
1138         deInt32                 scActualValue0;
1139         deInt32                 scActualValue1;
1140         const char*             resultOperation;
1141         vector<deInt32> expectedOutput;
1142
1143                                         SpecConstantTwoIntCase (const char* name,
1144                                                                                         const char* definition0,
1145                                                                                         const char* definition1,
1146                                                                                         const char* resultType,
1147                                                                                         const char* operation,
1148                                                                                         deInt32 value0,
1149                                                                                         deInt32 value1,
1150                                                                                         const char* resultOp,
1151                                                                                         const vector<deInt32>& output)
1152                                                 : caseName                      (name)
1153                                                 , scDefinition0         (definition0)
1154                                                 , scDefinition1         (definition1)
1155                                                 , scResultType          (resultType)
1156                                                 , scOperation           (operation)
1157                                                 , scActualValue0        (value0)
1158                                                 , scActualValue1        (value1)
1159                                                 , resultOperation       (resultOp)
1160                                                 , expectedOutput        (output) {}
1161 };
1162
1163 tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1164 {
1165         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1166         vector<SpecConstantTwoIntCase>  cases;
1167         de::Random                                              rnd                             (deStringHash(group->getName()));
1168         const int                                               numElements             = 100;
1169         vector<deInt32>                                 inputInts               (numElements, 0);
1170         vector<deInt32>                                 outputInts1             (numElements, 0);
1171         vector<deInt32>                                 outputInts2             (numElements, 0);
1172         vector<deInt32>                                 outputInts3             (numElements, 0);
1173         vector<deInt32>                                 outputInts4             (numElements, 0);
1174         const StringTemplate                    shaderTemplate  (
1175                 string(s_ShaderPreamble) +
1176
1177                 "OpName %main           \"main\"\n"
1178                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1179
1180                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1181                 "OpDecorate %sc_0  SpecId 0\n"
1182                 "OpDecorate %sc_1  SpecId 1\n"
1183
1184                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1185
1186                 "%i32ptr    = OpTypePointer Uniform %i32\n"
1187                 "%i32arr    = OpTypeRuntimeArray %i32\n"
1188                 "%boolptr   = OpTypePointer Uniform %bool\n"
1189                 "%boolarr   = OpTypeRuntimeArray %bool\n"
1190                 "%inbuf     = OpTypeStruct %i32arr\n"
1191                 "%inbufptr  = OpTypePointer Uniform %inbuf\n"
1192                 "%indata    = OpVariable %inbufptr Uniform\n"
1193                 "%outbuf    = OpTypeStruct %i32arr\n"
1194                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1195                 "%outdata   = OpVariable %outbufptr Uniform\n"
1196
1197                 "%id        = OpVariable %uvec3ptr Input\n"
1198                 "%zero      = OpConstant %i32 0\n"
1199
1200                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
1201                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
1202                 "%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1203
1204                 "%main      = OpFunction %void None %voidf\n"
1205                 "%label     = OpLabel\n"
1206                 "%idval     = OpLoad %uvec3 %id\n"
1207                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1208                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1209                 "%inval     = OpLoad %i32 %inloc\n"
1210                 "%final     = ${GEN_RESULT}\n"
1211                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1212                 "             OpStore %outloc %final\n"
1213                 "             OpReturn\n"
1214                 "             OpFunctionEnd\n");
1215
1216         fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1217
1218         for (size_t ndx = 0; ndx < numElements; ++ndx)
1219         {
1220                 outputInts1[ndx] = inputInts[ndx] + 42;
1221                 outputInts2[ndx] = inputInts[ndx];
1222                 outputInts3[ndx] = inputInts[ndx] - 11200;
1223                 outputInts4[ndx] = inputInts[ndx] + 1;
1224         }
1225
1226         const char addScToInput[]               = "OpIAdd %i32 %inval %sc_final";
1227         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_final %inval %zero";
1228         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
1229
1230         cases.push_back(SpecConstantTwoIntCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                     62,             -20,    addScToInput,           outputInts1));
1231         cases.push_back(SpecConstantTwoIntCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                     100,    58,             addScToInput,           outputInts1));
1232         cases.push_back(SpecConstantTwoIntCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                     -2,             -21,    addScToInput,           outputInts1));
1233         cases.push_back(SpecConstantTwoIntCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                     -126,   -3,             addScToInput,           outputInts1));
1234         cases.push_back(SpecConstantTwoIntCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                     126,    3,              addScToInput,           outputInts1));
1235         cases.push_back(SpecConstantTwoIntCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1236         cases.push_back(SpecConstantTwoIntCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1237         cases.push_back(SpecConstantTwoIntCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                     342,    50,             addScToInput,           outputInts1));
1238         cases.push_back(SpecConstantTwoIntCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                     42,             63,             addScToInput,           outputInts1));
1239         cases.push_back(SpecConstantTwoIntCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                     34,             8,              addScToInput,           outputInts1));
1240         cases.push_back(SpecConstantTwoIntCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                     18,             56,             addScToInput,           outputInts1));
1241         cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1242         cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1243         cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                     21,             1,              addScToInput,           outputInts1));
1244         cases.push_back(SpecConstantTwoIntCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                     -20,    -10,    selectTrueUsingSc,      outputInts2));
1245         cases.push_back(SpecConstantTwoIntCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                     10,             20,             selectTrueUsingSc,      outputInts2));
1246         cases.push_back(SpecConstantTwoIntCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1247         cases.push_back(SpecConstantTwoIntCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                     10,             5,              selectTrueUsingSc,      outputInts2));
1248         cases.push_back(SpecConstantTwoIntCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                     -10,    -10,    selectTrueUsingSc,      outputInts2));
1249         cases.push_back(SpecConstantTwoIntCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                     50,             100,    selectTrueUsingSc,      outputInts2));
1250         cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1251         cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                     10,             10,             selectTrueUsingSc,      outputInts2));
1252         cases.push_back(SpecConstantTwoIntCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                     42,             24,             selectFalseUsingSc,     outputInts2));
1253         cases.push_back(SpecConstantTwoIntCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1254         cases.push_back(SpecConstantTwoIntCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1255         cases.push_back(SpecConstantTwoIntCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1256         cases.push_back(SpecConstantTwoIntCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1257         cases.push_back(SpecConstantTwoIntCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                           -42,    0,              addScToInput,           outputInts1));
1258         cases.push_back(SpecConstantTwoIntCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                           -43,    0,              addScToInput,           outputInts1));
1259         cases.push_back(SpecConstantTwoIntCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                           1,              0,              selectFalseUsingSc,     outputInts2));
1260         cases.push_back(SpecConstantTwoIntCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %zero",       1,              42,             addScToInput,           outputInts1));
1261         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1262
1263         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1264         {
1265                 map<string, string>             specializations;
1266                 ComputeShaderSpec               spec;
1267
1268                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
1269                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
1270                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
1271                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
1272                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
1273
1274                 spec.assembly = shaderTemplate.specialize(specializations);
1275                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1276                 spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1277                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1278                 spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1279                 spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1280
1281                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1282         }
1283
1284         ComputeShaderSpec                               spec;
1285
1286         spec.assembly =
1287                 string(s_ShaderPreamble) +
1288
1289                 "OpName %main           \"main\"\n"
1290                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1291
1292                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1293                 "OpDecorate %sc_0  SpecId 0\n"
1294                 "OpDecorate %sc_1  SpecId 1\n"
1295                 "OpDecorate %sc_2  SpecId 2\n"
1296
1297                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1298
1299                 "%ivec3     = OpTypeVector %i32 3\n"
1300                 "%i32ptr    = OpTypePointer Uniform %i32\n"
1301                 "%i32arr    = OpTypeRuntimeArray %i32\n"
1302                 "%boolptr   = OpTypePointer Uniform %bool\n"
1303                 "%boolarr   = OpTypeRuntimeArray %bool\n"
1304                 "%inbuf     = OpTypeStruct %i32arr\n"
1305                 "%inbufptr  = OpTypePointer Uniform %inbuf\n"
1306                 "%indata    = OpVariable %inbufptr Uniform\n"
1307                 "%outbuf    = OpTypeStruct %i32arr\n"
1308                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1309                 "%outdata   = OpVariable %outbufptr Uniform\n"
1310
1311                 "%id        = OpVariable %uvec3ptr Input\n"
1312                 "%zero      = OpConstant %i32 0\n"
1313                 "%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1314
1315                 "%sc_0        = OpSpecConstant %i32 0\n"
1316                 "%sc_1        = OpSpecConstant %i32 0\n"
1317                 "%sc_2        = OpSpecConstant %i32 0\n"
1318                 "%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1319                 "%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1320                 "%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1321                 "%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1322                 "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1323                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1324                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1325                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1326                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1327                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1328
1329                 "%main      = OpFunction %void None %voidf\n"
1330                 "%label     = OpLabel\n"
1331                 "%idval     = OpLoad %uvec3 %id\n"
1332                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1333                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1334                 "%inval     = OpLoad %i32 %inloc\n"
1335                 "%final     = OpIAdd %i32 %inval %sc_final\n"
1336                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1337                 "             OpStore %outloc %final\n"
1338                 "             OpReturn\n"
1339                 "             OpFunctionEnd\n";
1340         spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1341         spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1342         spec.numWorkGroups = IVec3(numElements, 1, 1);
1343         spec.specConstants.push_back(123);
1344         spec.specConstants.push_back(56);
1345         spec.specConstants.push_back(-77);
1346
1347         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1348
1349         return group.release();
1350 }
1351
1352 tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1353 {
1354         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1355         ComputeShaderSpec                               spec1;
1356         ComputeShaderSpec                               spec2;
1357         ComputeShaderSpec                               spec3;
1358         de::Random                                              rnd                             (deStringHash(group->getName()));
1359         const int                                               numElements             = 100;
1360         vector<float>                                   inputFloats             (numElements, 0);
1361         vector<float>                                   outputFloats1   (numElements, 0);
1362         vector<float>                                   outputFloats2   (numElements, 0);
1363         vector<float>                                   outputFloats3   (numElements, 0);
1364
1365         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1366
1367         for (size_t ndx = 0; ndx < numElements; ++ndx)
1368         {
1369                 switch (ndx % 3)
1370                 {
1371                         case 0:         outputFloats1[ndx] = inputFloats[ndx] + 5.5f;   break;
1372                         case 1:         outputFloats1[ndx] = inputFloats[ndx] + 20.5f;  break;
1373                         case 2:         outputFloats1[ndx] = inputFloats[ndx] + 1.75f;  break;
1374                         default:        break;
1375                 }
1376                 outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1377                 outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1378         }
1379
1380         spec1.assembly =
1381                 string(s_ShaderPreamble) +
1382
1383                 "OpSource GLSL 430\n"
1384                 "OpName %main \"main\"\n"
1385                 "OpName %id \"gl_GlobalInvocationID\"\n"
1386
1387                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1388
1389                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1390
1391                 "%id = OpVariable %uvec3ptr Input\n"
1392                 "%zero       = OpConstant %i32 0\n"
1393                 "%three      = OpConstant %u32 3\n"
1394                 "%constf5p5  = OpConstant %f32 5.5\n"
1395                 "%constf20p5 = OpConstant %f32 20.5\n"
1396                 "%constf1p75 = OpConstant %f32 1.75\n"
1397                 "%constf8p5  = OpConstant %f32 8.5\n"
1398                 "%constf6p5  = OpConstant %f32 6.5\n"
1399
1400                 "%main     = OpFunction %void None %voidf\n"
1401                 "%entry    = OpLabel\n"
1402                 "%idval    = OpLoad %uvec3 %id\n"
1403                 "%x        = OpCompositeExtract %u32 %idval 0\n"
1404                 "%selector = OpUMod %u32 %x %three\n"
1405                 "            OpSelectionMerge %phi None\n"
1406                 "            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1407
1408                 // Case 1 before OpPhi.
1409                 "%case1    = OpLabel\n"
1410                 "            OpBranch %phi\n"
1411
1412                 "%default  = OpLabel\n"
1413                 "            OpUnreachable\n"
1414
1415                 "%phi      = OpLabel\n"
1416                 "%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1417                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1418                 "%inval    = OpLoad %f32 %inloc\n"
1419                 "%add      = OpFAdd %f32 %inval %operand\n"
1420                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1421                 "            OpStore %outloc %add\n"
1422                 "            OpReturn\n"
1423
1424                 // Case 0 after OpPhi.
1425                 "%case0    = OpLabel\n"
1426                 "            OpBranch %phi\n"
1427
1428
1429                 // Case 2 after OpPhi.
1430                 "%case2    = OpLabel\n"
1431                 "            OpBranch %phi\n"
1432
1433                 "            OpFunctionEnd\n";
1434         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1435         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1436         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1437
1438         group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1439
1440         spec2.assembly =
1441                 string(s_ShaderPreamble) +
1442
1443                 "OpName %main \"main\"\n"
1444                 "OpName %id \"gl_GlobalInvocationID\"\n"
1445
1446                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1447
1448                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1449
1450                 "%id         = OpVariable %uvec3ptr Input\n"
1451                 "%zero       = OpConstant %i32 0\n"
1452                 "%one        = OpConstant %i32 1\n"
1453                 "%three      = OpConstant %i32 3\n"
1454                 "%constf6p5  = OpConstant %f32 6.5\n"
1455
1456                 "%main       = OpFunction %void None %voidf\n"
1457                 "%entry      = OpLabel\n"
1458                 "%idval      = OpLoad %uvec3 %id\n"
1459                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1460                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1461                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1462                 "%inval      = OpLoad %f32 %inloc\n"
1463                 "              OpBranch %phi\n"
1464
1465                 "%phi        = OpLabel\n"
1466                 "%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1467                 "%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1468                 "%step_next  = OpIAdd %i32 %step %one\n"
1469                 "%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1470                 "%still_loop = OpSLessThan %bool %step %three\n"
1471                 "              OpLoopMerge %exit %phi None\n"
1472                 "              OpBranchConditional %still_loop %phi %exit\n"
1473
1474                 "%exit       = OpLabel\n"
1475                 "              OpStore %outloc %accum\n"
1476                 "              OpReturn\n"
1477                 "              OpFunctionEnd\n";
1478         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1479         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1480         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1481
1482         group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1483
1484         spec3.assembly =
1485                 string(s_ShaderPreamble) +
1486
1487                 "OpName %main \"main\"\n"
1488                 "OpName %id \"gl_GlobalInvocationID\"\n"
1489
1490                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1491
1492                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1493
1494                 "%f32ptr_f   = OpTypePointer Function %f32\n"
1495                 "%id         = OpVariable %uvec3ptr Input\n"
1496                 "%true       = OpConstantTrue %bool\n"
1497                 "%false      = OpConstantFalse %bool\n"
1498                 "%zero       = OpConstant %i32 0\n"
1499                 "%constf8p5  = OpConstant %f32 8.5\n"
1500
1501                 "%main       = OpFunction %void None %voidf\n"
1502                 "%entry      = OpLabel\n"
1503                 "%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1504                 "%idval      = OpLoad %uvec3 %id\n"
1505                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1506                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1507                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1508                 "%a_init     = OpLoad %f32 %inloc\n"
1509                 "%b_init     = OpLoad %f32 %b\n"
1510                 "              OpBranch %phi\n"
1511
1512                 "%phi        = OpLabel\n"
1513                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1514                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1515                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1516                 "              OpLoopMerge %exit %phi None\n"
1517                 "              OpBranchConditional %still_loop %phi %exit\n"
1518
1519                 "%exit       = OpLabel\n"
1520                 "%sub        = OpFSub %f32 %a_next %b_next\n"
1521                 "              OpStore %outloc %sub\n"
1522                 "              OpReturn\n"
1523                 "              OpFunctionEnd\n";
1524         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1525         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1526         spec3.numWorkGroups = IVec3(numElements, 1, 1);
1527
1528         group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1529
1530         return group.release();
1531 }
1532
1533 // Assembly code used for testing block order is based on GLSL source code:
1534 //
1535 // #version 430
1536 //
1537 // layout(std140, set = 0, binding = 0) readonly buffer Input {
1538 //   float elements[];
1539 // } input_data;
1540 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
1541 //   float elements[];
1542 // } output_data;
1543 //
1544 // void main() {
1545 //   uint x = gl_GlobalInvocationID.x;
1546 //   output_data.elements[x] = input_data.elements[x];
1547 //   if (x > uint(50)) {
1548 //     switch (x % uint(3)) {
1549 //       case 0: output_data.elements[x] += 1.5f; break;
1550 //       case 1: output_data.elements[x] += 42.f; break;
1551 //       case 2: output_data.elements[x] -= 27.f; break;
1552 //       default: break;
1553 //     }
1554 //   } else {
1555 //     output_data.elements[x] = -input_data.elements[x];
1556 //   }
1557 // }
1558 tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1559 {
1560         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1561         ComputeShaderSpec                               spec;
1562         de::Random                                              rnd                             (deStringHash(group->getName()));
1563         const int                                               numElements             = 100;
1564         vector<float>                                   inputFloats             (numElements, 0);
1565         vector<float>                                   outputFloats    (numElements, 0);
1566
1567         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1568
1569         for (size_t ndx = 0; ndx <= 50; ++ndx)
1570                 outputFloats[ndx] = -inputFloats[ndx];
1571
1572         for (size_t ndx = 51; ndx < numElements; ++ndx)
1573         {
1574                 switch (ndx % 3)
1575                 {
1576                         case 0:         outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1577                         case 1:         outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1578                         case 2:         outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1579                         default:        break;
1580                 }
1581         }
1582
1583         spec.assembly =
1584                 string(s_ShaderPreamble) +
1585
1586                 "OpSource GLSL 430\n"
1587                 "OpName %main \"main\"\n"
1588                 "OpName %id \"gl_GlobalInvocationID\"\n"
1589
1590                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1591
1592                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
1593
1594                 "%u32ptr       = OpTypePointer Function %u32\n"
1595                 "%u32ptr_input = OpTypePointer Input %u32\n"
1596
1597                 + string(s_InputOutputBuffer) +
1598
1599                 "%id        = OpVariable %uvec3ptr Input\n"
1600                 "%zero      = OpConstant %i32 0\n"
1601                 "%const3    = OpConstant %u32 3\n"
1602                 "%const50   = OpConstant %u32 50\n"
1603                 "%constf1p5 = OpConstant %f32 1.5\n"
1604                 "%constf27  = OpConstant %f32 27.0\n"
1605                 "%constf42  = OpConstant %f32 42.0\n"
1606
1607                 "%main = OpFunction %void None %voidf\n"
1608
1609                 // entry block.
1610                 "%entry    = OpLabel\n"
1611
1612                 // Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1613                 "%xvar     = OpVariable %u32ptr Function\n"
1614                 "%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1615                 "%x        = OpLoad %u32 %xptr\n"
1616                 "            OpStore %xvar %x\n"
1617
1618                 "%cmp      = OpUGreaterThan %bool %x %const50\n"
1619                 "            OpSelectionMerge %if_merge None\n"
1620                 "            OpBranchConditional %cmp %if_true %if_false\n"
1621
1622                 // Merge block for switch-statement: placed at the beginning.
1623                 "%switch_merge = OpLabel\n"
1624                 "                OpBranch %if_merge\n"
1625
1626                 // Case 1 for switch-statement.
1627                 "%case1    = OpLabel\n"
1628                 "%x_1      = OpLoad %u32 %xvar\n"
1629                 "%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1630                 "%inval_1  = OpLoad %f32 %inloc_1\n"
1631                 "%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1632                 "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1633                 "            OpStore %outloc_1 %addf42\n"
1634                 "            OpBranch %switch_merge\n"
1635
1636                 // False branch for if-statement: placed in the middle of switch cases and before true branch.
1637                 "%if_false = OpLabel\n"
1638                 "%x_f      = OpLoad %u32 %xvar\n"
1639                 "%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1640                 "%inval_f  = OpLoad %f32 %inloc_f\n"
1641                 "%negate   = OpFNegate %f32 %inval_f\n"
1642                 "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1643                 "            OpStore %outloc_f %negate\n"
1644                 "            OpBranch %if_merge\n"
1645
1646                 // Merge block for if-statement: placed in the middle of true and false branch.
1647                 "%if_merge = OpLabel\n"
1648                 "            OpReturn\n"
1649
1650                 // True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1651                 "%if_true  = OpLabel\n"
1652                 "%xval_t   = OpLoad %u32 %xvar\n"
1653                 "%mod      = OpUMod %u32 %xval_t %const3\n"
1654                 "            OpSelectionMerge %switch_merge None\n"
1655                 "            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1656
1657                 // Case 2 for switch-statement.
1658                 "%case2    = OpLabel\n"
1659                 "%x_2      = OpLoad %u32 %xvar\n"
1660                 "%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1661                 "%inval_2  = OpLoad %f32 %inloc_2\n"
1662                 "%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1663                 "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1664                 "            OpStore %outloc_2 %subf27\n"
1665                 "            OpBranch %switch_merge\n"
1666
1667                 // Default case for switch-statement: placed in the middle of normal cases.
1668                 "%default = OpLabel\n"
1669                 "           OpBranch %switch_merge\n"
1670
1671                 // Case 0 for switch-statement: out of order.
1672                 "%case0    = OpLabel\n"
1673                 "%x_0      = OpLoad %u32 %xvar\n"
1674                 "%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1675                 "%inval_0  = OpLoad %f32 %inloc_0\n"
1676                 "%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1677                 "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1678                 "            OpStore %outloc_0 %addf1p5\n"
1679                 "            OpBranch %switch_merge\n"
1680
1681                 "            OpFunctionEnd\n";
1682         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1683         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1684         spec.numWorkGroups = IVec3(numElements, 1, 1);
1685
1686         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1687
1688         return group.release();
1689 }
1690
1691 tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
1692 {
1693         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
1694         ComputeShaderSpec                               spec1;
1695         ComputeShaderSpec                               spec2;
1696         de::Random                                              rnd                             (deStringHash(group->getName()));
1697         const int                                               numElements             = 100;
1698         vector<float>                                   inputFloats             (numElements, 0);
1699         vector<float>                                   outputFloats1   (numElements, 0);
1700         vector<float>                                   outputFloats2   (numElements, 0);
1701         fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
1702
1703         for (size_t ndx = 0; ndx < numElements; ++ndx)
1704         {
1705                 outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
1706                 outputFloats2[ndx] = -inputFloats[ndx];
1707         }
1708
1709         const string assembly(
1710                 "OpCapability Shader\n"
1711                 "OpMemoryModel Logical GLSL450\n"
1712                 "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
1713                 "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
1714                 // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
1715                 "OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexID %instanceID\n"
1716                 "OpExecutionMode %vert_main LocalSize 1 1 1\n"
1717
1718                 "OpName %comp_main1              \"entrypoint1\"\n"
1719                 "OpName %comp_main2              \"entrypoint2\"\n"
1720                 "OpName %vert_main               \"entrypoint2\"\n"
1721                 "OpName %id                      \"gl_GlobalInvocationID\"\n"
1722                 "OpName %vert_builtin_st         \"gl_PerVertex\"\n"
1723                 "OpName %vertexID                \"gl_VertexIndex\"\n"
1724                 "OpName %instanceID              \"gl_InstanceIndex\"\n"
1725                 "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
1726                 "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
1727                 "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
1728
1729                 "OpDecorate %id                      BuiltIn GlobalInvocationId\n"
1730                 "OpDecorate %vertexID                BuiltIn VertexIndex\n"
1731                 "OpDecorate %instanceID              BuiltIn InstanceIndex\n"
1732                 "OpDecorate %vert_builtin_st         Block\n"
1733                 "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
1734                 "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
1735                 "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
1736
1737                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1738
1739                 "%i32ptr              = OpTypePointer Input %i32\n"
1740                 "%vec4                = OpTypeVector %f32 4\n"
1741                 "%vec4ptr             = OpTypePointer Output %vec4\n"
1742                 "%f32arr1             = OpTypeArray %f32 %one\n"
1743                 "%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
1744                 "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
1745                 "%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
1746
1747                 "%id         = OpVariable %uvec3ptr Input\n"
1748                 "%vertexID   = OpVariable %i32ptr Input\n"
1749                 "%instanceID = OpVariable %i32ptr Input\n"
1750                 "%zero       = OpConstant %i32 0\n"
1751                 "%one        = OpConstant %u32 1\n"
1752                 "%c_f32_1    = OpConstant %f32 1\n"
1753                 "%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
1754
1755                 // gl_Position = vec4(1.);
1756                 "%vert_main  = OpFunction %void None %voidf\n"
1757                 "%vert_entry = OpLabel\n"
1758                 "%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
1759                 "              OpStore %position %c_vec4_1\n"
1760                 "              OpReturn\n"
1761                 "              OpFunctionEnd\n"
1762
1763                 // Double inputs.
1764                 "%comp_main1  = OpFunction %void None %voidf\n"
1765                 "%comp1_entry = OpLabel\n"
1766                 "%idval1      = OpLoad %uvec3 %id\n"
1767                 "%x1          = OpCompositeExtract %u32 %idval1 0\n"
1768                 "%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
1769                 "%inval1      = OpLoad %f32 %inloc1\n"
1770                 "%add         = OpFAdd %f32 %inval1 %inval1\n"
1771                 "%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
1772                 "               OpStore %outloc1 %add\n"
1773                 "               OpReturn\n"
1774                 "               OpFunctionEnd\n"
1775
1776                 // Negate inputs.
1777                 "%comp_main2  = OpFunction %void None %voidf\n"
1778                 "%comp2_entry = OpLabel\n"
1779                 "%idval2      = OpLoad %uvec3 %id\n"
1780                 "%x2          = OpCompositeExtract %u32 %idval2 0\n"
1781                 "%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
1782                 "%inval2      = OpLoad %f32 %inloc2\n"
1783                 "%neg         = OpFNegate %f32 %inval2\n"
1784                 "%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
1785                 "               OpStore %outloc2 %neg\n"
1786                 "               OpReturn\n"
1787                 "               OpFunctionEnd\n");
1788
1789         spec1.assembly = assembly;
1790         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1791         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1792         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1793         spec1.entryPoint = "entrypoint1";
1794
1795         spec2.assembly = assembly;
1796         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1797         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1798         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1799         spec2.entryPoint = "entrypoint2";
1800
1801         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
1802         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
1803
1804         return group.release();
1805 }
1806
1807 inline std::string makeLongUTF8String (size_t num4ByteChars)
1808 {
1809         // An example of a longest valid UTF-8 character.  Be explicit about the
1810         // character type because Microsoft compilers can otherwise interpret the
1811         // character string as being over wide (16-bit) characters. Ideally, we
1812         // would just use a C++11 UTF-8 string literal, but we want to support older
1813         // Microsoft compilers.
1814         const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
1815         std::string longString;
1816         longString.reserve(num4ByteChars * 4);
1817         for (size_t count = 0; count < num4ByteChars; count++)
1818         {
1819                 longString += earthAfrica;
1820         }
1821         return longString;
1822 }
1823
1824 tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
1825 {
1826         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
1827         vector<CaseParameter>                   cases;
1828         de::Random                                              rnd                             (deStringHash(group->getName()));
1829         const int                                               numElements             = 100;
1830         vector<float>                                   positiveFloats  (numElements, 0);
1831         vector<float>                                   negativeFloats  (numElements, 0);
1832         const StringTemplate                    shaderTemplate  (
1833                 "OpCapability Shader\n"
1834                 "OpMemoryModel Logical GLSL450\n"
1835
1836                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1837                 "OpExecutionMode %main LocalSize 1 1 1\n"
1838
1839                 "${SOURCE}\n"
1840
1841                 "OpName %main           \"main\"\n"
1842                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1843
1844                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1845
1846                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1847
1848                 "%id        = OpVariable %uvec3ptr Input\n"
1849                 "%zero      = OpConstant %i32 0\n"
1850
1851                 "%main      = OpFunction %void None %voidf\n"
1852                 "%label     = OpLabel\n"
1853                 "%idval     = OpLoad %uvec3 %id\n"
1854                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1855                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1856                 "%inval     = OpLoad %f32 %inloc\n"
1857                 "%neg       = OpFNegate %f32 %inval\n"
1858                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1859                 "             OpStore %outloc %neg\n"
1860                 "             OpReturn\n"
1861                 "             OpFunctionEnd\n");
1862
1863         cases.push_back(CaseParameter("unknown_source",                                                 "OpSource Unknown 0"));
1864         cases.push_back(CaseParameter("wrong_source",                                                   "OpSource OpenCL_C 210"));
1865         cases.push_back(CaseParameter("normal_filename",                                                "%fname = OpString \"filename\"\n"
1866                                                                                                                                                         "OpSource GLSL 430 %fname"));
1867         cases.push_back(CaseParameter("empty_filename",                                                 "%fname = OpString \"\"\n"
1868                                                                                                                                                         "OpSource GLSL 430 %fname"));
1869         cases.push_back(CaseParameter("normal_source_code",                                             "%fname = OpString \"filename\"\n"
1870                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
1871         cases.push_back(CaseParameter("empty_source_code",                                              "%fname = OpString \"filename\"\n"
1872                                                                                                                                                         "OpSource GLSL 430 %fname \"\""));
1873         cases.push_back(CaseParameter("long_source_code",                                               "%fname = OpString \"filename\"\n"
1874                                                                                                                                                         "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
1875         cases.push_back(CaseParameter("utf8_source_code",                                               "%fname = OpString \"filename\"\n"
1876                                                                                                                                                         "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
1877         cases.push_back(CaseParameter("normal_sourcecontinued",                                 "%fname = OpString \"filename\"\n"
1878                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
1879                                                                                                                                                         "OpSourceContinued \"id main() {}\""));
1880         cases.push_back(CaseParameter("empty_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
1881                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1882                                                                                                                                                         "OpSourceContinued \"\""));
1883         cases.push_back(CaseParameter("long_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
1884                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1885                                                                                                                                                         "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
1886         cases.push_back(CaseParameter("utf8_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
1887                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
1888                                                                                                                                                         "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
1889         cases.push_back(CaseParameter("multi_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
1890                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\n\"\n"
1891                                                                                                                                                         "OpSourceContinued \"void\"\n"
1892                                                                                                                                                         "OpSourceContinued \"main()\"\n"
1893                                                                                                                                                         "OpSourceContinued \"{}\""));
1894         cases.push_back(CaseParameter("empty_source_before_sourcecontinued",    "%fname = OpString \"filename\"\n"
1895                                                                                                                                                         "OpSource GLSL 430 %fname \"\"\n"
1896                                                                                                                                                         "OpSourceContinued \"#version 430\nvoid main() {}\""));
1897
1898         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1899
1900         for (size_t ndx = 0; ndx < numElements; ++ndx)
1901                 negativeFloats[ndx] = -positiveFloats[ndx];
1902
1903         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1904         {
1905                 map<string, string>             specializations;
1906                 ComputeShaderSpec               spec;
1907
1908                 specializations["SOURCE"] = cases[caseNdx].param;
1909                 spec.assembly = shaderTemplate.specialize(specializations);
1910                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1911                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1912                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1913
1914                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1915         }
1916
1917         return group.release();
1918 }
1919
1920 tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
1921 {
1922         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
1923         vector<CaseParameter>                   cases;
1924         de::Random                                              rnd                             (deStringHash(group->getName()));
1925         const int                                               numElements             = 100;
1926         vector<float>                                   inputFloats             (numElements, 0);
1927         vector<float>                                   outputFloats    (numElements, 0);
1928         const StringTemplate                    shaderTemplate  (
1929                 string(s_ShaderPreamble) +
1930
1931                 "OpSourceExtension \"${EXTENSION}\"\n"
1932
1933                 "OpName %main           \"main\"\n"
1934                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1935
1936                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1937
1938                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
1939
1940                 "%id        = OpVariable %uvec3ptr Input\n"
1941                 "%zero      = OpConstant %i32 0\n"
1942
1943                 "%main      = OpFunction %void None %voidf\n"
1944                 "%label     = OpLabel\n"
1945                 "%idval     = OpLoad %uvec3 %id\n"
1946                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1947                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1948                 "%inval     = OpLoad %f32 %inloc\n"
1949                 "%neg       = OpFNegate %f32 %inval\n"
1950                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1951                 "             OpStore %outloc %neg\n"
1952                 "             OpReturn\n"
1953                 "             OpFunctionEnd\n");
1954
1955         cases.push_back(CaseParameter("empty_extension",        ""));
1956         cases.push_back(CaseParameter("real_extension",         "GL_ARB_texture_rectangle"));
1957         cases.push_back(CaseParameter("fake_extension",         "GL_ARB_im_the_ultimate_extension"));
1958         cases.push_back(CaseParameter("utf8_extension",         "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
1959         cases.push_back(CaseParameter("long_extension",         makeLongUTF8String(65533) + "ccc")); // word count: 65535
1960
1961         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1962
1963         for (size_t ndx = 0; ndx < numElements; ++ndx)
1964                 outputFloats[ndx] = -inputFloats[ndx];
1965
1966         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1967         {
1968                 map<string, string>             specializations;
1969                 ComputeShaderSpec               spec;
1970
1971                 specializations["EXTENSION"] = cases[caseNdx].param;
1972                 spec.assembly = shaderTemplate.specialize(specializations);
1973                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1974                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1975                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1976
1977                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
1978         }
1979
1980         return group.release();
1981 }
1982
1983 // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
1984 tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
1985 {
1986         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
1987         vector<CaseParameter>                   cases;
1988         de::Random                                              rnd                             (deStringHash(group->getName()));
1989         const int                                               numElements             = 100;
1990         vector<float>                                   positiveFloats  (numElements, 0);
1991         vector<float>                                   negativeFloats  (numElements, 0);
1992         const StringTemplate                    shaderTemplate  (
1993                 string(s_ShaderPreamble) +
1994
1995                 "OpSource GLSL 430\n"
1996                 "OpName %main           \"main\"\n"
1997                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1998
1999                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2000
2001                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2002
2003                 "${TYPE}\n"
2004                 "%null      = OpConstantNull %type\n"
2005
2006                 "%id        = OpVariable %uvec3ptr Input\n"
2007                 "%zero      = OpConstant %i32 0\n"
2008
2009                 "%main      = OpFunction %void None %voidf\n"
2010                 "%label     = OpLabel\n"
2011                 "%idval     = OpLoad %uvec3 %id\n"
2012                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2013                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2014                 "%inval     = OpLoad %f32 %inloc\n"
2015                 "%neg       = OpFNegate %f32 %inval\n"
2016                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2017                 "             OpStore %outloc %neg\n"
2018                 "             OpReturn\n"
2019                 "             OpFunctionEnd\n");
2020
2021         cases.push_back(CaseParameter("bool",                   "%type = OpTypeBool"));
2022         cases.push_back(CaseParameter("sint32",                 "%type = OpTypeInt 32 1"));
2023         cases.push_back(CaseParameter("uint32",                 "%type = OpTypeInt 32 0"));
2024         cases.push_back(CaseParameter("float32",                "%type = OpTypeFloat 32"));
2025         cases.push_back(CaseParameter("vec4float32",    "%type = OpTypeVector %f32 4"));
2026         cases.push_back(CaseParameter("vec3bool",               "%type = OpTypeVector %bool 3"));
2027         cases.push_back(CaseParameter("vec2uint32",             "%type = OpTypeVector %u32 2"));
2028         cases.push_back(CaseParameter("matrix",                 "%type = OpTypeMatrix %uvec3 3"));
2029         cases.push_back(CaseParameter("array",                  "%100 = OpConstant %u32 100\n"
2030                                                                                                         "%type = OpTypeArray %i32 %100"));
2031         cases.push_back(CaseParameter("runtimearray",   "%type = OpTypeRuntimeArray %f32"));
2032         cases.push_back(CaseParameter("struct",                 "%type = OpTypeStruct %f32 %i32 %u32"));
2033         cases.push_back(CaseParameter("pointer",                "%type = OpTypePointer Function %i32"));
2034
2035         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2036
2037         for (size_t ndx = 0; ndx < numElements; ++ndx)
2038                 negativeFloats[ndx] = -positiveFloats[ndx];
2039
2040         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2041         {
2042                 map<string, string>             specializations;
2043                 ComputeShaderSpec               spec;
2044
2045                 specializations["TYPE"] = cases[caseNdx].param;
2046                 spec.assembly = shaderTemplate.specialize(specializations);
2047                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2048                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2049                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2050
2051                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2052         }
2053
2054         return group.release();
2055 }
2056
2057 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2058 tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2059 {
2060         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2061         vector<CaseParameter>                   cases;
2062         de::Random                                              rnd                             (deStringHash(group->getName()));
2063         const int                                               numElements             = 100;
2064         vector<float>                                   positiveFloats  (numElements, 0);
2065         vector<float>                                   negativeFloats  (numElements, 0);
2066         const StringTemplate                    shaderTemplate  (
2067                 string(s_ShaderPreamble) +
2068
2069                 "OpSource GLSL 430\n"
2070                 "OpName %main           \"main\"\n"
2071                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2072
2073                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2074
2075                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2076
2077                 "%id        = OpVariable %uvec3ptr Input\n"
2078                 "%zero      = OpConstant %i32 0\n"
2079
2080                 "${CONSTANT}\n"
2081
2082                 "%main      = OpFunction %void None %voidf\n"
2083                 "%label     = OpLabel\n"
2084                 "%idval     = OpLoad %uvec3 %id\n"
2085                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2086                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2087                 "%inval     = OpLoad %f32 %inloc\n"
2088                 "%neg       = OpFNegate %f32 %inval\n"
2089                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2090                 "             OpStore %outloc %neg\n"
2091                 "             OpReturn\n"
2092                 "             OpFunctionEnd\n");
2093
2094         cases.push_back(CaseParameter("vector",                 "%five = OpConstant %u32 5\n"
2095                                                                                                         "%const = OpConstantComposite %uvec3 %five %zero %five"));
2096         cases.push_back(CaseParameter("matrix",                 "%m3uvec3 = OpTypeMatrix %uvec3 3\n"
2097                                                                                                         "%ten = OpConstant %u32 10\n"
2098                                                                                                         "%vec = OpConstantComposite %uvec3 %ten %zero %ten\n"
2099                                                                                                         "%mat = OpConstantComposite %m3uvec3 %vec %vec %vec"));
2100         cases.push_back(CaseParameter("struct",                 "%m2vec3 = OpTypeMatrix %uvec3 2\n"
2101                                                                                                         "%struct = OpTypeStruct %u32 %f32 %uvec3 %m2vec3\n"
2102                                                                                                         "%one = OpConstant %u32 1\n"
2103                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2104                                                                                                         "%vec = OpConstantComposite %uvec3 %one %one %zero\n"
2105                                                                                                         "%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2106                                                                                                         "%const = OpConstantComposite %struct %one %point5 %vec %mat"));
2107         cases.push_back(CaseParameter("nested_struct",  "%st1 = OpTypeStruct %u32 %f32\n"
2108                                                                                                         "%st2 = OpTypeStruct %i32 %i32\n"
2109                                                                                                         "%struct = OpTypeStruct %st1 %st2\n"
2110                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2111                                                                                                         "%one = OpConstant %u32 1\n"
2112                                                                                                         "%ten = OpConstant %i32 10\n"
2113                                                                                                         "%st1val = OpConstantComposite %st1 %one %point5\n"
2114                                                                                                         "%st2val = OpConstantComposite %st2 %ten %ten\n"
2115                                                                                                         "%const = OpConstantComposite %struct %st1val %st2val"));
2116
2117         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2118
2119         for (size_t ndx = 0; ndx < numElements; ++ndx)
2120                 negativeFloats[ndx] = -positiveFloats[ndx];
2121
2122         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2123         {
2124                 map<string, string>             specializations;
2125                 ComputeShaderSpec               spec;
2126
2127                 specializations["CONSTANT"] = cases[caseNdx].param;
2128                 spec.assembly = shaderTemplate.specialize(specializations);
2129                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2130                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2131                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2132
2133                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2134         }
2135
2136         return group.release();
2137 }
2138
2139 // Creates a floating point number with the given exponent, and significand
2140 // bits set. It can only create normalized numbers. Only the least significant
2141 // 24 bits of the significand will be examined. The final bit of the
2142 // significand will also be ignored. This allows alignment to be written
2143 // similarly to C99 hex-floats.
2144 // For example if you wanted to write 0x1.7f34p-12 you would call
2145 // constructNormalizedFloat(-12, 0x7f3400)
2146 float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2147 {
2148         float f = 1.0f;
2149
2150         for (deInt32 idx = 0; idx < 23; ++idx)
2151         {
2152                 f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -idx);
2153                 significand <<= 1;
2154         }
2155
2156         return std::ldexp(f, exponent);
2157 }
2158
2159 // Compare instruction for the OpQuantizeF16 compute exact case.
2160 // Returns true if the output is what is expected from the test case.
2161 bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2162 {
2163         if (outputAllocs.size() != 1)
2164                 return false;
2165
2166         // We really just need this for size because we cannot compare Nans.
2167         const BufferSp& expectedOutput  = expectedOutputs[0];
2168         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2169
2170         if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2171                 return false;
2172         }
2173
2174         if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2175                 *outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2176                 return false;
2177         }
2178
2179         if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2180                 *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2181                 return false;
2182         }
2183
2184         if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2185                 *outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2186                 return false;
2187         }
2188
2189         if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2190                 *outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2191                 return false;
2192         }
2193
2194         return true;
2195 }
2196
2197 // Checks that every output from a test-case is a float NaN.
2198 bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs)
2199 {
2200         if (outputAllocs.size() != 1)
2201                 return false;
2202
2203         // We really just need this for size because we cannot compare Nans.
2204         const BufferSp& expectedOutput          = expectedOutputs[0];
2205         const float* output_as_float            = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2206
2207         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2208         {
2209                 if (!isnan(output_as_float[idx]))
2210                 {
2211                         return false;
2212                 }
2213         }
2214
2215         return true;
2216 }
2217
2218 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2219 tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2220 {
2221         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2222
2223         const std::string shader (
2224                 string(s_ShaderPreamble) +
2225
2226                 "OpSource GLSL 430\n"
2227                 "OpName %main           \"main\"\n"
2228                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2229
2230                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2231
2232                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2233
2234                 "%id        = OpVariable %uvec3ptr Input\n"
2235                 "%zero      = OpConstant %i32 0\n"
2236
2237                 "%main      = OpFunction %void None %voidf\n"
2238                 "%label     = OpLabel\n"
2239                 "%idval     = OpLoad %uvec3 %id\n"
2240                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2241                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2242                 "%inval     = OpLoad %f32 %inloc\n"
2243                 "%quant     = OpQuantizeToF16 %f32 %inval\n"
2244                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2245                 "             OpStore %outloc %quant\n"
2246                 "             OpReturn\n"
2247                 "             OpFunctionEnd\n");
2248
2249         {
2250                 ComputeShaderSpec       spec;
2251                 const deUint32          numElements             = 100;
2252                 vector<float>           infinities;
2253                 vector<float>           results;
2254
2255                 infinities.reserve(numElements);
2256                 results.reserve(numElements);
2257
2258                 for (size_t idx = 0; idx < numElements; ++idx)
2259                 {
2260                         switch(idx % 4)
2261                         {
2262                                 case 0:
2263                                         infinities.push_back(std::numeric_limits<float>::infinity());
2264                                         results.push_back(std::numeric_limits<float>::infinity());
2265                                         break;
2266                                 case 1:
2267                                         infinities.push_back(-std::numeric_limits<float>::infinity());
2268                                         results.push_back(-std::numeric_limits<float>::infinity());
2269                                         break;
2270                                 case 2:
2271                                         infinities.push_back(std::ldexp(1.0f, 16));
2272                                         results.push_back(std::numeric_limits<float>::infinity());
2273                                         break;
2274                                 case 3:
2275                                         infinities.push_back(std::ldexp(-1.0f, 32));
2276                                         results.push_back(-std::numeric_limits<float>::infinity());
2277                                         break;
2278                         }
2279                 }
2280
2281                 spec.assembly = shader;
2282                 spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2283                 spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2284                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2285
2286                 group->addChild(new SpvAsmComputeShaderCase(
2287                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2288         }
2289
2290         {
2291                 ComputeShaderSpec       spec;
2292                 vector<float>           nans;
2293                 const deUint32          numElements             = 100;
2294
2295                 nans.reserve(numElements);
2296
2297                 for (size_t idx = 0; idx < numElements; ++idx)
2298                 {
2299                         if (idx % 2 == 0)
2300                         {
2301                                 nans.push_back(std::numeric_limits<float>::quiet_NaN());
2302                         }
2303                         else
2304                         {
2305                                 nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2306                         }
2307                 }
2308
2309                 spec.assembly = shader;
2310                 spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2311                 spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2312                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2313                 spec.verifyIO = &compareNan;
2314
2315                 group->addChild(new SpvAsmComputeShaderCase(
2316                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2317         }
2318
2319         {
2320                 ComputeShaderSpec       spec;
2321                 vector<float>           small;
2322                 vector<float>           zeros;
2323                 const deUint32          numElements             = 100;
2324
2325                 small.reserve(numElements);
2326                 zeros.reserve(numElements);
2327
2328                 for (size_t idx = 0; idx < numElements; ++idx)
2329                 {
2330                         switch(idx % 6)
2331                         {
2332                                 case 0:
2333                                         small.push_back(0.f);
2334                                         zeros.push_back(0.f);
2335                                         break;
2336                                 case 1:
2337                                         small.push_back(-0.f);
2338                                         zeros.push_back(-0.f);
2339                                         break;
2340                                 case 2:
2341                                         small.push_back(std::ldexp(1.0f, -16));
2342                                         zeros.push_back(0.f);
2343                                         break;
2344                                 case 3:
2345                                         small.push_back(std::ldexp(-1.0f, -32));
2346                                         zeros.push_back(-0.f);
2347                                         break;
2348                                 case 4:
2349                                         small.push_back(std::ldexp(1.0f, -127));
2350                                         zeros.push_back(0.f);
2351                                         break;
2352                                 case 5:
2353                                         small.push_back(-std::ldexp(1.0f, -128));
2354                                         zeros.push_back(-0.f);
2355                                         break;
2356                         }
2357                 }
2358
2359                 spec.assembly = shader;
2360                 spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2361                 spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2362                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2363
2364                 group->addChild(new SpvAsmComputeShaderCase(
2365                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2366         }
2367
2368         {
2369                 ComputeShaderSpec       spec;
2370                 vector<float>           exact;
2371                 const deUint32          numElements             = 200;
2372
2373                 exact.reserve(numElements);
2374
2375                 for (size_t idx = 0; idx < numElements; ++idx)
2376                         exact.push_back(static_cast<float>(idx - 100));
2377
2378                 spec.assembly = shader;
2379                 spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2380                 spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2381                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2382
2383                 group->addChild(new SpvAsmComputeShaderCase(
2384                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2385         }
2386
2387         {
2388                 ComputeShaderSpec       spec;
2389                 vector<float>           inputs;
2390                 const deUint32          numElements             = 4;
2391
2392                 inputs.push_back(constructNormalizedFloat(8,    0x300300));
2393                 inputs.push_back(-constructNormalizedFloat(-7,  0x600800));
2394                 inputs.push_back(constructNormalizedFloat(2,    0x01E000));
2395                 inputs.push_back(constructNormalizedFloat(1,    0xFFE000));
2396
2397                 spec.assembly = shader;
2398                 spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2399                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2400                 spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2401                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2402
2403                 group->addChild(new SpvAsmComputeShaderCase(
2404                         testCtx, "rounded", "Check that are rounded when needed", spec));
2405         }
2406
2407         return group.release();
2408 }
2409
2410 // Performs a bitwise copy of source to the destination type Dest.
2411 template <typename Dest, typename Src>
2412 Dest bitwiseCast(Src source)
2413 {
2414   Dest dest;
2415   DE_STATIC_ASSERT(sizeof(source) == sizeof(dest));
2416   deMemcpy(&dest, &source, sizeof(dest));
2417   return dest;
2418 }
2419
2420 tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2421 {
2422         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2423
2424         const std::string shader (
2425                 string(s_ShaderPreamble) +
2426
2427                 "OpName %main           \"main\"\n"
2428                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2429
2430                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2431
2432                 "OpDecorate %sc_0  SpecId 0\n"
2433                 "OpDecorate %sc_1  SpecId 1\n"
2434                 "OpDecorate %sc_2  SpecId 2\n"
2435                 "OpDecorate %sc_3  SpecId 3\n"
2436                 "OpDecorate %sc_4  SpecId 4\n"
2437                 "OpDecorate %sc_5  SpecId 5\n"
2438
2439                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2440
2441                 "%id        = OpVariable %uvec3ptr Input\n"
2442                 "%zero      = OpConstant %i32 0\n"
2443                 "%c_u32_6   = OpConstant %u32 6\n"
2444
2445                 "%sc_0      = OpSpecConstant %f32 0.\n"
2446                 "%sc_1      = OpSpecConstant %f32 0.\n"
2447                 "%sc_2      = OpSpecConstant %f32 0.\n"
2448                 "%sc_3      = OpSpecConstant %f32 0.\n"
2449                 "%sc_4      = OpSpecConstant %f32 0.\n"
2450                 "%sc_5      = OpSpecConstant %f32 0.\n"
2451
2452                 "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2453                 "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2454                 "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2455                 "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2456                 "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2457                 "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2458
2459                 "%main      = OpFunction %void None %voidf\n"
2460                 "%label     = OpLabel\n"
2461                 "%idval     = OpLoad %uvec3 %id\n"
2462                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2463                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2464                 "%selector  = OpUMod %u32 %x %c_u32_6\n"
2465                 "            OpSelectionMerge %exit None\n"
2466                 "            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2467
2468                 "%case0     = OpLabel\n"
2469                 "             OpStore %outloc %sc_0_quant\n"
2470                 "             OpBranch %exit\n"
2471
2472                 "%case1     = OpLabel\n"
2473                 "             OpStore %outloc %sc_1_quant\n"
2474                 "             OpBranch %exit\n"
2475
2476                 "%case2     = OpLabel\n"
2477                 "             OpStore %outloc %sc_2_quant\n"
2478                 "             OpBranch %exit\n"
2479
2480                 "%case3     = OpLabel\n"
2481                 "             OpStore %outloc %sc_3_quant\n"
2482                 "             OpBranch %exit\n"
2483
2484                 "%case4     = OpLabel\n"
2485                 "             OpStore %outloc %sc_4_quant\n"
2486                 "             OpBranch %exit\n"
2487
2488                 "%case5     = OpLabel\n"
2489                 "             OpStore %outloc %sc_5_quant\n"
2490                 "             OpBranch %exit\n"
2491
2492                 "%exit      = OpLabel\n"
2493                 "             OpReturn\n"
2494
2495                 "             OpFunctionEnd\n");
2496
2497         {
2498                 ComputeShaderSpec       spec;
2499                 const deUint8           numCases        = 4;
2500                 vector<float>           inputs          (numCases, 0.f);
2501                 vector<float>           outputs;
2502
2503                 spec.numWorkGroups = IVec3(numCases, 1, 1);
2504
2505                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2506                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2507                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2508                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2509
2510                 outputs.push_back(std::numeric_limits<float>::infinity());
2511                 outputs.push_back(-std::numeric_limits<float>::infinity());
2512                 outputs.push_back(std::numeric_limits<float>::infinity());
2513                 outputs.push_back(-std::numeric_limits<float>::infinity());
2514
2515                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2516                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2517
2518                 group->addChild(new SpvAsmComputeShaderCase(
2519                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2520         }
2521
2522         {
2523                 ComputeShaderSpec       spec;
2524                 const deUint8           numCases        = 2;
2525                 vector<float>           inputs          (numCases, 0.f);
2526                 vector<float>           outputs;
2527
2528                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2529                 spec.verifyIO           = &compareNan;
2530
2531                 outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2532                 outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2533
2534                 for (deUint8 idx = 0; idx < numCases; ++idx)
2535                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2536
2537                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2538                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2539
2540                 group->addChild(new SpvAsmComputeShaderCase(
2541                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2542         }
2543
2544         {
2545                 ComputeShaderSpec       spec;
2546                 const deUint8           numCases        = 6;
2547                 vector<float>           inputs          (numCases, 0.f);
2548                 vector<float>           outputs;
2549
2550                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2551
2552                 spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2553                 spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2554                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2555                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2556                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2557                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2558
2559                 outputs.push_back(0.f);
2560                 outputs.push_back(-0.f);
2561                 outputs.push_back(0.f);
2562                 outputs.push_back(-0.f);
2563                 outputs.push_back(0.f);
2564                 outputs.push_back(-0.f);
2565
2566                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2567                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2568
2569                 group->addChild(new SpvAsmComputeShaderCase(
2570                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2571         }
2572
2573         {
2574                 ComputeShaderSpec       spec;
2575                 const deUint8           numCases        = 6;
2576                 vector<float>           inputs          (numCases, 0.f);
2577                 vector<float>           outputs;
2578
2579                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2580
2581                 for (deUint8 idx = 0; idx < 6; ++idx)
2582                 {
2583                         const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2584                         spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2585                         outputs.push_back(f);
2586                 }
2587
2588                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2589                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2590
2591                 group->addChild(new SpvAsmComputeShaderCase(
2592                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2593         }
2594
2595         {
2596                 ComputeShaderSpec       spec;
2597                 const deUint8           numCases        = 4;
2598                 vector<float>           inputs          (numCases, 0.f);
2599                 vector<float>           outputs;
2600
2601                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2602                 spec.verifyIO           = &compareOpQuantizeF16ComputeExactCase;
2603
2604                 outputs.push_back(constructNormalizedFloat(8, 0x300300));
2605                 outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2606                 outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2607                 outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2608
2609                 for (deUint8 idx = 0; idx < numCases; ++idx)
2610                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2611
2612                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2613                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2614
2615                 group->addChild(new SpvAsmComputeShaderCase(
2616                         testCtx, "rounded", "Check that are rounded when needed", spec));
2617         }
2618
2619         return group.release();
2620 }
2621
2622 // Checks that constant null/composite values can be used in computation.
2623 tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2624 {
2625         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2626         ComputeShaderSpec                               spec;
2627         de::Random                                              rnd                             (deStringHash(group->getName()));
2628         const int                                               numElements             = 100;
2629         vector<float>                                   positiveFloats  (numElements, 0);
2630         vector<float>                                   negativeFloats  (numElements, 0);
2631
2632         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2633
2634         for (size_t ndx = 0; ndx < numElements; ++ndx)
2635                 negativeFloats[ndx] = -positiveFloats[ndx];
2636
2637         spec.assembly =
2638                 "OpCapability Shader\n"
2639                 "%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2640                 "OpMemoryModel Logical GLSL450\n"
2641                 "OpEntryPoint GLCompute %main \"main\" %id\n"
2642                 "OpExecutionMode %main LocalSize 1 1 1\n"
2643
2644                 "OpSource GLSL 430\n"
2645                 "OpName %main           \"main\"\n"
2646                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2647
2648                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2649
2650                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) +
2651
2652                 "%fvec3     = OpTypeVector %f32 3\n"
2653                 "%fmat      = OpTypeMatrix %fvec3 3\n"
2654                 "%ten       = OpConstant %u32 10\n"
2655                 "%f32arr10  = OpTypeArray %f32 %ten\n"
2656                 "%fst       = OpTypeStruct %f32 %f32\n"
2657
2658                 + string(s_InputOutputBuffer) +
2659
2660                 "%id        = OpVariable %uvec3ptr Input\n"
2661                 "%zero      = OpConstant %i32 0\n"
2662
2663                 // Create a bunch of null values
2664                 "%unull     = OpConstantNull %u32\n"
2665                 "%fnull     = OpConstantNull %f32\n"
2666                 "%vnull     = OpConstantNull %fvec3\n"
2667                 "%mnull     = OpConstantNull %fmat\n"
2668                 "%anull     = OpConstantNull %f32arr10\n"
2669                 "%snull     = OpConstantComposite %fst %fnull %fnull\n"
2670
2671                 "%main      = OpFunction %void None %voidf\n"
2672                 "%label     = OpLabel\n"
2673                 "%idval     = OpLoad %uvec3 %id\n"
2674                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2675                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2676                 "%inval     = OpLoad %f32 %inloc\n"
2677                 "%neg       = OpFNegate %f32 %inval\n"
2678
2679                 // Get the abs() of (a certain element of) those null values
2680                 "%unull_cov = OpConvertUToF %f32 %unull\n"
2681                 "%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
2682                 "%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
2683                 "%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
2684                 "%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
2685                 "%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
2686                 "%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
2687                 "%anull_3   = OpCompositeExtract %f32 %anull 3\n"
2688                 "%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
2689                 "%snull_1   = OpCompositeExtract %f32 %snull 1\n"
2690                 "%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
2691
2692                 // Add them all
2693                 "%add1      = OpFAdd %f32 %neg  %unull_abs\n"
2694                 "%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
2695                 "%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
2696                 "%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
2697                 "%add5      = OpFAdd %f32 %add4 %anull_abs\n"
2698                 "%final     = OpFAdd %f32 %add5 %snull_abs\n"
2699
2700                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2701                 "             OpStore %outloc %final\n" // write to output
2702                 "             OpReturn\n"
2703                 "             OpFunctionEnd\n";
2704         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2705         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2706         spec.numWorkGroups = IVec3(numElements, 1, 1);
2707
2708         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
2709
2710         return group.release();
2711 }
2712
2713 // Assembly code used for testing loop control is based on GLSL source code:
2714 // #version 430
2715 //
2716 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2717 //   float elements[];
2718 // } input_data;
2719 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2720 //   float elements[];
2721 // } output_data;
2722 //
2723 // void main() {
2724 //   uint x = gl_GlobalInvocationID.x;
2725 //   output_data.elements[x] = input_data.elements[x];
2726 //   for (uint i = 0; i < 4; ++i)
2727 //     output_data.elements[x] += 1.f;
2728 // }
2729 tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
2730 {
2731         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
2732         vector<CaseParameter>                   cases;
2733         de::Random                                              rnd                             (deStringHash(group->getName()));
2734         const int                                               numElements             = 100;
2735         vector<float>                                   inputFloats             (numElements, 0);
2736         vector<float>                                   outputFloats    (numElements, 0);
2737         const StringTemplate                    shaderTemplate  (
2738                 string(s_ShaderPreamble) +
2739
2740                 "OpSource GLSL 430\n"
2741                 "OpName %main \"main\"\n"
2742                 "OpName %id \"gl_GlobalInvocationID\"\n"
2743
2744                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2745
2746                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2747
2748                 "%u32ptr      = OpTypePointer Function %u32\n"
2749
2750                 "%id          = OpVariable %uvec3ptr Input\n"
2751                 "%zero        = OpConstant %i32 0\n"
2752                 "%uzero       = OpConstant %u32 0\n"
2753                 "%one         = OpConstant %i32 1\n"
2754                 "%constf1     = OpConstant %f32 1.0\n"
2755                 "%four        = OpConstant %u32 4\n"
2756
2757                 "%main        = OpFunction %void None %voidf\n"
2758                 "%entry       = OpLabel\n"
2759                 "%i           = OpVariable %u32ptr Function\n"
2760                 "               OpStore %i %uzero\n"
2761
2762                 "%idval       = OpLoad %uvec3 %id\n"
2763                 "%x           = OpCompositeExtract %u32 %idval 0\n"
2764                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2765                 "%inval       = OpLoad %f32 %inloc\n"
2766                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2767                 "               OpStore %outloc %inval\n"
2768                 "               OpBranch %loop_entry\n"
2769
2770                 "%loop_entry  = OpLabel\n"
2771                 "%i_val       = OpLoad %u32 %i\n"
2772                 "%cmp_lt      = OpULessThan %bool %i_val %four\n"
2773                 "               OpLoopMerge %loop_merge %loop_entry ${CONTROL}\n"
2774                 "               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
2775                 "%loop_body   = OpLabel\n"
2776                 "%outval      = OpLoad %f32 %outloc\n"
2777                 "%addf1       = OpFAdd %f32 %outval %constf1\n"
2778                 "               OpStore %outloc %addf1\n"
2779                 "%new_i       = OpIAdd %u32 %i_val %one\n"
2780                 "               OpStore %i %new_i\n"
2781                 "               OpBranch %loop_entry\n"
2782                 "%loop_merge  = OpLabel\n"
2783                 "               OpReturn\n"
2784                 "               OpFunctionEnd\n");
2785
2786         cases.push_back(CaseParameter("none",                           "None"));
2787         cases.push_back(CaseParameter("unroll",                         "Unroll"));
2788         cases.push_back(CaseParameter("dont_unroll",            "DontUnroll"));
2789         cases.push_back(CaseParameter("unroll_dont_unroll",     "Unroll|DontUnroll"));
2790
2791         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2792
2793         for (size_t ndx = 0; ndx < numElements; ++ndx)
2794                 outputFloats[ndx] = inputFloats[ndx] + 4.f;
2795
2796         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2797         {
2798                 map<string, string>             specializations;
2799                 ComputeShaderSpec               spec;
2800
2801                 specializations["CONTROL"] = cases[caseNdx].param;
2802                 spec.assembly = shaderTemplate.specialize(specializations);
2803                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2804                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2805                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2806
2807                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2808         }
2809
2810         return group.release();
2811 }
2812
2813 // Assembly code used for testing selection control is based on GLSL source code:
2814 // #version 430
2815 //
2816 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2817 //   float elements[];
2818 // } input_data;
2819 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2820 //   float elements[];
2821 // } output_data;
2822 //
2823 // void main() {
2824 //   uint x = gl_GlobalInvocationID.x;
2825 //   float val = input_data.elements[x];
2826 //   if (val > 10.f)
2827 //     output_data.elements[x] = val + 1.f;
2828 //   else
2829 //     output_data.elements[x] = val - 1.f;
2830 // }
2831 tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
2832 {
2833         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
2834         vector<CaseParameter>                   cases;
2835         de::Random                                              rnd                             (deStringHash(group->getName()));
2836         const int                                               numElements             = 100;
2837         vector<float>                                   inputFloats             (numElements, 0);
2838         vector<float>                                   outputFloats    (numElements, 0);
2839         const StringTemplate                    shaderTemplate  (
2840                 string(s_ShaderPreamble) +
2841
2842                 "OpSource GLSL 430\n"
2843                 "OpName %main \"main\"\n"
2844                 "OpName %id \"gl_GlobalInvocationID\"\n"
2845
2846                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2847
2848                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2849
2850                 "%id       = OpVariable %uvec3ptr Input\n"
2851                 "%zero     = OpConstant %i32 0\n"
2852                 "%constf1  = OpConstant %f32 1.0\n"
2853                 "%constf10 = OpConstant %f32 10.0\n"
2854
2855                 "%main     = OpFunction %void None %voidf\n"
2856                 "%entry    = OpLabel\n"
2857                 "%idval    = OpLoad %uvec3 %id\n"
2858                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2859                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2860                 "%inval    = OpLoad %f32 %inloc\n"
2861                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2862                 "%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
2863
2864                 "            OpSelectionMerge %if_end ${CONTROL}\n"
2865                 "            OpBranchConditional %cmp_gt %if_true %if_false\n"
2866                 "%if_true  = OpLabel\n"
2867                 "%addf1    = OpFAdd %f32 %inval %constf1\n"
2868                 "            OpStore %outloc %addf1\n"
2869                 "            OpBranch %if_end\n"
2870                 "%if_false = OpLabel\n"
2871                 "%subf1    = OpFSub %f32 %inval %constf1\n"
2872                 "            OpStore %outloc %subf1\n"
2873                 "            OpBranch %if_end\n"
2874                 "%if_end   = OpLabel\n"
2875                 "            OpReturn\n"
2876                 "            OpFunctionEnd\n");
2877
2878         cases.push_back(CaseParameter("none",                                   "None"));
2879         cases.push_back(CaseParameter("flatten",                                "Flatten"));
2880         cases.push_back(CaseParameter("dont_flatten",                   "DontFlatten"));
2881         cases.push_back(CaseParameter("flatten_dont_flatten",   "DontFlatten|Flatten"));
2882
2883         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2884
2885         for (size_t ndx = 0; ndx < numElements; ++ndx)
2886                 outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
2887
2888         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2889         {
2890                 map<string, string>             specializations;
2891                 ComputeShaderSpec               spec;
2892
2893                 specializations["CONTROL"] = cases[caseNdx].param;
2894                 spec.assembly = shaderTemplate.specialize(specializations);
2895                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2896                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2897                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2898
2899                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2900         }
2901
2902         return group.release();
2903 }
2904
2905 // Assembly code used for testing function control is based on GLSL source code:
2906 //
2907 // #version 430
2908 //
2909 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2910 //   float elements[];
2911 // } input_data;
2912 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2913 //   float elements[];
2914 // } output_data;
2915 //
2916 // float const10() { return 10.f; }
2917 //
2918 // void main() {
2919 //   uint x = gl_GlobalInvocationID.x;
2920 //   output_data.elements[x] = input_data.elements[x] + const10();
2921 // }
2922 tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
2923 {
2924         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
2925         vector<CaseParameter>                   cases;
2926         de::Random                                              rnd                             (deStringHash(group->getName()));
2927         const int                                               numElements             = 100;
2928         vector<float>                                   inputFloats             (numElements, 0);
2929         vector<float>                                   outputFloats    (numElements, 0);
2930         const StringTemplate                    shaderTemplate  (
2931                 string(s_ShaderPreamble) +
2932
2933                 "OpSource GLSL 430\n"
2934                 "OpName %main \"main\"\n"
2935                 "OpName %func_const10 \"const10(\"\n"
2936                 "OpName %id \"gl_GlobalInvocationID\"\n"
2937
2938                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2939
2940                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
2941
2942                 "%f32f = OpTypeFunction %f32\n"
2943                 "%id = OpVariable %uvec3ptr Input\n"
2944                 "%zero = OpConstant %i32 0\n"
2945                 "%constf10 = OpConstant %f32 10.0\n"
2946
2947                 "%main         = OpFunction %void None %voidf\n"
2948                 "%entry        = OpLabel\n"
2949                 "%idval        = OpLoad %uvec3 %id\n"
2950                 "%x            = OpCompositeExtract %u32 %idval 0\n"
2951                 "%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
2952                 "%inval        = OpLoad %f32 %inloc\n"
2953                 "%ret_10       = OpFunctionCall %f32 %func_const10\n"
2954                 "%fadd         = OpFAdd %f32 %inval %ret_10\n"
2955                 "%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
2956                 "                OpStore %outloc %fadd\n"
2957                 "                OpReturn\n"
2958                 "                OpFunctionEnd\n"
2959
2960                 "%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
2961                 "%label        = OpLabel\n"
2962                 "                OpReturnValue %constf10\n"
2963                 "                OpFunctionEnd\n");
2964
2965         cases.push_back(CaseParameter("none",                                           "None"));
2966         cases.push_back(CaseParameter("inline",                                         "Inline"));
2967         cases.push_back(CaseParameter("dont_inline",                            "DontInline"));
2968         cases.push_back(CaseParameter("pure",                                           "Pure"));
2969         cases.push_back(CaseParameter("const",                                          "Const"));
2970         cases.push_back(CaseParameter("inline_pure",                            "Inline|Pure"));
2971         cases.push_back(CaseParameter("const_dont_inline",                      "Const|DontInline"));
2972         cases.push_back(CaseParameter("inline_dont_inline",                     "Inline|DontInline"));
2973         cases.push_back(CaseParameter("pure_inline_dont_inline",        "Pure|Inline|DontInline"));
2974
2975         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
2976
2977         for (size_t ndx = 0; ndx < numElements; ++ndx)
2978                 outputFloats[ndx] = inputFloats[ndx] + 10.f;
2979
2980         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2981         {
2982                 map<string, string>             specializations;
2983                 ComputeShaderSpec               spec;
2984
2985                 specializations["CONTROL"] = cases[caseNdx].param;
2986                 spec.assembly = shaderTemplate.specialize(specializations);
2987                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2988                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2989                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2990
2991                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2992         }
2993
2994         return group.release();
2995 }
2996
2997 tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
2998 {
2999         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3000         vector<CaseParameter>                   cases;
3001         de::Random                                              rnd                             (deStringHash(group->getName()));
3002         const int                                               numElements             = 100;
3003         vector<float>                                   inputFloats             (numElements, 0);
3004         vector<float>                                   outputFloats    (numElements, 0);
3005         const StringTemplate                    shaderTemplate  (
3006                 string(s_ShaderPreamble) +
3007
3008                 "OpSource GLSL 430\n"
3009                 "OpName %main           \"main\"\n"
3010                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3011
3012                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3013
3014                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3015
3016                 "%f32ptr_f  = OpTypePointer Function %f32\n"
3017
3018                 "%id        = OpVariable %uvec3ptr Input\n"
3019                 "%zero      = OpConstant %i32 0\n"
3020                 "%four      = OpConstant %i32 4\n"
3021
3022                 "%main      = OpFunction %void None %voidf\n"
3023                 "%label     = OpLabel\n"
3024                 "%copy      = OpVariable %f32ptr_f Function\n"
3025                 "%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3026                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3027                 "%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3028                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3029                 "             OpCopyMemory %copy %inloc ${ACCESS}\n"
3030                 "%val1      = OpLoad %f32 %copy\n"
3031                 "%val2      = OpLoad %f32 %inloc\n"
3032                 "%add       = OpFAdd %f32 %val1 %val2\n"
3033                 "             OpStore %outloc %add ${ACCESS}\n"
3034                 "             OpReturn\n"
3035                 "             OpFunctionEnd\n");
3036
3037         cases.push_back(CaseParameter("null",                                   ""));
3038         cases.push_back(CaseParameter("none",                                   "None"));
3039         cases.push_back(CaseParameter("volatile",                               "Volatile"));
3040         cases.push_back(CaseParameter("aligned",                                "Aligned 4"));
3041         cases.push_back(CaseParameter("nontemporal",                    "Nontemporal"));
3042         cases.push_back(CaseParameter("aligned_nontemporal",    "Aligned|Nontemporal 4"));
3043         cases.push_back(CaseParameter("aligned_volatile",               "Volatile|Aligned 4"));
3044
3045         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3046
3047         for (size_t ndx = 0; ndx < numElements; ++ndx)
3048                 outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3049
3050         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3051         {
3052                 map<string, string>             specializations;
3053                 ComputeShaderSpec               spec;
3054
3055                 specializations["ACCESS"] = cases[caseNdx].param;
3056                 spec.assembly = shaderTemplate.specialize(specializations);
3057                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3058                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3059                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3060
3061                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3062         }
3063
3064         return group.release();
3065 }
3066
3067 // Checks that we can get undefined values for various types, without exercising a computation with it.
3068 tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3069 {
3070         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3071         vector<CaseParameter>                   cases;
3072         de::Random                                              rnd                             (deStringHash(group->getName()));
3073         const int                                               numElements             = 100;
3074         vector<float>                                   positiveFloats  (numElements, 0);
3075         vector<float>                                   negativeFloats  (numElements, 0);
3076         const StringTemplate                    shaderTemplate  (
3077                 string(s_ShaderPreamble) +
3078
3079                 "OpSource GLSL 430\n"
3080                 "OpName %main           \"main\"\n"
3081                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3082
3083                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3084
3085                 + string(s_InputOutputBufferTraits) + string(s_CommonTypes) + string(s_InputOutputBuffer) +
3086
3087                 "${TYPE}\n"
3088
3089                 "%id        = OpVariable %uvec3ptr Input\n"
3090                 "%zero      = OpConstant %i32 0\n"
3091
3092                 "%main      = OpFunction %void None %voidf\n"
3093                 "%label     = OpLabel\n"
3094
3095                 "%undef     = OpUndef %type\n"
3096
3097                 "%idval     = OpLoad %uvec3 %id\n"
3098                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3099
3100                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3101                 "%inval     = OpLoad %f32 %inloc\n"
3102                 "%neg       = OpFNegate %f32 %inval\n"
3103                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3104                 "             OpStore %outloc %neg\n"
3105                 "             OpReturn\n"
3106                 "             OpFunctionEnd\n");
3107
3108         cases.push_back(CaseParameter("bool",                   "%type = OpTypeBool"));
3109         cases.push_back(CaseParameter("sint32",                 "%type = OpTypeInt 32 1"));
3110         cases.push_back(CaseParameter("uint32",                 "%type = OpTypeInt 32 0"));
3111         cases.push_back(CaseParameter("float32",                "%type = OpTypeFloat 32"));
3112         cases.push_back(CaseParameter("vec4float32",    "%type = OpTypeVector %f32 4"));
3113         cases.push_back(CaseParameter("vec2uint32",             "%type = OpTypeVector %u32 2"));
3114         cases.push_back(CaseParameter("matrix",                 "%type = OpTypeMatrix %uvec3 3"));
3115         cases.push_back(CaseParameter("image",                  "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"));
3116         cases.push_back(CaseParameter("sampler",                "%type = OpTypeSampler"));
3117         cases.push_back(CaseParameter("sampledimage",   "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n"
3118                                                                                                         "%type = OpTypeSampledImage %img"));
3119         cases.push_back(CaseParameter("array",                  "%100 = OpConstant %u32 100\n"
3120                                                                                                         "%type = OpTypeArray %i32 %100"));
3121         cases.push_back(CaseParameter("runtimearray",   "%type = OpTypeRuntimeArray %f32"));
3122         cases.push_back(CaseParameter("struct",                 "%type = OpTypeStruct %f32 %i32 %u32"));
3123         cases.push_back(CaseParameter("pointer",                "%type = OpTypePointer Function %i32"));
3124
3125         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3126
3127         for (size_t ndx = 0; ndx < numElements; ++ndx)
3128                 negativeFloats[ndx] = -positiveFloats[ndx];
3129
3130         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3131         {
3132                 map<string, string>             specializations;
3133                 ComputeShaderSpec               spec;
3134
3135                 specializations["TYPE"] = cases[caseNdx].param;
3136                 spec.assembly = shaderTemplate.specialize(specializations);
3137                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3138                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3139                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3140
3141                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3142         }
3143
3144                 return group.release();
3145 }
3146 typedef std::pair<std::string, VkShaderStageFlagBits>   EntryToStage;
3147 typedef map<string, vector<EntryToStage> >                              ModuleMap;
3148 typedef map<VkShaderStageFlagBits, vector<deInt32> >    StageToSpecConstantMap;
3149
3150 // Context for a specific test instantiation. For example, an instantiation
3151 // may test colors yellow/magenta/cyan/mauve in a tesselation shader
3152 // with an entry point named 'main_to_the_main'
3153 struct InstanceContext
3154 {
3155         // Map of modules to what entry_points we care to use from those modules.
3156         ModuleMap                               moduleMap;
3157         RGBA                                    inputColors[4];
3158         RGBA                                    outputColors[4];
3159         // Concrete SPIR-V code to test via boilerplate specialization.
3160         map<string, string>             testCodeFragments;
3161         StageToSpecConstantMap  specConstants;
3162         bool                                    hasTessellation;
3163         VkShaderStageFlagBits   requiredStages;
3164
3165         InstanceContext (const RGBA (&inputs)[4], const RGBA (&outputs)[4], const map<string, string>& testCodeFragments_, const StageToSpecConstantMap& specConstants_)
3166                 : testCodeFragments             (testCodeFragments_)
3167                 , specConstants                 (specConstants_)
3168                 , hasTessellation               (false)
3169                 , requiredStages                (static_cast<VkShaderStageFlagBits>(0))
3170         {
3171                 inputColors[0]          = inputs[0];
3172                 inputColors[1]          = inputs[1];
3173                 inputColors[2]          = inputs[2];
3174                 inputColors[3]          = inputs[3];
3175
3176                 outputColors[0]         = outputs[0];
3177                 outputColors[1]         = outputs[1];
3178                 outputColors[2]         = outputs[2];
3179                 outputColors[3]         = outputs[3];
3180         }
3181
3182         InstanceContext (const InstanceContext& other)
3183                 : moduleMap                     (other.moduleMap)
3184                 , testCodeFragments     (other.testCodeFragments)
3185                 , specConstants         (other.specConstants)
3186                 , hasTessellation       (other.hasTessellation)
3187                 , requiredStages    (other.requiredStages)
3188         {
3189                 inputColors[0]          = other.inputColors[0];
3190                 inputColors[1]          = other.inputColors[1];
3191                 inputColors[2]          = other.inputColors[2];
3192                 inputColors[3]          = other.inputColors[3];
3193
3194                 outputColors[0]         = other.outputColors[0];
3195                 outputColors[1]         = other.outputColors[1];
3196                 outputColors[2]         = other.outputColors[2];
3197                 outputColors[3]         = other.outputColors[3];
3198         }
3199 };
3200
3201 // A description of a shader to be used for a single stage of the graphics pipeline.
3202 struct ShaderElement
3203 {
3204         // The module that contains this shader entrypoint.
3205         string                                  moduleName;
3206
3207         // The name of the entrypoint.
3208         string                                  entryName;
3209
3210         // Which shader stage this entry point represents.
3211         VkShaderStageFlagBits   stage;
3212
3213         ShaderElement (const string& moduleName_, const string& entryPoint_, VkShaderStageFlagBits shaderStage_)
3214                 : moduleName(moduleName_)
3215                 , entryName(entryPoint_)
3216                 , stage(shaderStage_)
3217         {
3218         }
3219 };
3220
3221 void getDefaultColors (RGBA (&colors)[4])
3222 {
3223         colors[0] = RGBA::white();
3224         colors[1] = RGBA::red();
3225         colors[2] = RGBA::green();
3226         colors[3] = RGBA::blue();
3227 }
3228
3229 void getHalfColorsFullAlpha (RGBA (&colors)[4])
3230 {
3231         colors[0] = RGBA(127, 127, 127, 255);
3232         colors[1] = RGBA(127, 0,   0,   255);
3233         colors[2] = RGBA(0,       127, 0,       255);
3234         colors[3] = RGBA(0,       0,   127, 255);
3235 }
3236
3237 void getInvertedDefaultColors (RGBA (&colors)[4])
3238 {
3239         colors[0] = RGBA(0,             0,              0,              255);
3240         colors[1] = RGBA(0,             255,    255,    255);
3241         colors[2] = RGBA(255,   0,              255,    255);
3242         colors[3] = RGBA(255,   255,    0,              255);
3243 }
3244
3245 // Turns a statically sized array of ShaderElements into an instance-context
3246 // by setting up the mapping of modules to their contained shaders and stages.
3247 // The inputs and expected outputs are given by inputColors and outputColors
3248 template<size_t N>
3249 InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const StageToSpecConstantMap& specConstants)
3250 {
3251         InstanceContext ctx (inputColors, outputColors, testCodeFragments, specConstants);
3252         for (size_t i = 0; i < N; ++i)
3253         {
3254                 ctx.moduleMap[elements[i].moduleName].push_back(std::make_pair(elements[i].entryName, elements[i].stage));
3255                 ctx.requiredStages = static_cast<VkShaderStageFlagBits>(ctx.requiredStages | elements[i].stage);
3256         }
3257         return ctx;
3258 }
3259
3260 template<size_t N>
3261 inline InstanceContext createInstanceContext (const ShaderElement (&elements)[N], RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments)
3262 {
3263         return createInstanceContext(elements, inputColors, outputColors, testCodeFragments, StageToSpecConstantMap());
3264 }
3265
3266 // The same as createInstanceContext above, but with default colors.
3267 template<size_t N>
3268 InstanceContext createInstanceContext (const ShaderElement (&elements)[N], const map<string, string>& testCodeFragments)
3269 {
3270         RGBA defaultColors[4];
3271         getDefaultColors(defaultColors);
3272         return createInstanceContext(elements, defaultColors, defaultColors, testCodeFragments);
3273 }
3274
3275 // For the current InstanceContext, constructs the required modules and shader stage create infos.
3276 void createPipelineShaderStages (const DeviceInterface& vk, const VkDevice vkDevice, InstanceContext& instance, Context& context, vector<ModuleHandleSp>& modules, vector<VkPipelineShaderStageCreateInfo>& createInfos)
3277 {
3278         for (ModuleMap::const_iterator moduleNdx = instance.moduleMap.begin(); moduleNdx != instance.moduleMap.end(); ++moduleNdx)
3279         {
3280                 const ModuleHandleSp mod(new Unique<VkShaderModule>(createShaderModule(vk, vkDevice, context.getBinaryCollection().get(moduleNdx->first), 0)));
3281                 modules.push_back(ModuleHandleSp(mod));
3282                 for (vector<EntryToStage>::const_iterator shaderNdx = moduleNdx->second.begin(); shaderNdx != moduleNdx->second.end(); ++shaderNdx)
3283                 {
3284                         const EntryToStage&                                             stage                   = *shaderNdx;
3285                         const VkPipelineShaderStageCreateInfo   shaderParam             =
3286                         {
3287                                 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,    //      VkStructureType                 sType;
3288                                 DE_NULL,                                                                                                //      const void*                             pNext;
3289                                 (VkPipelineShaderStageCreateFlags)0,
3290                                 stage.second,                                                                                   //      VkShaderStageFlagBits   stage;
3291                                 **modules.back(),                                                                               //      VkShaderModule                  module;
3292                                 stage.first.c_str(),                                                                    //      const char*                             pName;
3293                                 (const VkSpecializationInfo*)DE_NULL,
3294                         };
3295                         createInfos.push_back(shaderParam);
3296                 }
3297         }
3298 }
3299
3300 #define SPIRV_ASSEMBLY_TYPES                                                                                                                                    \
3301         "%void = OpTypeVoid\n"                                                                                                                                          \
3302         "%bool = OpTypeBool\n"                                                                                                                                          \
3303                                                                                                                                                                                                 \
3304         "%i32 = OpTypeInt 32 1\n"                                                                                                                                       \
3305         "%u32 = OpTypeInt 32 0\n"                                                                                                                                       \
3306                                                                                                                                                                                                 \
3307         "%f32 = OpTypeFloat 32\n"                                                                                                                                       \
3308         "%v3f32 = OpTypeVector %f32 3\n"                                                                                                                        \
3309         "%v4f32 = OpTypeVector %f32 4\n"                                                                                                                        \
3310                                                                                                                                                                                                 \
3311         "%v4f32_function = OpTypeFunction %v4f32 %v4f32\n"                                                                                      \
3312         "%fun = OpTypeFunction %void\n"                                                                                                                         \
3313                                                                                                                                                                                                 \
3314         "%ip_f32 = OpTypePointer Input %f32\n"                                                                                                          \
3315         "%ip_i32 = OpTypePointer Input %i32\n"                                                                                                          \
3316         "%ip_v3f32 = OpTypePointer Input %v3f32\n"                                                                                                      \
3317         "%ip_v4f32 = OpTypePointer Input %v4f32\n"                                                                                                      \
3318                                                                                                                                                                                                 \
3319         "%op_f32 = OpTypePointer Output %f32\n"                                                                                                         \
3320         "%op_v4f32 = OpTypePointer Output %v4f32\n"                                                                                                     \
3321                                                                                                                                                                                                 \
3322         "%fp_f32   = OpTypePointer Function %f32\n"                                                                                                     \
3323         "%fp_i32   = OpTypePointer Function %i32\n"                                                                                                     \
3324         "%fp_v4f32 = OpTypePointer Function %v4f32\n"
3325
3326 #define SPIRV_ASSEMBLY_CONSTANTS                                                                                                                                \
3327         "%c_f32_1 = OpConstant %f32 1.0\n"                                                                                                                      \
3328         "%c_f32_0 = OpConstant %f32 0.0\n"                                                                                                                      \
3329         "%c_f32_0_5 = OpConstant %f32 0.5\n"                                                                                                            \
3330         "%c_f32_n1  = OpConstant %f32 -1.\n"                                                                                                            \
3331         "%c_f32_7 = OpConstant %f32 7.0\n"                                                                                                                      \
3332         "%c_f32_8 = OpConstant %f32 8.0\n"                                                                                                                      \
3333         "%c_i32_0 = OpConstant %i32 0\n"                                                                                                                        \
3334         "%c_i32_1 = OpConstant %i32 1\n"                                                                                                                        \
3335         "%c_i32_2 = OpConstant %i32 2\n"                                                                                                                        \
3336         "%c_i32_3 = OpConstant %i32 3\n"                                                                                                                        \
3337         "%c_i32_4 = OpConstant %i32 4\n"                                                                                                                        \
3338         "%c_u32_0 = OpConstant %u32 0\n"                                                                                                                        \
3339         "%c_u32_1 = OpConstant %u32 1\n"                                                                                                                        \
3340         "%c_u32_2 = OpConstant %u32 2\n"                                                                                                                        \
3341         "%c_u32_3 = OpConstant %u32 3\n"                                                                                                                        \
3342         "%c_u32_32 = OpConstant %u32 32\n"                                                                                                                      \
3343         "%c_u32_4 = OpConstant %u32 4\n"                                                                                                                        \
3344         "%c_u32_31_bits = OpConstant %u32 0x7FFFFFFF\n"                                                                                         \
3345         "%c_v4f32_1_1_1_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"           \
3346         "%c_v4f32_1_0_0_1 = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_1\n"           \
3347         "%c_v4f32_0_5_0_5_0_5_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5\n"
3348
3349 #define SPIRV_ASSEMBLY_ARRAYS                                                                                                                                   \
3350         "%a1f32 = OpTypeArray %f32 %c_u32_1\n"                                                                                                          \
3351         "%a2f32 = OpTypeArray %f32 %c_u32_2\n"                                                                                                          \
3352         "%a3v4f32 = OpTypeArray %v4f32 %c_u32_3\n"                                                                                                      \
3353         "%a4f32 = OpTypeArray %f32 %c_u32_4\n"                                                                                                          \
3354         "%a32v4f32 = OpTypeArray %v4f32 %c_u32_32\n"                                                                                            \
3355         "%ip_a3v4f32 = OpTypePointer Input %a3v4f32\n"                                                                                          \
3356         "%ip_a32v4f32 = OpTypePointer Input %a32v4f32\n"                                                                                        \
3357         "%op_a2f32 = OpTypePointer Output %a2f32\n"                                                                                                     \
3358         "%op_a3v4f32 = OpTypePointer Output %a3v4f32\n"                                                                                         \
3359         "%op_a4f32 = OpTypePointer Output %a4f32\n"
3360
3361 // Creates vertex-shader assembly by specializing a boilerplate StringTemplate
3362 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3363 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3364 // with "BP_" to avoid collisions with fragments.
3365 //
3366 // It corresponds roughly to this GLSL:
3367 //;
3368 // layout(location = 0) in vec4 position;
3369 // layout(location = 1) in vec4 color;
3370 // layout(location = 1) out highp vec4 vtxColor;
3371 // void main (void) { gl_Position = position; vtxColor = test_func(color); }
3372 string makeVertexShaderAssembly(const map<string, string>& fragments)
3373 {
3374 // \todo [2015-11-23 awoloszyn] Remove OpName once these have stabalized
3375         static const char vertexShaderBoilerplate[] =
3376                 "OpCapability Shader\n"
3377                 "OpMemoryModel Logical GLSL450\n"
3378                 "OpEntryPoint Vertex %main \"main\" %BP_stream %BP_position %BP_vtx_color %BP_color %BP_gl_VertexIndex %BP_gl_InstanceIndex\n"
3379                 "${debug:opt}\n"
3380                 "OpName %main \"main\"\n"
3381                 "OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3382                 "OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3383                 "OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3384                 "OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3385                 "OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3386                 "OpName %test_code \"testfun(vf4;\"\n"
3387                 "OpName %BP_stream \"\"\n"
3388                 "OpName %BP_position \"position\"\n"
3389                 "OpName %BP_vtx_color \"vtxColor\"\n"
3390                 "OpName %BP_color \"color\"\n"
3391                 "OpName %BP_gl_VertexIndex \"gl_VertexIndex\"\n"
3392                 "OpName %BP_gl_InstanceIndex \"gl_InstanceIndex\"\n"
3393                 "OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3394                 "OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3395                 "OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3396                 "OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3397                 "OpDecorate %BP_gl_PerVertex Block\n"
3398                 "OpDecorate %BP_position Location 0\n"
3399                 "OpDecorate %BP_vtx_color Location 1\n"
3400                 "OpDecorate %BP_color Location 1\n"
3401                 "OpDecorate %BP_gl_VertexIndex BuiltIn VertexIndex\n"
3402                 "OpDecorate %BP_gl_InstanceIndex BuiltIn InstanceIndex\n"
3403                 "${decoration:opt}\n"
3404                 SPIRV_ASSEMBLY_TYPES
3405                 SPIRV_ASSEMBLY_CONSTANTS
3406                 SPIRV_ASSEMBLY_ARRAYS
3407                 "%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3408                 "%BP_op_gl_PerVertex = OpTypePointer Output %BP_gl_PerVertex\n"
3409                 "%BP_stream = OpVariable %BP_op_gl_PerVertex Output\n"
3410                 "%BP_position = OpVariable %ip_v4f32 Input\n"
3411                 "%BP_vtx_color = OpVariable %op_v4f32 Output\n"
3412                 "%BP_color = OpVariable %ip_v4f32 Input\n"
3413                 "%BP_gl_VertexIndex = OpVariable %ip_i32 Input\n"
3414                 "%BP_gl_InstanceIndex = OpVariable %ip_i32 Input\n"
3415                 "${pre_main:opt}\n"
3416                 "%main = OpFunction %void None %fun\n"
3417                 "%BP_label = OpLabel\n"
3418                 "%BP_pos = OpLoad %v4f32 %BP_position\n"
3419                 "%BP_gl_pos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3420                 "OpStore %BP_gl_pos %BP_pos\n"
3421                 "%BP_col = OpLoad %v4f32 %BP_color\n"
3422                 "%BP_col_transformed = OpFunctionCall %v4f32 %test_code %BP_col\n"
3423                 "OpStore %BP_vtx_color %BP_col_transformed\n"
3424                 "OpReturn\n"
3425                 "OpFunctionEnd\n"
3426                 "${testfun}\n";
3427         return tcu::StringTemplate(vertexShaderBoilerplate).specialize(fragments);
3428 }
3429
3430 // Creates tess-control-shader assembly by specializing a boilerplate
3431 // StringTemplate on fragments, which must (at least) map "testfun" to an
3432 // OpFunction definition for %test_code that takes and returns a %v4f32.
3433 // Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3434 //
3435 // It roughly corresponds to the following GLSL.
3436 //
3437 // #version 450
3438 // layout(vertices = 3) out;
3439 // layout(location = 1) in vec4 in_color[];
3440 // layout(location = 1) out vec4 out_color[];
3441 //
3442 // void main() {
3443 //   out_color[gl_InvocationID] = testfun(in_color[gl_InvocationID]);
3444 //   gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
3445 //   if (gl_InvocationID == 0) {
3446 //     gl_TessLevelOuter[0] = 1.0;
3447 //     gl_TessLevelOuter[1] = 1.0;
3448 //     gl_TessLevelOuter[2] = 1.0;
3449 //     gl_TessLevelInner[0] = 1.0;
3450 //   }
3451 // }
3452 string makeTessControlShaderAssembly (const map<string, string>& fragments)
3453 {
3454         static const char tessControlShaderBoilerplate[] =
3455                 "OpCapability Tessellation\n"
3456                 "OpMemoryModel Logical GLSL450\n"
3457                 "OpEntryPoint TessellationControl %BP_main \"main\" %BP_out_color %BP_gl_InvocationID %BP_in_color %BP_gl_out %BP_gl_in %BP_gl_TessLevelOuter %BP_gl_TessLevelInner\n"
3458                 "OpExecutionMode %BP_main OutputVertices 3\n"
3459                 "${debug:opt}\n"
3460                 "OpName %BP_main \"main\"\n"
3461                 "OpName %test_code \"testfun(vf4;\"\n"
3462                 "OpName %BP_out_color \"out_color\"\n"
3463                 "OpName %BP_gl_InvocationID \"gl_InvocationID\"\n"
3464                 "OpName %BP_in_color \"in_color\"\n"
3465                 "OpName %BP_gl_PerVertex \"gl_PerVertex\"\n"
3466                 "OpMemberName %BP_gl_PerVertex 0 \"gl_Position\"\n"
3467                 "OpMemberName %BP_gl_PerVertex 1 \"gl_PointSize\"\n"
3468                 "OpMemberName %BP_gl_PerVertex 2 \"gl_ClipDistance\"\n"
3469                 "OpMemberName %BP_gl_PerVertex 3 \"gl_CullDistance\"\n"
3470                 "OpName %BP_gl_out \"gl_out\"\n"
3471                 "OpName %BP_gl_PVOut \"gl_PerVertex\"\n"
3472                 "OpMemberName %BP_gl_PVOut 0 \"gl_Position\"\n"
3473                 "OpMemberName %BP_gl_PVOut 1 \"gl_PointSize\"\n"
3474                 "OpMemberName %BP_gl_PVOut 2 \"gl_ClipDistance\"\n"
3475                 "OpMemberName %BP_gl_PVOut 3 \"gl_CullDistance\"\n"
3476                 "OpName %BP_gl_in \"gl_in\"\n"
3477                 "OpName %BP_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3478                 "OpName %BP_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3479                 "OpDecorate %BP_out_color Location 1\n"
3480                 "OpDecorate %BP_gl_InvocationID BuiltIn InvocationId\n"
3481                 "OpDecorate %BP_in_color Location 1\n"
3482                 "OpMemberDecorate %BP_gl_PerVertex 0 BuiltIn Position\n"
3483                 "OpMemberDecorate %BP_gl_PerVertex 1 BuiltIn PointSize\n"
3484                 "OpMemberDecorate %BP_gl_PerVertex 2 BuiltIn ClipDistance\n"
3485                 "OpMemberDecorate %BP_gl_PerVertex 3 BuiltIn CullDistance\n"
3486                 "OpDecorate %BP_gl_PerVertex Block\n"
3487                 "OpMemberDecorate %BP_gl_PVOut 0 BuiltIn Position\n"
3488                 "OpMemberDecorate %BP_gl_PVOut 1 BuiltIn PointSize\n"
3489                 "OpMemberDecorate %BP_gl_PVOut 2 BuiltIn ClipDistance\n"
3490                 "OpMemberDecorate %BP_gl_PVOut 3 BuiltIn CullDistance\n"
3491                 "OpDecorate %BP_gl_PVOut Block\n"
3492                 "OpDecorate %BP_gl_TessLevelOuter Patch\n"
3493                 "OpDecorate %BP_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3494                 "OpDecorate %BP_gl_TessLevelInner Patch\n"
3495                 "OpDecorate %BP_gl_TessLevelInner BuiltIn TessLevelInner\n"
3496                 "${decoration:opt}\n"
3497                 SPIRV_ASSEMBLY_TYPES
3498                 SPIRV_ASSEMBLY_CONSTANTS
3499                 SPIRV_ASSEMBLY_ARRAYS
3500                 "%BP_out_color = OpVariable %op_a3v4f32 Output\n"
3501                 "%BP_gl_InvocationID = OpVariable %ip_i32 Input\n"
3502                 "%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3503                 "%BP_gl_PerVertex = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3504                 "%BP_a3_gl_PerVertex = OpTypeArray %BP_gl_PerVertex %c_u32_3\n"
3505                 "%BP_op_a3_gl_PerVertex = OpTypePointer Output %BP_a3_gl_PerVertex\n"
3506                 "%BP_gl_out = OpVariable %BP_op_a3_gl_PerVertex Output\n"
3507                 "%BP_gl_PVOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3508                 "%BP_a32_gl_PVOut = OpTypeArray %BP_gl_PVOut %c_u32_32\n"
3509                 "%BP_ip_a32_gl_PVOut = OpTypePointer Input %BP_a32_gl_PVOut\n"
3510                 "%BP_gl_in = OpVariable %BP_ip_a32_gl_PVOut Input\n"
3511                 "%BP_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
3512                 "%BP_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
3513                 "${pre_main:opt}\n"
3514
3515                 "%BP_main = OpFunction %void None %fun\n"
3516                 "%BP_label = OpLabel\n"
3517
3518                 "%BP_gl_Invoc = OpLoad %i32 %BP_gl_InvocationID\n"
3519
3520                 "%BP_in_col_loc = OpAccessChain %ip_v4f32 %BP_in_color %BP_gl_Invoc\n"
3521                 "%BP_out_col_loc = OpAccessChain %op_v4f32 %BP_out_color %BP_gl_Invoc\n"
3522                 "%BP_in_col_val = OpLoad %v4f32 %BP_in_col_loc\n"
3523                 "%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_in_col_val\n"
3524                 "OpStore %BP_out_col_loc %BP_clr_transformed\n"
3525
3526                 "%BP_in_pos_loc = OpAccessChain %ip_v4f32 %BP_gl_in %BP_gl_Invoc %c_i32_0\n"
3527                 "%BP_out_pos_loc = OpAccessChain %op_v4f32 %BP_gl_out %BP_gl_Invoc %c_i32_0\n"
3528                 "%BP_in_pos_val = OpLoad %v4f32 %BP_in_pos_loc\n"
3529                 "OpStore %BP_out_pos_loc %BP_in_pos_val\n"
3530
3531                 "%BP_cmp = OpIEqual %bool %BP_gl_Invoc %c_i32_0\n"
3532                 "OpSelectionMerge %BP_merge_label None\n"
3533                 "OpBranchConditional %BP_cmp %BP_if_label %BP_merge_label\n"
3534                 "%BP_if_label = OpLabel\n"
3535                 "%BP_gl_TessLevelOuterPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_0\n"
3536                 "%BP_gl_TessLevelOuterPos_1 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_1\n"
3537                 "%BP_gl_TessLevelOuterPos_2 = OpAccessChain %op_f32 %BP_gl_TessLevelOuter %c_i32_2\n"
3538                 "%BP_gl_TessLevelInnerPos_0 = OpAccessChain %op_f32 %BP_gl_TessLevelInner %c_i32_0\n"
3539                 "OpStore %BP_gl_TessLevelOuterPos_0 %c_f32_1\n"
3540                 "OpStore %BP_gl_TessLevelOuterPos_1 %c_f32_1\n"
3541                 "OpStore %BP_gl_TessLevelOuterPos_2 %c_f32_1\n"
3542                 "OpStore %BP_gl_TessLevelInnerPos_0 %c_f32_1\n"
3543                 "OpBranch %BP_merge_label\n"
3544                 "%BP_merge_label = OpLabel\n"
3545                 "OpReturn\n"
3546                 "OpFunctionEnd\n"
3547                 "${testfun}\n";
3548         return tcu::StringTemplate(tessControlShaderBoilerplate).specialize(fragments);
3549 }
3550
3551 // Creates tess-evaluation-shader assembly by specializing a boilerplate
3552 // StringTemplate on fragments, which must (at least) map "testfun" to an
3553 // OpFunction definition for %test_code that takes and returns a %v4f32.
3554 // Boilerplate IDs are prefixed with "BP_" to avoid collisions with fragments.
3555 //
3556 // It roughly corresponds to the following glsl.
3557 //
3558 // #version 450
3559 //
3560 // layout(triangles, equal_spacing, ccw) in;
3561 // layout(location = 1) in vec4 in_color[];
3562 // layout(location = 1) out vec4 out_color;
3563 //
3564 // #define interpolate(val)
3565 //   vec4(gl_TessCoord.x) * val[0] + vec4(gl_TessCoord.y) * val[1] +
3566 //          vec4(gl_TessCoord.z) * val[2]
3567 //
3568 // void main() {
3569 //   gl_Position = vec4(gl_TessCoord.x) * gl_in[0].gl_Position +
3570 //                  vec4(gl_TessCoord.y) * gl_in[1].gl_Position +
3571 //                  vec4(gl_TessCoord.z) * gl_in[2].gl_Position;
3572 //   out_color = testfun(interpolate(in_color));
3573 // }
3574 string makeTessEvalShaderAssembly(const map<string, string>& fragments)
3575 {
3576         static const char tessEvalBoilerplate[] =
3577                 "OpCapability Tessellation\n"
3578                 "OpMemoryModel Logical GLSL450\n"
3579                 "OpEntryPoint TessellationEvaluation %BP_main \"main\" %BP_stream %BP_gl_TessCoord %BP_gl_in %BP_out_color %BP_in_color\n"
3580                 "OpExecutionMode %BP_main Triangles\n"
3581                 "OpExecutionMode %BP_main SpacingEqual\n"
3582                 "OpExecutionMode %BP_main VertexOrderCcw\n"
3583                 "${debug:opt}\n"
3584                 "OpName %BP_main \"main\"\n"
3585                 "OpName %test_code \"testfun(vf4;\"\n"
3586                 "OpName %BP_gl_PerVertexOut \"gl_PerVertex\"\n"
3587                 "OpMemberName %BP_gl_PerVertexOut 0 \"gl_Position\"\n"
3588                 "OpMemberName %BP_gl_PerVertexOut 1 \"gl_PointSize\"\n"
3589                 "OpMemberName %BP_gl_PerVertexOut 2 \"gl_ClipDistance\"\n"
3590                 "OpMemberName %BP_gl_PerVertexOut 3 \"gl_CullDistance\"\n"
3591                 "OpName %BP_stream \"\"\n"
3592                 "OpName %BP_gl_TessCoord \"gl_TessCoord\"\n"
3593                 "OpName %BP_gl_PerVertexIn \"gl_PerVertex\"\n"
3594                 "OpMemberName %BP_gl_PerVertexIn 0 \"gl_Position\"\n"
3595                 "OpMemberName %BP_gl_PerVertexIn 1 \"gl_PointSize\"\n"
3596                 "OpMemberName %BP_gl_PerVertexIn 2 \"gl_ClipDistance\"\n"
3597                 "OpMemberName %BP_gl_PerVertexIn 3 \"gl_CullDistance\"\n"
3598                 "OpName %BP_gl_in \"gl_in\"\n"
3599                 "OpName %BP_out_color \"out_color\"\n"
3600                 "OpName %BP_in_color \"in_color\"\n"
3601                 "OpMemberDecorate %BP_gl_PerVertexOut 0 BuiltIn Position\n"
3602                 "OpMemberDecorate %BP_gl_PerVertexOut 1 BuiltIn PointSize\n"
3603                 "OpMemberDecorate %BP_gl_PerVertexOut 2 BuiltIn ClipDistance\n"
3604                 "OpMemberDecorate %BP_gl_PerVertexOut 3 BuiltIn CullDistance\n"
3605                 "OpDecorate %BP_gl_PerVertexOut Block\n"
3606                 "OpDecorate %BP_gl_TessCoord BuiltIn TessCoord\n"
3607                 "OpMemberDecorate %BP_gl_PerVertexIn 0 BuiltIn Position\n"
3608                 "OpMemberDecorate %BP_gl_PerVertexIn 1 BuiltIn PointSize\n"
3609                 "OpMemberDecorate %BP_gl_PerVertexIn 2 BuiltIn ClipDistance\n"
3610                 "OpMemberDecorate %BP_gl_PerVertexIn 3 BuiltIn CullDistance\n"
3611                 "OpDecorate %BP_gl_PerVertexIn Block\n"
3612                 "OpDecorate %BP_out_color Location 1\n"
3613                 "OpDecorate %BP_in_color Location 1\n"
3614                 "${decoration:opt}\n"
3615                 SPIRV_ASSEMBLY_TYPES
3616                 SPIRV_ASSEMBLY_CONSTANTS
3617                 SPIRV_ASSEMBLY_ARRAYS
3618                 "%BP_gl_PerVertexOut = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3619                 "%BP_op_gl_PerVertexOut = OpTypePointer Output %BP_gl_PerVertexOut\n"
3620                 "%BP_stream = OpVariable %BP_op_gl_PerVertexOut Output\n"
3621                 "%BP_gl_TessCoord = OpVariable %ip_v3f32 Input\n"
3622                 "%BP_gl_PerVertexIn = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3623                 "%BP_a32_gl_PerVertexIn = OpTypeArray %BP_gl_PerVertexIn %c_u32_32\n"
3624                 "%BP_ip_a32_gl_PerVertexIn = OpTypePointer Input %BP_a32_gl_PerVertexIn\n"
3625                 "%BP_gl_in = OpVariable %BP_ip_a32_gl_PerVertexIn Input\n"
3626                 "%BP_out_color = OpVariable %op_v4f32 Output\n"
3627                 "%BP_in_color = OpVariable %ip_a32v4f32 Input\n"
3628                 "${pre_main:opt}\n"
3629                 "%BP_main = OpFunction %void None %fun\n"
3630                 "%BP_label = OpLabel\n"
3631                 "%BP_gl_TC_0 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_0\n"
3632                 "%BP_gl_TC_1 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_1\n"
3633                 "%BP_gl_TC_2 = OpAccessChain %ip_f32 %BP_gl_TessCoord %c_u32_2\n"
3634                 "%BP_gl_in_gl_Pos_0 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3635                 "%BP_gl_in_gl_Pos_1 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3636                 "%BP_gl_in_gl_Pos_2 = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3637
3638                 "%BP_gl_OPos = OpAccessChain %op_v4f32 %BP_stream %c_i32_0\n"
3639                 "%BP_in_color_0 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3640                 "%BP_in_color_1 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3641                 "%BP_in_color_2 = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3642
3643                 "%BP_TC_W_0 = OpLoad %f32 %BP_gl_TC_0\n"
3644                 "%BP_TC_W_1 = OpLoad %f32 %BP_gl_TC_1\n"
3645                 "%BP_TC_W_2 = OpLoad %f32 %BP_gl_TC_2\n"
3646                 "%BP_v4f32_TC_0 = OpCompositeConstruct %v4f32 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0 %BP_TC_W_0\n"
3647                 "%BP_v4f32_TC_1 = OpCompositeConstruct %v4f32 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1 %BP_TC_W_1\n"
3648                 "%BP_v4f32_TC_2 = OpCompositeConstruct %v4f32 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2 %BP_TC_W_2\n"
3649
3650                 "%BP_gl_IP_0 = OpLoad %v4f32 %BP_gl_in_gl_Pos_0\n"
3651                 "%BP_gl_IP_1 = OpLoad %v4f32 %BP_gl_in_gl_Pos_1\n"
3652                 "%BP_gl_IP_2 = OpLoad %v4f32 %BP_gl_in_gl_Pos_2\n"
3653
3654                 "%BP_IP_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_gl_IP_0\n"
3655                 "%BP_IP_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_gl_IP_1\n"
3656                 "%BP_IP_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_gl_IP_2\n"
3657
3658                 "%BP_pos_sum_0 = OpFAdd %v4f32 %BP_IP_W_0 %BP_IP_W_1\n"
3659                 "%BP_pos_sum_1 = OpFAdd %v4f32 %BP_pos_sum_0 %BP_IP_W_2\n"
3660
3661                 "OpStore %BP_gl_OPos %BP_pos_sum_1\n"
3662
3663                 "%BP_IC_0 = OpLoad %v4f32 %BP_in_color_0\n"
3664                 "%BP_IC_1 = OpLoad %v4f32 %BP_in_color_1\n"
3665                 "%BP_IC_2 = OpLoad %v4f32 %BP_in_color_2\n"
3666
3667                 "%BP_IC_W_0 = OpFMul %v4f32 %BP_v4f32_TC_0 %BP_IC_0\n"
3668                 "%BP_IC_W_1 = OpFMul %v4f32 %BP_v4f32_TC_1 %BP_IC_1\n"
3669                 "%BP_IC_W_2 = OpFMul %v4f32 %BP_v4f32_TC_2 %BP_IC_2\n"
3670
3671                 "%BP_col_sum_0 = OpFAdd %v4f32 %BP_IC_W_0 %BP_IC_W_1\n"
3672                 "%BP_col_sum_1 = OpFAdd %v4f32 %BP_col_sum_0 %BP_IC_W_2\n"
3673
3674                 "%BP_clr_transformed = OpFunctionCall %v4f32 %test_code %BP_col_sum_1\n"
3675
3676                 "OpStore %BP_out_color %BP_clr_transformed\n"
3677                 "OpReturn\n"
3678                 "OpFunctionEnd\n"
3679                 "${testfun}\n";
3680         return tcu::StringTemplate(tessEvalBoilerplate).specialize(fragments);
3681 }
3682
3683 // Creates geometry-shader assembly by specializing a boilerplate StringTemplate
3684 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3685 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3686 // with "BP_" to avoid collisions with fragments.
3687 //
3688 // Derived from this GLSL:
3689 //
3690 // #version 450
3691 // layout(triangles) in;
3692 // layout(triangle_strip, max_vertices = 3) out;
3693 //
3694 // layout(location = 1) in vec4 in_color[];
3695 // layout(location = 1) out vec4 out_color;
3696 //
3697 // void main() {
3698 //   gl_Position = gl_in[0].gl_Position;
3699 //   out_color = test_fun(in_color[0]);
3700 //   EmitVertex();
3701 //   gl_Position = gl_in[1].gl_Position;
3702 //   out_color = test_fun(in_color[1]);
3703 //   EmitVertex();
3704 //   gl_Position = gl_in[2].gl_Position;
3705 //   out_color = test_fun(in_color[2]);
3706 //   EmitVertex();
3707 //   EndPrimitive();
3708 // }
3709 string makeGeometryShaderAssembly(const map<string, string>& fragments)
3710 {
3711         static const char geometryShaderBoilerplate[] =
3712                 "OpCapability Geometry\n"
3713                 "OpMemoryModel Logical GLSL450\n"
3714                 "OpEntryPoint Geometry %BP_main \"main\" %BP_out_gl_position %BP_gl_in %BP_out_color %BP_in_color\n"
3715                 "OpExecutionMode %BP_main Triangles\n"
3716                 "OpExecutionMode %BP_main Invocations 0\n"
3717                 "OpExecutionMode %BP_main OutputTriangleStrip\n"
3718                 "OpExecutionMode %BP_main OutputVertices 3\n"
3719                 "${debug:opt}\n"
3720                 "OpName %BP_main \"main\"\n"
3721                 "OpName %BP_per_vertex_in \"gl_PerVertex\"\n"
3722                 "OpMemberName %BP_per_vertex_in 0 \"gl_Position\"\n"
3723                 "OpMemberName %BP_per_vertex_in 1 \"gl_PointSize\"\n"
3724                 "OpMemberName %BP_per_vertex_in 2 \"gl_ClipDistance\"\n"
3725                 "OpMemberName %BP_per_vertex_in 3 \"gl_CullDistance\"\n"
3726                 "OpName %BP_gl_in \"gl_in\"\n"
3727                 "OpName %BP_out_color \"out_color\"\n"
3728                 "OpName %BP_in_color \"in_color\"\n"
3729                 "OpName %test_code \"testfun(vf4;\"\n"
3730                 "OpDecorate %BP_out_gl_position BuiltIn Position\n"
3731                 "OpMemberDecorate %BP_per_vertex_in 0 BuiltIn Position\n"
3732                 "OpMemberDecorate %BP_per_vertex_in 1 BuiltIn PointSize\n"
3733                 "OpMemberDecorate %BP_per_vertex_in 2 BuiltIn ClipDistance\n"
3734                 "OpMemberDecorate %BP_per_vertex_in 3 BuiltIn CullDistance\n"
3735                 "OpDecorate %BP_per_vertex_in Block\n"
3736                 "OpDecorate %BP_out_color Location 1\n"
3737                 "OpDecorate %BP_out_color Stream 0\n"
3738                 "OpDecorate %BP_in_color Location 1\n"
3739                 "${decoration:opt}\n"
3740                 SPIRV_ASSEMBLY_TYPES
3741                 SPIRV_ASSEMBLY_CONSTANTS
3742                 SPIRV_ASSEMBLY_ARRAYS
3743                 "%BP_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
3744                 "%BP_a3_per_vertex_in = OpTypeArray %BP_per_vertex_in %c_u32_3\n"
3745                 "%BP_ip_a3_per_vertex_in = OpTypePointer Input %BP_a3_per_vertex_in\n"
3746
3747                 "%BP_gl_in = OpVariable %BP_ip_a3_per_vertex_in Input\n"
3748                 "%BP_out_color = OpVariable %op_v4f32 Output\n"
3749                 "%BP_in_color = OpVariable %ip_a3v4f32 Input\n"
3750                 "%BP_out_gl_position = OpVariable %op_v4f32 Output\n"
3751                 "${pre_main:opt}\n"
3752
3753                 "%BP_main = OpFunction %void None %fun\n"
3754                 "%BP_label = OpLabel\n"
3755                 "%BP_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_0 %c_i32_0\n"
3756                 "%BP_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_1 %c_i32_0\n"
3757                 "%BP_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %BP_gl_in %c_i32_2 %c_i32_0\n"
3758
3759                 "%BP_in_position_0 = OpLoad %v4f32 %BP_gl_in_0_gl_position\n"
3760                 "%BP_in_position_1 = OpLoad %v4f32 %BP_gl_in_1_gl_position\n"
3761                 "%BP_in_position_2 = OpLoad %v4f32 %BP_gl_in_2_gl_position \n"
3762
3763                 "%BP_in_color_0_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_0\n"
3764                 "%BP_in_color_1_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_1\n"
3765                 "%BP_in_color_2_ptr = OpAccessChain %ip_v4f32 %BP_in_color %c_i32_2\n"
3766
3767                 "%BP_in_color_0 = OpLoad %v4f32 %BP_in_color_0_ptr\n"
3768                 "%BP_in_color_1 = OpLoad %v4f32 %BP_in_color_1_ptr\n"
3769                 "%BP_in_color_2 = OpLoad %v4f32 %BP_in_color_2_ptr\n"
3770
3771                 "%BP_transformed_in_color_0 = OpFunctionCall %v4f32 %test_code %BP_in_color_0\n"
3772                 "%BP_transformed_in_color_1 = OpFunctionCall %v4f32 %test_code %BP_in_color_1\n"
3773                 "%BP_transformed_in_color_2 = OpFunctionCall %v4f32 %test_code %BP_in_color_2\n"
3774
3775
3776                 "OpStore %BP_out_gl_position %BP_in_position_0\n"
3777                 "OpStore %BP_out_color %BP_transformed_in_color_0\n"
3778                 "OpEmitVertex\n"
3779
3780                 "OpStore %BP_out_gl_position %BP_in_position_1\n"
3781                 "OpStore %BP_out_color %BP_transformed_in_color_1\n"
3782                 "OpEmitVertex\n"
3783
3784                 "OpStore %BP_out_gl_position %BP_in_position_2\n"
3785                 "OpStore %BP_out_color %BP_transformed_in_color_2\n"
3786                 "OpEmitVertex\n"
3787
3788                 "OpEndPrimitive\n"
3789                 "OpReturn\n"
3790                 "OpFunctionEnd\n"
3791                 "${testfun}\n";
3792         return tcu::StringTemplate(geometryShaderBoilerplate).specialize(fragments);
3793 }
3794
3795 // Creates fragment-shader assembly by specializing a boilerplate StringTemplate
3796 // on fragments, which must (at least) map "testfun" to an OpFunction definition
3797 // for %test_code that takes and returns a %v4f32.  Boilerplate IDs are prefixed
3798 // with "BP_" to avoid collisions with fragments.
3799 //
3800 // Derived from this GLSL:
3801 //
3802 // layout(location = 1) in highp vec4 vtxColor;
3803 // layout(location = 0) out highp vec4 fragColor;
3804 // highp vec4 testfun(highp vec4 x) { return x; }
3805 // void main(void) { fragColor = testfun(vtxColor); }
3806 //
3807 // with modifications including passing vtxColor by value and ripping out
3808 // testfun() definition.
3809 string makeFragmentShaderAssembly(const map<string, string>& fragments)
3810 {
3811         static const char fragmentShaderBoilerplate[] =
3812                 "OpCapability Shader\n"
3813                 "OpMemoryModel Logical GLSL450\n"
3814                 "OpEntryPoint Fragment %BP_main \"main\" %BP_vtxColor %BP_fragColor\n"
3815                 "OpExecutionMode %BP_main OriginUpperLeft\n"
3816                 "${debug:opt}\n"
3817                 "OpName %BP_main \"main\"\n"
3818                 "OpName %BP_fragColor \"fragColor\"\n"
3819                 "OpName %BP_vtxColor \"vtxColor\"\n"
3820                 "OpName %test_code \"testfun(vf4;\"\n"
3821                 "OpDecorate %BP_fragColor Location 0\n"
3822                 "OpDecorate %BP_vtxColor Location 1\n"
3823                 "${decoration:opt}\n"
3824                 SPIRV_ASSEMBLY_TYPES
3825                 SPIRV_ASSEMBLY_CONSTANTS
3826                 SPIRV_ASSEMBLY_ARRAYS
3827                 "%BP_fragColor = OpVariable %op_v4f32 Output\n"
3828                 "%BP_vtxColor = OpVariable %ip_v4f32 Input\n"
3829                 "${pre_main:opt}\n"
3830                 "%BP_main = OpFunction %void None %fun\n"
3831                 "%BP_label_main = OpLabel\n"
3832                 "%BP_tmp1 = OpLoad %v4f32 %BP_vtxColor\n"
3833                 "%BP_tmp2 = OpFunctionCall %v4f32 %test_code %BP_tmp1\n"
3834                 "OpStore %BP_fragColor %BP_tmp2\n"
3835                 "OpReturn\n"
3836                 "OpFunctionEnd\n"
3837                 "${testfun}\n";
3838         return tcu::StringTemplate(fragmentShaderBoilerplate).specialize(fragments);
3839 }
3840
3841 // Creates fragments that specialize into a simple pass-through shader (of any kind).
3842 map<string, string> passthruFragments(void)
3843 {
3844         map<string, string> fragments;
3845         fragments["testfun"] =
3846                 // A %test_code function that returns its argument unchanged.
3847                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3848                 "%param1 = OpFunctionParameter %v4f32\n"
3849                 "%label_testfun = OpLabel\n"
3850                 "OpReturnValue %param1\n"
3851                 "OpFunctionEnd\n";
3852         return fragments;
3853 }
3854
3855 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3856 // Vertex shader gets custom code from context, the rest are pass-through.
3857 void addShaderCodeCustomVertex(vk::SourceCollections& dst, InstanceContext context)
3858 {
3859         map<string, string> passthru = passthruFragments();
3860         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(context.testCodeFragments);
3861         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3862 }
3863
3864 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3865 // Tessellation control shader gets custom code from context, the rest are
3866 // pass-through.
3867 void addShaderCodeCustomTessControl(vk::SourceCollections& dst, InstanceContext context)
3868 {
3869         map<string, string> passthru = passthruFragments();
3870         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3871         dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(context.testCodeFragments);
3872         dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(passthru);
3873         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3874 }
3875
3876 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3877 // Tessellation evaluation shader gets custom code from context, the rest are
3878 // pass-through.
3879 void addShaderCodeCustomTessEval(vk::SourceCollections& dst, InstanceContext context)
3880 {
3881         map<string, string> passthru = passthruFragments();
3882         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3883         dst.spirvAsmSources.add("tessc") << makeTessControlShaderAssembly(passthru);
3884         dst.spirvAsmSources.add("tesse") << makeTessEvalShaderAssembly(context.testCodeFragments);
3885         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3886 }
3887
3888 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3889 // Geometry shader gets custom code from context, the rest are pass-through.
3890 void addShaderCodeCustomGeometry(vk::SourceCollections& dst, InstanceContext context)
3891 {
3892         map<string, string> passthru = passthruFragments();
3893         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3894         dst.spirvAsmSources.add("geom") << makeGeometryShaderAssembly(context.testCodeFragments);
3895         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(passthru);
3896 }
3897
3898 // Adds shader assembly text to dst.spirvAsmSources for all shader kinds.
3899 // Fragment shader gets custom code from context, the rest are pass-through.
3900 void addShaderCodeCustomFragment(vk::SourceCollections& dst, InstanceContext context)
3901 {
3902         map<string, string> passthru = passthruFragments();
3903         dst.spirvAsmSources.add("vert") << makeVertexShaderAssembly(passthru);
3904         dst.spirvAsmSources.add("frag") << makeFragmentShaderAssembly(context.testCodeFragments);
3905 }
3906
3907 void createCombinedModule(vk::SourceCollections& dst, InstanceContext)
3908 {
3909         // \todo [2015-12-07 awoloszyn] Make tessellation / geometry conditional
3910         // \todo [2015-12-07 awoloszyn] Remove OpName and OpMemberName at some point
3911         dst.spirvAsmSources.add("module") <<
3912                 "OpCapability Shader\n"
3913                 "OpCapability Geometry\n"
3914                 "OpCapability Tessellation\n"
3915                 "OpMemoryModel Logical GLSL450\n"
3916
3917                 "OpEntryPoint Vertex %vert_main \"main\" %vert_Position %vert_vtxColor %vert_color %vert_vtxPosition %vert_vertex_id %vert_instance_id\n"
3918                 "OpEntryPoint Geometry %geom_main \"main\" %geom_out_gl_position %geom_gl_in %geom_out_color %geom_in_color\n"
3919                 "OpEntryPoint TessellationControl %tessc_main \"main\" %tessc_out_color %tessc_gl_InvocationID %tessc_in_color %tessc_out_position %tessc_in_position %tessc_gl_TessLevelOuter %tessc_gl_TessLevelInner\n"
3920                 "OpEntryPoint TessellationEvaluation %tesse_main \"main\" %tesse_stream %tesse_gl_tessCoord %tesse_in_position %tesse_out_color %tesse_in_color \n"
3921                 "OpEntryPoint Fragment %frag_main \"main\" %frag_vtxColor %frag_fragColor\n"
3922
3923                 "OpExecutionMode %geom_main Triangles\n"
3924                 "OpExecutionMode %geom_main Invocations 0\n"
3925                 "OpExecutionMode %geom_main OutputTriangleStrip\n"
3926                 "OpExecutionMode %geom_main OutputVertices 3\n"
3927
3928                 "OpExecutionMode %tessc_main OutputVertices 3\n"
3929
3930                 "OpExecutionMode %tesse_main Triangles\n"
3931
3932                 "OpExecutionMode %frag_main OriginUpperLeft\n"
3933
3934                 "; Vertex decorations\n"
3935                 "OpName %vert_main \"main\"\n"
3936                 "OpName %vert_vtxPosition \"vtxPosition\"\n"
3937                 "OpName %vert_Position \"position\"\n"
3938                 "OpName %vert_vtxColor \"vtxColor\"\n"
3939                 "OpName %vert_color \"color\"\n"
3940                 "OpName %vert_vertex_id \"gl_VertexIndex\"\n"
3941                 "OpName %vert_instance_id \"gl_InstanceIndex\"\n"
3942                 "OpDecorate %vert_vtxPosition Location 2\n"
3943                 "OpDecorate %vert_Position Location 0\n"
3944                 "OpDecorate %vert_vtxColor Location 1\n"
3945                 "OpDecorate %vert_color Location 1\n"
3946                 "OpDecorate %vert_vertex_id BuiltIn VertexIndex\n"
3947                 "OpDecorate %vert_instance_id BuiltIn InstanceIndex\n"
3948
3949                 "; Geometry decorations\n"
3950                 "OpName %geom_main \"main\"\n"
3951                 "OpName %geom_per_vertex_in \"gl_PerVertex\"\n"
3952                 "OpMemberName %geom_per_vertex_in 0 \"gl_Position\"\n"
3953                 "OpMemberName %geom_per_vertex_in 1 \"gl_PointSize\"\n"
3954                 "OpMemberName %geom_per_vertex_in 2 \"gl_ClipDistance\"\n"
3955                 "OpMemberName %geom_per_vertex_in 3 \"gl_CullDistance\"\n"
3956                 "OpName %geom_gl_in \"gl_in\"\n"
3957                 "OpName %geom_out_color \"out_color\"\n"
3958                 "OpName %geom_in_color \"in_color\"\n"
3959                 "OpDecorate %geom_out_gl_position BuiltIn Position\n"
3960                 "OpMemberDecorate %geom_per_vertex_in 0 BuiltIn Position\n"
3961                 "OpMemberDecorate %geom_per_vertex_in 1 BuiltIn PointSize\n"
3962                 "OpMemberDecorate %geom_per_vertex_in 2 BuiltIn ClipDistance\n"
3963                 "OpMemberDecorate %geom_per_vertex_in 3 BuiltIn CullDistance\n"
3964                 "OpDecorate %geom_per_vertex_in Block\n"
3965                 "OpDecorate %geom_out_color Location 1\n"
3966                 "OpDecorate %geom_out_color Stream 0\n"
3967                 "OpDecorate %geom_in_color Location 1\n"
3968
3969                 "; Tessellation Control decorations\n"
3970                 "OpName %tessc_main \"main\"\n"
3971                 "OpName %tessc_out_color \"out_color\"\n"
3972                 "OpName %tessc_gl_InvocationID \"gl_InvocationID\"\n"
3973                 "OpName %tessc_in_color \"in_color\"\n"
3974                 "OpName %tessc_out_position \"out_position\"\n"
3975                 "OpName %tessc_in_position \"in_position\"\n"
3976                 "OpName %tessc_gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
3977                 "OpName %tessc_gl_TessLevelInner \"gl_TessLevelInner\"\n"
3978                 "OpDecorate %tessc_out_color Location 1\n"
3979                 "OpDecorate %tessc_gl_InvocationID BuiltIn InvocationId\n"
3980                 "OpDecorate %tessc_in_color Location 1\n"
3981                 "OpDecorate %tessc_out_position Location 2\n"
3982                 "OpDecorate %tessc_in_position Location 2\n"
3983                 "OpDecorate %tessc_gl_TessLevelOuter Patch\n"
3984                 "OpDecorate %tessc_gl_TessLevelOuter BuiltIn TessLevelOuter\n"
3985                 "OpDecorate %tessc_gl_TessLevelInner Patch\n"
3986                 "OpDecorate %tessc_gl_TessLevelInner BuiltIn TessLevelInner\n"
3987
3988                 "; Tessellation Evaluation decorations\n"
3989                 "OpName %tesse_main \"main\"\n"
3990                 "OpName %tesse_per_vertex_out \"gl_PerVertex\"\n"
3991                 "OpMemberName %tesse_per_vertex_out 0 \"gl_Position\"\n"
3992                 "OpMemberName %tesse_per_vertex_out 1 \"gl_PointSize\"\n"
3993                 "OpMemberName %tesse_per_vertex_out 2 \"gl_ClipDistance\"\n"
3994                 "OpMemberName %tesse_per_vertex_out 3 \"gl_CullDistance\"\n"
3995                 "OpName %tesse_stream \"\"\n"
3996                 "OpName %tesse_gl_tessCoord \"gl_TessCoord\"\n"
3997                 "OpName %tesse_in_position \"in_position\"\n"
3998                 "OpName %tesse_out_color \"out_color\"\n"
3999                 "OpName %tesse_in_color \"in_color\"\n"
4000                 "OpMemberDecorate %tesse_per_vertex_out 0 BuiltIn Position\n"
4001                 "OpMemberDecorate %tesse_per_vertex_out 1 BuiltIn PointSize\n"
4002                 "OpMemberDecorate %tesse_per_vertex_out 2 BuiltIn ClipDistance\n"
4003                 "OpMemberDecorate %tesse_per_vertex_out 3 BuiltIn CullDistance\n"
4004                 "OpDecorate %tesse_per_vertex_out Block\n"
4005                 "OpDecorate %tesse_gl_tessCoord BuiltIn TessCoord\n"
4006                 "OpDecorate %tesse_in_position Location 2\n"
4007                 "OpDecorate %tesse_out_color Location 1\n"
4008                 "OpDecorate %tesse_in_color Location 1\n"
4009
4010                 "; Fragment decorations\n"
4011                 "OpName %frag_main \"main\"\n"
4012                 "OpName %frag_fragColor \"fragColor\"\n"
4013                 "OpName %frag_vtxColor \"vtxColor\"\n"
4014                 "OpDecorate %frag_fragColor Location 0\n"
4015                 "OpDecorate %frag_vtxColor Location 1\n"
4016
4017                 SPIRV_ASSEMBLY_TYPES
4018                 SPIRV_ASSEMBLY_CONSTANTS
4019                 SPIRV_ASSEMBLY_ARRAYS
4020
4021                 "; Vertex Variables\n"
4022                 "%vert_vtxPosition = OpVariable %op_v4f32 Output\n"
4023                 "%vert_Position = OpVariable %ip_v4f32 Input\n"
4024                 "%vert_vtxColor = OpVariable %op_v4f32 Output\n"
4025                 "%vert_color = OpVariable %ip_v4f32 Input\n"
4026                 "%vert_vertex_id = OpVariable %ip_i32 Input\n"
4027                 "%vert_instance_id = OpVariable %ip_i32 Input\n"
4028
4029                 "; Geometry Variables\n"
4030                 "%geom_per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4031                 "%geom_a3_per_vertex_in = OpTypeArray %geom_per_vertex_in %c_u32_3\n"
4032                 "%geom_ip_a3_per_vertex_in = OpTypePointer Input %geom_a3_per_vertex_in\n"
4033                 "%geom_gl_in = OpVariable %geom_ip_a3_per_vertex_in Input\n"
4034                 "%geom_out_color = OpVariable %op_v4f32 Output\n"
4035                 "%geom_in_color = OpVariable %ip_a3v4f32 Input\n"
4036                 "%geom_out_gl_position = OpVariable %op_v4f32 Output\n"
4037
4038                 "; Tessellation Control Variables\n"
4039                 "%tessc_out_color = OpVariable %op_a3v4f32 Output\n"
4040                 "%tessc_gl_InvocationID = OpVariable %ip_i32 Input\n"
4041                 "%tessc_in_color = OpVariable %ip_a32v4f32 Input\n"
4042                 "%tessc_out_position = OpVariable %op_a3v4f32 Output\n"
4043                 "%tessc_in_position = OpVariable %ip_a32v4f32 Input\n"
4044                 "%tessc_gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4045                 "%tessc_gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4046
4047                 "; Tessellation Evaluation Decorations\n"
4048                 "%tesse_per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4049                 "%tesse_op_per_vertex_out = OpTypePointer Output %tesse_per_vertex_out\n"
4050                 "%tesse_stream = OpVariable %tesse_op_per_vertex_out Output\n"
4051                 "%tesse_gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4052                 "%tesse_in_position = OpVariable %ip_a32v4f32 Input\n"
4053                 "%tesse_out_color = OpVariable %op_v4f32 Output\n"
4054                 "%tesse_in_color = OpVariable %ip_a32v4f32 Input\n"
4055
4056                 "; Fragment Variables\n"
4057                 "%frag_fragColor = OpVariable %op_v4f32 Output\n"
4058                 "%frag_vtxColor = OpVariable %ip_v4f32 Input\n"
4059
4060                 "; Vertex Entry\n"
4061                 "%vert_main = OpFunction %void None %fun\n"
4062                 "%vert_label = OpLabel\n"
4063                 "%vert_tmp_position = OpLoad %v4f32 %vert_Position\n"
4064                 "OpStore %vert_vtxPosition %vert_tmp_position\n"
4065                 "%vert_tmp_color = OpLoad %v4f32 %vert_color\n"
4066                 "OpStore %vert_vtxColor %vert_tmp_color\n"
4067                 "OpReturn\n"
4068                 "OpFunctionEnd\n"
4069
4070                 "; Geometry Entry\n"
4071                 "%geom_main = OpFunction %void None %fun\n"
4072                 "%geom_label = OpLabel\n"
4073                 "%geom_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_0 %c_i32_0\n"
4074                 "%geom_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_1 %c_i32_0\n"
4075                 "%geom_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %geom_gl_in %c_i32_2 %c_i32_0\n"
4076                 "%geom_in_position_0 = OpLoad %v4f32 %geom_gl_in_0_gl_position\n"
4077                 "%geom_in_position_1 = OpLoad %v4f32 %geom_gl_in_1_gl_position\n"
4078                 "%geom_in_position_2 = OpLoad %v4f32 %geom_gl_in_2_gl_position \n"
4079                 "%geom_in_color_0_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_0\n"
4080                 "%geom_in_color_1_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_1\n"
4081                 "%geom_in_color_2_ptr = OpAccessChain %ip_v4f32 %geom_in_color %c_i32_2\n"
4082                 "%geom_in_color_0 = OpLoad %v4f32 %geom_in_color_0_ptr\n"
4083                 "%geom_in_color_1 = OpLoad %v4f32 %geom_in_color_1_ptr\n"
4084                 "%geom_in_color_2 = OpLoad %v4f32 %geom_in_color_2_ptr\n"
4085                 "OpStore %geom_out_gl_position %geom_in_position_0\n"
4086                 "OpStore %geom_out_color %geom_in_color_0\n"
4087                 "OpEmitVertex\n"
4088                 "OpStore %geom_out_gl_position %geom_in_position_1\n"
4089                 "OpStore %geom_out_color %geom_in_color_1\n"
4090                 "OpEmitVertex\n"
4091                 "OpStore %geom_out_gl_position %geom_in_position_2\n"
4092                 "OpStore %geom_out_color %geom_in_color_2\n"
4093                 "OpEmitVertex\n"
4094                 "OpEndPrimitive\n"
4095                 "OpReturn\n"
4096                 "OpFunctionEnd\n"
4097
4098                 "; Tessellation Control Entry\n"
4099                 "%tessc_main = OpFunction %void None %fun\n"
4100                 "%tessc_label = OpLabel\n"
4101                 "%tessc_invocation_id = OpLoad %i32 %tessc_gl_InvocationID\n"
4102                 "%tessc_in_color_ptr = OpAccessChain %ip_v4f32 %tessc_in_color %tessc_invocation_id\n"
4103                 "%tessc_in_position_ptr = OpAccessChain %ip_v4f32 %tessc_in_position %tessc_invocation_id\n"
4104                 "%tessc_in_color_val = OpLoad %v4f32 %tessc_in_color_ptr\n"
4105                 "%tessc_in_position_val = OpLoad %v4f32 %tessc_in_position_ptr\n"
4106                 "%tessc_out_color_ptr = OpAccessChain %op_v4f32 %tessc_out_color %tessc_invocation_id\n"
4107                 "%tessc_out_position_ptr = OpAccessChain %op_v4f32 %tessc_out_position %tessc_invocation_id\n"
4108                 "OpStore %tessc_out_color_ptr %tessc_in_color_val\n"
4109                 "OpStore %tessc_out_position_ptr %tessc_in_position_val\n"
4110                 "%tessc_is_first_invocation = OpIEqual %bool %tessc_invocation_id %c_i32_0\n"
4111                 "OpSelectionMerge %tessc_merge_label None\n"
4112                 "OpBranchConditional %tessc_is_first_invocation %tessc_first_invocation %tessc_merge_label\n"
4113                 "%tessc_first_invocation = OpLabel\n"
4114                 "%tessc_tess_outer_0 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_0\n"
4115                 "%tessc_tess_outer_1 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_1\n"
4116                 "%tessc_tess_outer_2 = OpAccessChain %op_f32 %tessc_gl_TessLevelOuter %c_i32_2\n"
4117                 "%tessc_tess_inner = OpAccessChain %op_f32 %tessc_gl_TessLevelInner %c_i32_0\n"
4118                 "OpStore %tessc_tess_outer_0 %c_f32_1\n"
4119                 "OpStore %tessc_tess_outer_1 %c_f32_1\n"
4120                 "OpStore %tessc_tess_outer_2 %c_f32_1\n"
4121                 "OpStore %tessc_tess_inner %c_f32_1\n"
4122                 "OpBranch %tessc_merge_label\n"
4123                 "%tessc_merge_label = OpLabel\n"
4124                 "OpReturn\n"
4125                 "OpFunctionEnd\n"
4126
4127                 "; Tessellation Evaluation Entry\n"
4128                 "%tesse_main = OpFunction %void None %fun\n"
4129                 "%tesse_label = OpLabel\n"
4130                 "%tesse_tc_0_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_0\n"
4131                 "%tesse_tc_1_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_1\n"
4132                 "%tesse_tc_2_ptr = OpAccessChain %ip_f32 %tesse_gl_tessCoord %c_u32_2\n"
4133                 "%tesse_tc_0 = OpLoad %f32 %tesse_tc_0_ptr\n"
4134                 "%tesse_tc_1 = OpLoad %f32 %tesse_tc_1_ptr\n"
4135                 "%tesse_tc_2 = OpLoad %f32 %tesse_tc_2_ptr\n"
4136                 "%tesse_in_pos_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_0\n"
4137                 "%tesse_in_pos_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_1\n"
4138                 "%tesse_in_pos_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_position %c_i32_2\n"
4139                 "%tesse_in_pos_0 = OpLoad %v4f32 %tesse_in_pos_0_ptr\n"
4140                 "%tesse_in_pos_1 = OpLoad %v4f32 %tesse_in_pos_1_ptr\n"
4141                 "%tesse_in_pos_2 = OpLoad %v4f32 %tesse_in_pos_2_ptr\n"
4142                 "%tesse_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_pos_0\n"
4143                 "%tesse_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_pos_1\n"
4144                 "%tesse_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_pos_2\n"
4145                 "%tesse_out_pos_ptr = OpAccessChain %op_v4f32 %tesse_stream %c_i32_0\n"
4146                 "%tesse_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse_in_pos_0_weighted %tesse_in_pos_1_weighted\n"
4147                 "%tesse_computed_out = OpFAdd %v4f32 %tesse_in_pos_0_plus_pos_1 %tesse_in_pos_2_weighted\n"
4148                 "OpStore %tesse_out_pos_ptr %tesse_computed_out\n"
4149                 "%tesse_in_clr_0_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_0\n"
4150                 "%tesse_in_clr_1_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_1\n"
4151                 "%tesse_in_clr_2_ptr = OpAccessChain %ip_v4f32 %tesse_in_color %c_i32_2\n"
4152                 "%tesse_in_clr_0 = OpLoad %v4f32 %tesse_in_clr_0_ptr\n"
4153                 "%tesse_in_clr_1 = OpLoad %v4f32 %tesse_in_clr_1_ptr\n"
4154                 "%tesse_in_clr_2 = OpLoad %v4f32 %tesse_in_clr_2_ptr\n"
4155                 "%tesse_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_0 %tesse_in_clr_0\n"
4156                 "%tesse_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_1 %tesse_in_clr_1\n"
4157                 "%tesse_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse_tc_2 %tesse_in_clr_2\n"
4158                 "%tesse_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse_in_clr_0_weighted %tesse_in_clr_1_weighted\n"
4159                 "%tesse_computed_clr = OpFAdd %v4f32 %tesse_in_clr_0_plus_col_1 %tesse_in_clr_2_weighted\n"
4160                 "OpStore %tesse_out_color %tesse_computed_clr\n"
4161                 "OpReturn\n"
4162                 "OpFunctionEnd\n"
4163
4164                 "; Fragment Entry\n"
4165                 "%frag_main = OpFunction %void None %fun\n"
4166                 "%frag_label_main = OpLabel\n"
4167                 "%frag_tmp1 = OpLoad %v4f32 %frag_vtxColor\n"
4168                 "OpStore %frag_fragColor %frag_tmp1\n"
4169                 "OpReturn\n"
4170                 "OpFunctionEnd\n";
4171 }
4172
4173 // This has two shaders of each stage. The first
4174 // is a passthrough, the second inverts the color.
4175 void createMultipleEntries(vk::SourceCollections& dst, InstanceContext)
4176 {
4177         dst.spirvAsmSources.add("vert") <<
4178         // This module contains 2 vertex shaders. One that is a passthrough
4179         // and a second that inverts the color of the output (1.0 - color).
4180                 "OpCapability Shader\n"
4181                 "OpMemoryModel Logical GLSL450\n"
4182                 "OpEntryPoint Vertex %main \"vert1\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4183                 "OpEntryPoint Vertex %main2 \"vert2\" %Position %vtxColor %color %vtxPosition %vertex_id %instance_id\n"
4184
4185                 "OpName %main \"frag1\"\n"
4186                 "OpName %main2 \"frag2\"\n"
4187                 "OpName %vtxPosition \"vtxPosition\"\n"
4188                 "OpName %Position \"position\"\n"
4189                 "OpName %vtxColor \"vtxColor\"\n"
4190                 "OpName %color \"color\"\n"
4191                 "OpName %vertex_id \"gl_VertexIndex\"\n"
4192                 "OpName %instance_id \"gl_InstanceIndex\"\n"
4193
4194                 "OpDecorate %vtxPosition Location 2\n"
4195                 "OpDecorate %Position Location 0\n"
4196                 "OpDecorate %vtxColor Location 1\n"
4197                 "OpDecorate %color Location 1\n"
4198                 "OpDecorate %vertex_id BuiltIn VertexIndex\n"
4199                 "OpDecorate %instance_id BuiltIn InstanceIndex\n"
4200                 SPIRV_ASSEMBLY_TYPES
4201                 SPIRV_ASSEMBLY_CONSTANTS
4202                 SPIRV_ASSEMBLY_ARRAYS
4203                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4204                 "%vtxPosition = OpVariable %op_v4f32 Output\n"
4205                 "%Position = OpVariable %ip_v4f32 Input\n"
4206                 "%vtxColor = OpVariable %op_v4f32 Output\n"
4207                 "%color = OpVariable %ip_v4f32 Input\n"
4208                 "%vertex_id = OpVariable %ip_i32 Input\n"
4209                 "%instance_id = OpVariable %ip_i32 Input\n"
4210
4211                 "%main = OpFunction %void None %fun\n"
4212                 "%label = OpLabel\n"
4213                 "%tmp_position = OpLoad %v4f32 %Position\n"
4214                 "OpStore %vtxPosition %tmp_position\n"
4215                 "%tmp_color = OpLoad %v4f32 %color\n"
4216                 "OpStore %vtxColor %tmp_color\n"
4217                 "OpReturn\n"
4218                 "OpFunctionEnd\n"
4219
4220                 "%main2 = OpFunction %void None %fun\n"
4221                 "%label2 = OpLabel\n"
4222                 "%tmp_position2 = OpLoad %v4f32 %Position\n"
4223                 "OpStore %vtxPosition %tmp_position2\n"
4224                 "%tmp_color2 = OpLoad %v4f32 %color\n"
4225                 "%tmp_color3 = OpFSub %v4f32 %cval %tmp_color2\n"
4226                 "OpStore %vtxColor %tmp_color3\n"
4227                 "OpReturn\n"
4228                 "OpFunctionEnd\n";
4229
4230         dst.spirvAsmSources.add("frag") <<
4231                 // This is a single module that contains 2 fragment shaders.
4232                 // One that passes color through and the other that inverts the output
4233                 // color (1.0 - color).
4234                 "OpCapability Shader\n"
4235                 "OpMemoryModel Logical GLSL450\n"
4236                 "OpEntryPoint Fragment %main \"frag1\" %vtxColor %fragColor\n"
4237                 "OpEntryPoint Fragment %main2 \"frag2\" %vtxColor %fragColor\n"
4238                 "OpExecutionMode %main OriginUpperLeft\n"
4239                 "OpExecutionMode %main2 OriginUpperLeft\n"
4240
4241                 "OpName %main \"frag1\"\n"
4242                 "OpName %main2 \"frag2\"\n"
4243                 "OpName %fragColor \"fragColor\"\n"
4244                 "OpName %vtxColor \"vtxColor\"\n"
4245                 "OpDecorate %fragColor Location 0\n"
4246                 "OpDecorate %vtxColor Location 1\n"
4247                 SPIRV_ASSEMBLY_TYPES
4248                 SPIRV_ASSEMBLY_CONSTANTS
4249                 SPIRV_ASSEMBLY_ARRAYS
4250                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4251                 "%fragColor = OpVariable %op_v4f32 Output\n"
4252                 "%vtxColor = OpVariable %ip_v4f32 Input\n"
4253
4254                 "%main = OpFunction %void None %fun\n"
4255                 "%label_main = OpLabel\n"
4256                 "%tmp1 = OpLoad %v4f32 %vtxColor\n"
4257                 "OpStore %fragColor %tmp1\n"
4258                 "OpReturn\n"
4259                 "OpFunctionEnd\n"
4260
4261                 "%main2 = OpFunction %void None %fun\n"
4262                 "%label_main2 = OpLabel\n"
4263                 "%tmp2 = OpLoad %v4f32 %vtxColor\n"
4264                 "%tmp3 = OpFSub %v4f32 %cval %tmp2\n"
4265                 "OpStore %fragColor %tmp3\n"
4266                 "OpReturn\n"
4267                 "OpFunctionEnd\n";
4268
4269         dst.spirvAsmSources.add("geom") <<
4270                 "OpCapability Geometry\n"
4271                 "OpMemoryModel Logical GLSL450\n"
4272                 "OpEntryPoint Geometry %geom1_main \"geom1\" %out_gl_position %gl_in %out_color %in_color\n"
4273                 "OpEntryPoint Geometry %geom2_main \"geom2\" %out_gl_position %gl_in %out_color %in_color\n"
4274                 "OpExecutionMode %geom1_main Triangles\n"
4275                 "OpExecutionMode %geom2_main Triangles\n"
4276                 "OpExecutionMode %geom1_main Invocations 0\n"
4277                 "OpExecutionMode %geom2_main Invocations 0\n"
4278                 "OpExecutionMode %geom1_main OutputTriangleStrip\n"
4279                 "OpExecutionMode %geom2_main OutputTriangleStrip\n"
4280                 "OpExecutionMode %geom1_main OutputVertices 3\n"
4281                 "OpExecutionMode %geom2_main OutputVertices 3\n"
4282                 "OpName %geom1_main \"geom1\"\n"
4283                 "OpName %geom2_main \"geom2\"\n"
4284                 "OpName %per_vertex_in \"gl_PerVertex\"\n"
4285                 "OpMemberName %per_vertex_in 0 \"gl_Position\"\n"
4286                 "OpMemberName %per_vertex_in 1 \"gl_PointSize\"\n"
4287                 "OpMemberName %per_vertex_in 2 \"gl_ClipDistance\"\n"
4288                 "OpMemberName %per_vertex_in 3 \"gl_CullDistance\"\n"
4289                 "OpName %gl_in \"gl_in\"\n"
4290                 "OpName %out_color \"out_color\"\n"
4291                 "OpName %in_color \"in_color\"\n"
4292                 "OpDecorate %out_gl_position BuiltIn Position\n"
4293                 "OpMemberDecorate %per_vertex_in 0 BuiltIn Position\n"
4294                 "OpMemberDecorate %per_vertex_in 1 BuiltIn PointSize\n"
4295                 "OpMemberDecorate %per_vertex_in 2 BuiltIn ClipDistance\n"
4296                 "OpMemberDecorate %per_vertex_in 3 BuiltIn CullDistance\n"
4297                 "OpDecorate %per_vertex_in Block\n"
4298                 "OpDecorate %out_color Location 1\n"
4299                 "OpDecorate %out_color Stream 0\n"
4300                 "OpDecorate %in_color Location 1\n"
4301                 SPIRV_ASSEMBLY_TYPES
4302                 SPIRV_ASSEMBLY_CONSTANTS
4303                 SPIRV_ASSEMBLY_ARRAYS
4304                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4305                 "%per_vertex_in = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4306                 "%a3_per_vertex_in = OpTypeArray %per_vertex_in %c_u32_3\n"
4307                 "%ip_a3_per_vertex_in = OpTypePointer Input %a3_per_vertex_in\n"
4308                 "%gl_in = OpVariable %ip_a3_per_vertex_in Input\n"
4309                 "%out_color = OpVariable %op_v4f32 Output\n"
4310                 "%in_color = OpVariable %ip_a3v4f32 Input\n"
4311                 "%out_gl_position = OpVariable %op_v4f32 Output\n"
4312
4313                 "%geom1_main = OpFunction %void None %fun\n"
4314                 "%geom1_label = OpLabel\n"
4315                 "%geom1_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4316                 "%geom1_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4317                 "%geom1_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4318                 "%geom1_in_position_0 = OpLoad %v4f32 %geom1_gl_in_0_gl_position\n"
4319                 "%geom1_in_position_1 = OpLoad %v4f32 %geom1_gl_in_1_gl_position\n"
4320                 "%geom1_in_position_2 = OpLoad %v4f32 %geom1_gl_in_2_gl_position \n"
4321                 "%geom1_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4322                 "%geom1_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4323                 "%geom1_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4324                 "%geom1_in_color_0 = OpLoad %v4f32 %geom1_in_color_0_ptr\n"
4325                 "%geom1_in_color_1 = OpLoad %v4f32 %geom1_in_color_1_ptr\n"
4326                 "%geom1_in_color_2 = OpLoad %v4f32 %geom1_in_color_2_ptr\n"
4327                 "OpStore %out_gl_position %geom1_in_position_0\n"
4328                 "OpStore %out_color %geom1_in_color_0\n"
4329                 "OpEmitVertex\n"
4330                 "OpStore %out_gl_position %geom1_in_position_1\n"
4331                 "OpStore %out_color %geom1_in_color_1\n"
4332                 "OpEmitVertex\n"
4333                 "OpStore %out_gl_position %geom1_in_position_2\n"
4334                 "OpStore %out_color %geom1_in_color_2\n"
4335                 "OpEmitVertex\n"
4336                 "OpEndPrimitive\n"
4337                 "OpReturn\n"
4338                 "OpFunctionEnd\n"
4339
4340                 "%geom2_main = OpFunction %void None %fun\n"
4341                 "%geom2_label = OpLabel\n"
4342                 "%geom2_gl_in_0_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_0 %c_i32_0\n"
4343                 "%geom2_gl_in_1_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_1 %c_i32_0\n"
4344                 "%geom2_gl_in_2_gl_position = OpAccessChain %ip_v4f32 %gl_in %c_i32_2 %c_i32_0\n"
4345                 "%geom2_in_position_0 = OpLoad %v4f32 %geom2_gl_in_0_gl_position\n"
4346                 "%geom2_in_position_1 = OpLoad %v4f32 %geom2_gl_in_1_gl_position\n"
4347                 "%geom2_in_position_2 = OpLoad %v4f32 %geom2_gl_in_2_gl_position \n"
4348                 "%geom2_in_color_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4349                 "%geom2_in_color_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4350                 "%geom2_in_color_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4351                 "%geom2_in_color_0 = OpLoad %v4f32 %geom2_in_color_0_ptr\n"
4352                 "%geom2_in_color_1 = OpLoad %v4f32 %geom2_in_color_1_ptr\n"
4353                 "%geom2_in_color_2 = OpLoad %v4f32 %geom2_in_color_2_ptr\n"
4354                 "%geom2_transformed_in_color_0 = OpFSub %v4f32 %cval %geom2_in_color_0\n"
4355                 "%geom2_transformed_in_color_1 = OpFSub %v4f32 %cval %geom2_in_color_1\n"
4356                 "%geom2_transformed_in_color_2 = OpFSub %v4f32 %cval %geom2_in_color_2\n"
4357                 "OpStore %out_gl_position %geom2_in_position_0\n"
4358                 "OpStore %out_color %geom2_transformed_in_color_0\n"
4359                 "OpEmitVertex\n"
4360                 "OpStore %out_gl_position %geom2_in_position_1\n"
4361                 "OpStore %out_color %geom2_transformed_in_color_1\n"
4362                 "OpEmitVertex\n"
4363                 "OpStore %out_gl_position %geom2_in_position_2\n"
4364                 "OpStore %out_color %geom2_transformed_in_color_2\n"
4365                 "OpEmitVertex\n"
4366                 "OpEndPrimitive\n"
4367                 "OpReturn\n"
4368                 "OpFunctionEnd\n";
4369
4370         dst.spirvAsmSources.add("tessc") <<
4371                 "OpCapability Tessellation\n"
4372                 "OpMemoryModel Logical GLSL450\n"
4373                 "OpEntryPoint TessellationControl %tessc1_main \"tessc1\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4374                 "OpEntryPoint TessellationControl %tessc2_main \"tessc2\" %out_color %gl_InvocationID %in_color %out_position %in_position %gl_TessLevelOuter %gl_TessLevelInner\n"
4375                 "OpExecutionMode %tessc1_main OutputVertices 3\n"
4376                 "OpExecutionMode %tessc2_main OutputVertices 3\n"
4377                 "OpName %tessc1_main \"tessc1\"\n"
4378                 "OpName %tessc2_main \"tessc2\"\n"
4379                 "OpName %out_color \"out_color\"\n"
4380                 "OpName %gl_InvocationID \"gl_InvocationID\"\n"
4381                 "OpName %in_color \"in_color\"\n"
4382                 "OpName %out_position \"out_position\"\n"
4383                 "OpName %in_position \"in_position\"\n"
4384                 "OpName %gl_TessLevelOuter \"gl_TessLevelOuter\"\n"
4385                 "OpName %gl_TessLevelInner \"gl_TessLevelInner\"\n"
4386                 "OpDecorate %out_color Location 1\n"
4387                 "OpDecorate %gl_InvocationID BuiltIn InvocationId\n"
4388                 "OpDecorate %in_color Location 1\n"
4389                 "OpDecorate %out_position Location 2\n"
4390                 "OpDecorate %in_position Location 2\n"
4391                 "OpDecorate %gl_TessLevelOuter Patch\n"
4392                 "OpDecorate %gl_TessLevelOuter BuiltIn TessLevelOuter\n"
4393                 "OpDecorate %gl_TessLevelInner Patch\n"
4394                 "OpDecorate %gl_TessLevelInner BuiltIn TessLevelInner\n"
4395                 SPIRV_ASSEMBLY_TYPES
4396                 SPIRV_ASSEMBLY_CONSTANTS
4397                 SPIRV_ASSEMBLY_ARRAYS
4398                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4399                 "%out_color = OpVariable %op_a3v4f32 Output\n"
4400                 "%gl_InvocationID = OpVariable %ip_i32 Input\n"
4401                 "%in_color = OpVariable %ip_a32v4f32 Input\n"
4402                 "%out_position = OpVariable %op_a3v4f32 Output\n"
4403                 "%in_position = OpVariable %ip_a32v4f32 Input\n"
4404                 "%gl_TessLevelOuter = OpVariable %op_a4f32 Output\n"
4405                 "%gl_TessLevelInner = OpVariable %op_a2f32 Output\n"
4406
4407                 "%tessc1_main = OpFunction %void None %fun\n"
4408                 "%tessc1_label = OpLabel\n"
4409                 "%tessc1_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4410                 "%tessc1_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc1_invocation_id\n"
4411                 "%tessc1_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc1_invocation_id\n"
4412                 "%tessc1_in_color_val = OpLoad %v4f32 %tessc1_in_color_ptr\n"
4413                 "%tessc1_in_position_val = OpLoad %v4f32 %tessc1_in_position_ptr\n"
4414                 "%tessc1_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc1_invocation_id\n"
4415                 "%tessc1_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc1_invocation_id\n"
4416                 "OpStore %tessc1_out_color_ptr %tessc1_in_color_val\n"
4417                 "OpStore %tessc1_out_position_ptr %tessc1_in_position_val\n"
4418                 "%tessc1_is_first_invocation = OpIEqual %bool %tessc1_invocation_id %c_i32_0\n"
4419                 "OpSelectionMerge %tessc1_merge_label None\n"
4420                 "OpBranchConditional %tessc1_is_first_invocation %tessc1_first_invocation %tessc1_merge_label\n"
4421                 "%tessc1_first_invocation = OpLabel\n"
4422                 "%tessc1_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4423                 "%tessc1_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4424                 "%tessc1_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4425                 "%tessc1_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4426                 "OpStore %tessc1_tess_outer_0 %c_f32_1\n"
4427                 "OpStore %tessc1_tess_outer_1 %c_f32_1\n"
4428                 "OpStore %tessc1_tess_outer_2 %c_f32_1\n"
4429                 "OpStore %tessc1_tess_inner %c_f32_1\n"
4430                 "OpBranch %tessc1_merge_label\n"
4431                 "%tessc1_merge_label = OpLabel\n"
4432                 "OpReturn\n"
4433                 "OpFunctionEnd\n"
4434
4435                 "%tessc2_main = OpFunction %void None %fun\n"
4436                 "%tessc2_label = OpLabel\n"
4437                 "%tessc2_invocation_id = OpLoad %i32 %gl_InvocationID\n"
4438                 "%tessc2_in_color_ptr = OpAccessChain %ip_v4f32 %in_color %tessc2_invocation_id\n"
4439                 "%tessc2_in_position_ptr = OpAccessChain %ip_v4f32 %in_position %tessc2_invocation_id\n"
4440                 "%tessc2_in_color_val = OpLoad %v4f32 %tessc2_in_color_ptr\n"
4441                 "%tessc2_in_position_val = OpLoad %v4f32 %tessc2_in_position_ptr\n"
4442                 "%tessc2_out_color_ptr = OpAccessChain %op_v4f32 %out_color %tessc2_invocation_id\n"
4443                 "%tessc2_out_position_ptr = OpAccessChain %op_v4f32 %out_position %tessc2_invocation_id\n"
4444                 "%tessc2_transformed_color = OpFSub %v4f32 %cval %tessc2_in_color_val\n"
4445                 "OpStore %tessc2_out_color_ptr %tessc2_transformed_color\n"
4446                 "OpStore %tessc2_out_position_ptr %tessc2_in_position_val\n"
4447                 "%tessc2_is_first_invocation = OpIEqual %bool %tessc2_invocation_id %c_i32_0\n"
4448                 "OpSelectionMerge %tessc2_merge_label None\n"
4449                 "OpBranchConditional %tessc2_is_first_invocation %tessc2_first_invocation %tessc2_merge_label\n"
4450                 "%tessc2_first_invocation = OpLabel\n"
4451                 "%tessc2_tess_outer_0 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_0\n"
4452                 "%tessc2_tess_outer_1 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_1\n"
4453                 "%tessc2_tess_outer_2 = OpAccessChain %op_f32 %gl_TessLevelOuter %c_i32_2\n"
4454                 "%tessc2_tess_inner = OpAccessChain %op_f32 %gl_TessLevelInner %c_i32_0\n"
4455                 "OpStore %tessc2_tess_outer_0 %c_f32_1\n"
4456                 "OpStore %tessc2_tess_outer_1 %c_f32_1\n"
4457                 "OpStore %tessc2_tess_outer_2 %c_f32_1\n"
4458                 "OpStore %tessc2_tess_inner %c_f32_1\n"
4459                 "OpBranch %tessc2_merge_label\n"
4460                 "%tessc2_merge_label = OpLabel\n"
4461                 "OpReturn\n"
4462                 "OpFunctionEnd\n";
4463
4464         dst.spirvAsmSources.add("tesse") <<
4465                 "OpCapability Tessellation\n"
4466                 "OpMemoryModel Logical GLSL450\n"
4467                 "OpEntryPoint TessellationEvaluation %tesse1_main \"tesse1\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4468                 "OpEntryPoint TessellationEvaluation %tesse2_main \"tesse2\" %stream %gl_tessCoord %in_position %out_color %in_color \n"
4469                 "OpExecutionMode %tesse1_main Triangles\n"
4470                 "OpExecutionMode %tesse2_main Triangles\n"
4471                 "OpName %tesse1_main \"tesse1\"\n"
4472                 "OpName %tesse2_main \"tesse2\"\n"
4473                 "OpName %per_vertex_out \"gl_PerVertex\"\n"
4474                 "OpMemberName %per_vertex_out 0 \"gl_Position\"\n"
4475                 "OpMemberName %per_vertex_out 1 \"gl_PointSize\"\n"
4476                 "OpMemberName %per_vertex_out 2 \"gl_ClipDistance\"\n"
4477                 "OpMemberName %per_vertex_out 3 \"gl_CullDistance\"\n"
4478                 "OpName %stream \"\"\n"
4479                 "OpName %gl_tessCoord \"gl_TessCoord\"\n"
4480                 "OpName %in_position \"in_position\"\n"
4481                 "OpName %out_color \"out_color\"\n"
4482                 "OpName %in_color \"in_color\"\n"
4483                 "OpMemberDecorate %per_vertex_out 0 BuiltIn Position\n"
4484                 "OpMemberDecorate %per_vertex_out 1 BuiltIn PointSize\n"
4485                 "OpMemberDecorate %per_vertex_out 2 BuiltIn ClipDistance\n"
4486                 "OpMemberDecorate %per_vertex_out 3 BuiltIn CullDistance\n"
4487                 "OpDecorate %per_vertex_out Block\n"
4488                 "OpDecorate %gl_tessCoord BuiltIn TessCoord\n"
4489                 "OpDecorate %in_position Location 2\n"
4490                 "OpDecorate %out_color Location 1\n"
4491                 "OpDecorate %in_color Location 1\n"
4492                 SPIRV_ASSEMBLY_TYPES
4493                 SPIRV_ASSEMBLY_CONSTANTS
4494                 SPIRV_ASSEMBLY_ARRAYS
4495                 "%cval = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
4496                 "%per_vertex_out = OpTypeStruct %v4f32 %f32 %a1f32 %a1f32\n"
4497                 "%op_per_vertex_out = OpTypePointer Output %per_vertex_out\n"
4498                 "%stream = OpVariable %op_per_vertex_out Output\n"
4499                 "%gl_tessCoord = OpVariable %ip_v3f32 Input\n"
4500                 "%in_position = OpVariable %ip_a32v4f32 Input\n"
4501                 "%out_color = OpVariable %op_v4f32 Output\n"
4502                 "%in_color = OpVariable %ip_a32v4f32 Input\n"
4503
4504                 "%tesse1_main = OpFunction %void None %fun\n"
4505                 "%tesse1_label = OpLabel\n"
4506                 "%tesse1_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4507                 "%tesse1_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4508                 "%tesse1_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4509                 "%tesse1_tc_0 = OpLoad %f32 %tesse1_tc_0_ptr\n"
4510                 "%tesse1_tc_1 = OpLoad %f32 %tesse1_tc_1_ptr\n"
4511                 "%tesse1_tc_2 = OpLoad %f32 %tesse1_tc_2_ptr\n"
4512                 "%tesse1_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4513                 "%tesse1_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4514                 "%tesse1_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4515                 "%tesse1_in_pos_0 = OpLoad %v4f32 %tesse1_in_pos_0_ptr\n"
4516                 "%tesse1_in_pos_1 = OpLoad %v4f32 %tesse1_in_pos_1_ptr\n"
4517                 "%tesse1_in_pos_2 = OpLoad %v4f32 %tesse1_in_pos_2_ptr\n"
4518                 "%tesse1_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_pos_0\n"
4519                 "%tesse1_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_pos_1\n"
4520                 "%tesse1_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_pos_2\n"
4521                 "%tesse1_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4522                 "%tesse1_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse1_in_pos_0_weighted %tesse1_in_pos_1_weighted\n"
4523                 "%tesse1_computed_out = OpFAdd %v4f32 %tesse1_in_pos_0_plus_pos_1 %tesse1_in_pos_2_weighted\n"
4524                 "OpStore %tesse1_out_pos_ptr %tesse1_computed_out\n"
4525                 "%tesse1_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4526                 "%tesse1_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4527                 "%tesse1_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4528                 "%tesse1_in_clr_0 = OpLoad %v4f32 %tesse1_in_clr_0_ptr\n"
4529                 "%tesse1_in_clr_1 = OpLoad %v4f32 %tesse1_in_clr_1_ptr\n"
4530                 "%tesse1_in_clr_2 = OpLoad %v4f32 %tesse1_in_clr_2_ptr\n"
4531                 "%tesse1_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_0 %tesse1_in_clr_0\n"
4532                 "%tesse1_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_1 %tesse1_in_clr_1\n"
4533                 "%tesse1_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse1_tc_2 %tesse1_in_clr_2\n"
4534                 "%tesse1_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse1_in_clr_0_weighted %tesse1_in_clr_1_weighted\n"
4535                 "%tesse1_computed_clr = OpFAdd %v4f32 %tesse1_in_clr_0_plus_col_1 %tesse1_in_clr_2_weighted\n"
4536                 "OpStore %out_color %tesse1_computed_clr\n"
4537                 "OpReturn\n"
4538                 "OpFunctionEnd\n"
4539
4540                 "%tesse2_main = OpFunction %void None %fun\n"
4541                 "%tesse2_label = OpLabel\n"
4542                 "%tesse2_tc_0_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_0\n"
4543                 "%tesse2_tc_1_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_1\n"
4544                 "%tesse2_tc_2_ptr = OpAccessChain %ip_f32 %gl_tessCoord %c_u32_2\n"
4545                 "%tesse2_tc_0 = OpLoad %f32 %tesse2_tc_0_ptr\n"
4546                 "%tesse2_tc_1 = OpLoad %f32 %tesse2_tc_1_ptr\n"
4547                 "%tesse2_tc_2 = OpLoad %f32 %tesse2_tc_2_ptr\n"
4548                 "%tesse2_in_pos_0_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_0\n"
4549                 "%tesse2_in_pos_1_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_1\n"
4550                 "%tesse2_in_pos_2_ptr = OpAccessChain %ip_v4f32 %in_position %c_i32_2\n"
4551                 "%tesse2_in_pos_0 = OpLoad %v4f32 %tesse2_in_pos_0_ptr\n"
4552                 "%tesse2_in_pos_1 = OpLoad %v4f32 %tesse2_in_pos_1_ptr\n"
4553                 "%tesse2_in_pos_2 = OpLoad %v4f32 %tesse2_in_pos_2_ptr\n"
4554                 "%tesse2_in_pos_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_pos_0\n"
4555                 "%tesse2_in_pos_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_pos_1\n"
4556                 "%tesse2_in_pos_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_pos_2\n"
4557                 "%tesse2_out_pos_ptr = OpAccessChain %op_v4f32 %stream %c_i32_0\n"
4558                 "%tesse2_in_pos_0_plus_pos_1 = OpFAdd %v4f32 %tesse2_in_pos_0_weighted %tesse2_in_pos_1_weighted\n"
4559                 "%tesse2_computed_out = OpFAdd %v4f32 %tesse2_in_pos_0_plus_pos_1 %tesse2_in_pos_2_weighted\n"
4560                 "OpStore %tesse2_out_pos_ptr %tesse2_computed_out\n"
4561                 "%tesse2_in_clr_0_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_0\n"
4562                 "%tesse2_in_clr_1_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_1\n"
4563                 "%tesse2_in_clr_2_ptr = OpAccessChain %ip_v4f32 %in_color %c_i32_2\n"
4564                 "%tesse2_in_clr_0 = OpLoad %v4f32 %tesse2_in_clr_0_ptr\n"
4565                 "%tesse2_in_clr_1 = OpLoad %v4f32 %tesse2_in_clr_1_ptr\n"
4566                 "%tesse2_in_clr_2 = OpLoad %v4f32 %tesse2_in_clr_2_ptr\n"
4567                 "%tesse2_in_clr_0_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_0 %tesse2_in_clr_0\n"
4568                 "%tesse2_in_clr_1_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_1 %tesse2_in_clr_1\n"
4569                 "%tesse2_in_clr_2_weighted = OpVectorTimesScalar %v4f32 %tesse2_tc_2 %tesse2_in_clr_2\n"
4570                 "%tesse2_in_clr_0_plus_col_1 = OpFAdd %v4f32 %tesse2_in_clr_0_weighted %tesse2_in_clr_1_weighted\n"
4571                 "%tesse2_computed_clr = OpFAdd %v4f32 %tesse2_in_clr_0_plus_col_1 %tesse2_in_clr_2_weighted\n"
4572                 "%tesse2_clr_transformed = OpFSub %v4f32 %cval %tesse2_computed_clr\n"
4573                 "OpStore %out_color %tesse2_clr_transformed\n"
4574                 "OpReturn\n"
4575                 "OpFunctionEnd\n";
4576 }
4577
4578 // Sets up and runs a Vulkan pipeline, then spot-checks the resulting image.
4579 // Feeds the pipeline a set of colored triangles, which then must occur in the
4580 // rendered image.  The surface is cleared before executing the pipeline, so
4581 // whatever the shaders draw can be directly spot-checked.
4582 TestStatus runAndVerifyDefaultPipeline (Context& context, InstanceContext instance)
4583 {
4584         const VkDevice                                                          vkDevice                                = context.getDevice();
4585         const DeviceInterface&                                          vk                                              = context.getDeviceInterface();
4586         const VkQueue                                                           queue                                   = context.getUniversalQueue();
4587         const deUint32                                                          queueFamilyIndex                = context.getUniversalQueueFamilyIndex();
4588         const tcu::UVec2                                                        renderSize                              (256, 256);
4589         vector<ModuleHandleSp>                                          modules;
4590         map<VkShaderStageFlagBits, VkShaderModule>      moduleByStage;
4591         const int                                                                       testSpecificSeed                = 31354125;
4592         const int                                                                       seed                                    = context.getTestContext().getCommandLine().getBaseSeed() ^ testSpecificSeed;
4593         bool                                                                            supportsGeometry                = false;
4594         bool                                                                            supportsTessellation    = false;
4595         bool                                                                            hasTessellation         = false;
4596
4597         const VkPhysicalDeviceFeatures&                         features                                = context.getDeviceFeatures();
4598         supportsGeometry                = features.geometryShader == VK_TRUE;
4599         supportsTessellation    = features.tessellationShader == VK_TRUE;
4600         hasTessellation                 = (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) ||
4601                                                                 (instance.requiredStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
4602
4603         if (hasTessellation && !supportsTessellation)
4604         {
4605                 throw tcu::NotSupportedError(std::string("Tessellation not supported"));
4606         }
4607
4608         if ((instance.requiredStages & VK_SHADER_STAGE_GEOMETRY_BIT) &&
4609                 !supportsGeometry)
4610         {
4611                 throw tcu::NotSupportedError(std::string("Geometry not supported"));
4612         }
4613
4614         de::Random(seed).shuffle(instance.inputColors, instance.inputColors+4);
4615         de::Random(seed).shuffle(instance.outputColors, instance.outputColors+4);
4616         const Vec4                                                              vertexData[]                    =
4617         {
4618                 // Upper left corner:
4619                 Vec4(-1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4620                 Vec4(-0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4621                 Vec4(-1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[0].toVec(),
4622
4623                 // Upper right corner:
4624                 Vec4(+0.5f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4625                 Vec4(+1.0f, -1.0f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4626                 Vec4(+1.0f, -0.5f, 0.0f, 1.0f), instance.inputColors[1].toVec(),
4627
4628                 // Lower left corner:
4629                 Vec4(-1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4630                 Vec4(-0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4631                 Vec4(-1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[2].toVec(),
4632
4633                 // Lower right corner:
4634                 Vec4(+1.0f, +0.5f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4635                 Vec4(+1.0f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec(),
4636                 Vec4(+0.5f, +1.0f, 0.0f, 1.0f), instance.inputColors[3].toVec()
4637         };
4638         const size_t                                                    singleVertexDataSize    = 2 * sizeof(Vec4);
4639         const size_t                                                    vertexCount                             = sizeof(vertexData) / singleVertexDataSize;
4640
4641         const VkBufferCreateInfo                                vertexBufferParams              =
4642         {
4643                 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,   //      VkStructureType         sType;
4644                 DE_NULL,                                                                //      const void*                     pNext;
4645                 0u,                                                                             //      VkBufferCreateFlags     flags;
4646                 (VkDeviceSize)sizeof(vertexData),               //      VkDeviceSize            size;
4647                 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,              //      VkBufferUsageFlags      usage;
4648                 VK_SHARING_MODE_EXCLUSIVE,                              //      VkSharingMode           sharingMode;
4649                 1u,                                                                             //      deUint32                        queueFamilyCount;
4650                 &queueFamilyIndex,                                              //      const deUint32*         pQueueFamilyIndices;
4651         };
4652         const Unique<VkBuffer>                                  vertexBuffer                    (createBuffer(vk, vkDevice, &vertexBufferParams));
4653         const UniquePtr<Allocation>                             vertexBufferMemory              (context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *vertexBuffer), MemoryRequirement::HostVisible));
4654
4655         VK_CHECK(vk.bindBufferMemory(vkDevice, *vertexBuffer, vertexBufferMemory->getMemory(), vertexBufferMemory->getOffset()));
4656
4657         const VkDeviceSize                                              imageSizeBytes                  = (VkDeviceSize)(sizeof(deUint32)*renderSize.x()*renderSize.y());
4658         const VkBufferCreateInfo                                readImageBufferParams   =
4659         {
4660                 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,           //      VkStructureType         sType;
4661                 DE_NULL,                                                                        //      const void*                     pNext;
4662                 0u,                                                                                     //      VkBufferCreateFlags     flags;
4663                 imageSizeBytes,                                                         //      VkDeviceSize            size;
4664                 VK_BUFFER_USAGE_TRANSFER_DST_BIT,                       //      VkBufferUsageFlags      usage;
4665                 VK_SHARING_MODE_EXCLUSIVE,                                      //      VkSharingMode           sharingMode;
4666                 1u,                                                                                     //      deUint32                        queueFamilyCount;
4667                 &queueFamilyIndex,                                                      //      const deUint32*         pQueueFamilyIndices;
4668         };
4669         const Unique<VkBuffer>                                  readImageBuffer                 (createBuffer(vk, vkDevice, &readImageBufferParams));
4670         const UniquePtr<Allocation>                             readImageBufferMemory   (context.getDefaultAllocator().allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
4671
4672         VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
4673
4674         const VkImageCreateInfo                                 imageParams                             =
4675         {
4676                 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,                                                                    //      VkStructureType         sType;
4677                 DE_NULL,                                                                                                                                //      const void*                     pNext;
4678                 0u,                                                                                                                                             //      VkImageCreateFlags      flags;
4679                 VK_IMAGE_TYPE_2D,                                                                                                               //      VkImageType                     imageType;
4680                 VK_FORMAT_R8G8B8A8_UNORM,                                                                                               //      VkFormat                        format;
4681                 { renderSize.x(), renderSize.y(), 1 },                                                                  //      VkExtent3D                      extent;
4682                 1u,                                                                                                                                             //      deUint32                        mipLevels;
4683                 1u,                                                                                                                                             //      deUint32                        arraySize;
4684                 VK_SAMPLE_COUNT_1_BIT,                                                                                                  //      deUint32                        samples;
4685                 VK_IMAGE_TILING_OPTIMAL,                                                                                                //      VkImageTiling           tiling;
4686                 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT,    //      VkImageUsageFlags       usage;
4687                 VK_SHARING_MODE_EXCLUSIVE,                                                                                              //      VkSharingMode           sharingMode;
4688                 1u,                                                                                                                                             //      deUint32                        queueFamilyCount;
4689                 &queueFamilyIndex,                                                                                                              //      const deUint32*         pQueueFamilyIndices;
4690                 VK_IMAGE_LAYOUT_UNDEFINED,                                                                                              //      VkImageLayout           initialLayout;
4691         };
4692
4693         const Unique<VkImage>                                   image                                   (createImage(vk, vkDevice, &imageParams));
4694         const UniquePtr<Allocation>                             imageMemory                             (context.getDefaultAllocator().allocate(getImageMemoryRequirements(vk, vkDevice, *image), MemoryRequirement::Any));
4695
4696         VK_CHECK(vk.bindImageMemory(vkDevice, *image, imageMemory->getMemory(), imageMemory->getOffset()));
4697
4698         const VkAttachmentDescription                   colorAttDesc                    =
4699         {
4700                 0u,                                                                                             //      VkAttachmentDescriptionFlags    flags;
4701                 VK_FORMAT_R8G8B8A8_UNORM,                                               //      VkFormat                                                format;
4702                 VK_SAMPLE_COUNT_1_BIT,                                                  //      deUint32                                                samples;
4703                 VK_ATTACHMENT_LOAD_OP_CLEAR,                                    //      VkAttachmentLoadOp                              loadOp;
4704                 VK_ATTACHMENT_STORE_OP_STORE,                                   //      VkAttachmentStoreOp                             storeOp;
4705                 VK_ATTACHMENT_LOAD_OP_DONT_CARE,                                //      VkAttachmentLoadOp                              stencilLoadOp;
4706                 VK_ATTACHMENT_STORE_OP_DONT_CARE,                               //      VkAttachmentStoreOp                             stencilStoreOp;
4707                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout                                   initialLayout;
4708                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout                                   finalLayout;
4709         };
4710         const VkAttachmentReference                             colorAttRef                             =
4711         {
4712                 0u,                                                                                             //      deUint32                attachment;
4713                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,               //      VkImageLayout   layout;
4714         };
4715         const VkSubpassDescription                              subpassDesc                             =
4716         {
4717                 0u,                                                                                             //      VkSubpassDescriptionFlags               flags;
4718                 VK_PIPELINE_BIND_POINT_GRAPHICS,                                //      VkPipelineBindPoint                             pipelineBindPoint;
4719                 0u,                                                                                             //      deUint32                                                inputCount;
4720                 DE_NULL,                                                                                //      const VkAttachmentReference*    pInputAttachments;
4721                 1u,                                                                                             //      deUint32                                                colorCount;
4722                 &colorAttRef,                                                                   //      const VkAttachmentReference*    pColorAttachments;
4723                 DE_NULL,                                                                                //      const VkAttachmentReference*    pResolveAttachments;
4724                 DE_NULL,                                                                                //      const VkAttachmentReference*    pDepthStencilAttachment;
4725                 0u,                                                                                             //      deUint32                                                preserveCount;
4726                 DE_NULL,                                                                                //      const VkAttachmentReference*    pPreserveAttachments;
4727
4728         };
4729         const VkRenderPassCreateInfo                    renderPassParams                =
4730         {
4731                 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,              //      VkStructureType                                 sType;
4732                 DE_NULL,                                                                                //      const void*                                             pNext;
4733                 (VkRenderPassCreateFlags)0,
4734                 1u,                                                                                             //      deUint32                                                attachmentCount;
4735                 &colorAttDesc,                                                                  //      const VkAttachmentDescription*  pAttachments;
4736                 1u,                                                                                             //      deUint32                                                subpassCount;
4737                 &subpassDesc,                                                                   //      const VkSubpassDescription*             pSubpasses;
4738                 0u,                                                                                             //      deUint32                                                dependencyCount;
4739                 DE_NULL,                                                                                //      const VkSubpassDependency*              pDependencies;
4740         };
4741         const Unique<VkRenderPass>                              renderPass                              (createRenderPass(vk, vkDevice, &renderPassParams));
4742
4743         const VkImageViewCreateInfo                             colorAttViewParams              =
4744         {
4745                 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,               //      VkStructureType                         sType;
4746                 DE_NULL,                                                                                //      const void*                                     pNext;
4747                 0u,                                                                                             //      VkImageViewCreateFlags          flags;
4748                 *image,                                                                                 //      VkImage                                         image;
4749                 VK_IMAGE_VIEW_TYPE_2D,                                                  //      VkImageViewType                         viewType;
4750                 VK_FORMAT_R8G8B8A8_UNORM,                                               //      VkFormat                                        format;
4751                 {
4752                         VK_COMPONENT_SWIZZLE_R,
4753                         VK_COMPONENT_SWIZZLE_G,
4754                         VK_COMPONENT_SWIZZLE_B,
4755                         VK_COMPONENT_SWIZZLE_A
4756                 },                                                                                              //      VkChannelMapping                        channels;
4757                 {
4758                         VK_IMAGE_ASPECT_COLOR_BIT,                                              //      VkImageAspectFlags      aspectMask;
4759                         0u,                                                                                             //      deUint32                        baseMipLevel;
4760                         1u,                                                                                             //      deUint32                        mipLevels;
4761                         0u,                                                                                             //      deUint32                        baseArrayLayer;
4762                         1u,                                                                                             //      deUint32                        arraySize;
4763                 },                                                                                              //      VkImageSubresourceRange         subresourceRange;
4764         };
4765         const Unique<VkImageView>                               colorAttView                    (createImageView(vk, vkDevice, &colorAttViewParams));
4766
4767
4768         // Pipeline layout
4769         const VkPipelineLayoutCreateInfo                pipelineLayoutParams    =
4770         {
4771                 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,                  //      VkStructureType                                 sType;
4772                 DE_NULL,                                                                                                //      const void*                                             pNext;
4773                 (VkPipelineLayoutCreateFlags)0,
4774                 0u,                                                                                                             //      deUint32                                                descriptorSetCount;
4775                 DE_NULL,                                                                                                //      const VkDescriptorSetLayout*    pSetLayouts;
4776                 0u,                                                                                                             //      deUint32                                                pushConstantRangeCount;
4777                 DE_NULL,                                                                                                //      const VkPushConstantRange*              pPushConstantRanges;
4778         };
4779         const Unique<VkPipelineLayout>                  pipelineLayout                  (createPipelineLayout(vk, vkDevice, &pipelineLayoutParams));
4780
4781         // Pipeline
4782         vector<VkPipelineShaderStageCreateInfo>         shaderStageParams;
4783         // We need these vectors to make sure that information about specialization constants for each stage can outlive createGraphicsPipeline().
4784         vector<vector<VkSpecializationMapEntry> >       specConstantEntries;
4785         vector<VkSpecializationInfo>                            specializationInfos;
4786         createPipelineShaderStages(vk, vkDevice, instance, context, modules, shaderStageParams);
4787
4788         // And we don't want the reallocation of these vectors to invalidate pointers pointing to their contents.
4789         specConstantEntries.reserve(shaderStageParams.size());
4790         specializationInfos.reserve(shaderStageParams.size());
4791
4792         // Patch the specialization info field in PipelineShaderStageCreateInfos.
4793         for (vector<VkPipelineShaderStageCreateInfo>::iterator stageInfo = shaderStageParams.begin(); stageInfo != shaderStageParams.end(); ++stageInfo)
4794         {
4795                 const StageToSpecConstantMap::const_iterator stageIt = instance.specConstants.find(stageInfo->stage);
4796
4797                 if (stageIt != instance.specConstants.end())
4798                 {
4799                         const size_t                                            numSpecConstants        = stageIt->second.size();
4800                         vector<VkSpecializationMapEntry>        entries;
4801                         VkSpecializationInfo                            specInfo;
4802
4803                         entries.resize(numSpecConstants);
4804
4805                         // Only support 32-bit integers as spec constants now. And their constant IDs are numbered sequentially starting from 0.
4806                         for (size_t ndx = 0; ndx < numSpecConstants; ++ndx)
4807                         {
4808                                 entries[ndx].constantID = (deUint32)ndx;
4809                                 entries[ndx].offset             = deUint32(ndx * sizeof(deInt32));
4810                                 entries[ndx].size               = sizeof(deInt32);
4811                         }
4812
4813                         specConstantEntries.push_back(entries);
4814
4815                         specInfo.mapEntryCount  = (deUint32)numSpecConstants;
4816                         specInfo.pMapEntries    = specConstantEntries.back().data();
4817                         specInfo.dataSize               = numSpecConstants * sizeof(deInt32);
4818                         specInfo.pData                  = stageIt->second.data();
4819                         specializationInfos.push_back(specInfo);
4820
4821                         stageInfo->pSpecializationInfo = &specializationInfos.back();
4822                 }
4823         }
4824         const VkPipelineDepthStencilStateCreateInfo     depthStencilParams              =
4825         {
4826                 VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,     //      VkStructureType         sType;
4827                 DE_NULL,                                                                                                        //      const void*                     pNext;
4828                 (VkPipelineDepthStencilStateCreateFlags)0,
4829                 DE_FALSE,                                                                                                       //      deUint32                        depthTestEnable;
4830                 DE_FALSE,                                                                                                       //      deUint32                        depthWriteEnable;
4831                 VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp                     depthCompareOp;
4832                 DE_FALSE,                                                                                                       //      deUint32                        depthBoundsTestEnable;
4833                 DE_FALSE,                                                                                                       //      deUint32                        stencilTestEnable;
4834                 {
4835                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilFailOp;
4836                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilPassOp;
4837                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilDepthFailOp;
4838                         VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp     stencilCompareOp;
4839                         0u,                                                                                                                     //      deUint32        stencilCompareMask;
4840                         0u,                                                                                                                     //      deUint32        stencilWriteMask;
4841                         0u,                                                                                                                     //      deUint32        stencilReference;
4842                 },                                                                                                                      //      VkStencilOpState        front;
4843                 {
4844                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilFailOp;
4845                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilPassOp;
4846                         VK_STENCIL_OP_KEEP,                                                                                     //      VkStencilOp     stencilDepthFailOp;
4847                         VK_COMPARE_OP_ALWAYS,                                                                           //      VkCompareOp     stencilCompareOp;
4848                         0u,                                                                                                                     //      deUint32        stencilCompareMask;
4849                         0u,                                                                                                                     //      deUint32        stencilWriteMask;
4850                         0u,                                                                                                                     //      deUint32        stencilReference;
4851                 },                                                                                                                      //      VkStencilOpState        back;
4852                 -1.0f,                                                                                                          //      float                           minDepthBounds;
4853                 +1.0f,                                                                                                          //      float                           maxDepthBounds;
4854         };
4855         const VkViewport                                                viewport0                               =
4856         {
4857                 0.0f,                                                                                                           //      float   originX;
4858                 0.0f,                                                                                                           //      float   originY;
4859                 (float)renderSize.x(),                                                                          //      float   width;
4860                 (float)renderSize.y(),                                                                          //      float   height;
4861                 0.0f,                                                                                                           //      float   minDepth;
4862                 1.0f,                                                                                                           //      float   maxDepth;
4863         };
4864         const VkRect2D                                                  scissor0                                =
4865         {
4866                 {
4867                         0u,                                                                                                                     //      deInt32 x;
4868                         0u,                                                                                                                     //      deInt32 y;
4869                 },                                                                                                                      //      VkOffset2D      offset;
4870                 {
4871                         renderSize.x(),                                                                                         //      deInt32 width;
4872                         renderSize.y(),                                                                                         //      deInt32 height;
4873                 },                                                                                                                      //      VkExtent2D      extent;
4874         };
4875         const VkPipelineViewportStateCreateInfo         viewportParams                  =
4876         {
4877                 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,          //      VkStructureType         sType;
4878                 DE_NULL,                                                                                                        //      const void*                     pNext;
4879                 (VkPipelineViewportStateCreateFlags)0,
4880                 1u,                                                                                                                     //      deUint32                        viewportCount;
4881                 &viewport0,
4882                 1u,
4883                 &scissor0
4884         };
4885         const VkSampleMask                                                      sampleMask                              = ~0u;
4886         const VkPipelineMultisampleStateCreateInfo      multisampleParams               =
4887         {
4888                 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,       //      VkStructureType                 sType;
4889                 DE_NULL,                                                                                                        //      const void*                             pNext;
4890                 (VkPipelineMultisampleStateCreateFlags)0,
4891                 VK_SAMPLE_COUNT_1_BIT,                                                                          //      VkSampleCountFlagBits   rasterSamples;
4892                 DE_FALSE,                                                                                                       //      deUint32                                sampleShadingEnable;
4893                 0.0f,                                                                                                           //      float                                   minSampleShading;
4894                 &sampleMask,                                                                                            //      const VkSampleMask*             pSampleMask;
4895                 DE_FALSE,                                                                                                       //      VkBool32                                alphaToCoverageEnable;
4896                 DE_FALSE,                                                                                                       //      VkBool32                                alphaToOneEnable;
4897         };
4898         const VkPipelineRasterizationStateCreateInfo    rasterParams            =
4899         {
4900                 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,     //      VkStructureType sType;
4901                 DE_NULL,                                                                                                        //      const void*             pNext;
4902                 (VkPipelineRasterizationStateCreateFlags)0,
4903                 DE_TRUE,                                                                                                        //      deUint32                depthClipEnable;
4904                 DE_FALSE,                                                                                                       //      deUint32                rasterizerDiscardEnable;
4905                 VK_POLYGON_MODE_FILL,                                                                           //      VkFillMode              fillMode;
4906                 VK_CULL_MODE_NONE,                                                                                      //      VkCullMode              cullMode;
4907                 VK_FRONT_FACE_COUNTER_CLOCKWISE,                                                        //      VkFrontFace             frontFace;
4908                 VK_FALSE,                                                                                                       //      VkBool32                depthBiasEnable;
4909                 0.0f,                                                                                                           //      float                   depthBias;
4910                 0.0f,                                                                                                           //      float                   depthBiasClamp;
4911                 0.0f,                                                                                                           //      float                   slopeScaledDepthBias;
4912                 1.0f,                                                                                                           //      float                   lineWidth;
4913         };
4914         const VkPrimitiveTopology topology = hasTessellation? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
4915         const VkPipelineInputAssemblyStateCreateInfo    inputAssemblyParams     =
4916         {
4917                 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,    //      VkStructureType         sType;
4918                 DE_NULL,                                                                                                                //      const void*                     pNext;
4919                 (VkPipelineInputAssemblyStateCreateFlags)0,
4920                 topology,                                                                                                               //      VkPrimitiveTopology     topology;
4921                 DE_FALSE,                                                                                                               //      deUint32                        primitiveRestartEnable;
4922         };
4923         const VkVertexInputBindingDescription           vertexBinding0 =
4924         {
4925                 0u,                                                                     // deUint32                                     binding;
4926                 deUint32(singleVertexDataSize),         // deUint32                                     strideInBytes;
4927                 VK_VERTEX_INPUT_RATE_VERTEX                     // VkVertexInputStepRate        stepRate;
4928         };
4929         const VkVertexInputAttributeDescription         vertexAttrib0[2] =
4930         {
4931                 {
4932                         0u,                                                                     // deUint32     location;
4933                         0u,                                                                     // deUint32     binding;
4934                         VK_FORMAT_R32G32B32A32_SFLOAT,          // VkFormat     format;
4935                         0u                                                                      // deUint32     offsetInBytes;
4936                 },
4937                 {
4938                         1u,                                                                     // deUint32     location;
4939                         0u,                                                                     // deUint32     binding;
4940                         VK_FORMAT_R32G32B32A32_SFLOAT,          // VkFormat     format;
4941                         sizeof(Vec4),                                           // deUint32     offsetInBytes;
4942                 }
4943         };
4944
4945         const VkPipelineVertexInputStateCreateInfo      vertexInputStateParams  =
4946         {
4947                 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,      //      VkStructureType                                                         sType;
4948                 DE_NULL,                                                                                                        //      const void*                                                                     pNext;
4949                 (VkPipelineVertexInputStateCreateFlags)0,
4950                 1u,                                                                                                                     //      deUint32                                                                        bindingCount;
4951                 &vertexBinding0,                                                                                        //      const VkVertexInputBindingDescription*          pVertexBindingDescriptions;
4952                 2u,                                                                                                                     //      deUint32                                                                        attributeCount;
4953                 vertexAttrib0,                                                                                          //      const VkVertexInputAttributeDescription*        pVertexAttributeDescriptions;
4954         };
4955         const VkPipelineColorBlendAttachmentState       attBlendParams                  =
4956         {
4957                 DE_FALSE,                                                                                                       //      deUint32                blendEnable;
4958                 VK_BLEND_FACTOR_ONE,                                                                            //      VkBlend                 srcBlendColor;
4959                 VK_BLEND_FACTOR_ZERO,                                                                           //      VkBlend                 destBlendColor;
4960                 VK_BLEND_OP_ADD,                                                                                        //      VkBlendOp               blendOpColor;
4961                 VK_BLEND_FACTOR_ONE,                                                                            //      VkBlend                 srcBlendAlpha;
4962                 VK_BLEND_FACTOR_ZERO,                                                                           //      VkBlend                 destBlendAlpha;
4963                 VK_BLEND_OP_ADD,                                                                                        //      VkBlendOp               blendOpAlpha;
4964                 (VK_COLOR_COMPONENT_R_BIT|
4965                  VK_COLOR_COMPONENT_G_BIT|
4966                  VK_COLOR_COMPONENT_B_BIT|
4967                  VK_COLOR_COMPONENT_A_BIT),                                                                     //      VkChannelFlags  channelWriteMask;
4968         };
4969         const VkPipelineColorBlendStateCreateInfo       blendParams                             =
4970         {
4971                 VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,       //      VkStructureType                                                         sType;
4972                 DE_NULL,                                                                                                        //      const void*                                                                     pNext;
4973                 (VkPipelineColorBlendStateCreateFlags)0,
4974                 DE_FALSE,                                                                                                       //      VkBool32                                                                        logicOpEnable;
4975                 VK_LOGIC_OP_COPY,                                                                                       //      VkLogicOp                                                                       logicOp;
4976                 1u,                                                                                                                     //      deUint32                                                                        attachmentCount;
4977                 &attBlendParams,                                                                                        //      const VkPipelineColorBlendAttachmentState*      pAttachments;
4978                 { 0.0f, 0.0f, 0.0f, 0.0f },                                                                     //      float                                                                           blendConst[4];
4979         };
4980         const VkPipelineDynamicStateCreateInfo  dynamicStateInfo                =
4981         {
4982                 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,   //      VkStructureType                 sType;
4983                 DE_NULL,                                                                                                //      const void*                             pNext;
4984                 (VkPipelineDynamicStateCreateFlags)0,
4985                 0u,                                                                                                             //      deUint32                                dynamicStateCount;
4986                 DE_NULL                                                                                                 //      const VkDynamicState*   pDynamicStates;
4987         };
4988
4989         const VkPipelineTessellationStateCreateInfo     tessellationState       =
4990         {
4991                 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
4992                 DE_NULL,
4993                 (VkPipelineTessellationStateCreateFlags)0,
4994                 3u
4995         };
4996
4997         const VkPipelineTessellationStateCreateInfo* tessellationInfo   =       hasTessellation ? &tessellationState: DE_NULL;
4998         const VkGraphicsPipelineCreateInfo              pipelineParams                  =
4999         {
5000                 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,                //      VkStructureType                                                                 sType;
5001                 DE_NULL,                                                                                                //      const void*                                                                             pNext;
5002                 0u,                                                                                                             //      VkPipelineCreateFlags                                                   flags;
5003                 (deUint32)shaderStageParams.size(),                                             //      deUint32                                                                                stageCount;
5004                 &shaderStageParams[0],                                                                  //      const VkPipelineShaderStageCreateInfo*                  pStages;
5005                 &vertexInputStateParams,                                                                //      const VkPipelineVertexInputStateCreateInfo*             pVertexInputState;
5006                 &inputAssemblyParams,                                                                   //      const VkPipelineInputAssemblyStateCreateInfo*   pInputAssemblyState;
5007                 tessellationInfo,                                                                               //      const VkPipelineTessellationStateCreateInfo*    pTessellationState;
5008                 &viewportParams,                                                                                //      const VkPipelineViewportStateCreateInfo*                pViewportState;
5009                 &rasterParams,                                                                                  //      const VkPipelineRasterStateCreateInfo*                  pRasterState;
5010                 &multisampleParams,                                                                             //      const VkPipelineMultisampleStateCreateInfo*             pMultisampleState;
5011                 &depthStencilParams,                                                                    //      const VkPipelineDepthStencilStateCreateInfo*    pDepthStencilState;
5012                 &blendParams,                                                                                   //      const VkPipelineColorBlendStateCreateInfo*              pColorBlendState;
5013                 &dynamicStateInfo,                                                                              //      const VkPipelineDynamicStateCreateInfo*                 pDynamicState;
5014                 *pipelineLayout,                                                                                //      VkPipelineLayout                                                                layout;
5015                 *renderPass,                                                                                    //      VkRenderPass                                                                    renderPass;
5016                 0u,                                                                                                             //      deUint32                                                                                subpass;
5017                 DE_NULL,                                                                                                //      VkPipeline                                                                              basePipelineHandle;
5018                 0u,                                                                                                             //      deInt32                                                                                 basePipelineIndex;
5019         };
5020
5021         const Unique<VkPipeline>                                pipeline                                (createGraphicsPipeline(vk, vkDevice, DE_NULL, &pipelineParams));
5022
5023         // Framebuffer
5024         const VkFramebufferCreateInfo                   framebufferParams               =
5025         {
5026                 VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,                              //      VkStructureType         sType;
5027                 DE_NULL,                                                                                                //      const void*                     pNext;
5028                 (VkFramebufferCreateFlags)0,
5029                 *renderPass,                                                                                    //      VkRenderPass            renderPass;
5030                 1u,                                                                                                             //      deUint32                        attachmentCount;
5031                 &*colorAttView,                                                                                 //      const VkImageView*      pAttachments;
5032                 (deUint32)renderSize.x(),                                                               //      deUint32                        width;
5033                 (deUint32)renderSize.y(),                                                               //      deUint32                        height;
5034                 1u,                                                                                                             //      deUint32                        layers;
5035         };
5036         const Unique<VkFramebuffer>                             framebuffer                             (createFramebuffer(vk, vkDevice, &framebufferParams));
5037
5038         const VkCommandPoolCreateInfo                   cmdPoolParams                   =
5039         {
5040                 VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,                                     //      VkStructureType                 sType;
5041                 DE_NULL,                                                                                                        //      const void*                             pNext;
5042                 VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,                                //      VkCmdPoolCreateFlags    flags;
5043                 queueFamilyIndex,                                                                                       //      deUint32                                queueFamilyIndex;
5044         };
5045         const Unique<VkCommandPool>                             cmdPool                                 (createCommandPool(vk, vkDevice, &cmdPoolParams));
5046
5047         // Command buffer
5048         const VkCommandBufferAllocateInfo               cmdBufParams                    =
5049         {
5050                 VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,                 //      VkStructureType                 sType;
5051                 DE_NULL,                                                                                                //      const void*                             pNext;
5052                 *cmdPool,                                                                                               //      VkCmdPool                               pool;
5053                 VK_COMMAND_BUFFER_LEVEL_PRIMARY,                                                //      VkCmdBufferLevel                level;
5054                 1u,                                                                                                             //      deUint32                                count;
5055         };
5056         const Unique<VkCommandBuffer>                   cmdBuf                                  (allocateCommandBuffer(vk, vkDevice, &cmdBufParams));
5057
5058         const VkCommandBufferBeginInfo                  cmdBufBeginParams               =
5059         {
5060                 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,                    //      VkStructureType                         sType;
5061                 DE_NULL,                                                                                                //      const void*                                     pNext;
5062                 (VkCommandBufferUsageFlags)0,
5063                 (const VkCommandBufferInheritanceInfo*)DE_NULL,
5064         };
5065
5066         // Record commands
5067         VK_CHECK(vk.beginCommandBuffer(*cmdBuf, &cmdBufBeginParams));
5068
5069         {
5070                 const VkMemoryBarrier           vertFlushBarrier        =
5071                 {
5072                         VK_STRUCTURE_TYPE_MEMORY_BARRIER,                       //      VkStructureType         sType;
5073                         DE_NULL,                                                                        //      const void*                     pNext;
5074                         VK_ACCESS_HOST_WRITE_BIT,                                       //      VkMemoryOutputFlags     outputMask;
5075                         VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,            //      VkMemoryInputFlags      inputMask;
5076                 };
5077                 const VkImageMemoryBarrier      colorAttBarrier         =
5078                 {
5079                         VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,         //      VkStructureType                 sType;
5080                         DE_NULL,                                                                        //      const void*                             pNext;
5081                         0u,                                                                                     //      VkMemoryOutputFlags             outputMask;
5082                         VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,           //      VkMemoryInputFlags              inputMask;
5083                         VK_IMAGE_LAYOUT_UNDEFINED,                                      //      VkImageLayout                   oldLayout;
5084                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,       //      VkImageLayout                   newLayout;
5085                         queueFamilyIndex,                                                       //      deUint32                                srcQueueFamilyIndex;
5086                         queueFamilyIndex,                                                       //      deUint32                                destQueueFamilyIndex;
5087                         *image,                                                                         //      VkImage                                 image;
5088                         {
5089                                 VK_IMAGE_ASPECT_COLOR_BIT,                                      //      VkImageAspect   aspect;
5090                                 0u,                                                                                     //      deUint32                baseMipLevel;
5091                                 1u,                                                                                     //      deUint32                mipLevels;
5092                                 0u,                                                                                     //      deUint32                baseArraySlice;
5093                                 1u,                                                                                     //      deUint32                arraySize;
5094                         }                                                                                       //      VkImageSubresourceRange subresourceRange;
5095                 };
5096                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 1, &vertFlushBarrier, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &colorAttBarrier);
5097         }
5098
5099         {
5100                 const VkClearValue                      clearValue              = makeClearValueColorF32(0.125f, 0.25f, 0.75f, 1.0f);
5101                 const VkRenderPassBeginInfo     passBeginParams =
5102                 {
5103                         VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,                       //      VkStructureType         sType;
5104                         DE_NULL,                                                                                        //      const void*                     pNext;
5105                         *renderPass,                                                                            //      VkRenderPass            renderPass;
5106                         *framebuffer,                                                                           //      VkFramebuffer           framebuffer;
5107                         { { 0, 0 }, { renderSize.x(), renderSize.y() } },       //      VkRect2D                        renderArea;
5108                         1u,                                                                                                     //      deUint32                        clearValueCount;
5109                         &clearValue,                                                                            //      const VkClearValue*     pClearValues;
5110                 };
5111                 vk.cmdBeginRenderPass(*cmdBuf, &passBeginParams, VK_SUBPASS_CONTENTS_INLINE);
5112         }
5113
5114         vk.cmdBindPipeline(*cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
5115         {
5116                 const VkDeviceSize bindingOffset = 0;
5117                 vk.cmdBindVertexBuffers(*cmdBuf, 0u, 1u, &vertexBuffer.get(), &bindingOffset);
5118         }
5119         vk.cmdDraw(*cmdBuf, deUint32(vertexCount), 1u /*run pipeline once*/, 0u /*first vertex*/, 0u /*first instanceIndex*/);
5120         vk.cmdEndRenderPass(*cmdBuf);
5121
5122         {
5123                 const VkImageMemoryBarrier      renderFinishBarrier     =
5124                 {
5125                         VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,         //      VkStructureType                 sType;
5126                         DE_NULL,                                                                        //      const void*                             pNext;
5127                         VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,           //      VkMemoryOutputFlags             outputMask;
5128                         VK_ACCESS_TRANSFER_READ_BIT,                            //      VkMemoryInputFlags              inputMask;
5129                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,       //      VkImageLayout                   oldLayout;
5130                         VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,           //      VkImageLayout                   newLayout;
5131                         queueFamilyIndex,                                                       //      deUint32                                srcQueueFamilyIndex;
5132                         queueFamilyIndex,                                                       //      deUint32                                destQueueFamilyIndex;
5133                         *image,                                                                         //      VkImage                                 image;
5134                         {
5135                                 VK_IMAGE_ASPECT_COLOR_BIT,                                      //      VkImageAspectFlags      aspectMask;
5136                                 0u,                                                                                     //      deUint32                        baseMipLevel;
5137                                 1u,                                                                                     //      deUint32                        mipLevels;
5138                                 0u,                                                                                     //      deUint32                        baseArraySlice;
5139                                 1u,                                                                                     //      deUint32                        arraySize;
5140                         }                                                                                       //      VkImageSubresourceRange subresourceRange;
5141                 };
5142                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &renderFinishBarrier);
5143         }
5144
5145         {
5146                 const VkBufferImageCopy copyParams      =
5147                 {
5148                         (VkDeviceSize)0u,                                               //      VkDeviceSize                    bufferOffset;
5149                         (deUint32)renderSize.x(),                               //      deUint32                                bufferRowLength;
5150                         (deUint32)renderSize.y(),                               //      deUint32                                bufferImageHeight;
5151                         {
5152                                 VK_IMAGE_ASPECT_COLOR_BIT,                              //      VkImageAspect           aspect;
5153                                 0u,                                                                             //      deUint32                        mipLevel;
5154                                 0u,                                                                             //      deUint32                        arrayLayer;
5155                                 1u,                                                                             //      deUint32                        arraySize;
5156                         },                                                                              //      VkImageSubresourceCopy  imageSubresource;
5157                         { 0u, 0u, 0u },                                                 //      VkOffset3D                              imageOffset;
5158                         { renderSize.x(), renderSize.y(), 1u }  //      VkExtent3D                              imageExtent;
5159                 };
5160                 vk.cmdCopyImageToBuffer(*cmdBuf, *image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *readImageBuffer, 1u, &copyParams);
5161         }
5162
5163         {
5164                 const VkBufferMemoryBarrier     copyFinishBarrier       =
5165                 {
5166                         VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,        //      VkStructureType         sType;
5167                         DE_NULL,                                                                        //      const void*                     pNext;
5168                         VK_ACCESS_TRANSFER_WRITE_BIT,                           //      VkMemoryOutputFlags     outputMask;
5169                         VK_ACCESS_HOST_READ_BIT,                                        //      VkMemoryInputFlags      inputMask;
5170                         queueFamilyIndex,                                                       //      deUint32                        srcQueueFamilyIndex;
5171                         queueFamilyIndex,                                                       //      deUint32                        destQueueFamilyIndex;
5172                         *readImageBuffer,                                                       //      VkBuffer                        buffer;
5173                         0u,                                                                                     //      VkDeviceSize            offset;
5174                         imageSizeBytes                                                          //      VkDeviceSize            size;
5175                 };
5176                 vk.cmdPipelineBarrier(*cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyFinishBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
5177         }
5178
5179         VK_CHECK(vk.endCommandBuffer(*cmdBuf));
5180
5181         // Upload vertex data
5182         {
5183                 const VkMappedMemoryRange       range                   =
5184                 {
5185                         VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  //      VkStructureType sType;
5186                         DE_NULL,                                                                //      const void*             pNext;
5187                         vertexBufferMemory->getMemory(),                //      VkDeviceMemory  mem;
5188                         0,                                                                              //      VkDeviceSize    offset;
5189                         (VkDeviceSize)sizeof(vertexData),               //      VkDeviceSize    size;
5190                 };
5191                 void*                                           vertexBufPtr    = vertexBufferMemory->getHostPtr();
5192
5193                 deMemcpy(vertexBufPtr, &vertexData[0], sizeof(vertexData));
5194                 VK_CHECK(vk.flushMappedMemoryRanges(vkDevice, 1u, &range));
5195         }
5196
5197         // Submit & wait for completion
5198         {
5199                 const VkFenceCreateInfo fenceParams     =
5200                 {
5201                         VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,    //      VkStructureType         sType;
5202                         DE_NULL,                                                                //      const void*                     pNext;
5203                         0u,                                                                             //      VkFenceCreateFlags      flags;
5204                 };
5205                 const Unique<VkFence>   fence           (createFence(vk, vkDevice, &fenceParams));
5206                 const VkSubmitInfo              submitInfo      =
5207                 {
5208                         VK_STRUCTURE_TYPE_SUBMIT_INFO,
5209                         DE_NULL,
5210                         0u,
5211                         (const VkSemaphore*)DE_NULL,
5212                         (const VkPipelineStageFlags*)DE_NULL,
5213                         1u,
5214                         &cmdBuf.get(),
5215                         0u,
5216                         (const VkSemaphore*)DE_NULL,
5217                 };
5218
5219                 VK_CHECK(vk.queueSubmit(queue, 1u, &submitInfo, *fence));
5220                 VK_CHECK(vk.waitForFences(vkDevice, 1u, &fence.get(), DE_TRUE, ~0ull));
5221         }
5222
5223         const void* imagePtr    = readImageBufferMemory->getHostPtr();
5224         const tcu::ConstPixelBufferAccess pixelBuffer(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
5225                                                                                                   renderSize.x(), renderSize.y(), 1, imagePtr);
5226         // Log image
5227         {
5228                 const VkMappedMemoryRange       range           =
5229                 {
5230                         VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  //      VkStructureType sType;
5231                         DE_NULL,                                                                //      const void*             pNext;
5232                         readImageBufferMemory->getMemory(),             //      VkDeviceMemory  mem;
5233                         0,                                                                              //      VkDeviceSize    offset;
5234                         imageSizeBytes,                                                 //      VkDeviceSize    size;
5235                 };
5236
5237                 VK_CHECK(vk.invalidateMappedMemoryRanges(vkDevice, 1u, &range));
5238                 context.getTestContext().getLog() << TestLog::Image("Result", "Result", pixelBuffer);
5239         }
5240
5241         const RGBA threshold(1, 1, 1, 1);
5242         const RGBA upperLeft(pixelBuffer.getPixel(1, 1));
5243         if (!tcu::compareThreshold(upperLeft, instance.outputColors[0], threshold))
5244                 return TestStatus::fail("Upper left corner mismatch");
5245
5246         const RGBA upperRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, 1));
5247         if (!tcu::compareThreshold(upperRight, instance.outputColors[1], threshold))
5248                 return TestStatus::fail("Upper right corner mismatch");
5249
5250         const RGBA lowerLeft(pixelBuffer.getPixel(1, pixelBuffer.getHeight() - 1));
5251         if (!tcu::compareThreshold(lowerLeft, instance.outputColors[2], threshold))
5252                 return TestStatus::fail("Lower left corner mismatch");
5253
5254         const RGBA lowerRight(pixelBuffer.getPixel(pixelBuffer.getWidth() - 1, pixelBuffer.getHeight() - 1));
5255         if (!tcu::compareThreshold(lowerRight, instance.outputColors[3], threshold))
5256                 return TestStatus::fail("Lower right corner mismatch");
5257
5258         return TestStatus::pass("Rendered output matches input");
5259 }
5260
5261 void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, const vector<deInt32>& specConstants, tcu::TestCaseGroup* tests)
5262 {
5263         const ShaderElement             vertFragPipelineStages[]                =
5264         {
5265                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5266                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5267         };
5268
5269         const ShaderElement             tessPipelineStages[]                    =
5270         {
5271                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5272                 ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5273                 ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5274                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5275         };
5276
5277         const ShaderElement             geomPipelineStages[]                            =
5278         {
5279                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
5280                 ShaderElement("geom", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5281                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
5282         };
5283
5284         StageToSpecConstantMap  specConstantMap;
5285
5286         specConstantMap[VK_SHADER_STAGE_VERTEX_BIT] = specConstants;
5287         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_vert", "", addShaderCodeCustomVertex, runAndVerifyDefaultPipeline,
5288                                                                                                  createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5289
5290         specConstantMap.clear();
5291         specConstantMap[VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT] = specConstants;
5292         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tessc", "", addShaderCodeCustomTessControl, runAndVerifyDefaultPipeline,
5293                                                                                                  createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5294
5295         specConstantMap.clear();
5296         specConstantMap[VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT] = specConstants;
5297         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_tesse", "", addShaderCodeCustomTessEval, runAndVerifyDefaultPipeline,
5298                                                                                                  createInstanceContext(tessPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5299
5300         specConstantMap.clear();
5301         specConstantMap[VK_SHADER_STAGE_GEOMETRY_BIT] = specConstants;
5302         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_geom", "", addShaderCodeCustomGeometry, runAndVerifyDefaultPipeline,
5303                                                                                                  createInstanceContext(geomPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5304
5305         specConstantMap.clear();
5306         specConstantMap[VK_SHADER_STAGE_FRAGMENT_BIT] = specConstants;
5307         addFunctionCaseWithPrograms<InstanceContext>(tests, name + "_frag", "", addShaderCodeCustomFragment, runAndVerifyDefaultPipeline,
5308                                                                                                  createInstanceContext(vertFragPipelineStages, inputColors, outputColors, testCodeFragments, specConstantMap));
5309 }
5310
5311 inline void createTestsForAllStages (const std::string& name, const RGBA (&inputColors)[4], const RGBA (&outputColors)[4], const map<string, string>& testCodeFragments, tcu::TestCaseGroup* tests)
5312 {
5313         vector<deInt32> noSpecConstants;
5314         createTestsForAllStages(name, inputColors, outputColors, testCodeFragments, noSpecConstants, tests);
5315 }
5316
5317 } // anonymous
5318
5319 tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5320 {
5321         struct NameCodePair { string name, code; };
5322         RGBA                                                    defaultColors[4];
5323         de::MovePtr<tcu::TestCaseGroup> opSourceTests                   (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5324         const std::string                               opsourceGLSLWithFile    = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5325         map<string, string>                             fragments                               = passthruFragments();
5326         const NameCodePair                              tests[]                                 =
5327         {
5328                 {"unknown", "OpSource Unknown 321"},
5329                 {"essl", "OpSource ESSL 310"},
5330                 {"glsl", "OpSource GLSL 450"},
5331                 {"opencl_cpp", "OpSource OpenCL_CPP 120"},
5332                 {"opencl_c", "OpSource OpenCL_C 120"},
5333                 {"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5334                 {"file", opsourceGLSLWithFile},
5335                 {"source", opsourceGLSLWithFile + "\"void main(){}\""},
5336                 // Longest possible source string: SPIR-V limits instructions to 65535
5337                 // words, of which the first 4 are opsourceGLSLWithFile; the rest will
5338                 // contain 65530 UTF8 characters (one word each) plus one last word
5339                 // containing 3 ASCII characters and \0.
5340                 {"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5341         };
5342
5343         getDefaultColors(defaultColors);
5344         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5345         {
5346                 fragments["debug"] = tests[testNdx].code;
5347                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5348         }
5349
5350         return opSourceTests.release();
5351 }
5352
5353 tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5354 {
5355         struct NameCodePair { string name, code; };
5356         RGBA                                                            defaultColors[4];
5357         de::MovePtr<tcu::TestCaseGroup>         opSourceTests           (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5358         map<string, string>                                     fragments                       = passthruFragments();
5359         const std::string                                       opsource                        = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5360         const NameCodePair                                      tests[]                         =
5361         {
5362                 {"empty", opsource + "OpSourceContinued \"\""},
5363                 {"short", opsource + "OpSourceContinued \"abcde\""},
5364                 {"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5365                 // Longest possible source string: SPIR-V limits instructions to 65535
5366                 // words, of which the first one is OpSourceContinued/length; the rest
5367                 // will contain 65533 UTF8 characters (one word each) plus one last word
5368                 // containing 3 ASCII characters and \0.
5369                 {"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5370         };
5371
5372         getDefaultColors(defaultColors);
5373         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5374         {
5375                 fragments["debug"] = tests[testNdx].code;
5376                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5377         }
5378
5379         return opSourceTests.release();
5380 }
5381
5382 tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5383 {
5384         RGBA                                                             defaultColors[4];
5385         de::MovePtr<tcu::TestCaseGroup>          opLineTests             (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5386         map<string, string>                                      fragments;
5387         getDefaultColors(defaultColors);
5388         fragments["debug"]                      =
5389                 "%name = OpString \"name\"\n";
5390
5391         fragments["pre_main"]   =
5392                 "OpNoLine\n"
5393                 "OpNoLine\n"
5394                 "OpLine %name 1 1\n"
5395                 "OpNoLine\n"
5396                 "OpLine %name 1 1\n"
5397                 "OpLine %name 1 1\n"
5398                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5399                 "OpNoLine\n"
5400                 "OpLine %name 1 1\n"
5401                 "OpNoLine\n"
5402                 "OpLine %name 1 1\n"
5403                 "OpLine %name 1 1\n"
5404                 "%second_param1 = OpFunctionParameter %v4f32\n"
5405                 "OpNoLine\n"
5406                 "OpNoLine\n"
5407                 "%label_secondfunction = OpLabel\n"
5408                 "OpNoLine\n"
5409                 "OpReturnValue %second_param1\n"
5410                 "OpFunctionEnd\n"
5411                 "OpNoLine\n"
5412                 "OpNoLine\n";
5413
5414         fragments["testfun"]            =
5415                 // A %test_code function that returns its argument unchanged.
5416                 "OpNoLine\n"
5417                 "OpNoLine\n"
5418                 "OpLine %name 1 1\n"
5419                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5420                 "OpNoLine\n"
5421                 "%param1 = OpFunctionParameter %v4f32\n"
5422                 "OpNoLine\n"
5423                 "OpNoLine\n"
5424                 "%label_testfun = OpLabel\n"
5425                 "OpNoLine\n"
5426                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5427                 "OpReturnValue %val1\n"
5428                 "OpFunctionEnd\n"
5429                 "OpLine %name 1 1\n"
5430                 "OpNoLine\n";
5431
5432         createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5433
5434         return opLineTests.release();
5435 }
5436
5437
5438 tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5439 {
5440         RGBA                                                                                                    defaultColors[4];
5441         de::MovePtr<tcu::TestCaseGroup>                                                 opLineTests                     (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5442         map<string, string>                                                                             fragments;
5443         std::vector<std::pair<std::string, std::string> >               problemStrings;
5444
5445         problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5446         problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5447         problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5448         getDefaultColors(defaultColors);
5449
5450         fragments["debug"]                      =
5451                 "%other_name = OpString \"other_name\"\n";
5452
5453         fragments["pre_main"]   =
5454                 "OpLine %file_name 32 0\n"
5455                 "OpLine %file_name 32 32\n"
5456                 "OpLine %file_name 32 40\n"
5457                 "OpLine %other_name 32 40\n"
5458                 "OpLine %other_name 0 100\n"
5459                 "OpLine %other_name 0 4294967295\n"
5460                 "OpLine %other_name 4294967295 0\n"
5461                 "OpLine %other_name 32 40\n"
5462                 "OpLine %file_name 0 0\n"
5463                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5464                 "OpLine %file_name 1 0\n"
5465                 "%second_param1 = OpFunctionParameter %v4f32\n"
5466                 "OpLine %file_name 1 3\n"
5467                 "OpLine %file_name 1 2\n"
5468                 "%label_secondfunction = OpLabel\n"
5469                 "OpLine %file_name 0 2\n"
5470                 "OpReturnValue %second_param1\n"
5471                 "OpFunctionEnd\n"
5472                 "OpLine %file_name 0 2\n"
5473                 "OpLine %file_name 0 2\n";
5474
5475         fragments["testfun"]            =
5476                 // A %test_code function that returns its argument unchanged.
5477                 "OpLine %file_name 1 0\n"
5478                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5479                 "OpLine %file_name 16 330\n"
5480                 "%param1 = OpFunctionParameter %v4f32\n"
5481                 "OpLine %file_name 14 442\n"
5482                 "%label_testfun = OpLabel\n"
5483                 "OpLine %file_name 11 1024\n"
5484                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5485                 "OpLine %file_name 2 97\n"
5486                 "OpReturnValue %val1\n"
5487                 "OpFunctionEnd\n"
5488                 "OpLine %file_name 5 32\n";
5489
5490         for (size_t i = 0; i < problemStrings.size(); ++i)
5491         {
5492                 map<string, string> testFragments = fragments;
5493                 testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5494                 createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5495         }
5496
5497         return opLineTests.release();
5498 }
5499
5500 tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5501 {
5502         de::MovePtr<tcu::TestCaseGroup> opConstantNullTests             (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5503         RGBA                                                    colors[4];
5504
5505
5506         const char                                              functionStart[] =
5507                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5508                 "%param1 = OpFunctionParameter %v4f32\n"
5509                 "%lbl    = OpLabel\n";
5510
5511         const char                                              functionEnd[]   =
5512                 "OpReturnValue %transformed_param\n"
5513                 "OpFunctionEnd\n";
5514
5515         struct NameConstantsCode
5516         {
5517                 string name;
5518                 string constants;
5519                 string code;
5520         };
5521
5522         NameConstantsCode tests[] =
5523         {
5524                 {
5525                         "vec4",
5526                         "%cnull = OpConstantNull %v4f32\n",
5527                         "%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5528                 },
5529                 {
5530                         "float",
5531                         "%cnull = OpConstantNull %f32\n",
5532                         "%vp = OpVariable %fp_v4f32 Function\n"
5533                         "%v  = OpLoad %v4f32 %vp\n"
5534                         "%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5535                         "%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5536                         "%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5537                         "%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5538                         "%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5539                 },
5540                 {
5541                         "bool",
5542                         "%cnull             = OpConstantNull %bool\n",
5543                         "%v                 = OpVariable %fp_v4f32 Function\n"
5544                         "                     OpStore %v %param1\n"
5545                         "                     OpSelectionMerge %false_label None\n"
5546                         "                     OpBranchConditional %cnull %true_label %false_label\n"
5547                         "%true_label        = OpLabel\n"
5548                         "                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5549                         "                     OpBranch %false_label\n"
5550                         "%false_label       = OpLabel\n"
5551                         "%transformed_param = OpLoad %v4f32 %v\n"
5552                 },
5553                 {
5554                         "i32",
5555                         "%cnull             = OpConstantNull %i32\n",
5556                         "%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5557                         "%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5558                         "                     OpSelectionMerge %false_label None\n"
5559                         "                     OpBranchConditional %b %true_label %false_label\n"
5560                         "%true_label        = OpLabel\n"
5561                         "                     OpStore %v %param1\n"
5562                         "                     OpBranch %false_label\n"
5563                         "%false_label       = OpLabel\n"
5564                         "%transformed_param = OpLoad %v4f32 %v\n"
5565                 },
5566                 {
5567                         "struct",
5568                         "%stype             = OpTypeStruct %f32 %v4f32\n"
5569                         "%fp_stype          = OpTypePointer Function %stype\n"
5570                         "%cnull             = OpConstantNull %stype\n",
5571                         "%v                 = OpVariable %fp_stype Function %cnull\n"
5572                         "%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5573                         "%f_val             = OpLoad %v4f32 %f\n"
5574                         "%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5575                 },
5576                 {
5577                         "array",
5578                         "%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5579                         "%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5580                         "%cnull             = OpConstantNull %a4_v4f32\n",
5581                         "%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5582                         "%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5583                         "%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5584                         "%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5585                         "%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5586                         "%f_val             = OpLoad %v4f32 %f\n"
5587                         "%f1_val            = OpLoad %v4f32 %f1\n"
5588                         "%f2_val            = OpLoad %v4f32 %f2\n"
5589                         "%f3_val            = OpLoad %v4f32 %f3\n"
5590                         "%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5591                         "%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5592                         "%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5593                         "%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5594                 },
5595                 {
5596                         "matrix",
5597                         "%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5598                         "%cnull             = OpConstantNull %mat4x4_f32\n",
5599                         // Our null matrix * any vector should result in a zero vector.
5600                         "%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5601                         "%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5602                 }
5603         };
5604
5605         getHalfColorsFullAlpha(colors);
5606
5607         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5608         {
5609                 map<string, string> fragments;
5610                 fragments["pre_main"] = tests[testNdx].constants;
5611                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5612                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5613         }
5614         return opConstantNullTests.release();
5615 }
5616 tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5617 {
5618         de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests                (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5619         RGBA                                                    inputColors[4];
5620         RGBA                                                    outputColors[4];
5621
5622
5623         const char                                              functionStart[]  =
5624                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5625                 "%param1 = OpFunctionParameter %v4f32\n"
5626                 "%lbl    = OpLabel\n";
5627
5628         const char                                              functionEnd[]           =
5629                 "OpReturnValue %transformed_param\n"
5630                 "OpFunctionEnd\n";
5631
5632         struct NameConstantsCode
5633         {
5634                 string name;
5635                 string constants;
5636                 string code;
5637         };
5638
5639         NameConstantsCode tests[] =
5640         {
5641                 {
5642                         "vec4",
5643
5644                         "%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5645                         "%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5646                 },
5647                 {
5648                         "struct",
5649
5650                         "%stype             = OpTypeStruct %v4f32 %f32\n"
5651                         "%fp_stype          = OpTypePointer Function %stype\n"
5652                         "%f32_n_1           = OpConstant %f32 -1.0\n"
5653                         "%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5654                         "%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5655                         "%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5656
5657                         "%v                 = OpVariable %fp_stype Function %cval\n"
5658                         "%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5659                         "%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5660                         "%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5661                         "%f32_val           = OpLoad %f32 %f32_ptr\n"
5662                         "%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5663                         "%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5664                         "%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5665                 },
5666                 {
5667                         // [1|0|0|0.5] [x] = x + 0.5
5668                         // [0|1|0|0.5] [y] = y + 0.5
5669                         // [0|0|1|0.5] [z] = z + 0.5
5670                         // [0|0|0|1  ] [1] = 1
5671                         "matrix",
5672
5673                         "%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5674                     "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5675                     "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5676                     "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5677                     "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5678                         "%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5679
5680                         "%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5681                 },
5682                 {
5683                         "array",
5684
5685                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5686                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5687                         "%f32_n_1             = OpConstant %f32 -1.0\n"
5688                         "%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5689                         "%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5690
5691                         "%v                   = OpVariable %fp_a4f32 Function %carr\n"
5692                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5693                         "%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5694                         "%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5695                         "%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5696                         "%f_val               = OpLoad %f32 %f\n"
5697                         "%f1_val              = OpLoad %f32 %f1\n"
5698                         "%f2_val              = OpLoad %f32 %f2\n"
5699                         "%f3_val              = OpLoad %f32 %f3\n"
5700                         "%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5701                         "%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5702                         "%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5703                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5704                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5705                 },
5706                 {
5707                         //
5708                         // [
5709                         //   {
5710                         //      0.0,
5711                         //      [ 1.0, 1.0, 1.0, 1.0]
5712                         //   },
5713                         //   {
5714                         //      1.0,
5715                         //      [ 0.0, 0.5, 0.0, 0.0]
5716                         //   }, //     ^^^
5717                         //   {
5718                         //      0.0,
5719                         //      [ 1.0, 1.0, 1.0, 1.0]
5720                         //   }
5721                         // ]
5722                         "array_of_struct_of_array",
5723
5724                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5725                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5726                         "%stype               = OpTypeStruct %f32 %a4f32\n"
5727                         "%a3stype             = OpTypeArray %stype %c_u32_3\n"
5728                         "%fp_a3stype          = OpTypePointer Function %a3stype\n"
5729                         "%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5730                         "%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5731                         "%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5732                         "%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5733                         "%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5734
5735                         "%v                   = OpVariable %fp_a3stype Function %carr\n"
5736                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5737                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f\n"
5738                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5739                 }
5740         };
5741
5742         getHalfColorsFullAlpha(inputColors);
5743         outputColors[0] = RGBA(255, 255, 255, 255);
5744         outputColors[1] = RGBA(255, 127, 127, 255);
5745         outputColors[2] = RGBA(127, 255, 127, 255);
5746         outputColors[3] = RGBA(127, 127, 255, 255);
5747
5748         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5749         {
5750                 map<string, string> fragments;
5751                 fragments["pre_main"] = tests[testNdx].constants;
5752                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5753                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5754         }
5755         return opConstantCompositeTests.release();
5756 }
5757
5758 tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5759 {
5760         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5761         RGBA                                                    inputColors[4];
5762         RGBA                                                    outputColors[4];
5763         map<string, string>                             fragments;
5764
5765         // vec4 test_code(vec4 param) {
5766         //   vec4 result = param;
5767         //   for (int i = 0; i < 4; ++i) {
5768         //     if (i == 0) result[i] = 0.;
5769         //     else        result[i] = 1. - result[i];
5770         //   }
5771         //   return result;
5772         // }
5773         const char                                              function[]                      =
5774                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5775                 "%param1    = OpFunctionParameter %v4f32\n"
5776                 "%lbl       = OpLabel\n"
5777                 "%iptr      = OpVariable %fp_i32 Function\n"
5778                 "             OpStore %iptr %c_i32_0\n"
5779                 "%result    = OpVariable %fp_v4f32 Function\n"
5780                 "             OpStore %result %param1\n"
5781                 "             OpBranch %loop\n"
5782
5783                 // Loop entry block.
5784                 "%loop      = OpLabel\n"
5785                 "%ival      = OpLoad %i32 %iptr\n"
5786                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5787                 "             OpLoopMerge %exit %loop None\n"
5788                 "             OpBranchConditional %lt_4 %if_entry %exit\n"
5789
5790                 // Merge block for loop.
5791                 "%exit      = OpLabel\n"
5792                 "%ret       = OpLoad %v4f32 %result\n"
5793                 "             OpReturnValue %ret\n"
5794
5795                 // If-statement entry block.
5796                 "%if_entry  = OpLabel\n"
5797                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
5798                 "%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5799                 "             OpSelectionMerge %if_exit None\n"
5800                 "             OpBranchConditional %eq_0 %if_true %if_false\n"
5801
5802                 // False branch for if-statement.
5803                 "%if_false  = OpLabel\n"
5804                 "%val       = OpLoad %f32 %loc\n"
5805                 "%sub       = OpFSub %f32 %c_f32_1 %val\n"
5806                 "             OpStore %loc %sub\n"
5807                 "             OpBranch %if_exit\n"
5808
5809                 // Merge block for if-statement.
5810                 "%if_exit   = OpLabel\n"
5811                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5812                 "             OpStore %iptr %ival_next\n"
5813                 "             OpBranch %loop\n"
5814
5815                 // True branch for if-statement.
5816                 "%if_true   = OpLabel\n"
5817                 "             OpStore %loc %c_f32_0\n"
5818                 "             OpBranch %if_exit\n"
5819
5820                 "             OpFunctionEnd\n";
5821
5822         fragments["testfun"]    = function;
5823
5824         inputColors[0]                  = RGBA(127, 127, 127, 0);
5825         inputColors[1]                  = RGBA(127, 0,   0,   0);
5826         inputColors[2]                  = RGBA(0,   127, 0,   0);
5827         inputColors[3]                  = RGBA(0,   0,   127, 0);
5828
5829         outputColors[0]                 = RGBA(0, 128, 128, 255);
5830         outputColors[1]                 = RGBA(0, 255, 255, 255);
5831         outputColors[2]                 = RGBA(0, 128, 255, 255);
5832         outputColors[3]                 = RGBA(0, 255, 128, 255);
5833
5834         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5835
5836         return group.release();
5837 }
5838
5839 tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5840 {
5841         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5842         RGBA                                                    inputColors[4];
5843         RGBA                                                    outputColors[4];
5844         map<string, string>                             fragments;
5845
5846         const char                                              typesAndConstants[]     =
5847                 "%c_f32_p2  = OpConstant %f32 0.2\n"
5848                 "%c_f32_p4  = OpConstant %f32 0.4\n"
5849                 "%c_f32_p6  = OpConstant %f32 0.6\n"
5850                 "%c_f32_p8  = OpConstant %f32 0.8\n";
5851
5852         // vec4 test_code(vec4 param) {
5853         //   vec4 result = param;
5854         //   for (int i = 0; i < 4; ++i) {
5855         //     switch (i) {
5856         //       case 0: result[i] += .2; break;
5857         //       case 1: result[i] += .6; break;
5858         //       case 2: result[i] += .4; break;
5859         //       case 3: result[i] += .8; break;
5860         //       default: break; // unreachable
5861         //     }
5862         //   }
5863         //   return result;
5864         // }
5865         const char                                              function[]                      =
5866                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5867                 "%param1    = OpFunctionParameter %v4f32\n"
5868                 "%lbl       = OpLabel\n"
5869                 "%iptr      = OpVariable %fp_i32 Function\n"
5870                 "             OpStore %iptr %c_i32_0\n"
5871                 "%result    = OpVariable %fp_v4f32 Function\n"
5872                 "             OpStore %result %param1\n"
5873                 "             OpBranch %loop\n"
5874
5875                 // Loop entry block.
5876                 "%loop      = OpLabel\n"
5877                 "%ival      = OpLoad %i32 %iptr\n"
5878                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5879                 "             OpLoopMerge %exit %loop None\n"
5880                 "             OpBranchConditional %lt_4 %switch_entry %exit\n"
5881
5882                 // Merge block for loop.
5883                 "%exit      = OpLabel\n"
5884                 "%ret       = OpLoad %v4f32 %result\n"
5885                 "             OpReturnValue %ret\n"
5886
5887                 // Switch-statement entry block.
5888                 "%switch_entry   = OpLabel\n"
5889                 "%loc            = OpAccessChain %fp_f32 %result %ival\n"
5890                 "%val            = OpLoad %f32 %loc\n"
5891                 "                  OpSelectionMerge %switch_exit None\n"
5892                 "                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5893
5894                 "%case2          = OpLabel\n"
5895                 "%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5896                 "                  OpStore %loc %addp4\n"
5897                 "                  OpBranch %switch_exit\n"
5898
5899                 "%switch_default = OpLabel\n"
5900                 "                  OpUnreachable\n"
5901
5902                 "%case3          = OpLabel\n"
5903                 "%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5904                 "                  OpStore %loc %addp8\n"
5905                 "                  OpBranch %switch_exit\n"
5906
5907                 "%case0          = OpLabel\n"
5908                 "%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5909                 "                  OpStore %loc %addp2\n"
5910                 "                  OpBranch %switch_exit\n"
5911
5912                 // Merge block for switch-statement.
5913                 "%switch_exit    = OpLabel\n"
5914                 "%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5915                 "                  OpStore %iptr %ival_next\n"
5916                 "                  OpBranch %loop\n"
5917
5918                 "%case1          = OpLabel\n"
5919                 "%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5920                 "                  OpStore %loc %addp6\n"
5921                 "                  OpBranch %switch_exit\n"
5922
5923                 "                  OpFunctionEnd\n";
5924
5925         fragments["pre_main"]   = typesAndConstants;
5926         fragments["testfun"]    = function;
5927
5928         inputColors[0]                  = RGBA(127, 27,  127, 51);
5929         inputColors[1]                  = RGBA(127, 0,   0,   51);
5930         inputColors[2]                  = RGBA(0,   27,  0,   51);
5931         inputColors[3]                  = RGBA(0,   0,   127, 51);
5932
5933         outputColors[0]                 = RGBA(178, 180, 229, 255);
5934         outputColors[1]                 = RGBA(178, 153, 102, 255);
5935         outputColors[2]                 = RGBA(51,  180, 102, 255);
5936         outputColors[3]                 = RGBA(51,  153, 229, 255);
5937
5938         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5939
5940         return group.release();
5941 }
5942
5943 tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5944 {
5945         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5946         RGBA                                                    inputColors[4];
5947         RGBA                                                    outputColors[4];
5948         map<string, string>                             fragments;
5949
5950         const char                                              decorations[]           =
5951                 "OpDecorate %array_group         ArrayStride 4\n"
5952                 "OpDecorate %struct_member_group Offset 0\n"
5953                 "%array_group         = OpDecorationGroup\n"
5954                 "%struct_member_group = OpDecorationGroup\n"
5955
5956                 "OpDecorate %group1 RelaxedPrecision\n"
5957                 "OpDecorate %group3 RelaxedPrecision\n"
5958                 "OpDecorate %group3 Invariant\n"
5959                 "OpDecorate %group3 Restrict\n"
5960                 "%group0 = OpDecorationGroup\n"
5961                 "%group1 = OpDecorationGroup\n"
5962                 "%group3 = OpDecorationGroup\n";
5963
5964         const char                                              typesAndConstants[]     =
5965                 "%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5966                 "%struct1   = OpTypeStruct %a3f32\n"
5967                 "%struct2   = OpTypeStruct %a3f32\n"
5968                 "%fp_struct1 = OpTypePointer Function %struct1\n"
5969                 "%fp_struct2 = OpTypePointer Function %struct2\n"
5970                 "%c_f32_2    = OpConstant %f32 2.\n"
5971                 "%c_f32_n2   = OpConstant %f32 -2.\n"
5972
5973                 "%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5974                 "%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5975                 "%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5976                 "%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5977
5978         const char                                              function[]                      =
5979                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5980                 "%param     = OpFunctionParameter %v4f32\n"
5981                 "%entry     = OpLabel\n"
5982                 "%result    = OpVariable %fp_v4f32 Function\n"
5983                 "             OpStore %result %param\n"
5984                 "%v_struct1 = OpVariable %fp_struct1 Function\n"
5985                 "             OpStore %v_struct1 %c_struct1\n"
5986                 "%v_struct2 = OpVariable %fp_struct2 Function\n"
5987                 "             OpStore %v_struct2 %c_struct2\n"
5988                 "%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_1\n"
5989                 "%val1      = OpLoad %f32 %ptr1\n"
5990                 "%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
5991                 "%val2      = OpLoad %f32 %ptr2\n"
5992                 "%addvalues = OpFAdd %f32 %val1 %val2\n"
5993                 "%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
5994                 "%val       = OpLoad %f32 %ptr\n"
5995                 "%addresult = OpFAdd %f32 %addvalues %val\n"
5996                 "             OpStore %ptr %addresult\n"
5997                 "%ret       = OpLoad %v4f32 %result\n"
5998                 "             OpReturnValue %ret\n"
5999                 "             OpFunctionEnd\n";
6000
6001         struct CaseNameDecoration
6002         {
6003                 string name;
6004                 string decoration;
6005         };
6006
6007         CaseNameDecoration tests[] =
6008         {
6009                 {
6010                         "same_decoration_group_on_multiple_types",
6011                         "OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
6012                 },
6013                 {
6014                         "empty_decoration_group",
6015                         "OpGroupDecorate %group0      %a3f32\n"
6016                         "OpGroupDecorate %group0      %result\n"
6017                 },
6018                 {
6019                         "one_element_decoration_group",
6020                         "OpGroupDecorate %array_group %a3f32\n"
6021                 },
6022                 {
6023                         "multiple_elements_decoration_group",
6024                         "OpGroupDecorate %group3      %v_struct1\n"
6025                 },
6026                 {
6027                         "multiple_decoration_groups_on_same_variable",
6028                         "OpGroupDecorate %group0      %v_struct2\n"
6029                         "OpGroupDecorate %group1      %v_struct2\n"
6030                         "OpGroupDecorate %group3      %v_struct2\n"
6031                 },
6032                 {
6033                         "same_decoration_group_multiple_times",
6034                         "OpGroupDecorate %group1      %addvalues\n"
6035                         "OpGroupDecorate %group1      %addvalues\n"
6036                         "OpGroupDecorate %group1      %addvalues\n"
6037                 },
6038
6039         };
6040
6041         getHalfColorsFullAlpha(inputColors);
6042         getHalfColorsFullAlpha(outputColors);
6043
6044         for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
6045         {
6046                 fragments["decoration"] = decorations + tests[idx].decoration;
6047                 fragments["pre_main"]   = typesAndConstants;
6048                 fragments["testfun"]    = function;
6049
6050                 createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
6051         }
6052
6053         return group.release();
6054 }
6055
6056 struct SpecConstantTwoIntGraphicsCase
6057 {
6058         const char*             caseName;
6059         const char*             scDefinition0;
6060         const char*             scDefinition1;
6061         const char*             scResultType;
6062         const char*             scOperation;
6063         deInt32                 scActualValue0;
6064         deInt32                 scActualValue1;
6065         const char*             resultOperation;
6066         RGBA                    expectedColors[4];
6067
6068                                         SpecConstantTwoIntGraphicsCase (const char* name,
6069                                                                                         const char* definition0,
6070                                                                                         const char* definition1,
6071                                                                                         const char* resultType,
6072                                                                                         const char* operation,
6073                                                                                         deInt32         value0,
6074                                                                                         deInt32         value1,
6075                                                                                         const char* resultOp,
6076                                                                                         const RGBA      (&output)[4])
6077                                                 : caseName                      (name)
6078                                                 , scDefinition0         (definition0)
6079                                                 , scDefinition1         (definition1)
6080                                                 , scResultType          (resultType)
6081                                                 , scOperation           (operation)
6082                                                 , scActualValue0        (value0)
6083                                                 , scActualValue1        (value1)
6084                                                 , resultOperation       (resultOp)
6085         {
6086                 expectedColors[0] = output[0];
6087                 expectedColors[1] = output[1];
6088                 expectedColors[2] = output[2];
6089                 expectedColors[3] = output[3];
6090         }
6091 };
6092
6093 tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
6094 {
6095         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
6096         vector<SpecConstantTwoIntGraphicsCase>  cases;
6097         RGBA                                                    inputColors[4];
6098         RGBA                                                    outputColors0[4];
6099         RGBA                                                    outputColors1[4];
6100         RGBA                                                    outputColors2[4];
6101
6102         const char      decorations1[]                  =
6103                 "OpDecorate %sc_0  SpecId 0\n"
6104                 "OpDecorate %sc_1  SpecId 1\n";
6105
6106         const char      typesAndConstants1[]    =
6107                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
6108                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
6109                 "%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
6110
6111         const char      function1[]                             =
6112                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6113                 "%param     = OpFunctionParameter %v4f32\n"
6114                 "%label     = OpLabel\n"
6115                 "%result    = OpVariable %fp_v4f32 Function\n"
6116                 "             OpStore %result %param\n"
6117                 "%gen       = ${GEN_RESULT}\n"
6118                 "%index     = OpIAdd %i32 %gen %c_i32_1\n"
6119                 "%loc       = OpAccessChain %fp_f32 %result %index\n"
6120                 "%val       = OpLoad %f32 %loc\n"
6121                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6122                 "             OpStore %loc %add\n"
6123                 "%ret       = OpLoad %v4f32 %result\n"
6124                 "             OpReturnValue %ret\n"
6125                 "             OpFunctionEnd\n";
6126
6127         inputColors[0] = RGBA(127, 127, 127, 255);
6128         inputColors[1] = RGBA(127, 0,   0,   255);
6129         inputColors[2] = RGBA(0,   127, 0,   255);
6130         inputColors[3] = RGBA(0,   0,   127, 255);
6131
6132         // Derived from inputColors[x] by adding 128 to inputColors[x][0].
6133         outputColors0[0] = RGBA(255, 127, 127, 255);
6134         outputColors0[1] = RGBA(255, 0,   0,   255);
6135         outputColors0[2] = RGBA(128, 127, 0,   255);
6136         outputColors0[3] = RGBA(128, 0,   127, 255);
6137
6138         // Derived from inputColors[x] by adding 128 to inputColors[x][1].
6139         outputColors1[0] = RGBA(127, 255, 127, 255);
6140         outputColors1[1] = RGBA(127, 128, 0,   255);
6141         outputColors1[2] = RGBA(0,   255, 0,   255);
6142         outputColors1[3] = RGBA(0,   128, 127, 255);
6143
6144         // Derived from inputColors[x] by adding 128 to inputColors[x][2].
6145         outputColors2[0] = RGBA(127, 127, 255, 255);
6146         outputColors2[1] = RGBA(127, 0,   128, 255);
6147         outputColors2[2] = RGBA(0,   127, 128, 255);
6148         outputColors2[3] = RGBA(0,   0,   255, 255);
6149
6150         const char addZeroToSc[]                = "OpIAdd %i32 %c_i32_0 %sc_op";
6151         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
6152         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
6153
6154         cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                             19,             -20,    addZeroToSc,            outputColors0));
6155         cases.push_back(SpecConstantTwoIntGraphicsCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                             19,             20,             addZeroToSc,            outputColors0));
6156         cases.push_back(SpecConstantTwoIntGraphicsCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                             -1,             -1,             addZeroToSc,            outputColors2));
6157         cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                             -126,   126,    addZeroToSc,            outputColors0));
6158         cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                             126,    126,    addZeroToSc,            outputColors2));
6159         cases.push_back(SpecConstantTwoIntGraphicsCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6160         cases.push_back(SpecConstantTwoIntGraphicsCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
6161         cases.push_back(SpecConstantTwoIntGraphicsCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                             1001,   500,    addZeroToSc,            outputColors2));
6162         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                             0x33,   0x0d,   addZeroToSc,            outputColors2));
6163         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                             0,              1,              addZeroToSc,            outputColors2));
6164         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                             0x2e,   0x2f,   addZeroToSc,            outputColors2));
6165         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                             2,              1,              addZeroToSc,            outputColors2));
6166         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                             -4,             2,              addZeroToSc,            outputColors0));
6167         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                             1,              0,              addZeroToSc,            outputColors2));
6168         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                             -20,    -10,    selectTrueUsingSc,      outputColors2));
6169         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                             10,             20,             selectTrueUsingSc,      outputColors2));
6170         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6171         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                             10,             5,              selectTrueUsingSc,      outputColors2));
6172         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                             -10,    -10,    selectTrueUsingSc,      outputColors2));
6173         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                             50,             100,    selectTrueUsingSc,      outputColors2));
6174         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
6175         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                             10,             10,             selectTrueUsingSc,      outputColors2));
6176         cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                             42,             24,             selectFalseUsingSc,     outputColors2));
6177         cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6178         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6179         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
6180         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
6181         cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                                   -1,             0,              addZeroToSc,            outputColors2));
6182         cases.push_back(SpecConstantTwoIntGraphicsCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                                   -2,             0,              addZeroToSc,            outputColors2));
6183         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                                   1,              0,              selectFalseUsingSc,     outputColors2));
6184         cases.push_back(SpecConstantTwoIntGraphicsCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %c_i32_0",    1,              1,              addZeroToSc,            outputColors2));
6185         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
6186         // \todo[2015-12-1 antiagainst] OpQuantizeToF16
6187
6188         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
6189         {
6190                 map<string, string>     specializations;
6191                 map<string, string>     fragments;
6192                 vector<deInt32>         specConstants;
6193
6194                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
6195                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
6196                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
6197                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
6198                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
6199
6200                 fragments["decoration"]                         = tcu::StringTemplate(decorations1).specialize(specializations);
6201                 fragments["pre_main"]                           = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
6202                 fragments["testfun"]                            = tcu::StringTemplate(function1).specialize(specializations);
6203
6204                 specConstants.push_back(cases[caseNdx].scActualValue0);
6205                 specConstants.push_back(cases[caseNdx].scActualValue1);
6206
6207                 createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
6208         }
6209
6210         const char      decorations2[]                  =
6211                 "OpDecorate %sc_0  SpecId 0\n"
6212                 "OpDecorate %sc_1  SpecId 1\n"
6213                 "OpDecorate %sc_2  SpecId 2\n";
6214
6215         const char      typesAndConstants2[]    =
6216                 "%v3i32     = OpTypeVector %i32 3\n"
6217
6218                 "%sc_0      = OpSpecConstant %i32 0\n"
6219                 "%sc_1      = OpSpecConstant %i32 0\n"
6220                 "%sc_2      = OpSpecConstant %i32 0\n"
6221
6222                 "%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
6223                 "%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
6224                 "%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
6225                 "%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
6226                 "%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
6227                 "%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
6228                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
6229                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
6230                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
6231                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
6232                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
6233
6234         const char      function2[]                             =
6235                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6236                 "%param     = OpFunctionParameter %v4f32\n"
6237                 "%label     = OpLabel\n"
6238                 "%result    = OpVariable %fp_v4f32 Function\n"
6239                 "             OpStore %result %param\n"
6240                 "%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6241                 "%val       = OpLoad %f32 %loc\n"
6242                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6243                 "             OpStore %loc %add\n"
6244                 "%ret       = OpLoad %v4f32 %result\n"
6245                 "             OpReturnValue %ret\n"
6246                 "             OpFunctionEnd\n";
6247
6248         map<string, string>     fragments;
6249         vector<deInt32>         specConstants;
6250
6251         fragments["decoration"] = decorations2;
6252         fragments["pre_main"]   = typesAndConstants2;
6253         fragments["testfun"]    = function2;
6254
6255         specConstants.push_back(56789);
6256         specConstants.push_back(-2);
6257         specConstants.push_back(56788);
6258
6259         createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6260
6261         return group.release();
6262 }
6263
6264 tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6265 {
6266         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6267         RGBA                                                    inputColors[4];
6268         RGBA                                                    outputColors1[4];
6269         RGBA                                                    outputColors2[4];
6270         RGBA                                                    outputColors3[4];
6271         map<string, string>                             fragments1;
6272         map<string, string>                             fragments2;
6273         map<string, string>                             fragments3;
6274
6275         const char      typesAndConstants1[]    =
6276                 "%c_f32_p2  = OpConstant %f32 0.2\n"
6277                 "%c_f32_p4  = OpConstant %f32 0.4\n"
6278                 "%c_f32_p6  = OpConstant %f32 0.6\n"
6279                 "%c_f32_p8  = OpConstant %f32 0.8\n";
6280
6281         // vec4 test_code(vec4 param) {
6282         //   vec4 result = param;
6283         //   for (int i = 0; i < 4; ++i) {
6284         //     float operand;
6285         //     switch (i) {
6286         //       case 0: operand = .2; break;
6287         //       case 1: operand = .6; break;
6288         //       case 2: operand = .4; break;
6289         //       case 3: operand = .0; break;
6290         //       default: break; // unreachable
6291         //     }
6292         //     result[i] += operand;
6293         //   }
6294         //   return result;
6295         // }
6296         const char      function1[]                             =
6297                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6298                 "%param1    = OpFunctionParameter %v4f32\n"
6299                 "%lbl       = OpLabel\n"
6300                 "%iptr      = OpVariable %fp_i32 Function\n"
6301                 "             OpStore %iptr %c_i32_0\n"
6302                 "%result    = OpVariable %fp_v4f32 Function\n"
6303                 "             OpStore %result %param1\n"
6304                 "             OpBranch %loop\n"
6305
6306                 "%loop      = OpLabel\n"
6307                 "%ival      = OpLoad %i32 %iptr\n"
6308                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6309                 "             OpLoopMerge %exit %loop None\n"
6310                 "             OpBranchConditional %lt_4 %entry %exit\n"
6311
6312                 "%entry     = OpLabel\n"
6313                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
6314                 "%val       = OpLoad %f32 %loc\n"
6315                 "             OpSelectionMerge %phi None\n"
6316                 "             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6317
6318                 "%case0     = OpLabel\n"
6319                 "             OpBranch %phi\n"
6320                 "%case1     = OpLabel\n"
6321                 "             OpBranch %phi\n"
6322                 "%case2     = OpLabel\n"
6323                 "             OpBranch %phi\n"
6324                 "%case3     = OpLabel\n"
6325                 "             OpBranch %phi\n"
6326
6327                 "%default   = OpLabel\n"
6328                 "             OpUnreachable\n"
6329
6330                 "%phi       = OpLabel\n"
6331                 "%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p6 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6332                 "%add       = OpFAdd %f32 %val %operand\n"
6333                 "             OpStore %loc %add\n"
6334                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6335                 "             OpStore %iptr %ival_next\n"
6336                 "             OpBranch %loop\n"
6337
6338                 "%exit      = OpLabel\n"
6339                 "%ret       = OpLoad %v4f32 %result\n"
6340                 "             OpReturnValue %ret\n"
6341
6342                 "             OpFunctionEnd\n";
6343
6344         fragments1["pre_main"]  = typesAndConstants1;
6345         fragments1["testfun"]   = function1;
6346
6347         getHalfColorsFullAlpha(inputColors);
6348
6349         outputColors1[0]                = RGBA(178, 180, 229, 255);
6350         outputColors1[1]                = RGBA(178, 153, 102, 255);
6351         outputColors1[2]                = RGBA(51,  180, 102, 255);
6352         outputColors1[3]                = RGBA(51,  153, 229, 255);
6353
6354         createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6355
6356         const char      typesAndConstants2[]    =
6357                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6358
6359         // Add .4 to the second element of the given parameter.
6360         const char      function2[]                             =
6361                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6362                 "%param     = OpFunctionParameter %v4f32\n"
6363                 "%entry     = OpLabel\n"
6364                 "%result    = OpVariable %fp_v4f32 Function\n"
6365                 "             OpStore %result %param\n"
6366                 "%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6367                 "%val       = OpLoad %f32 %loc\n"
6368                 "             OpBranch %phi\n"
6369
6370                 "%phi        = OpLabel\n"
6371                 "%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6372                 "%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6373                 "%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6374                 "%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6375                 "%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6376                 "              OpLoopMerge %exit %phi None\n"
6377                 "              OpBranchConditional %still_loop %phi %exit\n"
6378
6379                 "%exit       = OpLabel\n"
6380                 "              OpStore %loc %accum\n"
6381                 "%ret        = OpLoad %v4f32 %result\n"
6382                 "              OpReturnValue %ret\n"
6383
6384                 "              OpFunctionEnd\n";
6385
6386         fragments2["pre_main"]  = typesAndConstants2;
6387         fragments2["testfun"]   = function2;
6388
6389         outputColors2[0]                        = RGBA(127, 229, 127, 255);
6390         outputColors2[1]                        = RGBA(127, 102, 0,   255);
6391         outputColors2[2]                        = RGBA(0,   229, 0,   255);
6392         outputColors2[3]                        = RGBA(0,   102, 127, 255);
6393
6394         createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6395
6396         const char      typesAndConstants3[]    =
6397                 "%true      = OpConstantTrue %bool\n"
6398                 "%false     = OpConstantFalse %bool\n"
6399                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6400
6401         // Swap the second and the third element of the given parameter.
6402         const char      function3[]                             =
6403                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6404                 "%param     = OpFunctionParameter %v4f32\n"
6405                 "%entry     = OpLabel\n"
6406                 "%result    = OpVariable %fp_v4f32 Function\n"
6407                 "             OpStore %result %param\n"
6408                 "%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6409                 "%a_init    = OpLoad %f32 %a_loc\n"
6410                 "%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6411                 "%b_init    = OpLoad %f32 %b_loc\n"
6412                 "             OpBranch %phi\n"
6413
6414                 "%phi        = OpLabel\n"
6415                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6416                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6417                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6418                 "              OpLoopMerge %exit %phi None\n"
6419                 "              OpBranchConditional %still_loop %phi %exit\n"
6420
6421                 "%exit       = OpLabel\n"
6422                 "              OpStore %a_loc %a_next\n"
6423                 "              OpStore %b_loc %b_next\n"
6424                 "%ret        = OpLoad %v4f32 %result\n"
6425                 "              OpReturnValue %ret\n"
6426
6427                 "              OpFunctionEnd\n";
6428
6429         fragments3["pre_main"]  = typesAndConstants3;
6430         fragments3["testfun"]   = function3;
6431
6432         outputColors3[0]                        = RGBA(127, 127, 127, 255);
6433         outputColors3[1]                        = RGBA(127, 0,   0,   255);
6434         outputColors3[2]                        = RGBA(0,   0,   127, 255);
6435         outputColors3[3]                        = RGBA(0,   127, 0,   255);
6436
6437         createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6438
6439         return group.release();
6440 }
6441
6442 tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6443 {
6444         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6445         RGBA                                                    inputColors[4];
6446         RGBA                                                    outputColors[4];
6447
6448         // With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6449         // For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6450         // only have 23-bit fraction.) So it will be rounded to 1. Then the final result is 0. On the contrary, the result will
6451         // be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6452         const char                                              constantsAndTypes[]      =
6453                 "%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6454                 "%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6455                 "%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6456                 "%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6457                 ;
6458
6459         const char                                              function[]       =
6460                 "%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6461                 "%param          = OpFunctionParameter %v4f32\n"
6462                 "%label          = OpLabel\n"
6463                 "%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6464                 "%var2           = OpVariable %fp_f32 Function\n"
6465                 "%red            = OpCompositeExtract %f32 %param 0\n"
6466                 "%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6467                 "                  OpStore %var2 %plus_red\n"
6468                 "%val1           = OpLoad %f32 %var1\n"
6469                 "%val2           = OpLoad %f32 %var2\n"
6470                 "%mul            = OpFMul %f32 %val1 %val2\n"
6471                 "%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6472                 "%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6473                 "%ret            = OpSelect %v4f32 %is0 %c_vec4_0 %c_vec4_1\n"
6474                 "                  OpReturnValue %ret\n"
6475                 "                  OpFunctionEnd\n";
6476
6477         struct CaseNameDecoration
6478         {
6479                 string name;
6480                 string decoration;
6481         };
6482
6483
6484         CaseNameDecoration tests[] = {
6485                 {"multiplication",      "OpDecorate %mul NoContraction"},
6486                 {"addition",            "OpDecorate %add NoContraction"},
6487                 {"both",                        "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6488         };
6489
6490         getHalfColorsFullAlpha(inputColors);
6491
6492         for (deUint8 idx = 0; idx < 4; ++idx)
6493         {
6494                 inputColors[idx].setRed(0);
6495                 outputColors[idx] = RGBA(0, 0, 0, 255);
6496         }
6497
6498         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6499         {
6500                 map<string, string> fragments;
6501
6502                 fragments["decoration"] = tests[testNdx].decoration;
6503                 fragments["pre_main"] = constantsAndTypes;
6504                 fragments["testfun"] = function;
6505
6506                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6507         }
6508
6509         return group.release();
6510 }
6511
6512 tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6513 {
6514         de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6515         RGBA                                                    colors[4];
6516
6517         const char                                              constantsAndTypes[]      =
6518                 "%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6519                 "%fp_a2f32          = OpTypePointer Function %a2f32\n"
6520                 "%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6521                 "%fp_stype          = OpTypePointer Function %stype\n";
6522
6523         const char                                              function[]       =
6524                 "%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6525                 "%param1            = OpFunctionParameter %v4f32\n"
6526                 "%lbl               = OpLabel\n"
6527                 "%v1                = OpVariable %fp_v4f32 Function\n"
6528                 "                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6529                 "%v2                = OpVariable %fp_a2f32 Function\n"
6530                 "                     OpStore %v2 %c_a2f32_1\n"
6531                 "%v3                = OpVariable %fp_f32 Function\n"
6532                 "                     OpStore %v3 %c_f32_1\n"
6533
6534                 "%v                 = OpVariable %fp_stype Function\n"
6535                 "%vv                = OpVariable %fp_stype Function\n"
6536                 "%vvv               = OpVariable %fp_f32 Function\n"
6537
6538                 "%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6539                 "%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6540                 "%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6541                 "%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6542                 "%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6543                 "%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6544
6545                 "                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6546                 "                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6547                 "                    OpStore %p_f32 %v3_v ${access_type}\n"
6548
6549                 "                    OpCopyMemory %vv %v ${access_type}\n"
6550                 "                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6551
6552                 "%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6553                 "%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6554                 "%v_f32_3          = OpLoad %f32 %vvv\n"
6555
6556                 "%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6557                 "%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6558                 "                    OpReturnValue %ret2\n"
6559                 "                    OpFunctionEnd\n";
6560
6561         struct NameMemoryAccess
6562         {
6563                 string name;
6564                 string accessType;
6565         };
6566
6567
6568         NameMemoryAccess tests[] =
6569         {
6570                 { "none", "" },
6571                 { "volatile", "Volatile" },
6572                 { "aligned",  "Aligned 1" },
6573                 { "volatile_aligned",  "Volatile|Aligned 1" },
6574                 { "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6575                 { "volatile_nontemporal",  "Volatile|Nontemporal" },
6576                 { "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6577         };
6578
6579         getHalfColorsFullAlpha(colors);
6580
6581         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6582         {
6583                 map<string, string> fragments;
6584                 map<string, string> memoryAccess;
6585                 memoryAccess["access_type"] = tests[testNdx].accessType;
6586
6587                 fragments["pre_main"] = constantsAndTypes;
6588                 fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6589                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6590         }
6591         return memoryAccessTests.release();
6592 }
6593 tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6594 {
6595         de::MovePtr<tcu::TestCaseGroup>         opUndefTests             (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6596         RGBA                                                            defaultColors[4];
6597         map<string, string>                                     fragments;
6598         getDefaultColors(defaultColors);
6599
6600         // First, simple cases that don't do anything with the OpUndef result.
6601         fragments["testfun"] =
6602                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6603                 "%param1 = OpFunctionParameter %v4f32\n"
6604                 "%label_testfun = OpLabel\n"
6605                 "%undef = OpUndef %type\n"
6606                 "OpReturnValue %param1\n"
6607                 "OpFunctionEnd\n"
6608                 ;
6609         struct NameCodePair { string name, code; };
6610         const NameCodePair tests[] =
6611         {
6612                 {"bool", "%type = OpTypeBool"},
6613                 {"vec2uint32", "%type = OpTypeVector %u32 2"},
6614                 {"image", "%type = OpTypeImage %f32 2D 0 0 0 0 Unknown"},
6615                 {"sampler", "%type = OpTypeSampler"},
6616                 {"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 0 Unknown\n" "%type = OpTypeSampledImage %img"},
6617                 {"pointer", "%type = OpTypePointer Function %i32"},
6618                 {"runtimearray", "%type = OpTypeRuntimeArray %f32"},
6619                 {"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100"},
6620                 {"struct", "%type = OpTypeStruct %f32 %i32 %u32"}};
6621         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6622         {
6623                 fragments["pre_main"] = tests[testNdx].code;
6624                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6625         }
6626         fragments.clear();
6627
6628         fragments["testfun"] =
6629                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6630                 "%param1 = OpFunctionParameter %v4f32\n"
6631                 "%label_testfun = OpLabel\n"
6632                 "%undef = OpUndef %f32\n"
6633                 "%zero = OpFMul %f32 %undef %c_f32_0\n"
6634                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6635                 "%b = OpFAdd %f32 %a %zero\n"
6636                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6637                 "OpReturnValue %ret\n"
6638                 "OpFunctionEnd\n"
6639                 ;
6640         createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6641
6642         fragments["testfun"] =
6643                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6644                 "%param1 = OpFunctionParameter %v4f32\n"
6645                 "%label_testfun = OpLabel\n"
6646                 "%undef = OpUndef %i32\n"
6647                 "%zero = OpIMul %i32 %undef %c_i32_0\n"
6648                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6649                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6650                 "OpReturnValue %ret\n"
6651                 "OpFunctionEnd\n"
6652                 ;
6653         createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6654
6655         fragments["testfun"] =
6656                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6657                 "%param1 = OpFunctionParameter %v4f32\n"
6658                 "%label_testfun = OpLabel\n"
6659                 "%undef = OpUndef %u32\n"
6660                 "%zero = OpIMul %u32 %undef %c_i32_0\n"
6661                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6662                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6663                 "OpReturnValue %ret\n"
6664                 "OpFunctionEnd\n"
6665                 ;
6666         createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6667
6668         fragments["testfun"] =
6669                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6670                 "%param1 = OpFunctionParameter %v4f32\n"
6671                 "%label_testfun = OpLabel\n"
6672                 "%undef = OpUndef %v4f32\n"
6673                 "%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6674                 "%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6675                 "%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6676                 "%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6677                 "%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6678                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6679                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6680                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6681                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6682                 "%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6683                 "%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6684                 "%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6685                 "%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6686                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6687                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6688                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6689                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6690                 "OpReturnValue %ret\n"
6691                 "OpFunctionEnd\n"
6692                 ;
6693         createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6694
6695         fragments["pre_main"] =
6696                 "%v2f32 = OpTypeVector %f32 2\n"
6697                 "%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6698         fragments["testfun"] =
6699                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6700                 "%param1 = OpFunctionParameter %v4f32\n"
6701                 "%label_testfun = OpLabel\n"
6702                 "%undef = OpUndef %m2x2f32\n"
6703                 "%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6704                 "%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6705                 "%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6706                 "%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6707                 "%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6708                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6709                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6710                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6711                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6712                 "%sum_0 = OpFAdd %f32 %param1_0 %zero_0\n"
6713                 "%sum_1 = OpFAdd %f32 %param1_1 %zero_1\n"
6714                 "%sum_2 = OpFAdd %f32 %param1_2 %zero_2\n"
6715                 "%sum_3 = OpFAdd %f32 %param1_3 %zero_3\n"
6716                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6717                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6718                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6719                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6720                 "OpReturnValue %ret\n"
6721                 "OpFunctionEnd\n"
6722                 ;
6723         createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6724
6725         return opUndefTests.release();
6726 }
6727
6728 void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6729 {
6730         const RGBA              inputColors[4]          =
6731         {
6732                 RGBA(0,         0,              0,              255),
6733                 RGBA(0,         0,              255,    255),
6734                 RGBA(0,         255,    0,              255),
6735                 RGBA(0,         255,    255,    255)
6736         };
6737
6738         const RGBA              expectedColors[4]       =
6739         {
6740                 RGBA(255,        0,              0,              255),
6741                 RGBA(255,        0,              0,              255),
6742                 RGBA(255,        0,              0,              255),
6743                 RGBA(255,        0,              0,              255)
6744         };
6745
6746         const struct SingleFP16Possibility
6747         {
6748                 const char* name;
6749                 const char* constant;  // Value to assign to %test_constant.
6750                 float           valueAsFloat;
6751                 const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6752         }                               tests[]                         =
6753         {
6754                 {
6755                         "negative",
6756                         "-0x1.3p1\n",
6757                         -constructNormalizedFloat(1, 0x300000),
6758                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6759                 }, // -19
6760                 {
6761                         "positive",
6762                         "0x1.0p7\n",
6763                         constructNormalizedFloat(7, 0x000000),
6764                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6765                 },  // +128
6766                 // SPIR-V requires that OpQuantizeToF16 flushes
6767                 // any numbers that would end up denormalized in F16 to zero.
6768                 {
6769                         "denorm",
6770                         "0x0.0006p-126\n",
6771                         std::ldexp(1.5f, -140),
6772                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6773                 },  // denorm
6774                 {
6775                         "negative_denorm",
6776                         "-0x0.0006p-126\n",
6777                         -std::ldexp(1.5f, -140),
6778                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6779                 }, // -denorm
6780                 {
6781                         "too_small",
6782                         "0x1.0p-16\n",
6783                         std::ldexp(1.0f, -16),
6784                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6785                 },     // too small positive
6786                 {
6787                         "negative_too_small",
6788                         "-0x1.0p-32\n",
6789                         -std::ldexp(1.0f, -32),
6790                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6791                 },      // too small negative
6792                 {
6793                         "negative_inf",
6794                         "-0x1.0p128\n",
6795                         -std::ldexp(1.0f, 128),
6796
6797                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6798                         "%inf = OpIsInf %bool %c\n"
6799                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6800                 },     // -inf to -inf
6801                 {
6802                         "inf",
6803                         "0x1.0p128\n",
6804                         std::ldexp(1.0f, 128),
6805
6806                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6807                         "%inf = OpIsInf %bool %c\n"
6808                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6809                 },     // +inf to +inf
6810                 {
6811                         "round_to_negative_inf",
6812                         "-0x1.0p32\n",
6813                         -std::ldexp(1.0f, 32),
6814
6815                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6816                         "%inf = OpIsInf %bool %c\n"
6817                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6818                 },     // round to -inf
6819                 {
6820                         "round_to_inf",
6821                         "0x1.0p16\n",
6822                         std::ldexp(1.0f, 16),
6823
6824                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6825                         "%inf = OpIsInf %bool %c\n"
6826                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6827                 },     // round to +inf
6828                 {
6829                         "nan",
6830                         "0x1.1p128\n",
6831                         std::numeric_limits<float>::quiet_NaN(),
6832
6833                         // Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6834                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6835                         "%nan = OpIsNan %bool %direct_quant\n"
6836                         "%as_int = OpBitcast %i32 %direct_quant\n"
6837                         "%positive = OpSGreaterThan %bool %as_int %c_i32_0\n"
6838                         "%cond = OpLogicalAnd %bool %nan %positive\n"
6839                 }, // nan
6840                 {
6841                         "negative_nan",
6842                         "-0x1.0001p128\n",
6843                         std::numeric_limits<float>::quiet_NaN(),
6844
6845                         // Can't use %c, because NaN+0 isn't necessarily a NaN (Vulkan spec A.4).
6846                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6847                         "%nan = OpIsNan %bool %direct_quant\n"
6848                         "%as_int = OpBitcast %i32 %direct_quant\n"
6849                         "%negative = OpSLessThan %bool %as_int %c_i32_0\n"
6850                         "%cond = OpLogicalAnd %bool %nan %negative\n"
6851                 } // -nan
6852         };
6853         const char*             constants                       =
6854                 "%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6855
6856         StringTemplate  function                        (
6857                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6858                 "%param1        = OpFunctionParameter %v4f32\n"
6859                 "%label_testfun = OpLabel\n"
6860                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6861                 "%b             = OpFAdd %f32 %test_constant %a\n"
6862                 "%c             = OpQuantizeToF16 %f32 %b\n"
6863                 "${condition}\n"
6864                 "%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6865                 "                 OpReturnValue %retval\n"
6866                 "OpFunctionEnd\n"
6867         );
6868
6869         const char*             specDecorations         = "OpDecorate %test_constant SpecId 0\n";
6870         const char*             specConstants           =
6871                         "%test_constant = OpSpecConstant %f32 0.\n"
6872                         "%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6873
6874         StringTemplate  specConstantFunction(
6875                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6876                 "%param1        = OpFunctionParameter %v4f32\n"
6877                 "%label_testfun = OpLabel\n"
6878                 "${condition}\n"
6879                 "%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6880                 "                 OpReturnValue %retval\n"
6881                 "OpFunctionEnd\n"
6882         );
6883
6884         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6885         {
6886                 map<string, string>                                                             codeSpecialization;
6887                 map<string, string>                                                             fragments;
6888                 codeSpecialization["condition"]                                 = tests[idx].condition;
6889                 fragments["testfun"]                                                    = function.specialize(codeSpecialization);
6890                 fragments["pre_main"]                                                   = string(constants) + tests[idx].constant + "\n";
6891                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6892         }
6893
6894         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6895         {
6896                 map<string, string>                                                             codeSpecialization;
6897                 map<string, string>                                                             fragments;
6898                 vector<deInt32>                                                                 passConstants;
6899                 deInt32                                                                                 specConstant;
6900
6901                 codeSpecialization["condition"]                                 = tests[idx].condition;
6902                 fragments["testfun"]                                                    = specConstantFunction.specialize(codeSpecialization);
6903                 fragments["decoration"]                                                 = specDecorations;
6904                 fragments["pre_main"]                                                   = specConstants;
6905
6906                 memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6907                 passConstants.push_back(specConstant);
6908
6909                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6910         }
6911 }
6912
6913 void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6914 {
6915         RGBA inputColors[4] =  {
6916                 RGBA(0,         0,              0,              255),
6917                 RGBA(0,         0,              255,    255),
6918                 RGBA(0,         255,    0,              255),
6919                 RGBA(0,         255,    255,    255)
6920         };
6921
6922         RGBA expectedColors[4] =
6923         {
6924                 RGBA(255,        0,              0,              255),
6925                 RGBA(255,        0,              0,              255),
6926                 RGBA(255,        0,              0,              255),
6927                 RGBA(255,        0,              0,              255)
6928         };
6929
6930         struct DualFP16Possibility
6931         {
6932                 const char* name;
6933                 const char* input;
6934                 float           inputAsFloat;
6935                 const char* possibleOutput1;
6936                 const char* possibleOutput2;
6937         } tests[] = {
6938                 {
6939                         "positive_round_up_or_round_down",
6940                         "0x1.3003p8",
6941                         constructNormalizedFloat(8, 0x300300),
6942                         "0x1.304p8",
6943                         "0x1.3p8"
6944                 },
6945                 {
6946                         "negative_round_up_or_round_down",
6947                         "-0x1.6008p-7",
6948                         -constructNormalizedFloat(8, 0x600800),
6949                         "-0x1.6p-7",
6950                         "-0x1.604p-7"
6951                 },
6952                 {
6953                         "carry_bit",
6954                         "0x1.01ep2",
6955                         constructNormalizedFloat(8, 0x01e000),
6956                         "0x1.01cp2",
6957                         "0x1.02p2"
6958                 },
6959                 {
6960                         "carry_to_exponent",
6961                         "0x1.feep1",
6962                         constructNormalizedFloat(8, 0xfee000),
6963                         "0x1.ffcp1",
6964                         "0x1.0p2"
6965                 },
6966         };
6967         StringTemplate constants (
6968                 "%input_const = OpConstant %f32 ${input}\n"
6969                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
6970                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
6971                 );
6972
6973         StringTemplate specConstants (
6974                 "%input_const = OpSpecConstant %f32 0.\n"
6975                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
6976                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
6977         );
6978
6979         const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6980
6981         const char* function  =
6982                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6983                 "%param1        = OpFunctionParameter %v4f32\n"
6984                 "%label_testfun = OpLabel\n"
6985                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6986                 // For the purposes of this test we assume that 0.f will always get
6987                 // faithfully passed through the pipeline stages.
6988                 "%b             = OpFAdd %f32 %input_const %a\n"
6989                 "%c             = OpQuantizeToF16 %f32 %b\n"
6990                 "%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
6991                 "%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
6992                 "%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
6993                 "%retval        = OpSelect %v4f32 %cond %c_v4f32_1_0_0_1 %param1"
6994                 "                 OpReturnValue %retval\n"
6995                 "OpFunctionEnd\n";
6996
6997         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
6998                 map<string, string>                                                                     fragments;
6999                 map<string, string>                                                                     constantSpecialization;
7000
7001                 constantSpecialization["input"]                                         = tests[idx].input;
7002                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7003                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7004                 fragments["testfun"]                                                            = function;
7005                 fragments["pre_main"]                                                           = constants.specialize(constantSpecialization);
7006                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
7007         }
7008
7009         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
7010                 map<string, string>                                                                     fragments;
7011                 map<string, string>                                                                     constantSpecialization;
7012                 vector<deInt32>                                                                         passConstants;
7013                 deInt32                                                                                         specConstant;
7014
7015                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
7016                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
7017                 fragments["testfun"]                                                            = function;
7018                 fragments["decoration"]                                                         = specDecorations;
7019                 fragments["pre_main"]                                                           = specConstants.specialize(constantSpecialization);
7020
7021                 memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
7022                 passConstants.push_back(specConstant);
7023
7024                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
7025         }
7026 }
7027
7028 tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
7029 {
7030         de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
7031         createOpQuantizeSingleOptionTests(opQuantizeTests.get());
7032         createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
7033         return opQuantizeTests.release();
7034 }
7035
7036 struct ShaderPermutation
7037 {
7038         deUint8 vertexPermutation;
7039         deUint8 geometryPermutation;
7040         deUint8 tesscPermutation;
7041         deUint8 tessePermutation;
7042         deUint8 fragmentPermutation;
7043 };
7044
7045 ShaderPermutation getShaderPermutation(deUint8 inputValue)
7046 {
7047         ShaderPermutation       permutation =
7048         {
7049                 static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
7050                 static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
7051                 static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
7052                 static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
7053                 static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
7054         };
7055         return permutation;
7056 }
7057
7058 tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
7059 {
7060         RGBA                                                            defaultColors[4];
7061         RGBA                                                            invertedColors[4];
7062         de::MovePtr<tcu::TestCaseGroup>         moduleTests                     (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
7063
7064         const ShaderElement                                     combinedPipeline[]      =
7065         {
7066                 ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
7067                 ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
7068                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7069                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7070                 ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
7071         };
7072
7073         getDefaultColors(defaultColors);
7074         getInvertedDefaultColors(invertedColors);
7075         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline, createInstanceContext(combinedPipeline, map<string, string>()));
7076
7077         const char* numbers[] =
7078         {
7079                 "1", "2"
7080         };
7081
7082         for (deInt8 idx = 0; idx < 32; ++idx)
7083         {
7084                 ShaderPermutation                       permutation             = getShaderPermutation(idx);
7085                 string                                          name                    = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
7086                 const ShaderElement                     pipeline[]              =
7087                 {
7088                         ShaderElement("vert",   string("vert") +        numbers[permutation.vertexPermutation],         VK_SHADER_STAGE_VERTEX_BIT),
7089                         ShaderElement("geom",   string("geom") +        numbers[permutation.geometryPermutation],       VK_SHADER_STAGE_GEOMETRY_BIT),
7090                         ShaderElement("tessc",  string("tessc") +       numbers[permutation.tesscPermutation],          VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7091                         ShaderElement("tesse",  string("tesse") +       numbers[permutation.tessePermutation],          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7092                         ShaderElement("frag",   string("frag") +        numbers[permutation.fragmentPermutation],       VK_SHADER_STAGE_FRAGMENT_BIT)
7093                 };
7094
7095                 // If there are an even number of swaps, then it should be no-op.
7096                 // If there are an odd number, the color should be flipped.
7097                 if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
7098                 {
7099                         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
7100                 }
7101                 else
7102                 {
7103                         addFunctionCaseWithPrograms<InstanceContext>(moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline, createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
7104                 }
7105         }
7106         return moduleTests.release();
7107 }
7108
7109 tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
7110 {
7111         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
7112         RGBA defaultColors[4];
7113         getDefaultColors(defaultColors);
7114         map<string, string> fragments;
7115         fragments["pre_main"] =
7116                 "%c_f32_5 = OpConstant %f32 5.\n";
7117
7118         // A loop with a single block. The Continue Target is the loop block
7119         // itself. In SPIR-V terms, the "loop construct" contains no blocks at all
7120         // -- the "continue construct" forms the entire loop.
7121         fragments["testfun"] =
7122                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7123                 "%param1 = OpFunctionParameter %v4f32\n"
7124
7125                 "%entry = OpLabel\n"
7126                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7127                 "OpBranch %loop\n"
7128
7129                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7130                 "%loop = OpLabel\n"
7131                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7132                 "%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
7133                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7134                 "%val = OpFAdd %f32 %val1 %delta\n"
7135                 "%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
7136                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7137                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7138                 "OpLoopMerge %exit %loop None\n"
7139                 "OpBranchConditional %again %loop %exit\n"
7140
7141                 "%exit = OpLabel\n"
7142                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7143                 "OpReturnValue %result\n"
7144
7145                 "OpFunctionEnd\n"
7146                 ;
7147         createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
7148
7149         // Body comprised of multiple basic blocks.
7150         const StringTemplate multiBlock(
7151                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7152                 "%param1 = OpFunctionParameter %v4f32\n"
7153
7154                 "%entry = OpLabel\n"
7155                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7156                 "OpBranch %loop\n"
7157
7158                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
7159                 "%loop = OpLabel\n"
7160                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
7161                 "%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
7162                 "%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
7163                 // There are several possibilities for the Continue Target below.  Each
7164                 // will be specialized into a separate test case.
7165                 "OpLoopMerge %exit ${continue_target} None\n"
7166                 "OpBranch %if\n"
7167
7168                 "%if = OpLabel\n"
7169                 ";delta_next = (delta > 0) ? -1 : 1;\n"
7170                 "%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
7171                 "OpSelectionMerge %gather DontFlatten\n"
7172                 "OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
7173
7174                 "%odd = OpLabel\n"
7175                 "OpBranch %gather\n"
7176
7177                 "%even = OpLabel\n"
7178                 "OpBranch %gather\n"
7179
7180                 "%gather = OpLabel\n"
7181                 "%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
7182                 "%val = OpFAdd %f32 %val1 %delta\n"
7183                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7184                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7185                 "OpBranchConditional %again %loop %exit\n"
7186
7187                 "%exit = OpLabel\n"
7188                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
7189                 "OpReturnValue %result\n"
7190
7191                 "OpFunctionEnd\n");
7192
7193         map<string, string> continue_target;
7194
7195         // The Continue Target is the loop block itself.
7196         continue_target["continue_target"] = "%loop";
7197         fragments["testfun"] = multiBlock.specialize(continue_target);
7198         createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7199
7200         // The Continue Target is at the end of the loop.
7201         continue_target["continue_target"] = "%gather";
7202         fragments["testfun"] = multiBlock.specialize(continue_target);
7203         createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7204
7205         // A loop with continue statement.
7206         fragments["testfun"] =
7207                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7208                 "%param1 = OpFunctionParameter %v4f32\n"
7209
7210                 "%entry = OpLabel\n"
7211                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7212                 "OpBranch %loop\n"
7213
7214                 ";adds 4, 3, and 1 to %val0 (skips 2)\n"
7215                 "%loop = OpLabel\n"
7216                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7217                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7218                 "OpLoopMerge %exit %continue None\n"
7219                 "OpBranch %if\n"
7220
7221                 "%if = OpLabel\n"
7222                 ";skip if %count==2\n"
7223                 "%eq2 = OpIEqual %bool %count %c_i32_2\n"
7224                 "OpSelectionMerge %continue DontFlatten\n"
7225                 "OpBranchConditional %eq2 %continue %body\n"
7226
7227                 "%body = OpLabel\n"
7228                 "%fcount = OpConvertSToF %f32 %count\n"
7229                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7230                 "OpBranch %continue\n"
7231
7232                 "%continue = OpLabel\n"
7233                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7234                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7235                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7236                 "OpBranchConditional %again %loop %exit\n"
7237
7238                 "%exit = OpLabel\n"
7239                 "%same = OpFSub %f32 %val %c_f32_8\n"
7240                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7241                 "OpReturnValue %result\n"
7242                 "OpFunctionEnd\n";
7243         createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7244
7245         // A loop with early exit.  May be specialized with either break or return.
7246         StringTemplate earlyExitLoop(
7247                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7248                 "%param1 = OpFunctionParameter %v4f32\n"
7249
7250                 "%entry = OpLabel\n"
7251                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7252                 "%dot = OpDot %f32 %param1 %param1\n"
7253                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7254                 "%zero = OpConvertFToU %u32 %div\n"
7255                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7256                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7257                 "OpBranch %loop\n"
7258
7259                 ";adds 4 and 3 to %val0 (exits early)\n"
7260                 "%loop = OpLabel\n"
7261                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7262                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7263                 "OpLoopMerge %exit %continue None\n"
7264                 "OpBranch %if\n"
7265
7266                 "%if = OpLabel\n"
7267                 ";end loop if %count==%two\n"
7268                 "%above2 = OpSGreaterThan %bool %count %two\n"
7269                 "OpSelectionMerge %continue DontFlatten\n"
7270                 // This can either branch to %exit or to another block with OpReturnValue %param1.
7271                 "OpBranchConditional %above2 %body ${branch_destination}\n"
7272
7273                 "%body = OpLabel\n"
7274                 "%fcount = OpConvertSToF %f32 %count\n"
7275                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7276                 "OpBranch %continue\n"
7277
7278                 "%continue = OpLabel\n"
7279                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7280                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7281                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7282                 "OpBranchConditional %again %loop %exit\n"
7283
7284                 "%exit = OpLabel\n"
7285                 "%same = OpFSub %f32 %val %c_f32_7\n"
7286                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7287                 "OpReturnValue %result\n"
7288                 "OpFunctionEnd\n");
7289
7290         map<string, string> branch_destination;
7291
7292         // A loop with break.
7293         branch_destination["branch_destination"] = "%exit";
7294         fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7295         createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7296
7297         // A loop with return.
7298         branch_destination["branch_destination"] = "%early_exit\n"
7299                 "%early_exit = OpLabel\n"
7300                 "OpReturnValue %param1\n";
7301         fragments["testfun"] = earlyExitLoop.specialize(branch_destination);
7302         createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7303
7304         return testGroup.release();
7305 }
7306
7307 // Adds a new test to group using custom fragments for the tessellation-control
7308 // stage and passthrough fragments for all other stages.  Uses default colors
7309 // for input and expected output.
7310 void addTessCtrlTest(tcu::TestCaseGroup* group, const char* name, const map<string, string>& fragments)
7311 {
7312         RGBA defaultColors[4];
7313         getDefaultColors(defaultColors);
7314         const ShaderElement pipelineStages[] =
7315         {
7316                 ShaderElement("vert", "main", VK_SHADER_STAGE_VERTEX_BIT),
7317                 ShaderElement("tessc", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
7318                 ShaderElement("tesse", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
7319                 ShaderElement("frag", "main", VK_SHADER_STAGE_FRAGMENT_BIT),
7320         };
7321
7322         addFunctionCaseWithPrograms<InstanceContext>(group, name, "", addShaderCodeCustomTessControl,
7323                                                                                                  runAndVerifyDefaultPipeline, createInstanceContext(
7324                                                                                                          pipelineStages, defaultColors, defaultColors, fragments, StageToSpecConstantMap()));
7325 }
7326
7327 // A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7328 tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7329 {
7330         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7331         map<string, string> fragments;
7332
7333         // A barrier inside a function body.
7334         fragments["pre_main"] =
7335                 "%Workgroup = OpConstant %i32 2\n"
7336                 "%SequentiallyConsistent = OpConstant %i32 0x10\n";
7337         fragments["testfun"] =
7338                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7339                 "%param1 = OpFunctionParameter %v4f32\n"
7340                 "%label_testfun = OpLabel\n"
7341                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7342                 "OpReturnValue %param1\n"
7343                 "OpFunctionEnd\n";
7344         addTessCtrlTest(testGroup.get(), "in_function", fragments);
7345
7346         // Common setup code for the following tests.
7347         fragments["pre_main"] =
7348                 "%Workgroup = OpConstant %i32 2\n"
7349                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7350                 "%c_f32_5 = OpConstant %f32 5.\n";
7351         const string setupPercentZero =  // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7352                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7353                 "%param1 = OpFunctionParameter %v4f32\n"
7354                 "%entry = OpLabel\n"
7355                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7356                 "%dot = OpDot %f32 %param1 %param1\n"
7357                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7358                 "%zero = OpConvertFToU %u32 %div\n";
7359
7360         // Barriers inside OpSwitch branches.
7361         fragments["testfun"] =
7362                 setupPercentZero +
7363                 "OpSelectionMerge %switch_exit None\n"
7364                 "OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7365
7366                 "%case1 = OpLabel\n"
7367                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7368                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7369                 "%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7370                 "OpBranch %switch_exit\n"
7371
7372                 "%switch_default = OpLabel\n"
7373                 "%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7374                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7375                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7376                 "OpBranch %switch_exit\n"
7377
7378                 "%case0 = OpLabel\n"
7379                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7380                 "OpBranch %switch_exit\n"
7381
7382                 "%switch_exit = OpLabel\n"
7383                 "%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7384                 "OpReturnValue %ret\n"
7385                 "OpFunctionEnd\n";
7386         addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7387
7388         // Barriers inside if-then-else.
7389         fragments["testfun"] =
7390                 setupPercentZero +
7391                 "%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7392                 "OpSelectionMerge %exit DontFlatten\n"
7393                 "OpBranchConditional %eq0 %then %else\n"
7394
7395                 "%else = OpLabel\n"
7396                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7397                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7398                 "%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7399                 "OpBranch %exit\n"
7400
7401                 "%then = OpLabel\n"
7402                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7403                 "OpBranch %exit\n"
7404
7405                 "%exit = OpLabel\n"
7406                 "%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7407                 "OpReturnValue %ret\n"
7408                 "OpFunctionEnd\n";
7409         addTessCtrlTest(testGroup.get(), "in_if", fragments);
7410
7411         // A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7412         // http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7413         fragments["testfun"] =
7414                 setupPercentZero +
7415                 "%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7416                 "%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7417                 "OpSelectionMerge %exit DontFlatten\n"
7418                 "OpBranchConditional %thread0 %then %else\n"
7419
7420                 "%else = OpLabel\n"
7421                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7422                 "OpBranch %exit\n"
7423
7424                 "%then = OpLabel\n"
7425                 "%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7426                 "OpBranch %exit\n"
7427
7428                 "%exit = OpLabel\n"
7429                 "%val = OpPhi %f32 %val0 %else %val1 %then\n"
7430                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7431                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7432                 "OpReturnValue %ret\n"
7433                 "OpFunctionEnd\n";
7434         addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7435
7436         // A barrier inside a loop.
7437         fragments["pre_main"] =
7438                 "%Workgroup = OpConstant %i32 2\n"
7439                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7440                 "%c_f32_10 = OpConstant %f32 10.\n";
7441         fragments["testfun"] =
7442                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7443                 "%param1 = OpFunctionParameter %v4f32\n"
7444                 "%entry = OpLabel\n"
7445                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7446                 "OpBranch %loop\n"
7447
7448                 ";adds 4, 3, 2, and 1 to %val0\n"
7449                 "%loop = OpLabel\n"
7450                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7451                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7452                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7453                 "%fcount = OpConvertSToF %f32 %count\n"
7454                 "%val = OpFAdd %f32 %val1 %fcount\n"
7455                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7456                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7457                 "OpLoopMerge %exit %loop None\n"
7458                 "OpBranchConditional %again %loop %exit\n"
7459
7460                 "%exit = OpLabel\n"
7461                 "%same = OpFSub %f32 %val %c_f32_10\n"
7462                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7463                 "OpReturnValue %ret\n"
7464                 "OpFunctionEnd\n";
7465         addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7466
7467         return testGroup.release();
7468 }
7469
7470 // Test for the OpFRem instruction.
7471 tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7472 {
7473         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7474         map<string, string>                                     fragments;
7475         RGBA                                                            inputColors[4];
7476         RGBA                                                            outputColors[4];
7477
7478         fragments["pre_main"]                            =
7479                 "%c_f32_3 = OpConstant %f32 3.0\n"
7480                 "%c_f32_n3 = OpConstant %f32 -3.0\n"
7481                 "%c_f32_4 = OpConstant %f32 4.0\n"
7482                 "%c_f32_p75 = OpConstant %f32 0.75\n"
7483                 "%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7484                 "%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7485                 "%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7486
7487         // The test does the following.
7488         // vec4 result = (param1 * 8.0) - 4.0;
7489         // return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7490         fragments["testfun"]                             =
7491                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7492                 "%param1 = OpFunctionParameter %v4f32\n"
7493                 "%label_testfun = OpLabel\n"
7494                 "%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7495                 "%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7496                 "%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7497                 "%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7498                 "%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7499                 "%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7500                 "OpReturnValue %xy_0_1\n"
7501                 "OpFunctionEnd\n";
7502
7503
7504         inputColors[0]          = RGBA(16,      16,             0, 255);
7505         inputColors[1]          = RGBA(232, 232,        0, 255);
7506         inputColors[2]          = RGBA(232, 16,         0, 255);
7507         inputColors[3]          = RGBA(16,      232,    0, 255);
7508
7509         outputColors[0]         = RGBA(64,      64,             0, 255);
7510         outputColors[1]         = RGBA(255, 255,        0, 255);
7511         outputColors[2]         = RGBA(255, 64,         0, 255);
7512         outputColors[3]         = RGBA(64,      255,    0, 255);
7513
7514         createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7515         return testGroup.release();
7516 }
7517
7518 tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
7519 {
7520         de::MovePtr<tcu::TestCaseGroup> instructionTests        (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
7521         de::MovePtr<tcu::TestCaseGroup> computeTests            (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
7522         de::MovePtr<tcu::TestCaseGroup> graphicsTests           (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
7523
7524         computeTests->addChild(createOpNopGroup(testCtx));
7525         computeTests->addChild(createOpLineGroup(testCtx));
7526         computeTests->addChild(createOpNoLineGroup(testCtx));
7527         computeTests->addChild(createOpConstantNullGroup(testCtx));
7528         computeTests->addChild(createOpConstantCompositeGroup(testCtx));
7529         computeTests->addChild(createOpConstantUsageGroup(testCtx));
7530         computeTests->addChild(createSpecConstantGroup(testCtx));
7531         computeTests->addChild(createOpSourceGroup(testCtx));
7532         computeTests->addChild(createOpSourceExtensionGroup(testCtx));
7533         computeTests->addChild(createDecorationGroupGroup(testCtx));
7534         computeTests->addChild(createOpPhiGroup(testCtx));
7535         computeTests->addChild(createLoopControlGroup(testCtx));
7536         computeTests->addChild(createFunctionControlGroup(testCtx));
7537         computeTests->addChild(createSelectionControlGroup(testCtx));
7538         computeTests->addChild(createBlockOrderGroup(testCtx));
7539         computeTests->addChild(createMultipleShaderGroup(testCtx));
7540         computeTests->addChild(createMemoryAccessGroup(testCtx));
7541         computeTests->addChild(createOpCopyMemoryGroup(testCtx));
7542         computeTests->addChild(createOpCopyObjectGroup(testCtx));
7543         computeTests->addChild(createNoContractionGroup(testCtx));
7544         computeTests->addChild(createOpUndefGroup(testCtx));
7545         computeTests->addChild(createOpUnreachableGroup(testCtx));
7546         computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
7547         computeTests ->addChild(createOpFRemGroup(testCtx));
7548
7549         RGBA defaultColors[4];
7550         getDefaultColors(defaultColors);
7551
7552         de::MovePtr<tcu::TestCaseGroup> opnopTests (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
7553         map<string, string> opNopFragments;
7554         opNopFragments["testfun"] =
7555                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7556                 "%param1 = OpFunctionParameter %v4f32\n"
7557                 "%label_testfun = OpLabel\n"
7558                 "OpNop\n"
7559                 "OpNop\n"
7560                 "OpNop\n"
7561                 "OpNop\n"
7562                 "OpNop\n"
7563                 "OpNop\n"
7564                 "OpNop\n"
7565                 "OpNop\n"
7566                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7567                 "%b = OpFAdd %f32 %a %a\n"
7568                 "OpNop\n"
7569                 "%c = OpFSub %f32 %b %a\n"
7570                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
7571                 "OpNop\n"
7572                 "OpNop\n"
7573                 "OpReturnValue %ret\n"
7574                 "OpFunctionEnd\n"
7575                 ;
7576         createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, opnopTests.get());
7577
7578
7579         graphicsTests->addChild(opnopTests.release());
7580         graphicsTests->addChild(createOpSourceTests(testCtx));
7581         graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
7582         graphicsTests->addChild(createOpLineTests(testCtx));
7583         graphicsTests->addChild(createOpNoLineTests(testCtx));
7584         graphicsTests->addChild(createOpConstantNullTests(testCtx));
7585         graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
7586         graphicsTests->addChild(createMemoryAccessTests(testCtx));
7587         graphicsTests->addChild(createOpUndefTests(testCtx));
7588         graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
7589         graphicsTests->addChild(createModuleTests(testCtx));
7590         graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
7591         graphicsTests->addChild(createOpPhiTests(testCtx));
7592         graphicsTests->addChild(createNoContractionTests(testCtx));
7593         graphicsTests->addChild(createOpQuantizeTests(testCtx));
7594         graphicsTests->addChild(createLoopTests(testCtx));
7595         graphicsTests->addChild(createSpecConstantTests(testCtx));
7596         graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
7597         graphicsTests->addChild(createBarrierTests(testCtx));
7598         graphicsTests->addChild(createDecorationGroupTests(testCtx));
7599         graphicsTests->addChild(createFRemTests(testCtx));
7600
7601         instructionTests->addChild(computeTests.release());
7602         instructionTests->addChild(graphicsTests.release());
7603
7604         return instructionTests.release();
7605 }
7606
7607 } // SpirVAssembly
7608 } // vkt